1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifdef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69 #elif defined(PPC64)
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #else // all other
  75   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  76   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  77   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  78   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  79 #endif
  80   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  81   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  82   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  83   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  84   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  85   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  86   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  87   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  88   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  89   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  90   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  91   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  92   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  93   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  94   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  95   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  96   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  97   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  98 };
  99 
 100 // Map ideal registers (machine types) to ideal types
 101 const Type *Type::mreg2type[_last_machine_leaf];
 102 
 103 // Map basic types to canonical Type* pointers.
 104 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 105 
 106 // Map basic types to constant-zero Types.
 107 const Type* Type::            _zero_type[T_CONFLICT+1];
 108 
 109 // Map basic types to array-body alias types.
 110 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 111 
 112 //=============================================================================
 113 // Convenience common pre-built types.
 114 const Type *Type::ABIO;         // State-of-machine only
 115 const Type *Type::BOTTOM;       // All values
 116 const Type *Type::CONTROL;      // Control only
 117 const Type *Type::DOUBLE;       // All doubles
 118 const Type *Type::FLOAT;        // All floats
 119 const Type *Type::HALF;         // Placeholder half of doublewide type
 120 const Type *Type::MEMORY;       // Abstract store only
 121 const Type *Type::RETURN_ADDRESS;
 122 const Type *Type::TOP;          // No values in set
 123 
 124 //------------------------------get_const_type---------------------------
 125 const Type* Type::get_const_type(ciType* type) {
 126   if (type == NULL) {
 127     return NULL;
 128   } else if (type->is_primitive_type()) {
 129     return get_const_basic_type(type->basic_type());
 130   } else {
 131     return TypeOopPtr::make_from_klass(type->as_klass());
 132   }
 133 }
 134 
 135 //---------------------------array_element_basic_type---------------------------------
 136 // Mapping to the array element's basic type.
 137 BasicType Type::array_element_basic_type() const {
 138   BasicType bt = basic_type();
 139   if (bt == T_INT) {
 140     if (this == TypeInt::INT)   return T_INT;
 141     if (this == TypeInt::CHAR)  return T_CHAR;
 142     if (this == TypeInt::BYTE)  return T_BYTE;
 143     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 144     if (this == TypeInt::SHORT) return T_SHORT;
 145     return T_VOID;
 146   }
 147   return bt;
 148 }
 149 
 150 //---------------------------get_typeflow_type---------------------------------
 151 // Import a type produced by ciTypeFlow.
 152 const Type* Type::get_typeflow_type(ciType* type) {
 153   switch (type->basic_type()) {
 154 
 155   case ciTypeFlow::StateVector::T_BOTTOM:
 156     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 157     return Type::BOTTOM;
 158 
 159   case ciTypeFlow::StateVector::T_TOP:
 160     assert(type == ciTypeFlow::StateVector::top_type(), "");
 161     return Type::TOP;
 162 
 163   case ciTypeFlow::StateVector::T_NULL:
 164     assert(type == ciTypeFlow::StateVector::null_type(), "");
 165     return TypePtr::NULL_PTR;
 166 
 167   case ciTypeFlow::StateVector::T_LONG2:
 168     // The ciTypeFlow pass pushes a long, then the half.
 169     // We do the same.
 170     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 171     return TypeInt::TOP;
 172 
 173   case ciTypeFlow::StateVector::T_DOUBLE2:
 174     // The ciTypeFlow pass pushes double, then the half.
 175     // Our convention is the same.
 176     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 177     return Type::TOP;
 178 
 179   case T_ADDRESS:
 180     assert(type->is_return_address(), "");
 181     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 182 
 183   default:
 184     // make sure we did not mix up the cases:
 185     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 186     assert(type != ciTypeFlow::StateVector::top_type(), "");
 187     assert(type != ciTypeFlow::StateVector::null_type(), "");
 188     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 189     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 190     assert(!type->is_return_address(), "");
 191 
 192     return Type::get_const_type(type);
 193   }
 194 }
 195 
 196 
 197 //-----------------------make_from_constant------------------------------------
 198 const Type* Type::make_from_constant(ciConstant constant,
 199                                      bool require_constant, bool is_autobox_cache) {
 200   switch (constant.basic_type()) {
 201   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 202   case T_CHAR:     return TypeInt::make(constant.as_char());
 203   case T_BYTE:     return TypeInt::make(constant.as_byte());
 204   case T_SHORT:    return TypeInt::make(constant.as_short());
 205   case T_INT:      return TypeInt::make(constant.as_int());
 206   case T_LONG:     return TypeLong::make(constant.as_long());
 207   case T_FLOAT:    return TypeF::make(constant.as_float());
 208   case T_DOUBLE:   return TypeD::make(constant.as_double());
 209   case T_ARRAY:
 210   case T_OBJECT:
 211     {
 212       // cases:
 213       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 214       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 215       // An oop is not scavengable if it is in the perm gen.
 216       ciObject* oop_constant = constant.as_object();
 217       if (oop_constant->is_null_object()) {
 218         return Type::get_zero_type(T_OBJECT);
 219       } else if (require_constant || oop_constant->should_be_constant()) {
 220         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 221       }
 222     }
 223   }
 224   // Fall through to failure
 225   return NULL;
 226 }
 227 
 228 
 229 //------------------------------make-------------------------------------------
 230 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 231 // and look for an existing copy in the type dictionary.
 232 const Type *Type::make( enum TYPES t ) {
 233   return (new Type(t))->hashcons();
 234 }
 235 
 236 //------------------------------cmp--------------------------------------------
 237 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 238   if( t1->_base != t2->_base )
 239     return 1;                   // Missed badly
 240   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 241   return !t1->eq(t2);           // Return ZERO if equal
 242 }
 243 
 244 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 245   if (!include_speculative) {
 246     return remove_speculative();
 247   }
 248   return this;
 249 }
 250 
 251 //------------------------------hash-------------------------------------------
 252 int Type::uhash( const Type *const t ) {
 253   return t->hash();
 254 }
 255 
 256 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 257 
 258 //--------------------------Initialize_shared----------------------------------
 259 void Type::Initialize_shared(Compile* current) {
 260   // This method does not need to be locked because the first system
 261   // compilations (stub compilations) occur serially.  If they are
 262   // changed to proceed in parallel, then this section will need
 263   // locking.
 264 
 265   Arena* save = current->type_arena();
 266   Arena* shared_type_arena = new (mtCompiler)Arena();
 267 
 268   current->set_type_arena(shared_type_arena);
 269   _shared_type_dict =
 270     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 271                                   shared_type_arena, 128 );
 272   current->set_type_dict(_shared_type_dict);
 273 
 274   // Make shared pre-built types.
 275   CONTROL = make(Control);      // Control only
 276   TOP     = make(Top);          // No values in set
 277   MEMORY  = make(Memory);       // Abstract store only
 278   ABIO    = make(Abio);         // State-of-machine only
 279   RETURN_ADDRESS=make(Return_Address);
 280   FLOAT   = make(FloatBot);     // All floats
 281   DOUBLE  = make(DoubleBot);    // All doubles
 282   BOTTOM  = make(Bottom);       // Everything
 283   HALF    = make(Half);         // Placeholder half of doublewide type
 284 
 285   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 286   TypeF::ONE  = TypeF::make(1.0); // Float 1
 287 
 288   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 289   TypeD::ONE  = TypeD::make(1.0); // Double 1
 290 
 291   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 292   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 293   TypeInt::ONE     = TypeInt::make( 1);  //  1
 294   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 295   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 296   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 297   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 298   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 299   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 300   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 301   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 302   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 303   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 304   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 305   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 306   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 307   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 308   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 309   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 310   // CmpL is overloaded both as the bytecode computation returning
 311   // a trinary (-1,0,+1) integer result AND as an efficient long
 312   // compare returning optimizer ideal-type flags.
 313   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 314   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 315   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 316   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 317   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 318 
 319   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 320   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 321   TypeLong::ONE     = TypeLong::make( 1);        //  1
 322   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 323   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 324   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 325   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 326   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 327 
 328   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 329   fboth[0] = Type::CONTROL;
 330   fboth[1] = Type::CONTROL;
 331   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 332 
 333   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 334   ffalse[0] = Type::CONTROL;
 335   ffalse[1] = Type::TOP;
 336   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 337 
 338   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 339   fneither[0] = Type::TOP;
 340   fneither[1] = Type::TOP;
 341   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 342 
 343   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 344   ftrue[0] = Type::TOP;
 345   ftrue[1] = Type::CONTROL;
 346   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 347 
 348   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 349   floop[0] = Type::CONTROL;
 350   floop[1] = TypeInt::INT;
 351   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 352 
 353   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 354   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 355   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 356 
 357   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 358   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 359 
 360   const Type **fmembar = TypeTuple::fields(0);
 361   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 362 
 363   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 364   fsc[0] = TypeInt::CC;
 365   fsc[1] = Type::MEMORY;
 366   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 367 
 368   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 369   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 370   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 371   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 372                                            false, 0, oopDesc::mark_offset_in_bytes());
 373   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 374                                            false, 0, oopDesc::klass_offset_in_bytes());
 375   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 376 
 377   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 378 
 379   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 380   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 381 
 382   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 383 
 384   mreg2type[Op_Node] = Type::BOTTOM;
 385   mreg2type[Op_Set ] = 0;
 386   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 387   mreg2type[Op_RegI] = TypeInt::INT;
 388   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 389   mreg2type[Op_RegF] = Type::FLOAT;
 390   mreg2type[Op_RegD] = Type::DOUBLE;
 391   mreg2type[Op_RegL] = TypeLong::LONG;
 392   mreg2type[Op_RegFlags] = TypeInt::CC;
 393 
 394   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 395 
 396   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 397 
 398 #ifdef _LP64
 399   if (UseCompressedOops) {
 400     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 401     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 402   } else
 403 #endif
 404   {
 405     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 406     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 407   }
 408   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 409   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 410   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 411   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 412   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 413   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 414   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 415 
 416   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 417   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 418   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 419   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 420   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 421   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 422   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 423   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 424   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 425   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 426   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 427   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 428 
 429   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 430   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 431 
 432   const Type **fi2c = TypeTuple::fields(2);
 433   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 434   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 435   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 436 
 437   const Type **intpair = TypeTuple::fields(2);
 438   intpair[0] = TypeInt::INT;
 439   intpair[1] = TypeInt::INT;
 440   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 441 
 442   const Type **longpair = TypeTuple::fields(2);
 443   longpair[0] = TypeLong::LONG;
 444   longpair[1] = TypeLong::LONG;
 445   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 446 
 447   const Type **intccpair = TypeTuple::fields(2);
 448   intccpair[0] = TypeInt::INT;
 449   intccpair[1] = TypeInt::CC;
 450   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 451 
 452   const Type **longccpair = TypeTuple::fields(2);
 453   longccpair[0] = TypeLong::LONG;
 454   longccpair[1] = TypeInt::CC;
 455   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 456 
 457   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 458   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 459   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 460   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 461   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 462   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 463   _const_basic_type[T_INT]         = TypeInt::INT;
 464   _const_basic_type[T_LONG]        = TypeLong::LONG;
 465   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 466   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 467   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 468   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 469   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 470   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 471   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 472 
 473   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 474   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 475   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 476   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 477   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 478   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 479   _zero_type[T_INT]         = TypeInt::ZERO;
 480   _zero_type[T_LONG]        = TypeLong::ZERO;
 481   _zero_type[T_FLOAT]       = TypeF::ZERO;
 482   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 483   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 484   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 485   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 486   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 487 
 488   // get_zero_type() should not happen for T_CONFLICT
 489   _zero_type[T_CONFLICT]= NULL;
 490 
 491   // Vector predefined types, it needs initialized _const_basic_type[].
 492   if (Matcher::vector_size_supported(T_BYTE,4)) {
 493     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 494   }
 495   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 496     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 497   }
 498   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 499     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 500   }
 501   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 502     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 503   }
 504   mreg2type[Op_VecS] = TypeVect::VECTS;
 505   mreg2type[Op_VecD] = TypeVect::VECTD;
 506   mreg2type[Op_VecX] = TypeVect::VECTX;
 507   mreg2type[Op_VecY] = TypeVect::VECTY;
 508 
 509   // Restore working type arena.
 510   current->set_type_arena(save);
 511   current->set_type_dict(NULL);
 512 }
 513 
 514 //------------------------------Initialize-------------------------------------
 515 void Type::Initialize(Compile* current) {
 516   assert(current->type_arena() != NULL, "must have created type arena");
 517 
 518   if (_shared_type_dict == NULL) {
 519     Initialize_shared(current);
 520   }
 521 
 522   Arena* type_arena = current->type_arena();
 523 
 524   // Create the hash-cons'ing dictionary with top-level storage allocation
 525   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 526   current->set_type_dict(tdic);
 527 
 528   // Transfer the shared types.
 529   DictI i(_shared_type_dict);
 530   for( ; i.test(); ++i ) {
 531     Type* t = (Type*)i._value;
 532     tdic->Insert(t,t);  // New Type, insert into Type table
 533   }
 534 }
 535 
 536 //------------------------------hashcons---------------------------------------
 537 // Do the hash-cons trick.  If the Type already exists in the type table,
 538 // delete the current Type and return the existing Type.  Otherwise stick the
 539 // current Type in the Type table.
 540 const Type *Type::hashcons(void) {
 541   debug_only(base());           // Check the assertion in Type::base().
 542   // Look up the Type in the Type dictionary
 543   Dict *tdic = type_dict();
 544   Type* old = (Type*)(tdic->Insert(this, this, false));
 545   if( old ) {                   // Pre-existing Type?
 546     if( old != this )           // Yes, this guy is not the pre-existing?
 547       delete this;              // Yes, Nuke this guy
 548     assert( old->_dual, "" );
 549     return old;                 // Return pre-existing
 550   }
 551 
 552   // Every type has a dual (to make my lattice symmetric).
 553   // Since we just discovered a new Type, compute its dual right now.
 554   assert( !_dual, "" );         // No dual yet
 555   _dual = xdual();              // Compute the dual
 556   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 557     _dual = this;
 558     return this;
 559   }
 560   assert( !_dual->_dual, "" );  // No reverse dual yet
 561   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 562   // New Type, insert into Type table
 563   tdic->Insert((void*)_dual,(void*)_dual);
 564   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 565 #ifdef ASSERT
 566   Type *dual_dual = (Type*)_dual->xdual();
 567   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 568   delete dual_dual;
 569 #endif
 570   return this;                  // Return new Type
 571 }
 572 
 573 //------------------------------eq---------------------------------------------
 574 // Structural equality check for Type representations
 575 bool Type::eq( const Type * ) const {
 576   return true;                  // Nothing else can go wrong
 577 }
 578 
 579 //------------------------------hash-------------------------------------------
 580 // Type-specific hashing function.
 581 int Type::hash(void) const {
 582   return _base;
 583 }
 584 
 585 //------------------------------is_finite--------------------------------------
 586 // Has a finite value
 587 bool Type::is_finite() const {
 588   return false;
 589 }
 590 
 591 //------------------------------is_nan-----------------------------------------
 592 // Is not a number (NaN)
 593 bool Type::is_nan()    const {
 594   return false;
 595 }
 596 
 597 //----------------------interface_vs_oop---------------------------------------
 598 #ifdef ASSERT
 599 bool Type::interface_vs_oop_helper(const Type *t) const {
 600   bool result = false;
 601 
 602   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 603   const TypePtr*    t_ptr =    t->make_ptr();
 604   if( this_ptr == NULL || t_ptr == NULL )
 605     return result;
 606 
 607   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 608   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 609   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 610     bool this_interface = this_inst->klass()->is_interface();
 611     bool    t_interface =    t_inst->klass()->is_interface();
 612     result = this_interface ^ t_interface;
 613   }
 614 
 615   return result;
 616 }
 617 
 618 bool Type::interface_vs_oop(const Type *t) const {
 619   if (interface_vs_oop_helper(t)) {
 620     return true;
 621   }
 622   // Now check the speculative parts as well
 623   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 624   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 625   if (this_spec != NULL && t_spec != NULL) {
 626     if (this_spec->interface_vs_oop_helper(t_spec)) {
 627       return true;
 628     }
 629     return false;
 630   }
 631   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 632     return true;
 633   }
 634   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 635     return true;
 636   }
 637   return false;
 638 }
 639 
 640 #endif
 641 
 642 //------------------------------meet-------------------------------------------
 643 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 644 // commutative and the lattice is symmetric.
 645 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 646   if (isa_narrowoop() && t->isa_narrowoop()) {
 647     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 648     return result->make_narrowoop();
 649   }
 650   if (isa_narrowklass() && t->isa_narrowklass()) {
 651     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 652     return result->make_narrowklass();
 653   }
 654 
 655   const Type *this_t = maybe_remove_speculative(include_speculative);
 656   t = t->maybe_remove_speculative(include_speculative);
 657 
 658   const Type *mt = this_t->xmeet(t);
 659   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 660   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 661 #ifdef ASSERT
 662   assert(mt == t->xmeet(this_t), "meet not commutative");
 663   const Type* dual_join = mt->_dual;
 664   const Type *t2t    = dual_join->xmeet(t->_dual);
 665   const Type *t2this = dual_join->xmeet(this_t->_dual);
 666 
 667   // Interface meet Oop is Not Symmetric:
 668   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 669   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 670 
 671   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 672     tty->print_cr("=== Meet Not Symmetric ===");
 673     tty->print("t   =                   ");              t->dump(); tty->cr();
 674     tty->print("this=                   ");         this_t->dump(); tty->cr();
 675     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 676 
 677     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 678     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 679     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 680 
 681     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 682     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 683 
 684     fatal("meet not symmetric" );
 685   }
 686 #endif
 687   return mt;
 688 }
 689 
 690 //------------------------------xmeet------------------------------------------
 691 // Compute the MEET of two types.  It returns a new Type object.
 692 const Type *Type::xmeet( const Type *t ) const {
 693   // Perform a fast test for common case; meeting the same types together.
 694   if( this == t ) return this;  // Meeting same type-rep?
 695 
 696   // Meeting TOP with anything?
 697   if( _base == Top ) return t;
 698 
 699   // Meeting BOTTOM with anything?
 700   if( _base == Bottom ) return BOTTOM;
 701 
 702   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 703   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 704   switch (t->base()) {  // Switch on original type
 705 
 706   // Cut in half the number of cases I must handle.  Only need cases for when
 707   // the given enum "t->type" is less than or equal to the local enum "type".
 708   case FloatCon:
 709   case DoubleCon:
 710   case Int:
 711   case Long:
 712     return t->xmeet(this);
 713 
 714   case OopPtr:
 715     return t->xmeet(this);
 716 
 717   case InstPtr:
 718     return t->xmeet(this);
 719 
 720   case MetadataPtr:
 721   case KlassPtr:
 722     return t->xmeet(this);
 723 
 724   case AryPtr:
 725     return t->xmeet(this);
 726 
 727   case NarrowOop:
 728     return t->xmeet(this);
 729 
 730   case NarrowKlass:
 731     return t->xmeet(this);
 732 
 733   case Bad:                     // Type check
 734   default:                      // Bogus type not in lattice
 735     typerr(t);
 736     return Type::BOTTOM;
 737 
 738   case Bottom:                  // Ye Olde Default
 739     return t;
 740 
 741   case FloatTop:
 742     if( _base == FloatTop ) return this;
 743   case FloatBot:                // Float
 744     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 745     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 746     typerr(t);
 747     return Type::BOTTOM;
 748 
 749   case DoubleTop:
 750     if( _base == DoubleTop ) return this;
 751   case DoubleBot:               // Double
 752     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 753     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 754     typerr(t);
 755     return Type::BOTTOM;
 756 
 757   // These next few cases must match exactly or it is a compile-time error.
 758   case Control:                 // Control of code
 759   case Abio:                    // State of world outside of program
 760   case Memory:
 761     if( _base == t->_base )  return this;
 762     typerr(t);
 763     return Type::BOTTOM;
 764 
 765   case Top:                     // Top of the lattice
 766     return this;
 767   }
 768 
 769   // The type is unchanged
 770   return this;
 771 }
 772 
 773 //-----------------------------filter------------------------------------------
 774 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 775   const Type* ft = join_helper(kills, include_speculative);
 776   if (ft->empty())
 777     return Type::TOP;           // Canonical empty value
 778   return ft;
 779 }
 780 
 781 //------------------------------xdual------------------------------------------
 782 // Compute dual right now.
