1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/node.hpp"
  55 #include "opto/opcodes.hpp"
  56 #include "opto/output.hpp"
  57 #include "opto/parse.hpp"
  58 #include "opto/phaseX.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/stringopts.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/timer.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #ifdef TARGET_ARCH_MODEL_x86_32
  71 # include "adfiles/ad_x86_32.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_MODEL_x86_64
  74 # include "adfiles/ad_x86_64.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #endif
  82 #ifdef TARGET_ARCH_MODEL_arm
  83 # include "adfiles/ad_arm.hpp"
  84 #endif
  85 #ifdef TARGET_ARCH_MODEL_ppc_32
  86 # include "adfiles/ad_ppc_32.hpp"
  87 #endif
  88 #ifdef TARGET_ARCH_MODEL_ppc_64
  89 # include "adfiles/ad_ppc_64.hpp"
  90 #endif
  91 
  92 
  93 // -------------------- Compile::mach_constant_base_node -----------------------
  94 // Constant table base node singleton.
  95 MachConstantBaseNode* Compile::mach_constant_base_node() {
  96   if (_mach_constant_base_node == NULL) {
  97     _mach_constant_base_node = new (C) MachConstantBaseNode();
  98     _mach_constant_base_node->add_req(C->root());
  99   }
 100   return _mach_constant_base_node;
 101 }
 102 
 103 
 104 /// Support for intrinsics.
 105 
 106 // Return the index at which m must be inserted (or already exists).
 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 108 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 109 #ifdef ASSERT
 110   for (int i = 1; i < _intrinsics->length(); i++) {
 111     CallGenerator* cg1 = _intrinsics->at(i-1);
 112     CallGenerator* cg2 = _intrinsics->at(i);
 113     assert(cg1->method() != cg2->method()
 114            ? cg1->method()     < cg2->method()
 115            : cg1->is_virtual() < cg2->is_virtual(),
 116            "compiler intrinsics list must stay sorted");
 117   }
 118 #endif
 119   // Binary search sorted list, in decreasing intervals [lo, hi].
 120   int lo = 0, hi = _intrinsics->length()-1;
 121   while (lo <= hi) {
 122     int mid = (uint)(hi + lo) / 2;
 123     ciMethod* mid_m = _intrinsics->at(mid)->method();
 124     if (m < mid_m) {
 125       hi = mid-1;
 126     } else if (m > mid_m) {
 127       lo = mid+1;
 128     } else {
 129       // look at minor sort key
 130       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 131       if (is_virtual < mid_virt) {
 132         hi = mid-1;
 133       } else if (is_virtual > mid_virt) {
 134         lo = mid+1;
 135       } else {
 136         return mid;  // exact match
 137       }
 138     }
 139   }
 140   return lo;  // inexact match
 141 }
 142 
 143 void Compile::register_intrinsic(CallGenerator* cg) {
 144   if (_intrinsics == NULL) {
 145     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 146   }
 147   // This code is stolen from ciObjectFactory::insert.
 148   // Really, GrowableArray should have methods for
 149   // insert_at, remove_at, and binary_search.
 150   int len = _intrinsics->length();
 151   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 152   if (index == len) {
 153     _intrinsics->append(cg);
 154   } else {
 155 #ifdef ASSERT
 156     CallGenerator* oldcg = _intrinsics->at(index);
 157     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 158 #endif
 159     _intrinsics->append(_intrinsics->at(len-1));
 160     int pos;
 161     for (pos = len-2; pos >= index; pos--) {
 162       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 163     }
 164     _intrinsics->at_put(index, cg);
 165   }
 166   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 167 }
 168 
 169 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 170   assert(m->is_loaded(), "don't try this on unloaded methods");
 171   if (_intrinsics != NULL) {
 172     int index = intrinsic_insertion_index(m, is_virtual);
 173     if (index < _intrinsics->length()
 174         && _intrinsics->at(index)->method() == m
 175         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 176       return _intrinsics->at(index);
 177     }
 178   }
 179   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 180   if (m->intrinsic_id() != vmIntrinsics::_none &&
 181       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 182     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 183     if (cg != NULL) {
 184       // Save it for next time:
 185       register_intrinsic(cg);
 186       return cg;
 187     } else {
 188       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 189     }
 190   }
 191   return NULL;
 192 }
 193 
 194 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 195 // in library_call.cpp.
 196 
 197 
 198 #ifndef PRODUCT
 199 // statistics gathering...
 200 
 201 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 202 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 203 
 204 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 205   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 206   int oflags = _intrinsic_hist_flags[id];
 207   assert(flags != 0, "what happened?");
 208   if (is_virtual) {
 209     flags |= _intrinsic_virtual;
 210   }
 211   bool changed = (flags != oflags);
 212   if ((flags & _intrinsic_worked) != 0) {
 213     juint count = (_intrinsic_hist_count[id] += 1);
 214     if (count == 1) {
 215       changed = true;           // first time
 216     }
 217     // increment the overall count also:
 218     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 219   }
 220   if (changed) {
 221     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 222       // Something changed about the intrinsic's virtuality.
 223       if ((flags & _intrinsic_virtual) != 0) {
 224         // This is the first use of this intrinsic as a virtual call.
 225         if (oflags != 0) {
 226           // We already saw it as a non-virtual, so note both cases.
 227           flags |= _intrinsic_both;
 228         }
 229       } else if ((oflags & _intrinsic_both) == 0) {
 230         // This is the first use of this intrinsic as a non-virtual
 231         flags |= _intrinsic_both;
 232       }
 233     }
 234     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 235   }
 236   // update the overall flags also:
 237   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 238   return changed;
 239 }
 240 
 241 static char* format_flags(int flags, char* buf) {
 242   buf[0] = 0;
 243   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 244   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 245   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 246   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 247   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 248   if (buf[0] == 0)  strcat(buf, ",");
 249   assert(buf[0] == ',', "must be");
 250   return &buf[1];
 251 }
 252 
 253 void Compile::print_intrinsic_statistics() {
 254   char flagsbuf[100];
 255   ttyLocker ttyl;
 256   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 257   tty->print_cr("Compiler intrinsic usage:");
 258   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 259   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 260   #define PRINT_STAT_LINE(name, c, f) \
 261     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 262   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 263     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 264     int   flags = _intrinsic_hist_flags[id];
 265     juint count = _intrinsic_hist_count[id];
 266     if ((flags | count) != 0) {
 267       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 268     }
 269   }
 270   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 271   if (xtty != NULL)  xtty->tail("statistics");
 272 }
 273 
 274 void Compile::print_statistics() {
 275   { ttyLocker ttyl;
 276     if (xtty != NULL)  xtty->head("statistics type='opto'");
 277     Parse::print_statistics();
 278     PhaseCCP::print_statistics();
 279     PhaseRegAlloc::print_statistics();
 280     Scheduling::print_statistics();
 281     PhasePeephole::print_statistics();
 282     PhaseIdealLoop::print_statistics();
 283     if (xtty != NULL)  xtty->tail("statistics");
 284   }
 285   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 286     // put this under its own <statistics> element.
 287     print_intrinsic_statistics();
 288   }
 289 }
 290 #endif //PRODUCT
 291 
 292 // Support for bundling info
 293 Bundle* Compile::node_bundling(const Node *n) {
 294   assert(valid_bundle_info(n), "oob");
 295   return &_node_bundling_base[n->_idx];
 296 }
 297 
 298 bool Compile::valid_bundle_info(const Node *n) {
 299   return (_node_bundling_limit > n->_idx);
 300 }
 301 
 302 
 303 void Compile::gvn_replace_by(Node* n, Node* nn) {
 304   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 305     Node* use = n->last_out(i);
 306     bool is_in_table = initial_gvn()->hash_delete(use);
 307     uint uses_found = 0;
 308     for (uint j = 0; j < use->len(); j++) {
 309       if (use->in(j) == n) {
 310         if (j < use->req())
 311           use->set_req(j, nn);
 312         else
 313           use->set_prec(j, nn);
 314         uses_found++;
 315       }
 316     }
 317     if (is_in_table) {
 318       // reinsert into table
 319       initial_gvn()->hash_find_insert(use);
 320     }
 321     record_for_igvn(use);
 322     i -= uses_found;    // we deleted 1 or more copies of this edge
 323   }
 324 }
 325 
 326 
 327 static inline bool not_a_node(const Node* n) {
 328   if (n == NULL)                   return true;
 329   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 330   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 331   return false;
 332 }
 333 
 334 // Identify all nodes that are reachable from below, useful.
 335 // Use breadth-first pass that records state in a Unique_Node_List,
 336 // recursive traversal is slower.
 337 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 338   int estimated_worklist_size = unique();
 339   useful.map( estimated_worklist_size, NULL );  // preallocate space
 340 
 341   // Initialize worklist
 342   if (root() != NULL)     { useful.push(root()); }
 343   // If 'top' is cached, declare it useful to preserve cached node
 344   if( cached_top_node() ) { useful.push(cached_top_node()); }
 345 
 346   // Push all useful nodes onto the list, breadthfirst
 347   for( uint next = 0; next < useful.size(); ++next ) {
 348     assert( next < unique(), "Unique useful nodes < total nodes");
 349     Node *n  = useful.at(next);
 350     uint max = n->len();
 351     for( uint i = 0; i < max; ++i ) {
 352       Node *m = n->in(i);
 353       if (not_a_node(m))  continue;
 354       useful.push(m);
 355     }
 356   }
 357 }
 358 
 359 // Update dead_node_list with any missing dead nodes using useful
 360 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 361 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 362   uint max_idx = unique();
 363   VectorSet& useful_node_set = useful.member_set();
 364 
 365   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 366     // If node with index node_idx is not in useful set,
 367     // mark it as dead in dead node list.
 368     if (! useful_node_set.test(node_idx) ) {
 369       record_dead_node(node_idx);
 370     }
 371   }
 372 }
 373 
 374 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 375   int shift = 0;
 376   for (int i = 0; i < inlines->length(); i++) {
 377     CallGenerator* cg = inlines->at(i);
 378     CallNode* call = cg->call_node();
 379     if (shift > 0) {
 380       inlines->at_put(i-shift, cg);
 381     }
 382     if (!useful.member(call)) {
 383       shift++;
 384     }
 385   }
 386   inlines->trunc_to(inlines->length()-shift);
 387 }
 388 
 389 // Disconnect all useless nodes by disconnecting those at the boundary.
 390 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 391   uint next = 0;
 392   while (next < useful.size()) {
 393     Node *n = useful.at(next++);
 394     // Use raw traversal of out edges since this code removes out edges
 395     int max = n->outcnt();
 396     for (int j = 0; j < max; ++j) {
 397       Node* child = n->raw_out(j);
 398       if (! useful.member(child)) {
 399         assert(!child->is_top() || child != top(),
 400                "If top is cached in Compile object it is in useful list");
 401         // Only need to remove this out-edge to the useless node
 402         n->raw_del_out(j);
 403         --j;
 404         --max;
 405       }
 406     }
 407     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 408       record_for_igvn(n->unique_out());
 409     }
 410   }
 411   // Remove useless macro and predicate opaq nodes
 412   for (int i = C->macro_count()-1; i >= 0; i--) {
 413     Node* n = C->macro_node(i);
 414     if (!useful.member(n)) {
 415       remove_macro_node(n);
 416     }
 417   }
 418   // Remove useless expensive node
 419   for (int i = C->expensive_count()-1; i >= 0; i--) {
 420     Node* n = C->expensive_node(i);
 421     if (!useful.member(n)) {
 422       remove_expensive_node(n);
 423     }
 424   }
 425   // clean up the late inline lists
 426   remove_useless_late_inlines(&_string_late_inlines, useful);
 427   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 428   remove_useless_late_inlines(&_late_inlines, useful);
 429   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 430 }
 431 
 432 //------------------------------frame_size_in_words-----------------------------
 433 // frame_slots in units of words
 434 int Compile::frame_size_in_words() const {
 435   // shift is 0 in LP32 and 1 in LP64
 436   const int shift = (LogBytesPerWord - LogBytesPerInt);
 437   int words = _frame_slots >> shift;
 438   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 439   return words;
 440 }
 441 
 442 // To bang the stack of this compiled method we use the stack size
 443 // that the interpreter would need in case of a deoptimization. This
 444 // removes the need to bang the stack in the deoptimization blob which
 445 // in turn simplifies stack overflow handling.
 446 int Compile::bang_size_in_bytes() const {
 447   int callee_locals = method() != NULL ? method()->max_locals() : 0;
 448   int interpreter_frame_size = _interpreter_frame_size;
 449   return MAX2(interpreter_frame_size, frame_size_in_bytes());
 450 }
 451 
 452 // ============================================================================
 453 //------------------------------CompileWrapper---------------------------------
 454 class CompileWrapper : public StackObj {
 455   Compile *const _compile;
 456  public:
 457   CompileWrapper(Compile* compile);
 458 
 459   ~CompileWrapper();
 460 };
 461 
 462 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 463   // the Compile* pointer is stored in the current ciEnv:
 464   ciEnv* env = compile->env();
 465   assert(env == ciEnv::current(), "must already be a ciEnv active");
 466   assert(env->compiler_data() == NULL, "compile already active?");
 467   env->set_compiler_data(compile);
 468   assert(compile == Compile::current(), "sanity");
 469 
 470   compile->set_type_dict(NULL);
 471   compile->set_type_hwm(NULL);
 472   compile->set_type_last_size(0);
 473   compile->set_last_tf(NULL, NULL);
 474   compile->set_indexSet_arena(NULL);
 475   compile->set_indexSet_free_block_list(NULL);
 476   compile->init_type_arena();
 477   Type::Initialize(compile);
 478   _compile->set_scratch_buffer_blob(NULL);
 479   _compile->begin_method();
 480 }
 481 CompileWrapper::~CompileWrapper() {
 482   _compile->end_method();
 483   if (_compile->scratch_buffer_blob() != NULL)
 484     BufferBlob::free(_compile->scratch_buffer_blob());
 485   _compile->env()->set_compiler_data(NULL);
 486 }
 487 
 488 
 489 //----------------------------print_compile_messages---------------------------
 490 void Compile::print_compile_messages() {
 491 #ifndef PRODUCT
 492   // Check if recompiling
 493   if (_subsume_loads == false && PrintOpto) {
 494     // Recompiling without allowing machine instructions to subsume loads
 495     tty->print_cr("*********************************************************");
 496     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 497     tty->print_cr("*********************************************************");
 498   }
 499   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 500     // Recompiling without escape analysis
 501     tty->print_cr("*********************************************************");
 502     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 503     tty->print_cr("*********************************************************");
 504   }
 505   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 506     // Recompiling without boxing elimination
 507     tty->print_cr("*********************************************************");
 508     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 509     tty->print_cr("*********************************************************");
 510   }
 511   if (env()->break_at_compile()) {
 512     // Open the debugger when compiling this method.
 513     tty->print("### Breaking when compiling: ");
 514     method()->print_short_name();
 515     tty->cr();
 516     BREAKPOINT;
 517   }
 518 
 519   if( PrintOpto ) {
 520     if (is_osr_compilation()) {
 521       tty->print("[OSR]%3d", _compile_id);
 522     } else {
 523       tty->print("%3d", _compile_id);
 524     }
 525   }
 526 #endif
 527 }
 528 
 529 
 530 //-----------------------init_scratch_buffer_blob------------------------------
 531 // Construct a temporary BufferBlob and cache it for this compile.
 532 void Compile::init_scratch_buffer_blob(int const_size) {
 533   // If there is already a scratch buffer blob allocated and the
 534   // constant section is big enough, use it.  Otherwise free the
 535   // current and allocate a new one.
 536   BufferBlob* blob = scratch_buffer_blob();
 537   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 538     // Use the current blob.
 539   } else {
 540     if (blob != NULL) {
 541       BufferBlob::free(blob);
 542     }
 543 
 544     ResourceMark rm;
 545     _scratch_const_size = const_size;
 546     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 547     blob = BufferBlob::create("Compile::scratch_buffer", size);
 548     // Record the buffer blob for next time.
 549     set_scratch_buffer_blob(blob);
 550     // Have we run out of code space?
 551     if (scratch_buffer_blob() == NULL) {
 552       // Let CompilerBroker disable further compilations.
