1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciMethod.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterGenerator.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 #ifndef CC_INTERP
  51 #ifndef FAST_DISPATCH
  52 #define FAST_DISPATCH 1
  53 #endif
  54 #undef FAST_DISPATCH
  55 
  56 
  57 // Generation of Interpreter
  58 //
  59 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  60 
  61 
  62 #define __ _masm->
  63 
  64 
  65 //----------------------------------------------------------------------------------------------------
  66 
  67 
  68 void InterpreterGenerator::save_native_result(void) {
  69   // result potentially in O0/O1: save it across calls
  70   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  71 
  72   // result potentially in F0/F1: save it across calls
  73   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  74 
  75   // save and restore any potential method result value around the unlocking operation
  76   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  77 #ifdef _LP64
  78   __ stx(O0, l_tmp);
  79 #else
  80   __ std(O0, l_tmp);
  81 #endif
  82 }
  83 
  84 void InterpreterGenerator::restore_native_result(void) {
  85   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  86   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  87 
  88   // Restore any method result value
  89   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  90 #ifdef _LP64
  91   __ ldx(l_tmp, O0);
  92 #else
  93   __ ldd(l_tmp, O0);
  94 #endif
  95 }
  96 
  97 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  98   assert(!pass_oop || message == NULL, "either oop or message but not both");
  99   address entry = __ pc();
 100   // expression stack must be empty before entering the VM if an exception happened
 101   __ empty_expression_stack();
 102   // load exception object
 103   __ set((intptr_t)name, G3_scratch);
 104   if (pass_oop) {
 105     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 106   } else {
 107     __ set((intptr_t)message, G4_scratch);
 108     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 109   }
 110   // throw exception
 111   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 112   AddressLiteral thrower(Interpreter::throw_exception_entry());
 113   __ jump_to(thrower, G3_scratch);
 114   __ delayed()->nop();
 115   return entry;
 116 }
 117 
 118 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 119   address entry = __ pc();
 120   // expression stack must be empty before entering the VM if an exception
 121   // happened
 122   __ empty_expression_stack();
 123   // load exception object
 124   __ call_VM(Oexception,
 125              CAST_FROM_FN_PTR(address,
 126                               InterpreterRuntime::throw_ClassCastException),
 127              Otos_i);
 128   __ should_not_reach_here();
 129   return entry;
 130 }
 131 
 132 
 133 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 134   address entry = __ pc();
 135   // expression stack must be empty before entering the VM if an exception happened
 136   __ empty_expression_stack();
 137   // convention: expect aberrant index in register G3_scratch, then shuffle the
 138   // index to G4_scratch for the VM call
 139   __ mov(G3_scratch, G4_scratch);
 140   __ set((intptr_t)name, G3_scratch);
 141   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 142   __ should_not_reach_here();
 143   return entry;
 144 }
 145 
 146 
 147 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 148   address entry = __ pc();
 149   // expression stack must be empty before entering the VM if an exception happened
 150   __ empty_expression_stack();
 151   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 152   __ should_not_reach_here();
 153   return entry;
 154 }
 155 
 156 
 157 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 158   address entry = __ pc();
 159 
 160   if (state == atos) {
 161     __ profile_return_type(O0, G3_scratch, G1_scratch);
 162   }
 163 
 164 #if !defined(_LP64) && defined(COMPILER2)
 165   // All return values are where we want them, except for Longs.  C2 returns
 166   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 167   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 168   // build even if we are returning from interpreted we just do a little
 169   // stupid shuffing.
 170   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 171   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 172   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 173 
 174   if (state == ltos) {
 175     __ srl (G1,  0, O1);
 176     __ srlx(G1, 32, O0);
 177   }
 178 #endif // !_LP64 && COMPILER2
 179 
 180   // The callee returns with the stack possibly adjusted by adapter transition
 181   // We remove that possible adjustment here.
 182   // All interpreter local registers are untouched. Any result is passed back
 183   // in the O0/O1 or float registers. Before continuing, the arguments must be
 184   // popped from the java expression stack; i.e., Lesp must be adjusted.
 185 
 186   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 187 
 188   const Register cache = G3_scratch;
 189   const Register index  = G1_scratch;
 190   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 191 
 192   const Register flags = cache;
 193   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 194   const Register parameter_size = flags;
 195   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 196   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 197   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 198   __ dispatch_next(state, step);
 199 
 200   return entry;
 201 }
 202 
 203 
 204 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 205   address entry = __ pc();
 206   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 207   { Label L;
 208     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 209     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 210     __ br_null_short(Gtemp, Assembler::pt, L);
 211     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 212     __ should_not_reach_here();
 213     __ bind(L);
 214   }
 215   __ dispatch_next(state, step);
 216   return entry;
 217 }
 218 
 219 // A result handler converts/unboxes a native call result into
 220 // a java interpreter/compiler result. The current frame is an
 221 // interpreter frame. The activation frame unwind code must be
 222 // consistent with that of TemplateTable::_return(...). In the
 223 // case of native methods, the caller's SP was not modified.
 224 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 225   address entry = __ pc();
 226   Register Itos_i  = Otos_i ->after_save();
 227   Register Itos_l  = Otos_l ->after_save();
 228   Register Itos_l1 = Otos_l1->after_save();
 229   Register Itos_l2 = Otos_l2->after_save();
 230   switch (type) {
 231     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 232     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 233     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 234     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 235     case T_LONG   :
 236 #ifndef _LP64
 237                     __ mov(O1, Itos_l2);  // move other half of long
 238 #endif              // ifdef or no ifdef, fall through to the T_INT case
 239     case T_INT    : __ mov(O0, Itos_i);                         break;
 240     case T_VOID   : /* nothing to do */                         break;
 241     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 242     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 243     case T_OBJECT :
 244       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 245       __ verify_oop(Itos_i);
 246       break;
 247     default       : ShouldNotReachHere();
 248   }
 249   __ ret();                           // return from interpreter activation
 250   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 251   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 252   return entry;
 253 }
 254 
 255 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 256   address entry = __ pc();
 257   __ push(state);
 258   __ call_VM(noreg, runtime_entry);
 259   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 260   return entry;
 261 }
 262 
 263 
 264 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 265   address entry = __ pc();
 266   __ dispatch_next(state);
 267   return entry;
 268 }
 269 
 270 //
 271 // Helpers for commoning out cases in the various type of method entries.
 272 //
 273 
 274 // increment invocation count & check for overflow
 275 //
 276 // Note: checking for negative value instead of overflow
 277 //       so we have a 'sticky' overflow test
 278 //
 279 // Lmethod: method
 280 // ??: invocation counter
 281 //
 282 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 283   // Note: In tiered we increment either counters in MethodCounters* or in
 284   // MDO depending if we're profiling or not.
 285   const Register Rcounters = G3_scratch;
 286   Label done;
 287 
 288   if (TieredCompilation) {
 289     const int increment = InvocationCounter::count_increment;
 290     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 291     Label no_mdo;
 292     if (ProfileInterpreter) {
 293       // If no method data exists, go to profile_continue.