 783 const Type::TYPES Type::dual_type[Type::lastype] = {
 784   Bad,          // Bad
 785   Control,      // Control
 786   Bottom,       // Top
 787   Bad,          // Int - handled in v-call
 788   Bad,          // Long - handled in v-call
 789   Half,         // Half
 790   Bad,          // NarrowOop - handled in v-call
 791   Bad,          // NarrowKlass - handled in v-call
 792 
 793   Bad,          // Tuple - handled in v-call
 794   Bad,          // Array - handled in v-call
 795   Bad,          // VectorS - handled in v-call
 796   Bad,          // VectorD - handled in v-call
 797   Bad,          // VectorX - handled in v-call
 798   Bad,          // VectorY - handled in v-call
 799 
 800   Bad,          // AnyPtr - handled in v-call
 801   Bad,          // RawPtr - handled in v-call
 802   Bad,          // OopPtr - handled in v-call
 803   Bad,          // InstPtr - handled in v-call
 804   Bad,          // AryPtr - handled in v-call
 805 
 806   Bad,          //  MetadataPtr - handled in v-call
 807   Bad,          // KlassPtr - handled in v-call
 808 
 809   Bad,          // Function - handled in v-call
 810   Abio,         // Abio
 811   Return_Address,// Return_Address
 812   Memory,       // Memory
 813   FloatBot,     // FloatTop
 814   FloatCon,     // FloatCon
 815   FloatTop,     // FloatBot
 816   DoubleBot,    // DoubleTop
 817   DoubleCon,    // DoubleCon
 818   DoubleTop,    // DoubleBot
 819   Top           // Bottom
 820 };
 821 
 822 const Type *Type::xdual() const {
 823   // Note: the base() accessor asserts the sanity of _base.
 824   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 825   return new Type(_type_info[_base].dual_type);
 826 }
 827 
 828 //------------------------------has_memory-------------------------------------
 829 bool Type::has_memory() const {
 830   Type::TYPES tx = base();
 831   if (tx == Memory) return true;
 832   if (tx == Tuple) {
 833     const TypeTuple *t = is_tuple();
 834     for (uint i=0; i < t->cnt(); i++) {
 835       tx = t->field_at(i)->base();
 836       if (tx == Memory)  return true;
 837     }
 838   }
 839   return false;
 840 }
 841 
 842 #ifndef PRODUCT
 843 //------------------------------dump2------------------------------------------
 844 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 845   st->print(_type_info[_base].msg);
 846 }
 847 
 848 //------------------------------dump-------------------------------------------
 849 void Type::dump_on(outputStream *st) const {
 850   ResourceMark rm;
 851   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 852   dump2(d,1, st);
 853   if (is_ptr_to_narrowoop()) {
 854     st->print(" [narrow]");
 855   } else if (is_ptr_to_narrowklass()) {
 856     st->print(" [narrowklass]");
 857   }
 858 }
 859 #endif
 860 
 861 //------------------------------singleton--------------------------------------
 862 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 863 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 864 bool Type::singleton(void) const {
 865   return _base == Top || _base == Half;
 866 }
 867 
 868 //------------------------------empty------------------------------------------
 869 // TRUE if Type is a type with no values, FALSE otherwise.
 870 bool Type::empty(void) const {
 871   switch (_base) {
 872   case DoubleTop:
 873   case FloatTop:
 874   case Top:
 875     return true;
 876 
 877   case Half:
 878   case Abio:
 879   case Return_Address:
 880   case Memory:
 881   case Bottom:
 882   case FloatBot:
 883   case DoubleBot:
 884     return false;  // never a singleton, therefore never empty
 885   }
 886 
 887   ShouldNotReachHere();
 888   return false;
 889 }
 890 
 891 //------------------------------dump_stats-------------------------------------
 892 // Dump collected statistics to stderr
 893 #ifndef PRODUCT
 894 void Type::dump_stats() {
 895   tty->print("Types made: %d\n", type_dict()->Size());
 896 }
 897 #endif
 898 
 899 //------------------------------typerr-----------------------------------------
 900 void Type::typerr( const Type *t ) const {
 901 #ifndef PRODUCT
 902   tty->print("\nError mixing types: ");
 903   dump();
 904   tty->print(" and ");
 905   t->dump();
 906   tty->print("\n");
 907 #endif
 908   ShouldNotReachHere();
 909 }
 910 
 911 
 912 //=============================================================================
 913 // Convenience common pre-built types.
 914 const TypeF *TypeF::ZERO;       // Floating point zero
 915 const TypeF *TypeF::ONE;        // Floating point one
 916 
 917 //------------------------------make-------------------------------------------
 918 // Create a float constant
 919 const TypeF *TypeF::make(float f) {
 920   return (TypeF*)(new TypeF(f))->hashcons();
 921 }
 922 
 923 //------------------------------meet-------------------------------------------
 924 // Compute the MEET of two types.  It returns a new Type object.
 925 const Type *TypeF::xmeet( const Type *t ) const {
 926   // Perform a fast test for common case; meeting the same types together.
 927   if( this == t ) return this;  // Meeting same type-rep?
 928 
 929   // Current "this->_base" is FloatCon
 930   switch (t->base()) {          // Switch on original type
 931   case AnyPtr:                  // Mixing with oops happens when javac
 932   case RawPtr:                  // reuses local variables
 933   case OopPtr:
 934   case InstPtr:
 935   case AryPtr:
 936   case MetadataPtr:
 937   case KlassPtr:
 938   case NarrowOop:
 939   case NarrowKlass:
 940   case Int:
 941   case Long:
 942   case DoubleTop:
 943   case DoubleCon:
 944   case DoubleBot:
 945   case Bottom:                  // Ye Olde Default
 946     return Type::BOTTOM;
 947 
 948   case FloatBot:
 949     return t;
 950 
 951   default:                      // All else is a mistake
 952     typerr(t);
 953 
 954   case FloatCon:                // Float-constant vs Float-constant?
 955     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 956                                 // must compare bitwise as positive zero, negative zero and NaN have
 957                                 // all the same representation in C++
 958       return FLOAT;             // Return generic float
 959                                 // Equal constants
 960   case Top:
 961   case FloatTop:
 962     break;                      // Return the float constant
 963   }
 964   return this;                  // Return the float constant
 965 }
 966 
 967 //------------------------------xdual------------------------------------------
 968 // Dual: symmetric
 969 const Type *TypeF::xdual() const {
 970   return this;
 971 }
 972 
 973 //------------------------------eq---------------------------------------------
 974 // Structural equality check for Type representations
 975 bool TypeF::eq( const Type *t ) const {
 976   if( g_isnan(_f) ||
 977       g_isnan(t->getf()) ) {
 978     // One or both are NANs.  If both are NANs return true, else false.
 979     return (g_isnan(_f) && g_isnan(t->getf()));
 980   }
 981   if (_f == t->getf()) {
 982     // (NaN is impossible at this point, since it is not equal even to itself)
 983     if (_f == 0.0) {
 984       // difference between positive and negative zero
 985       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 986     }
 987     return true;
 988   }
 989   return false;
 990 }
 991 
 992 //------------------------------hash-------------------------------------------
 993 // Type-specific hashing function.
 994 int TypeF::hash(void) const {
 995   return *(int*)(&_f);
 996 }
 997 
 998 //------------------------------is_finite--------------------------------------
 999 // Has a finite value
1000 bool TypeF::is_finite() const {
1001   return g_isfinite(getf()) != 0;
1002 }
1003 
1004 //------------------------------is_nan-----------------------------------------
1005 // Is not a number (NaN)
1006 bool TypeF::is_nan()    const {
1007   return g_isnan(getf()) != 0;
1008 }
1009 
1010 //------------------------------dump2------------------------------------------
1011 // Dump float constant Type
1012 #ifndef PRODUCT
1013 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1014   Type::dump2(d,depth, st);
1015   st->print("%f", _f);
1016 }
1017 #endif
1018 
1019 //------------------------------singleton--------------------------------------
1020 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1021 // constants (Ldi nodes).  Singletons are integer, float or double constants
1022 // or a single symbol.
1023 bool TypeF::singleton(void) const {
1024   return true;                  // Always a singleton
1025 }
1026 
1027 bool TypeF::empty(void) const {
1028   return false;                 // always exactly a singleton
1029 }
1030 
1031 //=============================================================================
1032 // Convenience common pre-built types.
1033 const TypeD *TypeD::ZERO;       // Floating point zero
1034 const TypeD *TypeD::ONE;        // Floating point one
1035 
1036 //------------------------------make-------------------------------------------
1037 const TypeD *TypeD::make(double d) {
1038   return (TypeD*)(new TypeD(d))->hashcons();
1039 }
1040 
1041 //------------------------------meet-------------------------------------------
1042 // Compute the MEET of two types.  It returns a new Type object.
1043 const Type *TypeD::xmeet( const Type *t ) const {
1044   // Perform a fast test for common case; meeting the same types together.
1045   if( this == t ) return this;  // Meeting same type-rep?
1046 
1047   // Current "this->_base" is DoubleCon
1048   switch (t->base()) {          // Switch on original type
1049   case AnyPtr:                  // Mixing with oops happens when javac
1050   case RawPtr:                  // reuses local variables
1051   case OopPtr:
1052   case InstPtr:
1053   case AryPtr:
1054   case MetadataPtr:
1055   case KlassPtr:
1056   case NarrowOop:
1057   case NarrowKlass:
1058   case Int:
1059   case Long:
1060   case FloatTop:
1061   case FloatCon:
1062   case FloatBot:
1063   case Bottom:                  // Ye Olde Default
1064     return Type::BOTTOM;
1065 
1066   case DoubleBot:
1067     return t;
1068 
1069   default:                      // All else is a mistake
1070     typerr(t);
1071 
1072   case DoubleCon:               // Double-constant vs Double-constant?
1073     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1074       return DOUBLE;            // Return generic double
1075   case Top:
1076   case DoubleTop:
1077     break;
1078   }
1079   return this;                  // Return the double constant
1080 }
1081 
1082 //------------------------------xdual------------------------------------------
1083 // Dual: symmetric
1084 const Type *TypeD::xdual() const {
1085   return this;
1086 }
1087 
1088 //------------------------------eq---------------------------------------------
1089 // Structural equality check for Type representations
1090 bool TypeD::eq( const Type *t ) const {
1091   if( g_isnan(_d) ||
1092       g_isnan(t->getd()) ) {
1093     // One or both are NANs.  If both are NANs return true, else false.
1094     return (g_isnan(_d) && g_isnan(t->getd()));
1095   }
1096   if (_d == t->getd()) {
1097     // (NaN is impossible at this point, since it is not equal even to itself)
1098     if (_d == 0.0) {
1099       // difference between positive and negative zero
1100       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1101     }
1102     return true;
1103   }
1104   return false;
1105 }
1106 
1107 //------------------------------hash-------------------------------------------
1108 // Type-specific hashing function.
1109 int TypeD::hash(void) const {
1110   return *(int*)(&_d);
1111 }
1112 
1113 //------------------------------is_finite--------------------------------------
1114 // Has a finite value
1115 bool TypeD::is_finite() const {
1116   return g_isfinite(getd()) != 0;
1117 }
1118 
1119 //------------------------------is_nan-----------------------------------------
1120 // Is not a number (NaN)
1121 bool TypeD::is_nan()    const {
1122   return g_isnan(getd()) != 0;
1123 }
1124 
1125 //------------------------------dump2------------------------------------------
1126 // Dump double constant Type
1127 #ifndef PRODUCT
1128 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1129   Type::dump2(d,depth,st);
1130   st->print("%f", _d);
1131 }
1132 #endif
1133 
1134 //------------------------------singleton--------------------------------------
1135 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1136 // constants (Ldi nodes).  Singletons are integer, float or double constants
1137 // or a single symbol.
1138 bool TypeD::singleton(void) const {
1139   return true;                  // Always a singleton
1140 }
1141 
1142 bool TypeD::empty(void) const {
1143   return false;                 // always exactly a singleton
1144 }
1145 
1146 //=============================================================================
1147 // Convience common pre-built types.
1148 const TypeInt *TypeInt::MINUS_1;// -1
1149 const TypeInt *TypeInt::ZERO;   // 0
1150 const TypeInt *TypeInt::ONE;    // 1
1151 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1152 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1153 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1154 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1155 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1156 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1157 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1158 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1159 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1160 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1161 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1162 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1163 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1164 const TypeInt *TypeInt::INT;    // 32-bit integers
1165 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1166 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1167 
1168 //------------------------------TypeInt----------------------------------------
1169 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1170 }
1171 
1172 //------------------------------make-------------------------------------------
1173 const TypeInt *TypeInt::make( jint lo ) {
1174   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1175 }
1176 
1177 static int normalize_int_widen( jint lo, jint hi, int w ) {
1178   // Certain normalizations keep us sane when comparing types.
1179   // The 'SMALLINT' covers constants and also CC and its relatives.
1180   if (lo <= hi) {
1181     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1182     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1183   } else {
1184     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1185     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1186   }
1187   return w;
1188 }
1189 
1190 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1191   w = normalize_int_widen(lo, hi, w);
1192   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1193 }
1194 
1195 //------------------------------meet-------------------------------------------
1196 // Compute the MEET of two types.  It returns a new Type representation object
1197 // with reference count equal to the number of Types pointing at it.
1198 // Caller should wrap a Types around it.
1199 const Type *TypeInt::xmeet( const Type *t ) const {
1200   // Perform a fast test for common case; meeting the same types together.
1201   if( this == t ) return this;  // Meeting same type?
1202 
1203   // Currently "this->_base" is a TypeInt
1204   switch (t->base()) {          // Switch on original type
1205   case AnyPtr:                  // Mixing with oops happens when javac
1206   case RawPtr:                  // reuses local variables
1207   case OopPtr:
1208   case InstPtr:
1209   case AryPtr:
1210   case MetadataPtr:
1211   case KlassPtr:
1212   case NarrowOop:
1213   case NarrowKlass:
1214   case Long:
1215   case FloatTop:
1216   case FloatCon:
1217   case FloatBot:
1218   case DoubleTop:
1219   case DoubleCon:
1220   case DoubleBot:
1221   case Bottom:                  // Ye Olde Default
1222     return Type::BOTTOM;
1223   default:                      // All else is a mistake
1224     typerr(t);
1225   case Top:                     // No change
1226     return this;
1227   case Int:                     // Int vs Int?
1228     break;
1229   }
1230 
1231   // Expand covered set
1232   const TypeInt *r = t->is_int();
1233   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1234 }
1235 
1236 //------------------------------xdual------------------------------------------
1237 // Dual: reverse hi & lo; flip widen
1238 const Type *TypeInt::xdual() const {
1239   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1240   return new TypeInt(_hi,_lo,w);
1241 }
1242 
1243 //------------------------------widen------------------------------------------
1244 // Only happens for optimistic top-down optimizations.
1245 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1246   // Coming from TOP or such; no widening
1247   if( old->base() != Int ) return this;
1248   const TypeInt *ot = old->is_int();
1249 
1250   // If new guy is equal to old guy, no widening
1251   if( _lo == ot->_lo && _hi == ot->_hi )
1252     return old;
1253 
1254   // If new guy contains old, then we widened
1255   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1256     // New contains old
1257     // If new guy is already wider than old, no widening
1258     if( _widen > ot->_widen ) return this;
1259     // If old guy was a constant, do not bother
1260     if (ot->_lo == ot->_hi)  return this;
1261     // Now widen new guy.
1262     // Check for widening too far
1263     if (_widen == WidenMax) {
1264       int max = max_jint;
1265       int min = min_jint;
1266       if (limit->isa_int()) {
1267         max = limit->is_int()->_hi;
1268         min = limit->is_int()->_lo;
1269       }
1270       if (min < _lo && _hi < max) {
1271         // If neither endpoint is extremal yet, push out the endpoint
1272         // which is closer to its respective limit.
1273         if (_lo >= 0 ||                 // easy common case
1274             (juint)(_lo - min) >= (juint)(max - _hi)) {
1275           // Try to widen to an unsigned range type of 31 bits:
1276           return make(_lo, max, WidenMax);
1277         } else {
1278           return make(min, _hi, WidenMax);
1279         }
1280       }
1281       return TypeInt::INT;
1282     }
1283     // Returned widened new guy
1284     return make(_lo,_hi,_widen+1);
1285   }
1286 
1287   // If old guy contains new, then we probably widened too far & dropped to
1288   // bottom.  Return the wider fellow.
1289   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1290     return old;
1291 
1292   //fatal("Integer value range is not subset");
1293   //return this;
1294   return TypeInt::INT;
1295 }
1296 
1297 //------------------------------narrow---------------------------------------
1298 // Only happens for pessimistic optimizations.
1299 const Type *TypeInt::narrow( const Type *old ) const {
1300   if (_lo >= _hi)  return this;   // already narrow enough
1301   if (old == NULL)  return this;
1302   const TypeInt* ot = old->isa_int();
1303   if (ot == NULL)  return this;
1304   jint olo = ot->_lo;
1305   jint ohi = ot->_hi;
1306 
1307   // If new guy is equal to old guy, no narrowing
1308   if (_lo == olo && _hi == ohi)  return old;
1309 
1310   // If old guy was maximum range, allow the narrowing
1311   if (olo == min_jint && ohi == max_jint)  return this;
1312 
1313   if (_lo < olo || _hi > ohi)
1314     return this;                // doesn't narrow; pretty wierd
1315 
1316   // The new type narrows the old type, so look for a "death march".
1317   // See comments on PhaseTransform::saturate.
1318   juint nrange = _hi - _lo;
1319   juint orange = ohi - olo;
1320   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1321     // Use the new type only if the range shrinks a lot.
1322     // We do not want the optimizer computing 2^31 point by point.
1323     return old;
1324   }
1325 
1326   return this;
1327 }
1328 
1329 //-----------------------------filter------------------------------------------
1330 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1331   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1332   if (ft == NULL || ft->empty())
1333     return Type::TOP;           // Canonical empty value
1334   if (ft->_widen < this->_widen) {
1335     // Do not allow the value of kill->_widen to affect the outcome.
1336     // The widen bits must be allowed to run freely through the graph.
1337     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1338   }
1339   return ft;
1340 }
1341 
1342 //------------------------------eq---------------------------------------------
1343 // Structural equality check for Type representations
1344 bool TypeInt::eq( const Type *t ) const {
1345   const TypeInt *r = t->is_int(); // Handy access
1346   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1347 }
1348 
1349 //------------------------------hash-------------------------------------------
1350 // Type-specific hashing function.
1351 int TypeInt::hash(void) const {
1352   return _lo+_hi+_widen+(int)Type::Int;
1353 }
1354 
1355 //------------------------------is_finite--------------------------------------
1356 // Has a finite value
1357 bool TypeInt::is_finite() const {
1358   return true;
1359 }
1360 
1361 //------------------------------dump2------------------------------------------
1362 // Dump TypeInt
1363 #ifndef PRODUCT
1364 static const char* intname(char* buf, jint n) {
1365   if (n == min_jint)
1366     return "min";
1367   else if (n < min_jint + 10000)
1368     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1369   else if (n == max_jint)
1370     return "max";
1371   else if (n > max_jint - 10000)
1372     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1373   else
1374     sprintf(buf, INT32_FORMAT, n);
1375   return buf;
1376 }
1377 
1378 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1379   char buf[40], buf2[40];
1380   if (_lo == min_jint && _hi == max_jint)
1381     st->print("int");
1382   else if (is_con())
1383     st->print("int:%s", intname(buf, get_con()));
1384   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1385     st->print("bool");
1386   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1387     st->print("byte");
1388   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1389     st->print("char");
1390   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1391     st->print("short");
1392   else if (_hi == max_jint)
1393     st->print("int:>=%s", intname(buf, _lo));
1394   else if (_lo == min_jint)
1395     st->print("int:<=%s", intname(buf, _hi));
1396   else
1397     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1398 
1399   if (_widen != 0 && this != TypeInt::INT)
1400     st->print(":%.*s", _widen, "wwww");
1401 }
1402 #endif
1403 
1404 //------------------------------singleton--------------------------------------
1405 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1406 // constants.
1407 bool TypeInt::singleton(void) const {
1408   return _lo >= _hi;
1409 }
1410 
1411 bool TypeInt::empty(void) const {
1412   return _lo > _hi;
1413 }
1414 
1415 //=============================================================================
1416 // Convenience common pre-built types.
