1 //
   2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedClassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 563     } else {
 564       klass_load_size = 1*BytesPerInstWord;
 565     }
 566     if (Assembler::is_simm13(v_off)) {
 567       return klass_load_size +
 568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 569              NativeCall::instruction_size);  // call; delay slot
 570     } else {
 571       return klass_load_size +
 572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 573              NativeCall::instruction_size);  // call; delay slot
 574     }
 575   }
 576 }
 577 
 578 int MachCallRuntimeNode::ret_addr_offset() {
 579 #ifdef _LP64
 580   if (MacroAssembler::is_far_target(entry_point())) {
 581     return NativeFarCall::instruction_size;
 582   } else {
 583     return NativeCall::instruction_size;
 584   }
 585 #else
 586   return NativeCall::instruction_size;  // call; delay slot
 587 #endif
 588 }
 589 
 590 // Indicate if the safepoint node needs the polling page as an input.
 591 // Since Sparc does not have absolute addressing, it does.
 592 bool SafePointNode::needs_polling_address_input() {
 593   return true;
 594 }
 595 
 596 // emit an interrupt that is caught by the debugger (for debugging compiler)
 597 void emit_break(CodeBuffer &cbuf) {
 598   MacroAssembler _masm(&cbuf);
 599   __ breakpoint_trap();
 600 }
 601 
 602 #ifndef PRODUCT
 603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 604   st->print("TA");
 605 }
 606 #endif
 607 
 608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 609   emit_break(cbuf);
 610 }
 611 
 612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 613   return MachNode::size(ra_);
 614 }
 615 
 616 // Traceable jump
 617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 618   MacroAssembler _masm(&cbuf);
 619   Register rdest = reg_to_register_object(jump_target);
 620   __ JMP(rdest, 0);
 621   __ delayed()->nop();
 622 }
 623 
 624 // Traceable jump and set exception pc
 625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 626   MacroAssembler _masm(&cbuf);
 627   Register rdest = reg_to_register_object(jump_target);
 628   __ JMP(rdest, 0);
 629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 630 }
 631 
 632 void emit_nop(CodeBuffer &cbuf) {
 633   MacroAssembler _masm(&cbuf);
 634   __ nop();
 635 }
 636 
 637 void emit_illtrap(CodeBuffer &cbuf) {
 638   MacroAssembler _masm(&cbuf);
 639   __ illtrap(0);
 640 }
 641 
 642 
 643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 644   assert(n->rule() != loadUB_rule, "");
 645 
 646   intptr_t offset = 0;
 647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 648   const Node* addr = n->get_base_and_disp(offset, adr_type);
 649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   atype = atype->add_offset(offset);
 653   assert(disp32 == offset, "wrong disp32");
 654   return atype->_offset;
 655 }
 656 
 657 
 658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 659   assert(n->rule() != loadUB_rule, "");
 660 
 661   intptr_t offset = 0;
 662   Node* addr = n->in(2);
 663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 665     Node* a = addr->in(2/*AddPNode::Address*/);
 666     Node* o = addr->in(3/*AddPNode::Offset*/);
 667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 669     assert(atype->isa_oop_ptr(), "still an oop");
 670   }
 671   offset = atype->is_ptr()->_offset;
 672   if (offset != Type::OffsetBot)  offset += disp32;
 673   return offset;
 674 }
 675 
 676 static inline jdouble replicate_immI(int con, int count, int width) {
 677   // Load a constant replicated "count" times with width "width"
 678   assert(count*width == 8 && width <= 4, "sanity");
 679   int bit_width = width * 8;
 680   jlong val = con;
 681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 682   for (int i = 0; i < count - 1; i++) {
 683     val |= (val << bit_width);
 684   }
 685   jdouble dval = *((jdouble*) &val);  // coerce to double type
 686   return dval;
 687 }
 688 
 689 static inline jdouble replicate_immF(float con) {
 690   // Replicate float con 2 times and pack into vector.
 691   int val = *((int*)&con);
 692   jlong lval = val;
 693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 695   return dval;
 696 }
 697 
 698 // Standard Sparc opcode form2 field breakdown
 699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 701   int op = (f30 << 30) |
 702            (f29 << 29) |
 703            (f25 << 25) |
 704            (f22 << 22) |
 705            (f20 << 20) |
 706            (f19 << 19) |
 707            (f0  <<  0);
 708   cbuf.insts()->emit_int32(op);
 709 }
 710 
 711 // Standard Sparc opcode form2 field breakdown
 712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 713   f0 >>= 10;           // Drop 10 bits
 714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 715   int op = (f30 << 30) |
 716            (f25 << 25) |
 717            (f22 << 22) |
 718            (f0  <<  0);
 719   cbuf.insts()->emit_int32(op);
 720 }
 721 
 722 // Standard Sparc opcode form3 field breakdown
 723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 724   int op = (f30 << 30) |
 725            (f25 << 25) |
 726            (f19 << 19) |
 727            (f14 << 14) |
 728            (f5  <<  5) |
 729            (f0  <<  0);
 730   cbuf.insts()->emit_int32(op);
 731 }
 732 
 733 // Standard Sparc opcode form3 field breakdown
 734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 735   simm13 &= (1<<13)-1; // Mask to 13 bits
 736   int op = (f30 << 30) |
 737            (f25 << 25) |
 738            (f19 << 19) |
 739            (f14 << 14) |
 740            (1   << 13) | // bit to indicate immediate-mode
 741            (simm13<<0);
 742   cbuf.insts()->emit_int32(op);
 743 }
 744 
 745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 746   simm10 &= (1<<10)-1; // Mask to 10 bits
 747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 748 }
 749 
 750 #ifdef ASSERT
 751 // Helper function for VerifyOops in emit_form3_mem_reg
 752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 753   warning("VerifyOops encountered unexpected instruction:");
 754   n->dump(2);
 755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 756 }
 757 #endif
 758 
 759 
 760 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 762 
 763 #ifdef ASSERT
 764   // The following code implements the +VerifyOops feature.
 765   // It verifies oop values which are loaded into or stored out of
 766   // the current method activation.  +VerifyOops complements techniques
 767   // like ScavengeALot, because it eagerly inspects oops in transit,
 768   // as they enter or leave the stack, as opposed to ScavengeALot,
 769   // which inspects oops "at rest", in the stack or heap, at safepoints.
 770   // For this reason, +VerifyOops can sometimes detect bugs very close
 771   // to their point of creation.  It can also serve as a cross-check
 772   // on the validity of oop maps, when used toegether with ScavengeALot.
 773 
 774   // It would be good to verify oops at other points, especially
 775   // when an oop is used as a base pointer for a load or store.
 776   // This is presently difficult, because it is hard to know when
 777   // a base address is biased or not.  (If we had such information,
 778   // it would be easy and useful to make a two-argument version of
 779   // verify_oop which unbiases the base, and performs verification.)
 780 
 781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 782   bool is_verified_oop_base  = false;
 783   bool is_verified_oop_load  = false;
 784   bool is_verified_oop_store = false;
 785   int tmp_enc = -1;
 786   if (VerifyOops && src1_enc != R_SP_enc) {
 787     // classify the op, mainly for an assert check
 788     int st_op = 0, ld_op = 0;
 789     switch (primary) {
 790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 794     case Assembler::std_op3:  st_op = Op_StoreL; break;
 795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 797 
 798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 809 
 810     default: ShouldNotReachHere();
 811     }
 812     if (tertiary == REGP_OP) {
 813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 815       else                          ShouldNotReachHere();
 816       if (st_op) {
 817         // a store
 818         // inputs are (0:control, 1:memory, 2:address, 3:value)
 819         Node* n2 = n->in(3);
 820         if (n2 != NULL) {
 821           const Type* t = n2->bottom_type();
 822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 823         }
 824       } else {
 825         // a load
 826         const Type* t = n->bottom_type();
 827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 828       }
 829     }
 830 
 831     if (ld_op) {
 832       // a Load
 833       // inputs are (0:control, 1:memory, 2:address)
 834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 849           !(n->rule() == loadUB_rule)) {
 850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 851       }
 852     } else if (st_op) {
 853       // a Store
 854       // inputs are (0:control, 1:memory, 2:address, 3:value)
 855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 863       }
 864     }
 865 
 866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 867       Node* addr = n->in(2);
 868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 870         if (atype != NULL) {
 871           intptr_t offset = get_offset_from_base(n, atype, disp32);
 872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 873           if (offset != offset_2) {
 874             get_offset_from_base(n, atype, disp32);
 875             get_offset_from_base_2(n, atype, disp32);
 876           }
 877           assert(offset == offset_2, "different offsets");
 878           if (offset == disp32) {
 879             // we now know that src1 is a true oop pointer
 880             is_verified_oop_base = true;
 881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 882               if( primary == Assembler::ldd_op3 ) {
 883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 884               } else {
 885                 tmp_enc = dst_enc;
 886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 887                 assert(src1_enc != dst_enc, "");
 888               }
 889             }
 890           }
 891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 892                        || offset == oopDesc::mark_offset_in_bytes())) {
 893                       // loading the mark should not be allowed either, but
 894                       // we don't check this since it conflicts with InlineObjectHash
 895                       // usage of LoadINode to get the mark. We could keep the
 896                       // check if we create a new LoadMarkNode
 897             // but do not verify the object before its header is initialized
 898             ShouldNotReachHere();
 899           }
 900         }
 901       }
 902     }
 903   }
 904 #endif
 905 
 906   uint instr;
 907   instr = (Assembler::ldst_op << 30)
 908         | (dst_enc        << 25)
 909         | (primary        << 19)
 910         | (src1_enc       << 14);
 911 
 912   uint index = src2_enc;
 913   int disp = disp32;
 914 
 915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 916     disp += STACK_BIAS;
 917     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 918     if (!Assembler::is_simm13(disp)) {
 919       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 920       return;
 921     }
 922   }
 923 
 924   // We should have a compiler bailout here rather than a guarantee.
 925   // Better yet would be some mechanism to handle variable-size matches correctly.
 926   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 927 
 928   if( disp == 0 ) {
 929     // use reg-reg form
 930     // bit 13 is already zero
 931     instr |= index;
 932   } else {
 933     // use reg-imm form
 934     instr |= 0x00002000;          // set bit 13 to one
 935     instr |= disp & 0x1FFF;
 936   }
 937 
 938   cbuf.insts()->emit_int32(instr);
 939 
 940 #ifdef ASSERT
 941   {
 942     MacroAssembler _masm(&cbuf);
 943     if (is_verified_oop_base) {
 944       __ verify_oop(reg_to_register_object(src1_enc));
 945     }
 946     if (is_verified_oop_store) {
 947       __ verify_oop(reg_to_register_object(dst_enc));
 948     }
 949     if (tmp_enc != -1) {
 950       __ mov(O7, reg_to_register_object(tmp_enc));
 951     }
 952     if (is_verified_oop_load) {
 953       __ verify_oop(reg_to_register_object(dst_enc));
 954     }
 955   }
 956 #endif
 957 }
 958 
 959 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 960   // The method which records debug information at every safepoint
 961   // expects the call to be the first instruction in the snippet as
 962   // it creates a PcDesc structure which tracks the offset of a call
 963   // from the start of the codeBlob. This offset is computed as
 964   // code_end() - code_begin() of the code which has been emitted
 965   // so far.
 966   // In this particular case we have skirted around the problem by
 967   // putting the "mov" instruction in the delay slot but the problem
 968   // may bite us again at some other point and a cleaner/generic
 969   // solution using relocations would be needed.
 970   MacroAssembler _masm(&cbuf);
 971   __ set_inst_mark();
 972 
 973   // We flush the current window just so that there is a valid stack copy
 974   // the fact that the current window becomes active again instantly is
 975   // not a problem there is nothing live in it.
 976 
 977 #ifdef ASSERT
 978   int startpos = __ offset();
 979 #endif /* ASSERT */
 980 
 981   __ call((address)entry_point, rtype);
 982 
 983   if (preserve_g2)   __ delayed()->mov(G2, L7);
 984   else __ delayed()->nop();
 985 
 986   if (preserve_g2)   __ mov(L7, G2);
 987 
 988 #ifdef ASSERT
 989   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 990 #ifdef _LP64
 991     // Trash argument dump slots.
 992     __ set(0xb0b8ac0db0b8ac0d, G1);
 993     __ mov(G1, G5);
 994     __ stx(G1, SP, STACK_BIAS + 0x80);
 995     __ stx(G1, SP, STACK_BIAS + 0x88);
 996     __ stx(G1, SP, STACK_BIAS + 0x90);
 997     __ stx(G1, SP, STACK_BIAS + 0x98);
 998     __ stx(G1, SP, STACK_BIAS + 0xA0);
 999     __ stx(G1, SP, STACK_BIAS + 0xA8);
1000 #else // _LP64
1001     // this is also a native call, so smash the first 7 stack locations,
1002     // and the various registers
1003 
1004     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1005     // while [SP+0x44..0x58] are the argument dump slots.
1006     __ set((intptr_t)0xbaadf00d, G1);
1007     __ mov(G1, G5);
1008     __ sllx(G1, 32, G1);
1009     __ or3(G1, G5, G1);
1010     __ mov(G1, G5);
1011     __ stx(G1, SP, 0x40);
1012     __ stx(G1, SP, 0x48);
1013     __ stx(G1, SP, 0x50);
1014     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1015 #endif // _LP64
1016   }
1017 #endif /*ASSERT*/
1018 }
1019 
1020 //=============================================================================
1021 // REQUIRED FUNCTIONALITY for encoding
1022 void emit_lo(CodeBuffer &cbuf, int val) {  }
1023 void emit_hi(CodeBuffer &cbuf, int val) {  }
1024 
1025 
1026 //=============================================================================
1027 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1028 
1029 int Compile::ConstantTable::calculate_table_base_offset() const {
1030   if (UseRDPCForConstantTableBase) {
1031     // The table base offset might be less but then it fits into
1032     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1033     return Assembler::min_simm13();
1034   } else {
1035     int offset = -(size() / 2);
1036     if (!Assembler::is_simm13(offset)) {
1037       offset = Assembler::min_simm13();
1038     }
1039     return offset;
1040   }
1041 }
1042 
1043 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1044 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1045   ShouldNotReachHere();
1046 }
1047 
1048 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1049   Compile* C = ra_->C;
1050   Compile::ConstantTable& constant_table = C->constant_table();
1051   MacroAssembler _masm(&cbuf);
1052 
1053   Register r = as_Register(ra_->get_encode(this));
1054   CodeSection* consts_section = __ code()->consts();
1055   int consts_size = consts_section->align_at_start(consts_section->size());
1056   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1057 
1058   if (UseRDPCForConstantTableBase) {
1059     // For the following RDPC logic to work correctly the consts
1060     // section must be allocated right before the insts section.  This
1061     // assert checks for that.  The layout and the SECT_* constants
1062     // are defined in src/share/vm/asm/codeBuffer.hpp.
1063     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1064     int insts_offset = __ offset();
1065 
1066     // Layout:
1067     //
1068     // |----------- consts section ------------|----------- insts section -----------...
1069     // |------ constant table -----|- padding -|------------------x----
1070     //                                                            \ current PC (RDPC instruction)
1071     // |<------------- consts_size ----------->|<- insts_offset ->|
1072     //                                                            \ table base
1073     // The table base offset is later added to the load displacement
1074     // so it has to be negative.
1075     int table_base_offset = -(consts_size + insts_offset);
1076     int disp;
1077 
1078     // If the displacement from the current PC to the constant table
1079     // base fits into simm13 we set the constant table base to the
1080     // current PC.
1081     if (Assembler::is_simm13(table_base_offset)) {
1082       constant_table.set_table_base_offset(table_base_offset);
1083       disp = 0;
1084     } else {
1085       // Otherwise we set the constant table base offset to the
1086       // maximum negative displacement of load instructions to keep
1087       // the disp as small as possible:
1088       //
1089       // |<------------- consts_size ----------->|<- insts_offset ->|
1090       // |<--------- min_simm13 --------->|<-------- disp --------->|
1091       //                                  \ table base
1092       table_base_offset = Assembler::min_simm13();
1093       constant_table.set_table_base_offset(table_base_offset);
1094       disp = (consts_size + insts_offset) + table_base_offset;
1095     }
1096 
1097     __ rdpc(r);
1098 
1099     if (disp != 0) {
1100       assert(r != O7, "need temporary");
1101       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1102     }
1103   }
1104   else {
1105     // Materialize the constant table base.
1106     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1107     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1108     AddressLiteral base(baseaddr, rspec);
1109     __ set(base, r);
1110   }
1111 }
1112 
1113 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1114   if (UseRDPCForConstantTableBase) {
1115     // This is really the worst case but generally it's only 1 instruction.
1116     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1117   } else {
1118     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1119   }
1120 }
1121 
1122 #ifndef PRODUCT
1123 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1124   char reg[128];
1125   ra_->dump_register(this, reg);
1126   if (UseRDPCForConstantTableBase) {
1127     st->print("RDPC   %s\t! constant table base", reg);
1128   } else {
1129     st->print("SET    &constanttable,%s\t! constant table base", reg);
1130   }
1131 }
1132 #endif
1133 
1134 
1135 //=============================================================================
1136 
1137 #ifndef PRODUCT
1138 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1139   Compile* C = ra_->C;
1140 
1141   for (int i = 0; i < OptoPrologueNops; i++) {
1142     st->print_cr("NOP"); st->print("\t");
1143   }
1144 
1145   if( VerifyThread ) {
1146     st->print_cr("Verify_Thread"); st->print("\t");
1147   }
1148 
1149   size_t framesize = C->frame_size_in_bytes();
1150   int bangsize = C->bang_size_in_bytes();
1151 
1152   // Calls to C2R adapters often do not accept exceptional returns.
1153   // We require that their callers must bang for them.  But be careful, because
1154   // some VM calls (such as call site linkage) can use several kilobytes of
1155   // stack.  But the stack safety zone should account for that.
1156   // See bugs 4446381, 4468289, 4497237.
1157   if (C->need_stack_bang(bangsize)) {
1158     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1159   }
1160 
1161   if (Assembler::is_simm13(-framesize)) {
1162     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1163   } else {
1164     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1165     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1166     st->print   ("SAVE   R_SP,R_G3,R_SP");
1167   }
1168 
1169 }
1170 #endif
1171 
1172 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1173   Compile* C = ra_->C;
1174   MacroAssembler _masm(&cbuf);
1175 
1176   for (int i = 0; i < OptoPrologueNops; i++) {
1177     __ nop();
1178   }
1179 
1180   __ verify_thread();
1181 
1182   size_t framesize = C->frame_size_in_bytes();
1183   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1184   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1185   int bangsize = C->bang_size_in_bytes();
1186 
1187   // Calls to C2R adapters often do not accept exceptional returns.
1188   // We require that their callers must bang for them.  But be careful, because
1189   // some VM calls (such as call site linkage) can use several kilobytes of
1190   // stack.  But the stack safety zone should account for that.
1191   // See bugs 4446381, 4468289, 4497237.
1192   if (C->need_stack_bang(bangsize)) {
1193     __ generate_stack_overflow_check(bangsize);
1194   }
1195 
1196   if (Assembler::is_simm13(-framesize)) {
1197     __ save(SP, -framesize, SP);
1198   } else {
1199     __ sethi(-framesize & ~0x3ff, G3);
1200     __ add(G3, -framesize & 0x3ff, G3);
1201     __ save(SP, G3, SP);
1202   }
1203   C->set_frame_complete( __ offset() );
1204 
1205   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1206     // NOTE: We set the table base offset here because users might be
1207     // emitted before MachConstantBaseNode.
1208     Compile::ConstantTable& constant_table = C->constant_table();
1209     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1210   }
1211 }
1212 
1213 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1214   return MachNode::size(ra_);
1215 }
1216 
1217 int MachPrologNode::reloc() const {
1218   return 10; // a large enough number
1219 }
1220 
1221 //=============================================================================
1222 #ifndef PRODUCT
1223 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1224   Compile* C = ra_->C;
1225 
1226   if( do_polling() && ra_->C->is_method_compilation() ) {
1227     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1228 #ifdef _LP64
1229     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1230 #else
1231     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1232 #endif
1233   }
1234 
1235   if( do_polling() )
1236     st->print("RET\n\t");
1237 
1238   st->print("RESTORE");
1239 }
1240 #endif
1241 
1242 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1243   MacroAssembler _masm(&cbuf);
1244   Compile* C = ra_->C;
1245 
1246   __ verify_thread();
1247 
1248   // If this does safepoint polling, then do it here
1249   if( do_polling() && ra_->C->is_method_compilation() ) {
1250     AddressLiteral polling_page(os::get_polling_page());
1251     __ sethi(polling_page, L0);
1252     __ relocate(relocInfo::poll_return_type);
1253     __ ld_ptr( L0, 0, G0 );
1254   }
1255 
1256   // If this is a return, then stuff the restore in the delay slot
1257   if( do_polling() ) {
1258     __ ret();
1259     __ delayed()->restore();
1260   } else {
1261     __ restore();
1262   }
1263 }
1264 
1265 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1266   return MachNode::size(ra_);
1267 }
1268 
1269 int MachEpilogNode::reloc() const {
1270   return 16; // a large enough number
1271 }
1272 
1273 const Pipeline * MachEpilogNode::pipeline() const {
1274   return MachNode::pipeline_class();
1275 }
1276 
1277 int MachEpilogNode::safepoint_offset() const {
1278   assert( do_polling(), "no return for this epilog node");
1279   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1280 }
1281 
1282 //=============================================================================
1283 
1284 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1285 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1286 static enum RC rc_class( OptoReg::Name reg ) {
1287   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1288   if (OptoReg::is_stack(reg)) return rc_stack;
1289   VMReg r = OptoReg::as_VMReg(reg);
1290   if (r->is_Register()) return rc_int;
1291   assert(r->is_FloatRegister(), "must be");
1292   return rc_float;
1293 }
1294 
1295 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1296   if (cbuf) {
1297     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1298   }
1299 #ifndef PRODUCT
1300   else if (!do_size) {
1301     if (size != 0) st->print("\n\t");
1302     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1303     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1304   }
1305 #endif
1306   return size+4;
1307 }
1308 
1309 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1310   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1311 #ifndef PRODUCT
1312   else if( !do_size ) {
1313     if( size != 0 ) st->print("\n\t");
1314     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1315   }
1316 #endif
1317   return size+4;
1318 }
1319 
1320 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1321                                         PhaseRegAlloc *ra_,
1322                                         bool do_size,
1323                                         outputStream* st ) const {
1324   // Get registers to move
1325   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1326   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1327   OptoReg::Name dst_second = ra_->get_reg_second(this );
1328   OptoReg::Name dst_first = ra_->get_reg_first(this );
1329 
1330   enum RC src_second_rc = rc_class(src_second);
1331   enum RC src_first_rc = rc_class(src_first);
1332   enum RC dst_second_rc = rc_class(dst_second);
1333   enum RC dst_first_rc = rc_class(dst_first);
1334 
1335   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1336 
1337   // Generate spill code!
1338   int size = 0;
1339 
1340   if( src_first == dst_first && src_second == dst_second )
1341     return size;            // Self copy, no move
1342 
1343   // --------------------------------------
1344   // Check for mem-mem move.  Load into unused float registers and fall into
1345   // the float-store case.
1346   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1347     int offset = ra_->reg2offset(src_first);
1348     // Further check for aligned-adjacent pair, so we can use a double load
1349     if( (src_first&1)==0 && src_first+1 == src_second ) {
1350       src_second    = OptoReg::Name(R_F31_num);
1351       src_second_rc = rc_float;
1352       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1353     } else {
1354       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1355     }
1356     src_first    = OptoReg::Name(R_F30_num);
1357     src_first_rc = rc_float;
1358   }
1359 
1360   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1361     int offset = ra_->reg2offset(src_second);
1362     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1363     src_second    = OptoReg::Name(R_F31_num);
1364     src_second_rc = rc_float;
1365   }
1366 
1367   // --------------------------------------
1368   // Check for float->int copy; requires a trip through memory
1369   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1370     int offset = frame::register_save_words*wordSize;
1371     if (cbuf) {
1372       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1373       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1374       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1375       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1376     }
1377 #ifndef PRODUCT
1378     else if (!do_size) {
1379       if (size != 0) st->print("\n\t");
1380       st->print(  "SUB    R_SP,16,R_SP\n");
1381       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1382       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1383       st->print("\tADD    R_SP,16,R_SP\n");
1384     }
1385 #endif
1386     size += 16;
1387   }
1388 
1389   // Check for float->int copy on T4
1390   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1391     // Further check for aligned-adjacent pair, so we can use a double move
1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1395   }
1396   // Check for int->float copy on T4
1397   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1398     // Further check for aligned-adjacent pair, so we can use a double move
1399     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1400       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1401     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1402   }
1403 
1404   // --------------------------------------
1405   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1406   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1407   // hardware does the flop for me.  Doubles are always aligned, so no problem
1408   // there.  Misaligned sources only come from native-long-returns (handled
1409   // special below).
1410 #ifndef _LP64
1411   if( src_first_rc == rc_int &&     // source is already big-endian
1412       src_second_rc != rc_bad &&    // 64-bit move
1413       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1414     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1415     // Do the big-endian flop.
1416     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1417     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1418   }
1419 #endif
1420 
1421   // --------------------------------------
1422   // Check for integer reg-reg copy
1423   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1424 #ifndef _LP64
1425     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1426       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1427       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1428       //       operand contains the least significant word of the 64-bit value and vice versa.
1429       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1430       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1431       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1432       if( cbuf ) {
1433         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1434         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1435         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1436 #ifndef PRODUCT
1437       } else if( !do_size ) {
1438         if( size != 0 ) st->print("\n\t");
1439         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1440         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1441         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1442 #endif
1443       }
1444       return size+12;
1445     }
1446     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1447       // returning a long value in I0/I1
1448       // a SpillCopy must be able to target a return instruction's reg_class
1449       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1450       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1451       //       operand contains the least significant word of the 64-bit value and vice versa.
1452       OptoReg::Name tdest = dst_first;
1453 
1454       if (src_first == dst_first) {
1455         tdest = OptoReg::Name(R_O7_num);
1456         size += 4;
1457       }
1458 
1459       if( cbuf ) {
1460         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1461         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1462         // ShrL_reg_imm6
1463         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1464         // ShrR_reg_imm6  src, 0, dst
1465         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1466         if (tdest != dst_first) {
1467           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1468         }
1469       }
1470 #ifndef PRODUCT
1471       else if( !do_size ) {
1472         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1473         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1474         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1475         if (tdest != dst_first) {
1476           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1477         }
1478       }
1479 #endif // PRODUCT
1480       return size+8;
1481     }
1482 #endif // !_LP64
1483     // Else normal reg-reg copy
1484     assert( src_second != dst_first, "smashed second before evacuating it" );
1485     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1486     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1487     // This moves an aligned adjacent pair.
1488     // See if we are done.
1489     if( src_first+1 == src_second && dst_first+1 == dst_second )
1490       return size;
1491   }
1492 
1493   // Check for integer store
1494   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1495     int offset = ra_->reg2offset(dst_first);
1496     // Further check for aligned-adjacent pair, so we can use a double store
1497     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1498       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1499     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1500   }
1501 
1502   // Check for integer load
1503   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1504     int offset = ra_->reg2offset(src_first);
1505     // Further check for aligned-adjacent pair, so we can use a double load
1506     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1507       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1508     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1509   }
1510 
1511   // Check for float reg-reg copy
1512   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1513     // Further check for aligned-adjacent pair, so we can use a double move
1514     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1515       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1516     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1517   }
1518 
1519   // Check for float store
1520   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1521     int offset = ra_->reg2offset(dst_first);
1522     // Further check for aligned-adjacent pair, so we can use a double store
1523     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1524       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1525     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1526   }
1527 
1528   // Check for float load
1529   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1530     int offset = ra_->reg2offset(src_first);
1531     // Further check for aligned-adjacent pair, so we can use a double load
1532     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1533       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1534     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1535   }
1536 
1537   // --------------------------------------------------------------------
1538   // Check for hi bits still needing moving.  Only happens for misaligned
1539   // arguments to native calls.
1540   if( src_second == dst_second )
1541     return size;               // Self copy; no move
1542   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1543 
1544 #ifndef _LP64
1545   // In the LP64 build, all registers can be moved as aligned/adjacent
1546   // pairs, so there's never any need to move the high bits separately.
1547   // The 32-bit builds have to deal with the 32-bit ABI which can force
1548   // all sorts of silly alignment problems.
1549 
1550   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1551   // 32-bits of a 64-bit register, but are needed in low bits of another
1552   // register (else it's a hi-bits-to-hi-bits copy which should have
1553   // happened already as part of a 64-bit move)
1554   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1555     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1556     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1557     // Shift src_second down to dst_second's low bits.
1558     if( cbuf ) {
1559       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1560 #ifndef PRODUCT
1561     } else if( !do_size ) {
1562       if( size != 0 ) st->print("\n\t");
1563       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1564 #endif
1565     }
1566     return size+4;
1567   }
1568 
1569   // Check for high word integer store.  Must down-shift the hi bits
1570   // into a temp register, then fall into the case of storing int bits.
1571   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1572     // Shift src_second down to dst_second's low bits.
1573     if( cbuf ) {
1574       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1575 #ifndef PRODUCT
1576     } else if( !do_size ) {
1577       if( size != 0 ) st->print("\n\t");
1578       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1579 #endif
1580     }
1581     size+=4;
1582     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1583   }
1584 
1585   // Check for high word integer load
1586   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1587     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1588 
1589   // Check for high word integer store
1590   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1591     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1592 
1593   // Check for high word float store
1594   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1595     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1596 
1597 #endif // !_LP64
1598 
1599   Unimplemented();
1600 }
1601 
1602 #ifndef PRODUCT
1603 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1604   implementation( NULL, ra_, false, st );
1605 }
1606 #endif
1607 
1608 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1609   implementation( &cbuf, ra_, false, NULL );
1610 }
1611 
1612 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1613   return implementation( NULL, ra_, true, NULL );
1614 }
1615 
1616 //=============================================================================
1617 #ifndef PRODUCT
1618 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1619   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1620 }
1621 #endif
1622 
1623 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1624   MacroAssembler _masm(&cbuf);
1625   for(int i = 0; i < _count; i += 1) {
1626     __ nop();
1627   }
1628 }
1629 
1630 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1631   return 4 * _count;
1632 }
1633 
1634 
1635 //=============================================================================
1636 #ifndef PRODUCT
1637 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1638   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1639   int reg = ra_->get_reg_first(this);
1640   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1641 }
1642 #endif
1643 
1644 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1645   MacroAssembler _masm(&cbuf);
1646   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1647   int reg = ra_->get_encode(this);
1648 
1649   if (Assembler::is_simm13(offset)) {
1650      __ add(SP, offset, reg_to_register_object(reg));
1651   } else {
1652      __ set(offset, O7);
1653      __ add(SP, O7, reg_to_register_object(reg));
1654   }
1655 }
1656 
1657 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1658   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1659   assert(ra_ == ra_->C->regalloc(), "sanity");
1660   return ra_->C->scratch_emit_size(this);
1661 }
1662 
1663 //=============================================================================
1664 #ifndef PRODUCT
1665 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1666   st->print_cr("\nUEP:");
1667 #ifdef    _LP64
1668   if (UseCompressedClassPointers) {
1669     assert(Universe::heap() != NULL, "java heap should be initialized");
1670     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1671     if (Universe::narrow_klass_base() != 0) {
1672       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1673       if (Universe::narrow_klass_shift() != 0) {
1674         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1675       }
1676       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1677       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1678     } else {
1679       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1680     }
1681   } else {
1682     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1683   }
1684   st->print_cr("\tCMP    R_G5,R_G3" );
1685   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1686 #else  // _LP64
1687   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1688   st->print_cr("\tCMP    R_G5,R_G3" );
1689   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1690 #endif // _LP64
1691 }
1692 #endif
1693 
1694 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1695   MacroAssembler _masm(&cbuf);
1696   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1697   Register temp_reg   = G3;
1698   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1699 
1700   // Load klass from receiver
1701   __ load_klass(O0, temp_reg);
1702   // Compare against expected klass
1703   __ cmp(temp_reg, G5_ic_reg);
1704   // Branch to miss code, checks xcc or icc depending
1705   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1706 }
1707 
1708 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1709   return MachNode::size(ra_);
1710 }
1711 
1712 
1713 //=============================================================================
1714 
1715 uint size_exception_handler() {
1716   if (TraceJumps) {
1717     return (400); // just a guess
1718   }
1719   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1720 }
1721 
1722 uint size_deopt_handler() {
1723   if (TraceJumps) {
1724     return (400); // just a guess
1725   }
1726   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1727 }
1728 
1729 // Emit exception handler code.
1730 int emit_exception_handler(CodeBuffer& cbuf) {
1731   Register temp_reg = G3;
1732   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1733   MacroAssembler _masm(&cbuf);
1734 
1735   address base =
1736   __ start_a_stub(size_exception_handler());
1737   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1738 
1739   int offset = __ offset();
1740 
1741   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1742   __ delayed()->nop();
1743 
1744   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1745 
1746   __ end_a_stub();
1747 
1748   return offset;
1749 }
1750 
1751 int emit_deopt_handler(CodeBuffer& cbuf) {
1752   // Can't use any of the current frame's registers as we may have deopted
1753   // at a poll and everything (including G3) can be live.
1754   Register temp_reg = L0;
1755   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1756   MacroAssembler _masm(&cbuf);
1757 
1758   address base =
1759   __ start_a_stub(size_deopt_handler());
1760   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1761 
1762   int offset = __ offset();
1763   __ save_frame(0);
1764   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1765   __ delayed()->restore();
1766 
1767   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1768 
1769   __ end_a_stub();
1770   return offset;
1771 
1772 }
1773 
1774 // Given a register encoding, produce a Integer Register object
1775 static Register reg_to_register_object(int register_encoding) {
1776   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1777   return as_Register(register_encoding);
1778 }
1779 
1780 // Given a register encoding, produce a single-precision Float Register object
1781 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1782   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1783   return as_SingleFloatRegister(register_encoding);
1784 }
1785 
1786 // Given a register encoding, produce a double-precision Float Register object
1787 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1788   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1789   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1790   return as_DoubleFloatRegister(register_encoding);
1791 }
1792 
1793 const bool Matcher::match_rule_supported(int opcode) {
1794   if (!has_match_rule(opcode))
1795     return false;
1796 
1797   switch (opcode) {
1798   case Op_CountLeadingZerosI:
1799   case Op_CountLeadingZerosL:
1800   case Op_CountTrailingZerosI:
1801   case Op_CountTrailingZerosL:
1802   case Op_PopCountI:
1803   case Op_PopCountL:
1804     if (!UsePopCountInstruction)
1805       return false;
1806   case Op_CompareAndSwapL:
1807 #ifdef _LP64
1808   case Op_CompareAndSwapP:
1809 #endif
1810     if (!VM_Version::supports_cx8())
1811       return false;
1812     break;
1813   }
1814 
1815   return true;  // Per default match rules are supported.
1816 }
1817 
1818 int Matcher::regnum_to_fpu_offset(int regnum) {
1819   return regnum - 32; // The FP registers are in the second chunk
1820 }
1821 
1822 #ifdef ASSERT
1823 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1824 #endif
1825 
1826 // Vector width in bytes
1827 const int Matcher::vector_width_in_bytes(BasicType bt) {
1828   assert(MaxVectorSize == 8, "");
1829   return 8;
1830 }
1831 
1832 // Vector ideal reg
1833 const int Matcher::vector_ideal_reg(int size) {
1834   assert(MaxVectorSize == 8, "");
1835   return Op_RegD;
1836 }
1837 
1838 const int Matcher::vector_shift_count_ideal_reg(int size) {
1839   fatal("vector shift is not supported");
1840   return Node::NotAMachineReg;
1841 }
1842 
1843 // Limits on vector size (number of elements) loaded into vector.
1844 const int Matcher::max_vector_size(const BasicType bt) {
1845   assert(is_java_primitive(bt), "only primitive type vectors");
1846   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1847 }
1848 
1849 const int Matcher::min_vector_size(const BasicType bt) {
1850   return max_vector_size(bt); // Same as max.
1851 }
1852 
1853 // SPARC doesn't support misaligned vectors store/load.
1854 const bool Matcher::misaligned_vectors_ok() {
1855   return false;
1856 }
1857 
1858 // Current (2013) SPARC platforms need to read original key
1859 // to construct decryption expanded key 
1860 const bool Matcher::pass_original_key_for_aes() {
1861   return true;
1862 }
1863 
1864 // USII supports fxtof through the whole range of number, USIII doesn't
1865 const bool Matcher::convL2FSupported(void) {
1866   return VM_Version::has_fast_fxtof();
1867 }
1868 
1869 // Is this branch offset short enough that a short branch can be used?
1870 //
1871 // NOTE: If the platform does not provide any short branch variants, then
1872 //       this method should return false for offset 0.
1873 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1874   // The passed offset is relative to address of the branch.
1875   // Don't need to adjust the offset.
1876   return UseCBCond && Assembler::is_simm12(offset);
1877 }
1878 
1879 const bool Matcher::isSimpleConstant64(jlong value) {
1880   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1881   // Depends on optimizations in MacroAssembler::setx.
1882   int hi = (int)(value >> 32);
1883   int lo = (int)(value & ~0);
1884   return (hi == 0) || (hi == -1) || (lo == 0);
1885 }
1886 
1887 // No scaling for the parameter the ClearArray node.
1888 const bool Matcher::init_array_count_is_in_bytes = true;
1889 
1890 // Threshold size for cleararray.
1891 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1892 
1893 // No additional cost for CMOVL.
1894 const int Matcher::long_cmove_cost() { return 0; }
1895 
1896 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1897 const int Matcher::float_cmove_cost() {
1898   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1899 }
1900 
1901 // Does the CPU require late expand (see block.cpp for description of late expand)?
1902 const bool Matcher::require_postalloc_expand = false;
1903 
1904 // Should the Matcher clone shifts on addressing modes, expecting them to
1905 // be subsumed into complex addressing expressions or compute them into
1906 // registers?  True for Intel but false for most RISCs
1907 const bool Matcher::clone_shift_expressions = false;
1908 
1909 // Do we need to mask the count passed to shift instructions or does
1910 // the cpu only look at the lower 5/6 bits anyway?
