1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 //----------------------------GraphKit-----------------------------------------
  44 // Main utility constructor.
  45 GraphKit::GraphKit(JVMState* jvms)
  46   : Phase(Phase::Parser),
  47     _env(C->env()),
  48     _gvn(*C->initial_gvn())
  49 {
  50   _exceptions = jvms->map()->next_exception();
  51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  52   set_jvms(jvms);
  53 }
  54 
  55 // Private constructor for parser.
  56 GraphKit::GraphKit()
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn())
  60 {
  61   _exceptions = NULL;
  62   set_map(NULL);
  63   debug_only(_sp = -99);
  64   debug_only(set_bci(-99));
  65 }
  66 
  67 
  68 
  69 //---------------------------clean_stack---------------------------------------
  70 // Clear away rubbish from the stack area of the JVM state.
  71 // This destroys any arguments that may be waiting on the stack.
  72 void GraphKit::clean_stack(int from_sp) {
  73   SafePointNode* map      = this->map();
  74   JVMState*      jvms     = this->jvms();
  75   int            stk_size = jvms->stk_size();
  76   int            stkoff   = jvms->stkoff();
  77   Node*          top      = this->top();
  78   for (int i = from_sp; i < stk_size; i++) {
  79     if (map->in(stkoff + i) != top) {
  80       map->set_req(stkoff + i, top);
  81     }
  82   }
  83 }
  84 
  85 
  86 //--------------------------------sync_jvms-----------------------------------
  87 // Make sure our current jvms agrees with our parse state.
  88 JVMState* GraphKit::sync_jvms() const {
  89   JVMState* jvms = this->jvms();
  90   jvms->set_bci(bci());       // Record the new bci in the JVMState
  91   jvms->set_sp(sp());         // Record the new sp in the JVMState
  92   assert(jvms_in_sync(), "jvms is now in sync");
  93   return jvms;
  94 }
  95 
  96 //--------------------------------sync_jvms_for_reexecute---------------------
  97 // Make sure our current jvms agrees with our parse state.  This version
  98 // uses the reexecute_sp for reexecuting bytecodes.
  99 JVMState* GraphKit::sync_jvms_for_reexecute() {
 100   JVMState* jvms = this->jvms();
 101   jvms->set_bci(bci());          // Record the new bci in the JVMState
 102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 103   return jvms;
 104 }
 105 
 106 #ifdef ASSERT
 107 bool GraphKit::jvms_in_sync() const {
 108   Parse* parse = is_Parse();
 109   if (parse == NULL) {
 110     if (bci() !=      jvms()->bci())          return false;
 111     if (sp()  != (int)jvms()->sp())           return false;
 112     return true;
 113   }
 114   if (jvms()->method() != parse->method())    return false;
 115   if (jvms()->bci()    != parse->bci())       return false;
 116   int jvms_sp = jvms()->sp();
 117   if (jvms_sp          != parse->sp())        return false;
 118   int jvms_depth = jvms()->depth();
 119   if (jvms_depth       != parse->depth())     return false;
 120   return true;
 121 }
 122 
 123 // Local helper checks for special internal merge points
 124 // used to accumulate and merge exception states.
 125 // They are marked by the region's in(0) edge being the map itself.
 126 // Such merge points must never "escape" into the parser at large,
 127 // until they have been handed to gvn.transform.
 128 static bool is_hidden_merge(Node* reg) {
 129   if (reg == NULL)  return false;
 130   if (reg->is_Phi()) {
 131     reg = reg->in(0);
 132     if (reg == NULL)  return false;
 133   }
 134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 135 }
 136 
 137 void GraphKit::verify_map() const {
 138   if (map() == NULL)  return;  // null map is OK
 139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 142 }
 143 
 144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 147 }
 148 #endif
 149 
 150 //---------------------------stop_and_kill_map---------------------------------
 151 // Set _map to NULL, signalling a stop to further bytecode execution.
 152 // First smash the current map's control to a constant, to mark it dead.
 153 void GraphKit::stop_and_kill_map() {
 154   SafePointNode* dead_map = stop();
 155   if (dead_map != NULL) {
 156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 157     assert(dead_map->is_killed(), "must be so marked");
 158   }
 159 }
 160 
 161 
 162 //--------------------------------stopped--------------------------------------
 163 // Tell if _map is NULL, or control is top.
 164 bool GraphKit::stopped() {
 165   if (map() == NULL)           return true;
 166   else if (control() == top()) return true;
 167   else                         return false;
 168 }
 169 
 170 
 171 //-----------------------------has_ex_handler----------------------------------
 172 // Tell if this method or any caller method has exception handlers.
 173 bool GraphKit::has_ex_handler() {
 174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 176       return true;
 177     }
 178   }
 179   return false;
 180 }
 181 
 182 //------------------------------save_ex_oop------------------------------------
 183 // Save an exception without blowing stack contents or other JVM state.
 184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 186   ex_map->add_req(ex_oop);
 187   debug_only(verify_exception_state(ex_map));
 188 }
 189 
 190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 192   Node* ex_oop = ex_map->in(ex_map->req()-1);
 193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 194   return ex_oop;
 195 }
 196 
 197 //-----------------------------saved_ex_oop------------------------------------
 198 // Recover a saved exception from its map.
 199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 200   return common_saved_ex_oop(ex_map, false);
 201 }
 202 
 203 //--------------------------clear_saved_ex_oop---------------------------------
 204 // Erase a previously saved exception from its map.
 205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 206   return common_saved_ex_oop(ex_map, true);
 207 }
 208 
 209 #ifdef ASSERT
 210 //---------------------------has_saved_ex_oop----------------------------------
 211 // Erase a previously saved exception from its map.
 212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 213   return ex_map->req() == ex_map->jvms()->endoff()+1;
 214 }
 215 #endif
 216 
 217 //-------------------------make_exception_state--------------------------------
 218 // Turn the current JVM state into an exception state, appending the ex_oop.
 219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 220   sync_jvms();
 221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 222   set_saved_ex_oop(ex_map, ex_oop);
 223   return ex_map;
 224 }
 225 
 226 
 227 //--------------------------add_exception_state--------------------------------
 228 // Add an exception to my list of exceptions.
 229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 230   if (ex_map == NULL || ex_map->control() == top()) {
 231     return;
 232   }
 233 #ifdef ASSERT
 234   verify_exception_state(ex_map);
 235   if (has_exceptions()) {
 236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 237   }
 238 #endif
 239 
 240   // If there is already an exception of exactly this type, merge with it.
 241   // In particular, null-checks and other low-level exceptions common up here.
 242   Node*       ex_oop  = saved_ex_oop(ex_map);
 243   const Type* ex_type = _gvn.type(ex_oop);
 244   if (ex_oop == top()) {
 245     // No action needed.
 246     return;
 247   }
 248   assert(ex_type->isa_instptr(), "exception must be an instance");
 249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 251     // We check sp also because call bytecodes can generate exceptions
 252     // both before and after arguments are popped!
 253     if (ex_type2 == ex_type
 254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 255       combine_exception_states(ex_map, e2);
 256       return;
 257     }
 258   }
 259 
 260   // No pre-existing exception of the same type.  Chain it on the list.
 261   push_exception_state(ex_map);
 262 }
 263 
 264 //-----------------------add_exception_states_from-----------------------------
 265 void GraphKit::add_exception_states_from(JVMState* jvms) {
 266   SafePointNode* ex_map = jvms->map()->next_exception();
 267   if (ex_map != NULL) {
 268     jvms->map()->set_next_exception(NULL);
 269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 270       next_map = ex_map->next_exception();
 271       ex_map->set_next_exception(NULL);
 272       add_exception_state(ex_map);
 273     }
 274   }
 275 }
 276 
 277 //-----------------------transfer_exceptions_into_jvms-------------------------
 278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 279   if (map() == NULL) {
 280     // We need a JVMS to carry the exceptions, but the map has gone away.
 281     // Create a scratch JVMS, cloned from any of the exception states...
 282     if (has_exceptions()) {
 283       _map = _exceptions;
 284       _map = clone_map();
 285       _map->set_next_exception(NULL);
 286       clear_saved_ex_oop(_map);
 287       debug_only(verify_map());
 288     } else {
 289       // ...or created from scratch
 290       JVMState* jvms = new (C) JVMState(_method, NULL);
 291       jvms->set_bci(_bci);
 292       jvms->set_sp(_sp);
 293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 294       set_jvms(jvms);
 295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 296       set_all_memory(top());
 297       while (map()->req() < jvms->endoff())  map()->add_req(top());
 298     }
 299     // (This is a kludge, in case you didn't notice.)
 300     set_control(top());
 301   }
 302   JVMState* jvms = sync_jvms();
 303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 304   jvms->map()->set_next_exception(_exceptions);
 305   _exceptions = NULL;   // done with this set of exceptions
 306   return jvms;
 307 }
 308 
 309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 310   assert(is_hidden_merge(dstphi), "must be a special merge node");
 311   assert(is_hidden_merge(srcphi), "must be a special merge node");
 312   uint limit = srcphi->req();
 313   for (uint i = PhiNode::Input; i < limit; i++) {
 314     dstphi->add_req(srcphi->in(i));
 315   }
 316 }
 317 static inline void add_one_req(Node* dstphi, Node* src) {
 318   assert(is_hidden_merge(dstphi), "must be a special merge node");
 319   assert(!is_hidden_merge(src), "must not be a special merge node");
 320   dstphi->add_req(src);
 321 }
 322 
 323 //-----------------------combine_exception_states------------------------------
 324 // This helper function combines exception states by building phis on a
 325 // specially marked state-merging region.  These regions and phis are
 326 // untransformed, and can build up gradually.  The region is marked by
 327 // having a control input of its exception map, rather than NULL.  Such
 328 // regions do not appear except in this function, and in use_exception_state.
 329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 330   if (failing())  return;  // dying anyway...
 331   JVMState* ex_jvms = ex_map->_jvms;
 332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 336   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 337   assert(ex_map->req() == phi_map->req(), "matching maps");
 338   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 339   Node*         hidden_merge_mark = root();
 340   Node*         region  = phi_map->control();
 341   MergeMemNode* phi_mem = phi_map->merged_memory();
 342   MergeMemNode* ex_mem  = ex_map->merged_memory();
 343   if (region->in(0) != hidden_merge_mark) {
 344     // The control input is not (yet) a specially-marked region in phi_map.