1417 const TypeLong *TypeLong::MINUS_1;// -1
1418 const TypeLong *TypeLong::ZERO; // 0
1419 const TypeLong *TypeLong::ONE;  // 1
1420 const TypeLong *TypeLong::POS;  // >=0
1421 const TypeLong *TypeLong::LONG; // 64-bit integers
1422 const TypeLong *TypeLong::INT;  // 32-bit subrange
1423 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1424 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1425 
1426 //------------------------------TypeLong---------------------------------------
1427 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1428 }
1429 
1430 //------------------------------make-------------------------------------------
1431 const TypeLong *TypeLong::make( jlong lo ) {
1432   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1433 }
1434 
1435 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1436   // Certain normalizations keep us sane when comparing types.
1437   // The 'SMALLINT' covers constants.
1438   if (lo <= hi) {
1439     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1440     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1441   } else {
1442     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1443     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1444   }
1445   return w;
1446 }
1447 
1448 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1449   w = normalize_long_widen(lo, hi, w);
1450   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1451 }
1452 
1453 
1454 //------------------------------meet-------------------------------------------
1455 // Compute the MEET of two types.  It returns a new Type representation object
1456 // with reference count equal to the number of Types pointing at it.
1457 // Caller should wrap a Types around it.
1458 const Type *TypeLong::xmeet( const Type *t ) const {
1459   // Perform a fast test for common case; meeting the same types together.
1460   if( this == t ) return this;  // Meeting same type?
1461 
1462   // Currently "this->_base" is a TypeLong
1463   switch (t->base()) {          // Switch on original type
1464   case AnyPtr:                  // Mixing with oops happens when javac
1465   case RawPtr:                  // reuses local variables
1466   case OopPtr:
1467   case InstPtr:
1468   case AryPtr:
1469   case MetadataPtr:
1470   case KlassPtr:
1471   case NarrowOop:
1472   case NarrowKlass:
1473   case Int:
1474   case FloatTop:
1475   case FloatCon:
1476   case FloatBot:
1477   case DoubleTop:
1478   case DoubleCon:
1479   case DoubleBot:
1480   case Bottom:                  // Ye Olde Default
1481     return Type::BOTTOM;
1482   default:                      // All else is a mistake
1483     typerr(t);
1484   case Top:                     // No change
1485     return this;
1486   case Long:                    // Long vs Long?
1487     break;
1488   }
1489 
1490   // Expand covered set
1491   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1492   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1493 }
1494 
1495 //------------------------------xdual------------------------------------------
1496 // Dual: reverse hi & lo; flip widen
1497 const Type *TypeLong::xdual() const {
1498   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1499   return new TypeLong(_hi,_lo,w);
1500 }
1501 
1502 //------------------------------widen------------------------------------------
1503 // Only happens for optimistic top-down optimizations.
1504 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1505   // Coming from TOP or such; no widening
1506   if( old->base() != Long ) return this;
1507   const TypeLong *ot = old->is_long();
1508 
1509   // If new guy is equal to old guy, no widening
1510   if( _lo == ot->_lo && _hi == ot->_hi )
1511     return old;
1512 
1513   // If new guy contains old, then we widened
1514   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1515     // New contains old
1516     // If new guy is already wider than old, no widening
1517     if( _widen > ot->_widen ) return this;
1518     // If old guy was a constant, do not bother
1519     if (ot->_lo == ot->_hi)  return this;
1520     // Now widen new guy.
1521     // Check for widening too far
1522     if (_widen == WidenMax) {
1523       jlong max = max_jlong;
1524       jlong min = min_jlong;
1525       if (limit->isa_long()) {
1526         max = limit->is_long()->_hi;
1527         min = limit->is_long()->_lo;
1528       }
1529       if (min < _lo && _hi < max) {
1530         // If neither endpoint is extremal yet, push out the endpoint
1531         // which is closer to its respective limit.
1532         if (_lo >= 0 ||                 // easy common case
1533             (julong)(_lo - min) >= (julong)(max - _hi)) {
1534           // Try to widen to an unsigned range type of 32/63 bits:
1535           if (max >= max_juint && _hi < max_juint)
1536             return make(_lo, max_juint, WidenMax);
1537           else
1538             return make(_lo, max, WidenMax);
1539         } else {
1540           return make(min, _hi, WidenMax);
1541         }
1542       }
1543       return TypeLong::LONG;
1544     }
1545     // Returned widened new guy
1546     return make(_lo,_hi,_widen+1);
1547   }
1548 
1549   // If old guy contains new, then we probably widened too far & dropped to
1550   // bottom.  Return the wider fellow.
1551   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1552     return old;
1553 
1554   //  fatal("Long value range is not subset");
1555   // return this;
1556   return TypeLong::LONG;
1557 }
1558 
1559 //------------------------------narrow----------------------------------------
1560 // Only happens for pessimistic optimizations.
1561 const Type *TypeLong::narrow( const Type *old ) const {
1562   if (_lo >= _hi)  return this;   // already narrow enough
1563   if (old == NULL)  return this;
1564   const TypeLong* ot = old->isa_long();
1565   if (ot == NULL)  return this;
1566   jlong olo = ot->_lo;
1567   jlong ohi = ot->_hi;
1568 
1569   // If new guy is equal to old guy, no narrowing
1570   if (_lo == olo && _hi == ohi)  return old;
1571 
1572   // If old guy was maximum range, allow the narrowing
1573   if (olo == min_jlong && ohi == max_jlong)  return this;
1574 
1575   if (_lo < olo || _hi > ohi)
1576     return this;                // doesn't narrow; pretty wierd
1577 
1578   // The new type narrows the old type, so look for a "death march".
1579   // See comments on PhaseTransform::saturate.
1580   julong nrange = _hi - _lo;
1581   julong orange = ohi - olo;
1582   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1583     // Use the new type only if the range shrinks a lot.
1584     // We do not want the optimizer computing 2^31 point by point.
1585     return old;
1586   }
1587 
1588   return this;
1589 }
1590 
1591 //-----------------------------filter------------------------------------------
1592 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1593   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1594   if (ft == NULL || ft->empty())
1595     return Type::TOP;           // Canonical empty value
1596   if (ft->_widen < this->_widen) {
1597     // Do not allow the value of kill->_widen to affect the outcome.
1598     // The widen bits must be allowed to run freely through the graph.
1599     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1600   }
1601   return ft;
1602 }
1603 
1604 //------------------------------eq---------------------------------------------
1605 // Structural equality check for Type representations
1606 bool TypeLong::eq( const Type *t ) const {
1607   const TypeLong *r = t->is_long(); // Handy access
1608   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1609 }
1610 
1611 //------------------------------hash-------------------------------------------
1612 // Type-specific hashing function.
1613 int TypeLong::hash(void) const {
1614   return (int)(_lo+_hi+_widen+(int)Type::Long);
1615 }
1616 
1617 //------------------------------is_finite--------------------------------------
1618 // Has a finite value
1619 bool TypeLong::is_finite() const {
1620   return true;
1621 }
1622 
1623 //------------------------------dump2------------------------------------------
1624 // Dump TypeLong
1625 #ifndef PRODUCT
1626 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1627   if (n > x) {
1628     if (n >= x + 10000)  return NULL;
1629     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1630   } else if (n < x) {
1631     if (n <= x - 10000)  return NULL;
1632     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1633   } else {
1634     return xname;
1635   }
1636   return buf;
1637 }
1638 
1639 static const char* longname(char* buf, jlong n) {
1640   const char* str;
1641   if (n == min_jlong)
1642     return "min";
1643   else if (n < min_jlong + 10000)
1644     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1645   else if (n == max_jlong)
1646     return "max";
1647   else if (n > max_jlong - 10000)
1648     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1649   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1650     return str;
1651   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1652     return str;
1653   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1654     return str;
1655   else
1656     sprintf(buf, JLONG_FORMAT, n);
1657   return buf;
1658 }
1659 
1660 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1661   char buf[80], buf2[80];
1662   if (_lo == min_jlong && _hi == max_jlong)
1663     st->print("long");
1664   else if (is_con())
1665     st->print("long:%s", longname(buf, get_con()));
1666   else if (_hi == max_jlong)
1667     st->print("long:>=%s", longname(buf, _lo));
1668   else if (_lo == min_jlong)
1669     st->print("long:<=%s", longname(buf, _hi));
1670   else
1671     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1672 
1673   if (_widen != 0 && this != TypeLong::LONG)
1674     st->print(":%.*s", _widen, "wwww");
1675 }
1676 #endif
1677 
1678 //------------------------------singleton--------------------------------------
1679 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1680 // constants
1681 bool TypeLong::singleton(void) const {
1682   return _lo >= _hi;
1683 }
1684 
1685 bool TypeLong::empty(void) const {
1686   return _lo > _hi;
1687 }
1688 
1689 //=============================================================================
1690 // Convenience common pre-built types.
1691 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1692 const TypeTuple *TypeTuple::IFFALSE;
1693 const TypeTuple *TypeTuple::IFTRUE;
1694 const TypeTuple *TypeTuple::IFNEITHER;
1695 const TypeTuple *TypeTuple::LOOPBODY;
1696 const TypeTuple *TypeTuple::MEMBAR;
1697 const TypeTuple *TypeTuple::STORECONDITIONAL;
1698 const TypeTuple *TypeTuple::START_I2C;
1699 const TypeTuple *TypeTuple::INT_PAIR;
1700 const TypeTuple *TypeTuple::LONG_PAIR;
1701 const TypeTuple *TypeTuple::INT_CC_PAIR;
1702 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1703 
1704 
1705 //------------------------------make-------------------------------------------
1706 // Make a TypeTuple from the range of a method signature
1707 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1708   ciType* return_type = sig->return_type();
1709   uint total_fields = TypeFunc::Parms + return_type->size();
1710   const Type **field_array = fields(total_fields);
1711   switch (return_type->basic_type()) {
1712   case T_LONG:
1713     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1714     field_array[TypeFunc::Parms+1] = Type::HALF;
1715     break;
1716   case T_DOUBLE:
1717     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1718     field_array[TypeFunc::Parms+1] = Type::HALF;
1719     break;
1720   case T_OBJECT:
1721   case T_ARRAY:
1722   case T_BOOLEAN:
1723   case T_CHAR:
1724   case T_FLOAT:
1725   case T_BYTE:
1726   case T_SHORT:
1727   case T_INT:
1728     field_array[TypeFunc::Parms] = get_const_type(return_type);
1729     break;
1730   case T_VOID:
1731     break;
1732   default:
1733     ShouldNotReachHere();
1734   }
1735   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1736 }
1737 
1738 // Make a TypeTuple from the domain of a method signature
1739 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1740   uint total_fields = TypeFunc::Parms + sig->size();
1741 
1742   uint pos = TypeFunc::Parms;
1743   const Type **field_array;
1744   if (recv != NULL) {
1745     total_fields++;
1746     field_array = fields(total_fields);
1747     // Use get_const_type here because it respects UseUniqueSubclasses:
1748     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1749   } else {
1750     field_array = fields(total_fields);
1751   }
1752 
1753   int i = 0;
1754   while (pos < total_fields) {
1755     ciType* type = sig->type_at(i);
1756 
1757     switch (type->basic_type()) {
1758     case T_LONG:
1759       field_array[pos++] = TypeLong::LONG;
1760       field_array[pos++] = Type::HALF;
1761       break;
1762     case T_DOUBLE:
1763       field_array[pos++] = Type::DOUBLE;
1764       field_array[pos++] = Type::HALF;
1765       break;
1766     case T_OBJECT:
1767     case T_ARRAY:
1768     case T_BOOLEAN:
1769     case T_CHAR:
1770     case T_FLOAT:
1771     case T_BYTE:
1772     case T_SHORT:
1773     case T_INT:
1774       field_array[pos++] = get_const_type(type);
1775       break;
1776     default:
1777       ShouldNotReachHere();
1778     }
1779     i++;
1780   }
1781   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1782 }
1783 
1784 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1785   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1786 }
1787 
1788 //------------------------------fields-----------------------------------------
1789 // Subroutine call type with space allocated for argument types
1790 const Type **TypeTuple::fields( uint arg_cnt ) {
1791   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1792   flds[TypeFunc::Control  ] = Type::CONTROL;
1793   flds[TypeFunc::I_O      ] = Type::ABIO;
1794   flds[TypeFunc::Memory   ] = Type::MEMORY;
1795   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1796   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1797 
1798   return flds;
1799 }
1800 
1801 //------------------------------meet-------------------------------------------
1802 // Compute the MEET of two types.  It returns a new Type object.
1803 const Type *TypeTuple::xmeet( const Type *t ) const {
1804   // Perform a fast test for common case; meeting the same types together.
1805   if( this == t ) return this;  // Meeting same type-rep?
1806 
1807   // Current "this->_base" is Tuple
1808   switch (t->base()) {          // switch on original type
1809 
1810   case Bottom:                  // Ye Olde Default
1811     return t;
1812 
1813   default:                      // All else is a mistake
1814     typerr(t);
1815 
1816   case Tuple: {                 // Meeting 2 signatures?
1817     const TypeTuple *x = t->is_tuple();
1818     assert( _cnt == x->_cnt, "" );
1819     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1820     for( uint i=0; i<_cnt; i++ )
1821       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1822     return TypeTuple::make(_cnt,fields);
1823   }
1824   case Top:
1825     break;
1826   }
1827   return this;                  // Return the double constant
1828 }
1829 
1830 //------------------------------xdual------------------------------------------
1831 // Dual: compute field-by-field dual
1832 const Type *TypeTuple::xdual() const {
1833   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1834   for( uint i=0; i<_cnt; i++ )
1835     fields[i] = _fields[i]->dual();
1836   return new TypeTuple(_cnt,fields);
1837 }
1838 
1839 //------------------------------eq---------------------------------------------
1840 // Structural equality check for Type representations
1841 bool TypeTuple::eq( const Type *t ) const {
1842   const TypeTuple *s = (const TypeTuple *)t;
1843   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1844   for (uint i = 0; i < _cnt; i++)
1845     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1846       return false;             // Missed
1847   return true;
1848 }
1849 
1850 //------------------------------hash-------------------------------------------
1851 // Type-specific hashing function.
1852 int TypeTuple::hash(void) const {
1853   intptr_t sum = _cnt;
1854   for( uint i=0; i<_cnt; i++ )
1855     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1856   return sum;
1857 }
1858 
1859 //------------------------------dump2------------------------------------------
1860 // Dump signature Type
1861 #ifndef PRODUCT
1862 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1863   st->print("{");
1864   if( !depth || d[this] ) {     // Check for recursive print
1865     st->print("...}");
1866     return;
1867   }
1868   d.Insert((void*)this, (void*)this);   // Stop recursion
1869   if( _cnt ) {
1870     uint i;
1871     for( i=0; i<_cnt-1; i++ ) {
1872       st->print("%d:", i);
1873       _fields[i]->dump2(d, depth-1, st);
1874       st->print(", ");
1875     }
1876     st->print("%d:", i);
1877     _fields[i]->dump2(d, depth-1, st);
1878   }
1879   st->print("}");
1880 }
1881 #endif
1882 
1883 //------------------------------singleton--------------------------------------
1884 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1885 // constants (Ldi nodes).  Singletons are integer, float or double constants
1886 // or a single symbol.
1887 bool TypeTuple::singleton(void) const {
1888   return false;                 // Never a singleton
1889 }
1890 
1891 bool TypeTuple::empty(void) const {
1892   for( uint i=0; i<_cnt; i++ ) {
1893     if (_fields[i]->empty())  return true;
1894   }
1895   return false;
1896 }
1897 
1898 //=============================================================================
1899 // Convenience common pre-built types.
1900 
1901 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1902   // Certain normalizations keep us sane when comparing types.
1903   // We do not want arrayOop variables to differ only by the wideness
1904   // of their index types.  Pick minimum wideness, since that is the
1905   // forced wideness of small ranges anyway.
1906   if (size->_widen != Type::WidenMin)
1907     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1908   else
1909     return size;
1910 }
1911 
1912 //------------------------------make-------------------------------------------
1913 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1914   if (UseCompressedOops && elem->isa_oopptr()) {
1915     elem = elem->make_narrowoop();
1916   }
1917   size = normalize_array_size(size);
1918   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1919 }
1920 
1921 //------------------------------meet-------------------------------------------
1922 // Compute the MEET of two types.  It returns a new Type object.
1923 const Type *TypeAry::xmeet( const Type *t ) const {
1924   // Perform a fast test for common case; meeting the same types together.
1925   if( this == t ) return this;  // Meeting same type-rep?
1926 
1927   // Current "this->_base" is Ary
1928   switch (t->base()) {          // switch on original type
1929 
1930   case Bottom:                  // Ye Olde Default
1931     return t;
1932 
1933   default:                      // All else is a mistake
1934     typerr(t);
1935 
1936   case Array: {                 // Meeting 2 arrays?
1937     const TypeAry *a = t->is_ary();
1938     return TypeAry::make(_elem->meet_speculative(a->_elem),
1939                          _size->xmeet(a->_size)->is_int(),
1940                          _stable & a->_stable);
1941   }
1942   case Top:
1943     break;
1944   }
1945   return this;                  // Return the double constant
1946 }
1947 
1948 //------------------------------xdual------------------------------------------
1949 // Dual: compute field-by-field dual
1950 const Type *TypeAry::xdual() const {
1951   const TypeInt* size_dual = _size->dual()->is_int();
1952   size_dual = normalize_array_size(size_dual);
1953   return new TypeAry(_elem->dual(), size_dual, !_stable);
1954 }
1955 
1956 //------------------------------eq---------------------------------------------
1957 // Structural equality check for Type representations
1958 bool TypeAry::eq( const Type *t ) const {
1959   const TypeAry *a = (const TypeAry*)t;
1960   return _elem == a->_elem &&
1961     _stable == a->_stable &&
1962     _size == a->_size;
1963 }
1964 
1965 //------------------------------hash-------------------------------------------
1966 // Type-specific hashing function.
1967 int TypeAry::hash(void) const {
1968   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1969 }
1970 
1971 /**
1972  * Return same type without a speculative part in the element
1973  */
1974 const Type* TypeAry::remove_speculative() const {
1975   return make(_elem->remove_speculative(), _size, _stable);
1976 }
1977 
1978 /**
1979  * Return same type with cleaned up speculative part of element
1980  */
1981 const Type* TypeAry::cleanup_speculative() const {
1982   return make(_elem->cleanup_speculative(), _size, _stable);
1983 }
1984 
1985 /**
1986  * Return same type but with a different inline depth (used for speculation)
1987  *
1988  * @param depth  depth to meet with
1989  */
1990 const TypePtr* TypePtr::with_inline_depth(int depth) const {
1991   if (!UseInlineDepthForSpeculativeTypes) {
1992     return this;
1993   }
1994   return make(AnyPtr, _ptr, _offset, _speculative, depth);
1995 }
1996 
1997 //----------------------interface_vs_oop---------------------------------------
1998 #ifdef ASSERT
1999 bool TypeAry::interface_vs_oop(const Type *t) const {
2000   const TypeAry* t_ary = t->is_ary();
2001   if (t_ary) {
2002     return _elem->interface_vs_oop(t_ary->_elem);
2003   }
2004   return false;
2005 }
2006 #endif
2007 
2008 //------------------------------dump2------------------------------------------
2009 #ifndef PRODUCT
2010 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2011   if (_stable)  st->print("stable:");
2012   _elem->dump2(d, depth, st);
2013   st->print("[");
2014   _size->dump2(d, depth, st);
2015   st->print("]");
2016 }
2017 #endif
2018 
2019 //------------------------------singleton--------------------------------------
2020 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2021 // constants (Ldi nodes).  Singletons are integer, float or double constants
2022 // or a single symbol.
2023 bool TypeAry::singleton(void) const {
2024   return false;                 // Never a singleton
2025 }
2026 
2027 bool TypeAry::empty(void) const {
2028   return _elem->empty() || _size->empty();
2029 }
2030 
2031 //--------------------------ary_must_be_exact----------------------------------
2032 bool TypeAry::ary_must_be_exact() const {
2033   if (!UseExactTypes)       return false;
2034   // This logic looks at the element type of an array, and returns true
2035   // if the element type is either a primitive or a final instance class.
2036   // In such cases, an array built on this ary must have no subclasses.