1911 const bool Matcher::need_masked_shift_count = false;
1912 
1913 bool Matcher::narrow_oop_use_complex_address() {
1914   NOT_LP64(ShouldNotCallThis());
1915   assert(UseCompressedOops, "only for compressed oops code");
1916   return false;
1917 }
1918 
1919 bool Matcher::narrow_klass_use_complex_address() {
1920   NOT_LP64(ShouldNotCallThis());
1921   assert(UseCompressedClassPointers, "only for compressed klass code");
1922   return false;
1923 }
1924 
1925 // Is it better to copy float constants, or load them directly from memory?
1926 // Intel can load a float constant from a direct address, requiring no
1927 // extra registers.  Most RISCs will have to materialize an address into a
1928 // register first, so they would do better to copy the constant from stack.
1929 const bool Matcher::rematerialize_float_constants = false;
1930 
1931 // If CPU can load and store mis-aligned doubles directly then no fixup is
1932 // needed.  Else we split the double into 2 integer pieces and move it
1933 // piece-by-piece.  Only happens when passing doubles into C code as the
1934 // Java calling convention forces doubles to be aligned.
1935 #ifdef _LP64
1936 const bool Matcher::misaligned_doubles_ok = true;
1937 #else
1938 const bool Matcher::misaligned_doubles_ok = false;
1939 #endif
1940 
1941 // No-op on SPARC.
1942 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1943 }
1944 
1945 // Advertise here if the CPU requires explicit rounding operations
1946 // to implement the UseStrictFP mode.
1947 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1948 
1949 // Are floats conerted to double when stored to stack during deoptimization?
1950 // Sparc does not handle callee-save floats.
1951 bool Matcher::float_in_double() { return false; }
1952 
1953 // Do ints take an entire long register or just half?
1954 // Note that we if-def off of _LP64.
1955 // The relevant question is how the int is callee-saved.  In _LP64
1956 // the whole long is written but de-opt'ing will have to extract
1957 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1958 #ifdef _LP64
1959 const bool Matcher::int_in_long = true;
1960 #else
1961 const bool Matcher::int_in_long = false;
1962 #endif
1963 
1964 // Return whether or not this register is ever used as an argument.  This
1965 // function is used on startup to build the trampoline stubs in generateOptoStub.
1966 // Registers not mentioned will be killed by the VM call in the trampoline, and
1967 // arguments in those registers not be available to the callee.
1968 bool Matcher::can_be_java_arg( int reg ) {
1969   // Standard sparc 6 args in registers
1970   if( reg == R_I0_num ||
1971       reg == R_I1_num ||
1972       reg == R_I2_num ||
1973       reg == R_I3_num ||
1974       reg == R_I4_num ||
1975       reg == R_I5_num ) return true;
1976 #ifdef _LP64
1977   // 64-bit builds can pass 64-bit pointers and longs in
1978   // the high I registers
1979   if( reg == R_I0H_num ||
1980       reg == R_I1H_num ||
1981       reg == R_I2H_num ||
1982       reg == R_I3H_num ||
1983       reg == R_I4H_num ||
1984       reg == R_I5H_num ) return true;
1985 
1986   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1987     return true;
1988   }
1989 
1990 #else
1991   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1992   // Longs cannot be passed in O regs, because O regs become I regs
1993   // after a 'save' and I regs get their high bits chopped off on
1994   // interrupt.
1995   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1996   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1997 #endif
1998   // A few float args in registers
1999   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2000 
2001   return false;
2002 }
2003 
2004 bool Matcher::is_spillable_arg( int reg ) {
2005   return can_be_java_arg(reg);
2006 }
2007 
2008 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2009   // Use hardware SDIVX instruction when it is
2010   // faster than a code which use multiply.
2011   return VM_Version::has_fast_idiv();
2012 }
2013 
2014 // Register for DIVI projection of divmodI
2015 RegMask Matcher::divI_proj_mask() {
2016   ShouldNotReachHere();
2017   return RegMask();
2018 }
2019 
2020 // Register for MODI projection of divmodI
2021 RegMask Matcher::modI_proj_mask() {
2022   ShouldNotReachHere();
2023   return RegMask();
2024 }
2025 
2026 // Register for DIVL projection of divmodL
2027 RegMask Matcher::divL_proj_mask() {
2028   ShouldNotReachHere();
2029   return RegMask();
2030 }
2031 
2032 // Register for MODL projection of divmodL
2033 RegMask Matcher::modL_proj_mask() {
2034   ShouldNotReachHere();
2035   return RegMask();
2036 }
2037 
2038 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2039   return L7_REGP_mask();
2040 }
2041 
2042 %}
2043 
2044 
2045 // The intptr_t operand types, defined by textual substitution.
2046 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2047 #ifdef _LP64
2048 #define immX      immL
2049 #define immX13    immL13
2050 #define immX13m7  immL13m7
2051 #define iRegX     iRegL
2052 #define g1RegX    g1RegL
2053 #else
2054 #define immX      immI
2055 #define immX13    immI13
2056 #define immX13m7  immI13m7
2057 #define iRegX     iRegI
2058 #define g1RegX    g1RegI
2059 #endif
2060 
2061 //----------ENCODING BLOCK-----------------------------------------------------
2062 // This block specifies the encoding classes used by the compiler to output
2063 // byte streams.  Encoding classes are parameterized macros used by
2064 // Machine Instruction Nodes in order to generate the bit encoding of the
2065 // instruction.  Operands specify their base encoding interface with the
2066 // interface keyword.  There are currently supported four interfaces,
2067 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2068 // operand to generate a function which returns its register number when
2069 // queried.   CONST_INTER causes an operand to generate a function which
2070 // returns the value of the constant when queried.  MEMORY_INTER causes an
2071 // operand to generate four functions which return the Base Register, the
2072 // Index Register, the Scale Value, and the Offset Value of the operand when
2073 // queried.  COND_INTER causes an operand to generate six functions which
2074 // return the encoding code (ie - encoding bits for the instruction)
2075 // associated with each basic boolean condition for a conditional instruction.
2076 //
2077 // Instructions specify two basic values for encoding.  Again, a function
2078 // is available to check if the constant displacement is an oop. They use the
2079 // ins_encode keyword to specify their encoding classes (which must be
2080 // a sequence of enc_class names, and their parameters, specified in
2081 // the encoding block), and they use the
2082 // opcode keyword to specify, in order, their primary, secondary, and
2083 // tertiary opcode.  Only the opcode sections which a particular instruction
2084 // needs for encoding need to be specified.
2085 encode %{
2086   enc_class enc_untested %{
2087 #ifdef ASSERT
2088     MacroAssembler _masm(&cbuf);
2089     __ untested("encoding");
2090 #endif
2091   %}
2092 
2093   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2094     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2095                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2096   %}
2097 
2098   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2099     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2100                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2101   %}
2102 
2103   enc_class form3_mem_prefetch_read( memory mem ) %{
2104     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2105                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2106   %}
2107 
2108   enc_class form3_mem_prefetch_write( memory mem ) %{
2109     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2110                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2111   %}
2112 
2113   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2114     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2115     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2116     guarantee($mem$$index == R_G0_enc, "double index?");
2117     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2118     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2119     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2120     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2121   %}
2122 
2123   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2124     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2125     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2126     guarantee($mem$$index == R_G0_enc, "double index?");
2127     // Load long with 2 instructions
2128     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2129     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2130   %}
2131 
2132   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2133   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2134     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2135     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2136   %}
2137 
2138   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2139     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2140     if( $rs2$$reg != $rd$$reg )
2141       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2142   %}
2143 
2144   // Target lo half of long
2145   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2146     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2147     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2148       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2149   %}
2150 
2151   // Source lo half of long
2152   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2153     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2154     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2155       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2156   %}
2157 
2158   // Target hi half of long
2159   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2160     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2161   %}
2162 
2163   // Source lo half of long, and leave it sign extended.
2164   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2165     // Sign extend low half
2166     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2167   %}
2168 
2169   // Source hi half of long, and leave it sign extended.
2170   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2171     // Shift high half to low half
2172     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2173   %}
2174 
2175   // Source hi half of long
2176   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2177     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2178     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2179       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2180   %}
2181 
2182   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2183     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2184   %}
2185 
2186   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2187     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2188     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2189   %}
2190 
2191   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2192     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2193     // clear if nothing else is happening
2194     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2195     // blt,a,pn done
2196     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2197     // mov dst,-1 in delay slot
2198     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2199   %}
2200 
2201   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2202     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2203   %}
2204 
2205   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2206     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2207   %}
2208 
2209   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2210     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2211   %}
2212 
2213   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2214     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2215   %}
2216 
2217   enc_class move_return_pc_to_o1() %{
2218     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2219   %}
2220 
2221 #ifdef _LP64
2222   /* %%% merge with enc_to_bool */
2223   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2224     MacroAssembler _masm(&cbuf);
2225 
2226     Register   src_reg = reg_to_register_object($src$$reg);
2227     Register   dst_reg = reg_to_register_object($dst$$reg);
2228     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2229   %}
2230 #endif
2231 
2232   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2233     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2234     MacroAssembler _masm(&cbuf);
2235 
2236     Register   p_reg = reg_to_register_object($p$$reg);
2237     Register   q_reg = reg_to_register_object($q$$reg);
2238     Register   y_reg = reg_to_register_object($y$$reg);
2239     Register tmp_reg = reg_to_register_object($tmp$$reg);
2240 
2241     __ subcc( p_reg, q_reg,   p_reg );
2242     __ add  ( p_reg, y_reg, tmp_reg );
2243     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2244   %}
2245 
2246   enc_class form_d2i_helper(regD src, regF dst) %{
2247     // fcmp %fcc0,$src,$src
2248     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2249     // branch %fcc0 not-nan, predict taken
2250     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2251     // fdtoi $src,$dst
2252     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2253     // fitos $dst,$dst (if nan)
2254     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2255     // clear $dst (if nan)
2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2257     // carry on here...
2258   %}
2259 
2260   enc_class form_d2l_helper(regD src, regD dst) %{
2261     // fcmp %fcc0,$src,$src  check for NAN
2262     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2263     // branch %fcc0 not-nan, predict taken
2264     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2265     // fdtox $src,$dst   convert in delay slot
2266     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2267     // fxtod $dst,$dst  (if nan)
2268     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2269     // clear $dst (if nan)
2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2271     // carry on here...
2272   %}
2273 
2274   enc_class form_f2i_helper(regF src, regF dst) %{
2275     // fcmps %fcc0,$src,$src
2276     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2277     // branch %fcc0 not-nan, predict taken
2278     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2279     // fstoi $src,$dst
2280     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2281     // fitos $dst,$dst (if nan)
2282     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2283     // clear $dst (if nan)
2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2285     // carry on here...
2286   %}
2287 
2288   enc_class form_f2l_helper(regF src, regD dst) %{
2289     // fcmps %fcc0,$src,$src
2290     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2291     // branch %fcc0 not-nan, predict taken
2292     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2293     // fstox $src,$dst
2294     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2295     // fxtod $dst,$dst (if nan)
2296     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2297     // clear $dst (if nan)
2298     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2299     // carry on here...
2300   %}
2301 
2302   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2303   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2304   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2305   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2306 
2307   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2308 
2309   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2310   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2311 
2312   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2313     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2314   %}
2315 
2316   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2317     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2318   %}
2319 
2320   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2321     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2322   %}
2323 
2324   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2325     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2326   %}
2327 
2328   enc_class form3_convI2F(regF rs2, regF rd) %{
2329     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2330   %}
2331 
2332   // Encloding class for traceable jumps
2333   enc_class form_jmpl(g3RegP dest) %{
2334     emit_jmpl(cbuf, $dest$$reg);
2335   %}
2336 
2337   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2338     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2339   %}
2340 
2341   enc_class form2_nop() %{
2342     emit_nop(cbuf);
2343   %}
2344 
2345   enc_class form2_illtrap() %{
2346     emit_illtrap(cbuf);
2347   %}
2348 
2349 
2350   // Compare longs and convert into -1, 0, 1.
2351   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2352     // CMP $src1,$src2
2353     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2354     // blt,a,pn done
2355     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2356     // mov dst,-1 in delay slot
2357     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2358     // bgt,a,pn done
2359     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2360     // mov dst,1 in delay slot
2361     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2362     // CLR    $dst
2363     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2364   %}
2365 
2366   enc_class enc_PartialSubtypeCheck() %{
2367     MacroAssembler _masm(&cbuf);
2368     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2369     __ delayed()->nop();
2370   %}
2371 
2372   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2373     MacroAssembler _masm(&cbuf);
2374     Label* L = $labl$$label;
2375     Assembler::Predict predict_taken =
2376       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2377 
2378     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2379     __ delayed()->nop();
2380   %}
2381 
2382   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2383     MacroAssembler _masm(&cbuf);
2384     Label* L = $labl$$label;
2385     Assembler::Predict predict_taken =
2386       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2387 
2388     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2389     __ delayed()->nop();
2390   %}
2391 
2392   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2393     int op = (Assembler::arith_op << 30) |
2394              ($dst$$reg << 25) |
2395              (Assembler::movcc_op3 << 19) |
2396              (1 << 18) |                    // cc2 bit for 'icc'
2397              ($cmp$$cmpcode << 14) |
2398              (0 << 13) |                    // select register move
2399              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2400              ($src$$reg << 0);
2401     cbuf.insts()->emit_int32(op);
2402   %}
2403 
2404   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2405     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2406     int op = (Assembler::arith_op << 30) |
2407              ($dst$$reg << 25) |
2408              (Assembler::movcc_op3 << 19) |
2409              (1 << 18) |                    // cc2 bit for 'icc'
2410              ($cmp$$cmpcode << 14) |
2411              (1 << 13) |                    // select immediate move
2412              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2413              (simm11 << 0);
2414     cbuf.insts()->emit_int32(op);
2415   %}
2416 
2417   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2418     int op = (Assembler::arith_op << 30) |
2419              ($dst$$reg << 25) |
2420              (Assembler::movcc_op3 << 19) |
2421              (0 << 18) |                    // cc2 bit for 'fccX'
2422              ($cmp$$cmpcode << 14) |
2423              (0 << 13) |                    // select register move
2424              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2425              ($src$$reg << 0);
2426     cbuf.insts()->emit_int32(op);
2427   %}
2428 
2429   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2430     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2431     int op = (Assembler::arith_op << 30) |
2432              ($dst$$reg << 25) |
2433              (Assembler::movcc_op3 << 19) |
2434              (0 << 18) |                    // cc2 bit for 'fccX'
2435              ($cmp$$cmpcode << 14) |
2436              (1 << 13) |                    // select immediate move
2437              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2438              (simm11 << 0);
2439     cbuf.insts()->emit_int32(op);
2440   %}
2441 
2442   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2443     int op = (Assembler::arith_op << 30) |
2444              ($dst$$reg << 25) |
2445              (Assembler::fpop2_op3 << 19) |
2446              (0 << 18) |
2447              ($cmp$$cmpcode << 14) |
2448              (1 << 13) |                    // select register move
2449              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2450              ($primary << 5) |              // select single, double or quad
2451              ($src$$reg << 0);
2452     cbuf.insts()->emit_int32(op);
2453   %}
2454 
2455   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2456     int op = (Assembler::arith_op << 30) |
2457              ($dst$$reg << 25) |
2458              (Assembler::fpop2_op3 << 19) |
2459              (0 << 18) |
2460              ($cmp$$cmpcode << 14) |
2461              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2462              ($primary << 5) |              // select single, double or quad
2463              ($src$$reg << 0);
2464     cbuf.insts()->emit_int32(op);
2465   %}
2466 
2467   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2468   // the condition comes from opcode-field instead of an argument.
2469   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2470     int op = (Assembler::arith_op << 30) |
2471              ($dst$$reg << 25) |
2472              (Assembler::movcc_op3 << 19) |
2473              (1 << 18) |                    // cc2 bit for 'icc'
2474              ($primary << 14) |
2475              (0 << 13) |                    // select register move
2476              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2477              ($src$$reg << 0);
2478     cbuf.insts()->emit_int32(op);
2479   %}
2480 
2481   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2482     int op = (Assembler::arith_op << 30) |
2483              ($dst$$reg << 25) |
2484              (Assembler::movcc_op3 << 19) |
2485              (6 << 16) |                    // cc2 bit for 'xcc'
2486              ($primary << 14) |
2487              (0 << 13) |                    // select register move
2488              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2489              ($src$$reg << 0);
2490     cbuf.insts()->emit_int32(op);
2491   %}
2492 
2493   enc_class Set13( immI13 src, iRegI rd ) %{
2494     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2495   %}
2496 
2497   enc_class SetHi22( immI src, iRegI rd ) %{
2498     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2499   %}
2500 
2501   enc_class Set32( immI src, iRegI rd ) %{
2502     MacroAssembler _masm(&cbuf);
2503     __ set($src$$constant, reg_to_register_object($rd$$reg));
2504   %}
2505 
2506   enc_class call_epilog %{
2507     if( VerifyStackAtCalls ) {
2508       MacroAssembler _masm(&cbuf);
2509       int framesize = ra_->C->frame_size_in_bytes();
2510       Register temp_reg = G3;
2511       __ add(SP, framesize, temp_reg);
2512       __ cmp(temp_reg, FP);
2513       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2514     }
2515   %}
2516 
2517   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2518   // to G1 so the register allocator will not have to deal with the misaligned register
2519   // pair.
2520   enc_class adjust_long_from_native_call %{
2521 #ifndef _LP64
2522     if (returns_long()) {
2523       //    sllx  O0,32,O0
2524       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2525       //    srl   O1,0,O1
2526       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2527       //    or    O0,O1,G1
2528       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2529     }
2530 #endif
2531   %}
2532 
2533   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2534     // CALL directly to the runtime
2535     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2536     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2537                     /*preserve_g2=*/true);
2538   %}
2539 
2540   enc_class preserve_SP %{
2541     MacroAssembler _masm(&cbuf);
2542     __ mov(SP, L7_mh_SP_save);
2543   %}
2544 
2545   enc_class restore_SP %{
2546     MacroAssembler _masm(&cbuf);
2547     __ mov(L7_mh_SP_save, SP);
2548   %}
2549 
2550   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2551     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2552     // who we intended to call.
2553     if (!_method) {
2554       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2555     } else if (_optimized_virtual) {
2556       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2557     } else {
2558       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2559     }
2560     if (_method) {  // Emit stub for static call.
2561       CompiledStaticCall::emit_to_interp_stub(cbuf);
2562     }
2563   %}
2564 
2565   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2566     MacroAssembler _masm(&cbuf);
2567     __ set_inst_mark();
2568     int vtable_index = this->_vtable_index;
2569     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2570     if (vtable_index < 0) {
2571       // must be invalid_vtable_index, not nonvirtual_vtable_index
2572       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2573       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2574       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2575       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2576       __ ic_call((address)$meth$$method);
2577     } else {
2578       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2579       // Just go thru the vtable
2580       // get receiver klass (receiver already checked for non-null)
2581       // If we end up going thru a c2i adapter interpreter expects method in G5
2582       int off = __ offset();
2583       __ load_klass(O0, G3_scratch);
2584       int klass_load_size;
2585       if (UseCompressedClassPointers) {
2586         assert(Universe::heap() != NULL, "java heap should be initialized");
2587         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2588       } else {
2589         klass_load_size = 1*BytesPerInstWord;
2590       }
2591       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2592       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2593       if (Assembler::is_simm13(v_off)) {
2594         __ ld_ptr(G3, v_off, G5_method);
2595       } else {
2596         // Generate 2 instructions
2597         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2598         __ or3(G5_method, v_off & 0x3ff, G5_method);
2599         // ld_ptr, set_hi, set
2600         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2601                "Unexpected instruction size(s)");
2602         __ ld_ptr(G3, G5_method, G5_method);
2603       }
2604       // NOTE: for vtable dispatches, the vtable entry will never be null.
2605       // However it may very well end up in handle_wrong_method if the
2606       // method is abstract for the particular class.
2607       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2608       // jump to target (either compiled code or c2iadapter)
2609       __ jmpl(G3_scratch, G0, O7);
2610       __ delayed()->nop();
2611     }
2612   %}
2613 
2614   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2615     MacroAssembler _masm(&cbuf);
2616 
2617     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2618     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2619                               // we might be calling a C2I adapter which needs it.
2620 
2621     assert(temp_reg != G5_ic_reg, "conflicting registers");
2622     // Load nmethod
2623     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2624 
2625     // CALL to compiled java, indirect the contents of G3
2626     __ set_inst_mark();
2627     __ callr(temp_reg, G0);
2628     __ delayed()->nop();
2629   %}
2630 
2631 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2632     MacroAssembler _masm(&cbuf);
2633     Register Rdividend = reg_to_register_object($src1$$reg);
2634     Register Rdivisor = reg_to_register_object($src2$$reg);
2635     Register Rresult = reg_to_register_object($dst$$reg);
2636 
2637     __ sra(Rdivisor, 0, Rdivisor);
2638     __ sra(Rdividend, 0, Rdividend);
2639     __ sdivx(Rdividend, Rdivisor, Rresult);
2640 %}
2641 
2642 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2643     MacroAssembler _masm(&cbuf);
2644 
2645     Register Rdividend = reg_to_register_object($src1$$reg);
2646     int divisor = $imm$$constant;
2647     Register Rresult = reg_to_register_object($dst$$reg);
2648 
2649     __ sra(Rdividend, 0, Rdividend);
2650     __ sdivx(Rdividend, divisor, Rresult);
2651 %}
2652 
2653 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2654     MacroAssembler _masm(&cbuf);
2655     Register Rsrc1 = reg_to_register_object($src1$$reg);
2656     Register Rsrc2 = reg_to_register_object($src2$$reg);
2657     Register Rdst  = reg_to_register_object($dst$$reg);
2658 
2659     __ sra( Rsrc1, 0, Rsrc1 );
2660     __ sra( Rsrc2, 0, Rsrc2 );
2661     __ mulx( Rsrc1, Rsrc2, Rdst );
2662     __ srlx( Rdst, 32, Rdst );
2663 %}
2664 
2665 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2666     MacroAssembler _masm(&cbuf);
2667     Register Rdividend = reg_to_register_object($src1$$reg);
2668     Register Rdivisor = reg_to_register_object($src2$$reg);
2669     Register Rresult = reg_to_register_object($dst$$reg);
2670     Register Rscratch = reg_to_register_object($scratch$$reg);
2671 
2672     assert(Rdividend != Rscratch, "");
2673     assert(Rdivisor  != Rscratch, "");
2674 
2675     __ sra(Rdividend, 0, Rdividend);
2676     __ sra(Rdivisor, 0, Rdivisor);
2677     __ sdivx(Rdividend, Rdivisor, Rscratch);
2678     __ mulx(Rscratch, Rdivisor, Rscratch);
2679     __ sub(Rdividend, Rscratch, Rresult);
2680 %}
2681 
2682 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2683     MacroAssembler _masm(&cbuf);
2684 
2685     Register Rdividend = reg_to_register_object($src1$$reg);
2686     int divisor = $imm$$constant;
2687     Register Rresult = reg_to_register_object($dst$$reg);
2688     Register Rscratch = reg_to_register_object($scratch$$reg);
2689 
2690     assert(Rdividend != Rscratch, "");
2691 
2692     __ sra(Rdividend, 0, Rdividend);
2693     __ sdivx(Rdividend, divisor, Rscratch);
2694     __ mulx(Rscratch, divisor, Rscratch);
2695     __ sub(Rdividend, Rscratch, Rresult);
2696 %}
2697 
2698 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2699     MacroAssembler _masm(&cbuf);
2700 
2701     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2702     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2703 
2704     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2705 %}
2706 
2707 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2708     MacroAssembler _masm(&cbuf);
2709 
2710     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2711     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2712 
2713     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2714 %}
2715 
2716 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2717     MacroAssembler _masm(&cbuf);
2718 
2719     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2720     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2721 
2722     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2723 %}
2724 
2725 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2726     MacroAssembler _masm(&cbuf);
2727 
2728     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2729     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2730 
2731     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2732 %}
2733 
2734 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2735     MacroAssembler _masm(&cbuf);
2736 
2737     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2738     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2739 
2740     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2741 %}
2742 
2743 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2744     MacroAssembler _masm(&cbuf);
2745 
2746     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2747     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2748 
2749     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2750 %}
2751 
2752 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2753     MacroAssembler _masm(&cbuf);
2754 
2755     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2756     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2757 
2758     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2759 %}
2760 
2761 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2762     MacroAssembler _masm(&cbuf);
2763 
2764     Register Roop  = reg_to_register_object($oop$$reg);
2765     Register Rbox  = reg_to_register_object($box$$reg);
2766     Register Rscratch = reg_to_register_object($scratch$$reg);
2767     Register Rmark =    reg_to_register_object($scratch2$$reg);
2768 
2769     assert(Roop  != Rscratch, "");
2770     assert(Roop  != Rmark, "");
2771     assert(Rbox  != Rscratch, "");
2772     assert(Rbox  != Rmark, "");
2773 
2774     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2775 %}
2776 
2777 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2778     MacroAssembler _masm(&cbuf);
2779 
2780     Register Roop  = reg_to_register_object($oop$$reg);
2781     Register Rbox  = reg_to_register_object($box$$reg);
2782     Register Rscratch = reg_to_register_object($scratch$$reg);
2783     Register Rmark =    reg_to_register_object($scratch2$$reg);
2784 
2785     assert(Roop  != Rscratch, "");
2786     assert(Roop  != Rmark, "");
2787     assert(Rbox  != Rscratch, "");
2788     assert(Rbox  != Rmark, "");
2789 
2790     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2791   %}
2792 
2793   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2794     MacroAssembler _masm(&cbuf);
2795     Register Rmem = reg_to_register_object($mem$$reg);
2796     Register Rold = reg_to_register_object($old$$reg);
2797     Register Rnew = reg_to_register_object($new$$reg);
2798 
2799     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2800     __ cmp( Rold, Rnew );
2801   %}
2802 
2803   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2804     Register Rmem = reg_to_register_object($mem$$reg);
2805     Register Rold = reg_to_register_object($old$$reg);
2806     Register Rnew = reg_to_register_object($new$$reg);
2807 
2808     MacroAssembler _masm(&cbuf);
2809     __ mov(Rnew, O7);
2810     __ casx(Rmem, Rold, O7);
2811     __ cmp( Rold, O7 );
2812   %}
2813 
2814   // raw int cas, used for compareAndSwap
2815   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2816     Register Rmem = reg_to_register_object($mem$$reg);
2817     Register Rold = reg_to_register_object($old$$reg);
2818     Register Rnew = reg_to_register_object($new$$reg);
2819 
2820     MacroAssembler _masm(&cbuf);
2821     __ mov(Rnew, O7);
2822     __ cas(Rmem, Rold, O7);
2823     __ cmp( Rold, O7 );
2824   %}
2825 
2826   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2827     Register Rres = reg_to_register_object($res$$reg);
2828 
2829     MacroAssembler _masm(&cbuf);
2830     __ mov(1, Rres);
2831     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2832   %}
2833 
2834   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2835     Register Rres = reg_to_register_object($res$$reg);
2836 
2837     MacroAssembler _masm(&cbuf);
2838     __ mov(1, Rres);
2839     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2840   %}
2841 
2842   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2843     MacroAssembler _masm(&cbuf);
2844     Register Rdst = reg_to_register_object($dst$$reg);
2845     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2846                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2847     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2848                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2849 
2850     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2851     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2852   %}
2853 
2854 
2855   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2856     Label Ldone, Lloop;
2857     MacroAssembler _masm(&cbuf);
2858 
2859     Register   str1_reg = reg_to_register_object($str1$$reg);
2860     Register   str2_reg = reg_to_register_object($str2$$reg);
2861     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2862     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2863     Register result_reg = reg_to_register_object($result$$reg);
2864 
2865     assert(result_reg != str1_reg &&
2866            result_reg != str2_reg &&
2867            result_reg != cnt1_reg &&
2868            result_reg != cnt2_reg ,
2869            "need different registers");
2870 
2871     // Compute the minimum of the string lengths(str1_reg) and the
2872     // difference of the string lengths (stack)
2873 
2874     // See if the lengths are different, and calculate min in str1_reg.
2875     // Stash diff in O7 in case we need it for a tie-breaker.
2876     Label Lskip;
2877     __ subcc(cnt1_reg, cnt2_reg, O7);
2878     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2879     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2880     // cnt2 is shorter, so use its count:
2881     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2882     __ bind(Lskip);
2883 
2884     // reallocate cnt1_reg, cnt2_reg, result_reg
2885     // Note:  limit_reg holds the string length pre-scaled by 2
2886     Register limit_reg =   cnt1_reg;
2887     Register  chr2_reg =   cnt2_reg;
2888     Register  chr1_reg = result_reg;
2889     // str{12} are the base pointers
2890 
2891     // Is the minimum length zero?
2892     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2893     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2894     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2895 
2896     // Load first characters
2897     __ lduh(str1_reg, 0, chr1_reg);
2898     __ lduh(str2_reg, 0, chr2_reg);
2899 
2900     // Compare first characters
2901     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2902     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2903     assert(chr1_reg == result_reg, "result must be pre-placed");
2904     __ delayed()->nop();
2905 
2906     {
2907       // Check after comparing first character to see if strings are equivalent
2908       Label LSkip2;
2909       // Check if the strings start at same location
2910       __ cmp(str1_reg, str2_reg);
2911       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2912       __ delayed()->nop();
2913 
2914       // Check if the length difference is zero (in O7)
2915       __ cmp(G0, O7);
2916       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2917       __ delayed()->mov(G0, result_reg);  // result is zero
2918 
2919       // Strings might not be equal
2920       __ bind(LSkip2);
2921     }
2922 
2923     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2924     __ signx(limit_reg);
2925 
2926     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2927     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2928     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2929 
2930     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2931     __ add(str1_reg, limit_reg, str1_reg);
2932     __ add(str2_reg, limit_reg, str2_reg);
2933     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2934 
2935     // Compare the rest of the characters
2936     __ lduh(str1_reg, limit_reg, chr1_reg);
2937     __ bind(Lloop);
2938     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2939     __ lduh(str2_reg, limit_reg, chr2_reg);
2940     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2941     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2942     assert(chr1_reg == result_reg, "result must be pre-placed");
2943     __ delayed()->inccc(limit_reg, sizeof(jchar));
2944     // annul LDUH if branch is not taken to prevent access past end of string
2945     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2946     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2947 
2948     // If strings are equal up to min length, return the length difference.
2949     __ mov(O7, result_reg);
2950 
2951     // Otherwise, return the difference between the first mismatched chars.
2952     __ bind(Ldone);
2953   %}
2954 
2955 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2956     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2957     MacroAssembler _masm(&cbuf);
2958 
2959     Register   str1_reg = reg_to_register_object($str1$$reg);
2960     Register   str2_reg = reg_to_register_object($str2$$reg);
2961     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2962     Register   tmp1_reg = O7;
2963     Register result_reg = reg_to_register_object($result$$reg);
2964 
2965     assert(result_reg != str1_reg &&
2966            result_reg != str2_reg &&
2967            result_reg !=  cnt_reg &&
2968            result_reg != tmp1_reg ,
2969            "need different registers");
2970 
2971     __ cmp(str1_reg, str2_reg); //same char[] ?
2972     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2973     __ delayed()->add(G0, 1, result_reg);
2974 
2975     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2976     __ delayed()->add(G0, 1, result_reg); // count == 0
2977 
2978     //rename registers
2979     Register limit_reg =    cnt_reg;
2980     Register  chr1_reg = result_reg;
2981     Register  chr2_reg =   tmp1_reg;
2982 
2983     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2984     __ signx(limit_reg);
2985 
2986     //check for alignment and position the pointers to the ends
2987     __ or3(str1_reg, str2_reg, chr1_reg);
2988     __ andcc(chr1_reg, 0x3, chr1_reg);
2989     // notZero means at least one not 4-byte aligned.
2990     // We could optimize the case when both arrays are not aligned
2991     // but it is not frequent case and it requires additional checks.
2992     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2993     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2994 
2995     // Compare char[] arrays aligned to 4 bytes.
2996     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2997                           chr1_reg, chr2_reg, Ldone);
2998     __ ba(Ldone);
2999     __ delayed()->add(G0, 1, result_reg);
3000 
3001     // char by char compare
3002     __ bind(Lchar);
3003     __ add(str1_reg, limit_reg, str1_reg);
3004     __ add(str2_reg, limit_reg, str2_reg);
3005     __ neg(limit_reg); //negate count
3006 
3007     __ lduh(str1_reg, limit_reg, chr1_reg);
3008     // Lchar_loop
3009     __ bind(Lchar_loop);
3010     __ lduh(str2_reg, limit_reg, chr2_reg);
3011     __ cmp(chr1_reg, chr2_reg);
3012     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3013     __ delayed()->mov(G0, result_reg); //not equal
3014     __ inccc(limit_reg, sizeof(jchar));
3015     // annul LDUH if branch is not taken to prevent access past end of string
3016     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3017     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3018 
3019     __ add(G0, 1, result_reg);  //equal
3020 
3021     __ bind(Ldone);
3022   %}
3023 
3024 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3025     Label Lvector, Ldone, Lloop;
3026     MacroAssembler _masm(&cbuf);
3027 
3028     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3029     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3030     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3031     Register   tmp2_reg = O7;
3032     Register result_reg = reg_to_register_object($result$$reg);
3033 
3034     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3035     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3036 
3037     // return true if the same array
3038     __ cmp(ary1_reg, ary2_reg);
3039     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3040     __ delayed()->add(G0, 1, result_reg); // equal
3041 
3042     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3043     __ delayed()->mov(G0, result_reg);    // not equal
3044 
3045     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3046     __ delayed()->mov(G0, result_reg);    // not equal
3047 
3048     //load the lengths of arrays
3049     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3050     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3051 
3052     // return false if the two arrays are not equal length
3053     __ cmp(tmp1_reg, tmp2_reg);
3054     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3055     __ delayed()->mov(G0, result_reg);     // not equal
3056 
3057     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3058     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3059 
3060     // load array addresses
3061     __ add(ary1_reg, base_offset, ary1_reg);
3062     __ add(ary2_reg, base_offset, ary2_reg);
3063 
3064     // renaming registers
3065     Register chr1_reg  =  result_reg; // for characters in ary1
3066     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3067     Register limit_reg =  tmp1_reg;   // length
3068 
3069     // set byte count
3070     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3071 
3072     // Compare char[] arrays aligned to 4 bytes.
3073     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3074                           chr1_reg, chr2_reg, Ldone);
3075     __ add(G0, 1, result_reg); // equals
3076 
3077     __ bind(Ldone);
3078   %}
3079 
3080   enc_class enc_rethrow() %{
3081     cbuf.set_insts_mark();
3082     Register temp_reg = G3;
3083     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3084     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3085     MacroAssembler _masm(&cbuf);
3086 #ifdef ASSERT
3087     __ save_frame(0);
3088     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3089     __ sethi(last_rethrow_addrlit, L1);
3090     Address addr(L1, last_rethrow_addrlit.low10());
3091     __ rdpc(L2);
3092     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3093     __ st_ptr(L2, addr);
3094     __ restore();
3095 #endif
3096     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3097     __ delayed()->nop();
3098   %}
3099 
3100   enc_class emit_mem_nop() %{
3101     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3102     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3103   %}
3104 
3105   enc_class emit_fadd_nop() %{
3106     // Generates the instruction FMOVS f31,f31
3107     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3108   %}
3109 
3110   enc_class emit_br_nop() %{
3111     // Generates the instruction BPN,PN .
3112     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3113   %}
3114 
3115   enc_class enc_membar_acquire %{
3116     MacroAssembler _masm(&cbuf);
3117     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3118   %}
3119 
3120   enc_class enc_membar_release %{
3121     MacroAssembler _masm(&cbuf);
3122     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3123   %}
3124 
3125   enc_class enc_membar_volatile %{
3126     MacroAssembler _masm(&cbuf);
3127     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3128   %}
3129 
3130 %}
3131 
3132 //----------FRAME--------------------------------------------------------------
3133 // Definition of frame structure and management information.
3134 //
3135 //  S T A C K   L A Y O U T    Allocators stack-slot number
3136 //                             |   (to get allocators register number
3137 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3138 //  r   CALLER     |        |
3139 //  o     |        +--------+      pad to even-align allocators stack-slot
3140 //  w     V        |  pad0  |        numbers; owned by CALLER
3141 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3142 //  h     ^        |   in   |  5
3143 //        |        |  args  |  4   Holes in incoming args owned by SELF
3144 //  |     |        |        |  3
3145 //  |     |        +--------+
3146 //  V     |        | old out|      Empty on Intel, window on Sparc
3147 //        |    old |preserve|      Must be even aligned.
3148 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3149 //        |        |   in   |  3   area for Intel ret address
3150 //     Owned by    |preserve|      Empty on Sparc.
3151 //       SELF      +--------+
3152 //        |        |  pad2  |  2   pad to align old SP
3153 //        |        +--------+  1
3154 //        |        | locks  |  0
3155 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3156 //        |        |  pad1  | 11   pad to align new SP
3157 //        |        +--------+
3158 //        |        |        | 10
3159 //        |        | spills |  9   spills
3160 //        V        |        |  8   (pad0 slot for callee)
3161 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3162 //        ^        |  out   |  7
3163 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3164 //     Owned by    +--------+
3165 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3166 //        |    new |preserve|      Must be even-aligned.
3167 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3168 //        |        |        |
3169 //
3170 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3171 //         known from SELF's arguments and the Java calling convention.
3172 //         Region 6-7 is determined per call site.
3173 // Note 2: If the calling convention leaves holes in the incoming argument
3174 //         area, those holes are owned by SELF.  Holes in the outgoing area
3175 //         are owned by the CALLEE.  Holes should not be nessecary in the
3176 //         incoming area, as the Java calling convention is completely under
3177 //         the control of the AD file.  Doubles can be sorted and packed to
3178 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3179 //         varargs C calling conventions.
3180 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3181 //         even aligned with pad0 as needed.
3182 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3183 //         region 6-11 is even aligned; it may be padded out more so that
3184 //         the region from SP to FP meets the minimum stack alignment.
3185 
3186 frame %{
3187   // What direction does stack grow in (assumed to be same for native & Java)
3188   stack_direction(TOWARDS_LOW);
3189 
3190   // These two registers define part of the calling convention
3191   // between compiled code and the interpreter.
3192   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3193   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3194 
3195   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3196   cisc_spilling_operand_name(indOffset);
3197 
3198   // Number of stack slots consumed by a Monitor enter
3199 #ifdef _LP64
3200   sync_stack_slots(2);
3201 #else
3202   sync_stack_slots(1);
3203 #endif
3204 
3205   // Compiled code's Frame Pointer
3206   frame_pointer(R_SP);
3207 
3208   // Stack alignment requirement
3209   stack_alignment(StackAlignmentInBytes);
3210   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3211   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3212 
3213   // Number of stack slots between incoming argument block and the start of
3214   // a new frame.  The PROLOG must add this many slots to the stack.  The
3215   // EPILOG must remove this many slots.