 294       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 295       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 296       // Increment counter
 297       Address mdo_invocation_counter(G4_scratch,
 298                                      in_bytes(MethodData::invocation_counter_offset()) +
 299                                      in_bytes(InvocationCounter::counter_offset()));
 300       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 301                                  G3_scratch, Lscratch,
 302                                  Assembler::zero, overflow);
 303       __ ba_short(done);
 304     }
 305 
 306     // Increment counter in MethodCounters*
 307     __ bind(no_mdo);
 308     Address invocation_counter(Rcounters,
 309             in_bytes(MethodCounters::invocation_counter_offset()) +
 310             in_bytes(InvocationCounter::counter_offset()));
 311     __ get_method_counters(Lmethod, Rcounters, done);
 312     __ increment_mask_and_jump(invocation_counter, increment, mask,
 313                                G4_scratch, Lscratch,
 314                                Assembler::zero, overflow);
 315     __ bind(done);
 316   } else {
 317     // Update standard invocation counters
 318     __ get_method_counters(Lmethod, Rcounters, done);
 319     __ increment_invocation_counter(Rcounters, O0, G4_scratch);
 320     if (ProfileInterpreter) {
 321       Address interpreter_invocation_counter(Rcounters,
 322             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 323       __ ld(interpreter_invocation_counter, G4_scratch);
 324       __ inc(G4_scratch);
 325       __ st(G4_scratch, interpreter_invocation_counter);
 326     }
 327 
 328     if (ProfileInterpreter && profile_method != NULL) {
 329       // Test to see if we should create a method data oop
 330       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
 331       __ load_contents(profile_limit, G3_scratch);
 332       __ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 333 
 334       // if no method data exists, go to profile_method
 335       __ test_method_data_pointer(*profile_method);
 336     }
 337 
 338     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
 339     __ load_contents(invocation_limit, G3_scratch);
 340     __ cmp(O0, G3_scratch);
 341     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 342     __ delayed()->nop();
 343     __ bind(done);
 344   }
 345 
 346 }
 347 
 348 // Allocate monitor and lock method (asm interpreter)
 349 // ebx - Method*
 350 //
 351 void InterpreterGenerator::lock_method(void) {
 352   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 353 
 354 #ifdef ASSERT
 355  { Label ok;
 356    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 357    __ br( Assembler::notZero, false, Assembler::pt, ok);
 358    __ delayed()->nop();
 359    __ stop("method doesn't need synchronization");
 360    __ bind(ok);
 361   }
 362 #endif // ASSERT
 363 
 364   // get synchronization object to O0
 365   { Label done;
 366     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 367     __ btst(JVM_ACC_STATIC, O0);
 368     __ br( Assembler::zero, true, Assembler::pt, done);
 369     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 370 
 371     __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
 372     __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
 373     __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
 374 
 375     // lock the mirror, not the Klass*
 376     __ ld_ptr( O0, mirror_offset, O0);
 377 
 378 #ifdef ASSERT
 379     __ tst(O0);
 380     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 381 #endif // ASSERT
 382 
 383     __ bind(done);
 384   }
 385 
 386   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 387   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 388   // __ untested("lock_object from method entry");
 389   __ lock_object(Lmonitors, O0);
 390 }
 391 
 392 
 393 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 394                                                          Register Rscratch,
 395                                                          Register Rscratch2) {
 396   const int page_size = os::vm_page_size();
 397   Label after_frame_check;
 398 
 399   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 400 
 401   __ set(page_size, Rscratch);
 402   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 403 
 404   // get the stack base, and in debug, verify it is non-zero
 405   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 406 #ifdef ASSERT
 407   Label base_not_zero;
 408   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
 409   __ stop("stack base is zero in generate_stack_overflow_check");
 410   __ bind(base_not_zero);
 411 #endif
 412 
 413   // get the stack size, and in debug, verify it is non-zero
 414   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 415   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 416 #ifdef ASSERT
 417   Label size_not_zero;
 418   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
 419   __ stop("stack size is zero in generate_stack_overflow_check");
 420   __ bind(size_not_zero);
 421 #endif
 422 
 423   // compute the beginning of the protected zone minus the requested frame size
 424   __ sub( Rscratch, Rscratch2,   Rscratch );
 425   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 426   __ add( Rscratch, Rscratch2,   Rscratch );
 427 
 428   // Add in the size of the frame (which is the same as subtracting it from the
 429   // SP, which would take another register
 430   __ add( Rscratch, Rframe_size, Rscratch );
 431 
 432   // the frame is greater than one page in size, so check against
 433   // the bottom of the stack
 434   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 435 
 436   // the stack will overflow, throw an exception
 437 
 438   // Note that SP is restored to sender's sp (in the delay slot). This
 439   // is necessary if the sender's frame is an extended compiled frame
 440   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 441   // adaptations.
 442 
 443   // Note also that the restored frame is not necessarily interpreted.
 444   // Use the shared runtime version of the StackOverflowError.
 445   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 446   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 447   __ jump_to(stub, Rscratch);
 448   __ delayed()->mov(O5_savedSP, SP);
 449 
 450   // if you get to here, then there is enough stack space
 451   __ bind( after_frame_check );
 452 }
 453 
 454 
 455 //
 456 // Generate a fixed interpreter frame. This is identical setup for interpreted
 457 // methods and for native methods hence the shared code.
 458 
 459 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 460   //
 461   //
 462   // The entry code sets up a new interpreter frame in 4 steps:
 463   //
 464   // 1) Increase caller's SP by for the extra local space needed:
 465   //    (check for overflow)
 466   //    Efficient implementation of xload/xstore bytecodes requires
 467   //    that arguments and non-argument locals are in a contigously
 468   //    addressable memory block => non-argument locals must be
 469   //    allocated in the caller's frame.
 470   //
 471   // 2) Create a new stack frame and register window:
 472   //    The new stack frame must provide space for the standard
 473   //    register save area, the maximum java expression stack size,
 474   //    the monitor slots (0 slots initially), and some frame local
 475   //    scratch locations.
 476   //
 477   // 3) The following interpreter activation registers must be setup:
 478   //    Lesp       : expression stack pointer
 479   //    Lbcp       : bytecode pointer
 480   //    Lmethod    : method
 481   //    Llocals    : locals pointer
 482   //    Lmonitors  : monitor pointer
 483   //    LcpoolCache: constant pool cache
 484   //
 485   // 4) Initialize the non-argument locals if necessary:
 486   //    Non-argument locals may need to be initialized to NULL
 487   //    for GC to work. If the oop-map information is accurate
 488   //    (in the absence of the JSR problem), no initialization
 489   //    is necessary.
 490   //
 491   // (gri - 2/25/2000)
 492 
 493 
 494   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 495 
 496   const int extra_space =
 497     rounded_vm_local_words +                   // frame local scratch space
 498     Method::extra_stack_entries() +            // extra stack for jsr 292
 499     frame::memory_parameter_word_sp_offset +   // register save area
 500     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 501 
 502   const Register Glocals_size = G3;
 503   const Register RconstMethod = Glocals_size;
 504   const Register Otmp1 = O3;
 505   const Register Otmp2 = O4;
 506   // Lscratch can't be used as a temporary because the call_stub uses
 507   // it to assert that the stack frame was setup correctly.
 508   const Address constMethod       (G5_method, Method::const_offset());
 509   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 510 
 511   __ ld_ptr( constMethod, RconstMethod );
 512   __ lduh( size_of_parameters, Glocals_size);
 513 
 514   // Gargs points to first local + BytesPerWord
 515   // Set the saved SP after the register window save
 516   //
 517   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 518   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 519   __ add(Gargs, Otmp1, Gargs);
 520 
 521   if (native_call) {
 522     __ calc_mem_param_words( Glocals_size, Gframe_size );
 523     __ add( Gframe_size,  extra_space, Gframe_size);
 524     __ round_to( Gframe_size, WordsPerLong );
 525     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 526   } else {
 527 
 528     //
 529     // Compute number of locals in method apart from incoming parameters
 530     //
 531     const Address size_of_locals    (Otmp1, ConstMethod::size_of_locals_offset());
 532     __ ld_ptr( constMethod, Otmp1 );
 533     __ lduh( size_of_locals, Otmp1 );
 534     __ sub( Otmp1, Glocals_size, Glocals_size );
 535     __ round_to( Glocals_size, WordsPerLong );
 536     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
 537 
 538     // see if the frame is greater than one page in size. If so,
 539     // then we need to verify there is enough stack space remaining
 540     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 541     __ ld_ptr( constMethod, Gframe_size );
 542     __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
 543     __ add( Gframe_size, extra_space, Gframe_size );
 544     __ round_to( Gframe_size, WordsPerLong );
 545     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 546 
 547     // Add in java locals size for stack overflow check only
 548     __ add( Gframe_size, Glocals_size, Gframe_size );
 549 
 550     const Register Otmp2 = O4;
 551     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 552     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 553 
 554     __ sub( Gframe_size, Glocals_size, Gframe_size);
 555 
 556     //
 557     // bump SP to accomodate the extra locals
 558     //
 559     __ sub( SP, Glocals_size, SP );
 560   }
 561 
 562   //
 563   // now set up a stack frame with the size computed above
 564   //
 565   __ neg( Gframe_size );
 566   __ save( SP, Gframe_size, SP );
 567 
 568   //
 569   // now set up all the local cache registers
 570   //
 571   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 572   // that all present references to Lbyte_code initialize the register
 573   // immediately before use
 574   if (native_call) {
 575     __ mov(G0, Lbcp);
 576   } else {
 577     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 578     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 579   }
 580   __ mov( G5_method, Lmethod);                 // set Lmethod
 581   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 582   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 583 #ifdef _LP64
 584   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 585 #endif
 586   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 587 
 588   // setup interpreter activation registers
 589   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 590 
 591   if (ProfileInterpreter) {
 592 #ifdef FAST_DISPATCH
 593     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 594     // they both use I2.
