1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     BoxLockNode;
  53 class     LockNode;
  54 class     UnlockNode;
  55 class JVMState;
  56 class OopMap;
  57 class State;
  58 class StartNode;
  59 class MachCallNode;
  60 class FastLockNode;
  61 
  62 //------------------------------StartNode--------------------------------------
  63 // The method start node
  64 class StartNode : public MultiNode {
  65   virtual uint cmp( const Node &n ) const;
  66   virtual uint size_of() const; // Size is bigger
  67 public:
  68   const TypeTuple *_domain;
  69   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  70     init_class_id(Class_Start);
  71     init_req(0,this);
  72     init_req(1,root);
  73   }
  74   virtual int Opcode() const;
  75   virtual bool pinned() const { return true; };
  76   virtual const Type *bottom_type() const;
  77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  78   virtual const Type *Value( PhaseTransform *phase ) const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  81   virtual const RegMask &in_RegMask(uint) const;
  82   virtual Node *match( const ProjNode *proj, const Matcher *m );
  83   virtual uint ideal_reg() const { return 0; }
  84 #ifndef PRODUCT
  85   virtual void  dump_spec(outputStream *st) const;
  86 #endif
  87 };
  88 
  89 //------------------------------StartOSRNode-----------------------------------
  90 // The method start node for on stack replacement code
  91 class StartOSRNode : public StartNode {
  92 public:
  93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  94   virtual int   Opcode() const;
  95   static  const TypeTuple *osr_domain();
  96 };
  97 
  98 
  99 //------------------------------ParmNode---------------------------------------
 100 // Incoming parameters
 101 class ParmNode : public ProjNode {
 102   static const char * const names[TypeFunc::Parms+1];
 103 public:
 104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 105     init_class_id(Class_Parm);
 106   }
 107   virtual int Opcode() const;
 108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 109   virtual uint ideal_reg() const;
 110 #ifndef PRODUCT
 111   virtual void dump_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 
 116 //------------------------------ReturnNode-------------------------------------
 117 // Return from subroutine node
 118 class ReturnNode : public Node {
 119 public:
 120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 121   virtual int Opcode() const;
 122   virtual bool  is_CFG() const { return true; }
 123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 124   virtual bool depends_only_on_test() const { return false; }
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type *Value( PhaseTransform *phase ) const;
 127   virtual uint ideal_reg() const { return NotAMachineReg; }
 128   virtual uint match_edge(uint idx) const;
 129 #ifndef PRODUCT
 130   virtual void dump_req(outputStream *st = tty) const;
 131 #endif
 132 };
 133 
 134 
 135 //------------------------------RethrowNode------------------------------------
 136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 137 // ends the current basic block like a ReturnNode.  Restores registers and
 138 // unwinds stack.  Rethrow happens in the caller's method.
 139 class RethrowNode : public Node {
 140  public:
 141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 142   virtual int Opcode() const;
 143   virtual bool  is_CFG() const { return true; }
 144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 145   virtual bool depends_only_on_test() const { return false; }
 146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 147   virtual const Type *Value( PhaseTransform *phase ) const;
 148   virtual uint match_edge(uint idx) const;
 149   virtual uint ideal_reg() const { return NotAMachineReg; }
 150 #ifndef PRODUCT
 151   virtual void dump_req(outputStream *st = tty) const;
 152 #endif
 153 };
 154 
 155 
 156 //------------------------------TailCallNode-----------------------------------
 157 // Pop stack frame and jump indirect
 158 class TailCallNode : public ReturnNode {
 159 public:
 160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 162     init_req(TypeFunc::Parms, target);
 163     init_req(TypeFunc::Parms+1, moop);
 164   }
 165 
 166   virtual int Opcode() const;
 167   virtual uint match_edge(uint idx) const;
 168 };
 169 
 170 //------------------------------TailJumpNode-----------------------------------
 171 // Pop stack frame and jump indirect
 172 class TailJumpNode : public ReturnNode {
 173 public:
 174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 176     init_req(TypeFunc::Parms, target);
 177     init_req(TypeFunc::Parms+1, ex_oop);
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual uint match_edge(uint idx) const;
 182 };
 183 
 184 //-------------------------------JVMState-------------------------------------
 185 // A linked list of JVMState nodes captures the whole interpreter state,
 186 // plus GC roots, for all active calls at some call site in this compilation
 187 // unit.  (If there is no inlining, then the list has exactly one link.)