3216   in_preserve_stack_slots(0);
3217 
3218   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3219   // for calls to C.  Supports the var-args backing area for register parms.
3220   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3221 #ifdef _LP64
3222   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3223   varargs_C_out_slots_killed(12);
3224 #else
3225   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3226   varargs_C_out_slots_killed( 7);
3227 #endif
3228 
3229   // The after-PROLOG location of the return address.  Location of
3230   // return address specifies a type (REG or STACK) and a number
3231   // representing the register number (i.e. - use a register name) or
3232   // stack slot.
3233   return_addr(REG R_I7);          // Ret Addr is in register I7
3234 
3235   // Body of function which returns an OptoRegs array locating
3236   // arguments either in registers or in stack slots for calling
3237   // java
3238   calling_convention %{
3239     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3240 
3241   %}
3242 
3243   // Body of function which returns an OptoRegs array locating
3244   // arguments either in registers or in stack slots for callin
3245   // C.
3246   c_calling_convention %{
3247     // This is obviously always outgoing
3248     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3249   %}
3250 
3251   // Location of native (C/C++) and interpreter return values.  This is specified to
3252   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3253   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3254   // to and from the register pairs is done by the appropriate call and epilog
3255   // opcodes.  This simplifies the register allocator.
3256   c_return_value %{
3257     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3258 #ifdef     _LP64
3259     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3260     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3261     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3262     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3263 #else  // !_LP64
3264     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3265     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3266     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3267     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3268 #endif
3269     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3270                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3271   %}
3272 
3273   // Location of compiled Java return values.  Same as C
3274   return_value %{
3275     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3276 #ifdef     _LP64
3277     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3278     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3279     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3280     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3281 #else  // !_LP64
3282     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3283     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3284     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3285     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3286 #endif
3287     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3288                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3289   %}
3290 
3291 %}
3292 
3293 
3294 //----------ATTRIBUTES---------------------------------------------------------
3295 //----------Operand Attributes-------------------------------------------------
3296 op_attrib op_cost(1);          // Required cost attribute
3297 
3298 //----------Instruction Attributes---------------------------------------------
3299 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3300 ins_attrib ins_size(32);           // Required size attribute (in bits)
3301 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3302 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3303                                    // non-matching short branch variant of some
3304                                                             // long branch?
3305 
3306 //----------OPERANDS-----------------------------------------------------------
3307 // Operand definitions must precede instruction definitions for correct parsing
3308 // in the ADLC because operands constitute user defined types which are used in
3309 // instruction definitions.
3310 
3311 //----------Simple Operands----------------------------------------------------
3312 // Immediate Operands
3313 // Integer Immediate: 32-bit
3314 operand immI() %{
3315   match(ConI);
3316 
3317   op_cost(0);
3318   // formats are generated automatically for constants and base registers
3319   format %{ %}
3320   interface(CONST_INTER);
3321 %}
3322 
3323 // Integer Immediate: 8-bit
3324 operand immI8() %{
3325   predicate(Assembler::is_simm8(n->get_int()));
3326   match(ConI);
3327   op_cost(0);
3328   format %{ %}
3329   interface(CONST_INTER);
3330 %}
3331 
3332 // Integer Immediate: 13-bit
3333 operand immI13() %{
3334   predicate(Assembler::is_simm13(n->get_int()));
3335   match(ConI);
3336   op_cost(0);
3337 
3338   format %{ %}
3339   interface(CONST_INTER);
3340 %}
3341 
3342 // Integer Immediate: 13-bit minus 7
3343 operand immI13m7() %{
3344   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3345   match(ConI);
3346   op_cost(0);
3347 
3348   format %{ %}
3349   interface(CONST_INTER);
3350 %}
3351 
3352 // Integer Immediate: 16-bit
3353 operand immI16() %{
3354   predicate(Assembler::is_simm16(n->get_int()));
3355   match(ConI);
3356   op_cost(0);
3357   format %{ %}
3358   interface(CONST_INTER);
3359 %}
3360 
3361 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3362 operand immU12() %{
3363   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3364   match(ConI);
3365   op_cost(0);
3366 
3367   format %{ %}
3368   interface(CONST_INTER);
3369 %}
3370 
3371 // Integer Immediate: 6-bit
3372 operand immU6() %{
3373   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3374   match(ConI);
3375   op_cost(0);
3376   format %{ %}
3377   interface(CONST_INTER);
3378 %}
3379 
3380 // Integer Immediate: 11-bit
3381 operand immI11() %{
3382   predicate(Assembler::is_simm11(n->get_int()));
3383   match(ConI);
3384   op_cost(0);
3385   format %{ %}
3386   interface(CONST_INTER);
3387 %}
3388 
3389 // Integer Immediate: 5-bit
3390 operand immI5() %{
3391   predicate(Assembler::is_simm5(n->get_int()));
3392   match(ConI);
3393   op_cost(0);
3394   format %{ %}
3395   interface(CONST_INTER);
3396 %}
3397 
3398 // Int Immediate non-negative
3399 operand immU31()
3400 %{
3401   predicate(n->get_int() >= 0);
3402   match(ConI);
3403 
3404   op_cost(0);
3405   format %{ %}
3406   interface(CONST_INTER);
3407 %}
3408 
3409 // Integer Immediate: 0-bit
3410 operand immI0() %{
3411   predicate(n->get_int() == 0);
3412   match(ConI);
3413   op_cost(0);
3414 
3415   format %{ %}
3416   interface(CONST_INTER);
3417 %}
3418 
3419 // Integer Immediate: the value 10
3420 operand immI10() %{
3421   predicate(n->get_int() == 10);
3422   match(ConI);
3423   op_cost(0);
3424 
3425   format %{ %}
3426   interface(CONST_INTER);
3427 %}
3428 
3429 // Integer Immediate: the values 0-31
3430 operand immU5() %{
3431   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3432   match(ConI);
3433   op_cost(0);
3434 
3435   format %{ %}
3436   interface(CONST_INTER);
3437 %}
3438 
3439 // Integer Immediate: the values 1-31
3440 operand immI_1_31() %{
3441   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3442   match(ConI);
3443   op_cost(0);
3444 
3445   format %{ %}
3446   interface(CONST_INTER);
3447 %}
3448 
3449 // Integer Immediate: the values 32-63
3450 operand immI_32_63() %{
3451   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3452   match(ConI);
3453   op_cost(0);
3454 
3455   format %{ %}
3456   interface(CONST_INTER);
3457 %}
3458 
3459 // Immediates for special shifts (sign extend)
3460 
3461 // Integer Immediate: the value 16
3462 operand immI_16() %{
3463   predicate(n->get_int() == 16);
3464   match(ConI);
3465   op_cost(0);
3466 
3467   format %{ %}
3468   interface(CONST_INTER);
3469 %}
3470 
3471 // Integer Immediate: the value 24
3472 operand immI_24() %{
3473   predicate(n->get_int() == 24);
3474   match(ConI);
3475   op_cost(0);
3476 
3477   format %{ %}
3478   interface(CONST_INTER);
3479 %}
3480 
3481 // Integer Immediate: the value 255
3482 operand immI_255() %{
3483   predicate( n->get_int() == 255 );
3484   match(ConI);
3485   op_cost(0);
3486 
3487   format %{ %}
3488   interface(CONST_INTER);
3489 %}
3490 
3491 // Integer Immediate: the value 65535
3492 operand immI_65535() %{
3493   predicate(n->get_int() == 65535);
3494   match(ConI);
3495   op_cost(0);
3496 
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Long Immediate: the value FF
3502 operand immL_FF() %{
3503   predicate( n->get_long() == 0xFFL );
3504   match(ConL);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Long Immediate: the value FFFF
3512 operand immL_FFFF() %{
3513   predicate( n->get_long() == 0xFFFFL );
3514   match(ConL);
3515   op_cost(0);
3516 
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 // Pointer Immediate: 32 or 64-bit
3522 operand immP() %{
3523   match(ConP);
3524 
3525   op_cost(5);
3526   // formats are generated automatically for constants and base registers
3527   format %{ %}
3528   interface(CONST_INTER);
3529 %}
3530 
3531 #ifdef _LP64
3532 // Pointer Immediate: 64-bit
3533 operand immP_set() %{
3534   predicate(!VM_Version::is_niagara_plus());
3535   match(ConP);
3536 
3537   op_cost(5);
3538   // formats are generated automatically for constants and base registers
3539   format %{ %}
3540   interface(CONST_INTER);
3541 %}
3542 
3543 // Pointer Immediate: 64-bit
3544 // From Niagara2 processors on a load should be better than materializing.
3545 operand immP_load() %{
3546   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3547   match(ConP);
3548 
3549   op_cost(5);
3550   // formats are generated automatically for constants and base registers
3551   format %{ %}
3552   interface(CONST_INTER);
3553 %}
3554 
3555 // Pointer Immediate: 64-bit
3556 operand immP_no_oop_cheap() %{
3557   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3558   match(ConP);
3559 
3560   op_cost(5);
3561   // formats are generated automatically for constants and base registers
3562   format %{ %}
3563   interface(CONST_INTER);
3564 %}
3565 #endif
3566 
3567 operand immP13() %{
3568   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3569   match(ConP);
3570   op_cost(0);
3571 
3572   format %{ %}
3573   interface(CONST_INTER);
3574 %}
3575 
3576 operand immP0() %{
3577   predicate(n->get_ptr() == 0);
3578   match(ConP);
3579   op_cost(0);
3580 
3581   format %{ %}
3582   interface(CONST_INTER);
3583 %}
3584 
3585 operand immP_poll() %{
3586   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3587   match(ConP);
3588 
3589   // formats are generated automatically for constants and base registers
3590   format %{ %}
3591   interface(CONST_INTER);
3592 %}
3593 
3594 // Pointer Immediate
3595 operand immN()
3596 %{
3597   match(ConN);
3598 
3599   op_cost(10);
3600   format %{ %}
3601   interface(CONST_INTER);
3602 %}
3603 
3604 operand immNKlass()
3605 %{
3606   match(ConNKlass);
3607 
3608   op_cost(10);
3609   format %{ %}
3610   interface(CONST_INTER);
3611 %}
3612 
3613 // NULL Pointer Immediate
3614 operand immN0()
3615 %{
3616   predicate(n->get_narrowcon() == 0);
3617   match(ConN);
3618 
3619   op_cost(0);
3620   format %{ %}
3621   interface(CONST_INTER);
3622 %}
3623 
3624 operand immL() %{
3625   match(ConL);
3626   op_cost(40);
3627   // formats are generated automatically for constants and base registers
3628   format %{ %}
3629   interface(CONST_INTER);
3630 %}
3631 
3632 operand immL0() %{
3633   predicate(n->get_long() == 0L);
3634   match(ConL);
3635   op_cost(0);
3636   // formats are generated automatically for constants and base registers
3637   format %{ %}
3638   interface(CONST_INTER);
3639 %}
3640 
3641 // Integer Immediate: 5-bit
3642 operand immL5() %{
3643   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3644   match(ConL);
3645   op_cost(0);
3646   format %{ %}
3647   interface(CONST_INTER);
3648 %}
3649 
3650 // Long Immediate: 13-bit
3651 operand immL13() %{
3652   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3653   match(ConL);
3654   op_cost(0);
3655 
3656   format %{ %}
3657   interface(CONST_INTER);
3658 %}
3659 
3660 // Long Immediate: 13-bit minus 7
3661 operand immL13m7() %{
3662   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3663   match(ConL);
3664   op_cost(0);
3665 
3666   format %{ %}
3667   interface(CONST_INTER);
3668 %}
3669 
3670 // Long Immediate: low 32-bit mask
3671 operand immL_32bits() %{
3672   predicate(n->get_long() == 0xFFFFFFFFL);
3673   match(ConL);
3674   op_cost(0);
3675 
3676   format %{ %}
3677   interface(CONST_INTER);
3678 %}
3679 
3680 // Long Immediate: cheap (materialize in <= 3 instructions)
3681 operand immL_cheap() %{
3682   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3683   match(ConL);
3684   op_cost(0);
3685 
3686   format %{ %}
3687   interface(CONST_INTER);
3688 %}
3689 
3690 // Long Immediate: expensive (materialize in > 3 instructions)
3691 operand immL_expensive() %{
3692   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3693   match(ConL);
3694   op_cost(0);
3695 
3696   format %{ %}
3697   interface(CONST_INTER);
3698 %}
3699 
3700 // Double Immediate
3701 operand immD() %{
3702   match(ConD);
3703 
3704   op_cost(40);
3705   format %{ %}
3706   interface(CONST_INTER);
3707 %}
3708 
3709 operand immD0() %{
3710 #ifdef _LP64
3711   // on 64-bit architectures this comparision is faster
3712   predicate(jlong_cast(n->getd()) == 0);
3713 #else
3714   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3715 #endif
3716   match(ConD);
3717 
3718   op_cost(0);
3719   format %{ %}
3720   interface(CONST_INTER);
3721 %}
3722 
3723 // Float Immediate
3724 operand immF() %{
3725   match(ConF);
3726 
3727   op_cost(20);
3728   format %{ %}
3729   interface(CONST_INTER);
3730 %}
3731 
3732 // Float Immediate: 0
3733 operand immF0() %{
3734   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3735   match(ConF);
3736 
3737   op_cost(0);
3738   format %{ %}
3739   interface(CONST_INTER);
3740 %}
3741 
3742 // Integer Register Operands
3743 // Integer Register
3744 operand iRegI() %{
3745   constraint(ALLOC_IN_RC(int_reg));
3746   match(RegI);
3747 
3748   match(notemp_iRegI);
3749   match(g1RegI);
3750   match(o0RegI);
3751   match(iRegIsafe);
3752 
3753   format %{ %}
3754   interface(REG_INTER);
3755 %}
3756 
3757 operand notemp_iRegI() %{
3758   constraint(ALLOC_IN_RC(notemp_int_reg));
3759   match(RegI);
3760 
3761   match(o0RegI);
3762 
3763   format %{ %}
3764   interface(REG_INTER);
3765 %}
3766 
3767 operand o0RegI() %{
3768   constraint(ALLOC_IN_RC(o0_regI));
3769   match(iRegI);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 // Pointer Register
3776 operand iRegP() %{
3777   constraint(ALLOC_IN_RC(ptr_reg));
3778   match(RegP);
3779 
3780   match(lock_ptr_RegP);
3781   match(g1RegP);
3782   match(g2RegP);
3783   match(g3RegP);
3784   match(g4RegP);
3785   match(i0RegP);
3786   match(o0RegP);
3787   match(o1RegP);
3788   match(l7RegP);
3789 
3790   format %{ %}
3791   interface(REG_INTER);
3792 %}
3793 
3794 operand sp_ptr_RegP() %{
3795   constraint(ALLOC_IN_RC(sp_ptr_reg));
3796   match(RegP);
3797   match(iRegP);
3798 
3799   format %{ %}
3800   interface(REG_INTER);
3801 %}
3802 
3803 operand lock_ptr_RegP() %{
3804   constraint(ALLOC_IN_RC(lock_ptr_reg));
3805   match(RegP);
3806   match(i0RegP);
3807   match(o0RegP);
3808   match(o1RegP);
3809   match(l7RegP);
3810 
3811   format %{ %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 operand g1RegP() %{
3816   constraint(ALLOC_IN_RC(g1_regP));
3817   match(iRegP);
3818 
3819   format %{ %}
3820   interface(REG_INTER);
3821 %}
3822 
3823 operand g2RegP() %{
3824   constraint(ALLOC_IN_RC(g2_regP));
3825   match(iRegP);
3826 
3827   format %{ %}
3828   interface(REG_INTER);
3829 %}
3830 
3831 operand g3RegP() %{
3832   constraint(ALLOC_IN_RC(g3_regP));
3833   match(iRegP);
3834 
3835   format %{ %}
3836   interface(REG_INTER);
3837 %}
3838 
3839 operand g1RegI() %{
3840   constraint(ALLOC_IN_RC(g1_regI));
3841   match(iRegI);
3842 
3843   format %{ %}
3844   interface(REG_INTER);
3845 %}
3846 
3847 operand g3RegI() %{
3848   constraint(ALLOC_IN_RC(g3_regI));
3849   match(iRegI);
3850 
3851   format %{ %}
3852   interface(REG_INTER);
3853 %}
3854 
3855 operand g4RegI() %{
3856   constraint(ALLOC_IN_RC(g4_regI));
3857   match(iRegI);
3858 
3859   format %{ %}
3860   interface(REG_INTER);
3861 %}
3862 
3863 operand g4RegP() %{
3864   constraint(ALLOC_IN_RC(g4_regP));
3865   match(iRegP);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand i0RegP() %{
3872   constraint(ALLOC_IN_RC(i0_regP));
3873   match(iRegP);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 operand o0RegP() %{
3880   constraint(ALLOC_IN_RC(o0_regP));
3881   match(iRegP);
3882 
3883   format %{ %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand o1RegP() %{
3888   constraint(ALLOC_IN_RC(o1_regP));
3889   match(iRegP);
3890 
3891   format %{ %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 operand o2RegP() %{
3896   constraint(ALLOC_IN_RC(o2_regP));
3897   match(iRegP);
3898 
3899   format %{ %}
3900   interface(REG_INTER);
3901 %}
3902 
3903 operand o7RegP() %{
3904   constraint(ALLOC_IN_RC(o7_regP));
3905   match(iRegP);
3906 
3907   format %{ %}
3908   interface(REG_INTER);
3909 %}
3910 
3911 operand l7RegP() %{
3912   constraint(ALLOC_IN_RC(l7_regP));
3913   match(iRegP);
3914 
3915   format %{ %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 operand o7RegI() %{
3920   constraint(ALLOC_IN_RC(o7_regI));
3921   match(iRegI);
3922 
3923   format %{ %}
3924   interface(REG_INTER);
3925 %}
3926 
3927 operand iRegN() %{
3928   constraint(ALLOC_IN_RC(int_reg));
3929   match(RegN);
3930 
3931   format %{ %}
3932   interface(REG_INTER);
3933 %}
3934 
3935 // Long Register
3936 operand iRegL() %{
3937   constraint(ALLOC_IN_RC(long_reg));
3938   match(RegL);
3939 
3940   format %{ %}
3941   interface(REG_INTER);
3942 %}
3943 
3944 operand o2RegL() %{
3945   constraint(ALLOC_IN_RC(o2_regL));
3946   match(iRegL);
3947 
3948   format %{ %}
3949   interface(REG_INTER);
3950 %}
3951 
3952 operand o7RegL() %{
3953   constraint(ALLOC_IN_RC(o7_regL));
3954   match(iRegL);
3955 
3956   format %{ %}
3957   interface(REG_INTER);
3958 %}
3959 
3960 operand g1RegL() %{
3961   constraint(ALLOC_IN_RC(g1_regL));
3962   match(iRegL);
3963 
3964   format %{ %}
3965   interface(REG_INTER);
3966 %}
3967 
3968 operand g3RegL() %{
3969   constraint(ALLOC_IN_RC(g3_regL));
3970   match(iRegL);
3971 
3972   format %{ %}
3973   interface(REG_INTER);
3974 %}
3975 
3976 // Int Register safe
3977 // This is 64bit safe
3978 operand iRegIsafe() %{
3979   constraint(ALLOC_IN_RC(long_reg));
3980 
3981   match(iRegI);
3982 
3983   format %{ %}
3984   interface(REG_INTER);
3985 %}
3986 
3987 // Condition Code Flag Register
3988 operand flagsReg() %{
3989   constraint(ALLOC_IN_RC(int_flags));
3990   match(RegFlags);
3991 
3992   format %{ "ccr" %} // both ICC and XCC
3993   interface(REG_INTER);
3994 %}
3995 
3996 // Condition Code Register, unsigned comparisons.
3997 operand flagsRegU() %{
3998   constraint(ALLOC_IN_RC(int_flags));
3999   match(RegFlags);
4000 
4001   format %{ "icc_U" %}
4002   interface(REG_INTER);
4003 %}
4004 
4005 // Condition Code Register, pointer comparisons.
4006 operand flagsRegP() %{
4007   constraint(ALLOC_IN_RC(int_flags));
4008   match(RegFlags);
4009 
4010 #ifdef _LP64
4011   format %{ "xcc_P" %}
4012 #else
4013   format %{ "icc_P" %}
4014 #endif
4015   interface(REG_INTER);
4016 %}
4017 
4018 // Condition Code Register, long comparisons.
4019 operand flagsRegL() %{
4020   constraint(ALLOC_IN_RC(int_flags));
4021   match(RegFlags);
4022 
4023   format %{ "xcc_L" %}
4024   interface(REG_INTER);
4025 %}
4026 
4027 // Condition Code Register, floating comparisons, unordered same as "less".
4028 operand flagsRegF() %{
4029   constraint(ALLOC_IN_RC(float_flags));
4030   match(RegFlags);
4031   match(flagsRegF0);
4032 
4033   format %{ %}
4034   interface(REG_INTER);
4035 %}
4036 
4037 operand flagsRegF0() %{
4038   constraint(ALLOC_IN_RC(float_flag0));
4039   match(RegFlags);
4040 
4041   format %{ %}
4042   interface(REG_INTER);
4043 %}
4044 
4045 
4046 // Condition Code Flag Register used by long compare
4047 operand flagsReg_long_LTGE() %{
4048   constraint(ALLOC_IN_RC(int_flags));
4049   match(RegFlags);
4050   format %{ "icc_LTGE" %}
4051   interface(REG_INTER);
4052 %}
4053 operand flagsReg_long_EQNE() %{
4054   constraint(ALLOC_IN_RC(int_flags));
4055   match(RegFlags);
4056   format %{ "icc_EQNE" %}
4057   interface(REG_INTER);
4058 %}
4059 operand flagsReg_long_LEGT() %{
4060   constraint(ALLOC_IN_RC(int_flags));
4061   match(RegFlags);
4062   format %{ "icc_LEGT" %}
4063   interface(REG_INTER);
4064 %}
4065 
4066 
4067 operand regD() %{
4068   constraint(ALLOC_IN_RC(dflt_reg));
4069   match(RegD);
4070 
4071   match(regD_low);
4072 
4073   format %{ %}
4074   interface(REG_INTER);
4075 %}
4076 
4077 operand regF() %{
4078   constraint(ALLOC_IN_RC(sflt_reg));
4079   match(RegF);
4080 
4081   format %{ %}
4082   interface(REG_INTER);
4083 %}
4084 
4085 operand regD_low() %{
4086   constraint(ALLOC_IN_RC(dflt_low_reg));
4087   match(regD);
4088 
4089   format %{ %}
4090   interface(REG_INTER);
4091 %}
4092 
4093 // Special Registers
4094 
4095 // Method Register
4096 operand inline_cache_regP(iRegP reg) %{
4097   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4098   match(reg);
4099   format %{ %}
4100   interface(REG_INTER);
4101 %}
4102 
4103 operand interpreter_method_oop_regP(iRegP reg) %{
4104   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4105   match(reg);
4106   format %{ %}
4107   interface(REG_INTER);
4108 %}
4109 
4110 
4111 //----------Complex Operands---------------------------------------------------
4112 // Indirect Memory Reference
4113 operand indirect(sp_ptr_RegP reg) %{
4114   constraint(ALLOC_IN_RC(sp_ptr_reg));
4115   match(reg);
4116 
4117   op_cost(100);
4118   format %{ "[$reg]" %}
4119   interface(MEMORY_INTER) %{
4120     base($reg);
4121     index(0x0);
4122     scale(0x0);
4123     disp(0x0);
4124   %}
4125 %}
4126 
4127 // Indirect with simm13 Offset
4128 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4129   constraint(ALLOC_IN_RC(sp_ptr_reg));
4130   match(AddP reg offset);
4131 
4132   op_cost(100);
4133   format %{ "[$reg + $offset]" %}
4134   interface(MEMORY_INTER) %{
4135     base($reg);
4136     index(0x0);
4137     scale(0x0);
4138     disp($offset);
4139   %}
4140 %}
4141 
4142 // Indirect with simm13 Offset minus 7
4143 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4144   constraint(ALLOC_IN_RC(sp_ptr_reg));
4145   match(AddP reg offset);
4146 
4147   op_cost(100);
4148   format %{ "[$reg + $offset]" %}
4149   interface(MEMORY_INTER) %{
4150     base($reg);
4151     index(0x0);
4152     scale(0x0);
4153     disp($offset);
4154   %}
4155 %}
4156 
4157 // Note:  Intel has a swapped version also, like this:
4158 //operand indOffsetX(iRegI reg, immP offset) %{
4159 //  constraint(ALLOC_IN_RC(int_reg));
4160 //  match(AddP offset reg);
4161 //
4162 //  op_cost(100);
4163 //  format %{ "[$reg + $offset]" %}
4164 //  interface(MEMORY_INTER) %{
4165 //    base($reg);
4166 //    index(0x0);
4167 //    scale(0x0);
4168 //    disp($offset);
4169 //  %}
4170 //%}
4171 //// However, it doesn't make sense for SPARC, since
4172 // we have no particularly good way to embed oops in
4173 // single instructions.
4174 
4175 // Indirect with Register Index
4176 operand indIndex(iRegP addr, iRegX index) %{
4177   constraint(ALLOC_IN_RC(ptr_reg));
4178   match(AddP addr index);
4179 
4180   op_cost(100);
4181   format %{ "[$addr + $index]" %}
4182   interface(MEMORY_INTER) %{
4183     base($addr);
4184     index($index);
4185     scale(0x0);
4186     disp(0x0);
4187   %}
4188 %}
4189 
4190 //----------Special Memory Operands--------------------------------------------
4191 // Stack Slot Operand - This operand is used for loading and storing temporary
4192 //                      values on the stack where a match requires a value to
4193 //                      flow through memory.
4194 operand stackSlotI(sRegI reg) %{
4195   constraint(ALLOC_IN_RC(stack_slots));
4196   op_cost(100);
4197   //match(RegI);
4198   format %{ "[$reg]" %}
4199   interface(MEMORY_INTER) %{
4200     base(0xE);   // R_SP
4201     index(0x0);
4202     scale(0x0);
4203     disp($reg);  // Stack Offset
4204   %}
4205 %}
4206 
4207 operand stackSlotP(sRegP reg) %{
4208   constraint(ALLOC_IN_RC(stack_slots));
4209   op_cost(100);
4210   //match(RegP);
4211   format %{ "[$reg]" %}
4212   interface(MEMORY_INTER) %{
4213     base(0xE);   // R_SP
4214     index(0x0);
4215     scale(0x0);
4216     disp($reg);  // Stack Offset
4217   %}
4218 %}
4219 
4220 operand stackSlotF(sRegF reg) %{
4221   constraint(ALLOC_IN_RC(stack_slots));
4222   op_cost(100);
4223   //match(RegF);
4224   format %{ "[$reg]" %}
4225   interface(MEMORY_INTER) %{
4226     base(0xE);   // R_SP
4227     index(0x0);
4228     scale(0x0);
4229     disp($reg);  // Stack Offset
4230   %}
4231 %}
4232 operand stackSlotD(sRegD reg) %{
4233   constraint(ALLOC_IN_RC(stack_slots));
4234   op_cost(100);
4235   //match(RegD);
4236   format %{ "[$reg]" %}
4237   interface(MEMORY_INTER) %{
4238     base(0xE);   // R_SP
4239     index(0x0);
4240     scale(0x0);
4241     disp($reg);  // Stack Offset
4242   %}
4243 %}
4244 operand stackSlotL(sRegL reg) %{
4245   constraint(ALLOC_IN_RC(stack_slots));
4246   op_cost(100);
4247   //match(RegL);
4248   format %{ "[$reg]" %}
4249   interface(MEMORY_INTER) %{
4250     base(0xE);   // R_SP
4251     index(0x0);
4252     scale(0x0);
4253     disp($reg);  // Stack Offset
4254   %}
4255 %}
4256 
4257 // Operands for expressing Control Flow
4258 // NOTE:  Label is a predefined operand which should not be redefined in
4259 //        the AD file.  It is generically handled within the ADLC.
4260 
4261 //----------Conditional Branch Operands----------------------------------------
4262 // Comparison Op  - This is the operation of the comparison, and is limited to
4263 //                  the following set of codes:
4264 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4265 //
4266 // Other attributes of the comparison, such as unsignedness, are specified
4267 // by the comparison instruction that sets a condition code flags register.
4268 // That result is represented by a flags operand whose subtype is appropriate
4269 // to the unsignedness (etc.) of the comparison.
4270 //
4271 // Later, the instruction which matches both the Comparison Op (a Bool) and
4272 // the flags (produced by the Cmp) specifies the coding of the comparison op
4273 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4274 
4275 operand cmpOp() %{
4276   match(Bool);
4277 
4278   format %{ "" %}
4279   interface(COND_INTER) %{
4280     equal(0x1);
4281     not_equal(0x9);
4282     less(0x3);
4283     greater_equal(0xB);
4284     less_equal(0x2);
4285     greater(0xA);
4286     overflow(0x7);
4287     no_overflow(0xF);
4288   %}
4289 %}
4290 
4291 // Comparison Op, unsigned
4292 operand cmpOpU() %{
4293   match(Bool);
4294   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4295             n->as_Bool()->_test._test != BoolTest::no_overflow);
4296 
4297   format %{ "u" %}
4298   interface(COND_INTER) %{
4299     equal(0x1);
4300     not_equal(0x9);
4301     less(0x5);
4302     greater_equal(0xD);
4303     less_equal(0x4);
4304     greater(0xC);
4305     overflow(0x7);
4306     no_overflow(0xF);
4307   %}
4308 %}
4309 
4310 // Comparison Op, pointer (same as unsigned)
4311 operand cmpOpP() %{
4312   match(Bool);
4313   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4314             n->as_Bool()->_test._test != BoolTest::no_overflow);
4315 
4316   format %{ "p" %}
4317   interface(COND_INTER) %{
4318     equal(0x1);
4319     not_equal(0x9);
4320     less(0x5);
4321     greater_equal(0xD);
4322     less_equal(0x4);
4323     greater(0xC);
4324     overflow(0x7);
4325     no_overflow(0xF);
4326   %}
4327 %}
4328 
4329 // Comparison Op, branch-register encoding
4330 operand cmpOp_reg() %{
4331   match(Bool);
4332   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4333             n->as_Bool()->_test._test != BoolTest::no_overflow);
4334 
4335   format %{ "" %}
4336   interface(COND_INTER) %{
4337     equal        (0x1);
4338     not_equal    (0x5);
4339     less         (0x3);
4340     greater_equal(0x7);
4341     less_equal   (0x2);
4342     greater      (0x6);
4343     overflow(0x7); // not supported
4344     no_overflow(0xF); // not supported
4345   %}
4346 %}
4347 
4348 // Comparison Code, floating, unordered same as less
4349 operand cmpOpF() %{
4350   match(Bool);
4351   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4352             n->as_Bool()->_test._test != BoolTest::no_overflow);
4353 
4354   format %{ "fl" %}
4355   interface(COND_INTER) %{
4356     equal(0x9);
4357     not_equal(0x1);
4358     less(0x3);
4359     greater_equal(0xB);
4360     less_equal(0xE);
4361     greater(0x6);
4362 
4363     overflow(0x7); // not supported
4364     no_overflow(0xF); // not supported
4365   %}
4366 %}
4367 
4368 // Used by long compare
4369 operand cmpOp_commute() %{
4370   match(Bool);
4371   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4372             n->as_Bool()->_test._test != BoolTest::no_overflow);
4373 
4374   format %{ "" %}
4375   interface(COND_INTER) %{
4376     equal(0x1);
4377     not_equal(0x9);
4378     less(0xA);
4379     greater_equal(0x2);
4380     less_equal(0xB);
4381     greater(0x3);
4382     overflow(0x7);
4383     no_overflow(0xF);
4384   %}
4385 %}
4386 
4387 //----------OPERAND CLASSES----------------------------------------------------
4388 // Operand Classes are groups of operands that are used to simplify
4389 // instruction definitions by not requiring the AD writer to specify separate
4390 // instructions for every form of operand when the instruction accepts
4391 // multiple operand types with the same basic encoding and format.  The classic
4392 // case of this is memory operands.
4393 opclass memory( indirect, indOffset13, indIndex );
4394 opclass indIndexMemory( indIndex );
4395 
4396 //----------PIPELINE-----------------------------------------------------------
4397 pipeline %{
4398 
4399 //----------ATTRIBUTES---------------------------------------------------------
4400 attributes %{
4401   fixed_size_instructions;           // Fixed size instructions
4402   branch_has_delay_slot;             // Branch has delay slot following
4403   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4404   instruction_unit_size = 4;         // An instruction is 4 bytes long
4405   instruction_fetch_unit_size = 16;  // The processor fetches one line
4406   instruction_fetch_units = 1;       // of 16 bytes
4407 
4408   // List of nop instructions
4409   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4410 %}
4411 
4412 //----------RESOURCES----------------------------------------------------------
4413 // Resources are the functional units available to the machine
4414 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4415 
4416 //----------PIPELINE DESCRIPTION-----------------------------------------------
4417 // Pipeline Description specifies the stages in the machine's pipeline
4418 
4419 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4420 
4421 //----------PIPELINE CLASSES---------------------------------------------------
4422 // Pipeline Classes describe the stages in which input and output are
4423 // referenced by the hardware pipeline.
4424 
4425 // Integer ALU reg-reg operation
4426 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4427     single_instruction;
4428     dst   : E(write);
4429     src1  : R(read);
4430     src2  : R(read);
4431     IALU  : R;
4432 %}
4433 
4434 // Integer ALU reg-reg long operation
4435 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4436     instruction_count(2);
4437     dst   : E(write);
4438     src1  : R(read);
4439     src2  : R(read);
4440     IALU  : R;
4441     IALU  : R;
4442 %}
4443 
4444 // Integer ALU reg-reg long dependent operation
4445 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4446     instruction_count(1); multiple_bundles;
4447     dst   : E(write);
4448     src1  : R(read);
4449     src2  : R(read);
4450     cr    : E(write);
4451     IALU  : R(2);
4452 %}
4453 
4454 // Integer ALU reg-imm operaion
4455 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4456     single_instruction;
4457     dst   : E(write);
4458     src1  : R(read);
4459     IALU  : R;
4460 %}
4461 
4462 // Integer ALU reg-reg operation with condition code
4463 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4464     single_instruction;
4465     dst   : E(write);
4466     cr    : E(write);
4467     src1  : R(read);
4468     src2  : R(read);
4469     IALU  : R;
4470 %}
4471 
4472 // Integer ALU reg-imm operation with condition code
4473 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4474     single_instruction;
4475     dst   : E(write);
4476     cr    : E(write);
4477     src1  : R(read);
4478     IALU  : R;
4479 %}
4480 
4481 // Integer ALU zero-reg operation
4482 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4483     single_instruction;
4484     dst   : E(write);
4485     src2  : R(read);
4486     IALU  : R;
4487 %}
4488 
4489 // Integer ALU zero-reg operation with condition code only
4490 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4491     single_instruction;
4492     cr    : E(write);
4493     src   : R(read);
4494     IALU  : R;
4495 %}
4496 
4497 // Integer ALU reg-reg operation with condition code only
4498 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4499     single_instruction;
4500     cr    : E(write);
4501     src1  : R(read);
4502     src2  : R(read);
4503     IALU  : R;
4504 %}
4505 
4506 // Integer ALU reg-imm operation with condition code only
4507 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4508     single_instruction;
4509     cr    : E(write);
4510     src1  : R(read);
4511     IALU  : R;
4512 %}
4513 
4514 // Integer ALU reg-reg-zero operation with condition code only
4515 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4516     single_instruction;
4517     cr    : E(write);
4518     src1  : R(read);
4519     src2  : R(read);
4520     IALU  : R;
4521 %}
4522 
4523 // Integer ALU reg-imm-zero operation with condition code only
4524 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4525     single_instruction;
4526     cr    : E(write);
4527     src1  : R(read);
4528     IALU  : R;
4529 %}
4530 
4531 // Integer ALU reg-reg operation with condition code, src1 modified
4532 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4533     single_instruction;
4534     cr    : E(write);
4535     src1  : E(write);
4536     src1  : R(read);
4537     src2  : R(read);
4538     IALU  : R;
4539 %}
4540 
4541 // Integer ALU reg-imm operation with condition code, src1 modified
4542 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4543     single_instruction;
4544     cr    : E(write);
4545     src1  : E(write);
4546     src1  : R(read);
4547     IALU  : R;
4548 %}
4549 
4550 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4551     multiple_bundles;
4552     dst   : E(write)+4;
4553     cr    : E(write);
4554     src1  : R(read);
4555     src2  : R(read);
4556     IALU  : R(3);
4557     BR    : R(2);
4558 %}
4559 
4560 // Integer ALU operation
4561 pipe_class ialu_none(iRegI dst) %{
4562     single_instruction;
4563     dst   : E(write);
4564     IALU  : R;
4565 %}
4566 
4567 // Integer ALU reg operation
4568 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4569     single_instruction; may_have_no_code;
4570     dst   : E(write);
4571     src   : R(read);
4572     IALU  : R;
4573 %}
4574 
4575 // Integer ALU reg conditional operation
4576 // This instruction has a 1 cycle stall, and cannot execute
4577 // in the same cycle as the instruction setting the condition
4578 // code. We kludge this by pretending to read the condition code
4579 // 1 cycle earlier, and by marking the functional units as busy
4580 // for 2 cycles with the result available 1 cycle later than
4581 // is really the case.