 345     // Make it so, and build some phis.
 346     region = new (C) RegionNode(2);
 347     _gvn.set_type(region, Type::CONTROL);
 348     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 349     region->init_req(1, phi_map->control());
 350     phi_map->set_control(region);
 351     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 352     record_for_igvn(io_phi);
 353     _gvn.set_type(io_phi, Type::ABIO);
 354     phi_map->set_i_o(io_phi);
 355     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 356       Node* m = mms.memory();
 357       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 358       record_for_igvn(m_phi);
 359       _gvn.set_type(m_phi, Type::MEMORY);
 360       mms.set_memory(m_phi);
 361     }
 362   }
 363 
 364   // Either or both of phi_map and ex_map might already be converted into phis.
 365   Node* ex_control = ex_map->control();
 366   // if there is special marking on ex_map also, we add multiple edges from src
 367   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 368   // how wide was the destination phi_map, originally?
 369   uint orig_width = region->req();
 370 
 371   if (add_multiple) {
 372     add_n_reqs(region, ex_control);
 373     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 374   } else {
 375     // ex_map has no merges, so we just add single edges everywhere
 376     add_one_req(region, ex_control);
 377     add_one_req(phi_map->i_o(), ex_map->i_o());
 378   }
 379   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 380     if (mms.is_empty()) {
 381       // get a copy of the base memory, and patch some inputs into it
 382       const TypePtr* adr_type = mms.adr_type(C);
 383       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 384       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 385       mms.set_memory(phi);
 386       // Prepare to append interesting stuff onto the newly sliced phi:
 387       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 388     }
 389     // Append stuff from ex_map:
 390     if (add_multiple) {
 391       add_n_reqs(mms.memory(), mms.memory2());
 392     } else {
 393       add_one_req(mms.memory(), mms.memory2());
 394     }
 395   }
 396   uint limit = ex_map->req();
 397   for (uint i = TypeFunc::Parms; i < limit; i++) {
 398     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 399     if (i == tos)  i = ex_jvms->monoff();
 400     Node* src = ex_map->in(i);
 401     Node* dst = phi_map->in(i);
 402     if (src != dst) {
 403       PhiNode* phi;
 404       if (dst->in(0) != region) {
 405         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 406         record_for_igvn(phi);
 407         _gvn.set_type(phi, phi->type());
 408         phi_map->set_req(i, dst);
 409         // Prepare to append interesting stuff onto the new phi:
 410         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 411       } else {
 412         assert(dst->is_Phi(), "nobody else uses a hidden region");
 413         phi = dst->as_Phi();
 414       }
 415       if (add_multiple && src->in(0) == ex_control) {
 416         // Both are phis.
 417         add_n_reqs(dst, src);
 418       } else {
 419         while (dst->req() < region->req())  add_one_req(dst, src);
 420       }
 421       const Type* srctype = _gvn.type(src);
 422       if (phi->type() != srctype) {
 423         const Type* dsttype = phi->type()->meet_speculative(srctype);
 424         if (phi->type() != dsttype) {
 425           phi->set_type(dsttype);
 426           _gvn.set_type(phi, dsttype);
 427         }
 428       }
 429     }
 430   }
 431 }
 432 
 433 //--------------------------use_exception_state--------------------------------
 434 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 435   if (failing()) { stop(); return top(); }
 436   Node* region = phi_map->control();
 437   Node* hidden_merge_mark = root();
 438   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 439   Node* ex_oop = clear_saved_ex_oop(phi_map);
 440   if (region->in(0) == hidden_merge_mark) {
 441     // Special marking for internal ex-states.  Process the phis now.
 442     region->set_req(0, region);  // now it's an ordinary region
 443     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 444     // Note: Setting the jvms also sets the bci and sp.
 445     set_control(_gvn.transform(region));
 446     uint tos = jvms()->stkoff() + sp();
 447     for (uint i = 1; i < tos; i++) {
 448       Node* x = phi_map->in(i);
 449       if (x->in(0) == region) {
 450         assert(x->is_Phi(), "expected a special phi");
 451         phi_map->set_req(i, _gvn.transform(x));
 452       }
 453     }
 454     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 455       Node* x = mms.memory();
 456       if (x->in(0) == region) {
 457         assert(x->is_Phi(), "nobody else uses a hidden region");
 458         mms.set_memory(_gvn.transform(x));
 459       }
 460     }
 461     if (ex_oop->in(0) == region) {
 462       assert(ex_oop->is_Phi(), "expected a special phi");
 463       ex_oop = _gvn.transform(ex_oop);
 464     }
 465   } else {
 466     set_jvms(phi_map->jvms());
 467   }
 468 
 469   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 470   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 471   return ex_oop;
 472 }
 473 
 474 //---------------------------------java_bc-------------------------------------
 475 Bytecodes::Code GraphKit::java_bc() const {
 476   ciMethod* method = this->method();
 477   int       bci    = this->bci();
 478   if (method != NULL && bci != InvocationEntryBci)
 479     return method->java_code_at_bci(bci);
 480   else
 481     return Bytecodes::_illegal;
 482 }
 483 
 484 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 485                                                           bool must_throw) {
 486     // if the exception capability is set, then we will generate code
 487     // to check the JavaThread.should_post_on_exceptions flag to see
 488     // if we actually need to report exception events (for this
 489     // thread).  If we don't need to report exception events, we will
 490     // take the normal fast path provided by add_exception_events.  If
 491     // exception event reporting is enabled for this thread, we will
 492     // take the uncommon_trap in the BuildCutout below.
 493 
 494     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 495     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 496     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 497     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 498 
 499     // Test the should_post_on_exceptions_flag vs. 0
 500     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 501     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 502 
 503     // Branch to slow_path if should_post_on_exceptions_flag was true
 504     { BuildCutout unless(this, tst, PROB_MAX);
 505       // Do not try anything fancy if we're notifying the VM on every throw.
 506       // Cf. case Bytecodes::_athrow in parse2.cpp.
 507       uncommon_trap(reason, Deoptimization::Action_none,
 508                     (ciKlass*)NULL, (char*)NULL, must_throw);
 509     }
 510 
 511 }
 512 
 513 //------------------------------builtin_throw----------------------------------
 514 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 515   bool must_throw = true;
 516 
 517   if (env()->jvmti_can_post_on_exceptions()) {
 518     // check if we must post exception events, take uncommon trap if so
 519     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 520     // here if should_post_on_exceptions is false
 521     // continue on with the normal codegen
 522   }
 523 
 524   // If this particular condition has not yet happened at this
 525   // bytecode, then use the uncommon trap mechanism, and allow for
 526   // a future recompilation if several traps occur here.
 527   // If the throw is hot, try to use a more complicated inline mechanism
 528   // which keeps execution inside the compiled code.
 529   bool treat_throw_as_hot = false;
 530   ciMethodData* md = method()->method_data();
 531 
 532   if (ProfileTraps) {
 533     if (too_many_traps(reason)) {
 534       treat_throw_as_hot = true;
 535     }
 536     // (If there is no MDO at all, assume it is early in
 537     // execution, and that any deopts are part of the
 538     // startup transient, and don't need to be remembered.)
 539 
 540     // Also, if there is a local exception handler, treat all throws
 541     // as hot if there has been at least one in this method.
 542     if (C->trap_count(reason) != 0
 543         && method()->method_data()->trap_count(reason) != 0
 544         && has_ex_handler()) {
 545         treat_throw_as_hot = true;
 546     }
 547   }
 548 
 549   // If this throw happens frequently, an uncommon trap might cause
 550   // a performance pothole.  If there is a local exception handler,
 551   // and if this particular bytecode appears to be deoptimizing often,
 552   // let us handle the throw inline, with a preconstructed instance.
 553   // Note:   If the deopt count has blown up, the uncommon trap
 554   // runtime is going to flush this nmethod, not matter what.
 555   if (treat_throw_as_hot
 556       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 557     // If the throw is local, we use a pre-existing instance and
 558     // punt on the backtrace.  This would lead to a missing backtrace
 559     // (a repeat of 4292742) if the backtrace object is ever asked
 560     // for its backtrace.
 561     // Fixing this remaining case of 4292742 requires some flavor of
 562     // escape analysis.  Leave that for the future.
 563     ciInstance* ex_obj = NULL;
 564     switch (reason) {
 565     case Deoptimization::Reason_null_check:
 566       ex_obj = env()->NullPointerException_instance();
 567       break;
 568     case Deoptimization::Reason_div0_check:
 569       ex_obj = env()->ArithmeticException_instance();
 570       break;
 571     case Deoptimization::Reason_range_check:
 572       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 573       break;
 574     case Deoptimization::Reason_class_check:
 575       if (java_bc() == Bytecodes::_aastore) {
 576         ex_obj = env()->ArrayStoreException_instance();
 577       } else {
 578         ex_obj = env()->ClassCastException_instance();
 579       }
 580       break;
 581     }
 582     if (failing()) { stop(); return; }  // exception allocation might fail
 583     if (ex_obj != NULL) {
 584       // Cheat with a preallocated exception object.
 585       if (C->log() != NULL)
 586         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 587                        Deoptimization::trap_reason_name(reason));
 588       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 589       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 590 
 591       // Clear the detail message of the preallocated exception object.
 592       // Weblogic sometimes mutates the detail message of exceptions
 593       // using reflection.
 594       int offset = java_lang_Throwable::get_detailMessage_offset();
 595       const TypePtr* adr_typ = ex_con->add_offset(offset);
 596 
 597       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 598       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 599       // Conservatively release stores of object references.
 600       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
 601 
 602       add_exception_state(make_exception_state(ex_node));
 603       return;
 604     }
 605   }
 606 
 607   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 608   // It won't be much cheaper than bailing to the interp., since we'll
 609   // have to pass up all the debug-info, and the runtime will have to
 610   // create the stack trace.
 611 
 612   // Usual case:  Bail to interpreter.
 613   // Reserve the right to recompile if we haven't seen anything yet.
 614 
 615   assert(!Deoptimization::reason_is_speculate(reason), "unsupported");
 616   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 617   if (treat_throw_as_hot
 618       && (method()->method_data()->trap_recompiled_at(bci(), NULL)
 619           || C->too_many_traps(reason))) {
 620     // We cannot afford to take more traps here.  Suffer in the interpreter.
