1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/nmethod.hpp"
  29 #include "code/pcDesc.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "interpreter/bytecode.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/oopMapCache.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "runtime/vframe.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "runtime/vframe_hp.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef TARGET_ARCH_x86
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "vmreg_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_zero
  60 # include "vmreg_zero.inline.hpp"
  61 #endif
  62 #ifdef TARGET_ARCH_arm
  63 # include "vmreg_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_ppc
  66 # include "vmreg_ppc.inline.hpp"
  67 #endif
  68 #ifdef COMPILER2
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc_32
  85 # include "adfiles/ad_ppc_32.hpp"
  86 #endif
  87 #ifdef TARGET_ARCH_MODEL_ppc_64
  88 # include "adfiles/ad_ppc_64.hpp"
  89 #endif
  90 #endif // COMPILER2
  91 
  92 bool DeoptimizationMarker::_is_active = false;
  93 
  94 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  95                                          int  caller_adjustment,
  96                                          int  caller_actual_parameters,
  97                                          int  number_of_frames,
  98                                          intptr_t* frame_sizes,
  99                                          address* frame_pcs,
 100                                          BasicType return_type) {
 101   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 102   _caller_adjustment         = caller_adjustment;
 103   _caller_actual_parameters  = caller_actual_parameters;
 104   _number_of_frames          = number_of_frames;
 105   _frame_sizes               = frame_sizes;
 106   _frame_pcs                 = frame_pcs;
 107   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 108   _return_type               = return_type;
 109   _initial_info              = 0;
 110   // PD (x86 only)
 111   _counter_temp              = 0;
 112   _unpack_kind               = 0;
 113   _sender_sp_temp            = 0;
 114 
 115   _total_frame_sizes         = size_of_frames();
 116 }
 117 
 118 
 119 Deoptimization::UnrollBlock::~UnrollBlock() {
 120   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
 121   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
 122   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
 123 }
 124 
 125 
 126 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 127   assert(register_number < RegisterMap::reg_count, "checking register number");
 128   return &_register_block[register_number * 2];
 129 }
 130 
 131 
 132 
 133 int Deoptimization::UnrollBlock::size_of_frames() const {
 134   // Acount first for the adjustment of the initial frame
 135   int result = _caller_adjustment;
 136   for (int index = 0; index < number_of_frames(); index++) {
 137     result += frame_sizes()[index];
 138   }
 139   return result;
 140 }
 141 
 142 
 143 void Deoptimization::UnrollBlock::print() {
 144   ttyLocker ttyl;
 145   tty->print_cr("UnrollBlock");
 146   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 147   tty->print(   "  frame_sizes: ");
 148   for (int index = 0; index < number_of_frames(); index++) {
 149     tty->print("%d ", frame_sizes()[index]);
 150   }
 151   tty->cr();
 152 }
 153 
 154 
 155 // In order to make fetch_unroll_info work properly with escape
 156 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 157 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 158 // of previously eliminated objects occurs in realloc_objects, which is
 159 // called from the method fetch_unroll_info_helper below.
 160 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 161   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 162   // but makes the entry a little slower. There is however a little dance we have to
 163   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 164 
 165   // fetch_unroll_info() is called at the beginning of the deoptimization
 166   // handler. Note this fact before we start generating temporary frames
 167   // that can confuse an asynchronous stack walker. This counter is
 168   // decremented at the end of unpack_frames().
 169   thread->inc_in_deopt_handler();
 170 
 171   return fetch_unroll_info_helper(thread);
 172 JRT_END
 173 
 174 
 175 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 176 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 177 
 178   // Note: there is a safepoint safety issue here. No matter whether we enter
 179   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 180   // the vframeArray is created.
 181   //
 182 
 183   // Allocate our special deoptimization ResourceMark
 184   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 185   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 186   thread->set_deopt_mark(dmark);
 187 
 188   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 189   RegisterMap map(thread, true);
 190   RegisterMap dummy_map(thread, false);
 191   // Now get the deoptee with a valid map
 192   frame deoptee = stub_frame.sender(&map);
 193   // Set the deoptee nmethod
 194   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 195   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 196 
 197   if (VerifyStack) {
 198     thread->validate_frame_layout();
 199   }
 200 
 201   // Create a growable array of VFrames where each VFrame represents an inlined
 202   // Java frame.  This storage is allocated with the usual system arena.
 203   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 204   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 205   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 206   while (!vf->is_top()) {
 207     assert(vf->is_compiled_frame(), "Wrong frame type");
 208     chunk->push(compiledVFrame::cast(vf));
 209     vf = vf->sender();
 210   }
 211   assert(vf->is_compiled_frame(), "Wrong frame type");
 212   chunk->push(compiledVFrame::cast(vf));
 213 
 214 #ifdef COMPILER2
 215   // Reallocate the non-escaping objects and restore their fields. Then
 216   // relock objects if synchronization on them was eliminated.
 217   if (DoEscapeAnalysis || EliminateNestedLocks) {
 218     if (EliminateAllocations) {
 219       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 220       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 221 
 222       // The flag return_oop() indicates call sites which return oop
 223       // in compiled code. Such sites include java method calls,
 224       // runtime calls (for example, used to allocate new objects/arrays
 225       // on slow code path) and any other calls generated in compiled code.
 226       // It is not guaranteed that we can get such information here only
 227       // by analyzing bytecode in deoptimized frames. This is why this flag
 228       // is set during method compilation (see Compile::Process_OopMap_Node()).
 229       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 230       Handle return_value;
 231       if (save_oop_result) {
 232         // Reallocation may trigger GC. If deoptimization happened on return from
 233         // call which returns oop we need to save it since it is not in oopmap.
 234         oop result = deoptee.saved_oop_result(&map);
 235         assert(result == NULL || result->is_oop(), "must be oop");
 236         return_value = Handle(thread, result);
 237         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 238         if (TraceDeoptimization) {
 239           ttyLocker ttyl;
 240           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
 241         }
 242       }
 243       bool reallocated = false;
 244       if (objects != NULL) {
 245         JRT_BLOCK
 246           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 247         JRT_END
 248       }
 249       if (reallocated) {
 250         reassign_fields(&deoptee, &map, objects);
 251 #ifndef PRODUCT
 252         if (TraceDeoptimization) {
 253           ttyLocker ttyl;
 254           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 255           print_objects(objects);
 256         }
 257 #endif
 258       }
 259       if (save_oop_result) {
 260         // Restore result.
 261         deoptee.set_saved_oop_result(&map, return_value());
 262       }
 263     }
 264     if (EliminateLocks) {
 265 #ifndef PRODUCT
 266       bool first = true;
 267 #endif
 268       for (int i = 0; i < chunk->length(); i++) {
 269         compiledVFrame* cvf = chunk->at(i);
 270         assert (cvf->scope() != NULL,"expect only compiled java frames");
 271         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 272         if (monitors->is_nonempty()) {
 273           relock_objects(monitors, thread);
 274 #ifndef PRODUCT
 275           if (TraceDeoptimization) {
 276             ttyLocker ttyl;
 277             for (int j = 0; j < monitors->length(); j++) {
 278               MonitorInfo* mi = monitors->at(j);
 279               if (mi->eliminated()) {
 280                 if (first) {
 281                   first = false;
 282                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 283                 }
 284                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
 285               }
 286             }
 287           }
 288 #endif
 289         }
 290       }
 291     }
 292   }
 293 #endif // COMPILER2
 294   // Ensure that no safepoint is taken after pointers have been stored
 295   // in fields of rematerialized objects.  If a safepoint occurs from here on
 296   // out the java state residing in the vframeArray will be missed.
 297   No_Safepoint_Verifier no_safepoint;
 298 
 299   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 300 
 301   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 302   thread->set_vframe_array_head(array);
 303 
 304   // Now that the vframeArray has been created if we have any deferred local writes
 305   // added by jvmti then we can free up that structure as the data is now in the
 306   // vframeArray
 307 
 308   if (thread->deferred_locals() != NULL) {
 309     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 310     int i = 0;
 311     do {
 312       // Because of inlining we could have multiple vframes for a single frame
 313       // and several of the vframes could have deferred writes. Find them all.