 188 // This provides a way to map the optimized program back into the interpreter,
 189 // or to let the GC mark the stack.
 190 class JVMState : public ResourceObj {
 191   friend class VMStructs;
 192 public:
 193   typedef enum {
 194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 195     Reexecute_False     =  0, // false       -- do not reexecute
 196     Reexecute_True      =  1  // true        -- reexecute the bytecode
 197   } ReexecuteState; //Reexecute State
 198 
 199 private:
 200   JVMState*         _caller;    // List pointer for forming scope chains
 201   uint              _depth;     // One more than caller depth, or one.
 202   uint              _locoff;    // Offset to locals in input edge mapping
 203   uint              _stkoff;    // Offset to stack in input edge mapping
 204   uint              _monoff;    // Offset to monitors in input edge mapping
 205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 206   uint              _endoff;    // Offset to end of input edge mapping
 207   uint              _sp;        // Jave Expression Stack Pointer for this state
 208   int               _bci;       // Byte Code Index of this JVM point
 209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 210   ciMethod*         _method;    // Method Pointer
 211   SafePointNode*    _map;       // Map node associated with this scope
 212 public:
 213   friend class Compile;
 214   friend class PreserveReexecuteState;
 215 
 216   // Because JVMState objects live over the entire lifetime of the
 217   // Compile object, they are allocated into the comp_arena, which
 218   // does not get resource marked or reset during the compile process
 219   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 220   void operator delete( void * ) { } // fast deallocation
 221 
 222   // Create a new JVMState, ready for abstract interpretation.
 223   JVMState(ciMethod* method, JVMState* caller);
 224   JVMState(int stack_size);  // root state; has a null method
 225 
 226   // Access functions for the JVM
 227   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 228   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 229   uint              locoff() const { return _locoff; }
 230   uint              stkoff() const { return _stkoff; }
 231   uint              argoff() const { return _stkoff + _sp; }
 232   uint              monoff() const { return _monoff; }
 233   uint              scloff() const { return _scloff; }
 234   uint              endoff() const { return _endoff; }
 235   uint              oopoff() const { return debug_end(); }
 236 
 237   int            loc_size() const { return stkoff() - locoff(); }
 238   int            stk_size() const { return monoff() - stkoff(); }
 239   int            mon_size() const { return scloff() - monoff(); }
 240   int            scl_size() const { return endoff() - scloff(); }
 241 
 242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 246 
 247   uint                      sp() const { return _sp; }
 248   int                      bci() const { return _bci; }
 249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 251   bool              has_method() const { return _method != NULL; }
 252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 253   JVMState*             caller() const { return _caller; }
 254   SafePointNode*           map() const { return _map; }
 255   uint                   depth() const { return _depth; }
 256   uint             debug_start() const; // returns locoff of root caller
 257   uint               debug_end() const; // returns endoff of self
 258   uint              debug_size() const {
 259     return loc_size() + sp() + mon_size() + scl_size();
 260   }
 261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 262 
 263   // Returns the JVM state at the desired depth (1 == root).
 264   JVMState* of_depth(int d) const;
 265 
 266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 267   bool same_calls_as(const JVMState* that) const;
 268 
 269   // Monitors (monitors are stored as (boxNode, objNode) pairs
 270   enum { logMonitorEdges = 1 };
 271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 275   bool is_monitor_box(uint off)    const {
 276     assert(is_mon(off), "should be called only for monitor edge");
 277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 278   }
 279   bool is_monitor_use(uint off)    const { return (is_mon(off)
 280                                                    && is_monitor_box(off))
 281                                              || (caller() && caller()->is_monitor_use(off)); }
 282 
 283   // Initialization functions for the JVM
 284   void              set_locoff(uint off) { _locoff = off; }
 285   void              set_stkoff(uint off) { _stkoff = off; }
 286   void              set_monoff(uint off) { _monoff = off; }
 287   void              set_scloff(uint off) { _scloff = off; }
 288   void              set_endoff(uint off) { _endoff = off; }
 289   void              set_offsets(uint off) {
 290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 291   }
 292   void              set_map(SafePointNode *map) { _map = map; }
 293   void              set_sp(uint sp) { _sp = sp; }
 294                     // _reexecute is initialized to "undefined" for a new bci
 295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 297 
 298   // Miscellaneous utility functions
 299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 301   void      set_map_deep(SafePointNode *map);// reset map for all callers
 302   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 303   int       interpreter_frame_size() const;
 304 
 305 #ifndef PRODUCT
 306   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 307   void      dump_spec(outputStream *st) const;
 308   void      dump_on(outputStream* st) const;
 309   void      dump() const {
 310     dump_on(tty);
 311   }
 312 #endif
 313 };
 314 
 315 //------------------------------SafePointNode----------------------------------
 316 // A SafePointNode is a subclass of a MultiNode for convenience (and
 317 // potential code sharing) only - conceptually it is independent of
 318 // the Node semantics.