4582 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4583     single_instruction;
4584     op2_out : C(write);
4585     op1     : R(read);
4586     cr      : R(read);       // This is really E, with a 1 cycle stall
4587     BR      : R(2);
4588     MS      : R(2);
4589 %}
4590 
4591 #ifdef _LP64
4592 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4593     instruction_count(1); multiple_bundles;
4594     dst     : C(write)+1;
4595     src     : R(read)+1;
4596     IALU    : R(1);
4597     BR      : E(2);
4598     MS      : E(2);
4599 %}
4600 #endif
4601 
4602 // Integer ALU reg operation
4603 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4604     single_instruction; may_have_no_code;
4605     dst   : E(write);
4606     src   : R(read);
4607     IALU  : R;
4608 %}
4609 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4610     single_instruction; may_have_no_code;
4611     dst   : E(write);
4612     src   : R(read);
4613     IALU  : R;
4614 %}
4615 
4616 // Two integer ALU reg operations
4617 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4618     instruction_count(2);
4619     dst   : E(write);
4620     src   : R(read);
4621     A0    : R;
4622     A1    : R;
4623 %}
4624 
4625 // Two integer ALU reg operations
4626 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4627     instruction_count(2); may_have_no_code;
4628     dst   : E(write);
4629     src   : R(read);
4630     A0    : R;
4631     A1    : R;
4632 %}
4633 
4634 // Integer ALU imm operation
4635 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4636     single_instruction;
4637     dst   : E(write);
4638     IALU  : R;
4639 %}
4640 
4641 // Integer ALU reg-reg with carry operation
4642 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4643     single_instruction;
4644     dst   : E(write);
4645     src1  : R(read);
4646     src2  : R(read);
4647     IALU  : R;
4648 %}
4649 
4650 // Integer ALU cc operation
4651 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4652     single_instruction;
4653     dst   : E(write);
4654     cc    : R(read);
4655     IALU  : R;
4656 %}
4657 
4658 // Integer ALU cc / second IALU operation
4659 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4660     instruction_count(1); multiple_bundles;
4661     dst   : E(write)+1;
4662     src   : R(read);
4663     IALU  : R;
4664 %}
4665 
4666 // Integer ALU cc / second IALU operation
4667 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4668     instruction_count(1); multiple_bundles;
4669     dst   : E(write)+1;
4670     p     : R(read);
4671     q     : R(read);
4672     IALU  : R;
4673 %}
4674 
4675 // Integer ALU hi-lo-reg operation
4676 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4677     instruction_count(1); multiple_bundles;
4678     dst   : E(write)+1;
4679     IALU  : R(2);
4680 %}
4681 
4682 // Float ALU hi-lo-reg operation (with temp)
4683 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4684     instruction_count(1); multiple_bundles;
4685     dst   : E(write)+1;
4686     IALU  : R(2);
4687 %}
4688 
4689 // Long Constant
4690 pipe_class loadConL( iRegL dst, immL src ) %{
4691     instruction_count(2); multiple_bundles;
4692     dst   : E(write)+1;
4693     IALU  : R(2);
4694     IALU  : R(2);
4695 %}
4696 
4697 // Pointer Constant
4698 pipe_class loadConP( iRegP dst, immP src ) %{
4699     instruction_count(0); multiple_bundles;
4700     fixed_latency(6);
4701 %}
4702 
4703 // Polling Address
4704 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4705 #ifdef _LP64
4706     instruction_count(0); multiple_bundles;
4707     fixed_latency(6);
4708 #else
4709     dst   : E(write);
4710     IALU  : R;
4711 #endif
4712 %}
4713 
4714 // Long Constant small
4715 pipe_class loadConLlo( iRegL dst, immL src ) %{
4716     instruction_count(2);
4717     dst   : E(write);
4718     IALU  : R;
4719     IALU  : R;
4720 %}
4721 
4722 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4723 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4724     instruction_count(1); multiple_bundles;
4725     src   : R(read);
4726     dst   : M(write)+1;
4727     IALU  : R;
4728     MS    : E;
4729 %}
4730 
4731 // Integer ALU nop operation
4732 pipe_class ialu_nop() %{
4733     single_instruction;
4734     IALU  : R;
4735 %}
4736 
4737 // Integer ALU nop operation
4738 pipe_class ialu_nop_A0() %{
4739     single_instruction;
4740     A0    : R;
4741 %}
4742 
4743 // Integer ALU nop operation
4744 pipe_class ialu_nop_A1() %{
4745     single_instruction;
4746     A1    : R;
4747 %}
4748 
4749 // Integer Multiply reg-reg operation
4750 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4751     single_instruction;
4752     dst   : E(write);
4753     src1  : R(read);
4754     src2  : R(read);
4755     MS    : R(5);
4756 %}
4757 
4758 // Integer Multiply reg-imm operation
4759 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4760     single_instruction;
4761     dst   : E(write);
4762     src1  : R(read);
4763     MS    : R(5);
4764 %}
4765 
4766 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4767     single_instruction;
4768     dst   : E(write)+4;
4769     src1  : R(read);
4770     src2  : R(read);
4771     MS    : R(6);
4772 %}
4773 
4774 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4775     single_instruction;
4776     dst   : E(write)+4;
4777     src1  : R(read);
4778     MS    : R(6);
4779 %}
4780 
4781 // Integer Divide reg-reg
4782 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4783     instruction_count(1); multiple_bundles;
4784     dst   : E(write);
4785     temp  : E(write);
4786     src1  : R(read);
4787     src2  : R(read);
4788     temp  : R(read);
4789     MS    : R(38);
4790 %}
4791 
4792 // Integer Divide reg-imm
4793 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4794     instruction_count(1); multiple_bundles;
4795     dst   : E(write);
4796     temp  : E(write);
4797     src1  : R(read);
4798     temp  : R(read);
4799     MS    : R(38);
4800 %}
4801 
4802 // Long Divide
4803 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4804     dst  : E(write)+71;
4805     src1 : R(read);
4806     src2 : R(read)+1;
4807     MS   : R(70);
4808 %}
4809 
4810 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4811     dst  : E(write)+71;
4812     src1 : R(read);
4813     MS   : R(70);
4814 %}
4815 
4816 // Floating Point Add Float
4817 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4818     single_instruction;
4819     dst   : X(write);
4820     src1  : E(read);
4821     src2  : E(read);
4822     FA    : R;
4823 %}
4824 
4825 // Floating Point Add Double
4826 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4827     single_instruction;
4828     dst   : X(write);
4829     src1  : E(read);
4830     src2  : E(read);
4831     FA    : R;
4832 %}
4833 
4834 // Floating Point Conditional Move based on integer flags
4835 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4836     single_instruction;
4837     dst   : X(write);
4838     src   : E(read);
4839     cr    : R(read);
4840     FA    : R(2);
4841     BR    : R(2);
4842 %}
4843 
4844 // Floating Point Conditional Move based on integer flags
4845 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4846     single_instruction;
4847     dst   : X(write);
4848     src   : E(read);
4849     cr    : R(read);
4850     FA    : R(2);
4851     BR    : R(2);
4852 %}
4853 
4854 // Floating Point Multiply Float
4855 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4856     single_instruction;
4857     dst   : X(write);
4858     src1  : E(read);
4859     src2  : E(read);
4860     FM    : R;
4861 %}
4862 
4863 // Floating Point Multiply Double
4864 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4865     single_instruction;
4866     dst   : X(write);
4867     src1  : E(read);
4868     src2  : E(read);
4869     FM    : R;
4870 %}
4871 
4872 // Floating Point Divide Float
4873 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4874     single_instruction;
4875     dst   : X(write);
4876     src1  : E(read);
4877     src2  : E(read);
4878     FM    : R;
4879     FDIV  : C(14);
4880 %}
4881 
4882 // Floating Point Divide Double
4883 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4884     single_instruction;
4885     dst   : X(write);
4886     src1  : E(read);
4887     src2  : E(read);
4888     FM    : R;
4889     FDIV  : C(17);
4890 %}
4891 
4892 // Floating Point Move/Negate/Abs Float
4893 pipe_class faddF_reg(regF dst, regF src) %{
4894     single_instruction;
4895     dst   : W(write);
4896     src   : E(read);
4897     FA    : R(1);
4898 %}
4899 
4900 // Floating Point Move/Negate/Abs Double
4901 pipe_class faddD_reg(regD dst, regD src) %{
4902     single_instruction;
4903     dst   : W(write);
4904     src   : E(read);
4905     FA    : R;
4906 %}
4907 
4908 // Floating Point Convert F->D
4909 pipe_class fcvtF2D(regD dst, regF src) %{
4910     single_instruction;
4911     dst   : X(write);
4912     src   : E(read);
4913     FA    : R;
4914 %}
4915 
4916 // Floating Point Convert I->D
4917 pipe_class fcvtI2D(regD dst, regF src) %{
4918     single_instruction;
4919     dst   : X(write);
4920     src   : E(read);
4921     FA    : R;
4922 %}
4923 
4924 // Floating Point Convert LHi->D
4925 pipe_class fcvtLHi2D(regD dst, regD src) %{
4926     single_instruction;
4927     dst   : X(write);
4928     src   : E(read);
4929     FA    : R;
4930 %}
4931 
4932 // Floating Point Convert L->D
4933 pipe_class fcvtL2D(regD dst, regF src) %{
4934     single_instruction;
4935     dst   : X(write);
4936     src   : E(read);
4937     FA    : R;
4938 %}
4939 
4940 // Floating Point Convert L->F
4941 pipe_class fcvtL2F(regD dst, regF src) %{
4942     single_instruction;
4943     dst   : X(write);
4944     src   : E(read);
4945     FA    : R;
4946 %}
4947 
4948 // Floating Point Convert D->F
4949 pipe_class fcvtD2F(regD dst, regF src) %{
4950     single_instruction;
4951     dst   : X(write);
4952     src   : E(read);
4953     FA    : R;
4954 %}
4955 
4956 // Floating Point Convert I->L
4957 pipe_class fcvtI2L(regD dst, regF src) %{
4958     single_instruction;
4959     dst   : X(write);
4960     src   : E(read);
4961     FA    : R;
4962 %}
4963 
4964 // Floating Point Convert D->F
4965 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4966     instruction_count(1); multiple_bundles;
4967     dst   : X(write)+6;
4968     src   : E(read);
4969     FA    : R;
4970 %}
4971 
4972 // Floating Point Convert D->L
4973 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4974     instruction_count(1); multiple_bundles;
4975     dst   : X(write)+6;
4976     src   : E(read);
4977     FA    : R;
4978 %}
4979 
4980 // Floating Point Convert F->I
4981 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4982     instruction_count(1); multiple_bundles;
4983     dst   : X(write)+6;
4984     src   : E(read);
4985     FA    : R;
4986 %}
4987 
4988 // Floating Point Convert F->L
4989 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4990     instruction_count(1); multiple_bundles;
4991     dst   : X(write)+6;
4992     src   : E(read);
4993     FA    : R;
4994 %}
4995 
4996 // Floating Point Convert I->F
4997 pipe_class fcvtI2F(regF dst, regF src) %{
4998     single_instruction;
4999     dst   : X(write);
5000     src   : E(read);
5001     FA    : R;
5002 %}
5003 
5004 // Floating Point Compare
5005 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5006     single_instruction;
5007     cr    : X(write);
5008     src1  : E(read);
5009     src2  : E(read);
5010     FA    : R;
5011 %}
5012 
5013 // Floating Point Compare
5014 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5015     single_instruction;
5016     cr    : X(write);
5017     src1  : E(read);
5018     src2  : E(read);
5019     FA    : R;
5020 %}
5021 
5022 // Floating Add Nop
5023 pipe_class fadd_nop() %{
5024     single_instruction;
5025     FA  : R;
5026 %}
5027 
5028 // Integer Store to Memory
5029 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5030     single_instruction;
5031     mem   : R(read);
5032     src   : C(read);
5033     MS    : R;
5034 %}
5035 
5036 // Integer Store to Memory
5037 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5038     single_instruction;
5039     mem   : R(read);
5040     src   : C(read);
5041     MS    : R;
5042 %}
5043 
5044 // Integer Store Zero to Memory
5045 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5046     single_instruction;
5047     mem   : R(read);
5048     MS    : R;
5049 %}
5050 
5051 // Special Stack Slot Store
5052 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5053     single_instruction;
5054     stkSlot : R(read);
5055     src     : C(read);
5056     MS      : R;
5057 %}
5058 
5059 // Special Stack Slot Store
5060 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5061     instruction_count(2); multiple_bundles;
5062     stkSlot : R(read);
5063     src     : C(read);
5064     MS      : R(2);
5065 %}
5066 
5067 // Float Store
5068 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5069     single_instruction;
5070     mem : R(read);
5071     src : C(read);
5072     MS  : R;
5073 %}
5074 
5075 // Float Store
5076 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5077     single_instruction;
5078     mem : R(read);
5079     MS  : R;
5080 %}
5081 
5082 // Double Store
5083 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5084     instruction_count(1);
5085     mem : R(read);
5086     src : C(read);
5087     MS  : R;
5088 %}
5089 
5090 // Double Store
5091 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5092     single_instruction;
5093     mem : R(read);
5094     MS  : R;
5095 %}
5096 
5097 // Special Stack Slot Float Store
5098 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5099     single_instruction;
5100     stkSlot : R(read);
5101     src     : C(read);
5102     MS      : R;
5103 %}
5104 
5105 // Special Stack Slot Double Store
5106 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5107     single_instruction;
5108     stkSlot : R(read);
5109     src     : C(read);
5110     MS      : R;
5111 %}
5112 
5113 // Integer Load (when sign bit propagation not needed)
5114 pipe_class iload_mem(iRegI dst, memory mem) %{
5115     single_instruction;
5116     mem : R(read);
5117     dst : C(write);
5118     MS  : R;
5119 %}
5120 
5121 // Integer Load from stack operand
5122 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5123     single_instruction;
5124     mem : R(read);
5125     dst : C(write);
5126     MS  : R;
5127 %}
5128 
5129 // Integer Load (when sign bit propagation or masking is needed)
5130 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5131     single_instruction;
5132     mem : R(read);
5133     dst : M(write);
5134     MS  : R;
5135 %}
5136 
5137 // Float Load
5138 pipe_class floadF_mem(regF dst, memory mem) %{
5139     single_instruction;
5140     mem : R(read);
5141     dst : M(write);
5142     MS  : R;
5143 %}
5144 
5145 // Float Load
5146 pipe_class floadD_mem(regD dst, memory mem) %{
5147     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5148     mem : R(read);
5149     dst : M(write);
5150     MS  : R;
5151 %}
5152 
5153 // Float Load
5154 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5155     single_instruction;
5156     stkSlot : R(read);
5157     dst : M(write);
5158     MS  : R;
5159 %}
5160 
5161 // Float Load
5162 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5163     single_instruction;
5164     stkSlot : R(read);
5165     dst : M(write);
5166     MS  : R;
5167 %}
5168 
5169 // Memory Nop
5170 pipe_class mem_nop() %{
5171     single_instruction;
5172     MS  : R;
5173 %}
5174 
5175 pipe_class sethi(iRegP dst, immI src) %{
5176     single_instruction;
5177     dst  : E(write);
5178     IALU : R;
5179 %}
5180 
5181 pipe_class loadPollP(iRegP poll) %{
5182     single_instruction;
5183     poll : R(read);
5184     MS   : R;
5185 %}
5186 
5187 pipe_class br(Universe br, label labl) %{
5188     single_instruction_with_delay_slot;
5189     BR  : R;
5190 %}
5191 
5192 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5193     single_instruction_with_delay_slot;
5194     cr    : E(read);
5195     BR    : R;
5196 %}
5197 
5198 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5199     single_instruction_with_delay_slot;
5200     op1 : E(read);
5201     BR  : R;
5202     MS  : R;
5203 %}
5204 
5205 // Compare and branch
5206 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5207     instruction_count(2); has_delay_slot;
5208     cr    : E(write);
5209     src1  : R(read);
5210     src2  : R(read);
5211     IALU  : R;
5212     BR    : R;
5213 %}
5214 
5215 // Compare and branch
5216 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5217     instruction_count(2); has_delay_slot;
5218     cr    : E(write);
5219     src1  : R(read);
5220     IALU  : R;
5221     BR    : R;
5222 %}
5223 
5224 // Compare and branch using cbcond
5225 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5226     single_instruction;
5227     src1  : E(read);
5228     src2  : E(read);
5229     IALU  : R;
5230     BR    : R;
5231 %}
5232 
5233 // Compare and branch using cbcond
5234 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5235     single_instruction;
5236     src1  : E(read);
5237     IALU  : R;
5238     BR    : R;
5239 %}
5240 
5241 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5242     single_instruction_with_delay_slot;
5243     cr    : E(read);
5244     BR    : R;
5245 %}
5246 
5247 pipe_class br_nop() %{
5248     single_instruction;
5249     BR  : R;
5250 %}
5251 
5252 pipe_class simple_call(method meth) %{
5253     instruction_count(2); multiple_bundles; force_serialization;
5254     fixed_latency(100);
5255     BR  : R(1);
5256     MS  : R(1);
5257     A0  : R(1);
5258 %}
5259 
5260 pipe_class compiled_call(method meth) %{
5261     instruction_count(1); multiple_bundles; force_serialization;
5262     fixed_latency(100);
5263     MS  : R(1);
5264 %}
5265 
5266 pipe_class call(method meth) %{
5267     instruction_count(0); multiple_bundles; force_serialization;
5268     fixed_latency(100);
5269 %}
5270 
5271 pipe_class tail_call(Universe ignore, label labl) %{
5272     single_instruction; has_delay_slot;
5273     fixed_latency(100);
5274     BR  : R(1);
5275     MS  : R(1);
5276 %}
5277 
5278 pipe_class ret(Universe ignore) %{
5279     single_instruction; has_delay_slot;
5280     BR  : R(1);
5281     MS  : R(1);
5282 %}
5283 
5284 pipe_class ret_poll(g3RegP poll) %{
5285     instruction_count(3); has_delay_slot;
5286     poll : E(read);
5287     MS   : R;
5288 %}
5289 
5290 // The real do-nothing guy
5291 pipe_class empty( ) %{
5292     instruction_count(0);
5293 %}
5294 
5295 pipe_class long_memory_op() %{
5296     instruction_count(0); multiple_bundles; force_serialization;
5297     fixed_latency(25);
5298     MS  : R(1);
5299 %}
5300 
5301 // Check-cast
5302 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5303     array : R(read);
5304     match  : R(read);
5305     IALU   : R(2);
5306     BR     : R(2);
5307     MS     : R;
5308 %}
5309 
5310 // Convert FPU flags into +1,0,-1
5311 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5312     src1  : E(read);
5313     src2  : E(read);
5314     dst   : E(write);
5315     FA    : R;
5316     MS    : R(2);
5317     BR    : R(2);
5318 %}
5319 
5320 // Compare for p < q, and conditionally add y
5321 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5322     p     : E(read);
5323     q     : E(read);
5324     y     : E(read);
5325     IALU  : R(3)
5326 %}
5327 
5328 // Perform a compare, then move conditionally in a branch delay slot.
5329 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5330     src2   : E(read);
5331     srcdst : E(read);
5332     IALU   : R;
5333     BR     : R;
5334 %}
5335 
5336 // Define the class for the Nop node
5337 define %{
5338    MachNop = ialu_nop;
5339 %}
5340 
5341 %}
5342 
5343 //----------INSTRUCTIONS-------------------------------------------------------
5344 
5345 //------------Special Stack Slot instructions - no match rules-----------------
5346 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5347   // No match rule to avoid chain rule match.
5348   effect(DEF dst, USE src);
5349   ins_cost(MEMORY_REF_COST);
5350   size(4);
5351   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5352   opcode(Assembler::ldf_op3);
5353   ins_encode(simple_form3_mem_reg(src, dst));
5354   ins_pipe(floadF_stk);
5355 %}
5356 
5357 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5358   // No match rule to avoid chain rule match.
5359   effect(DEF dst, USE src);
5360   ins_cost(MEMORY_REF_COST);
5361   size(4);
5362   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5363   opcode(Assembler::lddf_op3);
5364   ins_encode(simple_form3_mem_reg(src, dst));
5365   ins_pipe(floadD_stk);
5366 %}
5367 
5368 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5369   // No match rule to avoid chain rule match.
5370   effect(DEF dst, USE src);
5371   ins_cost(MEMORY_REF_COST);
5372   size(4);
5373   format %{ "STF    $src,$dst\t! regF to stkI" %}
5374   opcode(Assembler::stf_op3);
5375   ins_encode(simple_form3_mem_reg(dst, src));
5376   ins_pipe(fstoreF_stk_reg);
5377 %}
5378 
5379 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5380   // No match rule to avoid chain rule match.
5381   effect(DEF dst, USE src);
5382   ins_cost(MEMORY_REF_COST);
5383   size(4);
5384   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5385   opcode(Assembler::stdf_op3);
5386   ins_encode(simple_form3_mem_reg(dst, src));
5387   ins_pipe(fstoreD_stk_reg);
5388 %}
5389 
5390 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5391   effect(DEF dst, USE src);
5392   ins_cost(MEMORY_REF_COST*2);
5393   size(8);
5394   format %{ "STW    $src,$dst.hi\t! long\n\t"
5395             "STW    R_G0,$dst.lo" %}
5396   opcode(Assembler::stw_op3);
5397   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5398   ins_pipe(lstoreI_stk_reg);
5399 %}
5400 
5401 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5402   // No match rule to avoid chain rule match.
5403   effect(DEF dst, USE src);
5404   ins_cost(MEMORY_REF_COST);
5405   size(4);
5406   format %{ "STX    $src,$dst\t! regL to stkD" %}
5407   opcode(Assembler::stx_op3);
5408   ins_encode(simple_form3_mem_reg( dst, src ) );
5409   ins_pipe(istore_stk_reg);
5410 %}
5411 
5412 //---------- Chain stack slots between similar types --------
5413 
5414 // Load integer from stack slot
5415 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5416   match(Set dst src);
5417   ins_cost(MEMORY_REF_COST);
5418 
5419   size(4);
5420   format %{ "LDUW   $src,$dst\t!stk" %}
5421   opcode(Assembler::lduw_op3);
5422   ins_encode(simple_form3_mem_reg( src, dst ) );
5423   ins_pipe(iload_mem);
5424 %}
5425 
5426 // Store integer to stack slot
5427 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5428   match(Set dst src);
5429   ins_cost(MEMORY_REF_COST);
5430 
5431   size(4);
5432   format %{ "STW    $src,$dst\t!stk" %}
5433   opcode(Assembler::stw_op3);
5434   ins_encode(simple_form3_mem_reg( dst, src ) );
5435   ins_pipe(istore_mem_reg);
5436 %}
5437 
5438 // Load long from stack slot
5439 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5440   match(Set dst src);
5441 
5442   ins_cost(MEMORY_REF_COST);
5443   size(4);
5444   format %{ "LDX    $src,$dst\t! long" %}
5445   opcode(Assembler::ldx_op3);
5446   ins_encode(simple_form3_mem_reg( src, dst ) );
5447   ins_pipe(iload_mem);
5448 %}
5449 
5450 // Store long to stack slot
5451 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5452   match(Set dst src);
5453 
5454   ins_cost(MEMORY_REF_COST);
5455   size(4);
5456   format %{ "STX    $src,$dst\t! long" %}
5457   opcode(Assembler::stx_op3);
5458   ins_encode(simple_form3_mem_reg( dst, src ) );
5459   ins_pipe(istore_mem_reg);
5460 %}
5461 
5462 #ifdef _LP64
5463 // Load pointer from stack slot, 64-bit encoding
5464 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5465   match(Set dst src);
5466   ins_cost(MEMORY_REF_COST);
5467   size(4);
5468   format %{ "LDX    $src,$dst\t!ptr" %}
5469   opcode(Assembler::ldx_op3);
5470   ins_encode(simple_form3_mem_reg( src, dst ) );
5471   ins_pipe(iload_mem);
5472 %}
5473 
5474 // Store pointer to stack slot
5475 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5476   match(Set dst src);
5477   ins_cost(MEMORY_REF_COST);
5478   size(4);
5479   format %{ "STX    $src,$dst\t!ptr" %}
5480   opcode(Assembler::stx_op3);
5481   ins_encode(simple_form3_mem_reg( dst, src ) );
5482   ins_pipe(istore_mem_reg);
5483 %}
5484 #else // _LP64
5485 // Load pointer from stack slot, 32-bit encoding
5486 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5487   match(Set dst src);
5488   ins_cost(MEMORY_REF_COST);
5489   format %{ "LDUW   $src,$dst\t!ptr" %}
5490   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5491   ins_encode(simple_form3_mem_reg( src, dst ) );
5492   ins_pipe(iload_mem);
5493 %}
5494 
5495 // Store pointer to stack slot
5496 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5497   match(Set dst src);
5498   ins_cost(MEMORY_REF_COST);
5499   format %{ "STW    $src,$dst\t!ptr" %}
5500   opcode(Assembler::stw_op3, Assembler::ldst_op);
5501   ins_encode(simple_form3_mem_reg( dst, src ) );
5502   ins_pipe(istore_mem_reg);
5503 %}
5504 #endif // _LP64
5505 
5506 //------------Special Nop instructions for bundling - no match rules-----------
5507 // Nop using the A0 functional unit
5508 instruct Nop_A0() %{
5509   ins_cost(0);
5510 
5511   format %{ "NOP    ! Alu Pipeline" %}
5512   opcode(Assembler::or_op3, Assembler::arith_op);
5513   ins_encode( form2_nop() );
5514   ins_pipe(ialu_nop_A0);
5515 %}
5516 
5517 // Nop using the A1 functional unit
5518 instruct Nop_A1( ) %{
5519   ins_cost(0);
5520 
5521   format %{ "NOP    ! Alu Pipeline" %}
5522   opcode(Assembler::or_op3, Assembler::arith_op);
5523   ins_encode( form2_nop() );
5524   ins_pipe(ialu_nop_A1);
5525 %}
5526 
5527 // Nop using the memory functional unit
5528 instruct Nop_MS( ) %{
5529   ins_cost(0);
5530 
5531   format %{ "NOP    ! Memory Pipeline" %}
5532   ins_encode( emit_mem_nop );
5533   ins_pipe(mem_nop);
5534 %}
5535 
5536 // Nop using the floating add functional unit
5537 instruct Nop_FA( ) %{
5538   ins_cost(0);
5539 
5540   format %{ "NOP    ! Floating Add Pipeline" %}
5541   ins_encode( emit_fadd_nop );
5542   ins_pipe(fadd_nop);
5543 %}
5544 
5545 // Nop using the branch functional unit
5546 instruct Nop_BR( ) %{
5547   ins_cost(0);
5548 
5549   format %{ "NOP    ! Branch Pipeline" %}
5550   ins_encode( emit_br_nop );
5551   ins_pipe(br_nop);
5552 %}
5553 
5554 //----------Load/Store/Move Instructions---------------------------------------
5555 //----------Load Instructions--------------------------------------------------
5556 // Load Byte (8bit signed)
5557 instruct loadB(iRegI dst, memory mem) %{
5558   match(Set dst (LoadB mem));
5559   ins_cost(MEMORY_REF_COST);
5560 
5561   size(4);
5562   format %{ "LDSB   $mem,$dst\t! byte" %}
5563   ins_encode %{
5564     __ ldsb($mem$$Address, $dst$$Register);
5565   %}
5566   ins_pipe(iload_mask_mem);
5567 %}
5568 
5569 // Load Byte (8bit signed) into a Long Register
5570 instruct loadB2L(iRegL dst, memory mem) %{
5571   match(Set dst (ConvI2L (LoadB mem)));
5572   ins_cost(MEMORY_REF_COST);
5573 
5574   size(4);
5575   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5576   ins_encode %{
5577     __ ldsb($mem$$Address, $dst$$Register);
5578   %}
5579   ins_pipe(iload_mask_mem);
5580 %}
5581 
5582 // Load Unsigned Byte (8bit UNsigned) into an int reg
5583 instruct loadUB(iRegI dst, memory mem) %{
5584   match(Set dst (LoadUB mem));
5585   ins_cost(MEMORY_REF_COST);
5586 
5587   size(4);
5588   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5589   ins_encode %{
5590     __ ldub($mem$$Address, $dst$$Register);
5591   %}
5592   ins_pipe(iload_mem);
5593 %}
5594 
5595 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5596 instruct loadUB2L(iRegL dst, memory mem) %{
5597   match(Set dst (ConvI2L (LoadUB mem)));
5598   ins_cost(MEMORY_REF_COST);
5599 
5600   size(4);
5601   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5602   ins_encode %{
5603     __ ldub($mem$$Address, $dst$$Register);
5604   %}
5605   ins_pipe(iload_mem);
5606 %}
5607 
5608 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5609 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5610   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5611   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5612 
5613   size(2*4);
5614   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5615             "AND    $dst,$mask,$dst" %}
5616   ins_encode %{
5617     __ ldub($mem$$Address, $dst$$Register);
5618     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5619   %}
5620   ins_pipe(iload_mem);
5621 %}
5622 
5623 // Load Short (16bit signed)
5624 instruct loadS(iRegI dst, memory mem) %{
5625   match(Set dst (LoadS mem));
5626   ins_cost(MEMORY_REF_COST);
5627 
5628   size(4);
5629   format %{ "LDSH   $mem,$dst\t! short" %}
5630   ins_encode %{
5631     __ ldsh($mem$$Address, $dst$$Register);
5632   %}
5633   ins_pipe(iload_mask_mem);
5634 %}
5635 
5636 // Load Short (16 bit signed) to Byte (8 bit signed)
5637 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5638   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5639   ins_cost(MEMORY_REF_COST);
5640 
5641   size(4);
5642 
5643   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5644   ins_encode %{
5645     __ ldsb($mem$$Address, $dst$$Register, 1);
5646   %}
5647   ins_pipe(iload_mask_mem);
5648 %}
5649 
5650 // Load Short (16bit signed) into a Long Register
5651 instruct loadS2L(iRegL dst, memory mem) %{
5652   match(Set dst (ConvI2L (LoadS mem)));
5653   ins_cost(MEMORY_REF_COST);
5654 
5655   size(4);
5656   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5657   ins_encode %{
5658     __ ldsh($mem$$Address, $dst$$Register);
5659   %}
5660   ins_pipe(iload_mask_mem);
5661 %}
5662 
5663 // Load Unsigned Short/Char (16bit UNsigned)
5664 instruct loadUS(iRegI dst, memory mem) %{
5665   match(Set dst (LoadUS mem));
5666   ins_cost(MEMORY_REF_COST);
5667 
5668   size(4);
5669   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5670   ins_encode %{
5671     __ lduh($mem$$Address, $dst$$Register);
5672   %}
5673   ins_pipe(iload_mem);
5674 %}
5675 
5676 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5677 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5678   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5679   ins_cost(MEMORY_REF_COST);
5680 
5681   size(4);
5682   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5683   ins_encode %{
5684     __ ldsb($mem$$Address, $dst$$Register, 1);
5685   %}
5686   ins_pipe(iload_mask_mem);
5687 %}
5688 
5689 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5690 instruct loadUS2L(iRegL dst, memory mem) %{
5691   match(Set dst (ConvI2L (LoadUS mem)));
5692   ins_cost(MEMORY_REF_COST);
5693 
5694   size(4);
5695   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5696   ins_encode %{
5697     __ lduh($mem$$Address, $dst$$Register);
5698   %}
5699   ins_pipe(iload_mem);
5700 %}
5701 
5702 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5703 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5704   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5705   ins_cost(MEMORY_REF_COST);
5706 
5707   size(4);
5708   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5709   ins_encode %{
5710     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5711   %}
5712   ins_pipe(iload_mem);
5713 %}
5714 
5715 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5716 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5717   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5718   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5719 
5720   size(2*4);
5721   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5722             "AND    $dst,$mask,$dst" %}
5723   ins_encode %{
5724     Register Rdst = $dst$$Register;
5725     __ lduh($mem$$Address, Rdst);
5726     __ and3(Rdst, $mask$$constant, Rdst);
5727   %}
5728   ins_pipe(iload_mem);
5729 %}
5730 
5731 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5732 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5733   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5734   effect(TEMP dst, TEMP tmp);
5735   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5736 
5737   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5738             "SET    $mask,$tmp\n\t"
5739             "AND    $dst,$tmp,$dst" %}
5740   ins_encode %{
5741     Register Rdst = $dst$$Register;
5742     Register Rtmp = $tmp$$Register;
5743     __ lduh($mem$$Address, Rdst);
5744     __ set($mask$$constant, Rtmp);
5745     __ and3(Rdst, Rtmp, Rdst);
5746   %}
5747   ins_pipe(iload_mem);
5748 %}
5749 
5750 // Load Integer
5751 instruct loadI(iRegI dst, memory mem) %{
5752   match(Set dst (LoadI mem));
5753   ins_cost(MEMORY_REF_COST);
5754 
5755   size(4);
5756   format %{ "LDUW   $mem,$dst\t! int" %}
5757   ins_encode %{
5758     __ lduw($mem$$Address, $dst$$Register);
5759   %}
5760   ins_pipe(iload_mem);
5761 %}
5762 
5763 // Load Integer to Byte (8 bit signed)
5764 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5765   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5766   ins_cost(MEMORY_REF_COST);
5767 
5768   size(4);
5769 
5770   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5771   ins_encode %{
5772     __ ldsb($mem$$Address, $dst$$Register, 3);
5773   %}
5774   ins_pipe(iload_mask_mem);
5775 %}
5776 
5777 // Load Integer to Unsigned Byte (8 bit UNsigned)
5778 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5779   match(Set dst (AndI (LoadI mem) mask));
5780   ins_cost(MEMORY_REF_COST);
5781 
5782   size(4);
5783 
5784   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5785   ins_encode %{
5786     __ ldub($mem$$Address, $dst$$Register, 3);
5787   %}
5788   ins_pipe(iload_mask_mem);
5789 %}
5790 
5791 // Load Integer to Short (16 bit signed)
5792 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5793   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5794   ins_cost(MEMORY_REF_COST);
5795 
5796   size(4);
5797 
5798   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5799   ins_encode %{
5800     __ ldsh($mem$$Address, $dst$$Register, 2);
5801   %}
5802   ins_pipe(iload_mask_mem);
5803 %}
5804 
5805 // Load Integer to Unsigned Short (16 bit UNsigned)
5806 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5807   match(Set dst (AndI (LoadI mem) mask));
5808   ins_cost(MEMORY_REF_COST);
5809 
5810   size(4);
5811 
5812   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5813   ins_encode %{
5814     __ lduh($mem$$Address, $dst$$Register, 2);
5815   %}
5816   ins_pipe(iload_mask_mem);
5817 %}
5818 
5819 // Load Integer into a Long Register
5820 instruct loadI2L(iRegL dst, memory mem) %{
5821   match(Set dst (ConvI2L (LoadI mem)));
5822   ins_cost(MEMORY_REF_COST);
5823 
5824   size(4);
5825   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5826   ins_encode %{
5827     __ ldsw($mem$$Address, $dst$$Register);
5828   %}
5829   ins_pipe(iload_mask_mem);
5830 %}
5831 
5832 // Load Integer with mask 0xFF into a Long Register
5833 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5834   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5835   ins_cost(MEMORY_REF_COST);
5836 
5837   size(4);
5838   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5839   ins_encode %{
5840     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5841   %}
5842   ins_pipe(iload_mem);
5843 %}
5844 
5845 // Load Integer with mask 0xFFFF into a Long Register
5846 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5847   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5848   ins_cost(MEMORY_REF_COST);
5849 
5850   size(4);
5851   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5852   ins_encode %{
5853     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5854   %}
5855   ins_pipe(iload_mem);
5856 %}
5857 
5858 // Load Integer with a 12-bit mask into a Long Register
5859 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5860   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5861   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5862 
5863   size(2*4);
5864   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5865             "AND    $dst,$mask,$dst" %}
5866   ins_encode %{
5867     Register Rdst = $dst$$Register;
5868     __ lduw($mem$$Address, Rdst);
5869     __ and3(Rdst, $mask$$constant, Rdst);
5870   %}
5871   ins_pipe(iload_mem);
5872 %}
5873 
5874 // Load Integer with a 31-bit mask into a Long Register
5875 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5876   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5877   effect(TEMP dst, TEMP tmp);
5878   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5879 
5880   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5881             "SET    $mask,$tmp\n\t"
5882             "AND    $dst,$tmp,$dst" %}
5883   ins_encode %{
5884     Register Rdst = $dst$$Register;
5885     Register Rtmp = $tmp$$Register;
5886     __ lduw($mem$$Address, Rdst);
5887     __ set($mask$$constant, Rtmp);
5888     __ and3(Rdst, Rtmp, Rdst);
5889   %}
5890   ins_pipe(iload_mem);
5891 %}
5892 
5893 // Load Unsigned Integer into a Long Register
5894 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5895   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5896   ins_cost(MEMORY_REF_COST);
5897 
5898   size(4);
5899   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5900   ins_encode %{
5901     __ lduw($mem$$Address, $dst$$Register);
5902   %}
5903   ins_pipe(iload_mem);
5904 %}
5905 
5906 // Load Long - aligned
5907 instruct loadL(iRegL dst, memory mem ) %{
5908   match(Set dst (LoadL mem));
5909   ins_cost(MEMORY_REF_COST);
5910 
5911   size(4);
5912   format %{ "LDX    $mem,$dst\t! long" %}
5913   ins_encode %{
5914     __ ldx($mem$$Address, $dst$$Register);
5915   %}
5916   ins_pipe(iload_mem);
5917 %}
5918 
5919 // Load Long - UNaligned
5920 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5921   match(Set dst (LoadL_unaligned mem));
5922   effect(KILL tmp);
5923   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5924   size(16);
5925   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5926           "\tLDUW   $mem  ,$dst\n"
5927           "\tSLLX   #32, $dst, $dst\n"
5928           "\tOR     $dst, R_O7, $dst" %}
5929   opcode(Assembler::lduw_op3);
5930   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5931   ins_pipe(iload_mem);
5932 %}
5933 
5934 // Load Range
5935 instruct loadRange(iRegI dst, memory mem) %{
5936   match(Set dst (LoadRange mem));
5937   ins_cost(MEMORY_REF_COST);
5938 
5939   size(4);
5940   format %{ "LDUW   $mem,$dst\t! range" %}
5941   opcode(Assembler::lduw_op3);
5942   ins_encode(simple_form3_mem_reg( mem, dst ) );
5943   ins_pipe(iload_mem);
5944 %}
5945 
5946 // Load Integer into %f register (for fitos/fitod)
5947 instruct loadI_freg(regF dst, memory mem) %{
5948   match(Set dst (LoadI mem));
5949   ins_cost(MEMORY_REF_COST);
5950   size(4);
5951 
5952   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5953   opcode(Assembler::ldf_op3);
5954   ins_encode(simple_form3_mem_reg( mem, dst ) );
5955   ins_pipe(floadF_mem);
5956 %}
5957 
5958 // Load Pointer
5959 instruct loadP(iRegP dst, memory mem) %{
5960   match(Set dst (LoadP mem));
5961   ins_cost(MEMORY_REF_COST);
5962   size(4);
5963 
5964 #ifndef _LP64
5965   format %{ "LDUW   $mem,$dst\t! ptr" %}
5966   ins_encode %{
5967     __ lduw($mem$$Address, $dst$$Register);
5968   %}
5969 #else
5970   format %{ "LDX    $mem,$dst\t! ptr" %}
5971   ins_encode %{
5972     __ ldx($mem$$Address, $dst$$Register);
5973   %}
5974 #endif
5975   ins_pipe(iload_mem);
5976 %}
5977 
5978 // Load Compressed Pointer
5979 instruct loadN(iRegN dst, memory mem) %{
5980   match(Set dst (LoadN mem));
5981   ins_cost(MEMORY_REF_COST);
5982   size(4);
5983 
5984   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5985   ins_encode %{
5986     __ lduw($mem$$Address, $dst$$Register);
5987   %}
5988   ins_pipe(iload_mem);
5989 %}
5990 
5991 // Load Klass Pointer
5992 instruct loadKlass(iRegP dst, memory mem) %{
5993   match(Set dst (LoadKlass mem));
5994   ins_cost(MEMORY_REF_COST);
5995   size(4);
5996 
5997 #ifndef _LP64
5998   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5999   ins_encode %{
6000     __ lduw($mem$$Address, $dst$$Register);
6001   %}
6002 #else
6003   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6004   ins_encode %{
6005     __ ldx($mem$$Address, $dst$$Register);
6006   %}
6007 #endif
6008   ins_pipe(iload_mem);
6009 %}
6010 
6011 // Load narrow Klass Pointer
6012 instruct loadNKlass(iRegN dst, memory mem) %{
6013   match(Set dst (LoadNKlass mem));
6014   ins_cost(MEMORY_REF_COST);
6015   size(4);
6016 
6017   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6018   ins_encode %{
6019     __ lduw($mem$$Address, $dst$$Register);
6020   %}
6021   ins_pipe(iload_mem);
6022 %}
6023 
6024 // Load Double
6025 instruct loadD(regD dst, memory mem) %{
6026   match(Set dst (LoadD mem));
6027   ins_cost(MEMORY_REF_COST);
6028 
6029   size(4);
6030   format %{ "LDDF   $mem,$dst" %}
6031   opcode(Assembler::lddf_op3);
6032   ins_encode(simple_form3_mem_reg( mem, dst ) );
6033   ins_pipe(floadD_mem);
6034 %}
6035 
6036 // Load Double - UNaligned
6037 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6038   match(Set dst (LoadD_unaligned mem));
6039   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6040   size(8);
6041   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6042           "\tLDF    $mem+4,$dst.lo\t!" %}
6043   opcode(Assembler::ldf_op3);
6044   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6045   ins_pipe(iload_mem);
6046 %}
6047 
6048 // Load Float
6049 instruct loadF(regF dst, memory mem) %{
6050   match(Set dst (LoadF mem));
6051   ins_cost(MEMORY_REF_COST);
6052 
6053   size(4);
6054   format %{ "LDF    $mem,$dst" %}
6055   opcode(Assembler::ldf_op3);
6056   ins_encode(simple_form3_mem_reg( mem, dst ) );
6057   ins_pipe(floadF_mem);
6058 %}
6059 
6060 // Load Constant
6061 instruct loadConI( iRegI dst, immI src ) %{
6062   match(Set dst src);
6063   ins_cost(DEFAULT_COST * 3/2);
6064   format %{ "SET    $src,$dst" %}
6065   ins_encode( Set32(src, dst) );
6066   ins_pipe(ialu_hi_lo_reg);
6067 %}
6068 
6069 instruct loadConI13( iRegI dst, immI13 src ) %{
6070   match(Set dst src);
6071 
6072   size(4);
6073   format %{ "MOV    $src,$dst" %}
6074   ins_encode( Set13( src, dst ) );
6075   ins_pipe(ialu_imm);
6076 %}
6077 
6078 #ifndef _LP64
6079 instruct loadConP(iRegP dst, immP con) %{
6080   match(Set dst con);
6081   ins_cost(DEFAULT_COST * 3/2);
6082   format %{ "SET    $con,$dst\t!ptr" %}
6083   ins_encode %{
6084     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6085       intptr_t val = $con$$constant;
6086     if (constant_reloc == relocInfo::oop_type) {
6087       __ set_oop_constant((jobject) val, $dst$$Register);
6088     } else if (constant_reloc == relocInfo::metadata_type) {
6089       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6090     } else {          // non-oop pointers, e.g. card mark base, heap top
6091       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6092       __ set(val, $dst$$Register);
6093     }
6094   %}
6095   ins_pipe(loadConP);
6096 %}
6097 #else
6098 instruct loadConP_set(iRegP dst, immP_set con) %{
6099   match(Set dst con);
6100   ins_cost(DEFAULT_COST * 3/2);
6101   format %{ "SET    $con,$dst\t! ptr" %}
6102   ins_encode %{
6103     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6104       intptr_t val = $con$$constant;
6105     if (constant_reloc == relocInfo::oop_type) {
6106       __ set_oop_constant((jobject) val, $dst$$Register);
6107     } else if (constant_reloc == relocInfo::metadata_type) {
6108       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6109     } else {          // non-oop pointers, e.g. card mark base, heap top
6110       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6111       __ set(val, $dst$$Register);
6112     }
6113   %}
6114   ins_pipe(loadConP);
6115 %}
6116 
6117 instruct loadConP_load(iRegP dst, immP_load con) %{
6118   match(Set dst con);
6119   ins_cost(MEMORY_REF_COST);
6120   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6121   ins_encode %{
6122     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6123     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6124   %}
6125   ins_pipe(loadConP);
6126 %}
6127 
6128 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6129   match(Set dst con);
6130   ins_cost(DEFAULT_COST * 3/2);
6131   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6132   ins_encode %{
6133     __ set($con$$constant, $dst$$Register);
6134   %}
6135   ins_pipe(loadConP);
6136 %}
6137 #endif // _LP64
6138 
6139 instruct loadConP0(iRegP dst, immP0 src) %{
6140   match(Set dst src);
6141 
6142   size(4);
6143   format %{ "CLR    $dst\t!ptr" %}
6144   ins_encode %{
6145     __ clr($dst$$Register);
6146   %}
6147   ins_pipe(ialu_imm);
6148 %}
6149 
6150 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6151   match(Set dst src);
6152   ins_cost(DEFAULT_COST);
6153   format %{ "SET    $src,$dst\t!ptr" %}
6154   ins_encode %{
6155     AddressLiteral polling_page(os::get_polling_page());
6156     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6157   %}
6158   ins_pipe(loadConP_poll);
6159 %}
6160 
6161 instruct loadConN0(iRegN dst, immN0 src) %{
6162   match(Set dst src);
6163 
6164   size(4);
6165   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6166   ins_encode %{
6167     __ clr($dst$$Register);
6168   %}
6169   ins_pipe(ialu_imm);
6170 %}
6171 
6172 instruct loadConN(iRegN dst, immN src) %{
6173   match(Set dst src);
6174   ins_cost(DEFAULT_COST * 3/2);
6175   format %{ "SET    $src,$dst\t! compressed ptr" %}
6176   ins_encode %{
6177     Register dst = $dst$$Register;
6178     __ set_narrow_oop((jobject)$src$$constant, dst);
6179   %}
6180   ins_pipe(ialu_hi_lo_reg);
6181 %}
6182 
6183 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6184   match(Set dst src);
6185   ins_cost(DEFAULT_COST * 3/2);
6186   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6187   ins_encode %{
6188     Register dst = $dst$$Register;
6189     __ set_narrow_klass((Klass*)$src$$constant, dst);
6190   %}
6191   ins_pipe(ialu_hi_lo_reg);
6192 %}
6193 
6194 // Materialize long value (predicated by immL_cheap).