 314       if (list->at(i)->id() == array->original().id()) {
 315         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 316         list->remove_at(i);
 317         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 318         delete dlv;
 319       } else {
 320         i++;
 321       }
 322     } while ( i < list->length() );
 323     if (list->length() == 0) {
 324       thread->set_deferred_locals(NULL);
 325       // free the list and elements back to C heap.
 326       delete list;
 327     }
 328 
 329   }
 330 
 331 #ifndef SHARK
 332   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 333   CodeBlob* cb = stub_frame.cb();
 334   // Verify we have the right vframeArray
 335   assert(cb->frame_size() >= 0, "Unexpected frame size");
 336   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 337 
 338   // If the deopt call site is a MethodHandle invoke call site we have
 339   // to adjust the unpack_sp.
 340   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 341   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 342     unpack_sp = deoptee.unextended_sp();
 343 
 344 #ifdef ASSERT
 345   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 346 #endif
 347 #else
 348   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 349 #endif // !SHARK
 350 
 351   // This is a guarantee instead of an assert because if vframe doesn't match
 352   // we will unpack the wrong deoptimized frame and wind up in strange places
 353   // where it will be very difficult to figure out what went wrong. Better
 354   // to die an early death here than some very obscure death later when the
 355   // trail is cold.
 356   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 357   // in that it will fail to detect a problem when there is one. This needs
 358   // more work in tiger timeframe.
 359   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 360 
 361   int number_of_frames = array->frames();
 362 
 363   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 364   // virtual activation, which is the reverse of the elements in the vframes array.
 365   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 366   // +1 because we always have an interpreter return address for the final slot.
 367   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 368   int popframe_extra_args = 0;
 369   // Create an interpreter return address for the stub to use as its return
 370   // address so the skeletal frames are perfectly walkable
 371   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 372 
 373   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 374   // activation be put back on the expression stack of the caller for reexecution
 375   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 376     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 377   }
 378 
 379   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 380   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 381   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 382   //
 383   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 384   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 385 
 386   // It's possible that the number of paramters at the call site is
 387   // different than number of arguments in the callee when method
 388   // handles are used.  If the caller is interpreted get the real
 389   // value so that the proper amount of space can be added to it's
 390   // frame.
 391   bool caller_was_method_handle = false;
 392   if (deopt_sender.is_interpreted_frame()) {
 393     methodHandle method = deopt_sender.interpreter_frame_method();
 394     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 395     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 396       // Method handle invokes may involve fairly arbitrary chains of
 397       // calls so it's impossible to know how much actual space the
 398       // caller has for locals.
 399       caller_was_method_handle = true;
 400     }
 401   }
 402 
 403   //
 404   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 405   // frame_sizes/frame_pcs[1] next oldest frame (int)
 406   // frame_sizes/frame_pcs[n] youngest frame (int)
 407   //
 408   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 409   // owns the space for the return address to it's caller).  Confusing ain't it.
 410   //
 411   // The vframe array can address vframes with indices running from
 412   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 413   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 414   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 415   // so things look a little strange in this loop.
 416   //
 417   int callee_parameters = 0;
 418   int callee_locals = 0;
 419   for (int index = 0; index < array->frames(); index++ ) {
 420     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 421     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 422     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 423     int caller_parms = callee_parameters;
 424     if ((index == array->frames() - 1) && caller_was_method_handle) {
 425       caller_parms = 0;
 426     }
 427     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
 428                                                                                                     callee_parameters,
 429                                                                                                     callee_locals,
 430                                                                                                     index == 0,
 431                                                                                                     index == array->frames() - 1,
 432                                                                                                     popframe_extra_args);
 433     // This pc doesn't have to be perfect just good enough to identify the frame
 434     // as interpreted so the skeleton frame will be walkable
 435     // The correct pc will be set when the skeleton frame is completely filled out
 436     // The final pc we store in the loop is wrong and will be overwritten below
 437     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 438 
 439     callee_parameters = array->element(index)->method()->size_of_parameters();
 440     callee_locals = array->element(index)->method()->max_locals();
 441     popframe_extra_args = 0;
 442   }
 443 
 444   // Compute whether the root vframe returns a float or double value.
 445   BasicType return_type;
 446   {
 447     HandleMark hm;
 448     methodHandle method(thread, array->element(0)->method());
 449     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 450     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 451   }
 452 
 453   // Compute information for handling adapters and adjusting the frame size of the caller.
 454   int caller_adjustment = 0;
 455 
 456   // Compute the amount the oldest interpreter frame will have to adjust
 457   // its caller's stack by. If the caller is a compiled frame then
 458   // we pretend that the callee has no parameters so that the
 459   // extension counts for the full amount of locals and not just
 460   // locals-parms. This is because without a c2i adapter the parm
 461   // area as created by the compiled frame will not be usable by
 462   // the interpreter. (Depending on the calling convention there
 463   // may not even be enough space).
 464 
 465   // QQQ I'd rather see this pushed down into last_frame_adjust
 466   // and have it take the sender (aka caller).
 467 
 468   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 469     caller_adjustment = last_frame_adjust(0, callee_locals);
 470   } else if (callee_locals > callee_parameters) {
 471     // The caller frame may need extending to accommodate
 472     // non-parameter locals of the first unpacked interpreted frame.
 473     // Compute that adjustment.
 474     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 475   }
 476 
 477   // If the sender is deoptimized the we must retrieve the address of the handler
 478   // since the frame will "magically" show the original pc before the deopt
 479   // and we'd undo the deopt.
 480 
 481   frame_pcs[0] = deopt_sender.raw_pc();
 482 
 483 #ifndef SHARK
 484   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 485 #endif // SHARK
 486 
 487   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 488                                       caller_adjustment * BytesPerWord,
 489                                       caller_was_method_handle ? 0 : callee_parameters,
 490                                       number_of_frames,
 491                                       frame_sizes,
 492                                       frame_pcs,
 493                                       return_type);
 494   // On some platforms, we need a way to pass some platform dependent
 495   // information to the unpacking code so the skeletal frames come out
 496   // correct (initial fp value, unextended sp, ...)
 497   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 498 
 499   if (array->frames() > 1) {
 500     if (VerifyStack && TraceDeoptimization) {
 501       ttyLocker ttyl;
 502       tty->print_cr("Deoptimizing method containing inlining");
 503     }
 504   }
 505 
 506   array->set_unroll_block(info);
 507   return info;
 508 }
 509 
 510 // Called to cleanup deoptimization data structures in normal case
 511 // after unpacking to stack and when stack overflow error occurs
 512 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 513                                         vframeArray *array) {
 514 
 515   // Get array if coming from exception
 516   if (array == NULL) {
 517     array = thread->vframe_array_head();
 518   }
 519   thread->set_vframe_array_head(NULL);
 520 
 521   // Free the previous UnrollBlock
 522   vframeArray* old_array = thread->vframe_array_last();
 523   thread->set_vframe_array_last(array);
 524 
 525   if (old_array != NULL) {
 526     UnrollBlock* old_info = old_array->unroll_block();
 527     old_array->set_unroll_block(NULL);
 528     delete old_info;
 529     delete old_array;
 530   }
 531 
 532   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 533   // inside the vframeArray (StackValueCollections)
 534 
 535   delete thread->deopt_mark();
 536   thread->set_deopt_mark(NULL);
 537   thread->set_deopt_nmethod(NULL);
 538 
 539 
 540   if (JvmtiExport::can_pop_frame()) {
 541 #ifndef CC_INTERP
 542     // Regardless of whether we entered this routine with the pending
 543     // popframe condition bit set, we should always clear it now
 544     thread->clear_popframe_condition();
 545 #else
 546     // C++ interpeter will clear has_pending_popframe when it enters
 547     // with method_resume. For deopt_resume2 we clear it now.