 553       record_failure("Not enough space for scratch buffer in CodeCache");
 554       return;
 555     }
 556   }
 557 
 558   // Initialize the relocation buffers
 559   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 560   set_scratch_locs_memory(locs_buf);
 561 }
 562 
 563 
 564 //-----------------------scratch_emit_size-------------------------------------
 565 // Helper function that computes size by emitting code
 566 uint Compile::scratch_emit_size(const Node* n) {
 567   // Start scratch_emit_size section.
 568   set_in_scratch_emit_size(true);
 569 
 570   // Emit into a trash buffer and count bytes emitted.
 571   // This is a pretty expensive way to compute a size,
 572   // but it works well enough if seldom used.
 573   // All common fixed-size instructions are given a size
 574   // method by the AD file.
 575   // Note that the scratch buffer blob and locs memory are
 576   // allocated at the beginning of the compile task, and
 577   // may be shared by several calls to scratch_emit_size.
 578   // The allocation of the scratch buffer blob is particularly
 579   // expensive, since it has to grab the code cache lock.
 580   BufferBlob* blob = this->scratch_buffer_blob();
 581   assert(blob != NULL, "Initialize BufferBlob at start");
 582   assert(blob->size() > MAX_inst_size, "sanity");
 583   relocInfo* locs_buf = scratch_locs_memory();
 584   address blob_begin = blob->content_begin();
 585   address blob_end   = (address)locs_buf;
 586   assert(blob->content_contains(blob_end), "sanity");
 587   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 588   buf.initialize_consts_size(_scratch_const_size);
 589   buf.initialize_stubs_size(MAX_stubs_size);
 590   assert(locs_buf != NULL, "sanity");
 591   int lsize = MAX_locs_size / 3;
 592   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 593   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 594   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 595 
 596   // Do the emission.
 597 
 598   Label fakeL; // Fake label for branch instructions.
 599   Label*   saveL = NULL;
 600   uint save_bnum = 0;
 601   bool is_branch = n->is_MachBranch();
 602   if (is_branch) {
 603     MacroAssembler masm(&buf);
 604     masm.bind(fakeL);
 605     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 606     n->as_MachBranch()->label_set(&fakeL, 0);
 607   }
 608   n->emit(buf, this->regalloc());
 609   if (is_branch) // Restore label.
 610     n->as_MachBranch()->label_set(saveL, save_bnum);
 611 
 612   // End scratch_emit_size section.
 613   set_in_scratch_emit_size(false);
 614 
 615   return buf.insts_size();
 616 }
 617 
 618 
 619 // ============================================================================
 620 //------------------------------Compile standard-------------------------------
 621 debug_only( int Compile::_debug_idx = 100000; )
 622 
 623 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 624 // the continuation bci for on stack replacement.
 625 
 626 
 627 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 628                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 629                 : Phase(Compiler),
 630                   _env(ci_env),
 631                   _log(ci_env->log()),
 632                   _compile_id(ci_env->compile_id()),
 633                   _save_argument_registers(false),
 634                   _stub_name(NULL),
 635                   _stub_function(NULL),
 636                   _stub_entry_point(NULL),
 637                   _method(target),
 638                   _entry_bci(osr_bci),
 639                   _initial_gvn(NULL),
 640                   _for_igvn(NULL),
 641                   _warm_calls(NULL),
 642                   _subsume_loads(subsume_loads),
 643                   _do_escape_analysis(do_escape_analysis),
 644                   _eliminate_boxing(eliminate_boxing),
 645                   _failure_reason(NULL),
 646                   _code_buffer("Compile::Fill_buffer"),
 647                   _orig_pc_slot(0),
 648                   _orig_pc_slot_offset_in_bytes(0),
 649                   _has_method_handle_invokes(false),
 650                   _mach_constant_base_node(NULL),
 651                   _node_bundling_limit(0),
 652                   _node_bundling_base(NULL),
 653                   _java_calls(0),
 654                   _inner_loops(0),
 655                   _scratch_const_size(-1),
 656                   _in_scratch_emit_size(false),
 657                   _dead_node_list(comp_arena()),
 658                   _dead_node_count(0),
 659 #ifndef PRODUCT
 660                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 661                   _in_dump_cnt(0),
 662                   _printer(IdealGraphPrinter::printer()),
 663 #endif
 664                   _congraph(NULL),
 665                   _replay_inline_data(NULL),
 666                   _late_inlines(comp_arena(), 2, 0, NULL),
 667                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 668                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 669                   _late_inlines_pos(0),
 670                   _number_of_mh_late_inlines(0),
 671                   _inlining_progress(false),
 672                   _inlining_incrementally(false),
 673                   _print_inlining_list(NULL),
 674                   _print_inlining_idx(0),
 675                   _preserve_jvm_state(0),
 676                   _interpreter_frame_size(0) {
 677   C = this;
 678 
 679   CompileWrapper cw(this);
 680 #ifndef PRODUCT
 681   if (TimeCompiler2) {
 682     tty->print(" ");
 683     target->holder()->name()->print();
 684     tty->print(".");
 685     target->print_short_name();
 686     tty->print("  ");
 687   }
 688   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 689   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 690   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 691   if (!print_opto_assembly) {
 692     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 693     if (print_assembly && !Disassembler::can_decode()) {
 694       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 695       print_opto_assembly = true;
 696     }
 697   }
 698   set_print_assembly(print_opto_assembly);
 699   set_parsed_irreducible_loop(false);
 700 
 701   if (method()->has_option("ReplayInline")) {
 702     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 703   }
 704 #endif
 705   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 706   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 707 
 708   if (ProfileTraps) {
 709     // Make sure the method being compiled gets its own MDO,
 710     // so we can at least track the decompile_count().
 711     method()->ensure_method_data();
 712   }
 713 
 714   Init(::AliasLevel);
 715 
 716 
 717   print_compile_messages();
 718 
 719   _ilt = InlineTree::build_inline_tree_root();
 720 
 721   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 722   assert(num_alias_types() >= AliasIdxRaw, "");
 723 
 724 #define MINIMUM_NODE_HASH  1023
 725   // Node list that Iterative GVN will start with
 726   Unique_Node_List for_igvn(comp_arena());
 727   set_for_igvn(&for_igvn);
 728 
 729   // GVN that will be run immediately on new nodes
 730   uint estimated_size = method()->code_size()*4+64;
 731   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 732   PhaseGVN gvn(node_arena(), estimated_size);
 733   set_initial_gvn(&gvn);
 734 
 735   if (print_inlining() || print_intrinsics()) {
 736     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 737   }
 738   { // Scope for timing the parser
 739     TracePhase t3("parse", &_t_parser, true);
 740 
 741     // Put top into the hash table ASAP.
 742     initial_gvn()->transform_no_reclaim(top());
 743 
 744     // Set up tf(), start(), and find a CallGenerator.
 745     CallGenerator* cg = NULL;
 746     if (is_osr_compilation()) {
 747       const TypeTuple *domain = StartOSRNode::osr_domain();
 748       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 749       init_tf(TypeFunc::make(domain, range));
 750       StartNode* s = new (this) StartOSRNode(root(), domain);
 751       initial_gvn()->set_type_bottom(s);
 752       init_start(s);
 753       cg = CallGenerator::for_osr(method(), entry_bci());
 754     } else {
 755       // Normal case.
 756       init_tf(TypeFunc::make(method()));
 757       StartNode* s = new (this) StartNode(root(), tf()->domain());
 758       initial_gvn()->set_type_bottom(s);
 759       init_start(s);
 760       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 761         // With java.lang.ref.reference.get() we must go through the
 762         // intrinsic when G1 is enabled - even when get() is the root
 763         // method of the compile - so that, if necessary, the value in
 764         // the referent field of the reference object gets recorded by
 765         // the pre-barrier code.
 766         // Specifically, if G1 is enabled, the value in the referent
 767         // field is recorded by the G1 SATB pre barrier. This will
 768         // result in the referent being marked live and the reference
 769         // object removed from the list of discovered references during
 770         // reference processing.
 771         cg = find_intrinsic(method(), false);
 772       }
 773       if (cg == NULL) {
 774         float past_uses = method()->interpreter_invocation_count();
 775         float expected_uses = past_uses;
 776         cg = CallGenerator::for_inline(method(), expected_uses);
 777       }
 778     }
 779     if (failing())  return;
 780     if (cg == NULL) {
 781       record_method_not_compilable_all_tiers("cannot parse method");
 782       return;
 783     }
 784     JVMState* jvms = build_start_state(start(), tf());
 785     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 786       record_method_not_compilable("method parse failed");
 787       return;
 788     }
 789     GraphKit kit(jvms);
 790 
 791     if (!kit.stopped()) {
 792       // Accept return values, and transfer control we know not where.
 793       // This is done by a special, unique ReturnNode bound to root.
 794       return_values(kit.jvms());
 795     }
 796 
 797     if (kit.has_exceptions()) {
 798       // Any exceptions that escape from this call must be rethrown
 799       // to whatever caller is dynamically above us on the stack.
 800       // This is done by a special, unique RethrowNode bound to root.
 801       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 802     }
 803 
 804     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 805 
 806     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 807       inline_string_calls(true);
 808     }
 809 
 810     if (failing())  return;
 811 
 812     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 813 
 814     // Remove clutter produced by parsing.
 815     if (!failing()) {
 816       ResourceMark rm;
 817       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 818     }
 819   }
 820 
 821   // Note:  Large methods are capped off in do_one_bytecode().
 822   if (failing())  return;
 823 
 824   // After parsing, node notes are no longer automagic.
 825   // They must be propagated by register_new_node_with_optimizer(),
 826   // clone(), or the like.
 827   set_default_node_notes(NULL);
 828 
 829   for (;;) {
 830     int successes = Inline_Warm();
 831     if (failing())  return;
 832     if (successes == 0)  break;
 833   }
 834 
 835   // Drain the list.
 836   Finish_Warm();
 837 #ifndef PRODUCT
 838   if (_printer) {
 839     _printer->print_inlining(this);
 840   }
 841 #endif
 842 
 843   if (failing())  return;
 844   NOT_PRODUCT( verify_graph_edges(); )
 845 
 846   // Now optimize
 847   Optimize();
 848   if (failing())  return;
 849   NOT_PRODUCT( verify_graph_edges(); )
 850 
 851 #ifndef PRODUCT
 852   if (PrintIdeal) {
 853     ttyLocker ttyl;  // keep the following output all in one block
 854     // This output goes directly to the tty, not the compiler log.
 855     // To enable tools to match it up with the compilation activity,
 856     // be sure to tag this tty output with the compile ID.
 857     if (xtty != NULL) {
 858       xtty->head("ideal compile_id='%d'%s", compile_id(),
 859                  is_osr_compilation()    ? " compile_kind='osr'" :
 860                  "");
 861     }
 862     root()->dump(9999);
 863     if (xtty != NULL) {
 864       xtty->tail("ideal");
 865     }
 866   }
 867 #endif
 868 
 869   NOT_PRODUCT( verify_barriers(); )
 870 
 871   // Dump compilation data to replay it.
 872   if (method()->has_option("DumpReplay")) {
 873     env()->dump_replay_data(_compile_id);
 874   }
 875   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 876     env()->dump_inline_data(_compile_id);
 877   }
 878 
 879   // Now that we know the size of all the monitors we can add a fixed slot
 880   // for the original deopt pc.
 881 
 882   _orig_pc_slot =  fixed_slots();
 883   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 884   set_fixed_slots(next_slot);
 885 
 886   // Compute when to use implicit null checks. Used by matching trap based
 887   // nodes and NullCheck optimization.
 888   set_allowed_deopt_reasons();
 889 
 890   // Now generate code
 891   Code_Gen();
 892   if (failing())  return;
 893 
 894   // Check if we want to skip execution of all compiled code.
 895   {
 896 #ifndef PRODUCT
 897     if (OptoNoExecute) {
 898       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 899       return;
 900     }
 901     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 902 #endif
 903 
 904     if (is_osr_compilation()) {
 905       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 906       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 907     } else {
 908       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 909       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 910     }
 911 
 912     env()->register_method(_method, _entry_bci,
 913                            &_code_offsets,
 914                            _orig_pc_slot_offset_in_bytes,
 915                            code_buffer(),
 916                            frame_size_in_words(), _oop_map_set,
 917                            &_handler_table, &_inc_table,
 918                            compiler,
 919                            env()->comp_level(),
 920                            has_unsafe_access(),
 921                            SharedRuntime::is_wide_vector(max_vector_size())
 922                            );
 923 
 924     if (log() != NULL) // Print code cache state into compiler log
 925       log()->code_cache_state();
 926   }
 927 }
 928 
 929 //------------------------------Compile----------------------------------------
 930 // Compile a runtime stub
 931 Compile::Compile( ciEnv* ci_env,
 932                   TypeFunc_generator generator,
 933                   address stub_function,
 934                   const char *stub_name,
 935                   int is_fancy_jump,
 936                   bool pass_tls,
 937                   bool save_arg_registers,
 938                   bool return_pc )
 939   : Phase(Compiler),
 940     _env(ci_env),
 941     _log(ci_env->log()),
 942     _compile_id(0),
 943     _save_argument_registers(save_arg_registers),
 944     _method(NULL),
 945     _stub_name(stub_name),
 946     _stub_function(stub_function),
 947     _stub_entry_point(NULL),
 948     _entry_bci(InvocationEntryBci),
 949     _initial_gvn(NULL),
 950     _for_igvn(NULL),
 951     _warm_calls(NULL),
 952     _orig_pc_slot(0),
 953     _orig_pc_slot_offset_in_bytes(0),
 954     _subsume_loads(true),
 955     _do_escape_analysis(false),
 956     _eliminate_boxing(false),
 957     _failure_reason(NULL),
 958     _code_buffer("Compile::Fill_buffer"),
 959     _has_method_handle_invokes(false),
 960     _mach_constant_base_node(NULL),
 961     _node_bundling_limit(0),
 962     _node_bundling_base(NULL),
 963     _java_calls(0),
 964     _inner_loops(0),
 965 #ifndef PRODUCT
 966     _trace_opto_output(TraceOptoOutput),
 967     _in_dump_cnt(0),
 968     _printer(NULL),
 969 #endif
 970     _dead_node_list(comp_arena()),
 971     _dead_node_count(0),
 972     _congraph(NULL),
 973     _replay_inline_data(NULL),
 974     _number_of_mh_late_inlines(0),
 975     _inlining_progress(false),
 976     _inlining_incrementally(false),
 977     _print_inlining_list(NULL),
 978     _print_inlining_idx(0),
 979     _preserve_jvm_state(0),
 980     _allowed_reasons(0),
 981     _interpreter_frame_size(0) {
 982   C = this;
 983 
 984 #ifndef PRODUCT
 985   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 986   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 987   set_print_assembly(PrintFrameConverterAssembly);
 988   set_parsed_irreducible_loop(false);
 989 #endif
 990   CompileWrapper cw(this);
 991   Init(/*AliasLevel=*/ 0);
 992   init_tf((*generator)());
 993 
 994   {
 995     // The following is a dummy for the sake of GraphKit::gen_stub
 996     Unique_Node_List for_igvn(comp_arena());
 997     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 998     PhaseGVN gvn(Thread::current()->resource_area(),255);
 999     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1000     gvn.transform_no_reclaim(top());
1001 
1002     GraphKit kit;
1003     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1004   }
1005 
1006   NOT_PRODUCT( verify_graph_edges(); )
1007   Code_Gen();
1008   if (failing())  return;
1009 
1010 
1011   // Entry point will be accessed using compile->stub_entry_point();
1012   if (code_buffer() == NULL) {
1013     Matcher::soft_match_failure();
1014   } else {
1015     if (PrintAssembly && (WizardMode || Verbose))
1016       tty->print_cr("### Stub::%s", stub_name);
1017 
1018     if (!failing()) {
1019       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1020 
1021       // Make the NMethod
1022       // For now we mark the frame as never safe for profile stackwalking
1023       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1024                                                       code_buffer(),
1025                                                       CodeOffsets::frame_never_safe,
1026                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1027                                                       frame_size_in_words(),
1028                                                       _oop_map_set,
1029                                                       save_arg_registers);
1030       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1031 
1032       _stub_entry_point = rs->entry_point();
1033     }
1034   }
1035 }
1036 
1037 //------------------------------Init-------------------------------------------
1038 // Prepare for a single compilation
1039 void Compile::Init(int aliaslevel) {
1040   _unique  = 0;
1041   _regalloc = NULL;
1042 
1043   _tf      = NULL;  // filled in later
1044   _top     = NULL;  // cached later
1045   _matcher = NULL;  // filled in later
1046   _cfg     = NULL;  // filled in later
1047 
1048   set_24_bit_selection_and_mode(Use24BitFP, false);
1049 
1050   _node_note_array = NULL;
1051   _default_node_notes = NULL;
1052 
1053   _immutable_memory = NULL; // filled in at first inquiry
1054 
1055   // Globally visible Nodes
1056   // First set TOP to NULL to give safe behavior during creation of RootNode
1057   set_cached_top_node(NULL);
1058   set_root(new (this) RootNode());
1059   // Now that you have a Root to point to, create the real TOP
1060   set_cached_top_node( new (this) ConNode(Type::TOP) );
1061   set_recent_alloc(NULL, NULL);
1062 
1063   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1064   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1065   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1066   env()->set_dependencies(new Dependencies(env()));
1067 
1068   _fixed_slots = 0;
1069   set_has_split_ifs(false);
1070   set_has_loops(has_method() && method()->has_loops()); // first approximation
1071   set_has_stringbuilder(false);
1072   set_has_boxed_value(false);
1073   _trap_can_recompile = false;  // no traps emitted yet
1074   _major_progress = true; // start out assuming good things will happen
1075   set_has_unsafe_access(false);
1076   set_max_vector_size(0);
1077   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1078   set_decompile_count(0);
1079 
1080   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1081   set_num_loop_opts(LoopOptsCount);
1082   set_do_inlining(Inline);
1083   set_max_inline_size(MaxInlineSize);
1084   set_freq_inline_size(FreqInlineSize);
1085   set_do_scheduling(OptoScheduling);
1086   set_do_count_invocations(false);
1087   set_do_method_data_update(false);
1088 
1089   if (debug_info()->recording_non_safepoints()) {
1090     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1091                         (comp_arena(), 8, 0, NULL));
1092     set_default_node_notes(Node_Notes::make(this));
1093   }
1094 
1095   // // -- Initialize types before each compile --
1096   // // Update cached type information
1097   // if( _method && _method->constants() )
1098   //   Type::update_loaded_types(_method, _method->constants());
1099 
1100   // Init alias_type map.