 319 class SafePointNode : public MultiNode {
 320   virtual uint           cmp( const Node &n ) const;
 321   virtual uint           size_of() const;       // Size is bigger
 322 
 323 public:
 324   SafePointNode(uint edges, JVMState* jvms,
 325                 // A plain safepoint advertises no memory effects (NULL):
 326                 const TypePtr* adr_type = NULL)
 327     : MultiNode( edges ),
 328       _jvms(jvms),
 329       _oop_map(NULL),
 330       _adr_type(adr_type)
 331   {
 332     init_class_id(Class_SafePoint);
 333   }
 334 
 335   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 336   JVMState* const _jvms;      // Pointer to list of JVM State objects
 337   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 338 
 339   // Many calls take *all* of memory as input,
 340   // but some produce a limited subset of that memory as output.
 341   // The adr_type reports the call's behavior as a store, not a load.
 342 
 343   virtual JVMState* jvms() const { return _jvms; }
 344   void set_jvms(JVMState* s) {
 345     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 346   }
 347   OopMap *oop_map() const { return _oop_map; }
 348   void set_oop_map(OopMap *om) { _oop_map = om; }
 349 
 350  private:
 351   void verify_input(JVMState* jvms, uint idx) const {
 352     assert(verify_jvms(jvms), "jvms must match");
 353     Node* n = in(idx);
 354     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 355            in(idx + 1)->is_top(), "2nd half of long/double");
 356   }
 357 
 358  public:
 359   // Functionality from old debug nodes which has changed
 360   Node *local(JVMState* jvms, uint idx) const {
 361     verify_input(jvms, jvms->locoff() + idx);
 362     return in(jvms->locoff() + idx);
 363   }
 364   Node *stack(JVMState* jvms, uint idx) const {
 365     verify_input(jvms, jvms->stkoff() + idx);
 366     return in(jvms->stkoff() + idx);
 367   }
 368   Node *argument(JVMState* jvms, uint idx) const {
 369     verify_input(jvms, jvms->argoff() + idx);
 370     return in(jvms->argoff() + idx);
 371   }
 372   Node *monitor_box(JVMState* jvms, uint idx) const {
 373     assert(verify_jvms(jvms), "jvms must match");
 374     return in(jvms->monitor_box_offset(idx));
 375   }
 376   Node *monitor_obj(JVMState* jvms, uint idx) const {
 377     assert(verify_jvms(jvms), "jvms must match");
 378     return in(jvms->monitor_obj_offset(idx));
 379   }
 380 
 381   void  set_local(JVMState* jvms, uint idx, Node *c);
 382 
 383   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 384     assert(verify_jvms(jvms), "jvms must match");
 385     set_req(jvms->stkoff() + idx, c);
 386   }
 387   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 388     assert(verify_jvms(jvms), "jvms must match");
 389     set_req(jvms->argoff() + idx, c);
 390   }
 391   void ensure_stack(JVMState* jvms, uint stk_size) {
 392     assert(verify_jvms(jvms), "jvms must match");
 393     int grow_by = (int)stk_size - (int)jvms->stk_size();
 394     if (grow_by > 0)  grow_stack(jvms, grow_by);
 395   }
 396   void grow_stack(JVMState* jvms, uint grow_by);
 397   // Handle monitor stack
 398   void push_monitor( const FastLockNode *lock );
 399   void pop_monitor ();
 400   Node *peek_monitor_box() const;
 401   Node *peek_monitor_obj() const;
 402 
 403   // Access functions for the JVM
 404   Node *control  () const { return in(TypeFunc::Control  ); }
 405   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 406   Node *memory   () const { return in(TypeFunc::Memory   ); }
 407   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 408   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 409 
 410   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 411   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 412   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 413 
 414   MergeMemNode* merged_memory() const {
 415     return in(TypeFunc::Memory)->as_MergeMem();
 416   }
 417 
 418   // The parser marks useless maps as dead when it's done with them:
 419   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 420 
 421   // Exception states bubbling out of subgraphs such as inlined calls
 422   // are recorded here.  (There might be more than one, hence the "next".)