 548     if (thread->popframe_forcing_deopt_reexecution())
 549         thread->clear_popframe_condition();
 550 #endif /* CC_INTERP */
 551   }
 552 
 553   // unpack_frames() is called at the end of the deoptimization handler
 554   // and (in C2) at the end of the uncommon trap handler. Note this fact
 555   // so that an asynchronous stack walker can work again. This counter is
 556   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 557   // the beginning of uncommon_trap().
 558   thread->dec_in_deopt_handler();
 559 }
 560 
 561 
 562 // Return BasicType of value being returned
 563 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 564 
 565   // We are already active int he special DeoptResourceMark any ResourceObj's we
 566   // allocate will be freed at the end of the routine.
 567 
 568   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 569   // but makes the entry a little slower. There is however a little dance we have to
 570   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 571   ResetNoHandleMark rnhm; // No-op in release/product versions
 572   HandleMark hm;
 573 
 574   frame stub_frame = thread->last_frame();
 575 
 576   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 577   // must point to the vframeArray for the unpack frame.
 578   vframeArray* array = thread->vframe_array_head();
 579 
 580 #ifndef PRODUCT
 581   if (TraceDeoptimization) {
 582     ttyLocker ttyl;
 583     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 584   }
 585 #endif
 586   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 587               stub_frame.pc(), stub_frame.sp(), exec_mode);
 588 
 589   UnrollBlock* info = array->unroll_block();
 590 
 591   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 592   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 593 
 594   BasicType bt = info->return_type();
 595 
 596   // If we have an exception pending, claim that the return type is an oop
 597   // so the deopt_blob does not overwrite the exception_oop.
 598 
 599   if (exec_mode == Unpack_exception)
 600     bt = T_OBJECT;
 601 
 602   // Cleanup thread deopt data
 603   cleanup_deopt_info(thread, array);
 604 
 605 #ifndef PRODUCT
 606   if (VerifyStack) {
 607     ResourceMark res_mark;
 608 
 609     thread->validate_frame_layout();
 610 
 611     // Verify that the just-unpacked frames match the interpreter's
 612     // notions of expression stack and locals
 613     vframeArray* cur_array = thread->vframe_array_last();
 614     RegisterMap rm(thread, false);
 615     rm.set_include_argument_oops(false);
 616     bool is_top_frame = true;
 617     int callee_size_of_parameters = 0;
 618     int callee_max_locals = 0;
 619     for (int i = 0; i < cur_array->frames(); i++) {
 620       vframeArrayElement* el = cur_array->element(i);
 621       frame* iframe = el->iframe();
 622       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 623 
 624       // Get the oop map for this bci
 625       InterpreterOopMap mask;
 626       int cur_invoke_parameter_size = 0;
 627       bool try_next_mask = false;
 628       int next_mask_expression_stack_size = -1;
 629       int top_frame_expression_stack_adjustment = 0;
 630       methodHandle mh(thread, iframe->interpreter_frame_method());
 631       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 632       BytecodeStream str(mh);
 633       str.set_start(iframe->interpreter_frame_bci());
 634       int max_bci = mh->code_size();
 635       // Get to the next bytecode if possible
 636       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 637       // Check to see if we can grab the number of outgoing arguments
 638       // at an uncommon trap for an invoke (where the compiler
 639       // generates debug info before the invoke has executed)
 640       Bytecodes::Code cur_code = str.next();
 641       if (cur_code == Bytecodes::_invokevirtual   ||
 642           cur_code == Bytecodes::_invokespecial   ||
 643           cur_code == Bytecodes::_invokestatic    ||
 644           cur_code == Bytecodes::_invokeinterface ||
 645           cur_code == Bytecodes::_invokedynamic) {
 646         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 647         Symbol* signature = invoke.signature();
 648         ArgumentSizeComputer asc(signature);
 649         cur_invoke_parameter_size = asc.size();
 650         if (invoke.has_receiver()) {
 651           // Add in receiver
 652           ++cur_invoke_parameter_size;
 653         }
 654         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 655           callee_size_of_parameters++;
 656         }
 657       }
 658       if (str.bci() < max_bci) {
 659         Bytecodes::Code bc = str.next();
 660         if (bc >= 0) {
 661           // The interpreter oop map generator reports results before
 662           // the current bytecode has executed except in the case of
 663           // calls. It seems to be hard to tell whether the compiler
 664           // has emitted debug information matching the "state before"
 665           // a given bytecode or the state after, so we try both
 666           switch (cur_code) {
 667             case Bytecodes::_invokevirtual:
 668             case Bytecodes::_invokespecial:
 669             case Bytecodes::_invokestatic:
 670             case Bytecodes::_invokeinterface:
 671             case Bytecodes::_invokedynamic:
 672             case Bytecodes::_athrow:
 673               break;
 674             default: {
 675               InterpreterOopMap next_mask;
 676               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 677               next_mask_expression_stack_size = next_mask.expression_stack_size();
 678               // Need to subtract off the size of the result type of
 679               // the bytecode because this is not described in the
 680               // debug info but returned to the interpreter in the TOS
 681               // caching register
 682               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 683               if (bytecode_result_type != T_ILLEGAL) {
 684                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 685               }
 686               assert(top_frame_expression_stack_adjustment >= 0, "");
 687               try_next_mask = true;
 688               break;
 689             }
 690           }
 691         }
 692       }
 693 
 694       // Verify stack depth and oops in frame
 695       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 696       if (!(
 697             /* SPARC */
 698             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 699             /* x86 */
 700             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 701             (try_next_mask &&
 702              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 703                                                                     top_frame_expression_stack_adjustment))) ||
 704             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 705             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 706              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 707             )) {
 708         ttyLocker ttyl;
 709 
 710         // Print out some information that will help us debug the problem
 711         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 712         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 713         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 714                       iframe->interpreter_frame_expression_stack_size());
 715         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 716         tty->print_cr("  try_next_mask = %d", try_next_mask);
 717         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 718         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 719         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 720         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 721         tty->print_cr("  exec_mode = %d", exec_mode);
 722         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 723         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 724         tty->print_cr("  Interpreted frames:");
 725         for (int k = 0; k < cur_array->frames(); k++) {
 726           vframeArrayElement* el = cur_array->element(k);
 727           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 728         }
 729         cur_array->print_on_2(tty);
 730         guarantee(false, "wrong number of expression stack elements during deopt");
 731       }
 732       VerifyOopClosure verify;
 733       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 734       callee_size_of_parameters = mh->size_of_parameters();
 735       callee_max_locals = mh->max_locals();
 736       is_top_frame = false;
 737     }
 738   }
 739 #endif /* !PRODUCT */
 740 
 741 
 742   return bt;
 743 JRT_END
 744 
 745 
 746 int Deoptimization::deoptimize_dependents() {
 747   Threads::deoptimized_wrt_marked_nmethods();
 748   return 0;
 749 }
 750 
 751 
 752 #ifdef COMPILER2
 753 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 754   Handle pending_exception(thread->pending_exception());
 755   const char* exception_file = thread->exception_file();
 756   int exception_line = thread->exception_line();
 757   thread->clear_pending_exception();
 758 
 759   for (int i = 0; i < objects->length(); i++) {
 760     assert(objects->at(i)->is_object(), "invalid debug information");
 761     ObjectValue* sv = (ObjectValue*) objects->at(i);
 762 
 763     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 764     oop obj = NULL;
 765 
 766     if (k->oop_is_instance()) {
 767       InstanceKlass* ik = InstanceKlass::cast(k());
 768       obj = ik->allocate_instance(CHECK_(false));
 769     } else if (k->oop_is_typeArray()) {
 770       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 771       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 772       int len = sv->field_size() / type2size[ak->element_type()];
 773       obj = ak->allocate(len, CHECK_(false));
 774     } else if (k->oop_is_objArray()) {
 775       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 776       obj = ak->allocate(sv->field_size(), CHECK_(false));
 777     }
 778 
 779     assert(obj != NULL, "allocation failed");
 780     assert(sv->value().is_null(), "redundant reallocation");
 781     sv->set_value(obj);
 782   }
 783 
 784   if (pending_exception.not_null()) {
 785     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 786   }
 787 
 788   return true;
 789 }
 790 
 791 // This assumes that the fields are stored in ObjectValue in the same order
 792 // they are yielded by do_nonstatic_fields.