 595     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 596 #endif // FAST_DISPATCH
 597     __ set_method_data_pointer();
 598   }
 599 
 600 }
 601 
 602 // Empty method, generate a very fast return.
 603 
 604 address InterpreterGenerator::generate_empty_entry(void) {
 605 
 606   // A method that does nother but return...
 607 
 608   address entry = __ pc();
 609   Label slow_path;
 610 
 611   // do nothing for empty methods (do not even increment invocation counter)
 612   if ( UseFastEmptyMethods) {
 613     // If we need a safepoint check, generate full interpreter entry.
 614     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 615     __ set(sync_state, G3_scratch);
 616     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
 617 
 618     // Code: _return
 619     __ retl();
 620     __ delayed()->mov(O5_savedSP, SP);
 621 
 622     __ bind(slow_path);
 623     (void) generate_normal_entry(false);
 624 
 625     return entry;
 626   }
 627   return NULL;
 628 }
 629 
 630 // Call an accessor method (assuming it is resolved, otherwise drop into
 631 // vanilla (slow path) entry
 632 
 633 // Generates code to elide accessor methods
 634 // Uses G3_scratch and G1_scratch as scratch
 635 address InterpreterGenerator::generate_accessor_entry(void) {
 636 
 637   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 638   // parameter size = 1
 639   // Note: We can only use this code if the getfield has been resolved
 640   //       and if we don't have a null-pointer exception => check for
 641   //       these conditions first and use slow path if necessary.
 642   address entry = __ pc();
 643   Label slow_path;
 644 
 645 
 646   // XXX: for compressed oops pointer loading and decoding doesn't fit in
 647   // delay slot and damages G1
 648   if ( UseFastAccessorMethods && !UseCompressedOops ) {
 649     // Check if we need to reach a safepoint and generate full interpreter
 650     // frame if so.
 651     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
 652     __ load_contents(sync_state, G3_scratch);
 653     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 654     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
 655 
 656     // Check if local 0 != NULL
 657     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 658     // check if local 0 == NULL and go the slow path
 659     __ br_null_short(Otos_i, Assembler::pn, slow_path);
 660 
 661 
 662     // read first instruction word and extract bytecode @ 1 and index @ 2
 663     // get first 4 bytes of the bytecodes (big endian!)
 664     __ ld_ptr(G5_method, Method::const_offset(), G1_scratch);
 665     __ ld(G1_scratch, ConstMethod::codes_offset(), G1_scratch);
 666 
 667     // move index @ 2 far left then to the right most two bytes.
 668     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 669     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 670                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 671 
 672     // get constant pool cache
 673     __ ld_ptr(G5_method, Method::const_offset(), G3_scratch);
 674     __ ld_ptr(G3_scratch, ConstMethod::constants_offset(), G3_scratch);
 675     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
 676 
 677     // get specific constant pool cache entry
 678     __ add(G3_scratch, G1_scratch, G3_scratch);
 679 
 680     // Check the constant Pool cache entry to see if it has been resolved.
 681     // If not, need the slow path.
 682     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
 683     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
 684     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 685     __ and3(G1_scratch, 0xFF, G1_scratch);
 686     __ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path);
 687 
 688     // Get the type and return field offset from the constant pool cache
 689     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
 690     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
 691 
 692     Label xreturn_path;
 693     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 694     // because they are different sizes.
 695     // Get the type from the constant pool cache
 696     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
 697     // Make sure we don't need to mask G1_scratch after the above shift
 698     ConstantPoolCacheEntry::verify_tos_state_shift();
 699     __ cmp(G1_scratch, atos );
 700     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 701     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 702     __ cmp(G1_scratch, itos);
 703     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 704     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 705     __ cmp(G1_scratch, stos);
 706     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 707     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 708     __ cmp(G1_scratch, ctos);
 709     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 710     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 711 #ifdef ASSERT
 712     __ cmp(G1_scratch, btos);
 713     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 714     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 715     __ should_not_reach_here();
 716 #endif
 717     __ ldsb(Otos_i, G3_scratch, Otos_i);
 718     __ bind(xreturn_path);
 719 
 720     // _ireturn/_areturn
 721     __ retl();                      // return from leaf routine
 722     __ delayed()->mov(O5_savedSP, SP);
 723 
 724     // Generate regular method entry
 725     __ bind(slow_path);
 726     (void) generate_normal_entry(false);
 727     return entry;
 728   }
 729   return NULL;
 730 }
 731 
 732 // Method entry for java.lang.ref.Reference.get.
 733 address InterpreterGenerator::generate_Reference_get_entry(void) {
 734 #if INCLUDE_ALL_GCS
 735   // Code: _aload_0, _getfield, _areturn
 736   // parameter size = 1
 737   //
 738   // The code that gets generated by this routine is split into 2 parts:
 739   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 740   //    2. The slow path - which is an expansion of the regular method entry.
 741   //
 742   // Notes:-
 743   // * In the G1 code we do not check whether we need to block for
 744   //   a safepoint. If G1 is enabled then we must execute the specialized
 745   //   code for Reference.get (except when the Reference object is null)
 746   //   so that we can log the value in the referent field with an SATB
 747   //   update buffer.
 748   //   If the code for the getfield template is modified so that the
 749   //   G1 pre-barrier code is executed when the current method is
 750   //   Reference.get() then going through the normal method entry
 751   //   will be fine.
 752   // * The G1 code can, however, check the receiver object (the instance
 753   //   of java.lang.Reference) and jump to the slow path if null. If the
 754   //   Reference object is null then we obviously cannot fetch the referent
 755   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 756   //   regular method entry code to generate the NPE.
 757   //
 758   // This code is based on generate_accessor_enty.
 759 
 760   address entry = __ pc();
 761 
 762   const int referent_offset = java_lang_ref_Reference::referent_offset;
 763   guarantee(referent_offset > 0, "referent offset not initialized");
 764 
 765   if (UseG1GC) {
 766      Label slow_path;
 767 
 768     // In the G1 code we don't check if we need to reach a safepoint. We
 769     // continue and the thread will safepoint at the next bytecode dispatch.
 770 
 771     // Check if local 0 != NULL
 772     // If the receiver is null then it is OK to jump to the slow path.
 773     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 774     // check if local 0 == NULL and go the slow path
 775     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 776 
 777 
 778     // Load the value of the referent field.
 779     if (Assembler::is_simm13(referent_offset)) {
 780       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 781     } else {
 782       __ set(referent_offset, G3_scratch);
 783       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 784     }
 785 
 786     // Generate the G1 pre-barrier code to log the value of
 787     // the referent field in an SATB buffer. Note with
 788     // these parameters the pre-barrier does not generate
 789     // the load of the previous value
 790 
 791     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 792                             Otos_i /* pre_val */,
 793                             G3_scratch /* tmp */,
 794                             true /* preserve_o_regs */);
 795 
 796     // _areturn
 797     __ retl();                      // return from leaf routine
 798     __ delayed()->mov(O5_savedSP, SP);
 799 
 800     // Generate regular method entry
 801     __ bind(slow_path);
 802     (void) generate_normal_entry(false);
 803     return entry;
 804   }
 805 #endif // INCLUDE_ALL_GCS
 806 
 807   // If G1 is not enabled then attempt to go through the accessor entry point
 808   // Reference.get is an accessor
 809   return generate_accessor_entry();
 810 }
 811 
 812 //
 813 // Interpreter stub for calling a native method. (asm interpreter)
 814 // This sets up a somewhat different looking stack for calling the native method
 815 // than the typical interpreter frame setup.
 816 //
 817 
 818 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 819   address entry = __ pc();
 820 
 821   // the following temporary registers are used during frame creation
 822   const Register Gtmp1 = G3_scratch ;
 823   const Register Gtmp2 = G1_scratch;
 824   bool inc_counter  = UseCompiler || CountCompiledCalls;
 825 
 826   // make sure registers are different!