6195 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6196   match(Set dst con);
6197   effect(KILL tmp);
6198   ins_cost(DEFAULT_COST * 3);
6199   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6200   ins_encode %{
6201     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6202   %}
6203   ins_pipe(loadConL);
6204 %}
6205 
6206 // Load long value from constant table (predicated by immL_expensive).
6207 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6208   match(Set dst con);
6209   ins_cost(MEMORY_REF_COST);
6210   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6211   ins_encode %{
6212       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6213     __ ldx($constanttablebase, con_offset, $dst$$Register);
6214   %}
6215   ins_pipe(loadConL);
6216 %}
6217 
6218 instruct loadConL0( iRegL dst, immL0 src ) %{
6219   match(Set dst src);
6220   ins_cost(DEFAULT_COST);
6221   size(4);
6222   format %{ "CLR    $dst\t! long" %}
6223   ins_encode( Set13( src, dst ) );
6224   ins_pipe(ialu_imm);
6225 %}
6226 
6227 instruct loadConL13( iRegL dst, immL13 src ) %{
6228   match(Set dst src);
6229   ins_cost(DEFAULT_COST * 2);
6230 
6231   size(4);
6232   format %{ "MOV    $src,$dst\t! long" %}
6233   ins_encode( Set13( src, dst ) );
6234   ins_pipe(ialu_imm);
6235 %}
6236 
6237 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6238   match(Set dst con);
6239   effect(KILL tmp);
6240   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6241   ins_encode %{
6242       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6243     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6244   %}
6245   ins_pipe(loadConFD);
6246 %}
6247 
6248 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6249   match(Set dst con);
6250   effect(KILL tmp);
6251   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6252   ins_encode %{
6253     // XXX This is a quick fix for 6833573.
6254     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6255     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6256     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6257   %}
6258   ins_pipe(loadConFD);
6259 %}
6260 
6261 // Prefetch instructions.
6262 // Must be safe to execute with invalid address (cannot fault).
6263 
6264 instruct prefetchr( memory mem ) %{
6265   match( PrefetchRead mem );
6266   ins_cost(MEMORY_REF_COST);
6267   size(4);
6268 
6269   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6270   opcode(Assembler::prefetch_op3);
6271   ins_encode( form3_mem_prefetch_read( mem ) );
6272   ins_pipe(iload_mem);
6273 %}
6274 
6275 instruct prefetchw( memory mem ) %{
6276   match( PrefetchWrite mem );
6277   ins_cost(MEMORY_REF_COST);
6278   size(4);
6279 
6280   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6281   opcode(Assembler::prefetch_op3);
6282   ins_encode( form3_mem_prefetch_write( mem ) );
6283   ins_pipe(iload_mem);
6284 %}
6285 
6286 // Prefetch instructions for allocation.
6287 
6288 instruct prefetchAlloc( memory mem ) %{
6289   predicate(AllocatePrefetchInstr == 0);
6290   match( PrefetchAllocation mem );
6291   ins_cost(MEMORY_REF_COST);
6292   size(4);
6293 
6294   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6295   opcode(Assembler::prefetch_op3);
6296   ins_encode( form3_mem_prefetch_write( mem ) );
6297   ins_pipe(iload_mem);
6298 %}
6299 
6300 // Use BIS instruction to prefetch for allocation.
6301 // Could fault, need space at the end of TLAB.
6302 instruct prefetchAlloc_bis( iRegP dst ) %{
6303   predicate(AllocatePrefetchInstr == 1);
6304   match( PrefetchAllocation dst );
6305   ins_cost(MEMORY_REF_COST);
6306   size(4);
6307 
6308   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6309   ins_encode %{
6310     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6311   %}
6312   ins_pipe(istore_mem_reg);
6313 %}
6314 
6315 // Next code is used for finding next cache line address to prefetch.
6316 #ifndef _LP64
6317 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6318   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6319   ins_cost(DEFAULT_COST);
6320   size(4);
6321 
6322   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6323   ins_encode %{
6324     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6325   %}
6326   ins_pipe(ialu_reg_imm);
6327 %}
6328 #else
6329 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6330   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6331   ins_cost(DEFAULT_COST);
6332   size(4);
6333 
6334   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6335   ins_encode %{
6336     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6337   %}
6338   ins_pipe(ialu_reg_imm);
6339 %}
6340 #endif
6341 
6342 //----------Store Instructions-------------------------------------------------
6343 // Store Byte
6344 instruct storeB(memory mem, iRegI src) %{
6345   match(Set mem (StoreB mem src));
6346   ins_cost(MEMORY_REF_COST);
6347 
6348   size(4);
6349   format %{ "STB    $src,$mem\t! byte" %}
6350   opcode(Assembler::stb_op3);
6351   ins_encode(simple_form3_mem_reg( mem, src ) );
6352   ins_pipe(istore_mem_reg);
6353 %}
6354 
6355 instruct storeB0(memory mem, immI0 src) %{
6356   match(Set mem (StoreB mem src));
6357   ins_cost(MEMORY_REF_COST);
6358 
6359   size(4);
6360   format %{ "STB    $src,$mem\t! byte" %}
6361   opcode(Assembler::stb_op3);
6362   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6363   ins_pipe(istore_mem_zero);
6364 %}
6365 
6366 instruct storeCM0(memory mem, immI0 src) %{
6367   match(Set mem (StoreCM mem src));
6368   ins_cost(MEMORY_REF_COST);
6369 
6370   size(4);
6371   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6372   opcode(Assembler::stb_op3);
6373   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6374   ins_pipe(istore_mem_zero);
6375 %}
6376 
6377 // Store Char/Short
6378 instruct storeC(memory mem, iRegI src) %{
6379   match(Set mem (StoreC mem src));
6380   ins_cost(MEMORY_REF_COST);
6381 
6382   size(4);
6383   format %{ "STH    $src,$mem\t! short" %}
6384   opcode(Assembler::sth_op3);
6385   ins_encode(simple_form3_mem_reg( mem, src ) );
6386   ins_pipe(istore_mem_reg);
6387 %}
6388 
6389 instruct storeC0(memory mem, immI0 src) %{
6390   match(Set mem (StoreC mem src));
6391   ins_cost(MEMORY_REF_COST);
6392 
6393   size(4);
6394   format %{ "STH    $src,$mem\t! short" %}
6395   opcode(Assembler::sth_op3);
6396   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6397   ins_pipe(istore_mem_zero);
6398 %}
6399 
6400 // Store Integer
6401 instruct storeI(memory mem, iRegI src) %{
6402   match(Set mem (StoreI mem src));
6403   ins_cost(MEMORY_REF_COST);
6404 
6405   size(4);
6406   format %{ "STW    $src,$mem" %}
6407   opcode(Assembler::stw_op3);
6408   ins_encode(simple_form3_mem_reg( mem, src ) );
6409   ins_pipe(istore_mem_reg);
6410 %}
6411 
6412 // Store Long
6413 instruct storeL(memory mem, iRegL src) %{
6414   match(Set mem (StoreL mem src));
6415   ins_cost(MEMORY_REF_COST);
6416   size(4);
6417   format %{ "STX    $src,$mem\t! long" %}
6418   opcode(Assembler::stx_op3);
6419   ins_encode(simple_form3_mem_reg( mem, src ) );
6420   ins_pipe(istore_mem_reg);
6421 %}
6422 
6423 instruct storeI0(memory mem, immI0 src) %{
6424   match(Set mem (StoreI mem src));
6425   ins_cost(MEMORY_REF_COST);
6426 
6427   size(4);
6428   format %{ "STW    $src,$mem" %}
6429   opcode(Assembler::stw_op3);
6430   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6431   ins_pipe(istore_mem_zero);
6432 %}
6433 
6434 instruct storeL0(memory mem, immL0 src) %{
6435   match(Set mem (StoreL mem src));
6436   ins_cost(MEMORY_REF_COST);
6437 
6438   size(4);
6439   format %{ "STX    $src,$mem" %}
6440   opcode(Assembler::stx_op3);
6441   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6442   ins_pipe(istore_mem_zero);
6443 %}
6444 
6445 // Store Integer from float register (used after fstoi)
6446 instruct storeI_Freg(memory mem, regF src) %{
6447   match(Set mem (StoreI mem src));
6448   ins_cost(MEMORY_REF_COST);
6449 
6450   size(4);
6451   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6452   opcode(Assembler::stf_op3);
6453   ins_encode(simple_form3_mem_reg( mem, src ) );
6454   ins_pipe(fstoreF_mem_reg);
6455 %}
6456 
6457 // Store Pointer
6458 instruct storeP(memory dst, sp_ptr_RegP src) %{
6459   match(Set dst (StoreP dst src));
6460   ins_cost(MEMORY_REF_COST);
6461   size(4);
6462 
6463 #ifndef _LP64
6464   format %{ "STW    $src,$dst\t! ptr" %}
6465   opcode(Assembler::stw_op3, 0, REGP_OP);
6466 #else
6467   format %{ "STX    $src,$dst\t! ptr" %}
6468   opcode(Assembler::stx_op3, 0, REGP_OP);
6469 #endif
6470   ins_encode( form3_mem_reg( dst, src ) );
6471   ins_pipe(istore_mem_spORreg);
6472 %}
6473 
6474 instruct storeP0(memory dst, immP0 src) %{
6475   match(Set dst (StoreP dst src));
6476   ins_cost(MEMORY_REF_COST);
6477   size(4);
6478 
6479 #ifndef _LP64
6480   format %{ "STW    $src,$dst\t! ptr" %}
6481   opcode(Assembler::stw_op3, 0, REGP_OP);
6482 #else
6483   format %{ "STX    $src,$dst\t! ptr" %}
6484   opcode(Assembler::stx_op3, 0, REGP_OP);
6485 #endif
6486   ins_encode( form3_mem_reg( dst, R_G0 ) );
6487   ins_pipe(istore_mem_zero);
6488 %}
6489 
6490 // Store Compressed Pointer
6491 instruct storeN(memory dst, iRegN src) %{
6492    match(Set dst (StoreN dst src));
6493    ins_cost(MEMORY_REF_COST);
6494    size(4);
6495 
6496    format %{ "STW    $src,$dst\t! compressed ptr" %}
6497    ins_encode %{
6498      Register base = as_Register($dst$$base);
6499      Register index = as_Register($dst$$index);
6500      Register src = $src$$Register;
6501      if (index != G0) {
6502        __ stw(src, base, index);
6503      } else {
6504        __ stw(src, base, $dst$$disp);
6505      }
6506    %}
6507    ins_pipe(istore_mem_spORreg);
6508 %}
6509 
6510 instruct storeNKlass(memory dst, iRegN src) %{
6511    match(Set dst (StoreNKlass dst src));
6512    ins_cost(MEMORY_REF_COST);
6513    size(4);
6514 
6515    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6516    ins_encode %{
6517      Register base = as_Register($dst$$base);
6518      Register index = as_Register($dst$$index);
6519      Register src = $src$$Register;
6520      if (index != G0) {
6521        __ stw(src, base, index);
6522      } else {
6523        __ stw(src, base, $dst$$disp);
6524      }
6525    %}
6526    ins_pipe(istore_mem_spORreg);
6527 %}
6528 
6529 instruct storeN0(memory dst, immN0 src) %{
6530    match(Set dst (StoreN dst src));
6531    ins_cost(MEMORY_REF_COST);
6532    size(4);
6533 
6534    format %{ "STW    $src,$dst\t! compressed ptr" %}
6535    ins_encode %{
6536      Register base = as_Register($dst$$base);
6537      Register index = as_Register($dst$$index);
6538      if (index != G0) {
6539        __ stw(0, base, index);
6540      } else {
6541        __ stw(0, base, $dst$$disp);
6542      }
6543    %}
6544    ins_pipe(istore_mem_zero);
6545 %}
6546 
6547 // Store Double
6548 instruct storeD( memory mem, regD src) %{
6549   match(Set mem (StoreD mem src));
6550   ins_cost(MEMORY_REF_COST);
6551 
6552   size(4);
6553   format %{ "STDF   $src,$mem" %}
6554   opcode(Assembler::stdf_op3);
6555   ins_encode(simple_form3_mem_reg( mem, src ) );
6556   ins_pipe(fstoreD_mem_reg);
6557 %}
6558 
6559 instruct storeD0( memory mem, immD0 src) %{
6560   match(Set mem (StoreD mem src));
6561   ins_cost(MEMORY_REF_COST);
6562 
6563   size(4);
6564   format %{ "STX    $src,$mem" %}
6565   opcode(Assembler::stx_op3);
6566   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6567   ins_pipe(fstoreD_mem_zero);
6568 %}
6569 
6570 // Store Float
6571 instruct storeF( memory mem, regF src) %{
6572   match(Set mem (StoreF mem src));
6573   ins_cost(MEMORY_REF_COST);
6574 
6575   size(4);
6576   format %{ "STF    $src,$mem" %}
6577   opcode(Assembler::stf_op3);
6578   ins_encode(simple_form3_mem_reg( mem, src ) );
6579   ins_pipe(fstoreF_mem_reg);
6580 %}
6581 
6582 instruct storeF0( memory mem, immF0 src) %{
6583   match(Set mem (StoreF mem src));
6584   ins_cost(MEMORY_REF_COST);
6585 
6586   size(4);
6587   format %{ "STW    $src,$mem\t! storeF0" %}
6588   opcode(Assembler::stw_op3);
6589   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6590   ins_pipe(fstoreF_mem_zero);
6591 %}
6592 
6593 // Convert oop pointer into compressed form
6594 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6595   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6596   match(Set dst (EncodeP src));
6597   format %{ "encode_heap_oop $src, $dst" %}
6598   ins_encode %{
6599     __ encode_heap_oop($src$$Register, $dst$$Register);
6600   %}
6601   ins_pipe(ialu_reg);
6602 %}
6603 
6604 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6605   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6606   match(Set dst (EncodeP src));
6607   format %{ "encode_heap_oop_not_null $src, $dst" %}
6608   ins_encode %{
6609     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6610   %}
6611   ins_pipe(ialu_reg);
6612 %}
6613 
6614 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6615   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6616             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6617   match(Set dst (DecodeN src));
6618   format %{ "decode_heap_oop $src, $dst" %}
6619   ins_encode %{
6620     __ decode_heap_oop($src$$Register, $dst$$Register);
6621   %}
6622   ins_pipe(ialu_reg);
6623 %}
6624 
6625 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6626   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6627             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6628   match(Set dst (DecodeN src));
6629   format %{ "decode_heap_oop_not_null $src, $dst" %}
6630   ins_encode %{
6631     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6632   %}
6633   ins_pipe(ialu_reg);
6634 %}
6635 
6636 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6637   match(Set dst (EncodePKlass src));
6638   format %{ "encode_klass_not_null $src, $dst" %}
6639   ins_encode %{
6640     __ encode_klass_not_null($src$$Register, $dst$$Register);
6641   %}
6642   ins_pipe(ialu_reg);
6643 %}
6644 
6645 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6646   match(Set dst (DecodeNKlass src));
6647   format %{ "decode_klass_not_null $src, $dst" %}
6648   ins_encode %{
6649     __ decode_klass_not_null($src$$Register, $dst$$Register);
6650   %}
6651   ins_pipe(ialu_reg);
6652 %}
6653 
6654 //----------MemBar Instructions-----------------------------------------------
6655 // Memory barrier flavors
6656 
6657 instruct membar_acquire() %{
6658   match(MemBarAcquire);
6659   match(LoadFence);
6660   ins_cost(4*MEMORY_REF_COST);
6661 
6662   size(0);
6663   format %{ "MEMBAR-acquire" %}
6664   ins_encode( enc_membar_acquire );
6665   ins_pipe(long_memory_op);
6666 %}
6667 
6668 instruct membar_acquire_lock() %{
6669   match(MemBarAcquireLock);
6670   ins_cost(0);
6671 
6672   size(0);
6673   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6674   ins_encode( );
6675   ins_pipe(empty);
6676 %}
6677 
6678 instruct membar_release() %{
6679   match(MemBarRelease);
6680   match(StoreFence);
6681   ins_cost(4*MEMORY_REF_COST);
6682 
6683   size(0);
6684   format %{ "MEMBAR-release" %}
6685   ins_encode( enc_membar_release );
6686   ins_pipe(long_memory_op);
6687 %}
6688 
6689 instruct membar_release_lock() %{
6690   match(MemBarReleaseLock);
6691   ins_cost(0);
6692 
6693   size(0);
6694   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6695   ins_encode( );
6696   ins_pipe(empty);
6697 %}
6698 
6699 instruct membar_volatile() %{
6700   match(MemBarVolatile);
6701   ins_cost(4*MEMORY_REF_COST);
6702 
6703   size(4);
6704   format %{ "MEMBAR-volatile" %}
6705   ins_encode( enc_membar_volatile );
6706   ins_pipe(long_memory_op);
6707 %}
6708 
6709 instruct unnecessary_membar_volatile() %{
6710   match(MemBarVolatile);
6711   predicate(Matcher::post_store_load_barrier(n));
6712   ins_cost(0);
6713 
6714   size(0);
6715   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6716   ins_encode( );
6717   ins_pipe(empty);
6718 %}
6719 
6720 instruct membar_storestore() %{
6721   match(MemBarStoreStore);
6722   ins_cost(0);
6723 
6724   size(0);
6725   format %{ "!MEMBAR-storestore (empty encoding)" %}
6726   ins_encode( );
6727   ins_pipe(empty);
6728 %}
6729 
6730 //----------Register Move Instructions-----------------------------------------
6731 instruct roundDouble_nop(regD dst) %{
6732   match(Set dst (RoundDouble dst));
6733   ins_cost(0);
6734   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6735   ins_encode( );
6736   ins_pipe(empty);
6737 %}
6738 
6739 
6740 instruct roundFloat_nop(regF dst) %{
6741   match(Set dst (RoundFloat dst));
6742   ins_cost(0);
6743   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6744   ins_encode( );
6745   ins_pipe(empty);
6746 %}
6747 
6748 
6749 // Cast Index to Pointer for unsafe natives
6750 instruct castX2P(iRegX src, iRegP dst) %{
6751   match(Set dst (CastX2P src));
6752 
6753   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6754   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6755   ins_pipe(ialu_reg);
6756 %}
6757 
6758 // Cast Pointer to Index for unsafe natives
6759 instruct castP2X(iRegP src, iRegX dst) %{
6760   match(Set dst (CastP2X src));
6761 
6762   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6763   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6764   ins_pipe(ialu_reg);
6765 %}
6766 
6767 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6768   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6769   match(Set stkSlot src);   // chain rule
6770   ins_cost(MEMORY_REF_COST);
6771   format %{ "STDF   $src,$stkSlot\t!stk" %}
6772   opcode(Assembler::stdf_op3);
6773   ins_encode(simple_form3_mem_reg(stkSlot, src));
6774   ins_pipe(fstoreD_stk_reg);
6775 %}
6776 
6777 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6778   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6779   match(Set dst stkSlot);   // chain rule
6780   ins_cost(MEMORY_REF_COST);
6781   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6782   opcode(Assembler::lddf_op3);
6783   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6784   ins_pipe(floadD_stk);
6785 %}
6786 
6787 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6788   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6789   match(Set stkSlot src);   // chain rule
6790   ins_cost(MEMORY_REF_COST);
6791   format %{ "STF   $src,$stkSlot\t!stk" %}
6792   opcode(Assembler::stf_op3);
6793   ins_encode(simple_form3_mem_reg(stkSlot, src));
6794   ins_pipe(fstoreF_stk_reg);
6795 %}
6796 
6797 //----------Conditional Move---------------------------------------------------
6798 // Conditional move
6799 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6800   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6801   ins_cost(150);
6802   format %{ "MOV$cmp $pcc,$src,$dst" %}
6803   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6804   ins_pipe(ialu_reg);
6805 %}
6806 
6807 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6808   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6809   ins_cost(140);
6810   format %{ "MOV$cmp $pcc,$src,$dst" %}
6811   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6812   ins_pipe(ialu_imm);
6813 %}
6814 
6815 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6816   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6817   ins_cost(150);
6818   size(4);
6819   format %{ "MOV$cmp  $icc,$src,$dst" %}
6820   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6821   ins_pipe(ialu_reg);
6822 %}
6823 
6824 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6825   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6826   ins_cost(140);
6827   size(4);
6828   format %{ "MOV$cmp  $icc,$src,$dst" %}
6829   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6830   ins_pipe(ialu_imm);
6831 %}
6832 
6833 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6834   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6835   ins_cost(150);
6836   size(4);
6837   format %{ "MOV$cmp  $icc,$src,$dst" %}
6838   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6839   ins_pipe(ialu_reg);
6840 %}
6841 
6842 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6843   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6844   ins_cost(140);
6845   size(4);
6846   format %{ "MOV$cmp  $icc,$src,$dst" %}
6847   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6848   ins_pipe(ialu_imm);
6849 %}
6850 
6851 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6852   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6853   ins_cost(150);
6854   size(4);
6855   format %{ "MOV$cmp $fcc,$src,$dst" %}
6856   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6857   ins_pipe(ialu_reg);
6858 %}
6859 
6860 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6861   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6862   ins_cost(140);
6863   size(4);
6864   format %{ "MOV$cmp $fcc,$src,$dst" %}
6865   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6866   ins_pipe(ialu_imm);
6867 %}
6868 
6869 // Conditional move for RegN. Only cmov(reg,reg).
6870 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6871   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6872   ins_cost(150);
6873   format %{ "MOV$cmp $pcc,$src,$dst" %}
6874   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6875   ins_pipe(ialu_reg);
6876 %}
6877 
6878 // This instruction also works with CmpN so we don't need cmovNN_reg.
6879 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6880   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6881   ins_cost(150);
6882   size(4);
6883   format %{ "MOV$cmp  $icc,$src,$dst" %}
6884   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6885   ins_pipe(ialu_reg);
6886 %}
6887 
6888 // This instruction also works with CmpN so we don't need cmovNN_reg.
6889 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6890   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6891   ins_cost(150);
6892   size(4);
6893   format %{ "MOV$cmp  $icc,$src,$dst" %}
6894   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6895   ins_pipe(ialu_reg);
6896 %}
6897 
6898 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6899   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6900   ins_cost(150);
6901   size(4);
6902   format %{ "MOV$cmp $fcc,$src,$dst" %}
6903   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6904   ins_pipe(ialu_reg);
6905 %}
6906 
6907 // Conditional move
6908 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6909   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6910   ins_cost(150);
6911   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6912   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6913   ins_pipe(ialu_reg);
6914 %}
6915 
6916 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6917   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6918   ins_cost(140);
6919   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6920   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6921   ins_pipe(ialu_imm);
6922 %}
6923 
6924 // This instruction also works with CmpN so we don't need cmovPN_reg.
6925 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6926   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6927   ins_cost(150);
6928 
6929   size(4);
6930   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6931   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6932   ins_pipe(ialu_reg);
6933 %}
6934 
6935 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6936   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6937   ins_cost(150);
6938 
6939   size(4);
6940   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6941   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6942   ins_pipe(ialu_reg);
6943 %}
6944 
6945 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6946   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6947   ins_cost(140);
6948 
6949   size(4);
6950   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6951   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6952   ins_pipe(ialu_imm);
6953 %}
6954 
6955 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6956   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6957   ins_cost(140);
6958 
6959   size(4);
6960   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6961   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6962   ins_pipe(ialu_imm);
6963 %}
6964 
6965 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6966   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6967   ins_cost(150);
6968   size(4);
6969   format %{ "MOV$cmp $fcc,$src,$dst" %}
6970   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6971   ins_pipe(ialu_imm);
6972 %}
6973 
6974 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6975   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6976   ins_cost(140);
6977   size(4);
6978   format %{ "MOV$cmp $fcc,$src,$dst" %}
6979   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6980   ins_pipe(ialu_imm);
6981 %}
6982 
6983 // Conditional move
6984 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6985   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6986   ins_cost(150);
6987   opcode(0x101);
6988   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6989   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6990   ins_pipe(int_conditional_float_move);
6991 %}
6992 
6993 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6994   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6995   ins_cost(150);
6996 
6997   size(4);
6998   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6999   opcode(0x101);
7000   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7001   ins_pipe(int_conditional_float_move);
7002 %}
7003 
7004 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7005   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7006   ins_cost(150);
7007 
7008   size(4);
7009   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7010   opcode(0x101);
7011   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7012   ins_pipe(int_conditional_float_move);
7013 %}
7014 
7015 // Conditional move,
7016 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7017   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7018   ins_cost(150);
7019   size(4);
7020   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7021   opcode(0x1);
7022   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7023   ins_pipe(int_conditional_double_move);
7024 %}
7025 
7026 // Conditional move
7027 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7028   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7029   ins_cost(150);
7030   size(4);
7031   opcode(0x102);
7032   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7033   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7034   ins_pipe(int_conditional_double_move);
7035 %}
7036 
7037 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7038   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7039   ins_cost(150);
7040 
7041   size(4);
7042   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7043   opcode(0x102);
7044   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7045   ins_pipe(int_conditional_double_move);
7046 %}
7047 
7048 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7049   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7050   ins_cost(150);
7051 
7052   size(4);
7053   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7054   opcode(0x102);
7055   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7056   ins_pipe(int_conditional_double_move);
7057 %}
7058 
7059 // Conditional move,
7060 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7061   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7062   ins_cost(150);
7063   size(4);
7064   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7065   opcode(0x2);
7066   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7067   ins_pipe(int_conditional_double_move);
7068 %}
7069 
7070 // Conditional move
7071 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7072   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7073   ins_cost(150);
7074   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7075   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7076   ins_pipe(ialu_reg);
7077 %}
7078 
7079 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7080   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7081   ins_cost(140);
7082   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7083   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7084   ins_pipe(ialu_imm);
7085 %}
7086 
7087 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7088   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7089   ins_cost(150);
7090 
7091   size(4);
7092   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7093   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7094   ins_pipe(ialu_reg);
7095 %}
7096 
7097 
7098 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7099   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7100   ins_cost(150);
7101 
7102   size(4);
7103   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7104   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7105   ins_pipe(ialu_reg);
7106 %}
7107 
7108 
7109 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7110   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7111   ins_cost(150);
7112 
7113   size(4);
7114   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7115   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7116   ins_pipe(ialu_reg);
7117 %}
7118 
7119 
7120 
7121 //----------OS and Locking Instructions----------------------------------------
7122 
7123 // This name is KNOWN by the ADLC and cannot be changed.
7124 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7125 // for this guy.
7126 instruct tlsLoadP(g2RegP dst) %{
7127   match(Set dst (ThreadLocal));
7128 
7129   size(0);
7130   ins_cost(0);
7131   format %{ "# TLS is in G2" %}
7132   ins_encode( /*empty encoding*/ );
7133   ins_pipe(ialu_none);
7134 %}
7135 
7136 instruct checkCastPP( iRegP dst ) %{
7137   match(Set dst (CheckCastPP dst));
7138 
7139   size(0);
7140   format %{ "# checkcastPP of $dst" %}
7141   ins_encode( /*empty encoding*/ );
7142   ins_pipe(empty);
7143 %}
7144 
7145 
7146 instruct castPP( iRegP dst ) %{
7147   match(Set dst (CastPP dst));
7148   format %{ "# castPP of $dst" %}
7149   ins_encode( /*empty encoding*/ );
7150   ins_pipe(empty);
7151 %}
7152 
7153 instruct castII( iRegI dst ) %{
7154   match(Set dst (CastII dst));
7155   format %{ "# castII of $dst" %}
7156   ins_encode( /*empty encoding*/ );
7157   ins_cost(0);
7158   ins_pipe(empty);
7159 %}
7160 
7161 //----------Arithmetic Instructions--------------------------------------------
7162 // Addition Instructions
7163 // Register Addition
7164 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7165   match(Set dst (AddI src1 src2));
7166 
7167   size(4);
7168   format %{ "ADD    $src1,$src2,$dst" %}
7169   ins_encode %{
7170     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7171   %}
7172   ins_pipe(ialu_reg_reg);
7173 %}
7174 
7175 // Immediate Addition
7176 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7177   match(Set dst (AddI src1 src2));
7178 
7179   size(4);
7180   format %{ "ADD    $src1,$src2,$dst" %}
7181   opcode(Assembler::add_op3, Assembler::arith_op);
7182   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7183   ins_pipe(ialu_reg_imm);
7184 %}
7185 
7186 // Pointer Register Addition
7187 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7188   match(Set dst (AddP src1 src2));
7189 
7190   size(4);
7191   format %{ "ADD    $src1,$src2,$dst" %}
7192   opcode(Assembler::add_op3, Assembler::arith_op);
7193   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7194   ins_pipe(ialu_reg_reg);
7195 %}
7196 
7197 // Pointer Immediate Addition
7198 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7199   match(Set dst (AddP src1 src2));
7200 
7201   size(4);
7202   format %{ "ADD    $src1,$src2,$dst" %}
7203   opcode(Assembler::add_op3, Assembler::arith_op);
7204   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7205   ins_pipe(ialu_reg_imm);
7206 %}
7207 
7208 // Long Addition
7209 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7210   match(Set dst (AddL src1 src2));
7211 
7212   size(4);
7213   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7214   opcode(Assembler::add_op3, Assembler::arith_op);
7215   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7216   ins_pipe(ialu_reg_reg);
7217 %}
7218 
7219 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7220   match(Set dst (AddL src1 con));
7221 
7222   size(4);
7223   format %{ "ADD    $src1,$con,$dst" %}
7224   opcode(Assembler::add_op3, Assembler::arith_op);
7225   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7226   ins_pipe(ialu_reg_imm);
7227 %}
7228 
7229 //----------Conditional_store--------------------------------------------------
7230 // Conditional-store of the updated heap-top.
7231 // Used during allocation of the shared heap.
7232 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7233 
7234 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7235 instruct loadPLocked(iRegP dst, memory mem) %{
7236   match(Set dst (LoadPLocked mem));
7237   ins_cost(MEMORY_REF_COST);
7238 
7239 #ifndef _LP64
7240   size(4);
7241   format %{ "LDUW   $mem,$dst\t! ptr" %}
7242   opcode(Assembler::lduw_op3, 0, REGP_OP);
7243 #else
7244   format %{ "LDX    $mem,$dst\t! ptr" %}
7245   opcode(Assembler::ldx_op3, 0, REGP_OP);
7246 #endif
7247   ins_encode( form3_mem_reg( mem, dst ) );
7248   ins_pipe(iload_mem);
7249 %}
7250 
7251 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7252   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7253   effect( KILL newval );
7254   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7255             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7256   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7257   ins_pipe( long_memory_op );
7258 %}
7259 
7260 // Conditional-store of an int value.
7261 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7262   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7263   effect( KILL newval );
7264   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7265             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7266   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7267   ins_pipe( long_memory_op );
7268 %}
7269 
7270 // Conditional-store of a long value.