2037   if (_elem == BOTTOM)      return false;  // general array not exact
2038   if (_elem == TOP   )      return false;  // inverted general array not exact
2039   const TypeOopPtr*  toop = NULL;
2040   if (UseCompressedOops && _elem->isa_narrowoop()) {
2041     toop = _elem->make_ptr()->isa_oopptr();
2042   } else {
2043     toop = _elem->isa_oopptr();
2044   }
2045   if (!toop)                return true;   // a primitive type, like int
2046   ciKlass* tklass = toop->klass();
2047   if (tklass == NULL)       return false;  // unloaded class
2048   if (!tklass->is_loaded()) return false;  // unloaded class
2049   const TypeInstPtr* tinst;
2050   if (_elem->isa_narrowoop())
2051     tinst = _elem->make_ptr()->isa_instptr();
2052   else
2053     tinst = _elem->isa_instptr();
2054   if (tinst)
2055     return tklass->as_instance_klass()->is_final();
2056   const TypeAryPtr*  tap;
2057   if (_elem->isa_narrowoop())
2058     tap = _elem->make_ptr()->isa_aryptr();
2059   else
2060     tap = _elem->isa_aryptr();
2061   if (tap)
2062     return tap->ary()->ary_must_be_exact();
2063   return false;
2064 }
2065 
2066 //==============================TypeVect=======================================
2067 // Convenience common pre-built types.
2068 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2069 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2070 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2071 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2072 
2073 //------------------------------make-------------------------------------------
2074 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2075   BasicType elem_bt = elem->array_element_basic_type();
2076   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2077   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2078   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2079   int size = length * type2aelembytes(elem_bt);
2080   switch (Matcher::vector_ideal_reg(size)) {
2081   case Op_VecS:
2082     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2083   case Op_RegL:
2084   case Op_VecD:
2085   case Op_RegD:
2086     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2087   case Op_VecX:
2088     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2089   case Op_VecY:
2090     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2091   }
2092  ShouldNotReachHere();
2093   return NULL;
2094 }
2095 
2096 //------------------------------meet-------------------------------------------
2097 // Compute the MEET of two types.  It returns a new Type object.
2098 const Type *TypeVect::xmeet( const Type *t ) const {
2099   // Perform a fast test for common case; meeting the same types together.
2100   if( this == t ) return this;  // Meeting same type-rep?
2101 
2102   // Current "this->_base" is Vector
2103   switch (t->base()) {          // switch on original type
2104 
2105   case Bottom:                  // Ye Olde Default
2106     return t;
2107 
2108   default:                      // All else is a mistake
2109     typerr(t);
2110 
2111   case VectorS:
2112   case VectorD:
2113   case VectorX:
2114   case VectorY: {                // Meeting 2 vectors?
2115     const TypeVect* v = t->is_vect();
2116     assert(  base() == v->base(), "");
2117     assert(length() == v->length(), "");
2118     assert(element_basic_type() == v->element_basic_type(), "");
2119     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2120   }
2121   case Top:
2122     break;
2123   }
2124   return this;
2125 }
2126 
2127 //------------------------------xdual------------------------------------------
2128 // Dual: compute field-by-field dual
2129 const Type *TypeVect::xdual() const {
2130   return new TypeVect(base(), _elem->dual(), _length);
2131 }
2132 
2133 //------------------------------eq---------------------------------------------
2134 // Structural equality check for Type representations
2135 bool TypeVect::eq(const Type *t) const {
2136   const TypeVect *v = t->is_vect();
2137   return (_elem == v->_elem) && (_length == v->_length);
2138 }
2139 
2140 //------------------------------hash-------------------------------------------
2141 // Type-specific hashing function.
2142 int TypeVect::hash(void) const {
2143   return (intptr_t)_elem + (intptr_t)_length;
2144 }
2145 
2146 //------------------------------singleton--------------------------------------
2147 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2148 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2149 // constant value (when vector is created with Replicate code).
2150 bool TypeVect::singleton(void) const {
2151 // There is no Con node for vectors yet.
2152 //  return _elem->singleton();
2153   return false;
2154 }
2155 
2156 bool TypeVect::empty(void) const {
2157   return _elem->empty();
2158 }
2159 
2160 //------------------------------dump2------------------------------------------
2161 #ifndef PRODUCT
2162 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2163   switch (base()) {
2164   case VectorS:
2165     st->print("vectors["); break;
2166   case VectorD:
2167     st->print("vectord["); break;
2168   case VectorX:
2169     st->print("vectorx["); break;
2170   case VectorY:
2171     st->print("vectory["); break;
2172   default:
2173     ShouldNotReachHere();
2174   }
2175   st->print("%d]:{", _length);
2176   _elem->dump2(d, depth, st);
2177   st->print("}");
2178 }
2179 #endif
2180 
2181 
2182 //=============================================================================
2183 // Convenience common pre-built types.
2184 const TypePtr *TypePtr::NULL_PTR;
2185 const TypePtr *TypePtr::NOTNULL;
2186 const TypePtr *TypePtr::BOTTOM;
2187 
2188 //------------------------------meet-------------------------------------------
2189 // Meet over the PTR enum
2190 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2191   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2192   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2193   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2194   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2195   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2196   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2197   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2198 };
2199 
2200 //------------------------------make-------------------------------------------
2201 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2202   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2203 }
2204 
2205 //------------------------------cast_to_ptr_type-------------------------------
2206 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2207   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2208   if( ptr == _ptr ) return this;
2209   return make(_base, ptr, _offset, _speculative, _inline_depth);
2210 }
2211 
2212 //------------------------------get_con----------------------------------------
2213 intptr_t TypePtr::get_con() const {
2214   assert( _ptr == Null, "" );
2215   return _offset;
2216 }
2217 
2218 //------------------------------meet-------------------------------------------
2219 // Compute the MEET of two types.  It returns a new Type object.
2220 const Type *TypePtr::xmeet(const Type *t) const {
2221   const Type* res = xmeet_helper(t);
2222   if (res->isa_ptr() == NULL) {
2223     return res;
2224   }
2225 
2226   const TypePtr* res_ptr = res->is_ptr();
2227   if (res_ptr->speculative() != NULL) {
2228     // type->speculative() == NULL means that speculation is no better
2229     // than type, i.e. type->speculative() == type. So there are 2
2230     // ways to represent the fact that we have no useful speculative
2231     // data and we should use a single one to be able to test for
2232     // equality between types. Check whether type->speculative() ==
2233     // type and set speculative to NULL if it is the case.
2234     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2235       return res_ptr->remove_speculative();
2236     }
2237   }
2238 
2239   return res;
2240 }
2241 
2242 const Type *TypePtr::xmeet_helper(const Type *t) const {
2243   // Perform a fast test for common case; meeting the same types together.
2244   if( this == t ) return this;  // Meeting same type-rep?
2245 
2246   // Current "this->_base" is AnyPtr
2247   switch (t->base()) {          // switch on original type
2248   case Int:                     // Mixing ints & oops happens when javac
2249   case Long:                    // reuses local variables
2250   case FloatTop:
2251   case FloatCon:
2252   case FloatBot:
2253   case DoubleTop:
2254   case DoubleCon:
2255   case DoubleBot:
2256   case NarrowOop:
2257   case NarrowKlass:
2258   case Bottom:                  // Ye Olde Default
2259     return Type::BOTTOM;
2260   case Top:
2261     return this;
2262 
2263   case AnyPtr: {                // Meeting to AnyPtrs
2264     const TypePtr *tp = t->is_ptr();
2265     const TypePtr* speculative = xmeet_speculative(tp);
2266     int depth = meet_inline_depth(tp->inline_depth());
2267     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2268   }
2269   case RawPtr:                  // For these, flip the call around to cut down
2270   case OopPtr:
2271   case InstPtr:                 // on the cases I have to handle.
2272   case AryPtr:
2273   case MetadataPtr:
2274   case KlassPtr:
2275     return t->xmeet(this);      // Call in reverse direction
2276   default:                      // All else is a mistake
2277     typerr(t);
2278 
2279   }
2280   return this;
2281 }
2282 
2283 //------------------------------meet_offset------------------------------------
2284 int TypePtr::meet_offset( int offset ) const {
2285   // Either is 'TOP' offset?  Return the other offset!
2286   if( _offset == OffsetTop ) return offset;
2287   if( offset == OffsetTop ) return _offset;
2288   // If either is different, return 'BOTTOM' offset
2289   if( _offset != offset ) return OffsetBot;
2290   return _offset;
2291 }
2292 
2293 //------------------------------dual_offset------------------------------------
2294 int TypePtr::dual_offset( ) const {
2295   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2296   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2297   return _offset;               // Map everything else into self
2298 }
2299 
2300 //------------------------------xdual------------------------------------------
2301 // Dual: compute field-by-field dual
2302 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2303   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2304 };
2305 const Type *TypePtr::xdual() const {
2306   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2307 }
2308 
2309 //------------------------------xadd_offset------------------------------------
2310 int TypePtr::xadd_offset( intptr_t offset ) const {
2311   // Adding to 'TOP' offset?  Return 'TOP'!
2312   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2313   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2314   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2315   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2316   offset += (intptr_t)_offset;
2317   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2318 
2319   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2320   // It is possible to construct a negative offset during PhaseCCP
2321 
2322   return (int)offset;        // Sum valid offsets
2323 }
2324 
2325 //------------------------------add_offset-------------------------------------
2326 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2327   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2328 }
2329 
2330 //------------------------------eq---------------------------------------------
2331 // Structural equality check for Type representations
2332 bool TypePtr::eq( const Type *t ) const {
2333   const TypePtr *a = (const TypePtr*)t;
2334   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2335 }
2336 
2337 //------------------------------hash-------------------------------------------
2338 // Type-specific hashing function.
2339 int TypePtr::hash(void) const {
2340   return _ptr + _offset + hash_speculative() + _inline_depth;
2341 ;
2342 }
2343 
2344 /**
2345  * Return same type without a speculative part
2346  */
2347 const Type* TypePtr::remove_speculative() const {
2348   if (_speculative == NULL) {
2349     return this;
2350   }
2351   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2352   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2353 }
2354 
2355 /**
2356  * Return same type but drop speculative part if we know we won't use
2357  * it
2358  */
2359 const Type* TypePtr::cleanup_speculative() const {
2360   if (speculative() == NULL) {
2361     return this;
2362   }
2363   const Type* no_spec = remove_speculative();
2364   // If this is NULL_PTR then we don't need the speculative type
2365   // (with_inline_depth in case the current type inline depth is
2366   // InlineDepthTop)
2367   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2368     return no_spec;
2369   }
2370   if (above_centerline(speculative()->ptr())) {
2371     return no_spec;
2372   }
2373   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2374   // If the speculative may be null and is an inexact klass then it
2375   // doesn't help
2376   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2377     return no_spec;
2378   }
2379   return this;
2380 }
2381 
2382 /**
2383  * dual of the speculative part of the type
2384  */
2385 const TypePtr* TypePtr::dual_speculative() const {
2386   if (_speculative == NULL) {
2387     return NULL;
2388   }
2389   return _speculative->dual()->is_ptr();
2390 }
2391 
2392 /**
2393  * meet of the speculative parts of 2 types
2394  *
2395  * @param other  type to meet with
2396  */
2397 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2398   bool this_has_spec = (_speculative != NULL);
2399   bool other_has_spec = (other->speculative() != NULL);
2400 
2401   if (!this_has_spec && !other_has_spec) {
2402     return NULL;
2403   }
2404 
2405   // If we are at a point where control flow meets and one branch has
2406   // a speculative type and the other has not, we meet the speculative
2407   // type of one branch with the actual type of the other. If the
2408   // actual type is exact and the speculative is as well, then the
2409   // result is a speculative type which is exact and we can continue
2410   // speculation further.
2411   const TypePtr* this_spec = _speculative;
2412   const TypePtr* other_spec = other->speculative();
2413 
2414   if (!this_has_spec) {
2415     this_spec = this;
2416   }
2417 
2418   if (!other_has_spec) {
2419     other_spec = other;
2420   }
2421 
2422   return this_spec->meet(other_spec)->is_ptr();
2423 }
2424 
2425 /**
2426  * dual of the inline depth for this type (used for speculation)
2427  */
2428 int TypePtr::dual_inline_depth() const {
2429   return -inline_depth();
2430 }
2431 
2432 /**
2433  * meet of 2 inline depths (used for speculation)
2434  *
2435  * @param depth  depth to meet with
2436  */
2437 int TypePtr::meet_inline_depth(int depth) const {
2438   return MAX2(inline_depth(), depth);
2439 }
2440 
2441 /**
2442  * Are the speculative parts of 2 types equal?
2443  *
2444  * @param other  type to compare this one to
2445  */
2446 bool TypePtr::eq_speculative(const TypePtr* other) const {
2447   if (_speculative == NULL || other->speculative() == NULL) {
2448     return _speculative == other->speculative();
2449   }
2450 
2451   if (_speculative->base() != other->speculative()->base()) {
2452     return false;
2453   }
2454 
2455   return _speculative->eq(other->speculative());
2456 }
2457 
2458 /**
2459  * Hash of the speculative part of the type
2460  */
2461 int TypePtr::hash_speculative() const {
2462   if (_speculative == NULL) {
2463     return 0;
2464   }
2465 
2466   return _speculative->hash();
2467 }
2468 
2469 /**
2470  * add offset to the speculative part of the type
2471  *
2472  * @param offset  offset to add
2473  */
2474 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2475   if (_speculative == NULL) {
2476     return NULL;
2477   }
2478   return _speculative->add_offset(offset)->is_ptr();
2479 }
2480 
2481 /**
2482  * return exact klass from the speculative type if there's one
2483  */
2484 ciKlass* TypePtr::speculative_type() const {
2485   if (_speculative != NULL && _speculative->isa_oopptr()) {
2486     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2487     if (speculative->klass_is_exact()) {
2488       return speculative->klass();
2489     }
2490   }
2491   return NULL;
2492 }
2493 
2494 /**
2495  * return true if speculative type may be null
2496  */
2497 bool TypePtr::speculative_maybe_null() const {
2498   if (_speculative != NULL) {
2499     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2500     return speculative->maybe_null();
2501   }
2502   return true;
2503 }
2504 
2505 /**
2506  * Same as TypePtr::speculative_type() but return the klass only if
2507  * the speculative tells us is not null
2508  */
2509 ciKlass* TypePtr::speculative_type_not_null() const {
2510   if (speculative_maybe_null()) {
2511     return NULL;
2512   }
2513   return speculative_type();
2514 }
2515 
2516 /**
2517  * Check whether new profiling would improve speculative type
2518  *
2519  * @param   exact_kls    class from profiling
2520  * @param   inline_depth inlining depth of profile point
2521  *
2522  * @return  true if type profile is valuable
2523  */
2524 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2525   // no profiling?
2526   if (exact_kls == NULL) {
2527     return false;
2528   }
2529   // no speculative type or non exact speculative type?
2530   if (speculative_type() == NULL) {
2531     return true;
2532   }
2533   // If the node already has an exact speculative type keep it,
2534   // unless it was provided by profiling that is at a deeper
2535   // inlining level. Profiling at a higher inlining depth is
2536   // expected to be less accurate.
2537   if (_speculative->inline_depth() == InlineDepthBottom) {
2538     return false;
2539   }
2540   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2541   return inline_depth < _speculative->inline_depth();
2542 }
2543 
2544 /**
2545  * Check whether new profiling would improve ptr (= tells us it is non
2546  * null)
2547  *
2548  * @param   maybe_null true if profiling tells the ptr may be null
2549  *
2550  * @return  true if ptr profile is valuable
2551  */
2552 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2553   // profiling doesn't tell us anything useful
2554   if (maybe_null) {
2555     return false;
2556   }
2557   // We already know this is not be null
2558   if (!this->maybe_null()) {
2559     return false;
2560   }
2561   // We already know the speculative type cannot be null
2562   if (!speculative_maybe_null()) {
2563     return false;
2564   }
2565   return true;
2566 }
2567 
2568 //------------------------------dump2------------------------------------------
2569 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2570   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2571 };
2572 
2573 #ifndef PRODUCT
2574 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2575   if( _ptr == Null ) st->print("NULL");
2576   else st->print("%s *", ptr_msg[_ptr]);
2577   if( _offset == OffsetTop ) st->print("+top");
2578   else if( _offset == OffsetBot ) st->print("+bot");
2579   else if( _offset ) st->print("+%d", _offset);
2580   dump_inline_depth(st);
2581   dump_speculative(st);
2582 }
2583 
2584 /**
2585  *dump the speculative part of the type
2586  */
2587 void TypePtr::dump_speculative(outputStream *st) const {
2588   if (_speculative != NULL) {
2589     st->print(" (speculative=");
2590     _speculative->dump_on(st);
2591     st->print(")");
2592   }
2593 }
2594 
2595 /**
2596  *dump the inline depth of the type
2597  */
2598 void TypePtr::dump_inline_depth(outputStream *st) const {
2599   if (_inline_depth != InlineDepthBottom) {
2600     if (_inline_depth == InlineDepthTop) {
2601       st->print(" (inline_depth=InlineDepthTop)");
2602     } else {
2603       st->print(" (inline_depth=%d)", _inline_depth);
2604     }
2605   }
2606 }
2607 #endif
2608 
2609 //------------------------------singleton--------------------------------------
2610 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2611 // constants
2612 bool TypePtr::singleton(void) const {
2613   // TopPTR, Null, AnyNull, Constant are all singletons
2614   return (_offset != OffsetBot) && !below_centerline(_ptr);
2615 }
2616 
2617 bool TypePtr::empty(void) const {
2618   return (_offset == OffsetTop) || above_centerline(_ptr);
2619 }
2620 
2621 //=============================================================================
2622 // Convenience common pre-built types.
2623 const TypeRawPtr *TypeRawPtr::BOTTOM;
2624 const TypeRawPtr *TypeRawPtr::NOTNULL;
2625 
2626 //------------------------------make-------------------------------------------
2627 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2628   assert( ptr != Constant, "what is the constant?" );
2629   assert( ptr != Null, "Use TypePtr for NULL" );
2630   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2631 }
2632 
2633 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2634   assert( bits, "Use TypePtr for NULL" );
2635   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2636 }
2637 
2638 //------------------------------cast_to_ptr_type-------------------------------
2639 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2640   assert( ptr != Constant, "what is the constant?" );
2641   assert( ptr != Null, "Use TypePtr for NULL" );
2642   assert( _bits==0, "Why cast a constant address?");
2643   if( ptr == _ptr ) return this;
2644   return make(ptr);
2645 }
2646 
2647 //------------------------------get_con----------------------------------------
2648 intptr_t TypeRawPtr::get_con() const {
2649   assert( _ptr == Null || _ptr == Constant, "" );
2650   return (intptr_t)_bits;
2651 }
2652 
2653 //------------------------------meet-------------------------------------------
2654 // Compute the MEET of two types.  It returns a new Type object.
2655 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2656   // Perform a fast test for common case; meeting the same types together.
2657   if( this == t ) return this;  // Meeting same type-rep?
2658 
2659   // Current "this->_base" is RawPtr
2660   switch( t->base() ) {         // switch on original type
2661   case Bottom:                  // Ye Olde Default
2662     return t;
2663   case Top:
2664     return this;
2665   case AnyPtr:                  // Meeting to AnyPtrs
2666     break;
2667   case RawPtr: {                // might be top, bot, any/not or constant
2668     enum PTR tptr = t->is_ptr()->ptr();
2669     enum PTR ptr = meet_ptr( tptr );
2670     if( ptr == Constant ) {     // Cannot be equal constants, so...