 827   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 828 
 829   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
 830 
 831   const Register Glocals_size = G3;
 832   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 833 
 834   // make sure method is native & not abstract
 835   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 836 #ifdef ASSERT
 837   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
 838   {
 839     Label L;
 840     __ btst(JVM_ACC_NATIVE, Gtmp1);
 841     __ br(Assembler::notZero, false, Assembler::pt, L);
 842     __ delayed()->nop();
 843     __ stop("tried to execute non-native method as native");
 844     __ bind(L);
 845   }
 846   { Label L;
 847     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 848     __ br(Assembler::zero, false, Assembler::pt, L);
 849     __ delayed()->nop();
 850     __ stop("tried to execute abstract method as non-abstract");
 851     __ bind(L);
 852   }
 853 #endif // ASSERT
 854 
 855  // generate the code to allocate the interpreter stack frame
 856   generate_fixed_frame(true);
 857 
 858   //
 859   // No locals to initialize for native method
 860   //
 861 
 862   // this slot will be set later, we initialize it to null here just in
 863   // case we get a GC before the actual value is stored later
 864   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 865 
 866   const Address do_not_unlock_if_synchronized(G2_thread,
 867     JavaThread::do_not_unlock_if_synchronized_offset());
 868   // Since at this point in the method invocation the exception handler
 869   // would try to exit the monitor of synchronized methods which hasn't
 870   // been entered yet, we set the thread local variable
 871   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 872   // runtime, exception handling i.e. unlock_if_synchronized_method will
 873   // check this thread local flag.
 874   // This flag has two effects, one is to force an unwind in the topmost
 875   // interpreter frame and not perform an unlock while doing so.
 876 
 877   __ movbool(true, G3_scratch);
 878   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 879 
 880   // increment invocation counter and check for overflow
 881   //
 882   // Note: checking for negative value instead of overflow
 883   //       so we have a 'sticky' overflow test (may be of
 884   //       importance as soon as we have true MT/MP)
 885   Label invocation_counter_overflow;
 886   Label Lcontinue;
 887   if (inc_counter) {
 888     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 889 
 890   }
 891   __ bind(Lcontinue);
 892 
 893   bang_stack_shadow_pages(true);
 894 
 895   // reset the _do_not_unlock_if_synchronized flag
 896   __ stbool(G0, do_not_unlock_if_synchronized);
 897 
 898   // check for synchronized methods
 899   // Must happen AFTER invocation_counter check and stack overflow check,
 900   // so method is not locked if overflows.
 901 
 902   if (synchronized) {
 903     lock_method();
 904   } else {
 905 #ifdef ASSERT
 906     { Label ok;
 907       __ ld(Laccess_flags, O0);
 908       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 909       __ br( Assembler::zero, false, Assembler::pt, ok);
 910       __ delayed()->nop();
 911       __ stop("method needs synchronization");
 912       __ bind(ok);
 913     }
 914 #endif // ASSERT
 915   }
 916 
 917 
 918   // start execution
 919   __ verify_thread();
 920 
 921   // JVMTI support
 922   __ notify_method_entry();
 923 
 924   // native call
 925 
 926   // (note that O0 is never an oop--at most it is a handle)
 927   // It is important not to smash any handles created by this call,
 928   // until any oop handle in O0 is dereferenced.
 929 
 930   // (note that the space for outgoing params is preallocated)
 931 
 932   // get signature handler
 933   { Label L;
 934     Address signature_handler(Lmethod, Method::signature_handler_offset());
 935     __ ld_ptr(signature_handler, G3_scratch);
 936     __ br_notnull_short(G3_scratch, Assembler::pt, L);
 937     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
 938     __ ld_ptr(signature_handler, G3_scratch);
 939     __ bind(L);
 940   }
 941 
 942   // Push a new frame so that the args will really be stored in
 943   // Copy a few locals across so the new frame has the variables
 944   // we need but these values will be dead at the jni call and
 945   // therefore not gc volatile like the values in the current
 946   // frame (Lmethod in particular)
 947 
 948   // Flush the method pointer to the register save area
 949   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 950   __ mov(Llocals, O1);
 951 
 952   // calculate where the mirror handle body is allocated in the interpreter frame:
 953   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
 954 
 955   // Calculate current frame size
 956   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 957   __ save(SP, O3, SP);        // Allocate an identical sized frame
 958 
 959   // Note I7 has leftover trash. Slow signature handler will fill it in
 960   // should we get there. Normal jni call will set reasonable last_Java_pc
 961   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 962   // in it).
 963 
 964   // Load interpreter frame's Lmethod into same register here
 965 
 966   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 967 
 968   __ mov(I1, Llocals);
 969   __ mov(I2, Lscratch2);     // save the address of the mirror
 970 
 971 
 972   // ONLY Lmethod and Llocals are valid here!
 973 
 974   // call signature handler, It will move the arg properly since Llocals in current frame
 975   // matches that in outer frame
 976 
 977   __ callr(G3_scratch, 0);
 978   __ delayed()->nop();
 979 
 980   // Result handler is in Lscratch
 981 
 982   // Reload interpreter frame's Lmethod since slow signature handler may block
 983   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 984 
 985   { Label not_static;
 986 
 987     __ ld(Laccess_flags, O0);
 988     __ btst(JVM_ACC_STATIC, O0);
 989     __ br( Assembler::zero, false, Assembler::pt, not_static);
 990     // get native function entry point(O0 is a good temp until the very end)
 991     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
 992     // for static methods insert the mirror argument
 993     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 994 
 995     __ ld_ptr(Lmethod, Method:: const_offset(), O1);
 996     __ ld_ptr(O1, ConstMethod::constants_offset(), O1);
 997     __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
 998     __ ld_ptr(O1, mirror_offset, O1);
 999 #ifdef ASSERT
1000     if (!PrintSignatureHandlers)  // do not dirty the output with this
1001     { Label L;
1002       __ br_notnull_short(O1, Assembler::pt, L);
1003       __ stop("mirror is missing");
1004       __ bind(L);
1005     }
1006 #endif // ASSERT
1007     __ st_ptr(O1, Lscratch2, 0);
1008     __ mov(Lscratch2, O1);
1009     __ bind(not_static);
1010   }
1011 
1012   // At this point, arguments have been copied off of stack into
1013   // their JNI positions, which are O1..O5 and SP[68..].
1014   // Oops are boxed in-place on the stack, with handles copied to arguments.
1015   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1016 
1017 #ifdef ASSERT
1018   { Label L;
1019     __ br_notnull_short(O0, Assembler::pt, L);
1020     __ stop("native entry point is missing");
1021     __ bind(L);
1022   }
1023 #endif // ASSERT
1024 
1025   //
1026   // setup the frame anchor
1027   //
1028   // The scavenge function only needs to know that the PC of this frame is
1029   // in the interpreter method entry code, it doesn't need to know the exact
1030   // PC and hence we can use O7 which points to the return address from the
1031   // previous call in the code stream (signature handler function)
1032   //
1033   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1034   // we have pushed the extra frame in order to protect the volatile register(s)
1035   // in that frame when we return from the jni call
1036   //
1037 
1038   __ set_last_Java_frame(FP, O7);
1039   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1040                    // not meaningless information that'll confuse me.
1041 
1042   // flush the windows now. We don't care about the current (protection) frame
1043   // only the outer frames
1044 
1045   __ flushw();
1046 
1047   // mark windows as flushed
1048   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1049   __ set(JavaFrameAnchor::flushed, G3_scratch);
1050   __ st(G3_scratch, flags);
1051 
1052   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1053 
1054   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1055 #ifdef ASSERT
1056   { Label L;
1057     __ ld(thread_state, G3_scratch);
1058     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1059     __ stop("Wrong thread state in native stub");
1060     __ bind(L);
1061   }
1062 #endif // ASSERT
1063   __ set(_thread_in_native, G3_scratch);
1064   __ st(G3_scratch, thread_state);
1065 
1066   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1067   __ save_thread(L7_thread_cache); // save Gthread
1068   __ callr(O0, 0);
1069   __ delayed()->
1070      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1071 
1072   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1073 
1074   __ restore_thread(L7_thread_cache); // restore G2_thread
1075   __ reinit_heapbase();
1076 
1077   // must we block?
1078 
1079   // Block, if necessary, before resuming in _thread_in_Java state.
1080   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1081   { Label no_block;
1082     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1083 
1084     // Switch thread to "native transition" state before reading the synchronization state.
1085     // This additional state is necessary because reading and testing the synchronization
1086     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1087     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1088     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1089     //     Thread A is resumed to finish this native method, but doesn't block here since it
1090     //     didn't see any synchronization is progress, and escapes.
1091     __ set(_thread_in_native_trans, G3_scratch);
1092     __ st(G3_scratch, thread_state);
1093     if(os::is_MP()) {
1094       if (UseMembar) {
1095         // Force this write out before the read below
1096         __ membar(Assembler::StoreLoad);
1097       } else {
1098         // Write serialization page so VM thread can do a pseudo remote membar.