 423   // This feature is used only for safepoints which serve as "maps"
 424   // for JVM states during parsing, intrinsic expansion, etc.
 425   SafePointNode*         next_exception() const;
 426   void               set_next_exception(SafePointNode* n);
 427   bool                   has_exceptions() const { return next_exception() != NULL; }
 428 
 429   // Standard Node stuff
 430   virtual int            Opcode() const;
 431   virtual bool           pinned() const { return true; }
 432   virtual const Type    *Value( PhaseTransform *phase ) const;
 433   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 434   virtual const TypePtr *adr_type() const { return _adr_type; }
 435   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 436   virtual Node          *Identity( PhaseTransform *phase );
 437   virtual uint           ideal_reg() const { return 0; }
 438   virtual const RegMask &in_RegMask(uint) const;
 439   virtual const RegMask &out_RegMask() const;
 440   virtual uint           match_edge(uint idx) const;
 441 
 442   static  bool           needs_polling_address_input();
 443 
 444 #ifndef PRODUCT
 445   virtual void           dump_spec(outputStream *st) const;
 446 #endif
 447 };
 448 
 449 //------------------------------SafePointScalarObjectNode----------------------
 450 // A SafePointScalarObjectNode represents the state of a scalarized object
 451 // at a safepoint.
 452 
 453 class SafePointScalarObjectNode: public TypeNode {
 454   uint _first_index; // First input edge relative index of a SafePoint node where
 455                      // states of the scalarized object fields are collected.
 456                      // It is relative to the last (youngest) jvms->_scloff.
 457   uint _n_fields;    // Number of non-static fields of the scalarized object.
 458   DEBUG_ONLY(AllocateNode* _alloc;)
 459 
 460   virtual uint hash() const ; // { return NO_HASH; }
 461   virtual uint cmp( const Node &n ) const;
 462 
 463   uint first_index() const { return _first_index; }
 464 
 465 public:
 466   SafePointScalarObjectNode(const TypeOopPtr* tp,
 467 #ifdef ASSERT
 468                             AllocateNode* alloc,
 469 #endif
 470                             uint first_index, uint n_fields);
 471   virtual int Opcode() const;
 472   virtual uint           ideal_reg() const;
 473   virtual const RegMask &in_RegMask(uint) const;
 474   virtual const RegMask &out_RegMask() const;
 475   virtual uint           match_edge(uint idx) const;
 476 
 477   uint first_index(JVMState* jvms) const {
 478     assert(jvms != NULL, "missed JVMS");
 479     return jvms->scloff() + _first_index;
 480   }
 481   uint n_fields()    const { return _n_fields; }
 482 
 483 #ifdef ASSERT
 484   AllocateNode* alloc() const { return _alloc; }
 485 #endif
 486 
 487   virtual uint size_of() const { return sizeof(*this); }
 488 
 489   // Assumes that "this" is an argument to a safepoint node "s", and that
 490   // "new_call" is being created to correspond to "s".  But the difference
 491   // between the start index of the jvmstates of "new_call" and "s" is
 492   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 493   // corresponds appropriately to "this" in "new_call".  Assumes that
 494   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 495   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 496   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 497 
 498 #ifndef PRODUCT
 499   virtual void              dump_spec(outputStream *st) const;
 500 #endif
 501 };
 502 
 503 
 504 // Simple container for the outgoing projections of a call.  Useful
 505 // for serious surgery on calls.
 506 class CallProjections : public StackObj {
 507 public:
 508   Node* fallthrough_proj;
 509   Node* fallthrough_catchproj;
 510   Node* fallthrough_memproj;
 511   Node* fallthrough_ioproj;
 512   Node* catchall_catchproj;
 513   Node* catchall_memproj;
 514   Node* catchall_ioproj;
 515   Node* resproj;
 516   Node* exobj;
 517 };
 518 
 519 class CallGenerator;
 520 
 521 //------------------------------CallNode---------------------------------------
 522 // Call nodes now subsume the function of debug nodes at callsites, so they
 523 // contain the functionality of a full scope chain of debug nodes.