1101   if (!_do_escape_analysis && aliaslevel == 3)
1102     aliaslevel = 2;  // No unique types without escape analysis
1103   _AliasLevel = aliaslevel;
1104   const int grow_ats = 16;
1105   _max_alias_types = grow_ats;
1106   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1107   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1108   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1109   {
1110     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1111   }
1112   // Initialize the first few types.
1113   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1114   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1115   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1116   _num_alias_types = AliasIdxRaw+1;
1117   // Zero out the alias type cache.
1118   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1119   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1120   probe_alias_cache(NULL)->_index = AliasIdxTop;
1121 
1122   _intrinsics = NULL;
1123   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1124   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1125   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1126   register_library_intrinsics();
1127 }
1128 
1129 //---------------------------init_start----------------------------------------
1130 // Install the StartNode on this compile object.
1131 void Compile::init_start(StartNode* s) {
1132   if (failing())
1133     return; // already failing
1134   assert(s == start(), "");
1135 }
1136 
1137 StartNode* Compile::start() const {
1138   assert(!failing(), "");
1139   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1140     Node* start = root()->fast_out(i);
1141     if( start->is_Start() )
1142       return start->as_Start();
1143   }
1144   ShouldNotReachHere();
1145   return NULL;
1146 }
1147 
1148 //-------------------------------immutable_memory-------------------------------------
1149 // Access immutable memory
1150 Node* Compile::immutable_memory() {
1151   if (_immutable_memory != NULL) {
1152     return _immutable_memory;
1153   }
1154   StartNode* s = start();
1155   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1156     Node *p = s->fast_out(i);
1157     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1158       _immutable_memory = p;
1159       return _immutable_memory;
1160     }
1161   }
1162   ShouldNotReachHere();
1163   return NULL;
1164 }
1165 
1166 //----------------------set_cached_top_node------------------------------------
1167 // Install the cached top node, and make sure Node::is_top works correctly.
1168 void Compile::set_cached_top_node(Node* tn) {
1169   if (tn != NULL)  verify_top(tn);
1170   Node* old_top = _top;
1171   _top = tn;
1172   // Calling Node::setup_is_top allows the nodes the chance to adjust
1173   // their _out arrays.
1174   if (_top != NULL)     _top->setup_is_top();
1175   if (old_top != NULL)  old_top->setup_is_top();
1176   assert(_top == NULL || top()->is_top(), "");
1177 }
1178 
1179 #ifdef ASSERT
1180 uint Compile::count_live_nodes_by_graph_walk() {
1181   Unique_Node_List useful(comp_arena());
1182   // Get useful node list by walking the graph.
1183   identify_useful_nodes(useful);
1184   return useful.size();
1185 }
1186 
1187 void Compile::print_missing_nodes() {
1188 
1189   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1190   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1191     return;
1192   }
1193 
1194   // This is an expensive function. It is executed only when the user
1195   // specifies VerifyIdealNodeCount option or otherwise knows the
1196   // additional work that needs to be done to identify reachable nodes
1197   // by walking the flow graph and find the missing ones using
1198   // _dead_node_list.
1199 
1200   Unique_Node_List useful(comp_arena());
1201   // Get useful node list by walking the graph.
1202   identify_useful_nodes(useful);
1203 
1204   uint l_nodes = C->live_nodes();
1205   uint l_nodes_by_walk = useful.size();
1206 
1207   if (l_nodes != l_nodes_by_walk) {
1208     if (_log != NULL) {
1209       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1210       _log->stamp();
1211       _log->end_head();
1212     }
1213     VectorSet& useful_member_set = useful.member_set();
1214     int last_idx = l_nodes_by_walk;
1215     for (int i = 0; i < last_idx; i++) {
1216       if (useful_member_set.test(i)) {
1217         if (_dead_node_list.test(i)) {
1218           if (_log != NULL) {
1219             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1220           }
1221           if (PrintIdealNodeCount) {
1222             // Print the log message to tty
1223               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1224               useful.at(i)->dump();
1225           }
1226         }
1227       }
1228       else if (! _dead_node_list.test(i)) {
1229         if (_log != NULL) {
1230           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1231         }
1232         if (PrintIdealNodeCount) {
1233           // Print the log message to tty
1234           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1235         }
1236       }
1237     }
1238     if (_log != NULL) {
1239       _log->tail("mismatched_nodes");
1240     }
1241   }
1242 }
1243 #endif
1244 
1245 #ifndef PRODUCT
1246 void Compile::verify_top(Node* tn) const {
1247   if (tn != NULL) {
1248     assert(tn->is_Con(), "top node must be a constant");
1249     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1250     assert(tn->in(0) != NULL, "must have live top node");
1251   }
1252 }
1253 #endif
1254 
1255 
1256 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1257 
1258 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1259   guarantee(arr != NULL, "");
1260   int num_blocks = arr->length();
1261   if (grow_by < num_blocks)  grow_by = num_blocks;
1262   int num_notes = grow_by * _node_notes_block_size;
1263   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1264   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1265   while (num_notes > 0) {
1266     arr->append(notes);
1267     notes     += _node_notes_block_size;
1268     num_notes -= _node_notes_block_size;
1269   }
1270   assert(num_notes == 0, "exact multiple, please");
1271 }
1272 
1273 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1274   if (source == NULL || dest == NULL)  return false;
1275 
1276   if (dest->is_Con())
1277     return false;               // Do not push debug info onto constants.
1278 
1279 #ifdef ASSERT
1280   // Leave a bread crumb trail pointing to the original node:
1281   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1282     dest->set_debug_orig(source);
1283   }
1284 #endif
1285 
1286   if (node_note_array() == NULL)
1287     return false;               // Not collecting any notes now.
1288 
1289   // This is a copy onto a pre-existing node, which may already have notes.
1290   // If both nodes have notes, do not overwrite any pre-existing notes.
1291   Node_Notes* source_notes = node_notes_at(source->_idx);
1292   if (source_notes == NULL || source_notes->is_clear())  return false;
1293   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1294   if (dest_notes == NULL || dest_notes->is_clear()) {
1295     return set_node_notes_at(dest->_idx, source_notes);
1296   }
1297 
1298   Node_Notes merged_notes = (*source_notes);
1299   // The order of operations here ensures that dest notes will win...
1300   merged_notes.update_from(dest_notes);
1301   return set_node_notes_at(dest->_idx, &merged_notes);
1302 }
1303 
1304 
1305 //--------------------------allow_range_check_smearing-------------------------
1306 // Gating condition for coalescing similar range checks.
1307 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1308 // single covering check that is at least as strong as any of them.
1309 // If the optimization succeeds, the simplified (strengthened) range check
1310 // will always succeed.  If it fails, we will deopt, and then give up
1311 // on the optimization.
1312 bool Compile::allow_range_check_smearing() const {
1313   // If this method has already thrown a range-check,
1314   // assume it was because we already tried range smearing
1315   // and it failed.
1316   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1317   return !already_trapped;
1318 }
1319 
1320 
1321 //------------------------------flatten_alias_type-----------------------------
1322 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1323   int offset = tj->offset();
1324   TypePtr::PTR ptr = tj->ptr();
1325 
1326   // Known instance (scalarizable allocation) alias only with itself.
1327   bool is_known_inst = tj->isa_oopptr() != NULL &&
1328                        tj->is_oopptr()->is_known_instance();
1329 
1330   // Process weird unsafe references.
1331   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1332     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1333     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1334     tj = TypeOopPtr::BOTTOM;
1335     ptr = tj->ptr();
1336     offset = tj->offset();
1337   }
1338 
1339   // Array pointers need some flattening
1340   const TypeAryPtr *ta = tj->isa_aryptr();
1341   if (ta && ta->is_stable()) {
1342     // Erase stability property for alias analysis.
1343     tj = ta = ta->cast_to_stable(false);
1344   }
1345   if( ta && is_known_inst ) {
1346     if ( offset != Type::OffsetBot &&
1347          offset > arrayOopDesc::length_offset_in_bytes() ) {
1348       offset = Type::OffsetBot; // Flatten constant access into array body only
1349       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1350     }
1351   } else if( ta && _AliasLevel >= 2 ) {
1352     // For arrays indexed by constant indices, we flatten the alias
1353     // space to include all of the array body.  Only the header, klass
1354     // and array length can be accessed un-aliased.
1355     if( offset != Type::OffsetBot ) {
1356       if( ta->const_oop() ) { // MethodData* or Method*
1357         offset = Type::OffsetBot;   // Flatten constant access into array body
1358         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1359       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1360         // range is OK as-is.
1361         tj = ta = TypeAryPtr::RANGE;
1362       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1363         tj = TypeInstPtr::KLASS; // all klass loads look alike
1364         ta = TypeAryPtr::RANGE; // generic ignored junk
1365         ptr = TypePtr::BotPTR;
1366       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1367         tj = TypeInstPtr::MARK;
1368         ta = TypeAryPtr::RANGE; // generic ignored junk
1369         ptr = TypePtr::BotPTR;
1370       } else {                  // Random constant offset into array body
1371         offset = Type::OffsetBot;   // Flatten constant access into array body
1372         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1373       }
1374     }
1375     // Arrays of fixed size alias with arrays of unknown size.
1376     if (ta->size() != TypeInt::POS) {
1377       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1378       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1379     }
1380     // Arrays of known objects become arrays of unknown objects.
1381     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1382       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1383       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1384     }
1385     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1386       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1387       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1388     }
1389     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1390     // cannot be distinguished by bytecode alone.
1391     if (ta->elem() == TypeInt::BOOL) {
1392       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1393       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1394       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1395     }
1396     // During the 2nd round of IterGVN, NotNull castings are removed.
1397     // Make sure the Bottom and NotNull variants alias the same.
1398     // Also, make sure exact and non-exact variants alias the same.
1399     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1400       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1401     }
1402   }
1403 
1404   // Oop pointers need some flattening
1405   const TypeInstPtr *to = tj->isa_instptr();
1406   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1407     ciInstanceKlass *k = to->klass()->as_instance_klass();
1408     if( ptr == TypePtr::Constant ) {
1409       if (to->klass() != ciEnv::current()->Class_klass() ||
1410           offset < k->size_helper() * wordSize) {
1411         // No constant oop pointers (such as Strings); they alias with
1412         // unknown strings.
1413         assert(!is_known_inst, "not scalarizable allocation");
1414         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1415       }
1416     } else if( is_known_inst ) {
1417       tj = to; // Keep NotNull and klass_is_exact for instance type
1418     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1419       // During the 2nd round of IterGVN, NotNull castings are removed.
1420       // Make sure the Bottom and NotNull variants alias the same.
1421       // Also, make sure exact and non-exact variants alias the same.
1422       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1423     }
1424     if (to->speculative() != NULL) {
1425       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1426     }
1427     // Canonicalize the holder of this field
1428     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1429       // First handle header references such as a LoadKlassNode, even if the
1430       // object's klass is unloaded at compile time (4965979).
1431       if (!is_known_inst) { // Do it only for non-instance types
1432         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1433       }
1434     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1435       // Static fields are in the space above the normal instance
1436       // fields in the java.lang.Class instance.
1437       if (to->klass() != ciEnv::current()->Class_klass()) {
1438         to = NULL;
1439         tj = TypeOopPtr::BOTTOM;
1440         offset = tj->offset();
1441       }
1442     } else {
1443       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1444       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1445         if( is_known_inst ) {
1446           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1447         } else {
1448           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1449         }
1450       }
1451     }
1452   }
1453 
1454   // Klass pointers to object array klasses need some flattening
1455   const TypeKlassPtr *tk = tj->isa_klassptr();
1456   if( tk ) {
1457     // If we are referencing a field within a Klass, we need
1458     // to assume the worst case of an Object.  Both exact and
1459     // inexact types must flatten to the same alias class so
1460     // use NotNull as the PTR.
1461     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1462 
1463       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1464                                    TypeKlassPtr::OBJECT->klass(),
1465                                    offset);
1466     }
1467 
1468     ciKlass* klass = tk->klass();
1469     if( klass->is_obj_array_klass() ) {
1470       ciKlass* k = TypeAryPtr::OOPS->klass();
1471       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1472         k = TypeInstPtr::BOTTOM->klass();
1473       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1474     }
1475 
1476     // Check for precise loads from the primary supertype array and force them
1477     // to the supertype cache alias index.  Check for generic array loads from
1478     // the primary supertype array and also force them to the supertype cache
1479     // alias index.  Since the same load can reach both, we need to merge
1480     // these 2 disparate memories into the same alias class.  Since the
1481     // primary supertype array is read-only, there's no chance of confusion
1482     // where we bypass an array load and an array store.
1483     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1484     if (offset == Type::OffsetBot ||
1485         (offset >= primary_supers_offset &&
1486          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1487         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1488       offset = in_bytes(Klass::secondary_super_cache_offset());
1489       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1490     }
1491   }
1492 
1493   // Flatten all Raw pointers together.