1099         // We use the current thread pointer to calculate a thread specific
1100         // offset to write to within the page. This minimizes bus traffic
1101         // due to cache line collision.
1102         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1103       }
1104     }
1105     __ load_contents(sync_state, G3_scratch);
1106     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1107 
1108     Label L;
1109     __ br(Assembler::notEqual, false, Assembler::pn, L);
1110     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1111     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1112     __ bind(L);
1113 
1114     // Block.  Save any potential method result value before the operation and
1115     // use a leaf call to leave the last_Java_frame setup undisturbed.
1116     save_native_result();
1117     __ call_VM_leaf(L7_thread_cache,
1118                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1119                     G2_thread);
1120 
1121     // Restore any method result value
1122     restore_native_result();
1123     __ bind(no_block);
1124   }
1125 
1126   // Clear the frame anchor now
1127 
1128   __ reset_last_Java_frame();
1129 
1130   // Move the result handler address
1131   __ mov(Lscratch, G3_scratch);
1132   // return possible result to the outer frame
1133 #ifndef __LP64
1134   __ mov(O0, I0);
1135   __ restore(O1, G0, O1);
1136 #else
1137   __ restore(O0, G0, O0);
1138 #endif /* __LP64 */
1139 
1140   // Move result handler to expected register
1141   __ mov(G3_scratch, Lscratch);
1142 
1143   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1144   // switch to thread_in_Java.
1145 
1146   __ set(_thread_in_Java, G3_scratch);
1147   __ st(G3_scratch, thread_state);
1148 
1149   // reset handle block
1150   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1151   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1152 
1153   // If we have an oop result store it where it will be safe for any further gc
1154   // until we return now that we've released the handle it might be protected by
1155 
1156   {
1157     Label no_oop, store_result;
1158 
1159     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1160     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1161     __ addcc(G0, O0, O0);
1162     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1163     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1164     __ mov(G0, O0);
1165 
1166     __ bind(store_result);
1167     // Store it where gc will look for it and result handler expects it.
1168     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1169 
1170     __ bind(no_oop);
1171 
1172   }
1173 
1174 
1175   // handle exceptions (exception handling will handle unlocking!)
1176   { Label L;
1177     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1178     __ ld_ptr(exception_addr, Gtemp);
1179     __ br_null_short(Gtemp, Assembler::pt, L);
1180     // Note: This could be handled more efficiently since we know that the native
1181     //       method doesn't have an exception handler. We could directly return
1182     //       to the exception handler for the caller.
1183     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1184     __ should_not_reach_here();
1185     __ bind(L);
1186   }
1187 
1188   // JVMTI support (preserves thread register)
1189   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1190 
1191   if (synchronized) {
1192     // save and restore any potential method result value around the unlocking operation
1193     save_native_result();
1194 
1195     __ add( __ top_most_monitor(), O1);
1196     __ unlock_object(O1);
1197 
1198     restore_native_result();
1199   }
1200 
1201 #if defined(COMPILER2) && !defined(_LP64)
1202 
1203   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1204   // or compiled so just be safe.
1205 
1206   __ sllx(O0, 32, G1);          // Shift bits into high G1
1207   __ srl (O1, 0, O1);           // Zero extend O1
1208   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1209 
1210 #endif /* COMPILER2 && !_LP64 */
1211 
1212   // dispose of return address and remove activation
1213 #ifdef ASSERT
1214   {
1215     Label ok;
1216     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1217     __ stop("bad I5_savedSP value");
1218     __ should_not_reach_here();
1219     __ bind(ok);
1220   }
1221 #endif
1222   if (TraceJumps) {
1223     // Move target to register that is recordable
1224     __ mov(Lscratch, G3_scratch);
1225     __ JMP(G3_scratch, 0);
1226   } else {
1227     __ jmp(Lscratch, 0);
1228   }
1229   __ delayed()->nop();
1230 
1231 
1232   if (inc_counter) {
1233     // handle invocation counter overflow
1234     __ bind(invocation_counter_overflow);
1235     generate_counter_overflow(Lcontinue);
1236   }
1237 
1238 
1239 
1240   return entry;
1241 }
1242 
1243 
1244 // Generic method entry to (asm) interpreter
1245 //------------------------------------------------------------------------------------------------------------------------
1246 //
1247 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1248   address entry = __ pc();
1249 
1250   bool inc_counter  = UseCompiler || CountCompiledCalls;
1251 
1252   // the following temporary registers are used during frame creation
1253   const Register Gtmp1 = G3_scratch ;
1254   const Register Gtmp2 = G1_scratch;
1255 
1256   // make sure registers are different!
1257   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1258 
1259   const Address constMethod       (G5_method, Method::const_offset());
1260   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1261   // and use in the asserts.
1262   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1263 
1264   const Register Glocals_size = G3;
1265   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1266 
1267   // make sure method is not native & not abstract
1268   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1269 #ifdef ASSERT
1270   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1271   {
1272     Label L;
1273     __ btst(JVM_ACC_NATIVE, Gtmp1);
1274     __ br(Assembler::zero, false, Assembler::pt, L);
1275     __ delayed()->nop();
1276     __ stop("tried to execute native method as non-native");
1277     __ bind(L);
1278   }
1279   { Label L;
1280     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1281     __ br(Assembler::zero, false, Assembler::pt, L);
1282     __ delayed()->nop();
1283     __ stop("tried to execute abstract method as non-abstract");
1284     __ bind(L);
1285   }
1286 #endif // ASSERT
1287 
1288   // generate the code to allocate the interpreter stack frame
1289 
1290   generate_fixed_frame(false);
1291 
1292 #ifdef FAST_DISPATCH
1293   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1294                                           // set bytecode dispatch table base
1295 #endif
1296 
1297   //
1298   // Code to initialize the extra (i.e. non-parm) locals
1299   //
1300   Register init_value = noreg;    // will be G0 if we must clear locals
1301   // The way the code was setup before zerolocals was always true for vanilla java entries.
1302   // It could only be false for the specialized entries like accessor or empty which have
1303   // no extra locals so the testing was a waste of time and the extra locals were always
1304   // initialized. We removed this extra complication to already over complicated code.
1305 
1306   init_value = G0;
1307   Label clear_loop;
1308 
1309   const Register RconstMethod = O1;
1310   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1311   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1312 
1313   // NOTE: If you change the frame layout, this code will need to
1314   // be updated!
1315   __ ld_ptr( constMethod, RconstMethod );
1316   __ lduh( size_of_locals, O2 );
1317   __ lduh( size_of_parameters, O1 );
1318   __ sll( O2, Interpreter::logStackElementSize, O2);
1319   __ sll( O1, Interpreter::logStackElementSize, O1 );
1320   __ sub( Llocals, O2, O2 );
1321   __ sub( Llocals, O1, O1 );
1322 
1323   __ bind( clear_loop );
1324   __ inc( O2, wordSize );
1325 
1326   __ cmp( O2, O1 );
1327   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1328   __ delayed()->st_ptr( init_value, O2, 0 );
1329 
1330   const Address do_not_unlock_if_synchronized(G2_thread,
1331     JavaThread::do_not_unlock_if_synchronized_offset());
1332   // Since at this point in the method invocation the exception handler
1333   // would try to exit the monitor of synchronized methods which hasn't
1334   // been entered yet, we set the thread local variable
1335   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1336   // runtime, exception handling i.e. unlock_if_synchronized_method will
1337   // check this thread local flag.
1338   __ movbool(true, G3_scratch);
1339   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1340 
1341   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1342   // increment invocation counter and check for overflow
1343   //
1344   // Note: checking for negative value instead of overflow
1345   //       so we have a 'sticky' overflow test (may be of
1346   //       importance as soon as we have true MT/MP)
1347   Label invocation_counter_overflow;
1348   Label profile_method;
1349   Label profile_method_continue;
1350   Label Lcontinue;
1351   if (inc_counter) {
1352     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1353     if (ProfileInterpreter) {
1354       __ bind(profile_method_continue);
1355     }
1356   }
1357   __ bind(Lcontinue);
1358 
1359   bang_stack_shadow_pages(false);
1360 
1361   // reset the _do_not_unlock_if_synchronized flag
1362   __ stbool(G0, do_not_unlock_if_synchronized);
1363 
1364   // check for synchronized methods
1365   // Must happen AFTER invocation_counter check and stack overflow check,
1366   // so method is not locked if overflows.