 524 class CallNode : public SafePointNode {
 525   friend class VMStructs;
 526 public:
 527   const TypeFunc *_tf;        // Function type
 528   address      _entry_point;  // Address of method being called
 529   float        _cnt;          // Estimate of number of times called
 530   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 531 
 532   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 533     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 534       _tf(tf),
 535       _entry_point(addr),
 536       _cnt(COUNT_UNKNOWN),
 537       _generator(NULL)
 538   {
 539     init_class_id(Class_Call);
 540   }
 541 
 542   const TypeFunc* tf()         const { return _tf; }
 543   const address  entry_point() const { return _entry_point; }
 544   const float    cnt()         const { return _cnt; }
 545   CallGenerator* generator()   const { return _generator; }
 546 
 547   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 548   void set_entry_point(address p)       { _entry_point = p; }
 549   void set_cnt(float c)                 { _cnt = c; }
 550   void set_generator(CallGenerator* cg) { _generator = cg; }
 551 
 552   virtual const Type *bottom_type() const;
 553   virtual const Type *Value( PhaseTransform *phase ) const;
 554   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 555   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 556   virtual uint        cmp( const Node &n ) const;
 557   virtual uint        size_of() const = 0;
 558   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 559   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 560   virtual uint        ideal_reg() const { return NotAMachineReg; }
 561   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 562   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 563   virtual bool        guaranteed_safepoint()  { return true; }
 564   // For macro nodes, the JVMState gets modified during expansion. If calls
 565   // use MachConstantBase, it gets modified during matching. So when cloning
 566   // the node the JVMState must be cloned. Default is not to clone.
 567   virtual void clone_jvms(Compile* C) {
 568     if (C->needs_clone_jvms() && jvms() != NULL) {
 569       set_jvms(jvms()->clone_deep(C));
 570       jvms()->set_map_deep(this);
 571     }
 572   }
 573 
 574   // Returns true if the call may modify n
 575   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 576   // Does this node have a use of n other than in debug information?
 577   bool                has_non_debug_use(Node *n);
 578   // Returns the unique CheckCastPP of a call
 579   // or result projection is there are several CheckCastPP
 580   // or returns NULL if there is no one.
 581   Node *result_cast();
 582   // Does this node returns pointer?
 583   bool returns_pointer() const {
 584     const TypeTuple *r = tf()->range();
 585     return (r->cnt() > TypeFunc::Parms &&
 586             r->field_at(TypeFunc::Parms)->isa_ptr());
 587   }
 588 
 589   // Collect all the interesting edges from a call for use in
 590   // replacing the call by something else.  Used by macro expansion
 591   // and the late inlining support.
 592   void extract_projections(CallProjections* projs, bool separate_io_proj);
 593 
 594   virtual uint match_edge(uint idx) const;
 595 
 596 #ifndef PRODUCT
 597   virtual void        dump_req(outputStream *st = tty) const;
 598   virtual void        dump_spec(outputStream *st) const;
 599 #endif
 600 };
 601 
 602 
 603 //------------------------------CallJavaNode-----------------------------------
 604 // Make a static or dynamic subroutine call node using Java calling
 605 // convention.  (The "Java" calling convention is the compiler's calling
 606 // convention, as opposed to the interpreter's or that of native C.)
 607 class CallJavaNode : public CallNode {
 608   friend class VMStructs;
 609 protected:
 610   virtual uint cmp( const Node &n ) const;
 611   virtual uint size_of() const; // Size is bigger
 612 
 613   bool    _optimized_virtual;
 614   bool    _method_handle_invoke;
 615   ciMethod* _method;            // Method being direct called
 616 public:
 617   const int       _bci;         // Byte Code Index of call byte code
 618   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 619     : CallNode(tf, addr, TypePtr::BOTTOM),
 620       _method(method), _bci(bci),
 621       _optimized_virtual(false),
 622       _method_handle_invoke(false)
 623   {
 624     init_class_id(Class_CallJava);
 625   }
 626 
 627   virtual int   Opcode() const;
 628   ciMethod* method() const                { return _method; }
 629   void  set_method(ciMethod *m)           { _method = m; }
 630   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 631   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 632   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 633   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 634 
 635 #ifndef PRODUCT
 636   virtual void  dump_spec(outputStream *st) const;
 637 #endif
 638 };
 639 
 640 //------------------------------CallStaticJavaNode-----------------------------
 641 // Make a direct subroutine call using Java calling convention (for static
 642 // calls and optimized virtual calls, plus calls to wrappers for run-time
 643 // routines); generates static stub.