 621     if (C->log() != NULL)
 622       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 623                      Deoptimization::trap_reason_name(reason),
 624                      C->trap_count(reason));
 625     action = Deoptimization::Action_none;
 626   }
 627 
 628   // "must_throw" prunes the JVM state to include only the stack, if there
 629   // are no local exception handlers.  This should cut down on register
 630   // allocation time and code size, by drastically reducing the number
 631   // of in-edges on the call to the uncommon trap.
 632 
 633   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 634 }
 635 
 636 
 637 //----------------------------PreserveJVMState---------------------------------
 638 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 639   debug_only(kit->verify_map());
 640   _kit    = kit;
 641   _map    = kit->map();   // preserve the map
 642   _sp     = kit->sp();
 643   kit->set_map(clone_map ? kit->clone_map() : NULL);
 644   Compile::current()->inc_preserve_jvm_state();
 645 #ifdef ASSERT
 646   _bci    = kit->bci();
 647   Parse* parser = kit->is_Parse();
 648   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 649   _block  = block;
 650 #endif
 651 }
 652 PreserveJVMState::~PreserveJVMState() {
 653   GraphKit* kit = _kit;
 654 #ifdef ASSERT
 655   assert(kit->bci() == _bci, "bci must not shift");
 656   Parse* parser = kit->is_Parse();
 657   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 658   assert(block == _block,    "block must not shift");
 659 #endif
 660   kit->set_map(_map);
 661   kit->set_sp(_sp);
 662   Compile::current()->dec_preserve_jvm_state();
 663 }
 664 
 665 
 666 //-----------------------------BuildCutout-------------------------------------
 667 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 668   : PreserveJVMState(kit)
 669 {
 670   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 671   SafePointNode* outer_map = _map;   // preserved map is caller's
 672   SafePointNode* inner_map = kit->map();
 673   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 674   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 675   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 676 }
 677 BuildCutout::~BuildCutout() {
 678   GraphKit* kit = _kit;
 679   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 680 }
 681 
 682 //---------------------------PreserveReexecuteState----------------------------
 683 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 684   assert(!kit->stopped(), "must call stopped() before");
 685   _kit    =    kit;
 686   _sp     =    kit->sp();
 687   _reexecute = kit->jvms()->_reexecute;
 688 }
 689 PreserveReexecuteState::~PreserveReexecuteState() {
 690   if (_kit->stopped()) return;
 691   _kit->jvms()->_reexecute = _reexecute;
 692   _kit->set_sp(_sp);
 693 }
 694 
 695 //------------------------------clone_map--------------------------------------
 696 // Implementation of PreserveJVMState
 697 //
 698 // Only clone_map(...) here. If this function is only used in the
 699 // PreserveJVMState class we may want to get rid of this extra
 700 // function eventually and do it all there.
 701 
 702 SafePointNode* GraphKit::clone_map() {
 703   if (map() == NULL)  return NULL;
 704 
 705   // Clone the memory edge first
 706   Node* mem = MergeMemNode::make(C, map()->memory());
 707   gvn().set_type_bottom(mem);
 708 
 709   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 710   JVMState* jvms = this->jvms();
 711   JVMState* clonejvms = jvms->clone_shallow(C);
 712   clonemap->set_memory(mem);
 713   clonemap->set_jvms(clonejvms);
 714   clonejvms->set_map(clonemap);
 715   record_for_igvn(clonemap);
 716   gvn().set_type_bottom(clonemap);
 717   return clonemap;
 718 }
 719 
 720 
 721 //-----------------------------set_map_clone-----------------------------------
 722 void GraphKit::set_map_clone(SafePointNode* m) {
 723   _map = m;
 724   _map = clone_map();
 725   _map->set_next_exception(NULL);
 726   debug_only(verify_map());
 727 }
 728 
 729 
 730 //----------------------------kill_dead_locals---------------------------------
 731 // Detect any locals which are known to be dead, and force them to top.
 732 void GraphKit::kill_dead_locals() {
 733   // Consult the liveness information for the locals.  If any
 734   // of them are unused, then they can be replaced by top().  This
 735   // should help register allocation time and cut down on the size
 736   // of the deoptimization information.
 737 
 738   // This call is made from many of the bytecode handling
 739   // subroutines called from the Big Switch in do_one_bytecode.
 740   // Every bytecode which might include a slow path is responsible
 741   // for killing its dead locals.  The more consistent we
 742   // are about killing deads, the fewer useless phis will be
 743   // constructed for them at various merge points.
 744 
 745   // bci can be -1 (InvocationEntryBci).  We return the entry
 746   // liveness for the method.
 747 
 748   if (method() == NULL || method()->code_size() == 0) {
 749     // We are building a graph for a call to a native method.
 750     // All locals are live.
 751     return;
 752   }
 753 
 754   ResourceMark rm;
 755 
 756   // Consult the liveness information for the locals.  If any
 757   // of them are unused, then they can be replaced by top().  This
 758   // should help register allocation time and cut down on the size
 759   // of the deoptimization information.
 760   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 761 
 762   int len = (int)live_locals.size();
 763   assert(len <= jvms()->loc_size(), "too many live locals");
 764   for (int local = 0; local < len; local++) {
 765     if (!live_locals.at(local)) {
 766       set_local(local, top());
 767     }
 768   }
 769 }
 770 
 771 #ifdef ASSERT
 772 //-------------------------dead_locals_are_killed------------------------------
 773 // Return true if all dead locals are set to top in the map.
 774 // Used to assert "clean" debug info at various points.
 775 bool GraphKit::dead_locals_are_killed() {
 776   if (method() == NULL || method()->code_size() == 0) {
 777     // No locals need to be dead, so all is as it should be.
 778     return true;
 779   }
 780 
 781   // Make sure somebody called kill_dead_locals upstream.
 782   ResourceMark rm;
 783   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 784     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 785     SafePointNode* map = jvms->map();
 786     ciMethod* method = jvms->method();
 787     int       bci    = jvms->bci();
 788     if (jvms == this->jvms()) {
 789       bci = this->bci();  // it might not yet be synched
 790     }
 791     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 792     int len = (int)live_locals.size();
 793     if (!live_locals.is_valid() || len == 0)
 794       // This method is trivial, or is poisoned by a breakpoint.
 795       return true;
 796     assert(len == jvms->loc_size(), "live map consistent with locals map");
 797     for (int local = 0; local < len; local++) {
 798       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 799         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 800           tty->print_cr("Zombie local %d: ", local);
 801           jvms->dump();
 802         }
 803         return false;
 804       }
 805     }
 806   }
 807   return true;
 808 }
 809 
 810 #endif //ASSERT
 811 
 812 // Helper function for enforcing certain bytecodes to reexecute if
 813 // deoptimization happens
 814 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 815   ciMethod* cur_method = jvms->method();
 816   int       cur_bci   = jvms->bci();
 817   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 818     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 819     return Interpreter::bytecode_should_reexecute(code) ||
 820            is_anewarray && code == Bytecodes::_multianewarray;
 821     // Reexecute _multianewarray bytecode which was replaced with
 822     // sequence of [a]newarray. See Parse::do_multianewarray().
 823     //
 824     // Note: interpreter should not have it set since this optimization
 825     // is limited by dimensions and guarded by flag so in some cases
 826     // multianewarray() runtime calls will be generated and
 827     // the bytecode should not be reexecutes (stack will not be reset).
 828   } else
 829     return false;
 830 }
 831 
 832 // Helper function for adding JVMState and debug information to node
 833 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 834   // Add the safepoint edges to the call (or other safepoint).
 835 
 836   // Make sure dead locals are set to top.  This
 837   // should help register allocation time and cut down on the size
 838   // of the deoptimization information.
 839   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 840 
 841   // Walk the inline list to fill in the correct set of JVMState's
 842   // Also fill in the associated edges for each JVMState.
 843 
 844   // If the bytecode needs to be reexecuted we need to put
 845   // the arguments back on the stack.
 846   const bool should_reexecute = jvms()->should_reexecute();
 847   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 848 
 849   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 850   // undefined if the bci is different.  This is normal for Parse but it
 851   // should not happen for LibraryCallKit because only one bci is processed.
 852   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 853          "in LibraryCallKit the reexecute bit should not change");
 854 
 855   // If we are guaranteed to throw, we can prune everything but the
 856   // input to the current bytecode.
 857   bool can_prune_locals = false;
 858   uint stack_slots_not_pruned = 0;
 859   int inputs = 0, depth = 0;
 860   if (must_throw) {
 861     assert(method() == youngest_jvms->method(), "sanity");
 862     if (compute_stack_effects(inputs, depth)) {
 863       can_prune_locals = true;
 864       stack_slots_not_pruned = inputs;
 865     }
 866   }
 867 
 868   if (env()->should_retain_local_variables()) {
 869     // At any safepoint, this method can get breakpointed, which would
 870     // then require an immediate deoptimization.
 871     can_prune_locals = false;  // do not prune locals
 872     stack_slots_not_pruned = 0;
 873   }
 874 
 875   // do not scribble on the input jvms
 876   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 877   call->set_jvms(out_jvms); // Start jvms list for call node
 878 
 879   // For a known set of bytecodes, the interpreter should reexecute them if
 880   // deoptimization happens. We set the reexecute state for them here
 881   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 882       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 883     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 884   }
 885 
 886   // Presize the call:
 887   DEBUG_ONLY(uint non_debug_edges = call->req());
 888   call->add_req_batch(top(), youngest_jvms->debug_depth());
 889   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 890 
 891   // Set up edges so that the call looks like this:
 892   //  Call [state:] ctl io mem fptr retadr
 893   //       [parms:] parm0 ... parmN
 894   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 895   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 896   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 897   // Note that caller debug info precedes callee debug info.
 898 
 899   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 900   uint debug_ptr = call->req();
 901 
 902   // Loop over the map input edges associated with jvms, add them
 903   // to the call node, & reset all offsets to match call node array.
 904   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 905     uint debug_end   = debug_ptr;
 906     uint debug_start = debug_ptr - in_jvms->debug_size();
 907     debug_ptr = debug_start;  // back up the ptr
 908 
 909     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 910     uint j, k, l;
 911     SafePointNode* in_map = in_jvms->map();
 912     out_jvms->set_map(call);
 913 
 914     if (can_prune_locals) {
 915       assert(in_jvms->method() == out_jvms->method(), "sanity");
 916       // If the current throw can reach an exception handler in this JVMS,
 917       // then we must keep everything live that can reach that handler.