1367 
1368   if (synchronized) {
1369     lock_method();
1370   } else {
1371 #ifdef ASSERT
1372     { Label ok;
1373       __ ld(access_flags, O0);
1374       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1375       __ br( Assembler::zero, false, Assembler::pt, ok);
1376       __ delayed()->nop();
1377       __ stop("method needs synchronization");
1378       __ bind(ok);
1379     }
1380 #endif // ASSERT
1381   }
1382 
1383   // start execution
1384 
1385   __ verify_thread();
1386 
1387   // jvmti support
1388   __ notify_method_entry();
1389 
1390   // start executing instructions
1391   __ dispatch_next(vtos);
1392 
1393 
1394   if (inc_counter) {
1395     if (ProfileInterpreter) {
1396       // We have decided to profile this method in the interpreter
1397       __ bind(profile_method);
1398 
1399       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1400       __ set_method_data_pointer_for_bcp();
1401       __ ba_short(profile_method_continue);
1402     }
1403 
1404     // handle invocation counter overflow
1405     __ bind(invocation_counter_overflow);
1406     generate_counter_overflow(Lcontinue);
1407   }
1408 
1409 
1410   return entry;
1411 }
1412 
1413 
1414 //----------------------------------------------------------------------------------------------------
1415 // Entry points & stack frame layout
1416 //
1417 // Here we generate the various kind of entries into the interpreter.
1418 // The two main entry type are generic bytecode methods and native call method.
1419 // These both come in synchronized and non-synchronized versions but the
1420 // frame layout they create is very similar. The other method entry
1421 // types are really just special purpose entries that are really entry
1422 // and interpretation all in one. These are for trivial methods like
1423 // accessor, empty, or special math methods.
1424 //
1425 // When control flow reaches any of the entry types for the interpreter
1426 // the following holds ->
1427 //
1428 // C2 Calling Conventions:
1429 //
1430 // The entry code below assumes that the following registers are set
1431 // when coming in:
1432 //    G5_method: holds the Method* of the method to call
1433 //    Lesp:    points to the TOS of the callers expression stack
1434 //             after having pushed all the parameters
1435 //
1436 // The entry code does the following to setup an interpreter frame
1437 //   pop parameters from the callers stack by adjusting Lesp
1438 //   set O0 to Lesp
1439 //   compute X = (max_locals - num_parameters)
1440 //   bump SP up by X to accomadate the extra locals
1441 //   compute X = max_expression_stack
1442 //               + vm_local_words
1443 //               + 16 words of register save area
1444 //   save frame doing a save sp, -X, sp growing towards lower addresses
1445 //   set Lbcp, Lmethod, LcpoolCache
1446 //   set Llocals to i0
1447 //   set Lmonitors to FP - rounded_vm_local_words
1448 //   set Lesp to Lmonitors - 4
1449 //
1450 //  The frame has now been setup to do the rest of the entry code
1451 
1452 // Try this optimization:  Most method entries could live in a
1453 // "one size fits all" stack frame without all the dynamic size
1454 // calculations.  It might be profitable to do all this calculation
1455 // statically and approximately for "small enough" methods.
1456 
1457 //-----------------------------------------------------------------------------------------------
1458 
1459 // C1 Calling conventions
1460 //
1461 // Upon method entry, the following registers are setup:
1462 //
1463 // g2 G2_thread: current thread
1464 // g5 G5_method: method to activate
1465 // g4 Gargs  : pointer to last argument
1466 //
1467 //
1468 // Stack:
1469 //
1470 // +---------------+ <--- sp
1471 // |               |
1472 // : reg save area :
1473 // |               |
1474 // +---------------+ <--- sp + 0x40
1475 // |               |
1476 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1477 // |               |
1478 // +---------------+ <--- sp + 0x5c
1479 // |               |
1480 // :     free      :
1481 // |               |
1482 // +---------------+ <--- Gargs
1483 // |               |
1484 // :   arguments   :
1485 // |               |
1486 // +---------------+
1487 // |               |
1488 //
1489 //
1490 //
1491 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
1492 //
1493 // +---------------+ <--- sp
1494 // |               |
1495 // : reg save area :
1496 // |               |
1497 // +---------------+ <--- sp + 0x40
1498 // |               |
1499 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1500 // |               |
1501 // +---------------+ <--- sp + 0x5c
1502 // |               |
1503 // :               :
1504 // |               | <--- Lesp
1505 // +---------------+ <--- Lmonitors (fp - 0x18)
1506 // |   VM locals   |
1507 // +---------------+ <--- fp
1508 // |               |
1509 // : reg save area :
1510 // |               |
1511 // +---------------+ <--- fp + 0x40
1512 // |               |
1513 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
1514 // |               |
1515 // +---------------+ <--- fp + 0x5c
1516 // |               |
1517 // :     free      :
1518 // |               |
1519 // +---------------+
1520 // |               |
1521 // : nonarg locals :
1522 // |               |
1523 // +---------------+
1524 // |               |
1525 // :   arguments   :
1526 // |               | <--- Llocals
1527 // +---------------+ <--- Gargs
1528 // |               |
1529 
1530 template<class M> static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1531 
1532   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1533   // expression stack, the callee will have callee_extra_locals (so we can account for
1534   // frame extension) and monitor_size for monitors. Basically we need to calculate
1535   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1536   //
1537   //
1538   // The big complicating thing here is that we must ensure that the stack stays properly
1539   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1540   // needs to be aligned for). We are given that the sp (fp) is already aligned by
1541   // the caller so we must ensure that it is properly aligned for our callee.
1542   //
1543   const int rounded_vm_local_words =
1544        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1545   // callee_locals and max_stack are counts, not the size in frame.
1546   const int locals_size =
1547        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
1548   const int max_stack_words = max_stack * Interpreter::stackElementWords;
1549   return (round_to((max_stack_words
1550                    + rounded_vm_local_words
1551                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
1552                    // already rounded
1553                    + locals_size + monitor_size);
1554 }
1555 
1556 // How much stack a method top interpreter activation needs in words.
1557 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1558 
1559   // See call_stub code
1560   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
1561                                  WordsPerLong);    // 7 + register save area
1562 
1563   // Save space for one monitor to get into the interpreted method in case
1564   // the method is synchronized
1565   int monitor_size    = method->is_synchronized() ?
1566                                 1*frame::interpreter_frame_monitor_size() : 0;
1567   return size_activation_helper<Method>(method->max_locals(), method->max_stack(),
1568                                         monitor_size) + call_stub_size;
1569 }
1570 
1571 template<class M> int AbstractInterpreter::size_activation(M* method,
1572                                                            int temps,
1573                                                            int popframe_args,
1574                                                            int monitors,
1575                                                            int callee_params,
1576                                                            int callee_locals,
1577                                                            bool is_top_frame) {
1578   // Note: This calculation must exactly parallel the frame setup
1579   // in InterpreterGenerator::generate_fixed_frame.
1580 
1581   int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
1582 
1583   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1584 
1585   //
1586   // Note: if you look closely this appears to be doing something much different
1587   // than generate_fixed_frame. What is happening is this. On sparc we have to do
1588   // this dance with interpreter_sp_adjustment because the window save area would
1589   // appear just below the bottom (tos) of the caller's java expression stack. Because
1590   // the interpreter want to have the locals completely contiguous generate_fixed_frame
1591   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
1592   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
1593   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
1594   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
1595   // because the oldest frame would have adjust its callers frame and yet that frame
1596   // already exists and isn't part of this array of frames we are unpacking. So at first
1597   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
1598   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
1599   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
1600   // add up. It does seem like it simpler to account for the adjustment here (and remove the
1601   // callee... parameters here). However this would mean that this routine would have to take
1602   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
1603   // and run the calling loop in the reverse order. This would also would appear to mean making
1604   // this code aware of what the interactions are when that initial caller fram was an osr or
1605   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
1606   // there is no sense in messing working code.