7271 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7272   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7273   effect( KILL newval );
7274   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7275             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7276   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7277   ins_pipe( long_memory_op );
7278 %}
7279 
7280 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7281 
7282 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7283   predicate(VM_Version::supports_cx8());
7284   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7285   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7286   format %{
7287             "MOV    $newval,O7\n\t"
7288             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7289             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7290             "MOV    1,$res\n\t"
7291             "MOVne  xcc,R_G0,$res"
7292   %}
7293   ins_encode( enc_casx(mem_ptr, oldval, newval),
7294               enc_lflags_ne_to_boolean(res) );
7295   ins_pipe( long_memory_op );
7296 %}
7297 
7298 
7299 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7300   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7301   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7302   format %{
7303             "MOV    $newval,O7\n\t"
7304             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7305             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7306             "MOV    1,$res\n\t"
7307             "MOVne  icc,R_G0,$res"
7308   %}
7309   ins_encode( enc_casi(mem_ptr, oldval, newval),
7310               enc_iflags_ne_to_boolean(res) );
7311   ins_pipe( long_memory_op );
7312 %}
7313 
7314 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7315 #ifdef _LP64
7316   predicate(VM_Version::supports_cx8());
7317 #endif
7318   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7319   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7320   format %{
7321             "MOV    $newval,O7\n\t"
7322             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7323             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7324             "MOV    1,$res\n\t"
7325             "MOVne  xcc,R_G0,$res"
7326   %}
7327 #ifdef _LP64
7328   ins_encode( enc_casx(mem_ptr, oldval, newval),
7329               enc_lflags_ne_to_boolean(res) );
7330 #else
7331   ins_encode( enc_casi(mem_ptr, oldval, newval),
7332               enc_iflags_ne_to_boolean(res) );
7333 #endif
7334   ins_pipe( long_memory_op );
7335 %}
7336 
7337 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7338   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7339   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7340   format %{
7341             "MOV    $newval,O7\n\t"
7342             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7343             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7344             "MOV    1,$res\n\t"
7345             "MOVne  icc,R_G0,$res"
7346   %}
7347   ins_encode( enc_casi(mem_ptr, oldval, newval),
7348               enc_iflags_ne_to_boolean(res) );
7349   ins_pipe( long_memory_op );
7350 %}
7351 
7352 instruct xchgI( memory mem, iRegI newval) %{
7353   match(Set newval (GetAndSetI mem newval));
7354   format %{ "SWAP  [$mem],$newval" %}
7355   size(4);
7356   ins_encode %{
7357     __ swap($mem$$Address, $newval$$Register);
7358   %}
7359   ins_pipe( long_memory_op );
7360 %}
7361 
7362 #ifndef _LP64
7363 instruct xchgP( memory mem, iRegP newval) %{
7364   match(Set newval (GetAndSetP mem newval));
7365   format %{ "SWAP  [$mem],$newval" %}
7366   size(4);
7367   ins_encode %{
7368     __ swap($mem$$Address, $newval$$Register);
7369   %}
7370   ins_pipe( long_memory_op );
7371 %}
7372 #endif
7373 
7374 instruct xchgN( memory mem, iRegN newval) %{
7375   match(Set newval (GetAndSetN mem newval));
7376   format %{ "SWAP  [$mem],$newval" %}
7377   size(4);
7378   ins_encode %{
7379     __ swap($mem$$Address, $newval$$Register);
7380   %}
7381   ins_pipe( long_memory_op );
7382 %}
7383 
7384 //---------------------
7385 // Subtraction Instructions
7386 // Register Subtraction
7387 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7388   match(Set dst (SubI src1 src2));
7389 
7390   size(4);
7391   format %{ "SUB    $src1,$src2,$dst" %}
7392   opcode(Assembler::sub_op3, Assembler::arith_op);
7393   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7394   ins_pipe(ialu_reg_reg);
7395 %}
7396 
7397 // Immediate Subtraction
7398 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7399   match(Set dst (SubI src1 src2));
7400 
7401   size(4);
7402   format %{ "SUB    $src1,$src2,$dst" %}
7403   opcode(Assembler::sub_op3, Assembler::arith_op);
7404   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7405   ins_pipe(ialu_reg_imm);
7406 %}
7407 
7408 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7409   match(Set dst (SubI zero src2));
7410 
7411   size(4);
7412   format %{ "NEG    $src2,$dst" %}
7413   opcode(Assembler::sub_op3, Assembler::arith_op);
7414   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7415   ins_pipe(ialu_zero_reg);
7416 %}
7417 
7418 // Long subtraction
7419 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7420   match(Set dst (SubL src1 src2));
7421 
7422   size(4);
7423   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7424   opcode(Assembler::sub_op3, Assembler::arith_op);
7425   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7426   ins_pipe(ialu_reg_reg);
7427 %}
7428 
7429 // Immediate Subtraction
7430 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7431   match(Set dst (SubL src1 con));
7432 
7433   size(4);
7434   format %{ "SUB    $src1,$con,$dst\t! long" %}
7435   opcode(Assembler::sub_op3, Assembler::arith_op);
7436   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7437   ins_pipe(ialu_reg_imm);
7438 %}
7439 
7440 // Long negation
7441 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7442   match(Set dst (SubL zero src2));
7443 
7444   size(4);
7445   format %{ "NEG    $src2,$dst\t! long" %}
7446   opcode(Assembler::sub_op3, Assembler::arith_op);
7447   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7448   ins_pipe(ialu_zero_reg);
7449 %}
7450 
7451 // Multiplication Instructions
7452 // Integer Multiplication
7453 // Register Multiplication
7454 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7455   match(Set dst (MulI src1 src2));
7456 
7457   size(4);
7458   format %{ "MULX   $src1,$src2,$dst" %}
7459   opcode(Assembler::mulx_op3, Assembler::arith_op);
7460   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7461   ins_pipe(imul_reg_reg);
7462 %}
7463 
7464 // Immediate Multiplication
7465 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7466   match(Set dst (MulI src1 src2));
7467 
7468   size(4);
7469   format %{ "MULX   $src1,$src2,$dst" %}
7470   opcode(Assembler::mulx_op3, Assembler::arith_op);
7471   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7472   ins_pipe(imul_reg_imm);
7473 %}
7474 
7475 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7476   match(Set dst (MulL src1 src2));
7477   ins_cost(DEFAULT_COST * 5);
7478   size(4);
7479   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7480   opcode(Assembler::mulx_op3, Assembler::arith_op);
7481   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7482   ins_pipe(mulL_reg_reg);
7483 %}
7484 
7485 // Immediate Multiplication
7486 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7487   match(Set dst (MulL src1 src2));
7488   ins_cost(DEFAULT_COST * 5);
7489   size(4);
7490   format %{ "MULX   $src1,$src2,$dst" %}
7491   opcode(Assembler::mulx_op3, Assembler::arith_op);
7492   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7493   ins_pipe(mulL_reg_imm);
7494 %}
7495 
7496 // Integer Division
7497 // Register Division
7498 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7499   match(Set dst (DivI src1 src2));
7500   ins_cost((2+71)*DEFAULT_COST);
7501 
7502   format %{ "SRA     $src2,0,$src2\n\t"
7503             "SRA     $src1,0,$src1\n\t"
7504             "SDIVX   $src1,$src2,$dst" %}
7505   ins_encode( idiv_reg( src1, src2, dst ) );
7506   ins_pipe(sdiv_reg_reg);
7507 %}
7508 
7509 // Immediate Division
7510 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7511   match(Set dst (DivI src1 src2));
7512   ins_cost((2+71)*DEFAULT_COST);
7513 
7514   format %{ "SRA     $src1,0,$src1\n\t"
7515             "SDIVX   $src1,$src2,$dst" %}
7516   ins_encode( idiv_imm( src1, src2, dst ) );
7517   ins_pipe(sdiv_reg_imm);
7518 %}
7519 
7520 //----------Div-By-10-Expansion------------------------------------------------
7521 // Extract hi bits of a 32x32->64 bit multiply.
7522 // Expand rule only, not matched
7523 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7524   effect( DEF dst, USE src1, USE src2 );
7525   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7526             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7527   ins_encode( enc_mul_hi(dst,src1,src2));
7528   ins_pipe(sdiv_reg_reg);
7529 %}
7530 
7531 // Magic constant, reciprocal of 10
7532 instruct loadConI_x66666667(iRegIsafe dst) %{
7533   effect( DEF dst );
7534 
7535   size(8);
7536   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7537   ins_encode( Set32(0x66666667, dst) );
7538   ins_pipe(ialu_hi_lo_reg);
7539 %}
7540 
7541 // Register Shift Right Arithmetic Long by 32-63
7542 instruct sra_31( iRegI dst, iRegI src ) %{
7543   effect( DEF dst, USE src );
7544   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7545   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7546   ins_pipe(ialu_reg_reg);
7547 %}
7548 
7549 // Arithmetic Shift Right by 8-bit immediate
7550 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7551   effect( DEF dst, USE src );
7552   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7553   opcode(Assembler::sra_op3, Assembler::arith_op);
7554   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7555   ins_pipe(ialu_reg_imm);
7556 %}
7557 
7558 // Integer DIV with 10
7559 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7560   match(Set dst (DivI src div));
7561   ins_cost((6+6)*DEFAULT_COST);
7562   expand %{
7563     iRegIsafe tmp1;               // Killed temps;
7564     iRegIsafe tmp2;               // Killed temps;
7565     iRegI tmp3;                   // Killed temps;
7566     iRegI tmp4;                   // Killed temps;
7567     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7568     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7569     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7570     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7571     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7572   %}
7573 %}
7574 
7575 // Register Long Division
7576 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7577   match(Set dst (DivL src1 src2));
7578   ins_cost(DEFAULT_COST*71);
7579   size(4);
7580   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7581   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7582   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7583   ins_pipe(divL_reg_reg);
7584 %}
7585 
7586 // Register Long Division
7587 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7588   match(Set dst (DivL src1 src2));
7589   ins_cost(DEFAULT_COST*71);
7590   size(4);
7591   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7592   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7593   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7594   ins_pipe(divL_reg_imm);
7595 %}
7596 
7597 // Integer Remainder
7598 // Register Remainder
7599 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7600   match(Set dst (ModI src1 src2));
7601   effect( KILL ccr, KILL temp);
7602 
7603   format %{ "SREM   $src1,$src2,$dst" %}
7604   ins_encode( irem_reg(src1, src2, dst, temp) );
7605   ins_pipe(sdiv_reg_reg);
7606 %}
7607 
7608 // Immediate Remainder
7609 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7610   match(Set dst (ModI src1 src2));
7611   effect( KILL ccr, KILL temp);
7612 
7613   format %{ "SREM   $src1,$src2,$dst" %}
7614   ins_encode( irem_imm(src1, src2, dst, temp) );
7615   ins_pipe(sdiv_reg_imm);
7616 %}
7617 
7618 // Register Long Remainder
7619 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7620   effect(DEF dst, USE src1, USE src2);
7621   size(4);
7622   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7623   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7624   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7625   ins_pipe(divL_reg_reg);
7626 %}
7627 
7628 // Register Long Division
7629 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7630   effect(DEF dst, USE src1, USE src2);
7631   size(4);
7632   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7633   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7634   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7635   ins_pipe(divL_reg_imm);
7636 %}
7637 
7638 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7639   effect(DEF dst, USE src1, USE src2);
7640   size(4);
7641   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7642   opcode(Assembler::mulx_op3, Assembler::arith_op);
7643   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7644   ins_pipe(mulL_reg_reg);
7645 %}
7646 
7647 // Immediate Multiplication
7648 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7649   effect(DEF dst, USE src1, USE src2);
7650   size(4);
7651   format %{ "MULX   $src1,$src2,$dst" %}
7652   opcode(Assembler::mulx_op3, Assembler::arith_op);
7653   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7654   ins_pipe(mulL_reg_imm);
7655 %}
7656 
7657 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7658   effect(DEF dst, USE src1, USE src2);
7659   size(4);
7660   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7661   opcode(Assembler::sub_op3, Assembler::arith_op);
7662   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7663   ins_pipe(ialu_reg_reg);
7664 %}
7665 
7666 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7667   effect(DEF dst, USE src1, USE src2);
7668   size(4);
7669   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7670   opcode(Assembler::sub_op3, Assembler::arith_op);
7671   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7672   ins_pipe(ialu_reg_reg);
7673 %}
7674 
7675 // Register Long Remainder
7676 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7677   match(Set dst (ModL src1 src2));
7678   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7679   expand %{
7680     iRegL tmp1;
7681     iRegL tmp2;
7682     divL_reg_reg_1(tmp1, src1, src2);
7683     mulL_reg_reg_1(tmp2, tmp1, src2);
7684     subL_reg_reg_1(dst,  src1, tmp2);
7685   %}
7686 %}
7687 
7688 // Register Long Remainder
7689 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7690   match(Set dst (ModL src1 src2));
7691   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7692   expand %{
7693     iRegL tmp1;
7694     iRegL tmp2;
7695     divL_reg_imm13_1(tmp1, src1, src2);
7696     mulL_reg_imm13_1(tmp2, tmp1, src2);
7697     subL_reg_reg_2  (dst,  src1, tmp2);
7698   %}
7699 %}
7700 
7701 // Integer Shift Instructions
7702 // Register Shift Left
7703 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7704   match(Set dst (LShiftI src1 src2));
7705 
7706   size(4);
7707   format %{ "SLL    $src1,$src2,$dst" %}
7708   opcode(Assembler::sll_op3, Assembler::arith_op);
7709   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7710   ins_pipe(ialu_reg_reg);
7711 %}
7712 
7713 // Register Shift Left Immediate
7714 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7715   match(Set dst (LShiftI src1 src2));
7716 
7717   size(4);
7718   format %{ "SLL    $src1,$src2,$dst" %}
7719   opcode(Assembler::sll_op3, Assembler::arith_op);
7720   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7721   ins_pipe(ialu_reg_imm);
7722 %}
7723 
7724 // Register Shift Left
7725 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7726   match(Set dst (LShiftL src1 src2));
7727 
7728   size(4);
7729   format %{ "SLLX   $src1,$src2,$dst" %}
7730   opcode(Assembler::sllx_op3, Assembler::arith_op);
7731   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7732   ins_pipe(ialu_reg_reg);
7733 %}
7734 
7735 // Register Shift Left Immediate
7736 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7737   match(Set dst (LShiftL src1 src2));
7738 
7739   size(4);
7740   format %{ "SLLX   $src1,$src2,$dst" %}
7741   opcode(Assembler::sllx_op3, Assembler::arith_op);
7742   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7743   ins_pipe(ialu_reg_imm);
7744 %}
7745 
7746 // Register Arithmetic Shift Right
7747 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7748   match(Set dst (RShiftI src1 src2));
7749   size(4);
7750   format %{ "SRA    $src1,$src2,$dst" %}
7751   opcode(Assembler::sra_op3, Assembler::arith_op);
7752   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7753   ins_pipe(ialu_reg_reg);
7754 %}
7755 
7756 // Register Arithmetic Shift Right Immediate
7757 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7758   match(Set dst (RShiftI src1 src2));
7759 
7760   size(4);
7761   format %{ "SRA    $src1,$src2,$dst" %}
7762   opcode(Assembler::sra_op3, Assembler::arith_op);
7763   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7764   ins_pipe(ialu_reg_imm);
7765 %}
7766 
7767 // Register Shift Right Arithmatic Long
7768 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7769   match(Set dst (RShiftL src1 src2));
7770 
7771   size(4);
7772   format %{ "SRAX   $src1,$src2,$dst" %}
7773   opcode(Assembler::srax_op3, Assembler::arith_op);
7774   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7775   ins_pipe(ialu_reg_reg);
7776 %}
7777 
7778 // Register Shift Left Immediate
7779 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7780   match(Set dst (RShiftL src1 src2));
7781 
7782   size(4);
7783   format %{ "SRAX   $src1,$src2,$dst" %}
7784   opcode(Assembler::srax_op3, Assembler::arith_op);
7785   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7786   ins_pipe(ialu_reg_imm);
7787 %}
7788 
7789 // Register Shift Right
7790 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7791   match(Set dst (URShiftI src1 src2));
7792 
7793   size(4);
7794   format %{ "SRL    $src1,$src2,$dst" %}
7795   opcode(Assembler::srl_op3, Assembler::arith_op);
7796   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7797   ins_pipe(ialu_reg_reg);
7798 %}
7799 
7800 // Register Shift Right Immediate
7801 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7802   match(Set dst (URShiftI src1 src2));
7803 
7804   size(4);
7805   format %{ "SRL    $src1,$src2,$dst" %}
7806   opcode(Assembler::srl_op3, Assembler::arith_op);
7807   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7808   ins_pipe(ialu_reg_imm);
7809 %}
7810 
7811 // Register Shift Right
7812 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7813   match(Set dst (URShiftL src1 src2));
7814 
7815   size(4);
7816   format %{ "SRLX   $src1,$src2,$dst" %}
7817   opcode(Assembler::srlx_op3, Assembler::arith_op);
7818   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7819   ins_pipe(ialu_reg_reg);
7820 %}
7821 
7822 // Register Shift Right Immediate
7823 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7824   match(Set dst (URShiftL src1 src2));
7825 
7826   size(4);
7827   format %{ "SRLX   $src1,$src2,$dst" %}
7828   opcode(Assembler::srlx_op3, Assembler::arith_op);
7829   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7830   ins_pipe(ialu_reg_imm);
7831 %}
7832 
7833 // Register Shift Right Immediate with a CastP2X
7834 #ifdef _LP64
7835 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7836   match(Set dst (URShiftL (CastP2X src1) src2));
7837   size(4);
7838   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7839   opcode(Assembler::srlx_op3, Assembler::arith_op);
7840   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7841   ins_pipe(ialu_reg_imm);
7842 %}
7843 #else
7844 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7845   match(Set dst (URShiftI (CastP2X src1) src2));
7846   size(4);
7847   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7848   opcode(Assembler::srl_op3, Assembler::arith_op);
7849   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7850   ins_pipe(ialu_reg_imm);
7851 %}
7852 #endif
7853 
7854 
7855 //----------Floating Point Arithmetic Instructions-----------------------------
7856 
7857 //  Add float single precision
7858 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7859   match(Set dst (AddF src1 src2));
7860 
7861   size(4);
7862   format %{ "FADDS  $src1,$src2,$dst" %}
7863   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7864   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7865   ins_pipe(faddF_reg_reg);
7866 %}
7867 
7868 //  Add float double precision
7869 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7870   match(Set dst (AddD src1 src2));
7871 
7872   size(4);
7873   format %{ "FADDD  $src1,$src2,$dst" %}
7874   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7875   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7876   ins_pipe(faddD_reg_reg);
7877 %}
7878 
7879 //  Sub float single precision
7880 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7881   match(Set dst (SubF src1 src2));
7882 
7883   size(4);
7884   format %{ "FSUBS  $src1,$src2,$dst" %}
7885   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7886   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7887   ins_pipe(faddF_reg_reg);
7888 %}
7889 
7890 //  Sub float double precision
7891 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7892   match(Set dst (SubD src1 src2));
7893 
7894   size(4);
7895   format %{ "FSUBD  $src1,$src2,$dst" %}
7896   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7897   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7898   ins_pipe(faddD_reg_reg);
7899 %}
7900 
7901 //  Mul float single precision
7902 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7903   match(Set dst (MulF src1 src2));
7904 
7905   size(4);
7906   format %{ "FMULS  $src1,$src2,$dst" %}
7907   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7908   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7909   ins_pipe(fmulF_reg_reg);
7910 %}
7911 
7912 //  Mul float double precision
7913 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7914   match(Set dst (MulD src1 src2));
7915 
7916   size(4);
7917   format %{ "FMULD  $src1,$src2,$dst" %}
7918   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7919   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7920   ins_pipe(fmulD_reg_reg);
7921 %}
7922 
7923 //  Div float single precision
7924 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7925   match(Set dst (DivF src1 src2));
7926 
7927   size(4);
7928   format %{ "FDIVS  $src1,$src2,$dst" %}
7929   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7930   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7931   ins_pipe(fdivF_reg_reg);
7932 %}
7933 
7934 //  Div float double precision
7935 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7936   match(Set dst (DivD src1 src2));
7937 
7938   size(4);
7939   format %{ "FDIVD  $src1,$src2,$dst" %}
7940   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7941   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7942   ins_pipe(fdivD_reg_reg);
7943 %}
7944 
7945 //  Absolute float double precision
7946 instruct absD_reg(regD dst, regD src) %{
7947   match(Set dst (AbsD src));
7948 
7949   format %{ "FABSd  $src,$dst" %}
7950   ins_encode(fabsd(dst, src));
7951   ins_pipe(faddD_reg);
7952 %}
7953 
7954 //  Absolute float single precision
7955 instruct absF_reg(regF dst, regF src) %{
7956   match(Set dst (AbsF src));
7957 
7958   format %{ "FABSs  $src,$dst" %}
7959   ins_encode(fabss(dst, src));
7960   ins_pipe(faddF_reg);
7961 %}
7962 
7963 instruct negF_reg(regF dst, regF src) %{
7964   match(Set dst (NegF src));
7965 
7966   size(4);
7967   format %{ "FNEGs  $src,$dst" %}
7968   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7969   ins_encode(form3_opf_rs2F_rdF(src, dst));
7970   ins_pipe(faddF_reg);
7971 %}
7972 
7973 instruct negD_reg(regD dst, regD src) %{
7974   match(Set dst (NegD src));
7975 
7976   format %{ "FNEGd  $src,$dst" %}
7977   ins_encode(fnegd(dst, src));
7978   ins_pipe(faddD_reg);
7979 %}
7980 
7981 //  Sqrt float double precision
7982 instruct sqrtF_reg_reg(regF dst, regF src) %{
7983   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7984 
7985   size(4);
7986   format %{ "FSQRTS $src,$dst" %}
7987   ins_encode(fsqrts(dst, src));
7988   ins_pipe(fdivF_reg_reg);
7989 %}
7990 
7991 //  Sqrt float double precision
7992 instruct sqrtD_reg_reg(regD dst, regD src) %{
7993   match(Set dst (SqrtD src));
7994 
7995   size(4);
7996   format %{ "FSQRTD $src,$dst" %}
7997   ins_encode(fsqrtd(dst, src));
7998   ins_pipe(fdivD_reg_reg);
7999 %}
8000 
8001 //----------Logical Instructions-----------------------------------------------
8002 // And Instructions
8003 // Register And
8004 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8005   match(Set dst (AndI src1 src2));
8006 
8007   size(4);
8008   format %{ "AND    $src1,$src2,$dst" %}
8009   opcode(Assembler::and_op3, Assembler::arith_op);
8010   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8011   ins_pipe(ialu_reg_reg);
8012 %}
8013 
8014 // Immediate And
8015 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8016   match(Set dst (AndI src1 src2));
8017 
8018   size(4);
8019   format %{ "AND    $src1,$src2,$dst" %}
8020   opcode(Assembler::and_op3, Assembler::arith_op);
8021   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8022   ins_pipe(ialu_reg_imm);
8023 %}
8024 
8025 // Register And Long
8026 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8027   match(Set dst (AndL src1 src2));
8028 
8029   ins_cost(DEFAULT_COST);
8030   size(4);
8031   format %{ "AND    $src1,$src2,$dst\t! long" %}
8032   opcode(Assembler::and_op3, Assembler::arith_op);
8033   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8034   ins_pipe(ialu_reg_reg);
8035 %}
8036 
8037 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8038   match(Set dst (AndL src1 con));
8039 
8040   ins_cost(DEFAULT_COST);
8041   size(4);
8042   format %{ "AND    $src1,$con,$dst\t! long" %}
8043   opcode(Assembler::and_op3, Assembler::arith_op);
8044   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8045   ins_pipe(ialu_reg_imm);
8046 %}
8047 
8048 // Or Instructions
8049 // Register Or
8050 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8051   match(Set dst (OrI src1 src2));
8052 
8053   size(4);
8054   format %{ "OR     $src1,$src2,$dst" %}
8055   opcode(Assembler::or_op3, Assembler::arith_op);
8056   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8057   ins_pipe(ialu_reg_reg);
8058 %}
8059 
8060 // Immediate Or
8061 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8062   match(Set dst (OrI src1 src2));
8063 
8064   size(4);
8065   format %{ "OR     $src1,$src2,$dst" %}
8066   opcode(Assembler::or_op3, Assembler::arith_op);
8067   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8068   ins_pipe(ialu_reg_imm);
8069 %}
8070 
8071 // Register Or Long
8072 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8073   match(Set dst (OrL src1 src2));
8074 
8075   ins_cost(DEFAULT_COST);
8076   size(4);
8077   format %{ "OR     $src1,$src2,$dst\t! long" %}
8078   opcode(Assembler::or_op3, Assembler::arith_op);
8079   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8080   ins_pipe(ialu_reg_reg);
8081 %}
8082 
8083 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8084   match(Set dst (OrL src1 con));
8085   ins_cost(DEFAULT_COST*2);
8086 
8087   ins_cost(DEFAULT_COST);
8088   size(4);
8089   format %{ "OR     $src1,$con,$dst\t! long" %}
8090   opcode(Assembler::or_op3, Assembler::arith_op);
8091   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8092   ins_pipe(ialu_reg_imm);
8093 %}
8094 
8095 #ifndef _LP64
8096 
8097 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8098 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8099   match(Set dst (OrI src1 (CastP2X src2)));
8100 
8101   size(4);
8102   format %{ "OR     $src1,$src2,$dst" %}
8103   opcode(Assembler::or_op3, Assembler::arith_op);
8104   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8105   ins_pipe(ialu_reg_reg);
8106 %}
8107 
8108 #else
8109 
8110 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8111   match(Set dst (OrL src1 (CastP2X src2)));
8112 
8113   ins_cost(DEFAULT_COST);
8114   size(4);
8115   format %{ "OR     $src1,$src2,$dst\t! long" %}
8116   opcode(Assembler::or_op3, Assembler::arith_op);
8117   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8118   ins_pipe(ialu_reg_reg);
8119 %}
8120 
8121 #endif
8122 
8123 // Xor Instructions
8124 // Register Xor
8125 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8126   match(Set dst (XorI src1 src2));
8127 
8128   size(4);
8129   format %{ "XOR    $src1,$src2,$dst" %}
8130   opcode(Assembler::xor_op3, Assembler::arith_op);
8131   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8132   ins_pipe(ialu_reg_reg);
8133 %}
8134 
8135 // Immediate Xor
8136 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8137   match(Set dst (XorI src1 src2));
8138 
8139   size(4);
8140   format %{ "XOR    $src1,$src2,$dst" %}
8141   opcode(Assembler::xor_op3, Assembler::arith_op);
8142   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8143   ins_pipe(ialu_reg_imm);
8144 %}
8145 
8146 // Register Xor Long
8147 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8148   match(Set dst (XorL src1 src2));
8149 
8150   ins_cost(DEFAULT_COST);
8151   size(4);
8152   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8153   opcode(Assembler::xor_op3, Assembler::arith_op);
8154   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8155   ins_pipe(ialu_reg_reg);
8156 %}
8157 
8158 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8159   match(Set dst (XorL src1 con));
8160 
8161   ins_cost(DEFAULT_COST);
8162   size(4);
8163   format %{ "XOR    $src1,$con,$dst\t! long" %}
8164   opcode(Assembler::xor_op3, Assembler::arith_op);
8165   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8166   ins_pipe(ialu_reg_imm);
8167 %}
8168 
8169 //----------Convert to Boolean-------------------------------------------------
8170 // Nice hack for 32-bit tests but doesn't work for
8171 // 64-bit pointers.
8172 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8173   match(Set dst (Conv2B src));
8174   effect( KILL ccr );
8175   ins_cost(DEFAULT_COST*2);
8176   format %{ "CMP    R_G0,$src\n\t"
8177             "ADDX   R_G0,0,$dst" %}
8178   ins_encode( enc_to_bool( src, dst ) );
8179   ins_pipe(ialu_reg_ialu);
8180 %}
8181 
8182 #ifndef _LP64
8183 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8184   match(Set dst (Conv2B src));
8185   effect( KILL ccr );
8186   ins_cost(DEFAULT_COST*2);
8187   format %{ "CMP    R_G0,$src\n\t"
8188             "ADDX   R_G0,0,$dst" %}
8189   ins_encode( enc_to_bool( src, dst ) );
8190   ins_pipe(ialu_reg_ialu);
8191 %}
8192 #else
8193 instruct convP2B( iRegI dst, iRegP src ) %{
8194   match(Set dst (Conv2B src));
8195   ins_cost(DEFAULT_COST*2);
8196   format %{ "MOV    $src,$dst\n\t"
8197             "MOVRNZ $src,1,$dst" %}
8198   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8199   ins_pipe(ialu_clr_and_mover);
8200 %}
8201 #endif
8202 
8203 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8204   match(Set dst (CmpLTMask src zero));
8205   effect(KILL ccr);
8206   size(4);
8207   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8208   ins_encode %{
8209     __ sra($src$$Register, 31, $dst$$Register);
8210   %}
8211   ins_pipe(ialu_reg_imm);
8212 %}
8213 
8214 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8215   match(Set dst (CmpLTMask p q));
8216   effect( KILL ccr );
8217   ins_cost(DEFAULT_COST*4);
8218   format %{ "CMP    $p,$q\n\t"
8219             "MOV    #0,$dst\n\t"
8220             "BLT,a  .+8\n\t"
8221             "MOV    #-1,$dst" %}
8222   ins_encode( enc_ltmask(p,q,dst) );
8223   ins_pipe(ialu_reg_reg_ialu);
8224 %}
8225 
8226 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8227   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8228   effect(KILL ccr, TEMP tmp);
8229   ins_cost(DEFAULT_COST*3);
8230 
8231   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8232             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8233             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8234   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8235   ins_pipe(cadd_cmpltmask);
8236 %}
8237 
8238 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8239   match(Set p (AndI (CmpLTMask p q) y));
8240   effect(KILL ccr);
8241   ins_cost(DEFAULT_COST*3);
8242 
8243   format %{ "CMP  $p,$q\n\t"
8244             "MOV  $y,$p\n\t"
8245             "MOVge G0,$p" %}
8246   ins_encode %{
8247     __ cmp($p$$Register, $q$$Register);
8248     __ mov($y$$Register, $p$$Register);
8249     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8250   %}
8251   ins_pipe(ialu_reg_reg_ialu);
8252 %}
8253 
8254 //-----------------------------------------------------------------
8255 // Direct raw moves between float and general registers using VIS3.
8256 
8257 //  ins_pipe(faddF_reg);
8258 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8259   predicate(UseVIS >= 3);
8260   match(Set dst (MoveF2I src));
8261 
8262   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8263   ins_encode %{
8264     __ movstouw($src$$FloatRegister, $dst$$Register);
8265   %}
8266   ins_pipe(ialu_reg_reg);
8267 %}
8268 
8269 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8270   predicate(UseVIS >= 3);
8271   match(Set dst (MoveI2F src));
8272 
8273   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8274   ins_encode %{
8275     __ movwtos($src$$Register, $dst$$FloatRegister);
8276   %}
8277   ins_pipe(ialu_reg_reg);
8278 %}
8279 
8280 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8281   predicate(UseVIS >= 3);
8282   match(Set dst (MoveD2L src));
8283 
8284   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8285   ins_encode %{
8286     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8287   %}
8288   ins_pipe(ialu_reg_reg);
8289 %}
8290 
8291 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8292   predicate(UseVIS >= 3);
8293   match(Set dst (MoveL2D src));
8294 
8295   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8296   ins_encode %{
8297     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8298   %}
8299   ins_pipe(ialu_reg_reg);
8300 %}
8301 
8302 
8303 // Raw moves between float and general registers using stack.
8304 
8305 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8306   match(Set dst (MoveF2I src));
8307   effect(DEF dst, USE src);
8308   ins_cost(MEMORY_REF_COST);
8309 
8310   size(4);
8311   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8312   opcode(Assembler::lduw_op3);
8313   ins_encode(simple_form3_mem_reg( src, dst ) );
8314   ins_pipe(iload_mem);
8315 %}
8316 
8317 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8318   match(Set dst (MoveI2F src));
8319   effect(DEF dst, USE src);
8320   ins_cost(MEMORY_REF_COST);
8321 
8322   size(4);
8323   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8324   opcode(Assembler::ldf_op3);
8325   ins_encode(simple_form3_mem_reg(src, dst));
8326   ins_pipe(floadF_stk);
8327 %}
8328 
8329 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8330   match(Set dst (MoveD2L src));
8331   effect(DEF dst, USE src);
8332   ins_cost(MEMORY_REF_COST);
8333 
8334   size(4);
8335   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8336   opcode(Assembler::ldx_op3);
8337   ins_encode(simple_form3_mem_reg( src, dst ) );
8338   ins_pipe(iload_mem);
8339 %}
8340 
8341 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8342   match(Set dst (MoveL2D src));
8343   effect(DEF dst, USE src);
8344   ins_cost(MEMORY_REF_COST);
8345 
8346   size(4);
8347   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8348   opcode(Assembler::lddf_op3);
8349   ins_encode(simple_form3_mem_reg(src, dst));
8350   ins_pipe(floadD_stk);
8351 %}
8352 
8353 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8354   match(Set dst (MoveF2I src));
8355   effect(DEF dst, USE src);
8356   ins_cost(MEMORY_REF_COST);
8357 
8358   size(4);
8359   format %{ "STF   $src,$dst\t! MoveF2I" %}
8360   opcode(Assembler::stf_op3);
8361   ins_encode(simple_form3_mem_reg(dst, src));
8362   ins_pipe(fstoreF_stk_reg);
8363 %}
8364 
8365 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8366   match(Set dst (MoveI2F src));
8367   effect(DEF dst, USE src);
8368   ins_cost(MEMORY_REF_COST);
8369 
8370   size(4);
8371   format %{ "STW    $src,$dst\t! MoveI2F" %}
8372   opcode(Assembler::stw_op3);
8373   ins_encode(simple_form3_mem_reg( dst, src ) );
8374   ins_pipe(istore_mem_reg);
8375 %}
8376 
8377 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8378   match(Set dst (MoveD2L src));
8379   effect(DEF dst, USE src);
8380   ins_cost(MEMORY_REF_COST);
8381 
8382   size(4);
8383   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8384   opcode(Assembler::stdf_op3);
8385   ins_encode(simple_form3_mem_reg(dst, src));
8386   ins_pipe(fstoreD_stk_reg);
8387 %}
8388 
8389 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8390   match(Set dst (MoveL2D src));
8391   effect(DEF dst, USE src);
8392   ins_cost(MEMORY_REF_COST);
8393 
8394   size(4);
8395   format %{ "STX    $src,$dst\t! MoveL2D" %}
8396   opcode(Assembler::stx_op3);
8397   ins_encode(simple_form3_mem_reg( dst, src ) );
8398   ins_pipe(istore_mem_reg);
8399 %}
8400 
8401 
8402 //----------Arithmetic Conversion Instructions---------------------------------
8403 // The conversions operations are all Alpha sorted.  Please keep it that way!
8404 
8405 instruct convD2F_reg(regF dst, regD src) %{
8406   match(Set dst (ConvD2F src));
8407   size(4);
8408   format %{ "FDTOS  $src,$dst" %}
8409   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8410   ins_encode(form3_opf_rs2D_rdF(src, dst));
8411   ins_pipe(fcvtD2F);
8412 %}
8413 
8414 
8415 // Convert a double to an int in a float register.
8416 // If the double is a NAN, stuff a zero in instead.
8417 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8418   effect(DEF dst, USE src, KILL fcc0);
8419   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8420             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8421             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8422             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8423             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8424       "skip:" %}
8425   ins_encode(form_d2i_helper(src,dst));
8426   ins_pipe(fcvtD2I);
8427 %}
8428 
8429 instruct convD2I_stk(stackSlotI dst, regD src) %{
8430   match(Set dst (ConvD2I src));
8431   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8432   expand %{
8433     regF tmp;
8434     convD2I_helper(tmp, src);
8435     regF_to_stkI(dst, tmp);
8436   %}
8437 %}
8438 
8439 instruct convD2I_reg(iRegI dst, regD src) %{
8440   predicate(UseVIS >= 3);
8441   match(Set dst (ConvD2I src));
8442   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8443   expand %{
8444     regF tmp;
8445     convD2I_helper(tmp, src);
8446     MoveF2I_reg_reg(dst, tmp);
8447   %}
8448 %}
8449 
8450 
8451 // Convert a double to a long in a double register.
8452 // If the double is a NAN, stuff a zero in instead.
8453 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8454   effect(DEF dst, USE src, KILL fcc0);
8455   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8456             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8457             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8458             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8459             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8460       "skip:" %}
8461   ins_encode(form_d2l_helper(src,dst));
8462   ins_pipe(fcvtD2L);
8463 %}
8464 
8465 instruct convD2L_stk(stackSlotL dst, regD src) %{
8466   match(Set dst (ConvD2L src));
8467   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8468   expand %{
8469     regD tmp;
8470     convD2L_helper(tmp, src);
8471     regD_to_stkL(dst, tmp);
8472   %}
8473 %}
8474 
8475 instruct convD2L_reg(iRegL dst, regD src) %{
8476   predicate(UseVIS >= 3);
8477   match(Set dst (ConvD2L src));
8478   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8479   expand %{
8480     regD tmp;
8481     convD2L_helper(tmp, src);
8482     MoveD2L_reg_reg(dst, tmp);
8483   %}
8484 %}
8485 
8486 
8487 instruct convF2D_reg(regD dst, regF src) %{
8488   match(Set dst (ConvF2D src));
8489   format %{ "FSTOD  $src,$dst" %}
8490   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8491   ins_encode(form3_opf_rs2F_rdD(src, dst));
8492   ins_pipe(fcvtF2D);
8493 %}
8494 
8495 
8496 // Convert a float to an int in a float register.
8497 // If the float is a NAN, stuff a zero in instead.
8498 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8499   effect(DEF dst, USE src, KILL fcc0);
8500   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8501             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8502             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8503             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8504             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8505       "skip:" %}
8506   ins_encode(form_f2i_helper(src,dst));
8507   ins_pipe(fcvtF2I);
8508 %}
8509 
8510 instruct convF2I_stk(stackSlotI dst, regF src) %{
8511   match(Set dst (ConvF2I src));
8512   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8513   expand %{
8514     regF tmp;
8515     convF2I_helper(tmp, src);
8516     regF_to_stkI(dst, tmp);
8517   %}
8518 %}
8519 
8520 instruct convF2I_reg(iRegI dst, regF src) %{
8521   predicate(UseVIS >= 3);
8522   match(Set dst (ConvF2I src));
8523   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8524   expand %{
8525     regF tmp;
8526     convF2I_helper(tmp, src);
8527     MoveF2I_reg_reg(dst, tmp);
8528   %}
8529 %}
8530 
8531 
8532 // Convert a float to a long in a float register.