 918       // As a quick and dirty approximation, we look for any handlers at all.
 919       if (in_jvms->method()->has_exception_handlers()) {
 920         can_prune_locals = false;
 921       }
 922     }
 923 
 924     // Add the Locals
 925     k = in_jvms->locoff();
 926     l = in_jvms->loc_size();
 927     out_jvms->set_locoff(p);
 928     if (!can_prune_locals) {
 929       for (j = 0; j < l; j++)
 930         call->set_req(p++, in_map->in(k+j));
 931     } else {
 932       p += l;  // already set to top above by add_req_batch
 933     }
 934 
 935     // Add the Expression Stack
 936     k = in_jvms->stkoff();
 937     l = in_jvms->sp();
 938     out_jvms->set_stkoff(p);
 939     if (!can_prune_locals) {
 940       for (j = 0; j < l; j++)
 941         call->set_req(p++, in_map->in(k+j));
 942     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 943       // Divide stack into {S0,...,S1}, where S0 is set to top.
 944       uint s1 = stack_slots_not_pruned;
 945       stack_slots_not_pruned = 0;  // for next iteration
 946       if (s1 > l)  s1 = l;
 947       uint s0 = l - s1;
 948       p += s0;  // skip the tops preinstalled by add_req_batch
 949       for (j = s0; j < l; j++)
 950         call->set_req(p++, in_map->in(k+j));
 951     } else {
 952       p += l;  // already set to top above by add_req_batch
 953     }
 954 
 955     // Add the Monitors
 956     k = in_jvms->monoff();
 957     l = in_jvms->mon_size();
 958     out_jvms->set_monoff(p);
 959     for (j = 0; j < l; j++)
 960       call->set_req(p++, in_map->in(k+j));
 961 
 962     // Copy any scalar object fields.
 963     k = in_jvms->scloff();
 964     l = in_jvms->scl_size();
 965     out_jvms->set_scloff(p);
 966     for (j = 0; j < l; j++)
 967       call->set_req(p++, in_map->in(k+j));
 968 
 969     // Finish the new jvms.
 970     out_jvms->set_endoff(p);
 971 
 972     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 973     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 974     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 975     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 976     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 977     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 978 
 979     // Update the two tail pointers in parallel.
 980     out_jvms = out_jvms->caller();
 981     in_jvms  = in_jvms->caller();
 982   }
 983 
 984   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 985 
 986   // Test the correctness of JVMState::debug_xxx accessors:
 987   assert(call->jvms()->debug_start() == non_debug_edges, "");
 988   assert(call->jvms()->debug_end()   == call->req(), "");
 989   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 990 }
 991 
 992 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 993   Bytecodes::Code code = java_bc();
 994   if (code == Bytecodes::_wide) {
 995     code = method()->java_code_at_bci(bci() + 1);
 996   }
 997 
 998   BasicType rtype = T_ILLEGAL;
 999   int       rsize = 0;
1000 
1001   if (code != Bytecodes::_illegal) {
1002     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1003     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1004     if (rtype < T_CONFLICT)
1005       rsize = type2size[rtype];
1006   }
1007 
1008   switch (code) {
1009   case Bytecodes::_illegal:
1010     return false;
1011 
1012   case Bytecodes::_ldc:
1013   case Bytecodes::_ldc_w:
1014   case Bytecodes::_ldc2_w:
1015     inputs = 0;
1016     break;
1017 
1018   case Bytecodes::_dup:         inputs = 1;  break;
1019   case Bytecodes::_dup_x1:      inputs = 2;  break;
1020   case Bytecodes::_dup_x2:      inputs = 3;  break;
1021   case Bytecodes::_dup2:        inputs = 2;  break;
1022   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1023   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1024   case Bytecodes::_swap:        inputs = 2;  break;
1025   case Bytecodes::_arraylength: inputs = 1;  break;
1026 
1027   case Bytecodes::_getstatic:
1028   case Bytecodes::_putstatic:
1029   case Bytecodes::_getfield:
1030   case Bytecodes::_putfield:
1031     {
1032       bool ignored_will_link;
1033       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1034       int      size  = field->type()->size();
1035       bool is_get = (depth >= 0), is_static = (depth & 1);
1036       inputs = (is_static ? 0 : 1);
1037       if (is_get) {
1038         depth = size - inputs;
1039       } else {
1040         inputs += size;        // putxxx pops the value from the stack
1041         depth = - inputs;
1042       }
1043     }
1044     break;
1045 
1046   case Bytecodes::_invokevirtual:
1047   case Bytecodes::_invokespecial:
1048   case Bytecodes::_invokestatic:
1049   case Bytecodes::_invokedynamic:
1050   case Bytecodes::_invokeinterface:
1051     {
1052       int size = method()->get_stack_effect_at_invoke(bci(), code, inputs);
1053       depth = size;
1054     }
1055     break;
1056 
1057   case Bytecodes::_multianewarray:
1058     {
1059       ciBytecodeStream iter(method());
1060       iter.reset_to_bci(bci());
1061       iter.next();
1062       inputs = iter.get_dimensions();
1063       assert(rsize == 1, "");
1064       depth = rsize - inputs;
1065     }
1066     break;
1067 
1068   case Bytecodes::_ireturn:
1069   case Bytecodes::_lreturn:
1070   case Bytecodes::_freturn:
1071   case Bytecodes::_dreturn:
1072   case Bytecodes::_areturn:
1073     assert(rsize = -depth, "");
1074     inputs = rsize;
1075     break;
1076 
1077   case Bytecodes::_jsr:
1078   case Bytecodes::_jsr_w:
1079     inputs = 0;
1080     depth  = 1;                  // S.B. depth=1, not zero
1081     break;
1082 
1083   default:
1084     // bytecode produces a typed result
1085     inputs = rsize - depth;
1086     assert(inputs >= 0, "");
1087     break;
1088   }
1089 
1090 #ifdef ASSERT
1091   // spot check
1092   int outputs = depth + inputs;
1093   assert(outputs >= 0, "sanity");
1094   switch (code) {
1095   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1096   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1097   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1098   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1099   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1100   }
1101 #endif //ASSERT
1102 
1103   return true;
1104 }
1105 
1106 
1107 
1108 //------------------------------basic_plus_adr---------------------------------
1109 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1110   // short-circuit a common case
1111   if (offset == intcon(0))  return ptr;
1112   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1113 }
1114 
1115 Node* GraphKit::ConvI2L(Node* offset) {
1116   // short-circuit a common case
1117   jint offset_con = find_int_con(offset, Type::OffsetBot);
1118   if (offset_con != Type::OffsetBot) {
1119     return longcon((jlong) offset_con);
1120   }
1121   return _gvn.transform( new (C) ConvI2LNode(offset));
1122 }
1123 Node* GraphKit::ConvL2I(Node* offset) {
1124   // short-circuit a common case
1125   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1126   if (offset_con != (jlong)Type::OffsetBot) {
1127     return intcon((int) offset_con);
1128   }
1129   return _gvn.transform( new (C) ConvL2INode(offset));
1130 }
1131 
1132 //-------------------------load_object_klass-----------------------------------
1133 Node* GraphKit::load_object_klass(Node* obj) {
1134   // Special-case a fresh allocation to avoid building nodes:
1135   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1136   if (akls != NULL)  return akls;
1137   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1138   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1139 }
1140 
1141 //-------------------------load_array_length-----------------------------------
1142 Node* GraphKit::load_array_length(Node* array) {
1143   // Special-case a fresh allocation to avoid building nodes:
1144   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1145   Node *alen;
1146   if (alloc == NULL) {
1147     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1148     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1149   } else {
1150     alen = alloc->Ideal_length();
1151     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1152     if (ccast != alen) {
1153       alen = _gvn.transform(ccast);
1154     }
1155   }
1156   return alen;
1157 }
1158 
1159 //------------------------------do_null_check----------------------------------
1160 // Helper function to do a NULL pointer check.  Returned value is
1161 // the incoming address with NULL casted away.  You are allowed to use the
1162 // not-null value only if you are control dependent on the test.
1163 extern int explicit_null_checks_inserted,
1164            explicit_null_checks_elided;
1165 Node* GraphKit::null_check_common(Node* value, BasicType type,
1166                                   // optional arguments for variations:
1167                                   bool assert_null,
1168                                   Node* *null_control) {
1169   assert(!assert_null || null_control == NULL, "not both at once");
1170   if (stopped())  return top();
1171   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1172     // For some performance testing, we may wish to suppress null checking.
1173     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1174     return value;
1175   }
1176   explicit_null_checks_inserted++;
1177 
1178   // Construct NULL check
1179   Node *chk = NULL;
1180   switch(type) {
1181     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1182     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1183     case T_ARRAY  : // fall through
1184       type = T_OBJECT;  // simplify further tests
1185     case T_OBJECT : {
1186       const Type *t = _gvn.type( value );
1187 
1188       const TypeOopPtr* tp = t->isa_oopptr();
1189       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1190           // Only for do_null_check, not any of its siblings:
1191           && !assert_null && null_control == NULL) {
1192         // Usually, any field access or invocation on an unloaded oop type
1193         // will simply fail to link, since the statically linked class is
1194         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1195         // the static class is loaded but the sharper oop type is not.
1196         // Rather than checking for this obscure case in lots of places,
1197         // we simply observe that a null check on an unloaded class
1198         // will always be followed by a nonsense operation, so we
1199         // can just issue the uncommon trap here.
1200         // Our access to the unloaded class will only be correct
1201         // after it has been loaded and initialized, which requires
1202         // a trip through the interpreter.
1203 #ifndef PRODUCT
1204         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1205 #endif
1206         uncommon_trap(Deoptimization::Reason_unloaded,
1207                       Deoptimization::Action_reinterpret,
1208                       tp->klass(), "!loaded");
1209         return top();
1210       }
1211 
1212       if (assert_null) {
1213         // See if the type is contained in NULL_PTR.
1214         // If so, then the value is already null.
1215         if (t->higher_equal(TypePtr::NULL_PTR)) {
1216           explicit_null_checks_elided++;
1217           return value;           // Elided null assert quickly!
1218         }
1219       } else {
1220         // See if mixing in the NULL pointer changes type.
1221         // If so, then the NULL pointer was not allowed in the original
1222         // type.  In other words, "value" was not-null.
1223         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1224           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1225           explicit_null_checks_elided++;
1226           return value;           // Elided null check quickly!