1607   //
1608 
1609   int rounded_cls = round_to((callee_locals - callee_params), WordsPerLong);
1610   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
1611 
1612   int raw_frame_size = size_activation_helper<M>(rounded_cls, method->max_stack(),
1613                                                  monitor_size);
1614 
1615   return raw_frame_size;
1616 }
1617 
1618 template int AbstractInterpreter::size_activation<Method>(Method* method,
1619                                                           int temps,
1620                                                           int popframe_args,
1621                                                           int monitors,
1622                                                           int callee_params,
1623                                                           int callee_locals,
1624                                                           bool is_top_frame);
1625 
1626 template int AbstractInterpreter::size_activation<ciMethod>(ciMethod* method,
1627                                                             int temps,
1628                                                             int popframe_args,
1629                                                             int monitors,
1630                                                             int callee_params,
1631                                                             int callee_locals,
1632                                                             bool is_top_frame);
1633 
1634 void AbstractInterpreter::layout_activation(Method* method,
1635                                             int tempcount,
1636                                             int popframe_extra_args,
1637                                             int moncount,
1638                                             int caller_actual_parameters,
1639                                             int callee_param_count,
1640                                             int callee_local_count,
1641                                             frame* caller,
1642                                             frame* interpreter_frame,
1643                                             bool is_top_frame,
1644                                             bool is_bottom_frame) {
1645   // Set up the following variables:
1646   //   - Lmethod
1647   //   - Llocals
1648   //   - Lmonitors (to the indicated number of monitors)
1649   //   - Lesp (to the indicated number of temps)
1650   // The frame caller on entry is a description of the caller of the
1651   // frame we are about to layout. We are guaranteed that we will be
1652   // able to fill in a new interpreter frame as its callee (i.e. the
1653   // stack space is allocated and the amount was determined by an
1654   // earlier call to the size_activation() method).  On return caller
1655   // while describe the interpreter frame we just layed out.
1656 
1657   // The skeleton frame must already look like an interpreter frame
1658   // even if not fully filled out.
1659   assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
1660 
1661   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1662   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
1663   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1664 
1665   intptr_t* fp = interpreter_frame->fp();
1666 
1667   JavaThread* thread = JavaThread::current();
1668   RegisterMap map(thread, false);
1669   // More verification that skeleton frame is properly walkable
1670   assert(fp == caller->sp(), "fp must match");
1671 
1672   intptr_t* montop     = fp - rounded_vm_local_words;
1673 
1674   // preallocate monitors (cf. __ add_monitor_to_stack)
1675   intptr_t* monitors = montop - monitor_size;
1676 
1677   // preallocate stack space
1678   intptr_t*  esp = monitors - 1 -
1679     (tempcount * Interpreter::stackElementWords) -
1680     popframe_extra_args;
1681 
1682   int local_words = method->max_locals() * Interpreter::stackElementWords;
1683   NEEDS_CLEANUP;
1684   intptr_t* locals;
1685   if (caller->is_interpreted_frame()) {
1686     // Can force the locals area to end up properly overlapping the top of the expression stack.
1687     intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
1688     // Note that this computation means we replace size_of_parameters() values from the caller
1689     // interpreter frame's expression stack with our argument locals
1690     int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
1691     locals = Lesp_ptr + parm_words;
1692     int delta = local_words - parm_words;
1693     int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
1694     *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
1695     if (!is_bottom_frame) {
1696       // Llast_SP is set below for the current frame to SP (with the
1697       // extra space for the callee's locals). Here we adjust
1698       // Llast_SP for the caller's frame, removing the extra space
1699       // for the current method's locals.
1700       *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
1701     } else {
1702       assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
1703     }
1704   } else {
1705     assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
1706     // Don't have Lesp available; lay out locals block in the caller
1707     // adjacent to the register window save area.
1708     //
1709     // Compiled frames do not allocate a varargs area which is why this if
1710     // statement is needed.
1711     //
1712     if (caller->is_compiled_frame()) {
1713       locals = fp + frame::register_save_words + local_words - 1;
1714     } else {
1715       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
1716     }
1717     if (!caller->is_entry_frame()) {
1718       // Caller wants his own SP back
1719       int caller_frame_size = caller->cb()->frame_size();
1720       *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
1721     }
1722   }
1723   if (TraceDeoptimization) {
1724     if (caller->is_entry_frame()) {
1725       // make sure I5_savedSP and the entry frames notion of saved SP
1726       // agree.  This assertion duplicate a check in entry frame code
1727       // but catches the failure earlier.
1728       assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
1729              "would change callers SP");
1730     }
1731     if (caller->is_entry_frame()) {
1732       tty->print("entry ");
1733     }
1734     if (caller->is_compiled_frame()) {
1735       tty->print("compiled ");
1736       if (caller->is_deoptimized_frame()) {
1737         tty->print("(deopt) ");
1738       }
1739     }
1740     if (caller->is_interpreted_frame()) {
1741       tty->print("interpreted ");
1742     }
1743     tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
1744     tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
1745     tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
1746     tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
1747     tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
1748     tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
1749     tty->print_cr("Llocals = 0x%x", locals);
1750     tty->print_cr("Lesp = 0x%x", esp);
1751     tty->print_cr("Lmonitors = 0x%x", monitors);
1752   }
1753 
1754   if (method->max_locals() > 0) {
1755     assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
1756     assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
1757     assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
1758     assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
1759   }
1760 #ifdef _LP64
1761   assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
1762 #endif
1763 
1764   *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
1765   *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
1766   *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
1767   *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
1768   // Llast_SP will be same as SP as there is no adapter space
1769   *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
1770   *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
1771 #ifdef FAST_DISPATCH
1772   *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
1773 #endif
1774 
1775 
1776 #ifdef ASSERT
1777   BasicObjectLock* mp = (BasicObjectLock*)monitors;
1778 
1779   assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
1780   assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
1781   assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
1782   assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
1783   assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
1784 
1785   // check bounds
1786   intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
1787   intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
1788   assert(lo < monitors && montop <= hi, "monitors in bounds");
1789   assert(lo <= esp && esp < monitors, "esp in bounds");
1790 #endif // ASSERT
1791 }
1792 
1793 //----------------------------------------------------------------------------------------------------
1794 // Exceptions
1795 void TemplateInterpreterGenerator::generate_throw_exception() {
1796 
1797   // Entry point in previous activation (i.e., if the caller was interpreted)
1798   Interpreter::_rethrow_exception_entry = __ pc();
1799   // O0: exception
1800 
1801   // entry point for exceptions thrown within interpreter code
1802   Interpreter::_throw_exception_entry = __ pc();
1803   __ verify_thread();
1804   // expression stack is undefined here
1805   // O0: exception, i.e. Oexception
1806   // Lbcp: exception bcx
1807   __ verify_oop(Oexception);
1808 
1809 
1810   // expression stack must be empty before entering the VM in case of an exception
1811   __ empty_expression_stack();
1812   // find exception handler address and preserve exception oop
1813   // call C routine to find handler and jump to it
1814   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1815   __ push_ptr(O1); // push exception for exception handler bytecodes
1816 
1817   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1818   __ delayed()->nop();
1819 
1820 
1821   // if the exception is not handled in the current frame
1822   // the frame is removed and the exception is rethrown
1823   // (i.e. exception continuation is _rethrow_exception)
1824   //
1825   // Note: At this point the bci is still the bxi for the instruction which caused
1826   //       the exception and the expression stack is empty. Thus, for any VM calls
1827   //       at this point, GC will find a legal oop map (with empty expression stack).
1828 
1829   // in current activation
1830   // tos: exception
1831   // Lbcp: exception bcp
1832 
1833   //
1834   // JVMTI PopFrame support
1835   //
1836 
1837   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1838   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1839   // Set the popframe_processing bit in popframe_condition indicating that we are
1840   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1841   // popframe handling cycles.
1842 
1843   __ ld(popframe_condition_addr, G3_scratch);
1844   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1845   __ stw(G3_scratch, popframe_condition_addr);
1846 
1847   // Empty the expression stack, as in normal exception handling
1848   __ empty_expression_stack();
1849   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1850 
1851   {
1852     // Check to see whether we are returning to a deoptimized frame.
1853     // (The PopFrame call ensures that the caller of the popped frame is
1854     // either interpreted or compiled and deoptimizes it if compiled.)
1855     // In this case, we can't call dispatch_next() after the frame is
1856     // popped, but instead must save the incoming arguments and restore
1857     // them after deoptimization has occurred.
1858     //
1859     // Note that we don't compare the return PC against the
1860     // deoptimization blob's unpack entry because of the presence of
1861     // adapter frames in C2.