1494   if (tj->base() == Type::RawPtr)
1495     tj = TypeRawPtr::BOTTOM;
1496 
1497   if (tj->base() == Type::AnyPtr)
1498     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1499 
1500   // Flatten all to bottom for now
1501   switch( _AliasLevel ) {
1502   case 0:
1503     tj = TypePtr::BOTTOM;
1504     break;
1505   case 1:                       // Flatten to: oop, static, field or array
1506     switch (tj->base()) {
1507     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1508     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1509     case Type::AryPtr:   // do not distinguish arrays at all
1510     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1511     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1512     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1513     default: ShouldNotReachHere();
1514     }
1515     break;
1516   case 2:                       // No collapsing at level 2; keep all splits
1517   case 3:                       // No collapsing at level 3; keep all splits
1518     break;
1519   default:
1520     Unimplemented();
1521   }
1522 
1523   offset = tj->offset();
1524   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1525 
1526   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1527           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1528           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1529           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1530           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1531           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1532           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1533           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1534   assert( tj->ptr() != TypePtr::TopPTR &&
1535           tj->ptr() != TypePtr::AnyNull &&
1536           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1537 //    assert( tj->ptr() != TypePtr::Constant ||
1538 //            tj->base() == Type::RawPtr ||
1539 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1540 
1541   return tj;
1542 }
1543 
1544 void Compile::AliasType::Init(int i, const TypePtr* at) {
1545   _index = i;
1546   _adr_type = at;
1547   _field = NULL;
1548   _element = NULL;
1549   _is_rewritable = true; // default
1550   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1551   if (atoop != NULL && atoop->is_known_instance()) {
1552     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1553     _general_index = Compile::current()->get_alias_index(gt);
1554   } else {
1555     _general_index = 0;
1556   }
1557 }
1558 
1559 //---------------------------------print_on------------------------------------
1560 #ifndef PRODUCT
1561 void Compile::AliasType::print_on(outputStream* st) {
1562   if (index() < 10)
1563         st->print("@ <%d> ", index());
1564   else  st->print("@ <%d>",  index());
1565   st->print(is_rewritable() ? "   " : " RO");
1566   int offset = adr_type()->offset();
1567   if (offset == Type::OffsetBot)
1568         st->print(" +any");
1569   else  st->print(" +%-3d", offset);
1570   st->print(" in ");
1571   adr_type()->dump_on(st);
1572   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1573   if (field() != NULL && tjp) {
1574     if (tjp->klass()  != field()->holder() ||
1575         tjp->offset() != field()->offset_in_bytes()) {
1576       st->print(" != ");
1577       field()->print();
1578       st->print(" ***");
1579     }
1580   }
1581 }
1582 
1583 void print_alias_types() {
1584   Compile* C = Compile::current();
1585   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1586   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1587     C->alias_type(idx)->print_on(tty);
1588     tty->cr();
1589   }
1590 }
1591 #endif
1592 
1593 
1594 //----------------------------probe_alias_cache--------------------------------
1595 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1596   intptr_t key = (intptr_t) adr_type;
1597   key ^= key >> logAliasCacheSize;
1598   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1599 }
1600 
1601 
1602 //-----------------------------grow_alias_types--------------------------------
1603 void Compile::grow_alias_types() {
1604   const int old_ats  = _max_alias_types; // how many before?
1605   const int new_ats  = old_ats;          // how many more?
1606   const int grow_ats = old_ats+new_ats;  // how many now?
1607   _max_alias_types = grow_ats;
1608   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1609   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1610   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1611   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1612 }
1613 
1614 
1615 //--------------------------------find_alias_type------------------------------
1616 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1617   if (_AliasLevel == 0)
1618     return alias_type(AliasIdxBot);
1619 
1620   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1621   if (ace->_adr_type == adr_type) {
1622     return alias_type(ace->_index);
1623   }
1624 
1625   // Handle special cases.
1626   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1627   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1628 
1629   // Do it the slow way.
1630   const TypePtr* flat = flatten_alias_type(adr_type);
1631 
1632 #ifdef ASSERT
1633   assert(flat == flatten_alias_type(flat), "idempotent");
1634   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1635   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1636     const TypeOopPtr* foop = flat->is_oopptr();
1637     // Scalarizable allocations have exact klass always.
1638     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1639     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1640     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1641   }
1642   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1643 #endif
1644 
1645   int idx = AliasIdxTop;
1646   for (int i = 0; i < num_alias_types(); i++) {
1647     if (alias_type(i)->adr_type() == flat) {
1648       idx = i;
1649       break;
1650     }
1651   }
1652 
1653   if (idx == AliasIdxTop) {
1654     if (no_create)  return NULL;
1655     // Grow the array if necessary.
1656     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1657     // Add a new alias type.
1658     idx = _num_alias_types++;
1659     _alias_types[idx]->Init(idx, flat);
1660     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1661     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1662     if (flat->isa_instptr()) {
1663       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1664           && flat->is_instptr()->klass() == env()->Class_klass())
1665         alias_type(idx)->set_rewritable(false);
1666     }
1667     if (flat->isa_aryptr()) {
1668 #ifdef ASSERT
1669       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1670       // (T_BYTE has the weakest alignment and size restrictions...)
1671       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1672 #endif
1673       if (flat->offset() == TypePtr::OffsetBot) {
1674         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1675       }
1676     }
1677     if (flat->isa_klassptr()) {
1678       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1679         alias_type(idx)->set_rewritable(false);
1680       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1681         alias_type(idx)->set_rewritable(false);
1682       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1683         alias_type(idx)->set_rewritable(false);
1684       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1685         alias_type(idx)->set_rewritable(false);
1686     }
1687     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1688     // but the base pointer type is not distinctive enough to identify
1689     // references into JavaThread.)
1690 
1691     // Check for final fields.
1692     const TypeInstPtr* tinst = flat->isa_instptr();
1693     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1694       ciField* field;
1695       if (tinst->const_oop() != NULL &&
1696           tinst->klass() == ciEnv::current()->Class_klass() &&
1697           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1698         // static field
1699         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1700         field = k->get_field_by_offset(tinst->offset(), true);
1701       } else {
1702         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1703         field = k->get_field_by_offset(tinst->offset(), false);
1704       }
1705       assert(field == NULL ||
1706              original_field == NULL ||
1707              (field->holder() == original_field->holder() &&
1708               field->offset() == original_field->offset() &&
1709               field->is_static() == original_field->is_static()), "wrong field?");
1710       // Set field() and is_rewritable() attributes.
1711       if (field != NULL)  alias_type(idx)->set_field(field);
1712     }
1713   }
1714 
1715   // Fill the cache for next time.
1716   ace->_adr_type = adr_type;
1717   ace->_index    = idx;
1718   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1719 
1720   // Might as well try to fill the cache for the flattened version, too.
1721   AliasCacheEntry* face = probe_alias_cache(flat);
1722   if (face->_adr_type == NULL) {
1723     face->_adr_type = flat;
1724     face->_index    = idx;
1725     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1726   }
1727 
1728   return alias_type(idx);
1729 }
1730 
1731 
1732 Compile::AliasType* Compile::alias_type(ciField* field) {
1733   const TypeOopPtr* t;
1734   if (field->is_static())
1735     t = TypeInstPtr::make(field->holder()->java_mirror());
1736   else
1737     t = TypeOopPtr::make_from_klass_raw(field->holder());
1738   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1739   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1740   return atp;
1741 }
1742 
1743 
1744 //------------------------------have_alias_type--------------------------------
1745 bool Compile::have_alias_type(const TypePtr* adr_type) {
1746   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1747   if (ace->_adr_type == adr_type) {
1748     return true;
1749   }
1750 
1751   // Handle special cases.
1752   if (adr_type == NULL)             return true;
1753   if (adr_type == TypePtr::BOTTOM)  return true;
1754 
1755   return find_alias_type(adr_type, true, NULL) != NULL;
1756 }
1757 
1758 //-----------------------------must_alias--------------------------------------
1759 // True if all values of the given address type are in the given alias category.
1760 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1761   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1762   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1763   if (alias_idx == AliasIdxTop)         return false; // the empty category
1764   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1765 
1766   // the only remaining possible overlap is identity
1767   int adr_idx = get_alias_index(adr_type);
1768   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1769   assert(adr_idx == alias_idx ||
1770          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1771           && adr_type                       != TypeOopPtr::BOTTOM),
1772          "should not be testing for overlap with an unsafe pointer");
1773   return adr_idx == alias_idx;
1774 }
1775 
1776 //------------------------------can_alias--------------------------------------
1777 // True if any values of the given address type are in the given alias category.
1778 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1779   if (alias_idx == AliasIdxTop)         return false; // the empty category
1780   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1781   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1782   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1783 
1784   // the only remaining possible overlap is identity
1785   int adr_idx = get_alias_index(adr_type);
1786   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1787   return adr_idx == alias_idx;
1788 }
1789 
1790 
1791 
1792 //---------------------------pop_warm_call-------------------------------------
1793 WarmCallInfo* Compile::pop_warm_call() {
1794   WarmCallInfo* wci = _warm_calls;
1795   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1796   return wci;
1797 }
1798 
1799 //----------------------------Inline_Warm--------------------------------------
1800 int Compile::Inline_Warm() {
1801   // If there is room, try to inline some more warm call sites.
1802   // %%% Do a graph index compaction pass when we think we're out of space?
1803   if (!InlineWarmCalls)  return 0;
1804 
1805   int calls_made_hot = 0;
1806   int room_to_grow   = NodeCountInliningCutoff - unique();
1807   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1808   int amount_grown   = 0;
1809   WarmCallInfo* call;
1810   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1811     int est_size = (int)call->size();
1812     if (est_size > (room_to_grow - amount_grown)) {
1813       // This one won't fit anyway.  Get rid of it.
1814       call->make_cold();
1815       continue;
1816     }
1817     call->make_hot();
1818     calls_made_hot++;
1819     amount_grown   += est_size;
1820     amount_to_grow -= est_size;
1821   }
1822 
1823   if (calls_made_hot > 0)  set_major_progress();
1824   return calls_made_hot;
1825 }
1826 
1827 
1828 //----------------------------Finish_Warm--------------------------------------
1829 void Compile::Finish_Warm() {
1830   if (!InlineWarmCalls)  return;
1831   if (failing())  return;
1832   if (warm_calls() == NULL)  return;
1833 
1834   // Clean up loose ends, if we are out of space for inlining.
1835   WarmCallInfo* call;
1836   while ((call = pop_warm_call()) != NULL) {
1837     call->make_cold();
1838   }
1839 }
1840 
1841 //---------------------cleanup_loop_predicates-----------------------
1842 // Remove the opaque nodes that protect the predicates so that all unused
1843 // checks and uncommon_traps will be eliminated from the ideal graph
1844 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1845   if (predicate_count()==0) return;
1846   for (int i = predicate_count(); i > 0; i--) {
1847     Node * n = predicate_opaque1_node(i-1);
1848     assert(n->Opcode() == Op_Opaque1, "must be");
1849     igvn.replace_node(n, n->in(1));
1850   }
1851   assert(predicate_count()==0, "should be clean!");
1852 }
1853 
1854 // StringOpts and late inlining of string methods
1855 void Compile::inline_string_calls(bool parse_time) {
1856   {
1857     // remove useless nodes to make the usage analysis simpler
1858     ResourceMark rm;
1859     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1860   }
1861 
1862   {
1863     ResourceMark rm;
1864     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1865     PhaseStringOpts pso(initial_gvn(), for_igvn());
1866     print_method(PHASE_AFTER_STRINGOPTS, 3);
1867   }
1868 
1869   // now inline anything that we skipped the first time around
1870   if (!parse_time) {
1871     _late_inlines_pos = _late_inlines.length();
1872   }
1873 
1874   while (_string_late_inlines.length() > 0) {
1875     CallGenerator* cg = _string_late_inlines.pop();
1876     cg->do_late_inline();
1877     if (failing())  return;
1878   }
1879   _string_late_inlines.trunc_to(0);
1880 }
1881 
1882 // Late inlining of boxing methods
1883 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1884   if (_boxing_late_inlines.length() > 0) {
1885     assert(has_boxed_value(), "inconsistent");
1886 
1887     PhaseGVN* gvn = initial_gvn();
1888     set_inlining_incrementally(true);
1889 
1890     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1891     for_igvn()->clear();
1892     gvn->replace_with(&igvn);
1893 
1894     while (_boxing_late_inlines.length() > 0) {
1895       CallGenerator* cg = _boxing_late_inlines.pop();
1896       cg->do_late_inline();
1897       if (failing())  return;
1898     }
1899     _boxing_late_inlines.trunc_to(0);
1900 
1901     {
1902       ResourceMark rm;
1903       PhaseRemoveUseless pru(gvn, for_igvn());
1904     }
1905 
1906     igvn = PhaseIterGVN(gvn);
1907     igvn.optimize();
1908 
1909     set_inlining_progress(false);
1910     set_inlining_incrementally(false);
1911   }
1912 }
1913 
1914 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1915   assert(IncrementalInline, "incremental inlining should be on");
1916   PhaseGVN* gvn = initial_gvn();
1917 
1918   set_inlining_progress(false);
1919   for_igvn()->clear();
1920   gvn->replace_with(&igvn);
1921 
1922   int i = 0;
1923 
1924   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1925     CallGenerator* cg = _late_inlines.at(i);
1926     _late_inlines_pos = i+1;
1927     cg->do_late_inline();
1928     if (failing())  return;
1929   }
1930   int j = 0;
1931   for (; i < _late_inlines.length(); i++, j++) {
1932     _late_inlines.at_put(j, _late_inlines.at(i));
1933   }
1934   _late_inlines.trunc_to(j);
1935 
1936   {
1937     ResourceMark rm;
1938     PhaseRemoveUseless pru(gvn, for_igvn());
1939   }
1940 
1941   igvn = PhaseIterGVN(gvn);
1942 }
1943 
1944 // Perform incremental inlining until bound on number of live nodes is reached
1945 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1946   PhaseGVN* gvn = initial_gvn();
1947 
1948   set_inlining_incrementally(true);
1949   set_inlining_progress(true);
1950   uint low_live_nodes = 0;
1951 
1952   while(inlining_progress() && _late_inlines.length() > 0) {
1953 
1954     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1955       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1956         // PhaseIdealLoop is expensive so we only try it once we are
1957         // out of loop and we only try it again if the previous helped
1958         // got the number of nodes down significantly
1959         PhaseIdealLoop ideal_loop( igvn, false, true );
1960         if (failing())  return;
1961         low_live_nodes = live_nodes();
1962         _major_progress = true;
1963       }
1964 
1965       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1966         break;
1967       }
1968     }
1969 
1970     inline_incrementally_one(igvn);
1971 
1972     if (failing())  return;
1973 
1974     igvn.optimize();
1975 
1976     if (failing())  return;
1977   }
1978 
1979   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1980 
1981   if (_string_late_inlines.length() > 0) {
1982     assert(has_stringbuilder(), "inconsistent");
1983     for_igvn()->clear();
1984     initial_gvn()->replace_with(&igvn);
1985 
1986     inline_string_calls(false);
1987 
1988     if (failing())  return;
1989 
1990     {
1991       ResourceMark rm;
1992       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1993     }
1994 
1995     igvn = PhaseIterGVN(gvn);
1996 
1997     igvn.optimize();
1998   }
1999 
2000   set_inlining_incrementally(false);
2001 }
2002 
2003 
2004 //------------------------------Optimize---------------------------------------
2005 // Given a graph, optimize it.
2006 void Compile::Optimize() {
2007   TracePhase t1("optimizer", &_t_optimizer, true);
2008 
2009 #ifndef PRODUCT
2010   if (env()->break_at_compile()) {
2011     BREAKPOINT;
2012   }
2013 
2014 #endif
2015 
2016   ResourceMark rm;
2017   int          loop_opts_cnt;
2018 
2019   NOT_PRODUCT( verify_graph_edges(); )
2020 
2021   print_method(PHASE_AFTER_PARSING);
2022 
2023  {
2024   // Iterative Global Value Numbering, including ideal transforms
2025   // Initialize IterGVN with types and values from parse-time GVN
2026   PhaseIterGVN igvn(initial_gvn());
2027   {
2028     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2029     igvn.optimize();
2030   }
2031 
2032   print_method(PHASE_ITER_GVN1, 2);
2033 
2034   if (failing())  return;
2035 
2036   {
2037     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2038     inline_incrementally(igvn);
2039   }
2040 
2041   print_method(PHASE_INCREMENTAL_INLINE, 2);
2042 
2043   if (failing())  return;
2044 
2045   if (eliminate_boxing()) {
2046     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2047     // Inline valueOf() methods now.
2048     inline_boxing_calls(igvn);
2049 
2050     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2051 
2052     if (failing())  return;
2053   }
2054 
2055   // Remove the speculative part of types and clean up the graph from
2056   // the extra CastPP nodes whose only purpose is to carry them. Do
2057   // that early so that optimizations are not disrupted by the extra
2058   // CastPP nodes.
2059   remove_speculative_types(igvn);
2060 
2061   // No more new expensive nodes will be added to the list from here
2062   // so keep only the actual candidates for optimizations.
2063   cleanup_expensive_nodes(igvn);
2064 
2065   // Perform escape analysis
2066   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2067     if (has_loops()) {
2068       // Cleanup graph (remove dead nodes).
2069       TracePhase t2("idealLoop", &_t_idealLoop, true);
2070       PhaseIdealLoop ideal_loop( igvn, false, true );
2071       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2072       if (failing())  return;
2073     }
2074     ConnectionGraph::do_analysis(this, &igvn);
2075 
2076     if (failing())  return;
2077 
2078     // Optimize out fields loads from scalar replaceable allocations.