1227         }
1228       }
1229       chk = new (C) CmpPNode( value, null() );
1230       break;
1231     }
1232 
1233     default:
1234       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1235   }
1236   assert(chk != NULL, "sanity check");
1237   chk = _gvn.transform(chk);
1238 
1239   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1240   BoolNode *btst = new (C) BoolNode( chk, btest);
1241   Node   *tst = _gvn.transform( btst );
1242 
1243   //-----------
1244   // if peephole optimizations occurred, a prior test existed.
1245   // If a prior test existed, maybe it dominates as we can avoid this test.
1246   if (tst != btst && type == T_OBJECT) {
1247     // At this point we want to scan up the CFG to see if we can
1248     // find an identical test (and so avoid this test altogether).
1249     Node *cfg = control();
1250     int depth = 0;
1251     while( depth < 16 ) {       // Limit search depth for speed
1252       if( cfg->Opcode() == Op_IfTrue &&
1253           cfg->in(0)->in(1) == tst ) {
1254         // Found prior test.  Use "cast_not_null" to construct an identical
1255         // CastPP (and hence hash to) as already exists for the prior test.
1256         // Return that casted value.
1257         if (assert_null) {
1258           replace_in_map(value, null());
1259           return null();  // do not issue the redundant test
1260         }
1261         Node *oldcontrol = control();
1262         set_control(cfg);
1263         Node *res = cast_not_null(value);
1264         set_control(oldcontrol);
1265         explicit_null_checks_elided++;
1266         return res;
1267       }
1268       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1269       if (cfg == NULL)  break;  // Quit at region nodes
1270       depth++;
1271     }
1272   }
1273 
1274   //-----------
1275   // Branch to failure if null
1276   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1277   Deoptimization::DeoptReason reason;
1278   if (assert_null)
1279     reason = Deoptimization::Reason_null_assert;
1280   else if (type == T_OBJECT)
1281     reason = Deoptimization::Reason_null_check;
1282   else
1283     reason = Deoptimization::Reason_div0_check;
1284 
1285   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1286   // ciMethodData::has_trap_at will return a conservative -1 if any
1287   // must-be-null assertion has failed.  This could cause performance
1288   // problems for a method after its first do_null_assert failure.
1289   // Consider using 'Reason_class_check' instead?
1290 
1291   // To cause an implicit null check, we set the not-null probability
1292   // to the maximum (PROB_MAX).  For an explicit check the probability
1293   // is set to a smaller value.
1294   if (null_control != NULL || too_many_traps(reason)) {
1295     // probability is less likely
1296     ok_prob =  PROB_LIKELY_MAG(3);
1297   } else if (!assert_null &&
1298              (ImplicitNullCheckThreshold > 0) &&
1299              method() != NULL &&
1300              (method()->method_data()->trap_count(reason)
1301               >= (uint)ImplicitNullCheckThreshold)) {
1302     ok_prob =  PROB_LIKELY_MAG(3);
1303   }
1304 
1305   if (null_control != NULL) {
1306     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1307     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1308     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1309     if (null_true == top())
1310       explicit_null_checks_elided++;
1311     (*null_control) = null_true;
1312   } else {
1313     BuildCutout unless(this, tst, ok_prob);
1314     // Check for optimizer eliding test at parse time
1315     if (stopped()) {
1316       // Failure not possible; do not bother making uncommon trap.
1317       explicit_null_checks_elided++;
1318     } else if (assert_null) {
1319       uncommon_trap(reason,
1320                     Deoptimization::Action_make_not_entrant,
1321                     NULL, "assert_null");
1322     } else {
1323       replace_in_map(value, zerocon(type));
1324       builtin_throw(reason);
1325     }
1326   }
1327 
1328   // Must throw exception, fall-thru not possible?
1329   if (stopped()) {
1330     return top();               // No result
1331   }
1332 
1333   if (assert_null) {
1334     // Cast obj to null on this path.
1335     replace_in_map(value, zerocon(type));
1336     return zerocon(type);
1337   }
1338 
1339   // Cast obj to not-null on this path, if there is no null_control.
1340   // (If there is a null_control, a non-null value may come back to haunt us.)
1341   if (type == T_OBJECT) {
1342     Node* cast = cast_not_null(value, false);
1343     if (null_control == NULL || (*null_control) == top())
1344       replace_in_map(value, cast);
1345     value = cast;
1346   }
1347 
1348   return value;
1349 }
1350 
1351 
1352 //------------------------------cast_not_null----------------------------------
1353 // Cast obj to not-null on this path
1354 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1355   const Type *t = _gvn.type(obj);
1356   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1357   // Object is already not-null?
1358   if( t == t_not_null ) return obj;
1359 
1360   Node *cast = new (C) CastPPNode(obj,t_not_null);
1361   cast->init_req(0, control());
1362   cast = _gvn.transform( cast );
1363 
1364   // Scan for instances of 'obj' in the current JVM mapping.
1365   // These instances are known to be not-null after the test.
1366   if (do_replace_in_map)
1367     replace_in_map(obj, cast);
1368 
1369   return cast;                  // Return casted value
1370 }
1371 
1372 
1373 //--------------------------replace_in_map-------------------------------------
1374 void GraphKit::replace_in_map(Node* old, Node* neww) {
1375   if (old == neww) {
1376     return;
1377   }
1378 
1379   map()->replace_edge(old, neww);
1380 
1381   // Note: This operation potentially replaces any edge
1382   // on the map.  This includes locals, stack, and monitors
1383   // of the current (innermost) JVM state.
1384 
1385   if (!ReplaceInParentMaps) {
1386     return;
1387   }
1388 
1389   // PreserveJVMState doesn't do a deep copy so we can't modify
1390   // parents
1391   if (Compile::current()->has_preserve_jvm_state()) {
1392     return;
1393   }
1394 
1395   Parse* parser = is_Parse();
1396   bool progress = true;
1397   Node* ctrl = map()->in(0);
1398   // Follow the chain of parsers and see whether the update can be
1399   // done in the map of callers. We can do the replace for a caller if
1400   // the current control post dominates the control of a caller.
1401   while (parser != NULL && parser->caller() != NULL && progress) {
1402     progress = false;
1403     Node* parent_map = parser->caller()->map();
1404     assert(parser->exits().map()->jvms()->depth() == parser->caller()->depth(), "map mismatch");
1405 
1406     Node* parent_ctrl = parent_map->in(0);
1407 
1408     while (parent_ctrl->is_Region()) {
1409       Node* n = parent_ctrl->as_Region()->is_copy();
1410       if (n == NULL) {
1411         break;
1412       }
1413       parent_ctrl = n;
1414     }
1415 
1416     for (;;) {
1417       if (ctrl == parent_ctrl) {
1418         // update the map of the exits which is the one that will be
1419         // used when compilation resume after inlining
1420         parser->exits().map()->replace_edge(old, neww);
1421         progress = true;
1422         break;
1423       }
1424       if (ctrl->is_Proj() && ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
1425         ctrl = ctrl->in(0)->in(0);
1426       } else if (ctrl->is_Region()) {
1427         Node* n = ctrl->as_Region()->is_copy();
1428         if (n == NULL) {
1429           break;
1430         }
1431         ctrl = n;
1432       } else {
1433         break;
1434       }
1435     }
1436 
1437     parser = parser->parent_parser();
1438   }
1439 }
1440 
1441 
1442 //=============================================================================
1443 //--------------------------------memory---------------------------------------
1444 Node* GraphKit::memory(uint alias_idx) {
1445   MergeMemNode* mem = merged_memory();
1446   Node* p = mem->memory_at(alias_idx);
1447   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1448   return p;
1449 }
1450 
1451 //-----------------------------reset_memory------------------------------------
1452 Node* GraphKit::reset_memory() {
1453   Node* mem = map()->memory();
1454   // do not use this node for any more parsing!
1455   debug_only( map()->set_memory((Node*)NULL) );
1456   return _gvn.transform( mem );
1457 }
1458 
1459 //------------------------------set_all_memory---------------------------------
1460 void GraphKit::set_all_memory(Node* newmem) {
1461   Node* mergemem = MergeMemNode::make(C, newmem);
1462   gvn().set_type_bottom(mergemem);
1463   map()->set_memory(mergemem);
1464 }
1465 
1466 //------------------------------set_all_memory_call----------------------------
1467 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1468   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1469   set_all_memory(newmem);
1470 }
1471 
1472 //=============================================================================
1473 //
1474 // parser factory methods for MemNodes
1475 //
1476 // These are layered on top of the factory methods in LoadNode and StoreNode,
1477 // and integrate with the parser's memory state and _gvn engine.
1478 //
1479 
1480 // factory methods in "int adr_idx"
1481 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1482                           int adr_idx,
1483                           MemNode::MemOrd mo, bool require_atomic_access) {
1484   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1485   const TypePtr* adr_type = NULL; // debug-mode-only argument
1486   debug_only(adr_type = C->get_adr_type(adr_idx));
1487   Node* mem = memory(adr_idx);
1488   Node* ld;
1489   if (require_atomic_access && bt == T_LONG) {
1490     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo);
1491   } else {
1492     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo);
1493   }
1494   ld = _gvn.transform(ld);
1495   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
1496     // Improve graph before escape analysis and boxing elimination.
1497     record_for_igvn(ld);
1498   }
1499   return ld;
1500 }
1501 
1502 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1503                                 int adr_idx,
1504                                 MemNode::MemOrd mo,
1505                                 bool require_atomic_access) {
1506   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1507   const TypePtr* adr_type = NULL;
1508   debug_only(adr_type = C->get_adr_type(adr_idx));
1509   Node *mem = memory(adr_idx);
1510   Node* st;
1511   if (require_atomic_access && bt == T_LONG) {
1512     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
1513   } else {
1514     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1515   }
1516   st = _gvn.transform(st);
1517   set_memory(st, adr_idx);
1518   // Back-to-back stores can only remove intermediate store with DU info
1519   // so push on worklist for optimizer.