2671       if( tptr == Constant && _ptr != Constant)  return t;
2672       if( _ptr == Constant && tptr != Constant)  return this;
2673       ptr = NotNull;            // Fall down in lattice
2674     }
2675     return make( ptr );
2676   }
2677 
2678   case OopPtr:
2679   case InstPtr:
2680   case AryPtr:
2681   case MetadataPtr:
2682   case KlassPtr:
2683     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2684   default:                      // All else is a mistake
2685     typerr(t);
2686   }
2687 
2688   // Found an AnyPtr type vs self-RawPtr type
2689   const TypePtr *tp = t->is_ptr();
2690   switch (tp->ptr()) {
2691   case TypePtr::TopPTR:  return this;
2692   case TypePtr::BotPTR:  return t;
2693   case TypePtr::Null:
2694     if( _ptr == TypePtr::TopPTR ) return t;
2695     return TypeRawPtr::BOTTOM;
2696   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2697   case TypePtr::AnyNull:
2698     if( _ptr == TypePtr::Constant) return this;
2699     return make( meet_ptr(TypePtr::AnyNull) );
2700   default: ShouldNotReachHere();
2701   }
2702   return this;
2703 }
2704 
2705 //------------------------------xdual------------------------------------------
2706 // Dual: compute field-by-field dual
2707 const Type *TypeRawPtr::xdual() const {
2708   return new TypeRawPtr( dual_ptr(), _bits );
2709 }
2710 
2711 //------------------------------add_offset-------------------------------------
2712 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2713   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2714   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2715   if( offset == 0 ) return this; // No change
2716   switch (_ptr) {
2717   case TypePtr::TopPTR:
2718   case TypePtr::BotPTR:
2719   case TypePtr::NotNull:
2720     return this;
2721   case TypePtr::Null:
2722   case TypePtr::Constant: {
2723     address bits = _bits+offset;
2724     if ( bits == 0 ) return TypePtr::NULL_PTR;
2725     return make( bits );
2726   }
2727   default:  ShouldNotReachHere();
2728   }
2729   return NULL;                  // Lint noise
2730 }
2731 
2732 //------------------------------eq---------------------------------------------
2733 // Structural equality check for Type representations
2734 bool TypeRawPtr::eq( const Type *t ) const {
2735   const TypeRawPtr *a = (const TypeRawPtr*)t;
2736   return _bits == a->_bits && TypePtr::eq(t);
2737 }
2738 
2739 //------------------------------hash-------------------------------------------
2740 // Type-specific hashing function.
2741 int TypeRawPtr::hash(void) const {
2742   return (intptr_t)_bits + TypePtr::hash();
2743 }
2744 
2745 //------------------------------dump2------------------------------------------
2746 #ifndef PRODUCT
2747 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2748   if( _ptr == Constant )
2749     st->print(INTPTR_FORMAT, _bits);
2750   else
2751     st->print("rawptr:%s", ptr_msg[_ptr]);
2752 }
2753 #endif
2754 
2755 //=============================================================================
2756 // Convenience common pre-built type.
2757 const TypeOopPtr *TypeOopPtr::BOTTOM;
2758 
2759 //------------------------------TypeOopPtr-------------------------------------
2760 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2761                        int instance_id, const TypePtr* speculative, int inline_depth)
2762   : TypePtr(t, ptr, offset, speculative, inline_depth),
2763     _const_oop(o), _klass(k),
2764     _klass_is_exact(xk),
2765     _is_ptr_to_narrowoop(false),
2766     _is_ptr_to_narrowklass(false),
2767     _is_ptr_to_boxed_value(false),
2768     _instance_id(instance_id) {
2769   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2770       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2771     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2772   }
2773 #ifdef _LP64
2774   if (_offset != 0) {
2775     if (_offset == oopDesc::klass_offset_in_bytes()) {
2776       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2777     } else if (klass() == NULL) {
2778       // Array with unknown body type
2779       assert(this->isa_aryptr(), "only arrays without klass");
2780       _is_ptr_to_narrowoop = UseCompressedOops;
2781     } else if (this->isa_aryptr()) {
2782       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2783                              _offset != arrayOopDesc::length_offset_in_bytes());
2784     } else if (klass()->is_instance_klass()) {
2785       ciInstanceKlass* ik = klass()->as_instance_klass();
2786       ciField* field = NULL;
2787       if (this->isa_klassptr()) {
2788         // Perm objects don't use compressed references
2789       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2790         // unsafe access
2791         _is_ptr_to_narrowoop = UseCompressedOops;
2792       } else { // exclude unsafe ops
2793         assert(this->isa_instptr(), "must be an instance ptr.");
2794 
2795         if (klass() == ciEnv::current()->Class_klass() &&
2796             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2797              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2798           // Special hidden fields from the Class.
2799           assert(this->isa_instptr(), "must be an instance ptr.");
2800           _is_ptr_to_narrowoop = false;
2801         } else if (klass() == ciEnv::current()->Class_klass() &&
2802                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2803           // Static fields
2804           assert(o != NULL, "must be constant");
2805           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2806           ciField* field = k->get_field_by_offset(_offset, true);
2807           assert(field != NULL, "missing field");
2808           BasicType basic_elem_type = field->layout_type();
2809           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2810                                                        basic_elem_type == T_ARRAY);
2811         } else {
2812           // Instance fields which contains a compressed oop references.
2813           field = ik->get_field_by_offset(_offset, false);
2814           if (field != NULL) {
2815             BasicType basic_elem_type = field->layout_type();
2816             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2817                                                          basic_elem_type == T_ARRAY);
2818           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2819             // Compile::find_alias_type() cast exactness on all types to verify
2820             // that it does not affect alias type.
2821             _is_ptr_to_narrowoop = UseCompressedOops;
2822           } else {
2823             // Type for the copy start in LibraryCallKit::inline_native_clone().
2824             _is_ptr_to_narrowoop = UseCompressedOops;
2825           }
2826         }
2827       }
2828     }
2829   }
2830 #endif
2831 }
2832 
2833 //------------------------------make-------------------------------------------
2834 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2835                                      const TypePtr* speculative, int inline_depth) {
2836   assert(ptr != Constant, "no constant generic pointers");
2837   ciKlass*  k = Compile::current()->env()->Object_klass();
2838   bool      xk = false;
2839   ciObject* o = NULL;
2840   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2841 }
2842 
2843 
2844 //------------------------------cast_to_ptr_type-------------------------------
2845 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2846   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2847   if( ptr == _ptr ) return this;
2848   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2849 }
2850 
2851 //-----------------------------cast_to_instance_id----------------------------
2852 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2853   // There are no instances of a general oop.
2854   // Return self unchanged.
2855   return this;
2856 }
2857 
2858 //-----------------------------cast_to_exactness-------------------------------
2859 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2860   // There is no such thing as an exact general oop.
2861   // Return self unchanged.
2862   return this;
2863 }
2864 
2865 
2866 //------------------------------as_klass_type----------------------------------
2867 // Return the klass type corresponding to this instance or array type.
2868 // It is the type that is loaded from an object of this type.
2869 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2870   ciKlass* k = klass();
2871   bool    xk = klass_is_exact();
2872   if (k == NULL)
2873     return TypeKlassPtr::OBJECT;
2874   else
2875     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2876 }
2877 
2878 //------------------------------meet-------------------------------------------
2879 // Compute the MEET of two types.  It returns a new Type object.
2880 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2881   // Perform a fast test for common case; meeting the same types together.
2882   if( this == t ) return this;  // Meeting same type-rep?
2883 
2884   // Current "this->_base" is OopPtr
2885   switch (t->base()) {          // switch on original type
2886 
2887   case Int:                     // Mixing ints & oops happens when javac
2888   case Long:                    // reuses local variables
2889   case FloatTop:
2890   case FloatCon:
2891   case FloatBot:
2892   case DoubleTop:
2893   case DoubleCon:
2894   case DoubleBot:
2895   case NarrowOop:
2896   case NarrowKlass:
2897   case Bottom:                  // Ye Olde Default
2898     return Type::BOTTOM;
2899   case Top:
2900     return this;
2901 
2902   default:                      // All else is a mistake
2903     typerr(t);
2904 
2905   case RawPtr:
2906   case MetadataPtr:
2907   case KlassPtr:
2908     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2909 
2910   case AnyPtr: {
2911     // Found an AnyPtr type vs self-OopPtr type
2912     const TypePtr *tp = t->is_ptr();
2913     int offset = meet_offset(tp->offset());
2914     PTR ptr = meet_ptr(tp->ptr());
2915     const TypePtr* speculative = xmeet_speculative(tp);
2916     int depth = meet_inline_depth(tp->inline_depth());
2917     switch (tp->ptr()) {
2918     case Null:
2919       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2920       // else fall through:
2921     case TopPTR:
2922     case AnyNull: {
2923       int instance_id = meet_instance_id(InstanceTop);
2924       return make(ptr, offset, instance_id, speculative, depth);
2925     }
2926     case BotPTR:
2927     case NotNull:
2928       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2929     default: typerr(t);
2930     }
2931   }
2932 
2933   case OopPtr: {                 // Meeting to other OopPtrs
2934     const TypeOopPtr *tp = t->is_oopptr();
2935     int instance_id = meet_instance_id(tp->instance_id());
2936     const TypePtr* speculative = xmeet_speculative(tp);
2937     int depth = meet_inline_depth(tp->inline_depth());
2938     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2939   }
2940 
2941   case InstPtr:                  // For these, flip the call around to cut down
2942   case AryPtr:
2943     return t->xmeet(this);      // Call in reverse direction
2944 
2945   } // End of switch
2946   return this;                  // Return the double constant
2947 }
2948 
2949 
2950 //------------------------------xdual------------------------------------------
2951 // Dual of a pure heap pointer.  No relevant klass or oop information.
2952 const Type *TypeOopPtr::xdual() const {
2953   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2954   assert(const_oop() == NULL,             "no constants here");
2955   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2956 }
2957 
2958 //--------------------------make_from_klass_common-----------------------------
2959 // Computes the element-type given a klass.
2960 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2961   if (klass->is_instance_klass()) {
2962     Compile* C = Compile::current();
2963     Dependencies* deps = C->dependencies();
2964     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2965     // Element is an instance
2966     bool klass_is_exact = false;
2967     if (klass->is_loaded()) {
2968       // Try to set klass_is_exact.
2969       ciInstanceKlass* ik = klass->as_instance_klass();
2970       klass_is_exact = ik->is_final();
2971       if (!klass_is_exact && klass_change
2972           && deps != NULL && UseUniqueSubclasses) {
2973         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2974         if (sub != NULL) {
2975           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2976           klass = ik = sub;
2977           klass_is_exact = sub->is_final();
2978         }
2979       }
2980       if (!klass_is_exact && try_for_exact
2981           && deps != NULL && UseExactTypes) {
2982         if (!ik->is_interface() && !ik->has_subklass()) {
2983           // Add a dependence; if concrete subclass added we need to recompile
2984           deps->assert_leaf_type(ik);
2985           klass_is_exact = true;
2986         }
2987       }
2988     }
2989     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2990   } else if (klass->is_obj_array_klass()) {
2991     // Element is an object array. Recursively call ourself.
2992     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2993     bool xk = etype->klass_is_exact();
2994     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2995     // We used to pass NotNull in here, asserting that the sub-arrays
2996     // are all not-null.  This is not true in generally, as code can
2997     // slam NULLs down in the subarrays.
2998     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2999     return arr;
3000   } else if (klass->is_type_array_klass()) {
3001     // Element is an typeArray
3002     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3003     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3004     // We used to pass NotNull in here, asserting that the array pointer
3005     // is not-null. That was not true in general.
3006     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3007     return arr;
3008   } else {
3009     ShouldNotReachHere();
3010     return NULL;
3011   }
3012 }
3013 
3014 //------------------------------make_from_constant-----------------------------
3015 // Make a java pointer from an oop constant
3016 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
3017                                                  bool require_constant,
3018                                                  bool is_autobox_cache) {
3019   assert(!o->is_null_object(), "null object not yet handled here.");
3020   ciKlass* klass = o->klass();
3021   if (klass->is_instance_klass()) {
3022     // Element is an instance
3023     if (require_constant) {
3024       if (!o->can_be_constant())  return NULL;
3025     } else if (!o->should_be_constant()) {
3026       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3027     }
3028     return TypeInstPtr::make(o);
3029   } else if (klass->is_obj_array_klass()) {
3030     // Element is an object array. Recursively call ourself.
3031     const TypeOopPtr *etype =
3032       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3033     if (is_autobox_cache) {
3034       // The pointers in the autobox arrays are always non-null.
3035       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3036     }
3037     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3038     // We used to pass NotNull in here, asserting that the sub-arrays
3039     // are all not-null.  This is not true in generally, as code can
3040     // slam NULLs down in the subarrays.
3041     if (require_constant) {
3042       if (!o->can_be_constant())  return NULL;
3043     } else if (!o->should_be_constant()) {
3044       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3045     }
3046     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
3047     return arr;
3048   } else if (klass->is_type_array_klass()) {
3049     // Element is an typeArray
3050     const Type* etype =
3051       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3052     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3053     // We used to pass NotNull in here, asserting that the array pointer
3054     // is not-null. That was not true in general.
3055     if (require_constant) {
3056       if (!o->can_be_constant())  return NULL;
3057     } else if (!o->should_be_constant()) {
3058       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3059     }
3060     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3061     return arr;
3062   }
3063 
3064   fatal("unhandled object type");
3065   return NULL;
3066 }
3067 
3068 //------------------------------get_con----------------------------------------
3069 intptr_t TypeOopPtr::get_con() const {
3070   assert( _ptr == Null || _ptr == Constant, "" );
3071   assert( _offset >= 0, "" );
3072 
3073   if (_offset != 0) {
3074     // After being ported to the compiler interface, the compiler no longer
3075     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3076     // to a handle at compile time.  This handle is embedded in the generated
3077     // code and dereferenced at the time the nmethod is made.  Until that time,
3078     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3079     // have access to the addresses!).  This does not seem to currently happen,
3080     // but this assertion here is to help prevent its occurence.
3081     tty->print_cr("Found oop constant with non-zero offset");
3082     ShouldNotReachHere();
3083   }
3084 
3085   return (intptr_t)const_oop()->constant_encoding();
3086 }
3087 
3088 
3089 //-----------------------------filter------------------------------------------
3090 // Do not allow interface-vs.-noninterface joins to collapse to top.
3091 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3092 
3093   const Type* ft = join_helper(kills, include_speculative);
3094   const TypeInstPtr* ftip = ft->isa_instptr();
3095   const TypeInstPtr* ktip = kills->isa_instptr();
3096 
3097   if (ft->empty()) {
3098     // Check for evil case of 'this' being a class and 'kills' expecting an
3099     // interface.  This can happen because the bytecodes do not contain
3100     // enough type info to distinguish a Java-level interface variable
3101     // from a Java-level object variable.  If we meet 2 classes which
3102     // both implement interface I, but their meet is at 'j/l/O' which
3103     // doesn't implement I, we have no way to tell if the result should
3104     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3105     // into a Phi which "knows" it's an Interface type we'll have to
3106     // uplift the type.
3107     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3108       return kills;             // Uplift to interface
3109 
3110     return Type::TOP;           // Canonical empty value
3111   }
3112 
3113   // If we have an interface-typed Phi or cast and we narrow to a class type,
3114   // the join should report back the class.  However, if we have a J/L/Object
3115   // class-typed Phi and an interface flows in, it's possible that the meet &
3116   // join report an interface back out.  This isn't possible but happens
3117   // because the type system doesn't interact well with interfaces.
3118   if (ftip != NULL && ktip != NULL &&
3119       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3120       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3121     // Happens in a CTW of rt.jar, 320-341, no extra flags
3122     assert(!ftip->klass_is_exact(), "interface could not be exact");
3123     return ktip->cast_to_ptr_type(ftip->ptr());
3124   }
3125 
3126   return ft;
3127 }
3128 
3129 //------------------------------eq---------------------------------------------
3130 // Structural equality check for Type representations
3131 bool TypeOopPtr::eq( const Type *t ) const {
3132   const TypeOopPtr *a = (const TypeOopPtr*)t;
3133   if (_klass_is_exact != a->_klass_is_exact ||
3134       _instance_id != a->_instance_id)  return false;
3135   ciObject* one = const_oop();
3136   ciObject* two = a->const_oop();
3137   if (one == NULL || two == NULL) {
3138     return (one == two) && TypePtr::eq(t);
3139   } else {
3140     return one->equals(two) && TypePtr::eq(t);
3141   }
3142 }
3143 
3144 //------------------------------hash-------------------------------------------
3145 // Type-specific hashing function.
3146 int TypeOopPtr::hash(void) const {
3147   return
3148     (const_oop() ? const_oop()->hash() : 0) +
3149     _klass_is_exact +
3150     _instance_id +
3151     TypePtr::hash();
3152 }
3153 
3154 //------------------------------dump2------------------------------------------
3155 #ifndef PRODUCT
3156 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3157   st->print("oopptr:%s", ptr_msg[_ptr]);
3158   if( _klass_is_exact ) st->print(":exact");
3159   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3160   switch( _offset ) {
3161   case OffsetTop: st->print("+top"); break;
3162   case OffsetBot: st->print("+any"); break;
3163   case         0: break;
3164   default:        st->print("+%d",_offset); break;
3165   }
3166   if (_instance_id == InstanceTop)
3167     st->print(",iid=top");
3168   else if (_instance_id != InstanceBot)
3169     st->print(",iid=%d",_instance_id);
3170 
3171   dump_inline_depth(st);
3172   dump_speculative(st);
3173 }
3174 #endif
3175 
3176 //------------------------------singleton--------------------------------------
3177 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3178 // constants
3179 bool TypeOopPtr::singleton(void) const {
3180   // detune optimizer to not generate constant oop + constant offset as a constant!
3181   // TopPTR, Null, AnyNull, Constant are all singletons
3182   return (_offset == 0) && !below_centerline(_ptr);
3183 }
3184 
3185 //------------------------------add_offset-------------------------------------
3186 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3187   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3188 }
3189 
3190 /**
3191  * Return same type without a speculative part
3192  */
3193 const Type* TypeOopPtr::remove_speculative() const {
3194   if (_speculative == NULL) {
3195     return this;
3196   }
3197   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3198   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3199 }
3200 
3201 /**
3202  * Return same type but drop speculative part if we know we won't use
3203  * it
3204  */
3205 const Type* TypeOopPtr::cleanup_speculative() const {
3206   // If the klass is exact and the ptr is not null then there's
3207   // nothing that the speculative type can help us with
3208   if (klass_is_exact() && !maybe_null()) {
3209     return remove_speculative();
3210   }
3211   return TypePtr::cleanup_speculative();
3212 }
3213 
3214 /**
3215  * Return same type but with a different inline depth (used for speculation)
3216  *
3217  * @param depth  depth to meet with
3218  */
3219 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3220   if (!UseInlineDepthForSpeculativeTypes) {
3221     return this;
3222   }
3223   return make(_ptr, _offset, _instance_id, _speculative, depth);
3224 }
3225 
3226 //------------------------------meet_instance_id--------------------------------
3227 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3228   // Either is 'TOP' instance?  Return the other instance!
3229   if( _instance_id == InstanceTop ) return  instance_id;
3230   if(  instance_id == InstanceTop ) return _instance_id;
3231   // If either is different, return 'BOTTOM' instance
3232   if( _instance_id != instance_id ) return InstanceBot;
3233   return _instance_id;
3234 }
3235 
3236 //------------------------------dual_instance_id--------------------------------
3237 int TypeOopPtr::dual_instance_id( ) const {
3238   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3239   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3240   return _instance_id;              // Map everything else into self
3241 }
3242 
3243 /**
3244  * Check whether new profiling would improve speculative type
3245  *
3246  * @param   exact_kls    class from profiling
3247  * @param   inline_depth inlining depth of profile point
3248  *
3249  * @return  true if type profile is valuable
3250  */
3251 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3252   // no way to improve an already exact type
3253   if (klass_is_exact()) {
3254     return false;
3255   }
3256   return TypePtr::would_improve_type(exact_kls, inline_depth);
3257 }
3258 
3259 //=============================================================================
3260 // Convenience common pre-built types.
3261 const TypeInstPtr *TypeInstPtr::NOTNULL;
3262 const TypeInstPtr *TypeInstPtr::BOTTOM;
3263 const TypeInstPtr *TypeInstPtr::MIRROR;
3264 const TypeInstPtr *TypeInstPtr::MARK;
3265 const TypeInstPtr *TypeInstPtr::KLASS;
3266 
3267 //------------------------------TypeInstPtr-------------------------------------
3268 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3269                          int instance_id, const TypePtr* speculative, int inline_depth)
3270   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3271     _name(k->name()) {
3272    assert(k != NULL &&
3273           (k->is_loaded() || o == NULL),
3274           "cannot have constants with non-loaded klass");
3275 };
3276 
3277 //------------------------------make-------------------------------------------
3278 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3279                                      ciKlass* k,
3280                                      bool xk,
3281                                      ciObject* o,
3282                                      int offset,
3283                                      int instance_id,
3284                                      const TypePtr* speculative,
3285                                      int inline_depth) {
3286   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3287   // Either const_oop() is NULL or else ptr is Constant
3288   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3289           "constant pointers must have a value supplied" );
3290   // Ptr is never Null
3291   assert( ptr != Null, "NULL pointers are not typed" );
3292 
3293   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3294   if (!UseExactTypes)  xk = false;
3295   if (ptr == Constant) {
3296     // Note:  This case includes meta-object constants, such as methods.