2079     igvn.optimize();
2080     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2081 
2082     if (failing())  return;
2083 
2084     if (congraph() != NULL && macro_count() > 0) {
2085       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2086       PhaseMacroExpand mexp(igvn);
2087       mexp.eliminate_macro_nodes();
2088       igvn.set_delay_transform(false);
2089 
2090       igvn.optimize();
2091       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2092 
2093       if (failing())  return;
2094     }
2095   }
2096 
2097   // Loop transforms on the ideal graph.  Range Check Elimination,
2098   // peeling, unrolling, etc.
2099 
2100   // Set loop opts counter
2101   loop_opts_cnt = num_loop_opts();
2102   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2103     {
2104       TracePhase t2("idealLoop", &_t_idealLoop, true);
2105       PhaseIdealLoop ideal_loop( igvn, true );
2106       loop_opts_cnt--;
2107       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2108       if (failing())  return;
2109     }
2110     // Loop opts pass if partial peeling occurred in previous pass
2111     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2112       TracePhase t3("idealLoop", &_t_idealLoop, true);
2113       PhaseIdealLoop ideal_loop( igvn, false );
2114       loop_opts_cnt--;
2115       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2116       if (failing())  return;
2117     }
2118     // Loop opts pass for loop-unrolling before CCP
2119     if(major_progress() && (loop_opts_cnt > 0)) {
2120       TracePhase t4("idealLoop", &_t_idealLoop, true);
2121       PhaseIdealLoop ideal_loop( igvn, false );
2122       loop_opts_cnt--;
2123       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2124     }
2125     if (!failing()) {
2126       // Verify that last round of loop opts produced a valid graph
2127       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2128       PhaseIdealLoop::verify(igvn);
2129     }
2130   }
2131   if (failing())  return;
2132 
2133   // Conditional Constant Propagation;
2134   PhaseCCP ccp( &igvn );
2135   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2136   {
2137     TracePhase t2("ccp", &_t_ccp, true);
2138     ccp.do_transform();
2139   }
2140   print_method(PHASE_CPP1, 2);
2141 
2142   assert( true, "Break here to ccp.dump_old2new_map()");
2143 
2144   // Iterative Global Value Numbering, including ideal transforms
2145   {
2146     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2147     igvn = ccp;
2148     igvn.optimize();
2149   }
2150 
2151   print_method(PHASE_ITER_GVN2, 2);
2152 
2153   if (failing())  return;
2154 
2155   // Loop transforms on the ideal graph.  Range Check Elimination,
2156   // peeling, unrolling, etc.
2157   if(loop_opts_cnt > 0) {
2158     debug_only( int cnt = 0; );
2159     while(major_progress() && (loop_opts_cnt > 0)) {
2160       TracePhase t2("idealLoop", &_t_idealLoop, true);
2161       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2162       PhaseIdealLoop ideal_loop( igvn, true);
2163       loop_opts_cnt--;
2164       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2165       if (failing())  return;
2166     }
2167   }
2168 
2169   {
2170     // Verify that all previous optimizations produced a valid graph
2171     // at least to this point, even if no loop optimizations were done.
2172     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2173     PhaseIdealLoop::verify(igvn);
2174   }
2175 
2176   {
2177     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2178     PhaseMacroExpand  mex(igvn);
2179     if (mex.expand_macro_nodes()) {
2180       assert(failing(), "must bail out w/ explicit message");
2181       return;
2182     }
2183   }
2184 
2185  } // (End scope of igvn; run destructor if necessary for asserts.)
2186 
2187   dump_inlining();
2188   // A method with only infinite loops has no edges entering loops from root
2189   {
2190     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2191     if (final_graph_reshaping()) {
2192       assert(failing(), "must bail out w/ explicit message");
2193       return;
2194     }
2195   }
2196 
2197   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2198 }
2199 
2200 
2201 //------------------------------Code_Gen---------------------------------------
2202 // Given a graph, generate code for it
2203 void Compile::Code_Gen() {
2204   if (failing()) {
2205     return;
2206   }
2207 
2208   // Perform instruction selection.  You might think we could reclaim Matcher
2209   // memory PDQ, but actually the Matcher is used in generating spill code.
2210   // Internals of the Matcher (including some VectorSets) must remain live
2211   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2212   // set a bit in reclaimed memory.
2213 
2214   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2215   // nodes.  Mapping is only valid at the root of each matched subtree.
2216   NOT_PRODUCT( verify_graph_edges(); )
2217 
2218   Matcher matcher;
2219   _matcher = &matcher;
2220   {
2221     TracePhase t2("matcher", &_t_matcher, true);
2222     matcher.match();
2223   }
2224   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2225   // nodes.  Mapping is only valid at the root of each matched subtree.
2226   NOT_PRODUCT( verify_graph_edges(); )
2227 
2228   // If you have too many nodes, or if matching has failed, bail out
2229   check_node_count(0, "out of nodes matching instructions");
2230   if (failing()) {
2231     return;
2232   }
2233 
2234   // Build a proper-looking CFG
2235   PhaseCFG cfg(node_arena(), root(), matcher);
2236   _cfg = &cfg;
2237   {
2238     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2239     bool success = cfg.do_global_code_motion();
2240     if (!success) {
2241       return;
2242     }
2243 
2244     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2245     NOT_PRODUCT( verify_graph_edges(); )
2246     debug_only( cfg.verify(); )
2247   }
2248 
2249   PhaseChaitin regalloc(unique(), cfg, matcher);
2250   _regalloc = &regalloc;
2251   {
2252     TracePhase t2("regalloc", &_t_registerAllocation, true);
2253     // Perform register allocation.  After Chaitin, use-def chains are
2254     // no longer accurate (at spill code) and so must be ignored.
2255     // Node->LRG->reg mappings are still accurate.
2256     _regalloc->Register_Allocate();
2257 
2258     // Bail out if the allocator builds too many nodes
2259     if (failing()) {
2260       return;
2261     }
2262   }
2263 
2264   // Prior to register allocation we kept empty basic blocks in case the
2265   // the allocator needed a place to spill.  After register allocation we
2266   // are not adding any new instructions.  If any basic block is empty, we
2267   // can now safely remove it.
2268   {
2269     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2270     cfg.remove_empty_blocks();
2271     if (do_freq_based_layout()) {
2272       PhaseBlockLayout layout(cfg);
2273     } else {
2274       cfg.set_loop_alignment();
2275     }
2276     cfg.fixup_flow();
2277   }
2278 
2279   // Apply peephole optimizations
2280   if( OptoPeephole ) {
2281     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2282     PhasePeephole peep( _regalloc, cfg);
2283     peep.do_transform();
2284   }
2285 
2286   // Do late expand if CPU requires this.
2287   if (Matcher::require_postalloc_expand) {
2288     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2289     cfg.postalloc_expand(_regalloc);
2290   }
2291 
2292   // Convert Nodes to instruction bits in a buffer
2293   {
2294     // %%%% workspace merge brought two timers together for one job
2295     TracePhase t2a("output", &_t_output, true);
2296     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2297     Output();
2298   }
2299 
2300   print_method(PHASE_FINAL_CODE);
2301 
2302   // He's dead, Jim.
2303   _cfg     = (PhaseCFG*)0xdeadbeef;
2304   _regalloc = (PhaseChaitin*)0xdeadbeef;
2305 }
2306 
2307 
2308 //------------------------------dump_asm---------------------------------------
2309 // Dump formatted assembly
2310 #ifndef PRODUCT
2311 void Compile::dump_asm(int *pcs, uint pc_limit) {
2312   bool cut_short = false;
2313   tty->print_cr("#");
2314   tty->print("#  ");  _tf->dump();  tty->cr();
2315   tty->print_cr("#");
2316 
2317   // For all blocks
2318   int pc = 0x0;                 // Program counter
2319   char starts_bundle = ' ';
2320   _regalloc->dump_frame();
2321 
2322   Node *n = NULL;
2323   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2324     if (VMThread::should_terminate()) {
2325       cut_short = true;
2326       break;
2327     }
2328     Block* block = _cfg->get_block(i);
2329     if (block->is_connector() && !Verbose) {
2330       continue;
2331     }
2332     n = block->head();
2333     if (pcs && n->_idx < pc_limit) {
2334       tty->print("%3.3x   ", pcs[n->_idx]);
2335     } else {
2336       tty->print("      ");
2337     }
2338     block->dump_head(_cfg);
2339     if (block->is_connector()) {
2340       tty->print_cr("        # Empty connector block");
2341     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2342       tty->print_cr("        # Block is sole successor of call");
2343     }
2344 
2345     // For all instructions
2346     Node *delay = NULL;
2347     for (uint j = 0; j < block->number_of_nodes(); j++) {
2348       if (VMThread::should_terminate()) {
2349         cut_short = true;
2350         break;
2351       }
2352       n = block->get_node(j);
2353       if (valid_bundle_info(n)) {
2354         Bundle* bundle = node_bundling(n);
2355         if (bundle->used_in_unconditional_delay()) {
2356           delay = n;
2357           continue;
2358         }
2359         if (bundle->starts_bundle()) {
2360           starts_bundle = '+';
2361         }
2362       }
2363 
2364       if (WizardMode) {
2365         n->dump();
2366       }
2367 
2368       if( !n->is_Region() &&    // Dont print in the Assembly
2369           !n->is_Phi() &&       // a few noisely useless nodes
2370           !n->is_Proj() &&
2371           !n->is_MachTemp() &&
2372           !n->is_SafePointScalarObject() &&
2373           !n->is_Catch() &&     // Would be nice to print exception table targets
2374           !n->is_MergeMem() &&  // Not very interesting
2375           !n->is_top() &&       // Debug info table constants
2376           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2377           ) {
2378         if (pcs && n->_idx < pc_limit)
2379           tty->print("%3.3x", pcs[n->_idx]);
2380         else
2381           tty->print("   ");
2382         tty->print(" %c ", starts_bundle);
2383         starts_bundle = ' ';
2384         tty->print("\t");
2385         n->format(_regalloc, tty);
2386         tty->cr();
2387       }
2388 
2389       // If we have an instruction with a delay slot, and have seen a delay,
2390       // then back up and print it
2391       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2392         assert(delay != NULL, "no unconditional delay instruction");
2393         if (WizardMode) delay->dump();
2394 
2395         if (node_bundling(delay)->starts_bundle())
2396           starts_bundle = '+';
2397         if (pcs && n->_idx < pc_limit)
2398           tty->print("%3.3x", pcs[n->_idx]);
2399         else
2400           tty->print("   ");
2401         tty->print(" %c ", starts_bundle);
2402         starts_bundle = ' ';
2403         tty->print("\t");
2404         delay->format(_regalloc, tty);
2405         tty->print_cr("");
2406         delay = NULL;
2407       }
2408 
2409       // Dump the exception table as well
2410       if( n->is_Catch() && (Verbose || WizardMode) ) {
2411         // Print the exception table for this offset
2412         _handler_table.print_subtable_for(pc);
2413       }
2414     }
2415 
2416     if (pcs && n->_idx < pc_limit)
2417       tty->print_cr("%3.3x", pcs[n->_idx]);
2418     else
2419       tty->print_cr("");
2420 
2421     assert(cut_short || delay == NULL, "no unconditional delay branch");
2422 
2423   } // End of per-block dump
2424   tty->print_cr("");
2425 
2426   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2427 }
2428 #endif
2429 
2430 //------------------------------Final_Reshape_Counts---------------------------
2431 // This class defines counters to help identify when a method
2432 // may/must be executed using hardware with only 24-bit precision.
2433 struct Final_Reshape_Counts : public StackObj {
2434   int  _call_count;             // count non-inlined 'common' calls
2435   int  _float_count;            // count float ops requiring 24-bit precision
2436   int  _double_count;           // count double ops requiring more precision
2437   int  _java_call_count;        // count non-inlined 'java' calls
2438   int  _inner_loop_count;       // count loops which need alignment
2439   VectorSet _visited;           // Visitation flags
2440   Node_List _tests;             // Set of IfNodes & PCTableNodes
2441 
2442   Final_Reshape_Counts() :
2443     _call_count(0), _float_count(0), _double_count(0),
2444     _java_call_count(0), _inner_loop_count(0),
2445     _visited( Thread::current()->resource_area() ) { }
2446 
2447   void inc_call_count  () { _call_count  ++; }
2448   void inc_float_count () { _float_count ++; }
2449   void inc_double_count() { _double_count++; }
2450   void inc_java_call_count() { _java_call_count++; }
2451   void inc_inner_loop_count() { _inner_loop_count++; }
2452 
2453   int  get_call_count  () const { return _call_count  ; }
2454   int  get_float_count () const { return _float_count ; }
2455   int  get_double_count() const { return _double_count; }
2456   int  get_java_call_count() const { return _java_call_count; }
2457   int  get_inner_loop_count() const { return _inner_loop_count; }
2458 };
2459 
2460 #ifdef ASSERT
2461 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2462   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2463   // Make sure the offset goes inside the instance layout.
2464   return k->contains_field_offset(tp->offset());
2465   // Note that OffsetBot and OffsetTop are very negative.
2466 }
2467 #endif
2468 
2469 // Eliminate trivially redundant StoreCMs and accumulate their
2470 // precedence edges.
2471 void Compile::eliminate_redundant_card_marks(Node* n) {
2472   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2473   if (n->in(MemNode::Address)->outcnt() > 1) {
2474     // There are multiple users of the same address so it might be
2475     // possible to eliminate some of the StoreCMs
2476     Node* mem = n->in(MemNode::Memory);
2477     Node* adr = n->in(MemNode::Address);
2478     Node* val = n->in(MemNode::ValueIn);
2479     Node* prev = n;
2480     bool done = false;
2481     // Walk the chain of StoreCMs eliminating ones that match.  As
2482     // long as it's a chain of single users then the optimization is
2483     // safe.  Eliminating partially redundant StoreCMs would require
2484     // cloning copies down the other paths.
2485     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2486       if (adr == mem->in(MemNode::Address) &&
2487           val == mem->in(MemNode::ValueIn)) {
2488         // redundant StoreCM
2489         if (mem->req() > MemNode::OopStore) {
2490           // Hasn't been processed by this code yet.
2491           n->add_prec(mem->in(MemNode::OopStore));
2492         } else {
2493           // Already converted to precedence edge
2494           for (uint i = mem->req(); i < mem->len(); i++) {
2495             // Accumulate any precedence edges
2496             if (mem->in(i) != NULL) {
2497               n->add_prec(mem->in(i));
2498             }
2499           }
2500           // Everything above this point has been processed.
2501           done = true;
2502         }
2503         // Eliminate the previous StoreCM
2504         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2505         assert(mem->outcnt() == 0, "should be dead");
2506         mem->disconnect_inputs(NULL, this);
2507       } else {
2508         prev = mem;
2509       }
2510       mem = prev->in(MemNode::Memory);
2511     }
2512   }
2513 }
2514 
2515 //------------------------------final_graph_reshaping_impl----------------------
2516 // Implement items 1-5 from final_graph_reshaping below.
2517 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2518 
2519   if ( n->outcnt() == 0 ) return; // dead node
2520   uint nop = n->Opcode();
2521 
2522   // Check for 2-input instruction with "last use" on right input.
2523   // Swap to left input.  Implements item (2).