 793 class FieldReassigner: public FieldClosure {
 794   frame* _fr;
 795   RegisterMap* _reg_map;
 796   ObjectValue* _sv;
 797   InstanceKlass* _ik;
 798   oop _obj;
 799 
 800   int _i;
 801 public:
 802   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 803     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 804 
 805   int i() const { return _i; }
 806 
 807 
 808   void do_field(fieldDescriptor* fd) {
 809     intptr_t val;
 810     StackValue* value =
 811       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 812     int offset = fd->offset();
 813     switch (fd->field_type()) {
 814     case T_OBJECT: case T_ARRAY:
 815       assert(value->type() == T_OBJECT, "Agreement.");
 816       _obj->obj_field_put(offset, value->get_obj()());
 817       break;
 818 
 819     case T_LONG: case T_DOUBLE: {
 820       assert(value->type() == T_INT, "Agreement.");
 821       StackValue* low =
 822         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 823 #ifdef _LP64
 824       jlong res = (jlong)low->get_int();
 825 #else
 826 #ifdef SPARC
 827       // For SPARC we have to swap high and low words.
 828       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 829 #else
 830       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 831 #endif //SPARC
 832 #endif
 833       _obj->long_field_put(offset, res);
 834       break;
 835     }
 836     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 837     case T_INT: case T_FLOAT: // 4 bytes.
 838       assert(value->type() == T_INT, "Agreement.");
 839       val = value->get_int();
 840       _obj->int_field_put(offset, (jint)*((jint*)&val));
 841       break;
 842 
 843     case T_SHORT: case T_CHAR: // 2 bytes
 844       assert(value->type() == T_INT, "Agreement.");
 845       val = value->get_int();
 846       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 847       break;
 848 
 849     case T_BOOLEAN: case T_BYTE: // 1 byte
 850       assert(value->type() == T_INT, "Agreement.");
 851       val = value->get_int();
 852       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 853       break;
 854 
 855     default:
 856       ShouldNotReachHere();
 857     }
 858     _i++;
 859   }
 860 };
 861 
 862 // restore elements of an eliminated type array
 863 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 864   int index = 0;
 865   intptr_t val;
 866 
 867   for (int i = 0; i < sv->field_size(); i++) {
 868     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 869     switch(type) {
 870     case T_LONG: case T_DOUBLE: {
 871       assert(value->type() == T_INT, "Agreement.");
 872       StackValue* low =
 873         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 874 #ifdef _LP64
 875       jlong res = (jlong)low->get_int();
 876 #else
 877 #ifdef SPARC
 878       // For SPARC we have to swap high and low words.
 879       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 880 #else
 881       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 882 #endif //SPARC
 883 #endif
 884       obj->long_at_put(index, res);
 885       break;
 886     }
 887 
 888     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 889     case T_INT: case T_FLOAT: // 4 bytes.
 890       assert(value->type() == T_INT, "Agreement.");
 891       val = value->get_int();
 892       obj->int_at_put(index, (jint)*((jint*)&val));
 893       break;
 894 
 895     case T_SHORT: case T_CHAR: // 2 bytes
 896       assert(value->type() == T_INT, "Agreement.");
 897       val = value->get_int();
 898       obj->short_at_put(index, (jshort)*((jint*)&val));
 899       break;
 900 
 901     case T_BOOLEAN: case T_BYTE: // 1 byte
 902       assert(value->type() == T_INT, "Agreement.");
 903       val = value->get_int();
 904       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 905       break;
 906 
 907       default:
 908         ShouldNotReachHere();
 909     }
 910     index++;
 911   }
 912 }
 913 
 914 
 915 // restore fields of an eliminated object array
 916 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 917   for (int i = 0; i < sv->field_size(); i++) {
 918     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 919     assert(value->type() == T_OBJECT, "object element expected");
 920     obj->obj_at_put(i, value->get_obj()());
 921   }
 922 }
 923 
 924 
 925 // restore fields of all eliminated objects and arrays
 926 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 927   for (int i = 0; i < objects->length(); i++) {
 928     ObjectValue* sv = (ObjectValue*) objects->at(i);
 929     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 930     Handle obj = sv->value();
 931     assert(obj.not_null(), "reallocation was missed");
 932 
 933     if (k->oop_is_instance()) {
 934       InstanceKlass* ik = InstanceKlass::cast(k());
 935       FieldReassigner reassign(fr, reg_map, sv, obj());
 936       ik->do_nonstatic_fields(&reassign);
 937     } else if (k->oop_is_typeArray()) {
 938       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 939       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 940     } else if (k->oop_is_objArray()) {
 941       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 942     }
 943   }
 944 }
 945 
 946 
 947 // relock objects for which synchronization was eliminated
 948 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 949   for (int i = 0; i < monitors->length(); i++) {
 950     MonitorInfo* mon_info = monitors->at(i);
 951     if (mon_info->eliminated()) {
 952       assert(mon_info->owner() != NULL, "reallocation was missed");
 953       Handle obj = Handle(mon_info->owner());
 954       markOop mark = obj->mark();
 955       if (UseBiasedLocking && mark->has_bias_pattern()) {
 956         // New allocated objects may have the mark set to anonymously biased.
 957         // Also the deoptimized method may called methods with synchronization
 958         // where the thread-local object is bias locked to the current thread.
 959         assert(mark->is_biased_anonymously() ||
 960                mark->biased_locker() == thread, "should be locked to current thread");
 961         // Reset mark word to unbiased prototype.
 962         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 963         obj->set_mark(unbiased_prototype);
 964       }
 965       BasicLock* lock = mon_info->lock();
 966       ObjectSynchronizer::slow_enter(obj, lock, thread);
 967     }
 968     assert(mon_info->owner()->is_locked(), "object must be locked now");
 969   }
 970 }
 971 
 972 
 973 #ifndef PRODUCT
 974 // print information about reallocated objects
 975 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 976   fieldDescriptor fd;
 977 
 978   for (int i = 0; i < objects->length(); i++) {
 979     ObjectValue* sv = (ObjectValue*) objects->at(i);
 980     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 981     Handle obj = sv->value();
 982 
 983     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
 984     k->print_value();
 985     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 986     tty->cr();
 987 
 988     if (Verbose) {
 989       k->oop_print_on(obj(), tty);
 990     }
 991   }
 992 }
 993 #endif
 994 #endif // COMPILER2
 995 
 996 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 997   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
 998 
 999 #ifndef PRODUCT
1000   if (TraceDeoptimization) {
1001     ttyLocker ttyl;
1002     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
1003     fr.print_on(tty);
1004     tty->print_cr("     Virtual frames (innermost first):");
1005     for (int index = 0; index < chunk->length(); index++) {
1006       compiledVFrame* vf = chunk->at(index);
1007       tty->print("       %2d - ", index);
1008       vf->print_value();
1009       int bci = chunk->at(index)->raw_bci();
1010       const char* code_name;
1011       if (bci == SynchronizationEntryBCI) {
1012         code_name = "sync entry";
1013       } else {
1014         Bytecodes::Code code = vf->method()->code_at(bci);
1015         code_name = Bytecodes::name(code);
1016       }
1017       tty->print(" - %s", code_name);
1018       tty->print_cr(" @ bci %d ", bci);
1019       if (Verbose) {
1020         vf->print();
1021         tty->cr();
1022       }
1023     }
1024   }
1025 #endif
1026 
1027   // Register map for next frame (used for stack crawl).  We capture
1028   // the state of the deopt'ing frame's caller.  Thus if we need to
1029   // stuff a C2I adapter we can properly fill in the callee-save
1030   // register locations.
1031   frame caller = fr.sender(reg_map);
1032   int frame_size = caller.sp() - fr.sp();
1033 
1034   frame sender = caller;
1035 
1036   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1037   // the vframeArray containing the unpacking information is allocated in the C heap.