 644 class CallStaticJavaNode : public CallJavaNode {
 645   virtual uint cmp( const Node &n ) const;
 646   virtual uint size_of() const; // Size is bigger
 647 public:
 648   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 649     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 650     init_class_id(Class_CallStaticJava);
 651     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 652       init_flags(Flag_is_macro);
 653       C->add_macro_node(this);
 654     }
 655     _is_scalar_replaceable = false;
 656     _is_non_escaping = false;
 657   }
 658   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 659                      const TypePtr* adr_type)
 660     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 661     init_class_id(Class_CallStaticJava);
 662     // This node calls a runtime stub, which often has narrow memory effects.
 663     _adr_type = adr_type;
 664     _is_scalar_replaceable = false;
 665     _is_non_escaping = false;
 666   }
 667   const char *_name;      // Runtime wrapper name
 668 
 669   // Result of Escape Analysis
 670   bool _is_scalar_replaceable;
 671   bool _is_non_escaping;
 672 
 673   // If this is an uncommon trap, return the request code, else zero.
 674   int uncommon_trap_request() const;
 675   static int extract_uncommon_trap_request(const Node* call);
 676 
 677   bool is_boxing_method() const {
 678     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 679   }
 680   // Later inlining modifies the JVMState, so we need to clone it
 681   // when the call node is cloned (because it is macro node).
 682   virtual void  clone_jvms(Compile* C) {
 683     if ((jvms() != NULL) && is_boxing_method()) {
 684       set_jvms(jvms()->clone_deep(C));
 685       jvms()->set_map_deep(this);
 686     }
 687   }
 688 
 689   virtual int         Opcode() const;
 690 #ifndef PRODUCT
 691   virtual void        dump_spec(outputStream *st) const;
 692 #endif
 693 };
 694 
 695 //------------------------------CallDynamicJavaNode----------------------------
 696 // Make a dispatched call using Java calling convention.
 697 class CallDynamicJavaNode : public CallJavaNode {
 698   virtual uint cmp( const Node &n ) const;
 699   virtual uint size_of() const; // Size is bigger
 700 public:
 701   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 702     init_class_id(Class_CallDynamicJava);
 703   }
 704 
 705   int _vtable_index;
 706   virtual int   Opcode() const;
 707 #ifndef PRODUCT
 708   virtual void  dump_spec(outputStream *st) const;
 709 #endif
 710 };
 711 
 712 //------------------------------CallRuntimeNode--------------------------------
 713 // Make a direct subroutine call node into compiled C++ code.
 714 class CallRuntimeNode : public CallNode {
 715   virtual uint cmp( const Node &n ) const;
 716   virtual uint size_of() const; // Size is bigger
 717 public:
 718   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 719                   const TypePtr* adr_type)
 720     : CallNode(tf, addr, adr_type),
 721       _name(name)
 722   {
 723     init_class_id(Class_CallRuntime);
 724   }
 725 
 726   const char *_name;            // Printable name, if _method is NULL
 727   virtual int   Opcode() const;
 728   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 729 
 730 #ifndef PRODUCT
 731   virtual void  dump_spec(outputStream *st) const;
 732 #endif
 733 };
 734 
 735 //------------------------------CallLeafNode-----------------------------------
 736 // Make a direct subroutine call node into compiled C++ code, without
 737 // safepoints
 738 class CallLeafNode : public CallRuntimeNode {
 739 public:
 740   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 741                const TypePtr* adr_type)
 742     : CallRuntimeNode(tf, addr, name, adr_type)
 743   {
 744     init_class_id(Class_CallLeaf);
 745   }
 746   virtual int   Opcode() const;
 747   virtual bool        guaranteed_safepoint()  { return false; }
 748 #ifndef PRODUCT
 749   virtual void  dump_spec(outputStream *st) const;
 750 #endif
 751 };
 752 
 753 //------------------------------CallLeafNoFPNode-------------------------------
 754 // CallLeafNode, not using floating point or using it in the same manner as
 755 // the generated code
 756 class CallLeafNoFPNode : public CallLeafNode {
 757 public:
 758   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 759                    const TypePtr* adr_type)
 760     : CallLeafNode(tf, addr, name, adr_type)
 761   {
 762   }
 763   virtual int   Opcode() const;
 764 };
 765 
 766 
 767 //------------------------------Allocate---------------------------------------
 768 // High-level memory allocation
 769 //
 770 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 771 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 772 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 773 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 774 //  order to differentiate the uses of the projection on the normal control path from
 775 //  those on the exception return path.