2524   if( n->req() == 3 &&          // two-input instruction
2525       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2526       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2527       n->in(2)->outcnt() == 1 &&// right use IS a last use
2528       !n->in(2)->is_Con() ) {   // right use is not a constant
2529     // Check for commutative opcode
2530     switch( nop ) {
2531     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2532     case Op_MaxI:  case Op_MinI:
2533     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2534     case Op_AndL:  case Op_XorL:  case Op_OrL:
2535     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2536       // Move "last use" input to left by swapping inputs
2537       n->swap_edges(1, 2);
2538       break;
2539     }
2540     default:
2541       break;
2542     }
2543   }
2544 
2545 #ifdef ASSERT
2546   if( n->is_Mem() ) {
2547     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2548     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2549             // oop will be recorded in oop map if load crosses safepoint
2550             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2551                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2552             "raw memory operations should have control edge");
2553   }
2554 #endif
2555   // Count FPU ops and common calls, implements item (3)
2556   switch( nop ) {
2557   // Count all float operations that may use FPU
2558   case Op_AddF:
2559   case Op_SubF:
2560   case Op_MulF:
2561   case Op_DivF:
2562   case Op_NegF:
2563   case Op_ModF:
2564   case Op_ConvI2F:
2565   case Op_ConF:
2566   case Op_CmpF:
2567   case Op_CmpF3:
2568   // case Op_ConvL2F: // longs are split into 32-bit halves
2569     frc.inc_float_count();
2570     break;
2571 
2572   case Op_ConvF2D:
2573   case Op_ConvD2F:
2574     frc.inc_float_count();
2575     frc.inc_double_count();
2576     break;
2577 
2578   // Count all double operations that may use FPU
2579   case Op_AddD:
2580   case Op_SubD:
2581   case Op_MulD:
2582   case Op_DivD:
2583   case Op_NegD:
2584   case Op_ModD:
2585   case Op_ConvI2D:
2586   case Op_ConvD2I:
2587   // case Op_ConvL2D: // handled by leaf call
2588   // case Op_ConvD2L: // handled by leaf call
2589   case Op_ConD:
2590   case Op_CmpD:
2591   case Op_CmpD3:
2592     frc.inc_double_count();
2593     break;
2594   case Op_Opaque1:              // Remove Opaque Nodes before matching
2595   case Op_Opaque2:              // Remove Opaque Nodes before matching
2596     n->subsume_by(n->in(1), this);
2597     break;
2598   case Op_CallStaticJava:
2599   case Op_CallJava:
2600   case Op_CallDynamicJava:
2601     frc.inc_java_call_count(); // Count java call site;
2602   case Op_CallRuntime:
2603   case Op_CallLeaf:
2604   case Op_CallLeafNoFP: {
2605     assert( n->is_Call(), "" );
2606     CallNode *call = n->as_Call();
2607     // Count call sites where the FP mode bit would have to be flipped.
2608     // Do not count uncommon runtime calls:
2609     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2610     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2611     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2612       frc.inc_call_count();   // Count the call site
2613     } else {                  // See if uncommon argument is shared
2614       Node *n = call->in(TypeFunc::Parms);
2615       int nop = n->Opcode();
2616       // Clone shared simple arguments to uncommon calls, item (1).
2617       if( n->outcnt() > 1 &&
2618           !n->is_Proj() &&
2619           nop != Op_CreateEx &&
2620           nop != Op_CheckCastPP &&
2621           nop != Op_DecodeN &&
2622           nop != Op_DecodeNKlass &&
2623           !n->is_Mem() ) {
2624         Node *x = n->clone();
2625         call->set_req( TypeFunc::Parms, x );
2626       }
2627     }
2628     break;
2629   }
2630 
2631   case Op_StoreD:
2632   case Op_LoadD:
2633   case Op_LoadD_unaligned:
2634     frc.inc_double_count();
2635     goto handle_mem;
2636   case Op_StoreF:
2637   case Op_LoadF:
2638     frc.inc_float_count();
2639     goto handle_mem;
2640 
2641   case Op_StoreCM:
2642     {
2643       // Convert OopStore dependence into precedence edge
2644       Node* prec = n->in(MemNode::OopStore);
2645       n->del_req(MemNode::OopStore);
2646       n->add_prec(prec);
2647       eliminate_redundant_card_marks(n);
2648     }
2649 
2650     // fall through
2651 
2652   case Op_StoreB:
2653   case Op_StoreC:
2654   case Op_StorePConditional:
2655   case Op_StoreI:
2656   case Op_StoreL:
2657   case Op_StoreIConditional:
2658   case Op_StoreLConditional:
2659   case Op_CompareAndSwapI:
2660   case Op_CompareAndSwapL:
2661   case Op_CompareAndSwapP:
2662   case Op_CompareAndSwapN:
2663   case Op_GetAndAddI:
2664   case Op_GetAndAddL:
2665   case Op_GetAndSetI:
2666   case Op_GetAndSetL:
2667   case Op_GetAndSetP:
2668   case Op_GetAndSetN:
2669   case Op_StoreP:
2670   case Op_StoreN:
2671   case Op_StoreNKlass:
2672   case Op_LoadB:
2673   case Op_LoadUB:
2674   case Op_LoadUS:
2675   case Op_LoadI:
2676   case Op_LoadKlass:
2677   case Op_LoadNKlass:
2678   case Op_LoadL:
2679   case Op_LoadL_unaligned:
2680   case Op_LoadPLocked:
2681   case Op_LoadP:
2682   case Op_LoadN:
2683   case Op_LoadRange:
2684   case Op_LoadS: {
2685   handle_mem:
2686 #ifdef ASSERT
2687     if( VerifyOptoOopOffsets ) {
2688       assert( n->is_Mem(), "" );
2689       MemNode *mem  = (MemNode*)n;
2690       // Check to see if address types have grounded out somehow.
2691       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2692       assert( !tp || oop_offset_is_sane(tp), "" );
2693     }
2694 #endif
2695     break;
2696   }
2697 
2698   case Op_AddP: {               // Assert sane base pointers
2699     Node *addp = n->in(AddPNode::Address);
2700     assert( !addp->is_AddP() ||
2701             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2702             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2703             "Base pointers must match" );
2704 #ifdef _LP64
2705     if ((UseCompressedOops || UseCompressedClassPointers) &&
2706         addp->Opcode() == Op_ConP &&
2707         addp == n->in(AddPNode::Base) &&
2708         n->in(AddPNode::Offset)->is_Con()) {
2709       // Use addressing with narrow klass to load with offset on x86.
2710       // On sparc loading 32-bits constant and decoding it have less
2711       // instructions (4) then load 64-bits constant (7).
2712       // Do this transformation here since IGVN will convert ConN back to ConP.
2713       const Type* t = addp->bottom_type();
2714       if (t->isa_oopptr() || t->isa_klassptr()) {
2715         Node* nn = NULL;
2716 
2717         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2718 
2719         // Look for existing ConN node of the same exact type.
2720         Node* r  = root();
2721         uint cnt = r->outcnt();
2722         for (uint i = 0; i < cnt; i++) {
2723           Node* m = r->raw_out(i);
2724           if (m!= NULL && m->Opcode() == op &&
2725               m->bottom_type()->make_ptr() == t) {
2726             nn = m;
2727             break;
2728           }
2729         }
2730         if (nn != NULL) {
2731           // Decode a narrow oop to match address
2732           // [R12 + narrow_oop_reg<<3 + offset]
2733           if (t->isa_oopptr()) {
2734             nn = new (this) DecodeNNode(nn, t);
2735           } else {
2736             nn = new (this) DecodeNKlassNode(nn, t);
2737           }
2738           n->set_req(AddPNode::Base, nn);
2739           n->set_req(AddPNode::Address, nn);
2740           if (addp->outcnt() == 0) {
2741             addp->disconnect_inputs(NULL, this);
2742           }
2743         }
2744       }
2745     }
2746 #endif
2747     break;
2748   }
2749 
2750 #ifdef _LP64
2751   case Op_CastPP:
2752     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2753       Node* in1 = n->in(1);
2754       const Type* t = n->bottom_type();
2755       Node* new_in1 = in1->clone();
2756       new_in1->as_DecodeN()->set_type(t);
2757 
2758       if (!Matcher::narrow_oop_use_complex_address()) {
2759         //
2760         // x86, ARM and friends can handle 2 adds in addressing mode
2761         // and Matcher can fold a DecodeN node into address by using
2762         // a narrow oop directly and do implicit NULL check in address:
2763         //
2764         // [R12 + narrow_oop_reg<<3 + offset]
2765         // NullCheck narrow_oop_reg
2766         //
2767         // On other platforms (Sparc) we have to keep new DecodeN node and
2768         // use it to do implicit NULL check in address:
2769         //
2770         // decode_not_null narrow_oop_reg, base_reg
2771         // [base_reg + offset]
2772         // NullCheck base_reg
2773         //
2774         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2775         // to keep the information to which NULL check the new DecodeN node
2776         // corresponds to use it as value in implicit_null_check().
2777         //
2778         new_in1->set_req(0, n->in(0));
2779       }
2780 
2781       n->subsume_by(new_in1, this);
2782       if (in1->outcnt() == 0) {
2783         in1->disconnect_inputs(NULL, this);
2784       }
2785     }
2786     break;
2787 
2788   case Op_CmpP:
2789     // Do this transformation here to preserve CmpPNode::sub() and
2790     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2791     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2792       Node* in1 = n->in(1);
2793       Node* in2 = n->in(2);
2794       if (!in1->is_DecodeNarrowPtr()) {
2795         in2 = in1;
2796         in1 = n->in(2);
2797       }
2798       assert(in1->is_DecodeNarrowPtr(), "sanity");
2799 
2800       Node* new_in2 = NULL;
2801       if (in2->is_DecodeNarrowPtr()) {
2802         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2803         new_in2 = in2->in(1);
2804       } else if (in2->Opcode() == Op_ConP) {
2805         const Type* t = in2->bottom_type();
2806         if (t == TypePtr::NULL_PTR) {
2807           assert(in1->is_DecodeN(), "compare klass to null?");
2808           // Don't convert CmpP null check into CmpN if compressed
2809           // oops implicit null check is not generated.
2810           // This will allow to generate normal oop implicit null check.
2811           if (Matcher::gen_narrow_oop_implicit_null_checks())
2812             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2813           //
2814           // This transformation together with CastPP transformation above
2815           // will generated code for implicit NULL checks for compressed oops.
2816           //
2817           // The original code after Optimize()
2818           //
2819           //    LoadN memory, narrow_oop_reg
2820           //    decode narrow_oop_reg, base_reg
2821           //    CmpP base_reg, NULL
2822           //    CastPP base_reg // NotNull
2823           //    Load [base_reg + offset], val_reg
2824           //
2825           // after these transformations will be
2826           //
2827           //    LoadN memory, narrow_oop_reg
2828           //    CmpN narrow_oop_reg, NULL
2829           //    decode_not_null narrow_oop_reg, base_reg
2830           //    Load [base_reg + offset], val_reg
2831           //
2832           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2833           // since narrow oops can be used in debug info now (see the code in
2834           // final_graph_reshaping_walk()).
2835           //
2836           // At the end the code will be matched to
2837           // on x86:
2838           //
2839           //    Load_narrow_oop memory, narrow_oop_reg
2840           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2841           //    NullCheck narrow_oop_reg
2842           //
2843           // and on sparc:
2844           //
2845           //    Load_narrow_oop memory, narrow_oop_reg
2846           //    decode_not_null narrow_oop_reg, base_reg
2847           //    Load [base_reg + offset], val_reg
2848           //    NullCheck base_reg
2849           //
2850         } else if (t->isa_oopptr()) {
2851           new_in2 = ConNode::make(this, t->make_narrowoop());
2852         } else if (t->isa_klassptr()) {
2853           new_in2 = ConNode::make(this, t->make_narrowklass());
2854         }
2855       }
2856       if (new_in2 != NULL) {
2857         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2858         n->subsume_by(cmpN, this);
2859         if (in1->outcnt() == 0) {
2860           in1->disconnect_inputs(NULL, this);
2861         }
2862         if (in2->outcnt() == 0) {
2863           in2->disconnect_inputs(NULL, this);
2864         }
2865       }
2866     }
2867     break;
2868 
2869   case Op_DecodeN:
2870   case Op_DecodeNKlass:
2871     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2872     // DecodeN could be pinned when it can't be fold into
2873     // an address expression, see the code for Op_CastPP above.
2874     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2875     break;
2876 
2877   case Op_EncodeP:
2878   case Op_EncodePKlass: {
2879     Node* in1 = n->in(1);
2880     if (in1->is_DecodeNarrowPtr()) {
2881       n->subsume_by(in1->in(1), this);
2882     } else if (in1->Opcode() == Op_ConP) {
2883       const Type* t = in1->bottom_type();
2884       if (t == TypePtr::NULL_PTR) {
2885         assert(t->isa_oopptr(), "null klass?");
2886         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2887       } else if (t->isa_oopptr()) {
2888         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2889       } else if (t->isa_klassptr()) {
2890         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2891       }
2892     }
2893     if (in1->outcnt() == 0) {
2894       in1->disconnect_inputs(NULL, this);
2895     }
2896     break;
2897   }
2898 
2899   case Op_Proj: {
2900     if (OptimizeStringConcat) {
2901       ProjNode* p = n->as_Proj();
2902       if (p->_is_io_use) {
2903         // Separate projections were used for the exception path which
2904         // are normally removed by a late inline.  If it wasn't inlined
2905         // then they will hang around and should just be replaced with
2906         // the original one.
2907         Node* proj = NULL;
2908         // Replace with just one
2909         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2910           Node *use = i.get();
2911           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2912             proj = use;
2913             break;
2914           }
2915         }
2916         assert(proj != NULL, "must be found");
2917         p->subsume_by(proj, this);
2918       }
2919     }
2920     break;
2921   }
2922 
2923   case Op_Phi:
2924     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2925       // The EncodeP optimization may create Phi with the same edges
2926       // for all paths. It is not handled well by Register Allocator.
2927       Node* unique_in = n->in(1);
2928       assert(unique_in != NULL, "");
2929       uint cnt = n->req();
2930       for (uint i = 2; i < cnt; i++) {
2931         Node* m = n->in(i);
2932         assert(m != NULL, "");
2933         if (unique_in != m)
2934           unique_in = NULL;
2935       }
2936       if (unique_in != NULL) {
2937         n->subsume_by(unique_in, this);
2938       }
2939     }
2940     break;
2941 
2942 #endif
2943 
2944   case Op_ModI:
2945     if (UseDivMod) {
2946       // Check if a%b and a/b both exist
2947       Node* d = n->find_similar(Op_DivI);
2948       if (d) {
2949         // Replace them with a fused divmod if supported
2950         if (Matcher::has_match_rule(Op_DivModI)) {
2951           DivModINode* divmod = DivModINode::make(this, n);
2952           d->subsume_by(divmod->div_proj(), this);
2953           n->subsume_by(divmod->mod_proj(), this);
2954         } else {
2955           // replace a%b with a-((a/b)*b)
2956           Node* mult = new (this) MulINode(d, d->in(2));
2957           Node* sub  = new (this) SubINode(d->in(1), mult);
2958           n->subsume_by(sub, this);
2959         }
2960       }
2961     }
2962     break;
2963 
2964   case Op_ModL:
2965     if (UseDivMod) {
2966       // Check if a%b and a/b both exist
2967       Node* d = n->find_similar(Op_DivL);
2968       if (d) {
2969         // Replace them with a fused divmod if supported
2970         if (Matcher::has_match_rule(Op_DivModL)) {
2971           DivModLNode* divmod = DivModLNode::make(this, n);
2972           d->subsume_by(divmod->div_proj(), this);
2973           n->subsume_by(divmod->mod_proj(), this);
2974         } else {
2975           // replace a%b with a-((a/b)*b)
2976           Node* mult = new (this) MulLNode(d, d->in(2));
2977           Node* sub  = new (this) SubLNode(d->in(1), mult);
2978           n->subsume_by(sub, this);
2979         }
2980       }
2981     }
2982     break;
2983 
2984   case Op_LoadVector:
2985   case Op_StoreVector:
2986     break;
2987 
2988   case Op_PackB:
2989   case Op_PackS:
2990   case Op_PackI:
2991   case Op_PackF:
2992   case Op_PackL:
2993   case Op_PackD:
2994     if (n->req()-1 > 2) {
2995       // Replace many operand PackNodes with a binary tree for matching
2996       PackNode* p = (PackNode*) n;
2997       Node* btp = p->binary_tree_pack(this, 1, n->req());
2998       n->subsume_by(btp, this);
2999     }
3000     break;
3001   case Op_Loop:
3002   case Op_CountedLoop:
3003     if (n->as_Loop()->is_inner_loop()) {
3004       frc.inc_inner_loop_count();
3005     }
3006     break;
3007   case Op_LShiftI:
3008   case Op_RShiftI:
3009   case Op_URShiftI:
3010   case Op_LShiftL:
3011   case Op_RShiftL:
3012   case Op_URShiftL:
3013     if (Matcher::need_masked_shift_count) {
3014       // The cpu's shift instructions don't restrict the count to the
3015       // lower 5/6 bits. We need to do the masking ourselves.