8533 // If the float is a NAN, stuff a zero in instead.
8534 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8535   effect(DEF dst, USE src, KILL fcc0);
8536   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8537             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8538             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8539             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8540             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8541       "skip:" %}
8542   ins_encode(form_f2l_helper(src,dst));
8543   ins_pipe(fcvtF2L);
8544 %}
8545 
8546 instruct convF2L_stk(stackSlotL dst, regF src) %{
8547   match(Set dst (ConvF2L src));
8548   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8549   expand %{
8550     regD tmp;
8551     convF2L_helper(tmp, src);
8552     regD_to_stkL(dst, tmp);
8553   %}
8554 %}
8555 
8556 instruct convF2L_reg(iRegL dst, regF src) %{
8557   predicate(UseVIS >= 3);
8558   match(Set dst (ConvF2L src));
8559   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8560   expand %{
8561     regD tmp;
8562     convF2L_helper(tmp, src);
8563     MoveD2L_reg_reg(dst, tmp);
8564   %}
8565 %}
8566 
8567 
8568 instruct convI2D_helper(regD dst, regF tmp) %{
8569   effect(USE tmp, DEF dst);
8570   format %{ "FITOD  $tmp,$dst" %}
8571   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8572   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8573   ins_pipe(fcvtI2D);
8574 %}
8575 
8576 instruct convI2D_stk(stackSlotI src, regD dst) %{
8577   match(Set dst (ConvI2D src));
8578   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8579   expand %{
8580     regF tmp;
8581     stkI_to_regF(tmp, src);
8582     convI2D_helper(dst, tmp);
8583   %}
8584 %}
8585 
8586 instruct convI2D_reg(regD_low dst, iRegI src) %{
8587   predicate(UseVIS >= 3);
8588   match(Set dst (ConvI2D src));
8589   expand %{
8590     regF tmp;
8591     MoveI2F_reg_reg(tmp, src);
8592     convI2D_helper(dst, tmp);
8593   %}
8594 %}
8595 
8596 instruct convI2D_mem(regD_low dst, memory mem) %{
8597   match(Set dst (ConvI2D (LoadI mem)));
8598   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8599   size(8);
8600   format %{ "LDF    $mem,$dst\n\t"
8601             "FITOD  $dst,$dst" %}
8602   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8603   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8604   ins_pipe(floadF_mem);
8605 %}
8606 
8607 
8608 instruct convI2F_helper(regF dst, regF tmp) %{
8609   effect(DEF dst, USE tmp);
8610   format %{ "FITOS  $tmp,$dst" %}
8611   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8612   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8613   ins_pipe(fcvtI2F);
8614 %}
8615 
8616 instruct convI2F_stk(regF dst, stackSlotI src) %{
8617   match(Set dst (ConvI2F src));
8618   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8619   expand %{
8620     regF tmp;
8621     stkI_to_regF(tmp,src);
8622     convI2F_helper(dst, tmp);
8623   %}
8624 %}
8625 
8626 instruct convI2F_reg(regF dst, iRegI src) %{
8627   predicate(UseVIS >= 3);
8628   match(Set dst (ConvI2F src));
8629   ins_cost(DEFAULT_COST);
8630   expand %{
8631     regF tmp;
8632     MoveI2F_reg_reg(tmp, src);
8633     convI2F_helper(dst, tmp);
8634   %}
8635 %}
8636 
8637 instruct convI2F_mem( regF dst, memory mem ) %{
8638   match(Set dst (ConvI2F (LoadI mem)));
8639   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8640   size(8);
8641   format %{ "LDF    $mem,$dst\n\t"
8642             "FITOS  $dst,$dst" %}
8643   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8644   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8645   ins_pipe(floadF_mem);
8646 %}
8647 
8648 
8649 instruct convI2L_reg(iRegL dst, iRegI src) %{
8650   match(Set dst (ConvI2L src));
8651   size(4);
8652   format %{ "SRA    $src,0,$dst\t! int->long" %}
8653   opcode(Assembler::sra_op3, Assembler::arith_op);
8654   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8655   ins_pipe(ialu_reg_reg);
8656 %}
8657 
8658 // Zero-extend convert int to long
8659 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8660   match(Set dst (AndL (ConvI2L src) mask) );
8661   size(4);
8662   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8663   opcode(Assembler::srl_op3, Assembler::arith_op);
8664   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8665   ins_pipe(ialu_reg_reg);
8666 %}
8667 
8668 // Zero-extend long
8669 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8670   match(Set dst (AndL src mask) );
8671   size(4);
8672   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8673   opcode(Assembler::srl_op3, Assembler::arith_op);
8674   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8675   ins_pipe(ialu_reg_reg);
8676 %}
8677 
8678 
8679 //-----------
8680 // Long to Double conversion using V8 opcodes.
8681 // Still useful because cheetah traps and becomes
8682 // amazingly slow for some common numbers.
8683 
8684 // Magic constant, 0x43300000
8685 instruct loadConI_x43300000(iRegI dst) %{
8686   effect(DEF dst);
8687   size(4);
8688   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8689   ins_encode(SetHi22(0x43300000, dst));
8690   ins_pipe(ialu_none);
8691 %}
8692 
8693 // Magic constant, 0x41f00000
8694 instruct loadConI_x41f00000(iRegI dst) %{
8695   effect(DEF dst);
8696   size(4);
8697   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8698   ins_encode(SetHi22(0x41f00000, dst));
8699   ins_pipe(ialu_none);
8700 %}
8701 
8702 // Construct a double from two float halves
8703 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8704   effect(DEF dst, USE src1, USE src2);
8705   size(8);
8706   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8707             "FMOVS  $src2.lo,$dst.lo" %}
8708   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8709   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8710   ins_pipe(faddD_reg_reg);
8711 %}
8712 
8713 // Convert integer in high half of a double register (in the lower half of
8714 // the double register file) to double
8715 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8716   effect(DEF dst, USE src);
8717   size(4);
8718   format %{ "FITOD  $src,$dst" %}
8719   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8720   ins_encode(form3_opf_rs2D_rdD(src, dst));
8721   ins_pipe(fcvtLHi2D);
8722 %}
8723 
8724 // Add float double precision
8725 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8726   effect(DEF dst, USE src1, USE src2);
8727   size(4);
8728   format %{ "FADDD  $src1,$src2,$dst" %}
8729   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8730   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8731   ins_pipe(faddD_reg_reg);
8732 %}
8733 
8734 // Sub float double precision
8735 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8736   effect(DEF dst, USE src1, USE src2);
8737   size(4);
8738   format %{ "FSUBD  $src1,$src2,$dst" %}
8739   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8740   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8741   ins_pipe(faddD_reg_reg);
8742 %}
8743 
8744 // Mul float double precision
8745 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8746   effect(DEF dst, USE src1, USE src2);
8747   size(4);
8748   format %{ "FMULD  $src1,$src2,$dst" %}
8749   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8750   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8751   ins_pipe(fmulD_reg_reg);
8752 %}
8753 
8754 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8755   match(Set dst (ConvL2D src));
8756   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8757 
8758   expand %{
8759     regD_low   tmpsrc;
8760     iRegI      ix43300000;
8761     iRegI      ix41f00000;
8762     stackSlotL lx43300000;
8763     stackSlotL lx41f00000;
8764     regD_low   dx43300000;
8765     regD       dx41f00000;
8766     regD       tmp1;
8767     regD_low   tmp2;
8768     regD       tmp3;
8769     regD       tmp4;
8770 
8771     stkL_to_regD(tmpsrc, src);
8772 
8773     loadConI_x43300000(ix43300000);
8774     loadConI_x41f00000(ix41f00000);
8775     regI_to_stkLHi(lx43300000, ix43300000);
8776     regI_to_stkLHi(lx41f00000, ix41f00000);
8777     stkL_to_regD(dx43300000, lx43300000);
8778     stkL_to_regD(dx41f00000, lx41f00000);
8779 
8780     convI2D_regDHi_regD(tmp1, tmpsrc);
8781     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8782     subD_regD_regD(tmp3, tmp2, dx43300000);
8783     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8784     addD_regD_regD(dst, tmp3, tmp4);
8785   %}
8786 %}
8787 
8788 // Long to Double conversion using fast fxtof
8789 instruct convL2D_helper(regD dst, regD tmp) %{
8790   effect(DEF dst, USE tmp);
8791   size(4);
8792   format %{ "FXTOD  $tmp,$dst" %}
8793   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8794   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8795   ins_pipe(fcvtL2D);
8796 %}
8797 
8798 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8799   predicate(VM_Version::has_fast_fxtof());
8800   match(Set dst (ConvL2D src));
8801   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8802   expand %{
8803     regD tmp;
8804     stkL_to_regD(tmp, src);
8805     convL2D_helper(dst, tmp);
8806   %}
8807 %}
8808 
8809 instruct convL2D_reg(regD dst, iRegL src) %{
8810   predicate(UseVIS >= 3);
8811   match(Set dst (ConvL2D src));
8812   expand %{
8813     regD tmp;
8814     MoveL2D_reg_reg(tmp, src);
8815     convL2D_helper(dst, tmp);
8816   %}
8817 %}
8818 
8819 // Long to Float conversion using fast fxtof
8820 instruct convL2F_helper(regF dst, regD tmp) %{
8821   effect(DEF dst, USE tmp);
8822   size(4);
8823   format %{ "FXTOS  $tmp,$dst" %}
8824   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8825   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8826   ins_pipe(fcvtL2F);
8827 %}
8828 
8829 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8830   match(Set dst (ConvL2F src));
8831   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8832   expand %{
8833     regD tmp;
8834     stkL_to_regD(tmp, src);
8835     convL2F_helper(dst, tmp);
8836   %}
8837 %}
8838 
8839 instruct convL2F_reg(regF dst, iRegL src) %{
8840   predicate(UseVIS >= 3);
8841   match(Set dst (ConvL2F src));
8842   ins_cost(DEFAULT_COST);
8843   expand %{
8844     regD tmp;
8845     MoveL2D_reg_reg(tmp, src);
8846     convL2F_helper(dst, tmp);
8847   %}
8848 %}
8849 
8850 //-----------
8851 
8852 instruct convL2I_reg(iRegI dst, iRegL src) %{
8853   match(Set dst (ConvL2I src));
8854 #ifndef _LP64
8855   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8856   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8857   ins_pipe(ialu_move_reg_I_to_L);
8858 #else
8859   size(4);
8860   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8861   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8862   ins_pipe(ialu_reg);
8863 #endif
8864 %}
8865 
8866 // Register Shift Right Immediate
8867 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8868   match(Set dst (ConvL2I (RShiftL src cnt)));
8869 
8870   size(4);
8871   format %{ "SRAX   $src,$cnt,$dst" %}
8872   opcode(Assembler::srax_op3, Assembler::arith_op);
8873   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8874   ins_pipe(ialu_reg_imm);
8875 %}
8876 
8877 //----------Control Flow Instructions------------------------------------------
8878 // Compare Instructions
8879 // Compare Integers
8880 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8881   match(Set icc (CmpI op1 op2));
8882   effect( DEF icc, USE op1, USE op2 );
8883 
8884   size(4);
8885   format %{ "CMP    $op1,$op2" %}
8886   opcode(Assembler::subcc_op3, Assembler::arith_op);
8887   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8888   ins_pipe(ialu_cconly_reg_reg);
8889 %}
8890 
8891 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8892   match(Set icc (CmpU op1 op2));
8893 
8894   size(4);
8895   format %{ "CMP    $op1,$op2\t! unsigned" %}
8896   opcode(Assembler::subcc_op3, Assembler::arith_op);
8897   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8898   ins_pipe(ialu_cconly_reg_reg);
8899 %}
8900 
8901 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8902   match(Set icc (CmpI op1 op2));
8903   effect( DEF icc, USE op1 );
8904 
8905   size(4);
8906   format %{ "CMP    $op1,$op2" %}
8907   opcode(Assembler::subcc_op3, Assembler::arith_op);
8908   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8909   ins_pipe(ialu_cconly_reg_imm);
8910 %}
8911 
8912 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8913   match(Set icc (CmpI (AndI op1 op2) zero));
8914 
8915   size(4);
8916   format %{ "BTST   $op2,$op1" %}
8917   opcode(Assembler::andcc_op3, Assembler::arith_op);
8918   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8919   ins_pipe(ialu_cconly_reg_reg_zero);
8920 %}
8921 
8922 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8923   match(Set icc (CmpI (AndI op1 op2) zero));
8924 
8925   size(4);
8926   format %{ "BTST   $op2,$op1" %}
8927   opcode(Assembler::andcc_op3, Assembler::arith_op);
8928   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8929   ins_pipe(ialu_cconly_reg_imm_zero);
8930 %}
8931 
8932 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8933   match(Set xcc (CmpL op1 op2));
8934   effect( DEF xcc, USE op1, USE op2 );
8935 
8936   size(4);
8937   format %{ "CMP    $op1,$op2\t\t! long" %}
8938   opcode(Assembler::subcc_op3, Assembler::arith_op);
8939   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8940   ins_pipe(ialu_cconly_reg_reg);
8941 %}
8942 
8943 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8944   match(Set xcc (CmpL op1 con));
8945   effect( DEF xcc, USE op1, USE con );
8946 
8947   size(4);
8948   format %{ "CMP    $op1,$con\t\t! long" %}
8949   opcode(Assembler::subcc_op3, Assembler::arith_op);
8950   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8951   ins_pipe(ialu_cconly_reg_reg);
8952 %}
8953 
8954 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8955   match(Set xcc (CmpL (AndL op1 op2) zero));
8956   effect( DEF xcc, USE op1, USE op2 );
8957 
8958   size(4);
8959   format %{ "BTST   $op1,$op2\t\t! long" %}
8960   opcode(Assembler::andcc_op3, Assembler::arith_op);
8961   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8962   ins_pipe(ialu_cconly_reg_reg);
8963 %}
8964 
8965 // useful for checking the alignment of a pointer:
8966 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8967   match(Set xcc (CmpL (AndL op1 con) zero));
8968   effect( DEF xcc, USE op1, USE con );
8969 
8970   size(4);
8971   format %{ "BTST   $op1,$con\t\t! long" %}
8972   opcode(Assembler::andcc_op3, Assembler::arith_op);
8973   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8974   ins_pipe(ialu_cconly_reg_reg);
8975 %}
8976 
8977 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8978   match(Set icc (CmpU op1 op2));
8979 
8980   size(4);
8981   format %{ "CMP    $op1,$op2\t! unsigned" %}
8982   opcode(Assembler::subcc_op3, Assembler::arith_op);
8983   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8984   ins_pipe(ialu_cconly_reg_imm);
8985 %}
8986 
8987 // Compare Pointers
8988 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8989   match(Set pcc (CmpP op1 op2));
8990 
8991   size(4);
8992   format %{ "CMP    $op1,$op2\t! ptr" %}
8993   opcode(Assembler::subcc_op3, Assembler::arith_op);
8994   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8995   ins_pipe(ialu_cconly_reg_reg);
8996 %}
8997 
8998 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8999   match(Set pcc (CmpP op1 op2));
9000 
9001   size(4);
9002   format %{ "CMP    $op1,$op2\t! ptr" %}
9003   opcode(Assembler::subcc_op3, Assembler::arith_op);
9004   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9005   ins_pipe(ialu_cconly_reg_imm);
9006 %}
9007 
9008 // Compare Narrow oops
9009 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9010   match(Set icc (CmpN op1 op2));
9011 
9012   size(4);
9013   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9014   opcode(Assembler::subcc_op3, Assembler::arith_op);
9015   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9016   ins_pipe(ialu_cconly_reg_reg);
9017 %}
9018 
9019 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9020   match(Set icc (CmpN op1 op2));
9021 
9022   size(4);
9023   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9024   opcode(Assembler::subcc_op3, Assembler::arith_op);
9025   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9026   ins_pipe(ialu_cconly_reg_imm);
9027 %}
9028 
9029 //----------Max and Min--------------------------------------------------------
9030 // Min Instructions
9031 // Conditional move for min
9032 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9033   effect( USE_DEF op2, USE op1, USE icc );
9034 
9035   size(4);
9036   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9037   opcode(Assembler::less);
9038   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9039   ins_pipe(ialu_reg_flags);
9040 %}
9041 
9042 // Min Register with Register.
9043 instruct minI_eReg(iRegI op1, iRegI op2) %{
9044   match(Set op2 (MinI op1 op2));
9045   ins_cost(DEFAULT_COST*2);
9046   expand %{
9047     flagsReg icc;
9048     compI_iReg(icc,op1,op2);
9049     cmovI_reg_lt(op2,op1,icc);
9050   %}
9051 %}
9052 
9053 // Max Instructions
9054 // Conditional move for max
9055 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9056   effect( USE_DEF op2, USE op1, USE icc );
9057   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9058   opcode(Assembler::greater);
9059   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9060   ins_pipe(ialu_reg_flags);
9061 %}
9062 
9063 // Max Register with Register
9064 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9065   match(Set op2 (MaxI op1 op2));
9066   ins_cost(DEFAULT_COST*2);
9067   expand %{
9068     flagsReg icc;
9069     compI_iReg(icc,op1,op2);
9070     cmovI_reg_gt(op2,op1,icc);
9071   %}
9072 %}
9073 
9074 
9075 //----------Float Compares----------------------------------------------------
9076 // Compare floating, generate condition code
9077 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9078   match(Set fcc (CmpF src1 src2));
9079 
9080   size(4);
9081   format %{ "FCMPs  $fcc,$src1,$src2" %}
9082   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9083   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9084   ins_pipe(faddF_fcc_reg_reg_zero);
9085 %}
9086 
9087 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9088   match(Set fcc (CmpD src1 src2));
9089 
9090   size(4);
9091   format %{ "FCMPd  $fcc,$src1,$src2" %}
9092   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9093   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9094   ins_pipe(faddD_fcc_reg_reg_zero);
9095 %}
9096 
9097 
9098 // Compare floating, generate -1,0,1
9099 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9100   match(Set dst (CmpF3 src1 src2));
9101   effect(KILL fcc0);
9102   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9103   format %{ "fcmpl  $dst,$src1,$src2" %}
9104   // Primary = float
9105   opcode( true );
9106   ins_encode( floating_cmp( dst, src1, src2 ) );
9107   ins_pipe( floating_cmp );
9108 %}
9109 
9110 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9111   match(Set dst (CmpD3 src1 src2));
9112   effect(KILL fcc0);
9113   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9114   format %{ "dcmpl  $dst,$src1,$src2" %}
9115   // Primary = double (not float)
9116   opcode( false );
9117   ins_encode( floating_cmp( dst, src1, src2 ) );
9118   ins_pipe( floating_cmp );
9119 %}
9120 
9121 //----------Branches---------------------------------------------------------
9122 // Jump
9123 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9124 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9125   match(Jump switch_val);
9126   effect(TEMP table);
9127 
9128   ins_cost(350);
9129 
9130   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9131              "LD     [O7 + $switch_val], O7\n\t"
9132              "JUMP   O7" %}
9133   ins_encode %{
9134     // Calculate table address into a register.
9135     Register table_reg;
9136     Register label_reg = O7;
9137     // If we are calculating the size of this instruction don't trust
9138     // zero offsets because they might change when
9139     // MachConstantBaseNode decides to optimize the constant table
9140     // base.
9141     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9142       table_reg = $constanttablebase;
9143     } else {
9144       table_reg = O7;
9145       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9146       __ add($constanttablebase, con_offset, table_reg);
9147     }
9148 
9149     // Jump to base address + switch value
9150     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9151     __ jmp(label_reg, G0);
9152     __ delayed()->nop();
9153   %}
9154   ins_pipe(ialu_reg_reg);
9155 %}
9156 
9157 // Direct Branch.  Use V8 version with longer range.
9158 instruct branch(label labl) %{
9159   match(Goto);
9160   effect(USE labl);
9161 
9162   size(8);
9163   ins_cost(BRANCH_COST);
9164   format %{ "BA     $labl" %}
9165   ins_encode %{
9166     Label* L = $labl$$label;
9167     __ ba(*L);
9168     __ delayed()->nop();
9169   %}
9170   ins_pipe(br);
9171 %}
9172 
9173 // Direct Branch, short with no delay slot
9174 instruct branch_short(label labl) %{
9175   match(Goto);
9176   predicate(UseCBCond);
9177   effect(USE labl);
9178 
9179   size(4);
9180   ins_cost(BRANCH_COST);
9181   format %{ "BA     $labl\t! short branch" %}
9182   ins_encode %{
9183     Label* L = $labl$$label;
9184     assert(__ use_cbcond(*L), "back to back cbcond");
9185     __ ba_short(*L);
9186   %}
9187   ins_short_branch(1);
9188   ins_avoid_back_to_back(1);
9189   ins_pipe(cbcond_reg_imm);
9190 %}
9191 
9192 // Conditional Direct Branch
9193 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9194   match(If cmp icc);
9195   effect(USE labl);
9196 
9197   size(8);
9198   ins_cost(BRANCH_COST);
9199   format %{ "BP$cmp   $icc,$labl" %}
9200   // Prim = bits 24-22, Secnd = bits 31-30
9201   ins_encode( enc_bp( labl, cmp, icc ) );
9202   ins_pipe(br_cc);
9203 %}
9204 
9205 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9206   match(If cmp icc);
9207   effect(USE labl);
9208 
9209   ins_cost(BRANCH_COST);
9210   format %{ "BP$cmp  $icc,$labl" %}
9211   // Prim = bits 24-22, Secnd = bits 31-30
9212   ins_encode( enc_bp( labl, cmp, icc ) );
9213   ins_pipe(br_cc);
9214 %}
9215 
9216 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9217   match(If cmp pcc);
9218   effect(USE labl);
9219 
9220   size(8);
9221   ins_cost(BRANCH_COST);
9222   format %{ "BP$cmp  $pcc,$labl" %}
9223   ins_encode %{
9224     Label* L = $labl$$label;
9225     Assembler::Predict predict_taken =
9226       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9227 
9228     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9229     __ delayed()->nop();
9230   %}
9231   ins_pipe(br_cc);
9232 %}
9233 
9234 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9235   match(If cmp fcc);
9236   effect(USE labl);
9237 
9238   size(8);
9239   ins_cost(BRANCH_COST);
9240   format %{ "FBP$cmp $fcc,$labl" %}
9241   ins_encode %{
9242     Label* L = $labl$$label;
9243     Assembler::Predict predict_taken =
9244       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9245 
9246     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9247     __ delayed()->nop();
9248   %}
9249   ins_pipe(br_fcc);
9250 %}
9251 
9252 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9253   match(CountedLoopEnd cmp icc);
9254   effect(USE labl);
9255 
9256   size(8);
9257   ins_cost(BRANCH_COST);
9258   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9259   // Prim = bits 24-22, Secnd = bits 31-30
9260   ins_encode( enc_bp( labl, cmp, icc ) );
9261   ins_pipe(br_cc);
9262 %}
9263 
9264 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9265   match(CountedLoopEnd cmp icc);
9266   effect(USE labl);
9267 
9268   size(8);
9269   ins_cost(BRANCH_COST);
9270   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9271   // Prim = bits 24-22, Secnd = bits 31-30
9272   ins_encode( enc_bp( labl, cmp, icc ) );
9273   ins_pipe(br_cc);
9274 %}
9275 
9276 // Compare and branch instructions
9277 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9278   match(If cmp (CmpI op1 op2));
9279   effect(USE labl, KILL icc);
9280 
9281   size(12);
9282   ins_cost(BRANCH_COST);
9283   format %{ "CMP    $op1,$op2\t! int\n\t"
9284             "BP$cmp   $labl" %}
9285   ins_encode %{
9286     Label* L = $labl$$label;
9287     Assembler::Predict predict_taken =
9288       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9289     __ cmp($op1$$Register, $op2$$Register);
9290     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9291     __ delayed()->nop();
9292   %}
9293   ins_pipe(cmp_br_reg_reg);
9294 %}
9295 
9296 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9297   match(If cmp (CmpI op1 op2));
9298   effect(USE labl, KILL icc);
9299 
9300   size(12);
9301   ins_cost(BRANCH_COST);
9302   format %{ "CMP    $op1,$op2\t! int\n\t"
9303             "BP$cmp   $labl" %}
9304   ins_encode %{
9305     Label* L = $labl$$label;
9306     Assembler::Predict predict_taken =
9307       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9308     __ cmp($op1$$Register, $op2$$constant);
9309     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9310     __ delayed()->nop();
9311   %}
9312   ins_pipe(cmp_br_reg_imm);
9313 %}
9314 
9315 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9316   match(If cmp (CmpU op1 op2));
9317   effect(USE labl, KILL icc);
9318 
9319   size(12);
9320   ins_cost(BRANCH_COST);
9321   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9322             "BP$cmp  $labl" %}
9323   ins_encode %{
9324     Label* L = $labl$$label;
9325     Assembler::Predict predict_taken =
9326       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9327     __ cmp($op1$$Register, $op2$$Register);
9328     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9329     __ delayed()->nop();
9330   %}
9331   ins_pipe(cmp_br_reg_reg);
9332 %}
9333 
9334 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9335   match(If cmp (CmpU op1 op2));
9336   effect(USE labl, KILL icc);
9337 
9338   size(12);
9339   ins_cost(BRANCH_COST);
9340   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9341             "BP$cmp  $labl" %}
9342   ins_encode %{
9343     Label* L = $labl$$label;
9344     Assembler::Predict predict_taken =
9345       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9346     __ cmp($op1$$Register, $op2$$constant);
9347     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9348     __ delayed()->nop();
9349   %}
9350   ins_pipe(cmp_br_reg_imm);
9351 %}
9352 
9353 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9354   match(If cmp (CmpL op1 op2));
9355   effect(USE labl, KILL xcc);
9356 
9357   size(12);
9358   ins_cost(BRANCH_COST);
9359   format %{ "CMP    $op1,$op2\t! long\n\t"
9360             "BP$cmp   $labl" %}
9361   ins_encode %{
9362     Label* L = $labl$$label;
9363     Assembler::Predict predict_taken =
9364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9365     __ cmp($op1$$Register, $op2$$Register);
9366     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9367     __ delayed()->nop();
9368   %}
9369   ins_pipe(cmp_br_reg_reg);
9370 %}
9371 
9372 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9373   match(If cmp (CmpL op1 op2));
9374   effect(USE labl, KILL xcc);
9375 
9376   size(12);
9377   ins_cost(BRANCH_COST);
9378   format %{ "CMP    $op1,$op2\t! long\n\t"
9379             "BP$cmp   $labl" %}
9380   ins_encode %{
9381     Label* L = $labl$$label;
9382     Assembler::Predict predict_taken =
9383       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9384     __ cmp($op1$$Register, $op2$$constant);
9385     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9386     __ delayed()->nop();
9387   %}
9388   ins_pipe(cmp_br_reg_imm);
9389 %}
9390 
9391 // Compare Pointers and branch
9392 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9393   match(If cmp (CmpP op1 op2));
9394   effect(USE labl, KILL pcc);
9395 
9396   size(12);
9397   ins_cost(BRANCH_COST);
9398   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9399             "B$cmp   $labl" %}
9400   ins_encode %{
9401     Label* L = $labl$$label;
9402     Assembler::Predict predict_taken =
9403       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9404     __ cmp($op1$$Register, $op2$$Register);
9405     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9406     __ delayed()->nop();
9407   %}
9408   ins_pipe(cmp_br_reg_reg);
9409 %}
9410 
9411 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9412   match(If cmp (CmpP op1 null));
9413   effect(USE labl, KILL pcc);
9414 
9415   size(12);
9416   ins_cost(BRANCH_COST);
9417   format %{ "CMP    $op1,0\t! ptr\n\t"
9418             "B$cmp   $labl" %}
9419   ins_encode %{
9420     Label* L = $labl$$label;
9421     Assembler::Predict predict_taken =
9422       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9423     __ cmp($op1$$Register, G0);
9424     // bpr() is not used here since it has shorter distance.
9425     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9426     __ delayed()->nop();
9427   %}
9428   ins_pipe(cmp_br_reg_reg);
9429 %}
9430 
9431 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9432   match(If cmp (CmpN op1 op2));
9433   effect(USE labl, KILL icc);
9434 
9435   size(12);
9436   ins_cost(BRANCH_COST);
9437   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9438             "BP$cmp   $labl" %}
9439   ins_encode %{
9440     Label* L = $labl$$label;
9441     Assembler::Predict predict_taken =
9442       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9443     __ cmp($op1$$Register, $op2$$Register);
9444     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9445     __ delayed()->nop();
9446   %}
9447   ins_pipe(cmp_br_reg_reg);
9448 %}
9449 
9450 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9451   match(If cmp (CmpN op1 null));
9452   effect(USE labl, KILL icc);
9453 
9454   size(12);
9455   ins_cost(BRANCH_COST);
9456   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9457             "BP$cmp   $labl" %}
9458   ins_encode %{
9459     Label* L = $labl$$label;
9460     Assembler::Predict predict_taken =
9461       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9462     __ cmp($op1$$Register, G0);
9463     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9464     __ delayed()->nop();
9465   %}
9466   ins_pipe(cmp_br_reg_reg);
9467 %}
9468 
9469 // Loop back branch
9470 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9471   match(CountedLoopEnd cmp (CmpI op1 op2));
9472   effect(USE labl, KILL icc);
9473 
9474   size(12);
9475   ins_cost(BRANCH_COST);
9476   format %{ "CMP    $op1,$op2\t! int\n\t"
9477             "BP$cmp   $labl\t! Loop end" %}
9478   ins_encode %{
9479     Label* L = $labl$$label;
9480     Assembler::Predict predict_taken =
9481       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9482     __ cmp($op1$$Register, $op2$$Register);
9483     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9484     __ delayed()->nop();
9485   %}
9486   ins_pipe(cmp_br_reg_reg);
9487 %}
9488 
9489 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9490   match(CountedLoopEnd cmp (CmpI op1 op2));
9491   effect(USE labl, KILL icc);
9492 
9493   size(12);
9494   ins_cost(BRANCH_COST);
9495   format %{ "CMP    $op1,$op2\t! int\n\t"
9496             "BP$cmp   $labl\t! Loop end" %}
9497   ins_encode %{
9498     Label* L = $labl$$label;
9499     Assembler::Predict predict_taken =
9500       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9501     __ cmp($op1$$Register, $op2$$constant);
9502     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9503     __ delayed()->nop();
9504   %}
9505   ins_pipe(cmp_br_reg_imm);
9506 %}
9507 
9508 // Short compare and branch instructions
9509 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9510   match(If cmp (CmpI op1 op2));
9511   predicate(UseCBCond);
9512   effect(USE labl, KILL icc);
9513 
9514   size(4);
9515   ins_cost(BRANCH_COST);
9516   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9517   ins_encode %{
9518     Label* L = $labl$$label;
9519     assert(__ use_cbcond(*L), "back to back cbcond");
9520     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9521   %}
9522   ins_short_branch(1);
9523   ins_avoid_back_to_back(1);
9524   ins_pipe(cbcond_reg_reg);
9525 %}
9526 
9527 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9528   match(If cmp (CmpI op1 op2));
9529   predicate(UseCBCond);
9530   effect(USE labl, KILL icc);
9531 
9532   size(4);
9533   ins_cost(BRANCH_COST);
9534   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9535   ins_encode %{
9536     Label* L = $labl$$label;
9537     assert(__ use_cbcond(*L), "back to back cbcond");
9538     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9539   %}
9540   ins_short_branch(1);
9541   ins_avoid_back_to_back(1);
9542   ins_pipe(cbcond_reg_imm);
9543 %}
9544 
9545 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9546   match(If cmp (CmpU op1 op2));
9547   predicate(UseCBCond);
9548   effect(USE labl, KILL icc);
9549 
9550   size(4);
9551   ins_cost(BRANCH_COST);
9552   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9553   ins_encode %{
9554     Label* L = $labl$$label;
9555     assert(__ use_cbcond(*L), "back to back cbcond");
9556     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9557   %}
9558   ins_short_branch(1);
9559   ins_avoid_back_to_back(1);
9560   ins_pipe(cbcond_reg_reg);
9561 %}
9562 
9563 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9564   match(If cmp (CmpU op1 op2));
9565   predicate(UseCBCond);
9566   effect(USE labl, KILL icc);
9567 
9568   size(4);
9569   ins_cost(BRANCH_COST);
9570   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9571   ins_encode %{
9572     Label* L = $labl$$label;
9573     assert(__ use_cbcond(*L), "back to back cbcond");
9574     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9575   %}
9576   ins_short_branch(1);
9577   ins_avoid_back_to_back(1);
9578   ins_pipe(cbcond_reg_imm);
9579 %}
9580 
9581 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9582   match(If cmp (CmpL op1 op2));
9583   predicate(UseCBCond);
9584   effect(USE labl, KILL xcc);
9585 
9586   size(4);
9587   ins_cost(BRANCH_COST);
9588   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9589   ins_encode %{
9590     Label* L = $labl$$label;
9591     assert(__ use_cbcond(*L), "back to back cbcond");
9592     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9593   %}
9594   ins_short_branch(1);
9595   ins_avoid_back_to_back(1);
9596   ins_pipe(cbcond_reg_reg);
9597 %}
9598 
9599 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9600   match(If cmp (CmpL op1 op2));
9601   predicate(UseCBCond);
9602   effect(USE labl, KILL xcc);
9603 
9604   size(4);
9605   ins_cost(BRANCH_COST);
9606   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9607   ins_encode %{
9608     Label* L = $labl$$label;
9609     assert(__ use_cbcond(*L), "back to back cbcond");
9610     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9611   %}
9612   ins_short_branch(1);
9613   ins_avoid_back_to_back(1);
9614   ins_pipe(cbcond_reg_imm);
9615 %}
9616 
9617 // Compare Pointers and branch
9618 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9619   match(If cmp (CmpP op1 op2));
9620   predicate(UseCBCond);
9621   effect(USE labl, KILL pcc);
9622 
9623   size(4);
9624   ins_cost(BRANCH_COST);
9625 #ifdef _LP64
9626   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9627 #else
9628   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9629 #endif
9630   ins_encode %{
9631     Label* L = $labl$$label;
9632     assert(__ use_cbcond(*L), "back to back cbcond");
9633     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9634   %}
9635   ins_short_branch(1);
9636   ins_avoid_back_to_back(1);
9637   ins_pipe(cbcond_reg_reg);
9638 %}
9639 
9640 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9641   match(If cmp (CmpP op1 null));
9642   predicate(UseCBCond);
9643   effect(USE labl, KILL pcc);
9644 
9645   size(4);
9646   ins_cost(BRANCH_COST);
9647 #ifdef _LP64
9648   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9649 #else
9650   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9651 #endif
9652   ins_encode %{
9653     Label* L = $labl$$label;
9654     assert(__ use_cbcond(*L), "back to back cbcond");
9655     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9656   %}
9657   ins_short_branch(1);
9658   ins_avoid_back_to_back(1);
9659   ins_pipe(cbcond_reg_reg);
9660 %}
9661 
9662 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9663   match(If cmp (CmpN op1 op2));
9664   predicate(UseCBCond);
9665   effect(USE labl, KILL icc);
9666 
9667   size(4);
9668   ins_cost(BRANCH_COST);
9669   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9670   ins_encode %{
9671     Label* L = $labl$$label;
9672     assert(__ use_cbcond(*L), "back to back cbcond");
9673     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9674   %}
9675   ins_short_branch(1);
9676   ins_avoid_back_to_back(1);
9677   ins_pipe(cbcond_reg_reg);
9678 %}
9679 
9680 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9681   match(If cmp (CmpN op1 null));
9682   predicate(UseCBCond);
9683   effect(USE labl, KILL icc);
9684 
9685   size(4);
9686   ins_cost(BRANCH_COST);
9687   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9688   ins_encode %{
9689     Label* L = $labl$$label;
9690     assert(__ use_cbcond(*L), "back to back cbcond");
9691     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9692   %}
9693   ins_short_branch(1);
9694   ins_avoid_back_to_back(1);
9695   ins_pipe(cbcond_reg_reg);
9696 %}
9697 
9698 // Loop back branch
9699 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9700   match(CountedLoopEnd cmp (CmpI op1 op2));
9701   predicate(UseCBCond);
9702   effect(USE labl, KILL icc);
9703 
9704   size(4);
9705   ins_cost(BRANCH_COST);
9706   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9707   ins_encode %{
9708     Label* L = $labl$$label;
9709     assert(__ use_cbcond(*L), "back to back cbcond");
9710     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9711   %}
9712   ins_short_branch(1);
9713   ins_avoid_back_to_back(1);
9714   ins_pipe(cbcond_reg_reg);
9715 %}
9716 
9717 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9718   match(CountedLoopEnd cmp (CmpI op1 op2));
9719   predicate(UseCBCond);
9720   effect(USE labl, KILL icc);
9721 
9722   size(4);
9723   ins_cost(BRANCH_COST);
9724   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9725   ins_encode %{
9726     Label* L = $labl$$label;
9727     assert(__ use_cbcond(*L), "back to back cbcond");
9728     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9729   %}
9730   ins_short_branch(1);
9731   ins_avoid_back_to_back(1);
9732   ins_pipe(cbcond_reg_imm);
9733 %}
9734 
9735 // Branch-on-register tests all 64 bits.  We assume that values
9736 // in 64-bit registers always remains zero or sign extended
9737 // unless our code munges the high bits.  Interrupts can chop
9738 // the high order bits to zero or sign at any time.
9739 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9740   match(If cmp (CmpI op1 zero));
9741   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9742   effect(USE labl);
9743 
9744   size(8);
9745   ins_cost(BRANCH_COST);
9746   format %{ "BR$cmp   $op1,$labl" %}
9747   ins_encode( enc_bpr( labl, cmp, op1 ) );
9748   ins_pipe(br_reg);
9749 %}
9750 
9751 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9752   match(If cmp (CmpP op1 null));
9753   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9754   effect(USE labl);
9755 
9756   size(8);
9757   ins_cost(BRANCH_COST);
9758   format %{ "BR$cmp   $op1,$labl" %}
9759   ins_encode( enc_bpr( labl, cmp, op1 ) );
9760   ins_pipe(br_reg);
9761 %}
9762 
9763 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9764   match(If cmp (CmpL op1 zero));
9765   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9766   effect(USE labl);
9767 
9768   size(8);
9769   ins_cost(BRANCH_COST);
9770   format %{ "BR$cmp   $op1,$labl" %}
9771   ins_encode( enc_bpr( labl, cmp, op1 ) );
9772   ins_pipe(br_reg);
9773 %}
9774 
9775 
9776 // ============================================================================
9777 // Long Compare
9778 //
9779 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9780 // is tricky.  The flavor of compare used depends on whether we are testing
9781 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9782 // The GE test is the negated LT test.  The LE test can be had by commuting
9783 // the operands (yielding a GE test) and then negating; negate again for the
9784 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9785 // NE test is negated from that.