1520   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1521     record_for_igvn(st);
1522 
1523   return st;
1524 }
1525 
1526 
1527 void GraphKit::pre_barrier(bool do_load,
1528                            Node* ctl,
1529                            Node* obj,
1530                            Node* adr,
1531                            uint  adr_idx,
1532                            Node* val,
1533                            const TypeOopPtr* val_type,
1534                            Node* pre_val,
1535                            BasicType bt) {
1536 
1537   BarrierSet* bs = Universe::heap()->barrier_set();
1538   set_control(ctl);
1539   switch (bs->kind()) {
1540     case BarrierSet::G1SATBCT:
1541     case BarrierSet::G1SATBCTLogging:
1542       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1543       break;
1544 
1545     case BarrierSet::CardTableModRef:
1546     case BarrierSet::CardTableExtension:
1547     case BarrierSet::ModRef:
1548       break;
1549 
1550     case BarrierSet::Other:
1551     default      :
1552       ShouldNotReachHere();
1553 
1554   }
1555 }
1556 
1557 bool GraphKit::can_move_pre_barrier() const {
1558   BarrierSet* bs = Universe::heap()->barrier_set();
1559   switch (bs->kind()) {
1560     case BarrierSet::G1SATBCT:
1561     case BarrierSet::G1SATBCTLogging:
1562       return true; // Can move it if no safepoint
1563 
1564     case BarrierSet::CardTableModRef:
1565     case BarrierSet::CardTableExtension:
1566     case BarrierSet::ModRef:
1567       return true; // There is no pre-barrier
1568 
1569     case BarrierSet::Other:
1570     default      :
1571       ShouldNotReachHere();
1572   }
1573   return false;
1574 }
1575 
1576 void GraphKit::post_barrier(Node* ctl,
1577                             Node* store,
1578                             Node* obj,
1579                             Node* adr,
1580                             uint  adr_idx,
1581                             Node* val,
1582                             BasicType bt,
1583                             bool use_precise) {
1584   BarrierSet* bs = Universe::heap()->barrier_set();
1585   set_control(ctl);
1586   switch (bs->kind()) {
1587     case BarrierSet::G1SATBCT:
1588     case BarrierSet::G1SATBCTLogging:
1589       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1590       break;
1591 
1592     case BarrierSet::CardTableModRef:
1593     case BarrierSet::CardTableExtension:
1594       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1595       break;
1596 
1597     case BarrierSet::ModRef:
1598       break;
1599 
1600     case BarrierSet::Other:
1601     default      :
1602       ShouldNotReachHere();
1603 
1604   }
1605 }
1606 
1607 Node* GraphKit::store_oop(Node* ctl,
1608                           Node* obj,
1609                           Node* adr,
1610                           const TypePtr* adr_type,
1611                           Node* val,
1612                           const TypeOopPtr* val_type,
1613                           BasicType bt,
1614                           bool use_precise,
1615                           MemNode::MemOrd mo) {
1616   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1617   // could be delayed during Parse (for example, in adjust_map_after_if()).
1618   // Execute transformation here to avoid barrier generation in such case.
1619   if (_gvn.type(val) == TypePtr::NULL_PTR)
1620     val = _gvn.makecon(TypePtr::NULL_PTR);
1621 
1622   set_control(ctl);
1623   if (stopped()) return top(); // Dead path ?
1624 
1625   assert(bt == T_OBJECT, "sanity");
1626   assert(val != NULL, "not dead path");
1627   uint adr_idx = C->get_alias_index(adr_type);
1628   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1629 
1630   pre_barrier(true /* do_load */,
1631               control(), obj, adr, adr_idx, val, val_type,
1632               NULL /* pre_val */,
1633               bt);
1634 
1635   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo);
1636   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1637   return store;
1638 }
1639 
1640 // Could be an array or object we don't know at compile time (unsafe ref.)
1641 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1642                              Node* obj,   // containing obj
1643                              Node* adr,  // actual adress to store val at
1644                              const TypePtr* adr_type,
1645                              Node* val,
1646                              BasicType bt,
1647                              MemNode::MemOrd mo) {
1648   Compile::AliasType* at = C->alias_type(adr_type);
1649   const TypeOopPtr* val_type = NULL;
1650   if (adr_type->isa_instptr()) {
1651     if (at->field() != NULL) {
1652       // known field.  This code is a copy of the do_put_xxx logic.
1653       ciField* field = at->field();
1654       if (!field->type()->is_loaded()) {
1655         val_type = TypeInstPtr::BOTTOM;
1656       } else {
1657         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1658       }
1659     }
1660   } else if (adr_type->isa_aryptr()) {
1661     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1662   }
1663   if (val_type == NULL) {
1664     val_type = TypeInstPtr::BOTTOM;
1665   }
1666   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
1667 }
1668 
1669 
1670 //-------------------------array_element_address-------------------------
1671 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1672                                       const TypeInt* sizetype) {
1673   uint shift  = exact_log2(type2aelembytes(elembt));
1674   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1675 
1676   // short-circuit a common case (saves lots of confusing waste motion)
1677   jint idx_con = find_int_con(idx, -1);
1678   if (idx_con >= 0) {
1679     intptr_t offset = header + ((intptr_t)idx_con << shift);
1680     return basic_plus_adr(ary, offset);
1681   }
1682 
1683   // must be correct type for alignment purposes
1684   Node* base  = basic_plus_adr(ary, header);
1685 #ifdef _LP64
1686   // The scaled index operand to AddP must be a clean 64-bit value.
1687   // Java allows a 32-bit int to be incremented to a negative
1688   // value, which appears in a 64-bit register as a large
1689   // positive number.  Using that large positive number as an
1690   // operand in pointer arithmetic has bad consequences.
1691   // On the other hand, 32-bit overflow is rare, and the possibility
1692   // can often be excluded, if we annotate the ConvI2L node with
1693   // a type assertion that its value is known to be a small positive
1694   // number.  (The prior range check has ensured this.)
1695   // This assertion is used by ConvI2LNode::Ideal.
1696   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1697   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1698   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1699   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1700 #endif
1701   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1702   return basic_plus_adr(ary, base, scale);
1703 }
1704 
1705 //-------------------------load_array_element-------------------------
1706 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1707   const Type* elemtype = arytype->elem();
1708   BasicType elembt = elemtype->array_element_basic_type();
1709   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1710   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1711   return ld;
1712 }
1713 
1714 //-------------------------set_arguments_for_java_call-------------------------
1715 // Arguments (pre-popped from the stack) are taken from the JVMS.
1716 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1717   // Add the call arguments:
1718   uint nargs = call->method()->arg_size();
1719   for (uint i = 0; i < nargs; i++) {
1720     Node* arg = argument(i);
1721     call->init_req(i + TypeFunc::Parms, arg);
1722   }
1723 }
1724 
1725 //---------------------------set_edges_for_java_call---------------------------
1726 // Connect a newly created call into the current JVMS.
1727 // A return value node (if any) is returned from set_edges_for_java_call.
1728 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1729 
1730   // Add the predefined inputs:
1731   call->init_req( TypeFunc::Control, control() );
1732   call->init_req( TypeFunc::I_O    , i_o() );
1733   call->init_req( TypeFunc::Memory , reset_memory() );
1734   call->init_req( TypeFunc::FramePtr, frameptr() );
1735   call->init_req( TypeFunc::ReturnAdr, top() );
1736 
1737   add_safepoint_edges(call, must_throw);
1738 
1739   Node* xcall = _gvn.transform(call);
1740 
1741   if (xcall == top()) {
1742     set_control(top());
1743     return;
1744   }
1745   assert(xcall == call, "call identity is stable");
1746 
1747   // Re-use the current map to produce the result.
1748 
1749   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1750   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1751   set_all_memory_call(xcall, separate_io_proj);
1752 
1753   //return xcall;   // no need, caller already has it
1754 }
1755 
1756 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1757   if (stopped())  return top();  // maybe the call folded up?
1758 
1759   // Capture the return value, if any.
1760   Node* ret;
1761   if (call->method() == NULL ||
1762       call->method()->return_type()->basic_type() == T_VOID)
1763         ret = top();
1764   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1765 
1766   // Note:  Since any out-of-line call can produce an exception,
1767   // we always insert an I_O projection from the call into the result.
1768 
1769   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1770 
1771   if (separate_io_proj) {
1772     // The caller requested separate projections be used by the fall
1773     // through and exceptional paths, so replace the projections for
1774     // the fall through path.
1775     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1776     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1777   }
1778   return ret;
1779 }
1780 
1781 //--------------------set_predefined_input_for_runtime_call--------------------
1782 // Reading and setting the memory state is way conservative here.
1783 // The real problem is that I am not doing real Type analysis on memory,
1784 // so I cannot distinguish card mark stores from other stores.  Across a GC
1785 // point the Store Barrier and the card mark memory has to agree.  I cannot
1786 // have a card mark store and its barrier split across the GC point from
1787 // either above or below.  Here I get that to happen by reading ALL of memory.
1788 // A better answer would be to separate out card marks from other memory.
1789 // For now, return the input memory state, so that it can be reused
1790 // after the call, if this call has restricted memory effects.
1791 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1792   // Set fixed predefined input arguments
1793   Node* memory = reset_memory();
1794   call->init_req( TypeFunc::Control,   control()  );
1795   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1796   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1797   call->init_req( TypeFunc::FramePtr,  frameptr() );
1798   call->init_req( TypeFunc::ReturnAdr, top()      );
1799   return memory;
1800 }
1801 
1802 //-------------------set_predefined_output_for_runtime_call--------------------
1803 // Set control and memory (not i_o) from the call.
1804 // If keep_mem is not NULL, use it for the output state,
1805 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1806 // If hook_mem is NULL, this call produces no memory effects at all.
1807 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1808 // then only that memory slice is taken from the call.
1809 // In the last case, we must put an appropriate memory barrier before
1810 // the call, so as to create the correct anti-dependencies on loads
1811 // preceding the call.
1812 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1813                                                       Node* keep_mem,
1814                                                       const TypePtr* hook_mem) {
1815   // no i/o
1816   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1817   if (keep_mem) {
1818     // First clone the existing memory state
1819     set_all_memory(keep_mem);
1820     if (hook_mem != NULL) {
1821       // Make memory for the call
1822       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1823       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1824       // We also use hook_mem to extract specific effects from arraycopy stubs.
1825       set_memory(mem, hook_mem);
1826     }
1827     // ...else the call has NO memory effects.
1828 
1829     // Make sure the call advertises its memory effects precisely.
1830     // This lets us build accurate anti-dependences in gcm.cpp.
1831     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1832            "call node must be constructed correctly");
1833   } else {
1834     assert(hook_mem == NULL, "");
1835     // This is not a "slow path" call; all memory comes from the call.