3016       Node* in2 = n->in(2);
3017       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3018       const TypeInt* t = in2->find_int_type();
3019       if (t != NULL && t->is_con()) {
3020         juint shift = t->get_con();
3021         if (shift > mask) { // Unsigned cmp
3022           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3023         }
3024       } else {
3025         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3026           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3027           n->set_req(2, shift);
3028         }
3029       }
3030       if (in2->outcnt() == 0) { // Remove dead node
3031         in2->disconnect_inputs(NULL, this);
3032       }
3033     }
3034     break;
3035   case Op_MemBarStoreStore:
3036   case Op_MemBarRelease:
3037     // Break the link with AllocateNode: it is no longer useful and
3038     // confuses register allocation.
3039     if (n->req() > MemBarNode::Precedent) {
3040       n->set_req(MemBarNode::Precedent, top());
3041     }
3042     break;
3043   default:
3044     assert( !n->is_Call(), "" );
3045     assert( !n->is_Mem(), "" );
3046     break;
3047   }
3048 
3049   // Collect CFG split points
3050   if (n->is_MultiBranch())
3051     frc._tests.push(n);
3052 }
3053 
3054 //------------------------------final_graph_reshaping_walk---------------------
3055 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3056 // requires that the walk visits a node's inputs before visiting the node.
3057 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3058   ResourceArea *area = Thread::current()->resource_area();
3059   Unique_Node_List sfpt(area);
3060 
3061   frc._visited.set(root->_idx); // first, mark node as visited
3062   uint cnt = root->req();
3063   Node *n = root;
3064   uint  i = 0;
3065   while (true) {
3066     if (i < cnt) {
3067       // Place all non-visited non-null inputs onto stack
3068       Node* m = n->in(i);
3069       ++i;
3070       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3071         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3072           // compute worst case interpreter size in case of a deoptimization
3073           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3074 
3075           sfpt.push(m);
3076         }
3077         cnt = m->req();
3078         nstack.push(n, i); // put on stack parent and next input's index
3079         n = m;
3080         i = 0;
3081       }
3082     } else {
3083       // Now do post-visit work
3084       final_graph_reshaping_impl( n, frc );
3085       if (nstack.is_empty())
3086         break;             // finished
3087       n = nstack.node();   // Get node from stack
3088       cnt = n->req();
3089       i = nstack.index();
3090       nstack.pop();        // Shift to the next node on stack
3091     }
3092   }
3093 
3094   // Skip next transformation if compressed oops are not used.
3095   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3096       (!UseCompressedOops && !UseCompressedClassPointers))
3097     return;
3098 
3099   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3100   // It could be done for an uncommon traps or any safepoints/calls
3101   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3102   while (sfpt.size() > 0) {
3103     n = sfpt.pop();
3104     JVMState *jvms = n->as_SafePoint()->jvms();
3105     assert(jvms != NULL, "sanity");
3106     int start = jvms->debug_start();
3107     int end   = n->req();
3108     bool is_uncommon = (n->is_CallStaticJava() &&
3109                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3110     for (int j = start; j < end; j++) {
3111       Node* in = n->in(j);
3112       if (in->is_DecodeNarrowPtr()) {
3113         bool safe_to_skip = true;
3114         if (!is_uncommon ) {
3115           // Is it safe to skip?
3116           for (uint i = 0; i < in->outcnt(); i++) {
3117             Node* u = in->raw_out(i);
3118             if (!u->is_SafePoint() ||
3119                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3120               safe_to_skip = false;
3121             }
3122           }
3123         }
3124         if (safe_to_skip) {
3125           n->set_req(j, in->in(1));
3126         }
3127         if (in->outcnt() == 0) {
3128           in->disconnect_inputs(NULL, this);
3129         }
3130       }
3131     }
3132   }
3133 }
3134 
3135 //------------------------------final_graph_reshaping--------------------------
3136 // Final Graph Reshaping.
3137 //
3138 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3139 //     and not commoned up and forced early.  Must come after regular
3140 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3141 //     inputs to Loop Phis; these will be split by the allocator anyways.
3142 //     Remove Opaque nodes.
3143 // (2) Move last-uses by commutative operations to the left input to encourage
3144 //     Intel update-in-place two-address operations and better register usage
3145 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3146 //     calls canonicalizing them back.
3147 // (3) Count the number of double-precision FP ops, single-precision FP ops
3148 //     and call sites.  On Intel, we can get correct rounding either by
3149 //     forcing singles to memory (requires extra stores and loads after each
3150 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3151 //     clearing the mode bit around call sites).  The mode bit is only used
3152 //     if the relative frequency of single FP ops to calls is low enough.
3153 //     This is a key transform for SPEC mpeg_audio.
3154 // (4) Detect infinite loops; blobs of code reachable from above but not
3155 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3156 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3157 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3158 //     Detection is by looking for IfNodes where only 1 projection is
3159 //     reachable from below or CatchNodes missing some targets.
3160 // (5) Assert for insane oop offsets in debug mode.
3161 
3162 bool Compile::final_graph_reshaping() {
3163   // an infinite loop may have been eliminated by the optimizer,
3164   // in which case the graph will be empty.
3165   if (root()->req() == 1) {
3166     record_method_not_compilable("trivial infinite loop");
3167     return true;
3168   }
3169 
3170   // Expensive nodes have their control input set to prevent the GVN
3171   // from freely commoning them. There's no GVN beyond this point so
3172   // no need to keep the control input. We want the expensive nodes to
3173   // be freely moved to the least frequent code path by gcm.
3174   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3175   for (int i = 0; i < expensive_count(); i++) {
3176     _expensive_nodes->at(i)->set_req(0, NULL);
3177   }
3178 
3179   Final_Reshape_Counts frc;
3180 
3181   // Visit everybody reachable!
3182   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3183   Node_Stack nstack(unique() >> 1);
3184   final_graph_reshaping_walk(nstack, root(), frc);
3185 
3186   // Check for unreachable (from below) code (i.e., infinite loops).
3187   for( uint i = 0; i < frc._tests.size(); i++ ) {
3188     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3189     // Get number of CFG targets.
3190     // Note that PCTables include exception targets after calls.
3191     uint required_outcnt = n->required_outcnt();
3192     if (n->outcnt() != required_outcnt) {
3193       // Check for a few special cases.  Rethrow Nodes never take the
3194       // 'fall-thru' path, so expected kids is 1 less.
3195       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3196         if (n->in(0)->in(0)->is_Call()) {
3197           CallNode *call = n->in(0)->in(0)->as_Call();
3198           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3199             required_outcnt--;      // Rethrow always has 1 less kid
3200           } else if (call->req() > TypeFunc::Parms &&
3201                      call->is_CallDynamicJava()) {
3202             // Check for null receiver. In such case, the optimizer has
3203             // detected that the virtual call will always result in a null
3204             // pointer exception. The fall-through projection of this CatchNode
3205             // will not be populated.
3206             Node *arg0 = call->in(TypeFunc::Parms);
3207             if (arg0->is_Type() &&
3208                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3209               required_outcnt--;
3210             }
3211           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3212                      call->req() > TypeFunc::Parms+1 &&
3213                      call->is_CallStaticJava()) {
3214             // Check for negative array length. In such case, the optimizer has
3215             // detected that the allocation attempt will always result in an
3216             // exception. There is no fall-through projection of this CatchNode .
3217             Node *arg1 = call->in(TypeFunc::Parms+1);
3218             if (arg1->is_Type() &&
3219                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3220               required_outcnt--;
3221             }
3222           }
3223         }
3224       }
3225       // Recheck with a better notion of 'required_outcnt'
3226       if (n->outcnt() != required_outcnt) {
3227         record_method_not_compilable("malformed control flow");
3228         return true;            // Not all targets reachable!
3229       }
3230     }
3231     // Check that I actually visited all kids.  Unreached kids
3232     // must be infinite loops.
3233     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3234       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3235         record_method_not_compilable("infinite loop");
3236         return true;            // Found unvisited kid; must be unreach
3237       }
3238   }
3239 
3240   // If original bytecodes contained a mixture of floats and doubles
3241   // check if the optimizer has made it homogenous, item (3).
3242   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3243       frc.get_float_count() > 32 &&
3244       frc.get_double_count() == 0 &&
3245       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3246     set_24_bit_selection_and_mode( false,  true );
3247   }
3248 
3249   set_java_calls(frc.get_java_call_count());
3250   set_inner_loops(frc.get_inner_loop_count());
3251 
3252   // No infinite loops, no reason to bail out.
3253   return false;
3254 }
3255 
3256 //-----------------------------too_many_traps----------------------------------
3257 // Report if there are too many traps at the current method and bci.
3258 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3259 bool Compile::too_many_traps(ciMethod* method,
3260                              int bci,
3261                              Deoptimization::DeoptReason reason) {
3262   ciMethodData* md = method->method_data();
3263   if (md->is_empty()) {
3264     // Assume the trap has not occurred, or that it occurred only
3265     // because of a transient condition during start-up in the interpreter.
3266     return false;
3267   }
3268   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3269   if (md->has_trap_at(bci, m, reason) != 0) {
3270     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3271     // Also, if there are multiple reasons, or if there is no per-BCI record,
3272     // assume the worst.
3273     if (log())
3274       log()->elem("observe trap='%s' count='%d'",
3275                   Deoptimization::trap_reason_name(reason),
3276                   md->trap_count(reason));
3277     return true;
3278   } else {
3279     // Ignore method/bci and see if there have been too many globally.
3280     return too_many_traps(reason, md);
3281   }
3282 }
3283 
3284 // Less-accurate variant which does not require a method and bci.
3285 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3286                              ciMethodData* logmd) {
3287   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3288     // Too many traps globally.
3289     // Note that we use cumulative trap_count, not just md->trap_count.
3290     if (log()) {
3291       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3292       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3293                   Deoptimization::trap_reason_name(reason),
3294                   mcount, trap_count(reason));
3295     }
3296     return true;
3297   } else {
3298     // The coast is clear.
3299     return false;
3300   }
3301 }
3302 
3303 //--------------------------too_many_recompiles--------------------------------
3304 // Report if there are too many recompiles at the current method and bci.
3305 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3306 // Is not eager to return true, since this will cause the compiler to use
3307 // Action_none for a trap point, to avoid too many recompilations.
3308 bool Compile::too_many_recompiles(ciMethod* method,
3309                                   int bci,
3310                                   Deoptimization::DeoptReason reason) {
3311   ciMethodData* md = method->method_data();
3312   if (md->is_empty()) {
3313     // Assume the trap has not occurred, or that it occurred only
3314     // because of a transient condition during start-up in the interpreter.
3315     return false;
3316   }
3317   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3318   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3319   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3320   Deoptimization::DeoptReason per_bc_reason
3321     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3322   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3323   if ((per_bc_reason == Deoptimization::Reason_none
3324        || md->has_trap_at(bci, m, reason) != 0)
3325       // The trap frequency measure we care about is the recompile count:
3326       && md->trap_recompiled_at(bci, m)
3327       && md->overflow_recompile_count() >= bc_cutoff) {
3328     // Do not emit a trap here if it has already caused recompilations.
3329     // Also, if there are multiple reasons, or if there is no per-BCI record,
3330     // assume the worst.
3331     if (log())
3332       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3333                   Deoptimization::trap_reason_name(reason),
3334                   md->trap_count(reason),
3335                   md->overflow_recompile_count());
3336     return true;
3337   } else if (trap_count(reason) != 0
3338              && decompile_count() >= m_cutoff) {
3339     // Too many recompiles globally, and we have seen this sort of trap.
3340     // Use cumulative decompile_count, not just md->decompile_count.
3341     if (log())
3342       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3343                   Deoptimization::trap_reason_name(reason),
3344                   md->trap_count(reason), trap_count(reason),
3345                   md->decompile_count(), decompile_count());
3346     return true;
3347   } else {
3348     // The coast is clear.
3349     return false;
3350   }
3351 }
3352 
3353 // Compute when not to trap. Used by matching trap based nodes and
3354 // NullCheck optimization.
3355 void Compile::set_allowed_deopt_reasons() {
3356   _allowed_reasons = 0;
3357   if (is_method_compilation()) {
3358     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3359       assert(rs < BitsPerInt, "recode bit map");
3360       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3361         _allowed_reasons |= nth_bit(rs);
3362       }
3363     }
3364   }
3365 }
3366 
3367 #ifndef PRODUCT
3368 //------------------------------verify_graph_edges---------------------------
3369 // Walk the Graph and verify that there is a one-to-one correspondence
3370 // between Use-Def edges and Def-Use edges in the graph.
3371 void Compile::verify_graph_edges(bool no_dead_code) {
3372   if (VerifyGraphEdges) {
3373     ResourceArea *area = Thread::current()->resource_area();
3374     Unique_Node_List visited(area);
3375     // Call recursive graph walk to check edges
3376     _root->verify_edges(visited);
3377     if (no_dead_code) {
3378       // Now make sure that no visited node is used by an unvisited node.
3379       bool dead_nodes = 0;
3380       Unique_Node_List checked(area);
3381       while (visited.size() > 0) {
3382         Node* n = visited.pop();
3383         checked.push(n);
3384         for (uint i = 0; i < n->outcnt(); i++) {
3385           Node* use = n->raw_out(i);
3386           if (checked.member(use))  continue;  // already checked
3387           if (visited.member(use))  continue;  // already in the graph
3388           if (use->is_Con())        continue;  // a dead ConNode is OK
3389           // At this point, we have found a dead node which is DU-reachable.
3390           if (dead_nodes++ == 0)
3391             tty->print_cr("*** Dead nodes reachable via DU edges:");
3392           use->dump(2);
3393           tty->print_cr("---");
3394           checked.push(use);  // No repeats; pretend it is now checked.
3395         }
3396       }
3397       assert(dead_nodes == 0, "using nodes must be reachable from root");
3398     }
3399   }
3400 }
3401 
3402 // Verify GC barriers consistency
3403 // Currently supported:
3404 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3405 void Compile::verify_barriers() {
3406   if (UseG1GC) {
3407     // Verify G1 pre-barriers
3408     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3409 
3410     ResourceArea *area = Thread::current()->resource_area();
3411     Unique_Node_List visited(area);
3412     Node_List worklist(area);
3413     // We're going to walk control flow backwards starting from the Root
3414     worklist.push(_root);
3415     while (worklist.size() > 0) {
3416       Node* x = worklist.pop();
3417       if (x == NULL || x == top()) continue;
3418       if (visited.member(x)) {
3419         continue;
3420       } else {
3421         visited.push(x);
3422       }
3423 
3424       if (x->is_Region()) {
3425         for (uint i = 1; i < x->req(); i++) {
3426           worklist.push(x->in(i));
3427         }
3428       } else {
3429         worklist.push(x->in(0));
3430         // We are looking for the pattern:
3431         //                            /->ThreadLocal
3432         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3433         //              \->ConI(0)
3434         // We want to verify that the If and the LoadB have the same control
3435         // See GraphKit::g1_write_barrier_pre()
3436         if (x->is_If()) {
3437           IfNode *iff = x->as_If();
3438           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3439             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3440             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3441                 && cmp->in(1)->is_Load()) {
3442               LoadNode* load = cmp->in(1)->as_Load();
3443               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3444                   && load->in(2)->in(3)->is_Con()
3445                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3446 
3447                 Node* if_ctrl = iff->in(0);
3448                 Node* load_ctrl = load->in(0);
3449 
3450                 if (if_ctrl != load_ctrl) {
3451                   // Skip possible CProj->NeverBranch in infinite loops
3452                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3453                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3454                     if_ctrl = if_ctrl->in(0)->in(0);
3455                   }
3456                 }
3457                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3458               }
3459             }
3460           }
3461         }
3462       }
3463     }
3464   }
3465 }
3466 
3467 #endif
3468 
3469 // The Compile object keeps track of failure reasons separately from the ciEnv.
3470 // This is required because there is not quite a 1-1 relation between the
3471 // ciEnv and its compilation task and the Compile object.  Note that one
3472 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3473 // to backtrack and retry without subsuming loads.  Other than this backtracking
3474 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3475 // by the logic in C2Compiler.
3476 void Compile::record_failure(const char* reason) {
3477   if (log() != NULL) {
3478     log()->elem("failure reason='%s' phase='compile'", reason);
3479   }
3480   if (_failure_reason == NULL) {
3481     // Record the first failure reason.