9786 
9787 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9788 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9789 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9790 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9791 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9792 // foo match ends up with the wrong leaf.  One fix is to not match both
9793 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9794 // both forms beat the trinary form of long-compare and both are very useful
9795 // on Intel which has so few registers.
9796 
9797 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9798   match(If cmp xcc);
9799   effect(USE labl);
9800 
9801   size(8);
9802   ins_cost(BRANCH_COST);
9803   format %{ "BP$cmp   $xcc,$labl" %}
9804   ins_encode %{
9805     Label* L = $labl$$label;
9806     Assembler::Predict predict_taken =
9807       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9808 
9809     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9810     __ delayed()->nop();
9811   %}
9812   ins_pipe(br_cc);
9813 %}
9814 
9815 // Manifest a CmpL3 result in an integer register.  Very painful.
9816 // This is the test to avoid.
9817 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9818   match(Set dst (CmpL3 src1 src2) );
9819   effect( KILL ccr );
9820   ins_cost(6*DEFAULT_COST);
9821   size(24);
9822   format %{ "CMP    $src1,$src2\t\t! long\n"
9823           "\tBLT,a,pn done\n"
9824           "\tMOV    -1,$dst\t! delay slot\n"
9825           "\tBGT,a,pn done\n"
9826           "\tMOV    1,$dst\t! delay slot\n"
9827           "\tCLR    $dst\n"
9828     "done:"     %}
9829   ins_encode( cmpl_flag(src1,src2,dst) );
9830   ins_pipe(cmpL_reg);
9831 %}
9832 
9833 // Conditional move
9834 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9835   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9836   ins_cost(150);
9837   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9838   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9839   ins_pipe(ialu_reg);
9840 %}
9841 
9842 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9843   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9844   ins_cost(140);
9845   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9846   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9847   ins_pipe(ialu_imm);
9848 %}
9849 
9850 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9851   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9852   ins_cost(150);
9853   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9854   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9855   ins_pipe(ialu_reg);
9856 %}
9857 
9858 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9859   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9860   ins_cost(140);
9861   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9862   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9863   ins_pipe(ialu_imm);
9864 %}
9865 
9866 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9867   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9868   ins_cost(150);
9869   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9870   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9871   ins_pipe(ialu_reg);
9872 %}
9873 
9874 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9875   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9876   ins_cost(150);
9877   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9878   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9879   ins_pipe(ialu_reg);
9880 %}
9881 
9882 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9883   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9884   ins_cost(140);
9885   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9886   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9887   ins_pipe(ialu_imm);
9888 %}
9889 
9890 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9891   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9892   ins_cost(150);
9893   opcode(0x101);
9894   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9895   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9896   ins_pipe(int_conditional_float_move);
9897 %}
9898 
9899 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9900   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9901   ins_cost(150);
9902   opcode(0x102);
9903   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9904   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9905   ins_pipe(int_conditional_float_move);
9906 %}
9907 
9908 // ============================================================================
9909 // Safepoint Instruction
9910 instruct safePoint_poll(iRegP poll) %{
9911   match(SafePoint poll);
9912   effect(USE poll);
9913 
9914   size(4);
9915 #ifdef _LP64
9916   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9917 #else
9918   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9919 #endif
9920   ins_encode %{
9921     __ relocate(relocInfo::poll_type);
9922     __ ld_ptr($poll$$Register, 0, G0);
9923   %}
9924   ins_pipe(loadPollP);
9925 %}
9926 
9927 // ============================================================================
9928 // Call Instructions
9929 // Call Java Static Instruction
9930 instruct CallStaticJavaDirect( method meth ) %{
9931   match(CallStaticJava);
9932   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9933   effect(USE meth);
9934 
9935   size(8);
9936   ins_cost(CALL_COST);
9937   format %{ "CALL,static  ; NOP ==> " %}
9938   ins_encode( Java_Static_Call( meth ), call_epilog );
9939   ins_pipe(simple_call);
9940 %}
9941 
9942 // Call Java Static Instruction (method handle version)
9943 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9944   match(CallStaticJava);
9945   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9946   effect(USE meth, KILL l7_mh_SP_save);
9947 
9948   size(16);
9949   ins_cost(CALL_COST);
9950   format %{ "CALL,static/MethodHandle" %}
9951   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9952   ins_pipe(simple_call);
9953 %}
9954 
9955 // Call Java Dynamic Instruction
9956 instruct CallDynamicJavaDirect( method meth ) %{
9957   match(CallDynamicJava);
9958   effect(USE meth);
9959 
9960   ins_cost(CALL_COST);
9961   format %{ "SET    (empty),R_G5\n\t"
9962             "CALL,dynamic  ; NOP ==> " %}
9963   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9964   ins_pipe(call);
9965 %}
9966 
9967 // Call Runtime Instruction
9968 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9969   match(CallRuntime);
9970   effect(USE meth, KILL l7);
9971   ins_cost(CALL_COST);
9972   format %{ "CALL,runtime" %}
9973   ins_encode( Java_To_Runtime( meth ),
9974               call_epilog, adjust_long_from_native_call );
9975   ins_pipe(simple_call);
9976 %}
9977 
9978 // Call runtime without safepoint - same as CallRuntime
9979 instruct CallLeafDirect(method meth, l7RegP l7) %{
9980   match(CallLeaf);
9981   effect(USE meth, KILL l7);
9982   ins_cost(CALL_COST);
9983   format %{ "CALL,runtime leaf" %}
9984   ins_encode( Java_To_Runtime( meth ),
9985               call_epilog,
9986               adjust_long_from_native_call );
9987   ins_pipe(simple_call);
9988 %}
9989 
9990 // Call runtime without safepoint - same as CallLeaf
9991 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9992   match(CallLeafNoFP);
9993   effect(USE meth, KILL l7);
9994   ins_cost(CALL_COST);
9995   format %{ "CALL,runtime leaf nofp" %}
9996   ins_encode( Java_To_Runtime( meth ),
9997               call_epilog,
9998               adjust_long_from_native_call );
9999   ins_pipe(simple_call);
10000 %}
10001 
10002 // Tail Call; Jump from runtime stub to Java code.
10003 // Also known as an 'interprocedural jump'.
10004 // Target of jump will eventually return to caller.
10005 // TailJump below removes the return address.
10006 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10007   match(TailCall jump_target method_oop );
10008 
10009   ins_cost(CALL_COST);
10010   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10011   ins_encode(form_jmpl(jump_target));
10012   ins_pipe(tail_call);
10013 %}
10014 
10015 
10016 // Return Instruction
10017 instruct Ret() %{
10018   match(Return);
10019 
10020   // The epilogue node did the ret already.
10021   size(0);
10022   format %{ "! return" %}
10023   ins_encode();
10024   ins_pipe(empty);
10025 %}
10026 
10027 
10028 // Tail Jump; remove the return address; jump to target.
10029 // TailCall above leaves the return address around.
10030 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10031 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10032 // "restore" before this instruction (in Epilogue), we need to materialize it
10033 // in %i0.
10034 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10035   match( TailJump jump_target ex_oop );
10036   ins_cost(CALL_COST);
10037   format %{ "! discard R_O7\n\t"
10038             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10039   ins_encode(form_jmpl_set_exception_pc(jump_target));
10040   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10041   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10042   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10043   ins_pipe(tail_call);
10044 %}
10045 
10046 // Create exception oop: created by stack-crawling runtime code.
10047 // Created exception is now available to this handler, and is setup
10048 // just prior to jumping to this handler.  No code emitted.
10049 instruct CreateException( o0RegP ex_oop )
10050 %{
10051   match(Set ex_oop (CreateEx));
10052   ins_cost(0);
10053 
10054   size(0);
10055   // use the following format syntax
10056   format %{ "! exception oop is in R_O0; no code emitted" %}
10057   ins_encode();
10058   ins_pipe(empty);
10059 %}
10060 
10061 
10062 // Rethrow exception:
10063 // The exception oop will come in the first argument position.
10064 // Then JUMP (not call) to the rethrow stub code.
10065 instruct RethrowException()
10066 %{
10067   match(Rethrow);
10068   ins_cost(CALL_COST);
10069 
10070   // use the following format syntax
10071   format %{ "Jmp    rethrow_stub" %}
10072   ins_encode(enc_rethrow);
10073   ins_pipe(tail_call);
10074 %}
10075 
10076 
10077 // Die now
10078 instruct ShouldNotReachHere( )
10079 %{
10080   match(Halt);
10081   ins_cost(CALL_COST);
10082 
10083   size(4);
10084   // Use the following format syntax
10085   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10086   ins_encode( form2_illtrap() );
10087   ins_pipe(tail_call);
10088 %}
10089 
10090 // ============================================================================
10091 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10092 // array for an instance of the superklass.  Set a hidden internal cache on a
10093 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10094 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10095 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10096   match(Set index (PartialSubtypeCheck sub super));
10097   effect( KILL pcc, KILL o7 );
10098   ins_cost(DEFAULT_COST*10);
10099   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10100   ins_encode( enc_PartialSubtypeCheck() );
10101   ins_pipe(partial_subtype_check_pipe);
10102 %}
10103 
10104 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10105   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10106   effect( KILL idx, KILL o7 );
10107   ins_cost(DEFAULT_COST*10);
10108   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10109   ins_encode( enc_PartialSubtypeCheck() );
10110   ins_pipe(partial_subtype_check_pipe);
10111 %}
10112 
10113 
10114 // ============================================================================
10115 // inlined locking and unlocking
10116 
10117 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10118   match(Set pcc (FastLock object box));
10119 
10120   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10121   ins_cost(100);
10122 
10123   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10124   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10125   ins_pipe(long_memory_op);
10126 %}
10127 
10128 
10129 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10130   match(Set pcc (FastUnlock object box));
10131   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10132   ins_cost(100);
10133 
10134   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10135   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10136   ins_pipe(long_memory_op);
10137 %}
10138 
10139 // The encodings are generic.
10140 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10141   predicate(!use_block_zeroing(n->in(2)) );
10142   match(Set dummy (ClearArray cnt base));
10143   effect(TEMP temp, KILL ccr);
10144   ins_cost(300);
10145   format %{ "MOV    $cnt,$temp\n"
10146     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10147     "        BRge   loop\t\t! Clearing loop\n"
10148     "        STX    G0,[$base+$temp]\t! delay slot" %}
10149 
10150   ins_encode %{
10151     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10152     Register nof_bytes_arg    = $cnt$$Register;
10153     Register nof_bytes_tmp    = $temp$$Register;
10154     Register base_pointer_arg = $base$$Register;
10155 
10156     Label loop;
10157     __ mov(nof_bytes_arg, nof_bytes_tmp);
10158 
10159     // Loop and clear, walking backwards through the array.
10160     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10161     __ bind(loop);
10162     __ deccc(nof_bytes_tmp, 8);
10163     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10164     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10165     // %%%% this mini-loop must not cross a cache boundary!
10166   %}
10167   ins_pipe(long_memory_op);
10168 %}
10169 
10170 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10171   predicate(use_block_zeroing(n->in(2)));
10172   match(Set dummy (ClearArray cnt base));
10173   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10174   ins_cost(300);
10175   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10176 
10177   ins_encode %{
10178 
10179     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10180     Register to    = $base$$Register;
10181     Register count = $cnt$$Register;
10182 
10183     Label Ldone;
10184     __ nop(); // Separate short branches
10185     // Use BIS for zeroing (temp is not used).
10186     __ bis_zeroing(to, count, G0, Ldone);
10187     __ bind(Ldone);
10188 
10189   %}
10190   ins_pipe(long_memory_op);
10191 %}
10192 
10193 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10194   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10195   match(Set dummy (ClearArray cnt base));
10196   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10197   ins_cost(300);
10198   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10199 
10200   ins_encode %{
10201 
10202     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10203     Register to    = $base$$Register;
10204     Register count = $cnt$$Register;
10205     Register temp  = $tmp$$Register;
10206 
10207     Label Ldone;
10208     __ nop(); // Separate short branches
10209     // Use BIS for zeroing
10210     __ bis_zeroing(to, count, temp, Ldone);
10211     __ bind(Ldone);
10212 
10213   %}
10214   ins_pipe(long_memory_op);
10215 %}
10216 
10217 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10218                         o7RegI tmp, flagsReg ccr) %{
10219   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10220   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10221   ins_cost(300);
10222   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10223   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10224   ins_pipe(long_memory_op);
10225 %}
10226 
10227 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10228                        o7RegI tmp, flagsReg ccr) %{
10229   match(Set result (StrEquals (Binary str1 str2) cnt));
10230   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10231   ins_cost(300);
10232   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10233   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10234   ins_pipe(long_memory_op);
10235 %}
10236 
10237 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10238                       o7RegI tmp2, flagsReg ccr) %{
10239   match(Set result (AryEq ary1 ary2));
10240   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10241   ins_cost(300);
10242   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10243   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10244   ins_pipe(long_memory_op);
10245 %}
10246 
10247 
10248 //---------- Zeros Count Instructions ------------------------------------------
10249 
10250 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10251   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10252   match(Set dst (CountLeadingZerosI src));
10253   effect(TEMP dst, TEMP tmp, KILL cr);
10254 
10255   // x |= (x >> 1);
10256   // x |= (x >> 2);
10257   // x |= (x >> 4);
10258   // x |= (x >> 8);
10259   // x |= (x >> 16);
10260   // return (WORDBITS - popc(x));
10261   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10262             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10263             "OR      $dst,$tmp,$dst\n\t"
10264             "SRL     $dst,2,$tmp\n\t"
10265             "OR      $dst,$tmp,$dst\n\t"
10266             "SRL     $dst,4,$tmp\n\t"
10267             "OR      $dst,$tmp,$dst\n\t"
10268             "SRL     $dst,8,$tmp\n\t"
10269             "OR      $dst,$tmp,$dst\n\t"
10270             "SRL     $dst,16,$tmp\n\t"
10271             "OR      $dst,$tmp,$dst\n\t"
10272             "POPC    $dst,$dst\n\t"
10273             "MOV     32,$tmp\n\t"
10274             "SUB     $tmp,$dst,$dst" %}
10275   ins_encode %{
10276     Register Rdst = $dst$$Register;
10277     Register Rsrc = $src$$Register;
10278     Register Rtmp = $tmp$$Register;
10279     __ srl(Rsrc, 1,    Rtmp);
10280     __ srl(Rsrc, 0,    Rdst);
10281     __ or3(Rdst, Rtmp, Rdst);
10282     __ srl(Rdst, 2,    Rtmp);
10283     __ or3(Rdst, Rtmp, Rdst);
10284     __ srl(Rdst, 4,    Rtmp);
10285     __ or3(Rdst, Rtmp, Rdst);
10286     __ srl(Rdst, 8,    Rtmp);
10287     __ or3(Rdst, Rtmp, Rdst);
10288     __ srl(Rdst, 16,   Rtmp);
10289     __ or3(Rdst, Rtmp, Rdst);
10290     __ popc(Rdst, Rdst);
10291     __ mov(BitsPerInt, Rtmp);
10292     __ sub(Rtmp, Rdst, Rdst);
10293   %}
10294   ins_pipe(ialu_reg);
10295 %}
10296 
10297 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10298   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10299   match(Set dst (CountLeadingZerosL src));
10300   effect(TEMP dst, TEMP tmp, KILL cr);
10301 
10302   // x |= (x >> 1);
10303   // x |= (x >> 2);
10304   // x |= (x >> 4);
10305   // x |= (x >> 8);
10306   // x |= (x >> 16);
10307   // x |= (x >> 32);
10308   // return (WORDBITS - popc(x));
10309   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10310             "OR      $src,$tmp,$dst\n\t"
10311             "SRLX    $dst,2,$tmp\n\t"
10312             "OR      $dst,$tmp,$dst\n\t"
10313             "SRLX    $dst,4,$tmp\n\t"
10314             "OR      $dst,$tmp,$dst\n\t"
10315             "SRLX    $dst,8,$tmp\n\t"
10316             "OR      $dst,$tmp,$dst\n\t"
10317             "SRLX    $dst,16,$tmp\n\t"
10318             "OR      $dst,$tmp,$dst\n\t"
10319             "SRLX    $dst,32,$tmp\n\t"
10320             "OR      $dst,$tmp,$dst\n\t"
10321             "POPC    $dst,$dst\n\t"
10322             "MOV     64,$tmp\n\t"
10323             "SUB     $tmp,$dst,$dst" %}
10324   ins_encode %{
10325     Register Rdst = $dst$$Register;
10326     Register Rsrc = $src$$Register;
10327     Register Rtmp = $tmp$$Register;
10328     __ srlx(Rsrc, 1,    Rtmp);
10329     __ or3( Rsrc, Rtmp, Rdst);
10330     __ srlx(Rdst, 2,    Rtmp);
10331     __ or3( Rdst, Rtmp, Rdst);
10332     __ srlx(Rdst, 4,    Rtmp);
10333     __ or3( Rdst, Rtmp, Rdst);
10334     __ srlx(Rdst, 8,    Rtmp);
10335     __ or3( Rdst, Rtmp, Rdst);
10336     __ srlx(Rdst, 16,   Rtmp);
10337     __ or3( Rdst, Rtmp, Rdst);
10338     __ srlx(Rdst, 32,   Rtmp);
10339     __ or3( Rdst, Rtmp, Rdst);
10340     __ popc(Rdst, Rdst);
10341     __ mov(BitsPerLong, Rtmp);
10342     __ sub(Rtmp, Rdst, Rdst);
10343   %}
10344   ins_pipe(ialu_reg);
10345 %}
10346 
10347 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10348   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10349   match(Set dst (CountTrailingZerosI src));
10350   effect(TEMP dst, KILL cr);
10351 
10352   // return popc(~x & (x - 1));
10353   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10354             "ANDN    $dst,$src,$dst\n\t"
10355             "SRL     $dst,R_G0,$dst\n\t"
10356             "POPC    $dst,$dst" %}
10357   ins_encode %{
10358     Register Rdst = $dst$$Register;
10359     Register Rsrc = $src$$Register;
10360     __ sub(Rsrc, 1, Rdst);
10361     __ andn(Rdst, Rsrc, Rdst);
10362     __ srl(Rdst, G0, Rdst);
10363     __ popc(Rdst, Rdst);
10364   %}
10365   ins_pipe(ialu_reg);
10366 %}
10367 
10368 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10369   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10370   match(Set dst (CountTrailingZerosL src));
10371   effect(TEMP dst, KILL cr);
10372 
10373   // return popc(~x & (x - 1));
10374   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10375             "ANDN    $dst,$src,$dst\n\t"
10376             "POPC    $dst,$dst" %}
10377   ins_encode %{
10378     Register Rdst = $dst$$Register;
10379     Register Rsrc = $src$$Register;
10380     __ sub(Rsrc, 1, Rdst);
10381     __ andn(Rdst, Rsrc, Rdst);
10382     __ popc(Rdst, Rdst);
10383   %}
10384   ins_pipe(ialu_reg);
10385 %}
10386 
10387 
10388 //---------- Population Count Instructions -------------------------------------
10389 
10390 instruct popCountI(iRegIsafe dst, iRegI src) %{
10391   predicate(UsePopCountInstruction);
10392   match(Set dst (PopCountI src));
10393 
10394   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10395             "POPC   $dst, $dst" %}
10396   ins_encode %{
10397     __ srl($src$$Register, G0, $dst$$Register);
10398     __ popc($dst$$Register, $dst$$Register);
10399   %}
10400   ins_pipe(ialu_reg);
10401 %}
10402 
10403 // Note: Long.bitCount(long) returns an int.
10404 instruct popCountL(iRegIsafe dst, iRegL src) %{
10405   predicate(UsePopCountInstruction);
10406   match(Set dst (PopCountL src));
10407 
10408   format %{ "POPC   $src, $dst" %}
10409   ins_encode %{
10410     __ popc($src$$Register, $dst$$Register);
10411   %}
10412   ins_pipe(ialu_reg);
10413 %}
10414 
10415 
10416 // ============================================================================
10417 //------------Bytes reverse--------------------------------------------------
10418 
10419 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10420   match(Set dst (ReverseBytesI src));
10421 
10422   // Op cost is artificially doubled to make sure that load or store
10423   // instructions are preferred over this one which requires a spill
10424   // onto a stack slot.
10425   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10426   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10427 
10428   ins_encode %{
10429     __ set($src$$disp + STACK_BIAS, O7);
10430     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10431   %}
10432   ins_pipe( iload_mem );
10433 %}
10434 
10435 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10436   match(Set dst (ReverseBytesL src));
10437 
10438   // Op cost is artificially doubled to make sure that load or store
10439   // instructions are preferred over this one which requires a spill
10440   // onto a stack slot.
10441   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10442   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10443 
10444   ins_encode %{
10445     __ set($src$$disp + STACK_BIAS, O7);
10446     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10447   %}
10448   ins_pipe( iload_mem );
10449 %}
10450 
10451 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10452   match(Set dst (ReverseBytesUS src));
10453 
10454   // Op cost is artificially doubled to make sure that load or store
10455   // instructions are preferred over this one which requires a spill
10456   // onto a stack slot.
10457   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10458   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10459 
10460   ins_encode %{
10461     // the value was spilled as an int so bias the load
10462     __ set($src$$disp + STACK_BIAS + 2, O7);
10463     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10464   %}
10465   ins_pipe( iload_mem );
10466 %}
10467 
10468 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10469   match(Set dst (ReverseBytesS src));
10470 
10471   // Op cost is artificially doubled to make sure that load or store
10472   // instructions are preferred over this one which requires a spill
10473   // onto a stack slot.
10474   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10475   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10476 
10477   ins_encode %{
10478     // the value was spilled as an int so bias the load
10479     __ set($src$$disp + STACK_BIAS + 2, O7);
10480     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10481   %}
10482   ins_pipe( iload_mem );
10483 %}
10484 
10485 // Load Integer reversed byte order
10486 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10487   match(Set dst (ReverseBytesI (LoadI src)));
10488 
10489   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10490   size(4);
10491   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10492 
10493   ins_encode %{
10494     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10495   %}
10496   ins_pipe(iload_mem);
10497 %}
10498 
10499 // Load Long - aligned and reversed
10500 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10501   match(Set dst (ReverseBytesL (LoadL src)));
10502 
10503   ins_cost(MEMORY_REF_COST);
10504   size(4);
10505   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10506 
10507   ins_encode %{
10508     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10509   %}
10510   ins_pipe(iload_mem);
10511 %}
10512 
10513 // Load unsigned short / char reversed byte order
10514 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10515   match(Set dst (ReverseBytesUS (LoadUS src)));
10516 
10517   ins_cost(MEMORY_REF_COST);
10518   size(4);
10519   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10520 
10521   ins_encode %{
10522     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10523   %}
10524   ins_pipe(iload_mem);
10525 %}
10526 
10527 // Load short reversed byte order
10528 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10529   match(Set dst (ReverseBytesS (LoadS src)));
10530 
10531   ins_cost(MEMORY_REF_COST);
10532   size(4);
10533   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10534 
10535   ins_encode %{
10536     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10537   %}
10538   ins_pipe(iload_mem);
10539 %}
10540 
10541 // Store Integer reversed byte order
10542 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10543   match(Set dst (StoreI dst (ReverseBytesI src)));
10544 
10545   ins_cost(MEMORY_REF_COST);
10546   size(4);
10547   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10548 
10549   ins_encode %{
10550     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10551   %}
10552   ins_pipe(istore_mem_reg);
10553 %}
10554 
10555 // Store Long reversed byte order
10556 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10557   match(Set dst (StoreL dst (ReverseBytesL src)));
10558 
10559   ins_cost(MEMORY_REF_COST);
10560   size(4);
10561   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10562 
10563   ins_encode %{
10564     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10565   %}
10566   ins_pipe(istore_mem_reg);
10567 %}
10568 
10569 // Store unsighed short/char reversed byte order
10570 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10571   match(Set dst (StoreC dst (ReverseBytesUS src)));
10572 
10573   ins_cost(MEMORY_REF_COST);
10574   size(4);
10575   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10576 
10577   ins_encode %{
10578     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10579   %}
10580   ins_pipe(istore_mem_reg);
10581 %}
10582 
10583 // Store short reversed byte order
10584 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10585   match(Set dst (StoreC dst (ReverseBytesS src)));
10586 
10587   ins_cost(MEMORY_REF_COST);
10588   size(4);
10589   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10590 
10591   ins_encode %{
10592     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10593   %}
10594   ins_pipe(istore_mem_reg);
10595 %}
10596 
10597 // ====================VECTOR INSTRUCTIONS=====================================
10598 
10599 // Load Aligned Packed values into a Double Register
10600 instruct loadV8(regD dst, memory mem) %{
10601   predicate(n->as_LoadVector()->memory_size() == 8);
10602   match(Set dst (LoadVector mem));
10603   ins_cost(MEMORY_REF_COST);
10604   size(4);
10605   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10606   ins_encode %{
10607     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10608   %}
10609   ins_pipe(floadD_mem);
10610 %}
10611 
10612 // Store Vector in Double register to memory
10613 instruct storeV8(memory mem, regD src) %{
10614   predicate(n->as_StoreVector()->memory_size() == 8);
10615   match(Set mem (StoreVector mem src));
10616   ins_cost(MEMORY_REF_COST);
10617   size(4);
10618   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10619   ins_encode %{
10620     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10621   %}
10622   ins_pipe(fstoreD_mem_reg);
10623 %}
10624 
10625 // Store Zero into vector in memory
10626 instruct storeV8B_zero(memory mem, immI0 zero) %{
10627   predicate(n->as_StoreVector()->memory_size() == 8);
10628   match(Set mem (StoreVector mem (ReplicateB zero)));
10629   ins_cost(MEMORY_REF_COST);
10630   size(4);
10631   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10632   ins_encode %{
10633     __ stx(G0, $mem$$Address);
10634   %}
10635   ins_pipe(fstoreD_mem_zero);
10636 %}
10637 
10638 instruct storeV4S_zero(memory mem, immI0 zero) %{
10639   predicate(n->as_StoreVector()->memory_size() == 8);
10640   match(Set mem (StoreVector mem (ReplicateS zero)));
10641   ins_cost(MEMORY_REF_COST);
10642   size(4);
10643   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10644   ins_encode %{
10645     __ stx(G0, $mem$$Address);
10646   %}
10647   ins_pipe(fstoreD_mem_zero);
10648 %}
10649 
10650 instruct storeV2I_zero(memory mem, immI0 zero) %{
10651   predicate(n->as_StoreVector()->memory_size() == 8);
10652   match(Set mem (StoreVector mem (ReplicateI zero)));
10653   ins_cost(MEMORY_REF_COST);
10654   size(4);
10655   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10656   ins_encode %{
10657     __ stx(G0, $mem$$Address);
10658   %}
10659   ins_pipe(fstoreD_mem_zero);
10660 %}
10661 
10662 instruct storeV2F_zero(memory mem, immF0 zero) %{
10663   predicate(n->as_StoreVector()->memory_size() == 8);
10664   match(Set mem (StoreVector mem (ReplicateF zero)));
10665   ins_cost(MEMORY_REF_COST);
10666   size(4);
10667   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10668   ins_encode %{
10669     __ stx(G0, $mem$$Address);
10670   %}
10671   ins_pipe(fstoreD_mem_zero);
10672 %}
10673 
10674 // Replicate scalar to packed byte values into Double register
10675 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10676   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10677   match(Set dst (ReplicateB src));
10678   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10679   format %{ "SLLX  $src,56,$tmp\n\t"
10680             "SRLX  $tmp, 8,$tmp2\n\t"
10681             "OR    $tmp,$tmp2,$tmp\n\t"
10682             "SRLX  $tmp,16,$tmp2\n\t"
10683             "OR    $tmp,$tmp2,$tmp\n\t"
10684             "SRLX  $tmp,32,$tmp2\n\t"
10685             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10686             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10687   ins_encode %{
10688     Register Rsrc = $src$$Register;
10689     Register Rtmp = $tmp$$Register;
10690     Register Rtmp2 = $tmp2$$Register;
10691     __ sllx(Rsrc,    56, Rtmp);
10692     __ srlx(Rtmp,     8, Rtmp2);
10693     __ or3 (Rtmp, Rtmp2, Rtmp);
10694     __ srlx(Rtmp,    16, Rtmp2);
10695     __ or3 (Rtmp, Rtmp2, Rtmp);
10696     __ srlx(Rtmp,    32, Rtmp2);
10697     __ or3 (Rtmp, Rtmp2, Rtmp);
10698     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10699   %}
10700   ins_pipe(ialu_reg);
10701 %}
10702 
10703 // Replicate scalar to packed byte values into Double stack
10704 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10705   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10706   match(Set dst (ReplicateB src));
10707   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10708   format %{ "SLLX  $src,56,$tmp\n\t"
10709             "SRLX  $tmp, 8,$tmp2\n\t"
10710             "OR    $tmp,$tmp2,$tmp\n\t"
10711             "SRLX  $tmp,16,$tmp2\n\t"
10712             "OR    $tmp,$tmp2,$tmp\n\t"
10713             "SRLX  $tmp,32,$tmp2\n\t"
10714             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10715             "STX   $tmp,$dst\t! regL to stkD" %}
10716   ins_encode %{
10717     Register Rsrc = $src$$Register;
10718     Register Rtmp = $tmp$$Register;
10719     Register Rtmp2 = $tmp2$$Register;
10720     __ sllx(Rsrc,    56, Rtmp);
10721     __ srlx(Rtmp,     8, Rtmp2);
10722     __ or3 (Rtmp, Rtmp2, Rtmp);
10723     __ srlx(Rtmp,    16, Rtmp2);
10724     __ or3 (Rtmp, Rtmp2, Rtmp);
10725     __ srlx(Rtmp,    32, Rtmp2);
10726     __ or3 (Rtmp, Rtmp2, Rtmp);
10727     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10728     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10729   %}
10730   ins_pipe(ialu_reg);
10731 %}
10732 
10733 // Replicate scalar constant to packed byte values in Double register
10734 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10735   predicate(n->as_Vector()->length() == 8);
10736   match(Set dst (ReplicateB con));
10737   effect(KILL tmp);
10738   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10739   ins_encode %{
10740     // XXX This is a quick fix for 6833573.
10741     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10742     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10743     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10744   %}
10745   ins_pipe(loadConFD);
10746 %}
10747 
10748 // Replicate scalar to packed char/short values into Double register
10749 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10750   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10751   match(Set dst (ReplicateS src));
10752   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10753   format %{ "SLLX  $src,48,$tmp\n\t"
10754             "SRLX  $tmp,16,$tmp2\n\t"
10755             "OR    $tmp,$tmp2,$tmp\n\t"
10756             "SRLX  $tmp,32,$tmp2\n\t"
10757             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10758             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10759   ins_encode %{
10760     Register Rsrc = $src$$Register;
10761     Register Rtmp = $tmp$$Register;
10762     Register Rtmp2 = $tmp2$$Register;
10763     __ sllx(Rsrc,    48, Rtmp);
10764     __ srlx(Rtmp,    16, Rtmp2);
10765     __ or3 (Rtmp, Rtmp2, Rtmp);
10766     __ srlx(Rtmp,    32, Rtmp2);
10767     __ or3 (Rtmp, Rtmp2, Rtmp);
10768     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10769   %}
10770   ins_pipe(ialu_reg);
10771 %}
10772 
10773 // Replicate scalar to packed char/short values into Double stack
10774 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10775   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10776   match(Set dst (ReplicateS src));
10777   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10778   format %{ "SLLX  $src,48,$tmp\n\t"
10779             "SRLX  $tmp,16,$tmp2\n\t"
10780             "OR    $tmp,$tmp2,$tmp\n\t"
10781             "SRLX  $tmp,32,$tmp2\n\t"
10782             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10783             "STX   $tmp,$dst\t! regL to stkD" %}
10784   ins_encode %{
10785     Register Rsrc = $src$$Register;
10786     Register Rtmp = $tmp$$Register;
10787     Register Rtmp2 = $tmp2$$Register;
10788     __ sllx(Rsrc,    48, Rtmp);
10789     __ srlx(Rtmp,    16, Rtmp2);
10790     __ or3 (Rtmp, Rtmp2, Rtmp);
10791     __ srlx(Rtmp,    32, Rtmp2);
10792     __ or3 (Rtmp, Rtmp2, Rtmp);
10793     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10794     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10795   %}
10796   ins_pipe(ialu_reg);
10797 %}
10798 
10799 // Replicate scalar constant to packed char/short values in Double register
10800 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10801   predicate(n->as_Vector()->length() == 4);
10802   match(Set dst (ReplicateS con));
10803   effect(KILL tmp);
10804   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10805   ins_encode %{
10806     // XXX This is a quick fix for 6833573.
10807     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10808     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10809     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10810   %}
10811   ins_pipe(loadConFD);
10812 %}
10813 
10814 // Replicate scalar to packed int values into Double register
10815 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10816   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10817   match(Set dst (ReplicateI src));
10818   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10819   format %{ "SLLX  $src,32,$tmp\n\t"
10820             "SRLX  $tmp,32,$tmp2\n\t"
10821             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10822             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10823   ins_encode %{
10824     Register Rsrc = $src$$Register;
10825     Register Rtmp = $tmp$$Register;
10826     Register Rtmp2 = $tmp2$$Register;
10827     __ sllx(Rsrc,    32, Rtmp);
10828     __ srlx(Rtmp,    32, Rtmp2);
10829     __ or3 (Rtmp, Rtmp2, Rtmp);
10830     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10831   %}
10832   ins_pipe(ialu_reg);
10833 %}
10834 
10835 // Replicate scalar to packed int values into Double stack
10836 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10837   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10838   match(Set dst (ReplicateI src));
10839   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10840   format %{ "SLLX  $src,32,$tmp\n\t"
10841             "SRLX  $tmp,32,$tmp2\n\t"
10842             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10843             "STX   $tmp,$dst\t! regL to stkD" %}
10844   ins_encode %{
10845     Register Rsrc = $src$$Register;
10846     Register Rtmp = $tmp$$Register;
10847     Register Rtmp2 = $tmp2$$Register;
10848     __ sllx(Rsrc,    32, Rtmp);
10849     __ srlx(Rtmp,    32, Rtmp2);
10850     __ or3 (Rtmp, Rtmp2, Rtmp);
10851     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10852     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10853   %}
10854   ins_pipe(ialu_reg);
10855 %}
10856 
10857 // Replicate scalar zero constant to packed int values in Double register
10858 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10859   predicate(n->as_Vector()->length() == 2);
10860   match(Set dst (ReplicateI con));
10861   effect(KILL tmp);
10862   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10863   ins_encode %{
10864     // XXX This is a quick fix for 6833573.
10865     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10866     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10867     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10868   %}
10869   ins_pipe(loadConFD);
10870 %}
10871 
10872 // Replicate scalar to packed float values into Double stack
10873 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10874   predicate(n->as_Vector()->length() == 2);
10875   match(Set dst (ReplicateF src));
10876   ins_cost(MEMORY_REF_COST*2);
10877   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10878             "STF    $src,$dst.lo" %}
10879   opcode(Assembler::stf_op3);
10880   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10881   ins_pipe(fstoreF_stk_reg);
10882 %}
10883 
10884 // Replicate scalar zero constant to packed float values in Double register
10885 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10886   predicate(n->as_Vector()->length() == 2);
10887   match(Set dst (ReplicateF con));
10888   effect(KILL tmp);
10889   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10890   ins_encode %{
10891     // XXX This is a quick fix for 6833573.
10892     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10893     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10894     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10895   %}
10896   ins_pipe(loadConFD);
10897 %}
10898 
10899 //----------PEEPHOLE RULES-----------------------------------------------------
10900 // These must follow all instruction definitions as they use the names
10901 // defined in the instructions definitions.
10902 //
10903 // peepmatch ( root_instr_name [preceding_instruction]* );
10904 //
10905 // peepconstraint %{
10906 // (instruction_number.operand_name relational_op instruction_number.operand_name
10907 //  [, ...] );
10908 // // instruction numbers are zero-based using left to right order in peepmatch
10909 //
10910 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10911 // // provide an instruction_number.operand_name for each operand that appears
10912 // // in the replacement instruction's match rule
10913 //
10914 // ---------VM FLAGS---------------------------------------------------------
10915 //
10916 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10917 //
10918 // Each peephole rule is given an identifying number starting with zero and
10919 // increasing by one in the order seen by the parser.  An individual peephole
10920 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10921 // on the command-line.
10922 //
10923 // ---------CURRENT LIMITATIONS----------------------------------------------
10924 //
10925 // Only match adjacent instructions in same basic block
10926 // Only equality constraints
10927 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10928 // Only one replacement instruction
10929 //
10930 // ---------EXAMPLE----------------------------------------------------------
10931 //
10932 // // pertinent parts of existing instructions in architecture description
10933 // instruct movI(eRegI dst, eRegI src) %{
10934 //   match(Set dst (CopyI src));
10935 // %}
10936 //
10937 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10938 //   match(Set dst (AddI dst src));
10939 //   effect(KILL cr);
10940 // %}
10941 //
10942 // // Change (inc mov) to lea
10943 // peephole %{
10944 //   // increment preceeded by register-register move
10945 //   peepmatch ( incI_eReg movI );
10946 //   // require that the destination register of the increment
10947 //   // match the destination register of the move
10948 //   peepconstraint ( 0.dst == 1.dst );
10949 //   // construct a replacement instruction that sets
10950 //   // the destination to ( move's source register + one )
10951 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10952 // %}
10953 //
10954 
10955 // // Change load of spilled value to only a spill
10956 // instruct storeI(memory mem, eRegI src) %{
10957 //   match(Set mem (StoreI mem src));
10958 // %}
10959 //
10960 // instruct loadI(eRegI dst, memory mem) %{
10961 //   match(Set dst (LoadI mem));
10962 // %}
10963 //
10964 // peephole %{
10965 //   peepmatch ( loadI storeI );
10966 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10967 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10968 // %}
10969 
10970 //----------SMARTSPILL RULES---------------------------------------------------
10971 // These must follow all instruction definitions as they use the names
10972 // defined in the instructions definitions.
10973 //
10974 // SPARC will probably not have any of these rules due to RISC instruction set.
10975 
10976 //----------PIPELINE-----------------------------------------------------------
10977 // Rules which define the behavior of the target architectures pipeline.