1038   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1039   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
1040 
1041   // Compare the vframeArray to the collected vframes
1042   assert(array->structural_compare(thread, chunk), "just checking");
1043 
1044 #ifndef PRODUCT
1045   if (TraceDeoptimization) {
1046     ttyLocker ttyl;
1047     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1048   }
1049 #endif // PRODUCT
1050 
1051   return array;
1052 }
1053 
1054 
1055 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1056   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1057   for (int i = 0; i < monitors->length(); i++) {
1058     MonitorInfo* mon_info = monitors->at(i);
1059     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1060       objects_to_revoke->append(Handle(mon_info->owner()));
1061     }
1062   }
1063 }
1064 
1065 
1066 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1067   if (!UseBiasedLocking) {
1068     return;
1069   }
1070 
1071   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1072 
1073   // Unfortunately we don't have a RegisterMap available in most of
1074   // the places we want to call this routine so we need to walk the
1075   // stack again to update the register map.
1076   if (map == NULL || !map->update_map()) {
1077     StackFrameStream sfs(thread, true);
1078     bool found = false;
1079     while (!found && !sfs.is_done()) {
1080       frame* cur = sfs.current();
1081       sfs.next();
1082       found = cur->id() == fr.id();
1083     }
1084     assert(found, "frame to be deoptimized not found on target thread's stack");
1085     map = sfs.register_map();
1086   }
1087 
1088   vframe* vf = vframe::new_vframe(&fr, map, thread);
1089   compiledVFrame* cvf = compiledVFrame::cast(vf);
1090   // Revoke monitors' biases in all scopes
1091   while (!cvf->is_top()) {
1092     collect_monitors(cvf, objects_to_revoke);
1093     cvf = compiledVFrame::cast(cvf->sender());
1094   }
1095   collect_monitors(cvf, objects_to_revoke);
1096 
1097   if (SafepointSynchronize::is_at_safepoint()) {
1098     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1099   } else {
1100     BiasedLocking::revoke(objects_to_revoke);
1101   }
1102 }
1103 
1104 
1105 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1106   if (!UseBiasedLocking) {
1107     return;
1108   }
1109 
1110   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1111   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1112   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1113     if (jt->has_last_Java_frame()) {
1114       StackFrameStream sfs(jt, true);
1115       while (!sfs.is_done()) {
1116         frame* cur = sfs.current();
1117         if (cb->contains(cur->pc())) {
1118           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1119           compiledVFrame* cvf = compiledVFrame::cast(vf);
1120           // Revoke monitors' biases in all scopes
1121           while (!cvf->is_top()) {
1122             collect_monitors(cvf, objects_to_revoke);
1123             cvf = compiledVFrame::cast(cvf->sender());
1124           }
1125           collect_monitors(cvf, objects_to_revoke);
1126         }
1127         sfs.next();
1128       }
1129     }
1130   }
1131   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1132 }
1133 
1134 
1135 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1136   assert(fr.can_be_deoptimized(), "checking frame type");
1137 
1138   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1139 
1140   // Patch the nmethod so that when execution returns to it we will
1141   // deopt the execution state and return to the interpreter.
1142   fr.deoptimize(thread);
1143 }
1144 
1145 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1146   // Deoptimize only if the frame comes from compile code.
1147   // Do not deoptimize the frame which is already patched
1148   // during the execution of the loops below.
1149   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1150     return;
1151   }
1152   ResourceMark rm;
1153   DeoptimizationMarker dm;
1154   if (UseBiasedLocking) {
1155     revoke_biases_of_monitors(thread, fr, map);
1156   }
1157   deoptimize_single_frame(thread, fr);
1158 
1159 }
1160 
1161 
1162 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1163   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1164          "can only deoptimize other thread at a safepoint");
1165   // Compute frame and register map based on thread and sp.
1166   RegisterMap reg_map(thread, UseBiasedLocking);
1167   frame fr = thread->last_frame();
1168   while (fr.id() != id) {
1169     fr = fr.sender(&reg_map);
1170   }
1171   deoptimize(thread, fr, &reg_map);
1172 }
1173 
1174 
1175 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1176   if (thread == Thread::current()) {
1177     Deoptimization::deoptimize_frame_internal(thread, id);
1178   } else {
1179     VM_DeoptimizeFrame deopt(thread, id);
1180     VMThread::execute(&deopt);
1181   }
1182 }
1183 
1184 
1185 // JVMTI PopFrame support
1186 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1187 {
1188   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1189 }
1190 JRT_END
1191 
1192 
1193 #if defined(COMPILER2) || defined(SHARK)
1194 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1195   // in case of an unresolved klass entry, load the class.
1196   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1197     Klass* tk = constant_pool->klass_at(index, CHECK);
1198     return;
1199   }
1200 
1201   if (!constant_pool->tag_at(index).is_symbol()) return;
1202 
1203   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1204   Symbol*  symbol  = constant_pool->symbol_at(index);
1205 
1206   // class name?
1207   if (symbol->byte_at(0) != '(') {
1208     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1209     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1210     return;
1211   }
1212 
1213   // then it must be a signature!
1214   ResourceMark rm(THREAD);
1215   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1216     if (ss.is_object()) {
1217       Symbol* class_name = ss.as_symbol(CHECK);
1218       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1219       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1220     }
1221   }
1222 }
1223 
1224 
1225 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1226   EXCEPTION_MARK;
1227   load_class_by_index(constant_pool, index, THREAD);
1228   if (HAS_PENDING_EXCEPTION) {
1229     // Exception happened during classloading. We ignore the exception here, since it
1230     // is going to be rethrown since the current activation is going to be deoptimized and
1231     // the interpreter will re-execute the bytecode.
1232     CLEAR_PENDING_EXCEPTION;
1233     // Class loading called java code which may have caused a stack
1234     // overflow. If the exception was thrown right before the return
1235     // to the runtime the stack is no longer guarded. Reguard the
1236     // stack otherwise if we return to the uncommon trap blob and the
1237     // stack bang causes a stack overflow we crash.
1238     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1239     JavaThread* thread = (JavaThread*)THREAD;
1240     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1241     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1242     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1243   }
1244 }
1245 
1246 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1247   HandleMark hm;
1248 
1249   // uncommon_trap() is called at the beginning of the uncommon trap
1250   // handler. Note this fact before we start generating temporary frames
1251   // that can confuse an asynchronous stack walker. This counter is
1252   // decremented at the end of unpack_frames().
1253   thread->inc_in_deopt_handler();
1254 
1255   // We need to update the map if we have biased locking.
1256   RegisterMap reg_map(thread, UseBiasedLocking);
1257   frame stub_frame = thread->last_frame();
1258   frame fr = stub_frame.sender(&reg_map);
1259   // Make sure the calling nmethod is not getting deoptimized and removed
1260   // before we are done with it.
1261   nmethodLocker nl(fr.pc());
1262 
1263   // Log a message
1264   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1265               trap_request, fr.pc());
1266 
1267   {
1268     ResourceMark rm;
1269 
1270     // Revoke biases of any monitors in the frame to ensure we can migrate them
1271     revoke_biases_of_monitors(thread, fr, &reg_map);
1272 
1273     DeoptReason reason = trap_request_reason(trap_request);
1274     DeoptAction action = trap_request_action(trap_request);
1275     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1276 
1277     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1278     compiledVFrame* cvf = compiledVFrame::cast(vf);
1279 
1280     nmethod* nm = cvf->code();
1281 
1282     ScopeDesc*      trap_scope  = cvf->scope();
1283     methodHandle    trap_method = trap_scope->method();
1284     int             trap_bci    = trap_scope->bci();
1285     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1286 
1287     // Record this event in the histogram.
1288     gather_statistics(reason, action, trap_bc);
1289 
1290     // Ensure that we can record deopt. history:
1291     bool create_if_missing = ProfileTraps;
1292 
1293     MethodData* trap_mdo =
1294       get_method_data(thread, trap_method, create_if_missing);
1295 
1296     // Log a message
1297     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1298                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
1299                               trap_method->name_and_sig_as_C_string(), trap_bci);
1300 
1301     // Print a bunch of diagnostics, if requested.