3297     xk = true;
3298   } else if (k->is_loaded()) {
3299     ciInstanceKlass* ik = k->as_instance_klass();
3300     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3301     if (xk && ik->is_interface())  xk = false;  // no exact interface
3302   }
3303 
3304   // Now hash this baby
3305   TypeInstPtr *result =
3306     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3307 
3308   return result;
3309 }
3310 
3311 /**
3312  *  Create constant type for a constant boxed value
3313  */
3314 const Type* TypeInstPtr::get_const_boxed_value() const {
3315   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3316   assert((const_oop() != NULL), "should be called only for constant object");
3317   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3318   BasicType bt = constant.basic_type();
3319   switch (bt) {
3320     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3321     case T_INT:      return TypeInt::make(constant.as_int());
3322     case T_CHAR:     return TypeInt::make(constant.as_char());
3323     case T_BYTE:     return TypeInt::make(constant.as_byte());
3324     case T_SHORT:    return TypeInt::make(constant.as_short());
3325     case T_FLOAT:    return TypeF::make(constant.as_float());
3326     case T_DOUBLE:   return TypeD::make(constant.as_double());
3327     case T_LONG:     return TypeLong::make(constant.as_long());
3328     default:         break;
3329   }
3330   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3331   return NULL;
3332 }
3333 
3334 //------------------------------cast_to_ptr_type-------------------------------
3335 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3336   if( ptr == _ptr ) return this;
3337   // Reconstruct _sig info here since not a problem with later lazy
3338   // construction, _sig will show up on demand.
3339   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3340 }
3341 
3342 
3343 //-----------------------------cast_to_exactness-------------------------------
3344 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3345   if( klass_is_exact == _klass_is_exact ) return this;
3346   if (!UseExactTypes)  return this;
3347   if (!_klass->is_loaded())  return this;
3348   ciInstanceKlass* ik = _klass->as_instance_klass();
3349   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3350   if( ik->is_interface() )              return this;  // cannot set xk
3351   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3352 }
3353 
3354 //-----------------------------cast_to_instance_id----------------------------
3355 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3356   if( instance_id == _instance_id ) return this;
3357   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3358 }
3359 
3360 //------------------------------xmeet_unloaded---------------------------------
3361 // Compute the MEET of two InstPtrs when at least one is unloaded.
3362 // Assume classes are different since called after check for same name/class-loader
3363 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3364     int off = meet_offset(tinst->offset());
3365     PTR ptr = meet_ptr(tinst->ptr());
3366     int instance_id = meet_instance_id(tinst->instance_id());
3367     const TypePtr* speculative = xmeet_speculative(tinst);
3368     int depth = meet_inline_depth(tinst->inline_depth());
3369 
3370     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3371     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3372     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3373       //
3374       // Meet unloaded class with java/lang/Object
3375       //
3376       // Meet
3377       //          |                     Unloaded Class
3378       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3379       //  ===================================================================
3380       //   TOP    | ..........................Unloaded......................|
3381       //  AnyNull |  U-AN    |................Unloaded......................|
3382       // Constant | ... O-NN .................................. |   O-BOT   |
3383       //  NotNull | ... O-NN .................................. |   O-BOT   |
3384       //  BOTTOM  | ........................Object-BOTTOM ..................|
3385       //
3386       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3387       //
3388       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3389       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3390       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3391       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3392         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3393         else                                      { return TypeInstPtr::NOTNULL; }
3394       }
3395       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3396 
3397       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3398     }
3399 
3400     // Both are unloaded, not the same class, not Object
3401     // Or meet unloaded with a different loaded class, not java/lang/Object
3402     if( ptr != TypePtr::BotPTR ) {
3403       return TypeInstPtr::NOTNULL;
3404     }
3405     return TypeInstPtr::BOTTOM;
3406 }
3407 
3408 
3409 //------------------------------meet-------------------------------------------
3410 // Compute the MEET of two types.  It returns a new Type object.
3411 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3412   // Perform a fast test for common case; meeting the same types together.
3413   if( this == t ) return this;  // Meeting same type-rep?
3414 
3415   // Current "this->_base" is Pointer
3416   switch (t->base()) {          // switch on original type
3417 
3418   case Int:                     // Mixing ints & oops happens when javac
3419   case Long:                    // reuses local variables
3420   case FloatTop:
3421   case FloatCon:
3422   case FloatBot:
3423   case DoubleTop:
3424   case DoubleCon:
3425   case DoubleBot:
3426   case NarrowOop:
3427   case NarrowKlass:
3428   case Bottom:                  // Ye Olde Default
3429     return Type::BOTTOM;
3430   case Top:
3431     return this;
3432 
3433   default:                      // All else is a mistake
3434     typerr(t);
3435 
3436   case MetadataPtr:
3437   case KlassPtr:
3438   case RawPtr: return TypePtr::BOTTOM;
3439 
3440   case AryPtr: {                // All arrays inherit from Object class
3441     const TypeAryPtr *tp = t->is_aryptr();
3442     int offset = meet_offset(tp->offset());
3443     PTR ptr = meet_ptr(tp->ptr());
3444     int instance_id = meet_instance_id(tp->instance_id());
3445     const TypePtr* speculative = xmeet_speculative(tp);
3446     int depth = meet_inline_depth(tp->inline_depth());
3447     switch (ptr) {
3448     case TopPTR:
3449     case AnyNull:                // Fall 'down' to dual of object klass
3450       // For instances when a subclass meets a superclass we fall
3451       // below the centerline when the superclass is exact. We need to
3452       // do the same here.
3453       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3454         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3455       } else {
3456         // cannot subclass, so the meet has to fall badly below the centerline
3457         ptr = NotNull;
3458         instance_id = InstanceBot;
3459         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3460       }
3461     case Constant:
3462     case NotNull:
3463     case BotPTR:                // Fall down to object klass
3464       // LCA is object_klass, but if we subclass from the top we can do better
3465       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3466         // If 'this' (InstPtr) is above the centerline and it is Object class
3467         // then we can subclass in the Java class hierarchy.
3468         // For instances when a subclass meets a superclass we fall
3469         // below the centerline when the superclass is exact. We need
3470         // to do the same here.
3471         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3472           // that is, tp's array type is a subtype of my klass
3473           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3474                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3475         }
3476       }
3477       // The other case cannot happen, since I cannot be a subtype of an array.
3478       // The meet falls down to Object class below centerline.
3479       if( ptr == Constant )
3480          ptr = NotNull;
3481       instance_id = InstanceBot;
3482       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3483     default: typerr(t);
3484     }
3485   }
3486 
3487   case OopPtr: {                // Meeting to OopPtrs
3488     // Found a OopPtr type vs self-InstPtr type
3489     const TypeOopPtr *tp = t->is_oopptr();
3490     int offset = meet_offset(tp->offset());
3491     PTR ptr = meet_ptr(tp->ptr());
3492     switch (tp->ptr()) {
3493     case TopPTR:
3494     case AnyNull: {
3495       int instance_id = meet_instance_id(InstanceTop);
3496       const TypePtr* speculative = xmeet_speculative(tp);
3497       int depth = meet_inline_depth(tp->inline_depth());
3498       return make(ptr, klass(), klass_is_exact(),
3499                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3500     }
3501     case NotNull:
3502     case BotPTR: {
3503       int instance_id = meet_instance_id(tp->instance_id());
3504       const TypePtr* speculative = xmeet_speculative(tp);
3505       int depth = meet_inline_depth(tp->inline_depth());
3506       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3507     }
3508     default: typerr(t);
3509     }
3510   }
3511 
3512   case AnyPtr: {                // Meeting to AnyPtrs
3513     // Found an AnyPtr type vs self-InstPtr type
3514     const TypePtr *tp = t->is_ptr();
3515     int offset = meet_offset(tp->offset());
3516     PTR ptr = meet_ptr(tp->ptr());
3517     int instance_id = meet_instance_id(InstanceTop);
3518     const TypePtr* speculative = xmeet_speculative(tp);
3519     int depth = meet_inline_depth(tp->inline_depth());
3520     switch (tp->ptr()) {
3521     case Null:
3522       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3523       // else fall through to AnyNull
3524     case TopPTR:
3525     case AnyNull: {
3526       return make(ptr, klass(), klass_is_exact(),
3527                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3528     }
3529     case NotNull:
3530     case BotPTR:
3531       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3532     default: typerr(t);
3533     }
3534   }
3535 
3536   /*
3537                  A-top         }
3538                /   |   \       }  Tops
3539            B-top A-any C-top   }
3540               | /  |  \ |      }  Any-nulls
3541            B-any   |   C-any   }
3542               |    |    |
3543            B-con A-con C-con   } constants; not comparable across classes
3544               |    |    |
3545            B-not   |   C-not   }
3546               | \  |  / |      }  not-nulls
3547            B-bot A-not C-bot   }
3548                \   |   /       }  Bottoms
3549                  A-bot         }
3550   */
3551 
3552   case InstPtr: {                // Meeting 2 Oops?
3553     // Found an InstPtr sub-type vs self-InstPtr type
3554     const TypeInstPtr *tinst = t->is_instptr();
3555     int off = meet_offset( tinst->offset() );
3556     PTR ptr = meet_ptr( tinst->ptr() );
3557     int instance_id = meet_instance_id(tinst->instance_id());
3558     const TypePtr* speculative = xmeet_speculative(tinst);
3559     int depth = meet_inline_depth(tinst->inline_depth());
3560 
3561     // Check for easy case; klasses are equal (and perhaps not loaded!)
3562     // If we have constants, then we created oops so classes are loaded
3563     // and we can handle the constants further down.  This case handles
3564     // both-not-loaded or both-loaded classes
3565     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3566       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3567     }
3568 
3569     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3570     ciKlass* tinst_klass = tinst->klass();
3571     ciKlass* this_klass  = this->klass();
3572     bool tinst_xk = tinst->klass_is_exact();
3573     bool this_xk  = this->klass_is_exact();
3574     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3575       // One of these classes has not been loaded
3576       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3577 #ifndef PRODUCT
3578       if( PrintOpto && Verbose ) {
3579         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3580         tty->print("  this == "); this->dump(); tty->cr();
3581         tty->print(" tinst == "); tinst->dump(); tty->cr();
3582       }
3583 #endif
3584       return unloaded_meet;
3585     }
3586 
3587     // Handle mixing oops and interfaces first.
3588     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3589                                         tinst_klass == ciEnv::current()->Object_klass())) {
3590       ciKlass *tmp = tinst_klass; // Swap interface around
3591       tinst_klass = this_klass;
3592       this_klass = tmp;
3593       bool tmp2 = tinst_xk;
3594       tinst_xk = this_xk;
3595       this_xk = tmp2;
3596     }
3597     if (tinst_klass->is_interface() &&
3598         !(this_klass->is_interface() ||
3599           // Treat java/lang/Object as an honorary interface,
3600           // because we need a bottom for the interface hierarchy.
3601           this_klass == ciEnv::current()->Object_klass())) {
3602       // Oop meets interface!
3603 
3604       // See if the oop subtypes (implements) interface.
3605       ciKlass *k;
3606       bool xk;
3607       if( this_klass->is_subtype_of( tinst_klass ) ) {
3608         // Oop indeed subtypes.  Now keep oop or interface depending
3609         // on whether we are both above the centerline or either is
3610         // below the centerline.  If we are on the centerline
3611         // (e.g., Constant vs. AnyNull interface), use the constant.
3612         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3613         // If we are keeping this_klass, keep its exactness too.
3614         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3615       } else {                  // Does not implement, fall to Object
3616         // Oop does not implement interface, so mixing falls to Object
3617         // just like the verifier does (if both are above the
3618         // centerline fall to interface)
3619         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3620         xk = above_centerline(ptr) ? tinst_xk : false;
3621         // Watch out for Constant vs. AnyNull interface.
3622         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3623         instance_id = InstanceBot;
3624       }
3625       ciObject* o = NULL;  // the Constant value, if any
3626       if (ptr == Constant) {
3627         // Find out which constant.
3628         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3629       }
3630       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3631     }
3632 
3633     // Either oop vs oop or interface vs interface or interface vs Object
3634 
3635     // !!! Here's how the symmetry requirement breaks down into invariants:
3636     // If we split one up & one down AND they subtype, take the down man.
3637     // If we split one up & one down AND they do NOT subtype, "fall hard".
3638     // If both are up and they subtype, take the subtype class.
3639     // If both are up and they do NOT subtype, "fall hard".
3640     // If both are down and they subtype, take the supertype class.
3641     // If both are down and they do NOT subtype, "fall hard".
3642     // Constants treated as down.
3643 
3644     // Now, reorder the above list; observe that both-down+subtype is also
3645     // "fall hard"; "fall hard" becomes the default case:
3646     // If we split one up & one down AND they subtype, take the down man.
3647     // If both are up and they subtype, take the subtype class.
3648 
3649     // If both are down and they subtype, "fall hard".
3650     // If both are down and they do NOT subtype, "fall hard".
3651     // If both are up and they do NOT subtype, "fall hard".
3652     // If we split one up & one down AND they do NOT subtype, "fall hard".
3653 
3654     // If a proper subtype is exact, and we return it, we return it exactly.
3655     // If a proper supertype is exact, there can be no subtyping relationship!
3656     // If both types are equal to the subtype, exactness is and-ed below the
3657     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3658 
3659     // Check for subtyping:
3660     ciKlass *subtype = NULL;
3661     bool subtype_exact = false;
3662     if( tinst_klass->equals(this_klass) ) {
3663       subtype = this_klass;
3664       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3665     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3666       subtype = this_klass;     // Pick subtyping class
3667       subtype_exact = this_xk;
3668     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3669       subtype = tinst_klass;    // Pick subtyping class
3670       subtype_exact = tinst_xk;
3671     }
3672 
3673     if( subtype ) {
3674       if( above_centerline(ptr) ) { // both are up?
3675         this_klass = tinst_klass = subtype;
3676         this_xk = tinst_xk = subtype_exact;
3677       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3678         this_klass = tinst_klass; // tinst is down; keep down man
3679         this_xk = tinst_xk;
3680       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3681         tinst_klass = this_klass; // this is down; keep down man
3682         tinst_xk = this_xk;
3683       } else {
3684         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3685       }
3686     }
3687 
3688     // Check for classes now being equal
3689     if (tinst_klass->equals(this_klass)) {
3690       // If the klasses are equal, the constants may still differ.  Fall to
3691       // NotNull if they do (neither constant is NULL; that is a special case
3692       // handled elsewhere).
3693       ciObject* o = NULL;             // Assume not constant when done
3694       ciObject* this_oop  = const_oop();
3695       ciObject* tinst_oop = tinst->const_oop();
3696       if( ptr == Constant ) {
3697         if (this_oop != NULL && tinst_oop != NULL &&
3698             this_oop->equals(tinst_oop) )
3699           o = this_oop;
3700         else if (above_centerline(this ->_ptr))
3701           o = tinst_oop;
3702         else if (above_centerline(tinst ->_ptr))
3703           o = this_oop;
3704         else
3705           ptr = NotNull;
3706       }
3707       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3708     } // Else classes are not equal
3709 
3710     // Since klasses are different, we require a LCA in the Java
3711     // class hierarchy - which means we have to fall to at least NotNull.
3712     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3713       ptr = NotNull;
3714 
3715     instance_id = InstanceBot;
3716 
3717     // Now we find the LCA of Java classes
3718     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3719     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3720   } // End of case InstPtr
3721 
3722   } // End of switch
3723   return this;                  // Return the double constant
3724 }
3725 
3726 
3727 //------------------------java_mirror_type--------------------------------------
3728 ciType* TypeInstPtr::java_mirror_type() const {
3729   // must be a singleton type
3730   if( const_oop() == NULL )  return NULL;
3731 
3732   // must be of type java.lang.Class
3733   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3734 
3735   return const_oop()->as_instance()->java_mirror_type();
3736 }
3737 
3738 
3739 //------------------------------xdual------------------------------------------
3740 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3741 // inheritance mechanism.
3742 const Type *TypeInstPtr::xdual() const {
3743   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3744 }
3745 
3746 //------------------------------eq---------------------------------------------
3747 // Structural equality check for Type representations
3748 bool TypeInstPtr::eq( const Type *t ) const {
3749   const TypeInstPtr *p = t->is_instptr();
3750   return
3751     klass()->equals(p->klass()) &&
3752     TypeOopPtr::eq(p);          // Check sub-type stuff
3753 }
3754 
3755 //------------------------------hash-------------------------------------------
3756 // Type-specific hashing function.
3757 int TypeInstPtr::hash(void) const {
3758   int hash = klass()->hash() + TypeOopPtr::hash();
3759   return hash;
3760 }
3761 
3762 //------------------------------dump2------------------------------------------
3763 // Dump oop Type
3764 #ifndef PRODUCT
3765 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3766   // Print the name of the klass.
3767   klass()->print_name_on(st);
3768 
3769   switch( _ptr ) {
3770   case Constant:
3771     // TO DO: Make CI print the hex address of the underlying oop.
3772     if (WizardMode || Verbose) {
3773       const_oop()->print_oop(st);
3774     }
3775   case BotPTR:
3776     if (!WizardMode && !Verbose) {
3777       if( _klass_is_exact ) st->print(":exact");
3778       break;
3779     }
3780   case TopPTR:
3781   case AnyNull:
3782   case NotNull:
3783     st->print(":%s", ptr_msg[_ptr]);
3784     if( _klass_is_exact ) st->print(":exact");
3785     break;
3786   }
3787 
3788   if( _offset ) {               // Dump offset, if any
3789     if( _offset == OffsetBot )      st->print("+any");
3790     else if( _offset == OffsetTop ) st->print("+unknown");
3791     else st->print("+%d", _offset);
3792   }
3793 
3794   st->print(" *");
3795   if (_instance_id == InstanceTop)
3796     st->print(",iid=top");
3797   else if (_instance_id != InstanceBot)
3798     st->print(",iid=%d",_instance_id);
3799 
3800   dump_inline_depth(st);
3801   dump_speculative(st);
3802 }
3803 #endif
3804 
3805 //------------------------------add_offset-------------------------------------
3806 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3807   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3808               _instance_id, add_offset_speculative(offset), _inline_depth);
3809 }
3810 
3811 const Type *TypeInstPtr::remove_speculative() const {
3812   if (_speculative == NULL) {
3813     return this;
3814   }
3815   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3816   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3817               _instance_id, NULL, _inline_depth);
3818 }
3819 
3820 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3821   if (!UseInlineDepthForSpeculativeTypes) {
3822     return this;
3823   }
3824   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3825 }
3826 
3827 //=============================================================================
3828 // Convenience common pre-built types.
3829 const TypeAryPtr *TypeAryPtr::RANGE;
3830 const TypeAryPtr *TypeAryPtr::OOPS;
3831 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3832 const TypeAryPtr *TypeAryPtr::BYTES;
3833 const TypeAryPtr *TypeAryPtr::SHORTS;
3834 const TypeAryPtr *TypeAryPtr::CHARS;
3835 const TypeAryPtr *TypeAryPtr::INTS;
3836 const TypeAryPtr *TypeAryPtr::LONGS;
3837 const TypeAryPtr *TypeAryPtr::FLOATS;
3838 const TypeAryPtr *TypeAryPtr::DOUBLES;
3839 
3840 //------------------------------make-------------------------------------------
3841 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3842                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3843   assert(!(k == NULL && ary->_elem->isa_int()),
3844          "integral arrays must be pre-equipped with a class");
3845   if (!xk)  xk = ary->ary_must_be_exact();
3846   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3847   if (!UseExactTypes)  xk = (ptr == Constant);
3848   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3849 }
3850 
3851 //------------------------------make-------------------------------------------
3852 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3853                                    int instance_id, const TypePtr* speculative, int inline_depth,
3854                                    bool is_autobox_cache) {
3855   assert(!(k == NULL && ary->_elem->isa_int()),
3856          "integral arrays must be pre-equipped with a class");
3857   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3858   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3859   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3860   if (!UseExactTypes)  xk = (ptr == Constant);
3861   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3862 }
3863 
3864 //------------------------------cast_to_ptr_type-------------------------------
3865 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3866   if( ptr == _ptr ) return this;
3867   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3868 }
3869 
3870 
3871 //-----------------------------cast_to_exactness-------------------------------
3872 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3873   if( klass_is_exact == _klass_is_exact ) return this;
3874   if (!UseExactTypes)  return this;
3875   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3876   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3877 }
3878 
3879 //-----------------------------cast_to_instance_id----------------------------
3880 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3881   if( instance_id == _instance_id ) return this;
3882   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3883 }
3884 
3885 //-----------------------------narrow_size_type-------------------------------
3886 // Local cache for arrayOopDesc::max_array_length(etype),
3887 // which is kind of slow (and cached elsewhere by other users).