1836     set_all_memory_call(call);
1837   }
1838 }
1839 
1840 
1841 // Replace the call with the current state of the kit.
1842 void GraphKit::replace_call(CallNode* call, Node* result) {
1843   JVMState* ejvms = NULL;
1844   if (has_exceptions()) {
1845     ejvms = transfer_exceptions_into_jvms();
1846   }
1847 
1848   SafePointNode* final_state = stop();
1849 
1850   // Find all the needed outputs of this call
1851   CallProjections callprojs;
1852   call->extract_projections(&callprojs, true);
1853 
1854   Node* init_mem = call->in(TypeFunc::Memory);
1855   Node* final_mem = final_state->in(TypeFunc::Memory);
1856   Node* final_ctl = final_state->in(TypeFunc::Control);
1857   Node* final_io = final_state->in(TypeFunc::I_O);
1858 
1859   // Replace all the old call edges with the edges from the inlining result
1860   if (callprojs.fallthrough_catchproj != NULL) {
1861     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1862   }
1863   if (callprojs.fallthrough_memproj != NULL) {
1864     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1865   }
1866   if (callprojs.fallthrough_ioproj != NULL) {
1867     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1868   }
1869 
1870   // Replace the result with the new result if it exists and is used
1871   if (callprojs.resproj != NULL && result != NULL) {
1872     C->gvn_replace_by(callprojs.resproj, result);
1873   }
1874 
1875   if (ejvms == NULL) {
1876     // No exception edges to simply kill off those paths
1877     if (callprojs.catchall_catchproj != NULL) {
1878       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1879     }
1880     if (callprojs.catchall_memproj != NULL) {
1881       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1882     }
1883     if (callprojs.catchall_ioproj != NULL) {
1884       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1885     }
1886     // Replace the old exception object with top
1887     if (callprojs.exobj != NULL) {
1888       C->gvn_replace_by(callprojs.exobj, C->top());
1889     }
1890   } else {
1891     GraphKit ekit(ejvms);
1892 
1893     // Load my combined exception state into the kit, with all phis transformed:
1894     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1895 
1896     Node* ex_oop = ekit.use_exception_state(ex_map);
1897     if (callprojs.catchall_catchproj != NULL) {
1898       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1899     }
1900     if (callprojs.catchall_memproj != NULL) {
1901       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1902     }
1903     if (callprojs.catchall_ioproj != NULL) {
1904       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1905     }
1906 
1907     // Replace the old exception object with the newly created one
1908     if (callprojs.exobj != NULL) {
1909       C->gvn_replace_by(callprojs.exobj, ex_oop);
1910     }
1911   }
1912 
1913   // Disconnect the call from the graph
1914   call->disconnect_inputs(NULL, C);
1915   C->gvn_replace_by(call, C->top());
1916 
1917   // Clean up any MergeMems that feed other MergeMems since the
1918   // optimizer doesn't like that.
1919   if (final_mem->is_MergeMem()) {
1920     Node_List wl;
1921     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1922       Node* m = i.get();
1923       if (m->is_MergeMem() && !wl.contains(m)) {
1924         wl.push(m);
1925       }
1926     }
1927     while (wl.size()  > 0) {
1928       _gvn.transform(wl.pop());
1929     }
1930   }
1931 }
1932 
1933 
1934 //------------------------------increment_counter------------------------------
1935 // for statistics: increment a VM counter by 1
1936 
1937 void GraphKit::increment_counter(address counter_addr) {
1938   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1939   increment_counter(adr1);
1940 }
1941 
1942 void GraphKit::increment_counter(Node* counter_addr) {
1943   int adr_type = Compile::AliasIdxRaw;
1944   Node* ctrl = control();
1945   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1946   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1947   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1948 }
1949 
1950 
1951 //------------------------------uncommon_trap----------------------------------
1952 // Bail out to the interpreter in mid-method.  Implemented by calling the
1953 // uncommon_trap blob.  This helper function inserts a runtime call with the
1954 // right debug info.
1955 void GraphKit::uncommon_trap(int trap_request,
1956                              ciKlass* klass, const char* comment,
1957                              bool must_throw,
1958                              bool keep_exact_action) {
1959   if (failing())  stop();
1960   if (stopped())  return; // trap reachable?
1961 
1962   // Note:  If ProfileTraps is true, and if a deopt. actually
1963   // occurs here, the runtime will make sure an MDO exists.  There is
1964   // no need to call method()->ensure_method_data() at this point.
1965 
1966   // Set the stack pointer to the right value for reexecution:
1967   set_sp(reexecute_sp());
1968 
1969 #ifdef ASSERT
1970   if (!must_throw) {
1971     // Make sure the stack has at least enough depth to execute
1972     // the current bytecode.
1973     int inputs, ignored_depth;
1974     if (compute_stack_effects(inputs, ignored_depth)) {
1975       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1976              Bytecodes::name(java_bc()), sp(), inputs));
1977     }
1978   }
1979 #endif
1980 
1981   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1982   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1983 
1984   switch (action) {
1985   case Deoptimization::Action_maybe_recompile:
1986   case Deoptimization::Action_reinterpret:
1987     // Temporary fix for 6529811 to allow virtual calls to be sure they
1988     // get the chance to go from mono->bi->mega
1989     if (!keep_exact_action &&
1990         Deoptimization::trap_request_index(trap_request) < 0 &&
1991         too_many_recompiles(reason)) {
1992       // This BCI is causing too many recompilations.
1993       action = Deoptimization::Action_none;
1994       trap_request = Deoptimization::make_trap_request(reason, action);
1995     } else {
1996       C->set_trap_can_recompile(true);
1997     }
1998     break;
1999   case Deoptimization::Action_make_not_entrant:
2000     C->set_trap_can_recompile(true);
2001     break;
2002 #ifdef ASSERT
2003   case Deoptimization::Action_none:
2004   case Deoptimization::Action_make_not_compilable:
2005     break;
2006   default:
2007     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
2008     break;
2009 #endif
2010   }
2011 
2012   if (TraceOptoParse) {
2013     char buf[100];
2014     tty->print_cr("Uncommon trap %s at bci:%d",
2015                   Deoptimization::format_trap_request(buf, sizeof(buf),
2016                                                       trap_request), bci());
2017   }
2018 
2019   CompileLog* log = C->log();
2020   if (log != NULL) {
2021     int kid = (klass == NULL)? -1: log->identify(klass);
2022     log->begin_elem("uncommon_trap bci='%d'", bci());
2023     char buf[100];
2024     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2025                                                           trap_request));
2026     if (kid >= 0)         log->print(" klass='%d'", kid);
2027     if (comment != NULL)  log->print(" comment='%s'", comment);
2028     log->end_elem();
2029   }
2030 
2031   // Make sure any guarding test views this path as very unlikely
2032   Node *i0 = control()->in(0);
2033   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2034     IfNode *iff = i0->as_If();
2035     float f = iff->_prob;   // Get prob
2036     if (control()->Opcode() == Op_IfTrue) {
2037       if (f > PROB_UNLIKELY_MAG(4))
2038         iff->_prob = PROB_MIN;
2039     } else {
2040       if (f < PROB_LIKELY_MAG(4))
2041         iff->_prob = PROB_MAX;
2042     }
2043   }
2044 
2045   // Clear out dead values from the debug info.
2046   kill_dead_locals();
2047 
2048   // Now insert the uncommon trap subroutine call
2049   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2050   const TypePtr* no_memory_effects = NULL;
2051   // Pass the index of the class to be loaded
2052   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2053                                  (must_throw ? RC_MUST_THROW : 0),
2054                                  OptoRuntime::uncommon_trap_Type(),
2055                                  call_addr, "uncommon_trap", no_memory_effects,
2056                                  intcon(trap_request));
2057   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2058          "must extract request correctly from the graph");
2059   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2060 
2061   call->set_req(TypeFunc::ReturnAdr, returnadr());
2062   // The debug info is the only real input to this call.
2063 
2064   // Halt-and-catch fire here.  The above call should never return!
2065   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2066   _gvn.set_type_bottom(halt);
2067   root()->add_req(halt);
2068 
2069   stop_and_kill_map();
2070 }
2071 
2072 
2073 //--------------------------just_allocated_object------------------------------
2074 // Report the object that was just allocated.
2075 // It must be the case that there are no intervening safepoints.
2076 // We use this to determine if an object is so "fresh" that
2077 // it does not require card marks.
2078 Node* GraphKit::just_allocated_object(Node* current_control) {
2079   if (C->recent_alloc_ctl() == current_control)
2080     return C->recent_alloc_obj();
2081   return NULL;
2082 }
2083 
2084 
2085 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2086   // (Note:  TypeFunc::make has a cache that makes this fast.)
2087   const TypeFunc* tf    = TypeFunc::make(dest_method);
2088   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2089   for (int j = 0; j < nargs; j++) {
2090     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2091     if( targ->basic_type() == T_DOUBLE ) {
2092       // If any parameters are doubles, they must be rounded before
2093       // the call, dstore_rounding does gvn.transform
2094       Node *arg = argument(j);
2095       arg = dstore_rounding(arg);
2096       set_argument(j, arg);
2097     }
2098   }
2099 }
2100 
2101 /**
2102  * Record profiling data exact_kls for Node n with the type system so
2103  * that it can propagate it (speculation)
2104  *
2105  * @param n          node that the type applies to
2106  * @param exact_kls  type from profiling
2107  *
2108  * @return           node with improved type
2109  */
2110 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
2111   const Type* current_type = _gvn.type(n);
2112   assert(UseTypeSpeculation, "type speculation must be on");
2113 
2114   const TypeOopPtr* speculative = current_type->speculative();
2115 
2116   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2117     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2118     const TypeOopPtr* xtype = tklass->as_instance_type();
2119     assert(xtype->klass_is_exact(), "Should be exact");
2120     // record the new speculative type's depth
2121     speculative = xtype->with_inline_depth(jvms()->depth());
2122   }
2123 
2124   if (speculative != current_type->speculative()) {
2125     // Build a type with a speculative type (what we think we know
2126     // about the type but will need a guard when we use it)
2127     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2128     // We're changing the type, we need a new CheckCast node to carry
2129     // the new type. The new type depends on the control: what
2130     // profiling tells us is only valid from here as far as we can
2131     // tell.