1302     if (TraceDeoptimization || LogCompilation) {
1303       ResourceMark rm;
1304       ttyLocker ttyl;
1305       char buf[100];
1306       if (xtty != NULL) {
1307         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1308                          os::current_thread_id(),
1309                          format_trap_request(buf, sizeof(buf), trap_request));
1310         nm->log_identity(xtty);
1311       }
1312       Symbol* class_name = NULL;
1313       bool unresolved = false;
1314       if (unloaded_class_index >= 0) {
1315         constantPoolHandle constants (THREAD, trap_method->constants());
1316         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1317           class_name = constants->klass_name_at(unloaded_class_index);
1318           unresolved = true;
1319           if (xtty != NULL)
1320             xtty->print(" unresolved='1'");
1321         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1322           class_name = constants->symbol_at(unloaded_class_index);
1323         }
1324         if (xtty != NULL)
1325           xtty->name(class_name);
1326       }
1327       if (xtty != NULL && trap_mdo != NULL) {
1328         // Dump the relevant MDO state.
1329         // This is the deopt count for the current reason, any previous
1330         // reasons or recompiles seen at this point.
1331         int dcnt = trap_mdo->trap_count(reason);
1332         if (dcnt != 0)
1333           xtty->print(" count='%d'", dcnt);
1334         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1335         int dos = (pdata == NULL)? 0: pdata->trap_state();
1336         if (dos != 0) {
1337           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1338           if (trap_state_is_recompiled(dos)) {
1339             int recnt2 = trap_mdo->overflow_recompile_count();
1340             if (recnt2 != 0)
1341               xtty->print(" recompiles2='%d'", recnt2);
1342           }
1343         }
1344       }
1345       if (xtty != NULL) {
1346         xtty->stamp();
1347         xtty->end_head();
1348       }
1349       if (TraceDeoptimization) {  // make noise on the tty
1350         tty->print("Uncommon trap occurred in");
1351         nm->method()->print_short_name(tty);
1352         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1353                    fr.pc(),
1354                    os::current_thread_id(),
1355                    trap_reason_name(reason),
1356                    trap_action_name(action),
1357                    unloaded_class_index);
1358         if (class_name != NULL) {
1359           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1360           class_name->print_symbol_on(tty);
1361         }
1362         tty->cr();
1363       }
1364       if (xtty != NULL) {
1365         // Log the precise location of the trap.
1366         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1367           xtty->begin_elem("jvms bci='%d'", sd->bci());
1368           xtty->method(sd->method());
1369           xtty->end_elem();
1370           if (sd->is_top())  break;
1371         }
1372         xtty->tail("uncommon_trap");
1373       }
1374     }
1375     // (End diagnostic printout.)
1376 
1377     // Load class if necessary
1378     if (unloaded_class_index >= 0) {
1379       constantPoolHandle constants(THREAD, trap_method->constants());
1380       load_class_by_index(constants, unloaded_class_index);
1381     }
1382 
1383     // Flush the nmethod if necessary and desirable.
1384     //
1385     // We need to avoid situations where we are re-flushing the nmethod
1386     // because of a hot deoptimization site.  Repeated flushes at the same
1387     // point need to be detected by the compiler and avoided.  If the compiler
1388     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1389     // module must take measures to avoid an infinite cycle of recompilation
1390     // and deoptimization.  There are several such measures:
1391     //
1392     //   1. If a recompilation is ordered a second time at some site X
1393     //   and for the same reason R, the action is adjusted to 'reinterpret',
1394     //   to give the interpreter time to exercise the method more thoroughly.
1395     //   If this happens, the method's overflow_recompile_count is incremented.
1396     //
1397     //   2. If the compiler fails to reduce the deoptimization rate, then
1398     //   the method's overflow_recompile_count will begin to exceed the set
1399     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1400     //   is adjusted to 'make_not_compilable', and the method is abandoned
1401     //   to the interpreter.  This is a performance hit for hot methods,
1402     //   but is better than a disastrous infinite cycle of recompilations.
1403     //   (Actually, only the method containing the site X is abandoned.)
1404     //
1405     //   3. In parallel with the previous measures, if the total number of
1406     //   recompilations of a method exceeds the much larger set limit
1407     //   PerMethodRecompilationCutoff, the method is abandoned.
1408     //   This should only happen if the method is very large and has
1409     //   many "lukewarm" deoptimizations.  The code which enforces this
1410     //   limit is elsewhere (class nmethod, class Method).
1411     //
1412     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1413     // to recompile at each bytecode independently of the per-BCI cutoff.
1414     //
1415     // The decision to update code is up to the compiler, and is encoded
1416     // in the Action_xxx code.  If the compiler requests Action_none
1417     // no trap state is changed, no compiled code is changed, and the
1418     // computation suffers along in the interpreter.
1419     //
1420     // The other action codes specify various tactics for decompilation
1421     // and recompilation.  Action_maybe_recompile is the loosest, and
1422     // allows the compiled code to stay around until enough traps are seen,
1423     // and until the compiler gets around to recompiling the trapping method.
1424     //
1425     // The other actions cause immediate removal of the present code.
1426 
1427     bool update_trap_state = true;
1428     bool make_not_entrant = false;
1429     bool make_not_compilable = false;
1430     bool reprofile = false;
1431     switch (action) {
1432     case Action_none:
1433       // Keep the old code.
1434       update_trap_state = false;
1435       break;
1436     case Action_maybe_recompile:
1437       // Do not need to invalidate the present code, but we can
1438       // initiate another
1439       // Start compiler without (necessarily) invalidating the nmethod.
1440       // The system will tolerate the old code, but new code should be
1441       // generated when possible.
1442       break;
1443     case Action_reinterpret:
1444       // Go back into the interpreter for a while, and then consider
1445       // recompiling form scratch.
1446       make_not_entrant = true;
1447       // Reset invocation counter for outer most method.
1448       // This will allow the interpreter to exercise the bytecodes
1449       // for a while before recompiling.
1450       // By contrast, Action_make_not_entrant is immediate.
1451       //
1452       // Note that the compiler will track null_check, null_assert,
1453       // range_check, and class_check events and log them as if they
1454       // had been traps taken from compiled code.  This will update
1455       // the MDO trap history so that the next compilation will
1456       // properly detect hot trap sites.
1457       reprofile = true;
1458       break;
1459     case Action_make_not_entrant:
1460       // Request immediate recompilation, and get rid of the old code.
1461       // Make them not entrant, so next time they are called they get
1462       // recompiled.  Unloaded classes are loaded now so recompile before next
1463       // time they are called.  Same for uninitialized.  The interpreter will
1464       // link the missing class, if any.
1465       make_not_entrant = true;
1466       break;
1467     case Action_make_not_compilable:
1468       // Give up on compiling this method at all.
1469       make_not_entrant = true;
1470       make_not_compilable = true;
1471       break;
1472     default:
1473       ShouldNotReachHere();
1474     }
1475 
1476     // Setting +ProfileTraps fixes the following, on all platforms:
1477     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1478     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1479     // recompile relies on a MethodData* to record heroic opt failures.
1480 
1481     // Whether the interpreter is producing MDO data or not, we also need
1482     // to use the MDO to detect hot deoptimization points and control
1483     // aggressive optimization.
1484     bool inc_recompile_count = false;
1485     ProfileData* pdata = NULL;
1486     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1487       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1488       uint this_trap_count = 0;
1489       bool maybe_prior_trap = false;
1490       bool maybe_prior_recompile = false;
1491       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1492                                    //outputs:
1493                                    this_trap_count,
1494                                    maybe_prior_trap,
1495                                    maybe_prior_recompile);
1496       // Because the interpreter also counts null, div0, range, and class
1497       // checks, these traps from compiled code are double-counted.
1498       // This is harmless; it just means that the PerXTrapLimit values
1499       // are in effect a little smaller than they look.