3888 static jint max_array_length_cache[T_CONFLICT+1];
3889 static jint max_array_length(BasicType etype) {
3890   jint& cache = max_array_length_cache[etype];
3891   jint res = cache;
3892   if (res == 0) {
3893     switch (etype) {
3894     case T_NARROWOOP:
3895       etype = T_OBJECT;
3896       break;
3897     case T_NARROWKLASS:
3898     case T_CONFLICT:
3899     case T_ILLEGAL:
3900     case T_VOID:
3901       etype = T_BYTE;           // will produce conservatively high value
3902     }
3903     cache = res = arrayOopDesc::max_array_length(etype);
3904   }
3905   return res;
3906 }
3907 
3908 // Narrow the given size type to the index range for the given array base type.
3909 // Return NULL if the resulting int type becomes empty.
3910 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3911   jint hi = size->_hi;
3912   jint lo = size->_lo;
3913   jint min_lo = 0;
3914   jint max_hi = max_array_length(elem()->basic_type());
3915   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3916   bool chg = false;
3917   if (lo < min_lo) {
3918     lo = min_lo;
3919     if (size->is_con()) {
3920       hi = lo;
3921     }
3922     chg = true;
3923   }
3924   if (hi > max_hi) {
3925     hi = max_hi;
3926     if (size->is_con()) {
3927       lo = hi;
3928     }
3929     chg = true;
3930   }
3931   // Negative length arrays will produce weird intermediate dead fast-path code
3932   if (lo > hi)
3933     return TypeInt::ZERO;
3934   if (!chg)
3935     return size;
3936   return TypeInt::make(lo, hi, Type::WidenMin);
3937 }
3938 
3939 //-------------------------------cast_to_size----------------------------------
3940 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3941   assert(new_size != NULL, "");
3942   new_size = narrow_size_type(new_size);
3943   if (new_size == size())  return this;
3944   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3945   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3946 }
3947 
3948 
3949 //------------------------------cast_to_stable---------------------------------
3950 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3951   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3952     return this;
3953 
3954   const Type* elem = this->elem();
3955   const TypePtr* elem_ptr = elem->make_ptr();
3956 
3957   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3958     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3959     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3960   }
3961 
3962   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3963 
3964   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3965 }
3966 
3967 //-----------------------------stable_dimension--------------------------------
3968 int TypeAryPtr::stable_dimension() const {
3969   if (!is_stable())  return 0;
3970   int dim = 1;
3971   const TypePtr* elem_ptr = elem()->make_ptr();
3972   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3973     dim += elem_ptr->is_aryptr()->stable_dimension();
3974   return dim;
3975 }
3976 
3977 //------------------------------eq---------------------------------------------
3978 // Structural equality check for Type representations
3979 bool TypeAryPtr::eq( const Type *t ) const {
3980   const TypeAryPtr *p = t->is_aryptr();
3981   return
3982     _ary == p->_ary &&  // Check array
3983     TypeOopPtr::eq(p);  // Check sub-parts
3984 }
3985 
3986 //------------------------------hash-------------------------------------------
3987 // Type-specific hashing function.
3988 int TypeAryPtr::hash(void) const {
3989   return (intptr_t)_ary + TypeOopPtr::hash();
3990 }
3991 
3992 //------------------------------meet-------------------------------------------
3993 // Compute the MEET of two types.  It returns a new Type object.
3994 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3995   // Perform a fast test for common case; meeting the same types together.
3996   if( this == t ) return this;  // Meeting same type-rep?
3997   // Current "this->_base" is Pointer
3998   switch (t->base()) {          // switch on original type
3999 
4000   // Mixing ints & oops happens when javac reuses local variables
4001   case Int:
4002   case Long:
4003   case FloatTop:
4004   case FloatCon:
4005   case FloatBot:
4006   case DoubleTop:
4007   case DoubleCon:
4008   case DoubleBot:
4009   case NarrowOop:
4010   case NarrowKlass:
4011   case Bottom:                  // Ye Olde Default
4012     return Type::BOTTOM;
4013   case Top:
4014     return this;
4015 
4016   default:                      // All else is a mistake
4017     typerr(t);
4018 
4019   case OopPtr: {                // Meeting to OopPtrs
4020     // Found a OopPtr type vs self-AryPtr type
4021     const TypeOopPtr *tp = t->is_oopptr();
4022     int offset = meet_offset(tp->offset());
4023     PTR ptr = meet_ptr(tp->ptr());
4024     int depth = meet_inline_depth(tp->inline_depth());
4025     const TypePtr* speculative = xmeet_speculative(tp);
4026     switch (tp->ptr()) {
4027     case TopPTR:
4028     case AnyNull: {
4029       int instance_id = meet_instance_id(InstanceTop);
4030       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4031                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4032     }
4033     case BotPTR:
4034     case NotNull: {
4035       int instance_id = meet_instance_id(tp->instance_id());
4036       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4037     }
4038     default: ShouldNotReachHere();
4039     }
4040   }
4041 
4042   case AnyPtr: {                // Meeting two AnyPtrs
4043     // Found an AnyPtr type vs self-AryPtr type
4044     const TypePtr *tp = t->is_ptr();
4045     int offset = meet_offset(tp->offset());
4046     PTR ptr = meet_ptr(tp->ptr());
4047     const TypePtr* speculative = xmeet_speculative(tp);
4048     int depth = meet_inline_depth(tp->inline_depth());
4049     switch (tp->ptr()) {
4050     case TopPTR:
4051       return this;
4052     case BotPTR:
4053     case NotNull:
4054       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4055     case Null:
4056       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4057       // else fall through to AnyNull
4058     case AnyNull: {
4059       int instance_id = meet_instance_id(InstanceTop);
4060       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4061                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4062     }
4063     default: ShouldNotReachHere();
4064     }
4065   }
4066 
4067   case MetadataPtr:
4068   case KlassPtr:
4069   case RawPtr: return TypePtr::BOTTOM;
4070 
4071   case AryPtr: {                // Meeting 2 references?
4072     const TypeAryPtr *tap = t->is_aryptr();
4073     int off = meet_offset(tap->offset());
4074     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4075     PTR ptr = meet_ptr(tap->ptr());
4076     int instance_id = meet_instance_id(tap->instance_id());
4077     const TypePtr* speculative = xmeet_speculative(tap);
4078     int depth = meet_inline_depth(tap->inline_depth());
4079     ciKlass* lazy_klass = NULL;
4080     if (tary->_elem->isa_int()) {
4081       // Integral array element types have irrelevant lattice relations.
4082       // It is the klass that determines array layout, not the element type.
4083       if (_klass == NULL)
4084         lazy_klass = tap->_klass;
4085       else if (tap->_klass == NULL || tap->_klass == _klass) {
4086         lazy_klass = _klass;
4087       } else {
4088         // Something like byte[int+] meets char[int+].
4089         // This must fall to bottom, not (int[-128..65535])[int+].
4090         instance_id = InstanceBot;
4091         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4092       }
4093     } else // Non integral arrays.
4094       // Must fall to bottom if exact klasses in upper lattice
4095       // are not equal or super klass is exact.
4096       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4097           // meet with top[] and bottom[] are processed further down:
4098           tap->_klass != NULL  && this->_klass != NULL   &&
4099           // both are exact and not equal:
4100           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4101            // 'tap'  is exact and super or unrelated:
4102            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4103            // 'this' is exact and super or unrelated:
4104            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4105       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4106       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4107     }
4108 
4109     bool xk = false;
4110     switch (tap->ptr()) {
4111     case AnyNull:
4112     case TopPTR:
4113       // Compute new klass on demand, do not use tap->_klass
4114       if (below_centerline(this->_ptr)) {
4115         xk = this->_klass_is_exact;
4116       } else {
4117         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4118       }
4119       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4120     case Constant: {
4121       ciObject* o = const_oop();
4122       if( _ptr == Constant ) {
4123         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4124           xk = (klass() == tap->klass());
4125           ptr = NotNull;
4126           o = NULL;
4127           instance_id = InstanceBot;
4128         } else {
4129           xk = true;
4130         }
4131       } else if(above_centerline(_ptr)) {
4132         o = tap->const_oop();
4133         xk = true;
4134       } else {
4135         // Only precise for identical arrays
4136         xk = this->_klass_is_exact && (klass() == tap->klass());
4137       }
4138       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4139     }
4140     case NotNull:
4141     case BotPTR:
4142       // Compute new klass on demand, do not use tap->_klass
4143       if (above_centerline(this->_ptr))
4144             xk = tap->_klass_is_exact;
4145       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4146               (klass() == tap->klass()); // Only precise for identical arrays
4147       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4148     default: ShouldNotReachHere();
4149     }
4150   }
4151 
4152   // All arrays inherit from Object class
4153   case InstPtr: {
4154     const TypeInstPtr *tp = t->is_instptr();
4155     int offset = meet_offset(tp->offset());
4156     PTR ptr = meet_ptr(tp->ptr());
4157     int instance_id = meet_instance_id(tp->instance_id());
4158     const TypePtr* speculative = xmeet_speculative(tp);
4159     int depth = meet_inline_depth(tp->inline_depth());
4160     switch (ptr) {
4161     case TopPTR:
4162     case AnyNull:                // Fall 'down' to dual of object klass
4163       // For instances when a subclass meets a superclass we fall
4164       // below the centerline when the superclass is exact. We need to
4165       // do the same here.
4166       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4167         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4168       } else {
4169         // cannot subclass, so the meet has to fall badly below the centerline
4170         ptr = NotNull;
4171         instance_id = InstanceBot;
4172         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4173       }
4174     case Constant:
4175     case NotNull:
4176     case BotPTR:                // Fall down to object klass
4177       // LCA is object_klass, but if we subclass from the top we can do better
4178       if (above_centerline(tp->ptr())) {
4179         // If 'tp'  is above the centerline and it is Object class
4180         // then we can subclass in the Java class hierarchy.
4181         // For instances when a subclass meets a superclass we fall
4182         // below the centerline when the superclass is exact. We need
4183         // to do the same here.
4184         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4185           // that is, my array type is a subtype of 'tp' klass
4186           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4187                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4188         }
4189       }
4190       // The other case cannot happen, since t cannot be a subtype of an array.
4191       // The meet falls down to Object class below centerline.
4192       if( ptr == Constant )
4193          ptr = NotNull;
4194       instance_id = InstanceBot;
4195       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4196     default: typerr(t);
4197     }
4198   }
4199   }
4200   return this;                  // Lint noise
4201 }
4202 
4203 //------------------------------xdual------------------------------------------
4204 // Dual: compute field-by-field dual
4205 const Type *TypeAryPtr::xdual() const {
4206   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4207 }
4208 
4209 //----------------------interface_vs_oop---------------------------------------
4210 #ifdef ASSERT
4211 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4212   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4213   if (t_aryptr) {
4214     return _ary->interface_vs_oop(t_aryptr->_ary);
4215   }
4216   return false;
4217 }
4218 #endif
4219 
4220 //------------------------------dump2------------------------------------------
4221 #ifndef PRODUCT
4222 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4223   _ary->dump2(d,depth,st);
4224   switch( _ptr ) {
4225   case Constant:
4226     const_oop()->print(st);
4227     break;
4228   case BotPTR:
4229     if (!WizardMode && !Verbose) {
4230       if( _klass_is_exact ) st->print(":exact");
4231       break;
4232     }
4233   case TopPTR:
4234   case AnyNull:
4235   case NotNull:
4236     st->print(":%s", ptr_msg[_ptr]);
4237     if( _klass_is_exact ) st->print(":exact");
4238     break;
4239   }
4240 
4241   if( _offset != 0 ) {
4242     int header_size = objArrayOopDesc::header_size() * wordSize;
4243     if( _offset == OffsetTop )       st->print("+undefined");
4244     else if( _offset == OffsetBot )  st->print("+any");
4245     else if( _offset < header_size ) st->print("+%d", _offset);
4246     else {
4247       BasicType basic_elem_type = elem()->basic_type();
4248       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4249       int elem_size = type2aelembytes(basic_elem_type);
4250       st->print("[%d]", (_offset - array_base)/elem_size);
4251     }
4252   }
4253   st->print(" *");
4254   if (_instance_id == InstanceTop)
4255     st->print(",iid=top");
4256   else if (_instance_id != InstanceBot)
4257     st->print(",iid=%d",_instance_id);
4258 
4259   dump_inline_depth(st);
4260   dump_speculative(st);
4261 }
4262 #endif
4263 
4264 bool TypeAryPtr::empty(void) const {
4265   if (_ary->empty())       return true;
4266   return TypeOopPtr::empty();
4267 }
4268 
4269 //------------------------------add_offset-------------------------------------
4270 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4271   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4272 }
4273 
4274 const Type *TypeAryPtr::remove_speculative() const {
4275   if (_speculative == NULL) {
4276     return this;
4277   }
4278   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4279   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4280 }
4281 
4282 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4283   if (!UseInlineDepthForSpeculativeTypes) {
4284     return this;
4285   }
4286   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4287 }
4288 
4289 //=============================================================================
4290 
4291 //------------------------------hash-------------------------------------------
4292 // Type-specific hashing function.
4293 int TypeNarrowPtr::hash(void) const {
4294   return _ptrtype->hash() + 7;
4295 }
4296 
4297 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4298   return _ptrtype->singleton();
4299 }
4300 
4301 bool TypeNarrowPtr::empty(void) const {
4302   return _ptrtype->empty();
4303 }
4304 
4305 intptr_t TypeNarrowPtr::get_con() const {
4306   return _ptrtype->get_con();
4307 }
4308 
4309 bool TypeNarrowPtr::eq( const Type *t ) const {
4310   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4311   if (tc != NULL) {
4312     if (_ptrtype->base() != tc->_ptrtype->base()) {
4313       return false;
4314     }
4315     return tc->_ptrtype->eq(_ptrtype);
4316   }
4317   return false;
4318 }
4319 
4320 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4321   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4322   return make_same_narrowptr(odual);
4323 }
4324 
4325 
4326 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4327   if (isa_same_narrowptr(kills)) {
4328     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4329     if (ft->empty())
4330       return Type::TOP;           // Canonical empty value
4331     if (ft->isa_ptr()) {
4332       return make_hash_same_narrowptr(ft->isa_ptr());
4333     }
4334     return ft;
4335   } else if (kills->isa_ptr()) {
4336     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4337     if (ft->empty())
4338       return Type::TOP;           // Canonical empty value
4339     return ft;
4340   } else {
4341     return Type::TOP;
4342   }
4343 }
4344 
4345 //------------------------------xmeet------------------------------------------
4346 // Compute the MEET of two types.  It returns a new Type object.
4347 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4348   // Perform a fast test for common case; meeting the same types together.
4349   if( this == t ) return this;  // Meeting same type-rep?
4350 
4351   if (t->base() == base()) {
4352     const Type* result = _ptrtype->xmeet(t->make_ptr());
4353     if (result->isa_ptr()) {
4354       return make_hash_same_narrowptr(result->is_ptr());
4355     }
4356     return result;
4357   }
4358 
4359   // Current "this->_base" is NarrowKlass or NarrowOop
4360   switch (t->base()) {          // switch on original type
4361 
4362   case Int:                     // Mixing ints & oops happens when javac
4363   case Long:                    // reuses local variables
4364   case FloatTop:
4365   case FloatCon:
4366   case FloatBot:
4367   case DoubleTop:
4368   case DoubleCon:
4369   case DoubleBot:
4370   case AnyPtr:
4371   case RawPtr:
4372   case OopPtr:
4373   case InstPtr:
4374   case AryPtr:
4375   case MetadataPtr:
4376   case KlassPtr:
4377   case NarrowOop:
4378   case NarrowKlass:
4379 
4380   case Bottom:                  // Ye Olde Default
4381     return Type::BOTTOM;
4382   case Top:
4383     return this;
4384 
4385   default:                      // All else is a mistake
4386     typerr(t);
4387 
4388   } // End of switch
4389 
4390   return this;
4391 }
4392 
4393 #ifndef PRODUCT
4394 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4395   _ptrtype->dump2(d, depth, st);
4396 }
4397 #endif
4398 
4399 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4400 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4401 
4402 
4403 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4404   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4405 }
4406 
4407 const Type* TypeNarrowOop::remove_speculative() const {
4408   return make(_ptrtype->remove_speculative()->is_ptr());
4409 }
4410 
4411 const Type* TypeNarrowOop::cleanup_speculative() const {
4412   return make(_ptrtype->cleanup_speculative()->is_ptr());
4413 }
4414 
4415 #ifndef PRODUCT
4416 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4417   st->print("narrowoop: ");
4418   TypeNarrowPtr::dump2(d, depth, st);
4419 }
4420 #endif
4421 
4422 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4423 
4424 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4425   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4426 }
4427 
4428 #ifndef PRODUCT
4429 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4430   st->print("narrowklass: ");
4431   TypeNarrowPtr::dump2(d, depth, st);
4432 }
4433 #endif
4434 
4435 
4436 //------------------------------eq---------------------------------------------
4437 // Structural equality check for Type representations
4438 bool TypeMetadataPtr::eq( const Type *t ) const {
4439   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4440   ciMetadata* one = metadata();
4441   ciMetadata* two = a->metadata();
4442   if (one == NULL || two == NULL) {
4443     return (one == two) && TypePtr::eq(t);
4444   } else {
4445     return one->equals(two) && TypePtr::eq(t);
4446   }
4447 }
4448 
4449 //------------------------------hash-------------------------------------------
4450 // Type-specific hashing function.
4451 int TypeMetadataPtr::hash(void) const {
4452   return
4453     (metadata() ? metadata()->hash() : 0) +
4454     TypePtr::hash();
4455 }
4456 
4457 //------------------------------singleton--------------------------------------
4458 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4459 // constants
4460 bool TypeMetadataPtr::singleton(void) const {
4461   // detune optimizer to not generate constant metadta + constant offset as a constant!
4462   // TopPTR, Null, AnyNull, Constant are all singletons
4463   return (_offset == 0) && !below_centerline(_ptr);
4464 }
4465 
4466 //------------------------------add_offset-------------------------------------
4467 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4468   return make( _ptr, _metadata, xadd_offset(offset));
4469 }
4470 
4471 //-----------------------------filter------------------------------------------
4472 // Do not allow interface-vs.-noninterface joins to collapse to top.
4473 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4474   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4475   if (ft == NULL || ft->empty())
4476     return Type::TOP;           // Canonical empty value
4477   return ft;
4478 }
4479 
4480  //------------------------------get_con----------------------------------------
4481 intptr_t TypeMetadataPtr::get_con() const {
4482   assert( _ptr == Null || _ptr == Constant, "" );
4483   assert( _offset >= 0, "" );
4484 
4485   if (_offset != 0) {
4486     // After being ported to the compiler interface, the compiler no longer
4487     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4488     // to a handle at compile time.  This handle is embedded in the generated
4489     // code and dereferenced at the time the nmethod is made.  Until that time,
4490     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4491     // have access to the addresses!).  This does not seem to currently happen,
4492     // but this assertion here is to help prevent its occurence.
4493     tty->print_cr("Found oop constant with non-zero offset");
4494     ShouldNotReachHere();
4495   }
4496 
4497   return (intptr_t)metadata()->constant_encoding();
4498 }
4499 
4500 //------------------------------cast_to_ptr_type-------------------------------
4501 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4502   if( ptr == _ptr ) return this;
4503   return make(ptr, metadata(), _offset);
4504 }
4505 
4506 //------------------------------meet-------------------------------------------
4507 // Compute the MEET of two types.  It returns a new Type object.
4508 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4509   // Perform a fast test for common case; meeting the same types together.
4510   if( this == t ) return this;  // Meeting same type-rep?