3482     _failure_reason = reason;
3483   }
3484 
3485   EventCompilerFailure event;
3486   if (event.should_commit()) {
3487     event.set_compileID(Compile::compile_id());
3488     event.set_failure(reason);
3489     event.commit();
3490   }
3491 
3492   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3493     C->print_method(PHASE_FAILURE);
3494   }
3495   _root = NULL;  // flush the graph, too
3496 }
3497 
3498 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3499   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3500     _phase_name(name), _dolog(dolog)
3501 {
3502   if (dolog) {
3503     C = Compile::current();
3504     _log = C->log();
3505   } else {
3506     C = NULL;
3507     _log = NULL;
3508   }
3509   if (_log != NULL) {
3510     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3511     _log->stamp();
3512     _log->end_head();
3513   }
3514 }
3515 
3516 Compile::TracePhase::~TracePhase() {
3517 
3518   C = Compile::current();
3519   if (_dolog) {
3520     _log = C->log();
3521   } else {
3522     _log = NULL;
3523   }
3524 
3525 #ifdef ASSERT
3526   if (PrintIdealNodeCount) {
3527     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3528                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3529   }
3530 
3531   if (VerifyIdealNodeCount) {
3532     Compile::current()->print_missing_nodes();
3533   }
3534 #endif
3535 
3536   if (_log != NULL) {
3537     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3538   }
3539 }
3540 
3541 //=============================================================================
3542 // Two Constant's are equal when the type and the value are equal.
3543 bool Compile::Constant::operator==(const Constant& other) {
3544   if (type()          != other.type()         )  return false;
3545   if (can_be_reused() != other.can_be_reused())  return false;
3546   // For floating point values we compare the bit pattern.
3547   switch (type()) {
3548   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3549   case T_LONG:
3550   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3551   case T_OBJECT:
3552   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3553   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3554   case T_METADATA: return (_v._metadata == other._v._metadata);
3555   default: ShouldNotReachHere();
3556   }
3557   return false;
3558 }
3559 
3560 static int type_to_size_in_bytes(BasicType t) {
3561   switch (t) {
3562   case T_LONG:    return sizeof(jlong  );
3563   case T_FLOAT:   return sizeof(jfloat );
3564   case T_DOUBLE:  return sizeof(jdouble);
3565   case T_METADATA: return sizeof(Metadata*);
3566     // We use T_VOID as marker for jump-table entries (labels) which
3567     // need an internal word relocation.
3568   case T_VOID:
3569   case T_ADDRESS:
3570   case T_OBJECT:  return sizeof(jobject);
3571   }
3572 
3573   ShouldNotReachHere();
3574   return -1;
3575 }
3576 
3577 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3578   // sort descending
3579   if (a->freq() > b->freq())  return -1;
3580   if (a->freq() < b->freq())  return  1;
3581   return 0;
3582 }
3583 
3584 void Compile::ConstantTable::calculate_offsets_and_size() {
3585   // First, sort the array by frequencies.
3586   _constants.sort(qsort_comparator);
3587 
3588 #ifdef ASSERT
3589   // Make sure all jump-table entries were sorted to the end of the
3590   // array (they have a negative frequency).
3591   bool found_void = false;
3592   for (int i = 0; i < _constants.length(); i++) {
3593     Constant con = _constants.at(i);
3594     if (con.type() == T_VOID)
3595       found_void = true;  // jump-tables
3596     else
3597       assert(!found_void, "wrong sorting");
3598   }
3599 #endif
3600 
3601   int offset = 0;
3602   for (int i = 0; i < _constants.length(); i++) {
3603     Constant* con = _constants.adr_at(i);
3604 
3605     // Align offset for type.
3606     int typesize = type_to_size_in_bytes(con->type());
3607     offset = align_size_up(offset, typesize);
3608     con->set_offset(offset);   // set constant's offset
3609 
3610     if (con->type() == T_VOID) {
3611       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3612       offset = offset + typesize * n->outcnt();  // expand jump-table
3613     } else {
3614       offset = offset + typesize;
3615     }
3616   }
3617 
3618   // Align size up to the next section start (which is insts; see
3619   // CodeBuffer::align_at_start).
3620   assert(_size == -1, "already set?");
3621   _size = align_size_up(offset, CodeEntryAlignment);
3622 }
3623 
3624 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3625   MacroAssembler _masm(&cb);
3626   for (int i = 0; i < _constants.length(); i++) {
3627     Constant con = _constants.at(i);
3628     address constant_addr;
3629     switch (con.type()) {
3630     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3631     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3632     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3633     case T_OBJECT: {
3634       jobject obj = con.get_jobject();
3635       int oop_index = _masm.oop_recorder()->find_index(obj);
3636       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3637       break;
3638     }
3639     case T_ADDRESS: {
3640       address addr = (address) con.get_jobject();
3641       constant_addr = _masm.address_constant(addr);
3642       break;
3643     }
3644     // We use T_VOID as marker for jump-table entries (labels) which
3645     // need an internal word relocation.
3646     case T_VOID: {
3647       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3648       // Fill the jump-table with a dummy word.  The real value is
3649       // filled in later in fill_jump_table.
3650       address dummy = (address) n;
3651       constant_addr = _masm.address_constant(dummy);
3652       // Expand jump-table
3653       for (uint i = 1; i < n->outcnt(); i++) {
3654         address temp_addr = _masm.address_constant(dummy + i);
3655         assert(temp_addr, "consts section too small");
3656       }
3657       break;
3658     }
3659     case T_METADATA: {
3660       Metadata* obj = con.get_metadata();
3661       int metadata_index = _masm.oop_recorder()->find_index(obj);
3662       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3663       break;
3664     }
3665     default: ShouldNotReachHere();
3666     }
3667     assert(constant_addr, "consts section too small");
3668     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3669   }
3670 }
3671 
3672 int Compile::ConstantTable::find_offset(Constant& con) const {
3673   int idx = _constants.find(con);
3674   assert(idx != -1, "constant must be in constant table");
3675   int offset = _constants.at(idx).offset();
3676   assert(offset != -1, "constant table not emitted yet?");
3677   return offset;
3678 }
3679 
3680 void Compile::ConstantTable::add(Constant& con) {
3681   if (con.can_be_reused()) {
3682     int idx = _constants.find(con);
3683     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3684       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3685       return;
3686     }
3687   }
3688   (void) _constants.append(con);
3689 }
3690 
3691 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3692   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3693   Constant con(type, value, b->_freq);
3694   add(con);
3695   return con;
3696 }
3697 
3698 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3699   Constant con(metadata);
3700   add(con);
3701   return con;
3702 }
3703 
3704 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3705   jvalue value;
3706   BasicType type = oper->type()->basic_type();
3707   switch (type) {
3708   case T_LONG:    value.j = oper->constantL(); break;
3709   case T_FLOAT:   value.f = oper->constantF(); break;
3710   case T_DOUBLE:  value.d = oper->constantD(); break;
3711   case T_OBJECT:
3712   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3713   case T_METADATA: return add((Metadata*)oper->constant()); break;
3714   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3715   }
3716   return add(n, type, value);
3717 }
3718 
3719 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3720   jvalue value;
3721   // We can use the node pointer here to identify the right jump-table
3722   // as this method is called from Compile::Fill_buffer right before
3723   // the MachNodes are emitted and the jump-table is filled (means the
3724   // MachNode pointers do not change anymore).
3725   value.l = (jobject) n;
3726   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3727   add(con);
3728   return con;
3729 }
3730 
3731 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3732   // If called from Compile::scratch_emit_size do nothing.
3733   if (Compile::current()->in_scratch_emit_size())  return;
3734 
3735   assert(labels.is_nonempty(), "must be");
3736   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3737 
3738   // Since MachConstantNode::constant_offset() also contains
3739   // table_base_offset() we need to subtract the table_base_offset()
3740   // to get the plain offset into the constant table.
3741   int offset = n->constant_offset() - table_base_offset();
3742 
3743   MacroAssembler _masm(&cb);
3744   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3745 
3746   for (uint i = 0; i < n->outcnt(); i++) {
3747     address* constant_addr = &jump_table_base[i];
3748     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3749     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3750     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3751   }
3752 }
3753 
3754 void Compile::dump_inlining() {
3755   if (print_inlining() || print_intrinsics()) {
3756     // Print inlining message for candidates that we couldn't inline
3757     // for lack of space or non constant receiver
3758     for (int i = 0; i < _late_inlines.length(); i++) {
3759       CallGenerator* cg = _late_inlines.at(i);
3760       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3761     }
3762     Unique_Node_List useful;
3763     useful.push(root());
3764     for (uint next = 0; next < useful.size(); ++next) {
3765       Node* n  = useful.at(next);
3766       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3767         CallNode* call = n->as_Call();
3768         CallGenerator* cg = call->generator();
3769         cg->print_inlining_late("receiver not constant");
3770       }
3771       uint max = n->len();
3772       for ( uint i = 0; i < max; ++i ) {
3773         Node *m = n->in(i);
3774         if ( m == NULL ) continue;
3775         useful.push(m);
3776       }
3777     }
3778     for (int i = 0; i < _print_inlining_list->length(); i++) {
3779       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3780     }
3781   }
3782 }
3783 
3784 // Dump inlining replay data to the stream.
3785 // Don't change thread state and acquire any locks.
3786 void Compile::dump_inline_data(outputStream* out) {
3787   InlineTree* inl_tree = ilt();
3788   if (inl_tree != NULL) {
3789     out->print(" inline %d", inl_tree->count());
3790     inl_tree->dump_replay_data(out);
3791   }
3792 }
3793 
3794 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3795   if (n1->Opcode() < n2->Opcode())      return -1;
3796   else if (n1->Opcode() > n2->Opcode()) return 1;
3797 
3798   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3799   for (uint i = 1; i < n1->req(); i++) {
3800     if (n1->in(i) < n2->in(i))      return -1;
3801     else if (n1->in(i) > n2->in(i)) return 1;
3802   }
3803 
3804   return 0;
3805 }
3806 
3807 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3808   Node* n1 = *n1p;
3809   Node* n2 = *n2p;
3810 
3811   return cmp_expensive_nodes(n1, n2);
3812 }
3813 
3814 void Compile::sort_expensive_nodes() {
3815   if (!expensive_nodes_sorted()) {
3816     _expensive_nodes->sort(cmp_expensive_nodes);
3817   }
3818 }
3819 
3820 bool Compile::expensive_nodes_sorted() const {
3821   for (int i = 1; i < _expensive_nodes->length(); i++) {
3822     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3823       return false;
3824     }
3825   }
3826   return true;
3827 }
3828 
3829 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3830   if (_expensive_nodes->length() == 0) {
3831     return false;
3832   }
3833 
3834   assert(OptimizeExpensiveOps, "optimization off?");
3835 
3836   // Take this opportunity to remove dead nodes from the list
3837   int j = 0;
3838   for (int i = 0; i < _expensive_nodes->length(); i++) {
3839     Node* n = _expensive_nodes->at(i);
3840     if (!n->is_unreachable(igvn)) {
3841       assert(n->is_expensive(), "should be expensive");
3842       _expensive_nodes->at_put(j, n);
3843       j++;
3844     }
3845   }
3846   _expensive_nodes->trunc_to(j);
3847 
3848   // Then sort the list so that similar nodes are next to each other
3849   // and check for at least two nodes of identical kind with same data
3850   // inputs.
3851   sort_expensive_nodes();
3852 
3853   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3854     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3855       return true;
3856     }
3857   }
3858 
3859   return false;
3860 }
3861 
3862 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3863   if (_expensive_nodes->length() == 0) {
3864     return;
3865   }
3866 
3867   assert(OptimizeExpensiveOps, "optimization off?");
3868 
3869   // Sort to bring similar nodes next to each other and clear the
3870   // control input of nodes for which there's only a single copy.
3871   sort_expensive_nodes();
3872 
3873   int j = 0;
3874   int identical = 0;
3875   int i = 0;
3876   for (; i < _expensive_nodes->length()-1; i++) {
3877     assert(j <= i, "can't write beyond current index");
3878     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3879       identical++;
3880       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3881       continue;
3882     }
3883     if (identical > 0) {
3884       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3885       identical = 0;
3886     } else {
3887       Node* n = _expensive_nodes->at(i);
3888       igvn.hash_delete(n);
3889       n->set_req(0, NULL);
3890       igvn.hash_insert(n);
3891     }
3892   }
3893   if (identical > 0) {
3894     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3895   } else if (_expensive_nodes->length() >= 1) {
3896     Node* n = _expensive_nodes->at(i);
3897     igvn.hash_delete(n);
3898     n->set_req(0, NULL);
3899     igvn.hash_insert(n);
3900   }
3901   _expensive_nodes->trunc_to(j);
3902 }
3903 
3904 void Compile::add_expensive_node(Node * n) {
3905   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3906   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3907   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3908   if (OptimizeExpensiveOps) {
3909     _expensive_nodes->append(n);
3910   } else {
3911     // Clear control input and let IGVN optimize expensive nodes if
3912     // OptimizeExpensiveOps is off.
3913     n->set_req(0, NULL);
3914   }
3915 }
3916 
3917 /**
3918  * Remove the speculative part of types and clean up the graph
3919  */
3920 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3921   if (UseTypeSpeculation) {
3922     Unique_Node_List worklist;
3923     worklist.push(root());
3924     int modified = 0;
3925     // Go over all type nodes that carry a speculative type, drop the
3926     // speculative part of the type and enqueue the node for an igvn
3927     // which may optimize it out.
3928     for (uint next = 0; next < worklist.size(); ++next) {
3929       Node *n  = worklist.at(next);
3930       if (n->is_Type()) {
3931         TypeNode* tn = n->as_Type();
3932         const Type* t = tn->type();
3933         const Type* t_no_spec = t->remove_speculative();
3934         if (t_no_spec != t) {
3935           bool in_hash = igvn.hash_delete(n);
3936           assert(in_hash, "node should be in igvn hash table");
3937           tn->set_type(t_no_spec);
3938           igvn.hash_insert(n);
3939           igvn._worklist.push(n); // give it a chance to go away
3940           modified++;
3941         }
3942       }
3943       uint max = n->len();
3944       for( uint i = 0; i < max; ++i ) {
3945         Node *m = n->in(i);
3946         if (not_a_node(m))  continue;
3947         worklist.push(m);
3948       }
3949     }
3950     // Drop the speculative part of all types in the igvn's type table
3951     igvn.remove_speculative_types();
3952     if (modified > 0) {
3953       igvn.optimize();
3954     }
3955 #ifdef ASSERT
3956     // Verify that after the IGVN is over no speculative type has resurfaced
3957     worklist.clear();
3958     worklist.push(root());
3959     for (uint next = 0; next < worklist.size(); ++next) {
3960       Node *n  = worklist.at(next);
3961       const Type* t = igvn.type(n);
3962       assert(t == t->remove_speculative(), "no more speculative types");
3963       if (n->is_Type()) {
3964         t = n->as_Type()->type();
3965         assert(t == t->remove_speculative(), "no more speculative types");
3966       }
3967       uint max = n->len();
3968       for( uint i = 0; i < max; ++i ) {
3969         Node *m = n->in(i);
3970         if (not_a_node(m))  continue;
3971         worklist.push(m);
3972       }
3973     }
3974     igvn.check_no_speculative_types();
3975 #endif
3976   }
3977 }
3978 
3979 // Auxiliary method to support randomized stressing/fuzzing.
3980 //
3981 // This method can be called the arbitrary number of times, with current count
3982 // as the argument. The logic allows selecting a single candidate from the
3983 // running list of candidates as follows:
3984 //    int count = 0;
3985 //    Cand* selected = null;
3986 //    while(cand = cand->next()) {
3987 //      if (randomized_select(++count)) {
3988 //        selected = cand;
3989 //      }
3990 //    }
3991 //
3992 // Including count equalizes the chances any candidate is "selected".
3993 // This is useful when we don't have the complete list of candidates to choose
3994 // from uniformly. In this case, we need to adjust the randomicity of the
3995 // selection, or else we will end up biasing the selection towards the latter
3996 // candidates.
3997 //
3998 // Quick back-envelope calculation shows that for the list of n candidates
3999 // the equal probability for the candidate to persist as "best" can be
4000 // achieved by replacing it with "next" k-th candidate with the probability
4001 // of 1/k. It can be easily shown that by the end of the run, the
4002 // probability for any candidate is converged to 1/n, thus giving the
4003 // uniform distribution among all the candidates.
4004 //
4005 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4006 #define RANDOMIZED_DOMAIN_POW 29
4007 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4008 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4009 bool Compile::randomized_select(int count) {
4010   assert(count > 0, "only positive");
4011   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4012 }