1862     Label caller_not_deoptimized;
1863     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1864     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1865 
1866     const Register Gtmp1 = G3_scratch;
1867     const Register Gtmp2 = G1_scratch;
1868     const Register RconstMethod = Gtmp1;
1869     const Address constMethod(Lmethod, Method::const_offset());
1870     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1871 
1872     // Compute size of arguments for saving when returning to deoptimized caller
1873     __ ld_ptr(constMethod, RconstMethod);
1874     __ lduh(size_of_parameters, Gtmp1);
1875     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1876     __ sub(Llocals, Gtmp1, Gtmp2);
1877     __ add(Gtmp2, wordSize, Gtmp2);
1878     // Save these arguments
1879     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1880     // Inform deoptimization that it is responsible for restoring these arguments
1881     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1882     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1883     __ st(Gtmp1, popframe_condition_addr);
1884 
1885     // Return from the current method
1886     // The caller's SP was adjusted upon method entry to accomodate
1887     // the callee's non-argument locals. Undo that adjustment.
1888     __ ret();
1889     __ delayed()->restore(I5_savedSP, G0, SP);
1890 
1891     __ bind(caller_not_deoptimized);
1892   }
1893 
1894   // Clear the popframe condition flag
1895   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1896 
1897   // Get out of the current method (how this is done depends on the particular compiler calling
1898   // convention that the interpreter currently follows)
1899   // The caller's SP was adjusted upon method entry to accomodate
1900   // the callee's non-argument locals. Undo that adjustment.
1901   __ restore(I5_savedSP, G0, SP);
1902   // The method data pointer was incremented already during
1903   // call profiling. We have to restore the mdp for the current bcp.
1904   if (ProfileInterpreter) {
1905     __ set_method_data_pointer_for_bcp();
1906   }
1907 
1908 #if INCLUDE_JVMTI
1909   if (EnableInvokeDynamic) {
1910     Label L_done;
1911 
1912     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1913     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1914 
1915     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1916     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1917 
1918     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1919 
1920     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1921     __ delayed()->nop();
1922 
1923     __ st_ptr(G1_scratch, Lesp, wordSize);
1924     __ bind(L_done);
1925   }
1926 #endif // INCLUDE_JVMTI
1927 
1928   // Resume bytecode interpretation at the current bcp
1929   __ dispatch_next(vtos);
1930   // end of JVMTI PopFrame support
1931 
1932   Interpreter::_remove_activation_entry = __ pc();
1933 
1934   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1935   __ pop_ptr(Oexception);                                  // get exception
1936 
1937   // Intel has the following comment:
1938   //// remove the activation (without doing throws on illegalMonitorExceptions)
1939   // They remove the activation without checking for bad monitor state.
1940   // %%% We should make sure this is the right semantics before implementing.
1941 
1942   __ set_vm_result(Oexception);
1943   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1944 
1945   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1946 
1947   __ get_vm_result(Oexception);
1948   __ verify_oop(Oexception);
1949 
1950     const int return_reg_adjustment = frame::pc_return_offset;
1951   Address issuing_pc_addr(I7, return_reg_adjustment);
1952 
1953   // We are done with this activation frame; find out where to go next.
1954   // The continuation point will be an exception handler, which expects
1955   // the following registers set up:
1956   //
1957   // Oexception: exception
1958   // Oissuing_pc: the local call that threw exception
1959   // Other On: garbage
1960   // In/Ln:  the contents of the caller's register window
1961   //
1962   // We do the required restore at the last possible moment, because we
1963   // need to preserve some state across a runtime call.
1964   // (Remember that the caller activation is unknown--it might not be
1965   // interpreted, so things like Lscratch are useless in the caller.)
1966 
1967   // Although the Intel version uses call_C, we can use the more
1968   // compact call_VM.  (The only real difference on SPARC is a
1969   // harmlessly ignored [re]set_last_Java_frame, compared with
1970   // the Intel code which lacks this.)
1971   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1972   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1973   __ super_call_VM_leaf(L7_thread_cache,
1974                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1975                         G2_thread, Oissuing_pc->after_save());
1976 
1977   // The caller's SP was adjusted upon method entry to accomodate
1978   // the callee's non-argument locals. Undo that adjustment.
1979   __ JMP(O0, 0);                         // return exception handler in caller
1980   __ delayed()->restore(I5_savedSP, G0, SP);
1981 
1982   // (same old exception object is already in Oexception; see above)
1983   // Note that an "issuing PC" is actually the next PC after the call
1984 }
1985 
1986 
1987 //
1988 // JVMTI ForceEarlyReturn support
1989 //
1990 
1991 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1992   address entry = __ pc();
1993 
1994   __ empty_expression_stack();
1995   __ load_earlyret_value(state);
1996 
1997   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1998   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1999 
2000   // Clear the earlyret state
2001   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
2002 
2003   __ remove_activation(state,
2004                        /* throw_monitor_exception */ false,
2005                        /* install_monitor_exception */ false);
2006 
2007   // The caller's SP was adjusted upon method entry to accomodate
2008   // the callee's non-argument locals. Undo that adjustment.
2009   __ ret();                             // return to caller
2010   __ delayed()->restore(I5_savedSP, G0, SP);
2011 
2012   return entry;
2013 } // end of JVMTI ForceEarlyReturn support
2014 
2015 
2016 //------------------------------------------------------------------------------------------------------------------------
2017 // Helper for vtos entry point generation
2018 
2019 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
2020   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2021   Label L;
2022   aep = __ pc(); __ push_ptr(); __ ba_short(L);
2023   fep = __ pc(); __ push_f();   __ ba_short(L);
2024   dep = __ pc(); __ push_d();   __ ba_short(L);
2025   lep = __ pc(); __ push_l();   __ ba_short(L);
2026   iep = __ pc(); __ push_i();
2027   bep = cep = sep = iep;                        // there aren't any
2028   vep = __ pc(); __ bind(L);                    // fall through
2029   generate_and_dispatch(t);
2030 }
2031 
2032 // --------------------------------------------------------------------------------
2033 
2034 
2035 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2036  : TemplateInterpreterGenerator(code) {
2037    generate_all(); // down here so it can be "virtual"
2038 }
2039 
2040 // --------------------------------------------------------------------------------
2041 
2042 // Non-product code
2043 #ifndef PRODUCT
2044 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2045   address entry = __ pc();
2046 
2047   __ push(state);
2048   __ mov(O7, Lscratch); // protect return address within interpreter
2049 
2050   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
2051   __ mov( Otos_l2, G3_scratch );
2052   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
2053   __ mov(Lscratch, O7); // restore return address
2054   __ pop(state);
2055   __ retl();
2056   __ delayed()->nop();
2057 
2058   return entry;
2059 }
2060 
2061 
2062 // helpers for generate_and_dispatch
2063 
2064 void TemplateInterpreterGenerator::count_bytecode() {
2065   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
2066 }
2067 
2068 
2069 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2070   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2071 }
2072 
2073 
2074 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2075   AddressLiteral index   (&BytecodePairHistogram::_index);
2076   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2077 
2078   // get index, shift out old bytecode, bring in new bytecode, and store it
2079   // _index = (_index >> log2_number_of_codes) |
2080   //          (bytecode << log2_number_of_codes);
2081 
2082   __ load_contents(index, G4_scratch);
2083   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2084   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2085   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2086   __ store_contents(G4_scratch, index, G3_scratch);
2087 
2088   // bump bucket contents
2089   // _counters[_index] ++;
2090 
2091   __ set(counters, G3_scratch);                       // loads into G3_scratch
2092   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2093   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2094   __ ld (G3_scratch, 0, G4_scratch);
2095   __ inc (G4_scratch);
2096   __ st (G4_scratch, 0, G3_scratch);
2097 }
2098 
2099 
2100 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2101   // Call a little run-time stub to avoid blow-up for each bytecode.
2102   // The run-time runtime saves the right registers, depending on
2103   // the tosca in-state for the given template.
2104   address entry = Interpreter::trace_code(t->tos_in());
2105   guarantee(entry != NULL, "entry must have been generated");
2106   __ call(entry, relocInfo::none);
2107   __ delayed()->nop();
2108 }
2109 
2110 
2111 void TemplateInterpreterGenerator::stop_interpreter_at() {
2112   AddressLiteral counter(&BytecodeCounter::_counter_value);
2113   __ load_contents(counter, G3_scratch);
2114   AddressLiteral stop_at(&StopInterpreterAt);
2115   __ load_ptr_contents(stop_at, G4_scratch);
2116   __ cmp(G3_scratch, G4_scratch);
2117   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2118 }
2119 #endif // not PRODUCT
2120 #endif // !CC_INTERP