4511 
4512   // Current "this->_base" is OopPtr
4513   switch (t->base()) {          // switch on original type
4514 
4515   case Int:                     // Mixing ints & oops happens when javac
4516   case Long:                    // reuses local variables
4517   case FloatTop:
4518   case FloatCon:
4519   case FloatBot:
4520   case DoubleTop:
4521   case DoubleCon:
4522   case DoubleBot:
4523   case NarrowOop:
4524   case NarrowKlass:
4525   case Bottom:                  // Ye Olde Default
4526     return Type::BOTTOM;
4527   case Top:
4528     return this;
4529 
4530   default:                      // All else is a mistake
4531     typerr(t);
4532 
4533   case AnyPtr: {
4534     // Found an AnyPtr type vs self-OopPtr type
4535     const TypePtr *tp = t->is_ptr();
4536     int offset = meet_offset(tp->offset());
4537     PTR ptr = meet_ptr(tp->ptr());
4538     switch (tp->ptr()) {
4539     case Null:
4540       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4541       // else fall through:
4542     case TopPTR:
4543     case AnyNull: {
4544       return make(ptr, _metadata, offset);
4545     }
4546     case BotPTR:
4547     case NotNull:
4548       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4549     default: typerr(t);
4550     }
4551   }
4552 
4553   case RawPtr:
4554   case KlassPtr:
4555   case OopPtr:
4556   case InstPtr:
4557   case AryPtr:
4558     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4559 
4560   case MetadataPtr: {
4561     const TypeMetadataPtr *tp = t->is_metadataptr();
4562     int offset = meet_offset(tp->offset());
4563     PTR tptr = tp->ptr();
4564     PTR ptr = meet_ptr(tptr);
4565     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4566     if (tptr == TopPTR || _ptr == TopPTR ||
4567         metadata()->equals(tp->metadata())) {
4568       return make(ptr, md, offset);
4569     }
4570     // metadata is different
4571     if( ptr == Constant ) {  // Cannot be equal constants, so...
4572       if( tptr == Constant && _ptr != Constant)  return t;
4573       if( _ptr == Constant && tptr != Constant)  return this;
4574       ptr = NotNull;            // Fall down in lattice
4575     }
4576     return make(ptr, NULL, offset);
4577     break;
4578   }
4579   } // End of switch
4580   return this;                  // Return the double constant
4581 }
4582 
4583 
4584 //------------------------------xdual------------------------------------------
4585 // Dual of a pure metadata pointer.
4586 const Type *TypeMetadataPtr::xdual() const {
4587   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4588 }
4589 
4590 //------------------------------dump2------------------------------------------
4591 #ifndef PRODUCT
4592 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4593   st->print("metadataptr:%s", ptr_msg[_ptr]);
4594   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4595   switch( _offset ) {
4596   case OffsetTop: st->print("+top"); break;
4597   case OffsetBot: st->print("+any"); break;
4598   case         0: break;
4599   default:        st->print("+%d",_offset); break;
4600   }
4601 }
4602 #endif
4603 
4604 
4605 //=============================================================================
4606 // Convenience common pre-built type.
4607 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4608 
4609 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4610   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4611 }
4612 
4613 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4614   return make(Constant, m, 0);
4615 }
4616 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4617   return make(Constant, m, 0);
4618 }
4619 
4620 //------------------------------make-------------------------------------------
4621 // Create a meta data constant
4622 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4623   assert(m == NULL || !m->is_klass(), "wrong type");
4624   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4625 }
4626 
4627 
4628 //=============================================================================
4629 // Convenience common pre-built types.
4630 
4631 // Not-null object klass or below
4632 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4633 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4634 
4635 //------------------------------TypeKlassPtr-----------------------------------
4636 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4637   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4638 }
4639 
4640 //------------------------------make-------------------------------------------
4641 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4642 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4643   assert( k != NULL, "Expect a non-NULL klass");
4644   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4645   TypeKlassPtr *r =
4646     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4647 
4648   return r;
4649 }
4650 
4651 //------------------------------eq---------------------------------------------
4652 // Structural equality check for Type representations
4653 bool TypeKlassPtr::eq( const Type *t ) const {
4654   const TypeKlassPtr *p = t->is_klassptr();
4655   return
4656     klass()->equals(p->klass()) &&
4657     TypePtr::eq(p);
4658 }
4659 
4660 //------------------------------hash-------------------------------------------
4661 // Type-specific hashing function.
4662 int TypeKlassPtr::hash(void) const {
4663   return klass()->hash() + TypePtr::hash();
4664 }
4665 
4666 //------------------------------singleton--------------------------------------
4667 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4668 // constants
4669 bool TypeKlassPtr::singleton(void) const {
4670   // detune optimizer to not generate constant klass + constant offset as a constant!
4671   // TopPTR, Null, AnyNull, Constant are all singletons
4672   return (_offset == 0) && !below_centerline(_ptr);
4673 }
4674 
4675 // Do not allow interface-vs.-noninterface joins to collapse to top.
4676 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4677   // logic here mirrors the one from TypeOopPtr::filter. See comments
4678   // there.
4679   const Type* ft = join_helper(kills, include_speculative);
4680   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4681   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4682 
4683   if (ft->empty()) {
4684     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4685       return kills;             // Uplift to interface
4686 
4687     return Type::TOP;           // Canonical empty value
4688   }
4689 
4690   // Interface klass type could be exact in opposite to interface type,
4691   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4692   if (ftkp != NULL && ktkp != NULL &&
4693       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4694       !ftkp->klass_is_exact() && // Keep exact interface klass
4695       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4696     return ktkp->cast_to_ptr_type(ftkp->ptr());
4697   }
4698 
4699   return ft;
4700 }
4701 
4702 //----------------------compute_klass------------------------------------------
4703 // Compute the defining klass for this class
4704 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4705   // Compute _klass based on element type.
4706   ciKlass* k_ary = NULL;
4707   const TypeInstPtr *tinst;
4708   const TypeAryPtr *tary;
4709   const Type* el = elem();
4710   if (el->isa_narrowoop()) {
4711     el = el->make_ptr();
4712   }
4713 
4714   // Get element klass
4715   if ((tinst = el->isa_instptr()) != NULL) {
4716     // Compute array klass from element klass
4717     k_ary = ciObjArrayKlass::make(tinst->klass());
4718   } else if ((tary = el->isa_aryptr()) != NULL) {
4719     // Compute array klass from element klass
4720     ciKlass* k_elem = tary->klass();
4721     // If element type is something like bottom[], k_elem will be null.
4722     if (k_elem != NULL)
4723       k_ary = ciObjArrayKlass::make(k_elem);
4724   } else if ((el->base() == Type::Top) ||
4725              (el->base() == Type::Bottom)) {
4726     // element type of Bottom occurs from meet of basic type
4727     // and object; Top occurs when doing join on Bottom.
4728     // Leave k_ary at NULL.
4729   } else {
4730     // Cannot compute array klass directly from basic type,
4731     // since subtypes of TypeInt all have basic type T_INT.
4732 #ifdef ASSERT
4733     if (verify && el->isa_int()) {
4734       // Check simple cases when verifying klass.
4735       BasicType bt = T_ILLEGAL;
4736       if (el == TypeInt::BYTE) {
4737         bt = T_BYTE;
4738       } else if (el == TypeInt::SHORT) {
4739         bt = T_SHORT;
4740       } else if (el == TypeInt::CHAR) {
4741         bt = T_CHAR;
4742       } else if (el == TypeInt::INT) {
4743         bt = T_INT;
4744       } else {
4745         return _klass; // just return specified klass
4746       }
4747       return ciTypeArrayKlass::make(bt);
4748     }
4749 #endif
4750     assert(!el->isa_int(),
4751            "integral arrays must be pre-equipped with a class");
4752     // Compute array klass directly from basic type
4753     k_ary = ciTypeArrayKlass::make(el->basic_type());
4754   }
4755   return k_ary;
4756 }
4757 
4758 //------------------------------klass------------------------------------------
4759 // Return the defining klass for this class
4760 ciKlass* TypeAryPtr::klass() const {
4761   if( _klass ) return _klass;   // Return cached value, if possible
4762 
4763   // Oops, need to compute _klass and cache it
4764   ciKlass* k_ary = compute_klass();
4765 
4766   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4767     // The _klass field acts as a cache of the underlying
4768     // ciKlass for this array type.  In order to set the field,
4769     // we need to cast away const-ness.
4770     //
4771     // IMPORTANT NOTE: we *never* set the _klass field for the
4772     // type TypeAryPtr::OOPS.  This Type is shared between all
4773     // active compilations.  However, the ciKlass which represents
4774     // this Type is *not* shared between compilations, so caching
4775     // this value would result in fetching a dangling pointer.
4776     //
4777     // Recomputing the underlying ciKlass for each request is
4778     // a bit less efficient than caching, but calls to
4779     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4780     ((TypeAryPtr*)this)->_klass = k_ary;
4781     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4782         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4783       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4784     }
4785   }
4786   return k_ary;
4787 }
4788 
4789 
4790 //------------------------------add_offset-------------------------------------
4791 // Access internals of klass object
4792 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4793   return make( _ptr, klass(), xadd_offset(offset) );
4794 }
4795 
4796 //------------------------------cast_to_ptr_type-------------------------------
4797 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4798   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4799   if( ptr == _ptr ) return this;
4800   return make(ptr, _klass, _offset);
4801 }
4802 
4803 
4804 //-----------------------------cast_to_exactness-------------------------------
4805 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4806   if( klass_is_exact == _klass_is_exact ) return this;
4807   if (!UseExactTypes)  return this;
4808   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4809 }
4810 
4811 
4812 //-----------------------------as_instance_type--------------------------------
4813 // Corresponding type for an instance of the given class.
4814 // It will be NotNull, and exact if and only if the klass type is exact.
4815 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4816   ciKlass* k = klass();
4817   bool    xk = klass_is_exact();
4818   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4819   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4820   guarantee(toop != NULL, "need type for given klass");
4821   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4822   return toop->cast_to_exactness(xk)->is_oopptr();
4823 }
4824 
4825 
4826 //------------------------------xmeet------------------------------------------
4827 // Compute the MEET of two types, return a new Type object.
4828 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4829   // Perform a fast test for common case; meeting the same types together.
4830   if( this == t ) return this;  // Meeting same type-rep?
4831 
4832   // Current "this->_base" is Pointer
4833   switch (t->base()) {          // switch on original type
4834 
4835   case Int:                     // Mixing ints & oops happens when javac
4836   case Long:                    // reuses local variables
4837   case FloatTop:
4838   case FloatCon:
4839   case FloatBot:
4840   case DoubleTop:
4841   case DoubleCon:
4842   case DoubleBot:
4843   case NarrowOop:
4844   case NarrowKlass:
4845   case Bottom:                  // Ye Olde Default
4846     return Type::BOTTOM;
4847   case Top:
4848     return this;
4849 
4850   default:                      // All else is a mistake
4851     typerr(t);
4852 
4853   case AnyPtr: {                // Meeting to AnyPtrs
4854     // Found an AnyPtr type vs self-KlassPtr type
4855     const TypePtr *tp = t->is_ptr();
4856     int offset = meet_offset(tp->offset());
4857     PTR ptr = meet_ptr(tp->ptr());
4858     switch (tp->ptr()) {
4859     case TopPTR:
4860       return this;
4861     case Null:
4862       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4863     case AnyNull:
4864       return make( ptr, klass(), offset );
4865     case BotPTR:
4866     case NotNull:
4867       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4868     default: typerr(t);
4869     }
4870   }
4871 
4872   case RawPtr:
4873   case MetadataPtr:
4874   case OopPtr:
4875   case AryPtr:                  // Meet with AryPtr
4876   case InstPtr:                 // Meet with InstPtr
4877     return TypePtr::BOTTOM;
4878 
4879   //
4880   //             A-top         }
4881   //           /   |   \       }  Tops
4882   //       B-top A-any C-top   }
4883   //          | /  |  \ |      }  Any-nulls
4884   //       B-any   |   C-any   }
4885   //          |    |    |
4886   //       B-con A-con C-con   } constants; not comparable across classes
4887   //          |    |    |
4888   //       B-not   |   C-not   }
4889   //          | \  |  / |      }  not-nulls
4890   //       B-bot A-not C-bot   }
4891   //           \   |   /       }  Bottoms
4892   //             A-bot         }
4893   //
4894 
4895   case KlassPtr: {  // Meet two KlassPtr types
4896     const TypeKlassPtr *tkls = t->is_klassptr();
4897     int  off     = meet_offset(tkls->offset());
4898     PTR  ptr     = meet_ptr(tkls->ptr());
4899 
4900     // Check for easy case; klasses are equal (and perhaps not loaded!)
4901     // If we have constants, then we created oops so classes are loaded
4902     // and we can handle the constants further down.  This case handles
4903     // not-loaded classes
4904     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4905       return make( ptr, klass(), off );
4906     }
4907 
4908     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4909     ciKlass* tkls_klass = tkls->klass();
4910     ciKlass* this_klass = this->klass();
4911     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4912     assert( this_klass->is_loaded(), "This class should have been loaded.");
4913 
4914     // If 'this' type is above the centerline and is a superclass of the
4915     // other, we can treat 'this' as having the same type as the other.
4916     if ((above_centerline(this->ptr())) &&
4917         tkls_klass->is_subtype_of(this_klass)) {
4918       this_klass = tkls_klass;
4919     }
4920     // If 'tinst' type is above the centerline and is a superclass of the
4921     // other, we can treat 'tinst' as having the same type as the other.
4922     if ((above_centerline(tkls->ptr())) &&
4923         this_klass->is_subtype_of(tkls_klass)) {
4924       tkls_klass = this_klass;
4925     }
4926 
4927     // Check for classes now being equal
4928     if (tkls_klass->equals(this_klass)) {
4929       // If the klasses are equal, the constants may still differ.  Fall to
4930       // NotNull if they do (neither constant is NULL; that is a special case
4931       // handled elsewhere).
4932       if( ptr == Constant ) {
4933         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4934             this->klass()->equals(tkls->klass()));
4935         else if (above_centerline(this->ptr()));
4936         else if (above_centerline(tkls->ptr()));
4937         else
4938           ptr = NotNull;
4939       }
4940       return make( ptr, this_klass, off );
4941     } // Else classes are not equal
4942 
4943     // Since klasses are different, we require the LCA in the Java
4944     // class hierarchy - which means we have to fall to at least NotNull.
4945     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4946       ptr = NotNull;
4947     // Now we find the LCA of Java classes
4948     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4949     return   make( ptr, k, off );
4950   } // End of case KlassPtr
4951 
4952   } // End of switch
4953   return this;                  // Return the double constant
4954 }
4955 
4956 //------------------------------xdual------------------------------------------
4957 // Dual: compute field-by-field dual
4958 const Type    *TypeKlassPtr::xdual() const {
4959   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4960 }
4961 
4962 //------------------------------get_con----------------------------------------
4963 intptr_t TypeKlassPtr::get_con() const {
4964   assert( _ptr == Null || _ptr == Constant, "" );
4965   assert( _offset >= 0, "" );
4966 
4967   if (_offset != 0) {
4968     // After being ported to the compiler interface, the compiler no longer
4969     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4970     // to a handle at compile time.  This handle is embedded in the generated
4971     // code and dereferenced at the time the nmethod is made.  Until that time,
4972     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4973     // have access to the addresses!).  This does not seem to currently happen,
4974     // but this assertion here is to help prevent its occurence.
4975     tty->print_cr("Found oop constant with non-zero offset");
4976     ShouldNotReachHere();
4977   }
4978 
4979   return (intptr_t)klass()->constant_encoding();
4980 }
4981 //------------------------------dump2------------------------------------------
4982 // Dump Klass Type
4983 #ifndef PRODUCT
4984 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4985   switch( _ptr ) {
4986   case Constant:
4987     st->print("precise ");
4988   case NotNull:
4989     {
4990       const char *name = klass()->name()->as_utf8();
4991       if( name ) {
4992         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4993       } else {
4994         ShouldNotReachHere();
4995       }
4996     }
4997   case BotPTR:
4998     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4999   case TopPTR:
5000   case AnyNull:
5001     st->print(":%s", ptr_msg[_ptr]);
5002     if( _klass_is_exact ) st->print(":exact");
5003     break;
5004   }
5005 
5006   if( _offset ) {               // Dump offset, if any
5007     if( _offset == OffsetBot )      { st->print("+any"); }
5008     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5009     else                            { st->print("+%d", _offset); }
5010   }
5011 
5012   st->print(" *");
5013 }
5014 #endif
5015 
5016 
5017 
5018 //=============================================================================
5019 // Convenience common pre-built types.
5020 
5021 //------------------------------make-------------------------------------------
5022 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5023   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5024 }
5025 
5026 //------------------------------make-------------------------------------------
5027 const TypeFunc *TypeFunc::make(ciMethod* method) {
5028   Compile* C = Compile::current();
5029   const TypeFunc* tf = C->last_tf(method); // check cache
5030   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5031   const TypeTuple *domain;
5032   if (method->is_static()) {
5033     domain = TypeTuple::make_domain(NULL, method->signature());
5034   } else {
5035     domain = TypeTuple::make_domain(method->holder(), method->signature());
5036   }
5037   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5038   tf = TypeFunc::make(domain, range);
5039   C->set_last_tf(method, tf);  // fill cache
5040   return tf;
5041 }
5042 
5043 //------------------------------meet-------------------------------------------
5044 // Compute the MEET of two types.  It returns a new Type object.
5045 const Type *TypeFunc::xmeet( const Type *t ) const {
5046   // Perform a fast test for common case; meeting the same types together.
5047   if( this == t ) return this;  // Meeting same type-rep?
5048 
5049   // Current "this->_base" is Func
5050   switch (t->base()) {          // switch on original type
5051 
5052   case Bottom:                  // Ye Olde Default
5053     return t;
5054 
5055   default:                      // All else is a mistake
5056     typerr(t);
5057 
5058   case Top:
5059     break;
5060   }
5061   return this;                  // Return the double constant
5062 }
5063 
5064 //------------------------------xdual------------------------------------------
5065 // Dual: compute field-by-field dual
5066 const Type *TypeFunc::xdual() const {
5067   return this;
5068 }
5069 
5070 //------------------------------eq---------------------------------------------
5071 // Structural equality check for Type representations
5072 bool TypeFunc::eq( const Type *t ) const {
5073   const TypeFunc *a = (const TypeFunc*)t;
5074   return _domain == a->_domain &&
5075     _range == a->_range;
5076 }
5077 
5078 //------------------------------hash-------------------------------------------
5079 // Type-specific hashing function.
5080 int TypeFunc::hash(void) const {
5081   return (intptr_t)_domain + (intptr_t)_range;
5082 }
5083 
5084 //------------------------------dump2------------------------------------------
5085 // Dump Function Type
5086 #ifndef PRODUCT
5087 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5088   if( _range->_cnt <= Parms )
5089     st->print("void");
5090   else {
5091     uint i;
5092     for (i = Parms; i < _range->_cnt-1; i++) {
5093       _range->field_at(i)->dump2(d,depth,st);
5094       st->print("/");
5095     }
5096     _range->field_at(i)->dump2(d,depth,st);
5097   }
5098   st->print(" ");
5099   st->print("( ");
5100   if( !depth || d[this] ) {     // Check for recursive dump
5101     st->print("...)");
5102     return;
5103   }
5104   d.Insert((void*)this,(void*)this);    // Stop recursion
5105   if (Parms < _domain->_cnt)
5106     _domain->field_at(Parms)->dump2(d,depth-1,st);
5107   for (uint i = Parms+1; i < _domain->_cnt; i++) {
5108     st->print(", ");
5109     _domain->field_at(i)->dump2(d,depth-1,st);
5110   }
5111   st->print(" )");
5112 }
5113 #endif
5114 
5115 //------------------------------singleton--------------------------------------
5116 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5117 // constants (Ldi nodes).  Singletons are integer, float or double constants
5118 // or a single symbol.
5119 bool TypeFunc::singleton(void) const {
5120   return false;                 // Never a singleton
5121 }
5122 
5123 bool TypeFunc::empty(void) const {
5124   return false;                 // Never empty
5125 }
5126 
5127 
5128 BasicType TypeFunc::return_type() const{
5129   if (range()->cnt() == TypeFunc::Parms) {
5130     return T_VOID;
5131   }
5132   return range()->field_at(TypeFunc::Parms)->basic_type();
5133 }