1500 
1501       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1502       if (per_bc_reason != Reason_none) {
1503         // Now take action based on the partially known per-BCI history.
1504         if (maybe_prior_trap
1505             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1506           // If there are too many traps at this BCI, force a recompile.
1507           // This will allow the compiler to see the limit overflow, and
1508           // take corrective action, if possible.  The compiler generally
1509           // does not use the exact PerBytecodeTrapLimit value, but instead
1510           // changes its tactics if it sees any traps at all.  This provides
1511           // a little hysteresis, delaying a recompile until a trap happens
1512           // several times.
1513           //
1514           // Actually, since there is only one bit of counter per BCI,
1515           // the possible per-BCI counts are {0,1,(per-method count)}.
1516           // This produces accurate results if in fact there is only
1517           // one hot trap site, but begins to get fuzzy if there are
1518           // many sites.  For example, if there are ten sites each
1519           // trapping two or more times, they each get the blame for
1520           // all of their traps.
1521           make_not_entrant = true;
1522         }
1523 
1524         // Detect repeated recompilation at the same BCI, and enforce a limit.
1525         if (make_not_entrant && maybe_prior_recompile) {
1526           // More than one recompile at this point.
1527           inc_recompile_count = maybe_prior_trap;
1528         }
1529       } else {
1530         // For reasons which are not recorded per-bytecode, we simply
1531         // force recompiles unconditionally.
1532         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1533         make_not_entrant = true;
1534       }
1535 
1536       // Go back to the compiler if there are too many traps in this method.
1537       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1538         // If there are too many traps in this method, force a recompile.
1539         // This will allow the compiler to see the limit overflow, and
1540         // take corrective action, if possible.
1541         // (This condition is an unlikely backstop only, because the
1542         // PerBytecodeTrapLimit is more likely to take effect first,
1543         // if it is applicable.)
1544         make_not_entrant = true;
1545       }
1546 
1547       // Here's more hysteresis:  If there has been a recompile at
1548       // this trap point already, run the method in the interpreter
1549       // for a while to exercise it more thoroughly.
1550       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1551         reprofile = true;
1552       }
1553 
1554     }
1555 
1556     // Take requested actions on the method:
1557 
1558     // Recompile
1559     if (make_not_entrant) {
1560       if (!nm->make_not_entrant()) {
1561         return; // the call did not change nmethod's state
1562       }
1563 
1564       if (pdata != NULL) {
1565         // Record the recompilation event, if any.
1566         int tstate0 = pdata->trap_state();
1567         int tstate1 = trap_state_set_recompiled(tstate0, true);
1568         if (tstate1 != tstate0)
1569           pdata->set_trap_state(tstate1);
1570       }
1571     }
1572 
1573     if (inc_recompile_count) {
1574       trap_mdo->inc_overflow_recompile_count();
1575       if ((uint)trap_mdo->overflow_recompile_count() >
1576           (uint)PerBytecodeRecompilationCutoff) {
1577         // Give up on the method containing the bad BCI.
1578         if (trap_method() == nm->method()) {
1579           make_not_compilable = true;
1580         } else {
1581           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1582           // But give grace to the enclosing nm->method().
1583         }
1584       }
1585     }
1586 
1587     // Reprofile
1588     if (reprofile) {
1589       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1590     }
1591 
1592     // Give up compiling
1593     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1594       assert(make_not_entrant, "consistent");
1595       nm->method()->set_not_compilable(CompLevel_full_optimization);
1596     }
1597 
1598   } // Free marked resources
1599 
1600 }
1601 JRT_END
1602 
1603 MethodData*
1604 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1605                                 bool create_if_missing) {
1606   Thread* THREAD = thread;
1607   MethodData* mdo = m()->method_data();
1608   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1609     // Build an MDO.  Ignore errors like OutOfMemory;
1610     // that simply means we won't have an MDO to update.
1611     Method::build_interpreter_method_data(m, THREAD);
1612     if (HAS_PENDING_EXCEPTION) {
1613       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1614       CLEAR_PENDING_EXCEPTION;
1615     }
1616     mdo = m()->method_data();
1617   }
1618   return mdo;
1619 }
1620 
1621 ProfileData*
1622 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1623                                          int trap_bci,
1624                                          Deoptimization::DeoptReason reason,
1625                                          //outputs:
1626                                          uint& ret_this_trap_count,
1627                                          bool& ret_maybe_prior_trap,
1628                                          bool& ret_maybe_prior_recompile) {
1629   uint prior_trap_count = trap_mdo->trap_count(reason);
1630   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1631 
1632   // If the runtime cannot find a place to store trap history,
1633   // it is estimated based on the general condition of the method.
1634   // If the method has ever been recompiled, or has ever incurred
1635   // a trap with the present reason , then this BCI is assumed
1636   // (pessimistically) to be the culprit.
1637   bool maybe_prior_trap      = (prior_trap_count != 0);
1638   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1639   ProfileData* pdata = NULL;
1640 
1641 
1642   // For reasons which are recorded per bytecode, we check per-BCI data.
1643   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1644   if (per_bc_reason != Reason_none) {
1645     // Find the profile data for this BCI.  If there isn't one,
1646     // try to allocate one from the MDO's set of spares.
1647     // This will let us detect a repeated trap at this point.
1648     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1649 
1650     if (pdata != NULL) {
1651       // Query the trap state of this profile datum.
1652       int tstate0 = pdata->trap_state();
1653       if (!trap_state_has_reason(tstate0, per_bc_reason))
1654         maybe_prior_trap = false;
1655       if (!trap_state_is_recompiled(tstate0))
1656         maybe_prior_recompile = false;
1657 
1658       // Update the trap state of this profile datum.
1659       int tstate1 = tstate0;
1660       // Record the reason.
1661       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1662       // Store the updated state on the MDO, for next time.
1663       if (tstate1 != tstate0)
1664         pdata->set_trap_state(tstate1);
1665     } else {
1666       if (LogCompilation && xtty != NULL) {
1667         ttyLocker ttyl;
1668         // Missing MDP?  Leave a small complaint in the log.
1669         xtty->elem("missing_mdp bci='%d'", trap_bci);
1670       }
1671     }
1672   }
1673 
1674   // Return results:
1675   ret_this_trap_count = this_trap_count;
1676   ret_maybe_prior_trap = maybe_prior_trap;
1677   ret_maybe_prior_recompile = maybe_prior_recompile;
1678   return pdata;
1679 }
1680 
1681 void
1682 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1683   ResourceMark rm;
1684   // Ignored outputs:
1685   uint ignore_this_trap_count;
1686   bool ignore_maybe_prior_trap;
1687   bool ignore_maybe_prior_recompile;
1688   query_update_method_data(trap_mdo, trap_bci,
1689                            (DeoptReason)reason,
1690                            ignore_this_trap_count,
1691                            ignore_maybe_prior_trap,
1692                            ignore_maybe_prior_recompile);
1693 }
1694 
1695 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1696 
1697   // Still in Java no safepoints
1698   {
1699     // This enters VM and may safepoint
1700     uncommon_trap_inner(thread, trap_request);
1701   }
1702   return fetch_unroll_info_helper(thread);
1703 }
1704 
1705 // Local derived constants.
1706 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1707 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1708 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1709 
1710 //---------------------------trap_state_reason---------------------------------
1711 Deoptimization::DeoptReason
1712 Deoptimization::trap_state_reason(int trap_state) {
1713   // This assert provides the link between the width of DataLayout::trap_bits
1714   // and the encoding of "recorded" reasons.  It ensures there are enough
1715   // bits to store all needed reasons in the per-BCI MDO profile.