 776 //
 777 class AllocateNode : public CallNode {
 778 public:
 779   enum {
 780     // Output:
 781     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 782     // Inputs:
 783     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 784     KlassNode,                        // type (maybe dynamic) of the obj.
 785     InitialTest,                      // slow-path test (may be constant)
 786     ALength,                          // array length (or TOP if none)
 787     ParmLimit
 788   };
 789 
 790   static const TypeFunc* alloc_type(const Type* t) {
 791     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 792     fields[AllocSize]   = TypeInt::POS;
 793     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 794     fields[InitialTest] = TypeInt::BOOL;
 795     fields[ALength]     = t;  // length (can be a bad length)
 796 
 797     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 798 
 799     // create result type (range)
 800     fields = TypeTuple::fields(1);
 801     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 802 
 803     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 804 
 805     return TypeFunc::make(domain, range);
 806   }
 807 
 808   // Result of Escape Analysis
 809   bool _is_scalar_replaceable;
 810   bool _is_non_escaping;
 811 
 812   virtual uint size_of() const; // Size is bigger
 813   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 814                Node *size, Node *klass_node, Node *initial_test);
 815   // Expansion modifies the JVMState, so we need to clone it
 816   virtual void  clone_jvms(Compile* C) {
 817     if (jvms() != NULL) {
 818       set_jvms(jvms()->clone_deep(C));
 819       jvms()->set_map_deep(this);
 820     }
 821   }
 822   virtual int Opcode() const;
 823   virtual uint ideal_reg() const { return Op_RegP; }
 824   virtual bool        guaranteed_safepoint()  { return false; }
 825 
 826   // allocations do not modify their arguments
 827   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 828 
 829   // Pattern-match a possible usage of AllocateNode.
 830   // Return null if no allocation is recognized.
 831   // The operand is the pointer produced by the (possible) allocation.
 832   // It must be a projection of the Allocate or its subsequent CastPP.
 833   // (Note:  This function is defined in file graphKit.cpp, near
 834   // GraphKit::new_instance/new_array, whose output it recognizes.)
 835   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 836   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 837 
 838   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 839   // an offset, which is reported back to the caller.
 840   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 841   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 842                                         intptr_t& offset);
 843 
 844   // Dig the klass operand out of a (possible) allocation site.
 845   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 846     AllocateNode* allo = Ideal_allocation(ptr, phase);
 847     return (allo == NULL) ? NULL : allo->in(KlassNode);
 848   }
 849 
 850   // Conservatively small estimate of offset of first non-header byte.
 851   int minimum_header_size() {
 852     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 853                                 instanceOopDesc::base_offset_in_bytes();
 854   }
 855 
 856   // Return the corresponding initialization barrier (or null if none).
 857   // Walks out edges to find it...
 858   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 859   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 860   InitializeNode* initialization();
 861 
 862   // Convenience for initialization->maybe_set_complete(phase)
 863   bool maybe_set_complete(PhaseGVN* phase);
 864 };
 865 
 866 //------------------------------AllocateArray---------------------------------
 867 //
 868 // High-level array allocation
 869 //
 870 class AllocateArrayNode : public AllocateNode {
 871 public:
 872   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 873                     Node* size, Node* klass_node, Node* initial_test,
 874                     Node* count_val
 875                     )
 876     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 877                    initial_test)
 878   {
 879     init_class_id(Class_AllocateArray);
 880     set_req(AllocateNode::ALength,        count_val);
 881   }
 882   virtual int Opcode() const;
 883   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 884 
 885   // Dig the length operand out of a array allocation site.
 886   Node* Ideal_length() {
 887     return in(AllocateNode::ALength);
 888   }
 889 
 890   // Dig the length operand out of a array allocation site and narrow the
 891   // type with a CastII, if necesssary
 892   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 893 
 894   // Pattern-match a possible usage of AllocateArrayNode.
 895   // Return null if no allocation is recognized.