1716   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1717   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1718   trap_state -= recompile_bit;
1719   if (trap_state == DS_REASON_MASK) {
1720     return Reason_many;
1721   } else {
1722     assert((int)Reason_none == 0, "state=0 => Reason_none");
1723     return (DeoptReason)trap_state;
1724   }
1725 }
1726 //-------------------------trap_state_has_reason-------------------------------
1727 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1728   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1729   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1730   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1731   trap_state -= recompile_bit;
1732   if (trap_state == DS_REASON_MASK) {
1733     return -1;  // true, unspecifically (bottom of state lattice)
1734   } else if (trap_state == reason) {
1735     return 1;   // true, definitely
1736   } else if (trap_state == 0) {
1737     return 0;   // false, definitely (top of state lattice)
1738   } else {
1739     return 0;   // false, definitely
1740   }
1741 }
1742 //-------------------------trap_state_add_reason-------------------------------
1743 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1744   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1745   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1746   trap_state -= recompile_bit;
1747   if (trap_state == DS_REASON_MASK) {
1748     return trap_state + recompile_bit;     // already at state lattice bottom
1749   } else if (trap_state == reason) {
1750     return trap_state + recompile_bit;     // the condition is already true
1751   } else if (trap_state == 0) {
1752     return reason + recompile_bit;          // no condition has yet been true
1753   } else {
1754     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1755   }
1756 }
1757 //-----------------------trap_state_is_recompiled------------------------------
1758 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1759   return (trap_state & DS_RECOMPILE_BIT) != 0;
1760 }
1761 //-----------------------trap_state_set_recompiled-----------------------------
1762 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1763   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1764   else    return trap_state & ~DS_RECOMPILE_BIT;
1765 }
1766 //---------------------------format_trap_state---------------------------------
1767 // This is used for debugging and diagnostics, including LogFile output.
1768 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1769                                               int trap_state) {
1770   DeoptReason reason      = trap_state_reason(trap_state);
1771   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1772   // Re-encode the state from its decoded components.
1773   int decoded_state = 0;
1774   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1775     decoded_state = trap_state_add_reason(decoded_state, reason);
1776   if (recomp_flag)
1777     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1778   // If the state re-encodes properly, format it symbolically.
1779   // Because this routine is used for debugging and diagnostics,
1780   // be robust even if the state is a strange value.
1781   size_t len;
1782   if (decoded_state != trap_state) {
1783     // Random buggy state that doesn't decode??
1784     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1785   } else {
1786     len = jio_snprintf(buf, buflen, "%s%s",
1787                        trap_reason_name(reason),
1788                        recomp_flag ? " recompiled" : "");
1789   }
1790   if (len >= buflen)
1791     buf[buflen-1] = '\0';
1792   return buf;
1793 }
1794 
1795 
1796 //--------------------------------statics--------------------------------------
1797 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1798   = Deoptimization::Action_reinterpret;
1799 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1800   // Note:  Keep this in sync. with enum DeoptReason.
1801   "none",
1802   "null_check",
1803   "null_assert",
1804   "range_check",
1805   "class_check",
1806   "array_check",
1807   "intrinsic",
1808   "bimorphic",
1809   "unloaded",
1810   "uninitialized",
1811   "unreached",
1812   "unhandled",
1813   "constraint",
1814   "div0_check",
1815   "age",
1816   "predicate",
1817   "loop_limit_check"
1818 };
1819 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1820   // Note:  Keep this in sync. with enum DeoptAction.
1821   "none",
1822   "maybe_recompile",
1823   "reinterpret",
1824   "make_not_entrant",
1825   "make_not_compilable"
1826 };
1827 
1828 const char* Deoptimization::trap_reason_name(int reason) {
1829   if (reason == Reason_many)  return "many";
1830   if ((uint)reason < Reason_LIMIT)
1831     return _trap_reason_name[reason];
1832   static char buf[20];
1833   sprintf(buf, "reason%d", reason);
1834   return buf;
1835 }
1836 const char* Deoptimization::trap_action_name(int action) {
1837   if ((uint)action < Action_LIMIT)
1838     return _trap_action_name[action];
1839   static char buf[20];
1840   sprintf(buf, "action%d", action);
1841   return buf;
1842 }
1843 
1844 // This is used for debugging and diagnostics, including LogFile output.
1845 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1846                                                 int trap_request) {
1847   jint unloaded_class_index = trap_request_index(trap_request);
1848   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1849   const char* action = trap_action_name(trap_request_action(trap_request));
1850   size_t len;
1851   if (unloaded_class_index < 0) {
1852     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1853                        reason, action);
1854   } else {
1855     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1856                        reason, action, unloaded_class_index);
1857   }
1858   if (len >= buflen)
1859     buf[buflen-1] = '\0';
1860   return buf;
1861 }
1862 
1863 juint Deoptimization::_deoptimization_hist
1864         [Deoptimization::Reason_LIMIT]
1865     [1 + Deoptimization::Action_LIMIT]
1866         [Deoptimization::BC_CASE_LIMIT]
1867   = {0};
1868 
1869 enum {
1870   LSB_BITS = 8,
1871   LSB_MASK = right_n_bits(LSB_BITS)
1872 };
1873 
1874 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1875                                        Bytecodes::Code bc) {
1876   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1877   assert(action >= 0 && action < Action_LIMIT, "oob");
1878   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1879   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1880   juint* cases = _deoptimization_hist[reason][1+action];
1881   juint* bc_counter_addr = NULL;
1882   juint  bc_counter      = 0;
1883   // Look for an unused counter, or an exact match to this BC.
1884   if (bc != Bytecodes::_illegal) {
1885     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1886       juint* counter_addr = &cases[bc_case];
1887       juint  counter = *counter_addr;
1888       if ((counter == 0 && bc_counter_addr == NULL)
1889           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1890         // this counter is either free or is already devoted to this BC
1891         bc_counter_addr = counter_addr;
1892         bc_counter = counter | bc;
1893       }
1894     }
1895   }
1896   if (bc_counter_addr == NULL) {
1897     // Overflow, or no given bytecode.
1898     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1899     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1900   }
1901   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1902 }
1903 
1904 jint Deoptimization::total_deoptimization_count() {
1905   return _deoptimization_hist[Reason_none][0][0];
1906 }
1907 
1908 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1909   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1910   return _deoptimization_hist[reason][0][0];
1911 }
1912 
1913 void Deoptimization::print_statistics() {
1914   juint total = total_deoptimization_count();
1915   juint account = total;
1916   if (total != 0) {
1917     ttyLocker ttyl;
1918     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1919     tty->print_cr("Deoptimization traps recorded:");
1920     #define PRINT_STAT_LINE(name, r) \
1921       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1922     PRINT_STAT_LINE("total", total);
1923     // For each non-zero entry in the histogram, print the reason,
1924     // the action, and (if specifically known) the type of bytecode.
1925     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1926       for (int action = 0; action < Action_LIMIT; action++) {
1927         juint* cases = _deoptimization_hist[reason][1+action];
1928         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1929           juint counter = cases[bc_case];
1930           if (counter != 0) {
1931             char name[1*K];
1932             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1933             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1934               bc = Bytecodes::_illegal;
1935             sprintf(name, "%s/%s/%s",
1936                     trap_reason_name(reason),
1937                     trap_action_name(action),
1938                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1939             juint r = counter >> LSB_BITS;
1940             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1941             account -= r;
1942           }
1943         }
1944       }
1945     }
1946     if (account != 0) {
1947       PRINT_STAT_LINE("unaccounted", account);
1948     }
1949     #undef PRINT_STAT_LINE
1950     if (xtty != NULL)  xtty->tail("statistics");
1951   }
1952 }
1953 #else // COMPILER2 || SHARK
1954 
1955 
1956 // Stubs for C1 only system.
1957 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1958   return false;
1959 }
1960 
1961 const char* Deoptimization::trap_reason_name(int reason) {
1962   return "unknown";
1963 }
1964 
1965 void Deoptimization::print_statistics() {
1966   // no output
1967 }
1968 
1969 void
1970 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1971   // no udpate
1972 }
1973 
1974 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1975   return 0;
1976 }
1977 
1978 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1979                                        Bytecodes::Code bc) {
1980   // no update
1981 }
1982 
1983 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1984                                               int trap_state) {
1985   jio_snprintf(buf, buflen, "#%d", trap_state);
1986   return buf;
1987 }
1988 
1989 #endif // COMPILER2 || SHARK