 896   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 897     AllocateNode* allo = Ideal_allocation(ptr, phase);
 898     return (allo == NULL || !allo->is_AllocateArray())
 899            ? NULL : allo->as_AllocateArray();
 900   }
 901 };
 902 
 903 //------------------------------AbstractLockNode-----------------------------------
 904 class AbstractLockNode: public CallNode {
 905 private:
 906   enum {
 907     Regular = 0,  // Normal lock
 908     NonEscObj,    // Lock is used for non escaping object
 909     Coarsened,    // Lock was coarsened
 910     Nested        // Nested lock
 911   } _kind;
 912 #ifndef PRODUCT
 913   NamedCounter* _counter;
 914 #endif
 915 
 916 protected:
 917   // helper functions for lock elimination
 918   //
 919 
 920   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 921                             GrowableArray<AbstractLockNode*> &lock_ops);
 922   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 923                                        GrowableArray<AbstractLockNode*> &lock_ops);
 924   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 925                                GrowableArray<AbstractLockNode*> &lock_ops);
 926   LockNode *find_matching_lock(UnlockNode* unlock);
 927 
 928   // Update the counter to indicate that this lock was eliminated.
 929   void set_eliminated_lock_counter() PRODUCT_RETURN;
 930 
 931 public:
 932   AbstractLockNode(const TypeFunc *tf)
 933     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 934       _kind(Regular)
 935   {
 936 #ifndef PRODUCT
 937     _counter = NULL;
 938 #endif
 939   }
 940   virtual int Opcode() const = 0;
 941   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 942   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 943   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 944   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
 945 
 946   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 947 
 948   virtual uint size_of() const { return sizeof(*this); }
 949 
 950   bool is_eliminated()  const { return (_kind != Regular); }
 951   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
 952   bool is_coarsened()   const { return (_kind == Coarsened); }
 953   bool is_nested()      const { return (_kind == Nested); }
 954 
 955   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
 956   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
 957   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
 958 
 959   // locking does not modify its arguments
 960   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
 961 
 962 #ifndef PRODUCT
 963   void create_lock_counter(JVMState* s);
 964   NamedCounter* counter() const { return _counter; }
 965 #endif
 966 };
 967 
 968 //------------------------------Lock---------------------------------------
 969 // High-level lock operation
 970 //
 971 // This is a subclass of CallNode because it is a macro node which gets expanded
 972 // into a code sequence containing a call.  This node takes 3 "parameters":
 973 //    0  -  object to lock
 974 //    1 -   a BoxLockNode
 975 //    2 -   a FastLockNode
 976 //
 977 class LockNode : public AbstractLockNode {
 978 public:
 979 
 980   static const TypeFunc *lock_type() {
 981     // create input type (domain)
 982     const Type **fields = TypeTuple::fields(3);
 983     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 984     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 985     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 986     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 987 
 988     // create result type (range)
 989     fields = TypeTuple::fields(0);
 990 
 991     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 992 
 993     return TypeFunc::make(domain,range);
 994   }
 995 
 996   virtual int Opcode() const;
 997   virtual uint size_of() const; // Size is bigger
 998   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 999     init_class_id(Class_Lock);
1000     init_flags(Flag_is_macro);
1001     C->add_macro_node(this);
1002   }
1003   virtual bool        guaranteed_safepoint()  { return false; }
1004 
1005   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1006   // Expansion modifies the JVMState, so we need to clone it
1007   virtual void  clone_jvms(Compile* C) {
1008     if (jvms() != NULL) {
1009       set_jvms(jvms()->clone_deep(C));
1010       jvms()->set_map_deep(this);
1011     }
1012   }
1013 
1014   bool is_nested_lock_region(); // Is this Lock nested?
1015 };
1016 
1017 //------------------------------Unlock---------------------------------------
1018 // High-level unlock operation
1019 class UnlockNode : public AbstractLockNode {
1020 public:
1021   virtual int Opcode() const;
1022   virtual uint size_of() const; // Size is bigger
1023   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1024     init_class_id(Class_Unlock);
1025     init_flags(Flag_is_macro);
1026     C->add_macro_node(this);
1027   }
1028   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1029   // unlock is never a safepoint
1030   virtual bool        guaranteed_safepoint()  { return false; }
1031 };
1032 
1033 #endif // SHARE_VM_OPTO_CALLNODE_HPP