2132     Node* cast = new(C) CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2133     cast = _gvn.transform(cast);
2134     replace_in_map(n, cast);
2135     n = cast;
2136   }
2137 
2138   return n;
2139 }
2140 
2141 /**
2142  * Record profiling data from receiver profiling at an invoke with the
2143  * type system so that it can propagate it (speculation)
2144  *
2145  * @param n  receiver node
2146  *
2147  * @return   node with improved type
2148  */
2149 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2150   if (!UseTypeSpeculation) {
2151     return n;
2152   }
2153   ciKlass* exact_kls = profile_has_unique_klass();
2154   return record_profile_for_speculation(n, exact_kls);
2155 }
2156 
2157 /**
2158  * Record profiling data from argument profiling at an invoke with the
2159  * type system so that it can propagate it (speculation)
2160  *
2161  * @param dest_method  target method for the call
2162  * @param bc           what invoke bytecode is this?
2163  */
2164 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2165   if (!UseTypeSpeculation) {
2166     return;
2167   }
2168   const TypeFunc* tf    = TypeFunc::make(dest_method);
2169   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2170   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2171   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2172     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2173     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2174       ciKlass* better_type = method()->argument_profiled_type(bci(), i);
2175       if (better_type != NULL) {
2176         record_profile_for_speculation(argument(j), better_type);
2177       }
2178       i++;
2179     }
2180   }
2181 }
2182 
2183 /**
2184  * Record profiling data from parameter profiling at an invoke with
2185  * the type system so that it can propagate it (speculation)
2186  */
2187 void GraphKit::record_profiled_parameters_for_speculation() {
2188   if (!UseTypeSpeculation) {
2189     return;
2190   }
2191   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2192     if (_gvn.type(local(i))->isa_oopptr()) {
2193       ciKlass* better_type = method()->parameter_profiled_type(j);
2194       if (better_type != NULL) {
2195         record_profile_for_speculation(local(i), better_type);
2196       }
2197       j++;
2198     }
2199   }
2200 }
2201 
2202 void GraphKit::round_double_result(ciMethod* dest_method) {
2203   // A non-strict method may return a double value which has an extended
2204   // exponent, but this must not be visible in a caller which is 'strict'
2205   // If a strict caller invokes a non-strict callee, round a double result
2206 
2207   BasicType result_type = dest_method->return_type()->basic_type();
2208   assert( method() != NULL, "must have caller context");
2209   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2210     // Destination method's return value is on top of stack
2211     // dstore_rounding() does gvn.transform
2212     Node *result = pop_pair();
2213     result = dstore_rounding(result);
2214     push_pair(result);
2215   }
2216 }
2217 
2218 // rounding for strict float precision conformance
2219 Node* GraphKit::precision_rounding(Node* n) {
2220   return UseStrictFP && _method->flags().is_strict()
2221     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2222     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2223     : n;
2224 }
2225 
2226 // rounding for strict double precision conformance
2227 Node* GraphKit::dprecision_rounding(Node *n) {
2228   return UseStrictFP && _method->flags().is_strict()
2229     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2230     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2231     : n;
2232 }
2233 
2234 // rounding for non-strict double stores
2235 Node* GraphKit::dstore_rounding(Node* n) {
2236   return Matcher::strict_fp_requires_explicit_rounding
2237     && UseSSE <= 1
2238     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2239     : n;
2240 }
2241 
2242 //=============================================================================
2243 // Generate a fast path/slow path idiom.  Graph looks like:
2244 // [foo] indicates that 'foo' is a parameter
2245 //
2246 //              [in]     NULL
2247 //                 \    /
2248 //                  CmpP
2249 //                  Bool ne
2250 //                   If
2251 //                  /  \
2252 //              True    False-<2>
2253 //              / |
2254 //             /  cast_not_null
2255 //           Load  |    |   ^
2256 //        [fast_test]   |   |
2257 // gvn to   opt_test    |   |
2258 //          /    \      |  <1>
2259 //      True     False  |
2260 //        |         \\  |
2261 //   [slow_call]     \[fast_result]
2262 //    Ctl   Val       \      \
2263 //     |               \      \
2264 //    Catch       <1>   \      \
2265 //   /    \        ^     \      \
2266 //  Ex    No_Ex    |      \      \
2267 //  |       \   \  |       \ <2>  \
2268 //  ...      \  [slow_res] |  |    \   [null_result]
2269 //            \         \--+--+---  |  |
2270 //             \           | /    \ | /
2271 //              --------Region     Phi
2272 //
2273 //=============================================================================
2274 // Code is structured as a series of driver functions all called 'do_XXX' that
2275 // call a set of helper functions.  Helper functions first, then drivers.
2276 
2277 //------------------------------null_check_oop---------------------------------
2278 // Null check oop.  Set null-path control into Region in slot 3.
2279 // Make a cast-not-nullness use the other not-null control.  Return cast.
2280 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2281                                bool never_see_null, bool safe_for_replace) {
2282   // Initial NULL check taken path
2283   (*null_control) = top();
2284   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2285 
2286   // Generate uncommon_trap:
2287   if (never_see_null && (*null_control) != top()) {
2288     // If we see an unexpected null at a check-cast we record it and force a
2289     // recompile; the offending check-cast will be compiled to handle NULLs.
2290     // If we see more than one offending BCI, then all checkcasts in the
2291     // method will be compiled to handle NULLs.
2292     PreserveJVMState pjvms(this);
2293     set_control(*null_control);
2294     replace_in_map(value, null());
2295     uncommon_trap(Deoptimization::Reason_null_check,
2296                   Deoptimization::Action_make_not_entrant);
2297     (*null_control) = top();    // NULL path is dead
2298   }
2299   if ((*null_control) == top() && safe_for_replace) {
2300     replace_in_map(value, cast);
2301   }
2302 
2303   // Cast away null-ness on the result
2304   return cast;
2305 }
2306 
2307 //------------------------------opt_iff----------------------------------------
2308 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2309 // Return slow-path control.
2310 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2311   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2312 
2313   // Fast path taken; set region slot 2
2314   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2315   region->init_req(2,fast_taken); // Capture fast-control
2316 
2317   // Fast path not-taken, i.e. slow path
2318   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2319   return slow_taken;
2320 }
2321 
2322 //-----------------------------make_runtime_call-------------------------------
2323 Node* GraphKit::make_runtime_call(int flags,
2324                                   const TypeFunc* call_type, address call_addr,
2325                                   const char* call_name,
2326                                   const TypePtr* adr_type,
2327                                   // The following parms are all optional.
2328                                   // The first NULL ends the list.
2329                                   Node* parm0, Node* parm1,
2330                                   Node* parm2, Node* parm3,
2331                                   Node* parm4, Node* parm5,
2332                                   Node* parm6, Node* parm7) {
2333   // Slow-path call
2334   bool is_leaf = !(flags & RC_NO_LEAF);
2335   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2336   if (call_name == NULL) {
2337     assert(!is_leaf, "must supply name for leaf");
2338     call_name = OptoRuntime::stub_name(call_addr);
2339   }
2340   CallNode* call;
2341   if (!is_leaf) {
2342     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2343                                            bci(), adr_type);
2344   } else if (flags & RC_NO_FP) {
2345     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2346   } else {
2347     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2348   }
2349 
2350   // The following is similar to set_edges_for_java_call,
2351   // except that the memory effects of the call are restricted to AliasIdxRaw.
2352 
2353   // Slow path call has no side-effects, uses few values
2354   bool wide_in  = !(flags & RC_NARROW_MEM);
2355   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2356 
2357   Node* prev_mem = NULL;
2358   if (wide_in) {
2359     prev_mem = set_predefined_input_for_runtime_call(call);
2360   } else {
2361     assert(!wide_out, "narrow in => narrow out");
2362     Node* narrow_mem = memory(adr_type);
2363     prev_mem = reset_memory();
2364     map()->set_memory(narrow_mem);
2365     set_predefined_input_for_runtime_call(call);
2366   }
2367 
2368   // Hook each parm in order.  Stop looking at the first NULL.
2369   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2370   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2371   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2372   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2373   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2374   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2375   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2376   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2377     /* close each nested if ===> */  } } } } } } } }
2378   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2379 
2380   if (!is_leaf) {
2381     // Non-leaves can block and take safepoints:
2382     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2383   }
2384   // Non-leaves can throw exceptions:
2385   if (has_io) {
2386     call->set_req(TypeFunc::I_O, i_o());
2387   }
2388 
2389   if (flags & RC_UNCOMMON) {
2390     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2391     // (An "if" probability corresponds roughly to an unconditional count.
2392     // Sort of.)
2393     call->set_cnt(PROB_UNLIKELY_MAG(4));
2394   }
2395 
2396   Node* c = _gvn.transform(call);
2397   assert(c == call, "cannot disappear");
2398 
2399   if (wide_out) {
2400     // Slow path call has full side-effects.
2401     set_predefined_output_for_runtime_call(call);
2402   } else {
2403     // Slow path call has few side-effects, and/or sets few values.
2404     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2405   }
2406 
2407   if (has_io) {
2408     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2409   }
2410   return call;
2411 
2412 }
2413 
2414 //------------------------------merge_memory-----------------------------------
2415 // Merge memory from one path into the current memory state.
2416 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2417   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2418     Node* old_slice = mms.force_memory();
2419     Node* new_slice = mms.memory2();
2420     if (old_slice != new_slice) {
2421       PhiNode* phi;
2422       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2423         phi = new_slice->as_Phi();
2424         #ifdef ASSERT
2425         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2426           old_slice = old_slice->in(new_path);
2427         // Caller is responsible for ensuring that any pre-existing
2428         // phis are already aware of old memory.
2429         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2430         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2431         #endif
2432         mms.set_memory(phi);
2433       } else {
2434         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2435         _gvn.set_type(phi, Type::MEMORY);
2436         phi->set_req(new_path, new_slice);
2437         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2438       }
2439     }
2440   }
2441 }
2442 
2443 //------------------------------make_slow_call_ex------------------------------
2444 // Make the exception handler hookups for the slow call
2445 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2446   if (stopped())  return;
2447 
2448   // Make a catch node with just two handlers:  fall-through and catch-all
2449   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2450   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2451   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2452   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2453 
2454   { PreserveJVMState pjvms(this);
2455     set_control(excp);
2456     set_i_o(i_o);
2457 
2458     if (excp != top()) {
2459       // Create an exception state also.
2460       // Use an exact type if the caller has specified a specific exception.
2461       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2462       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2463       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2464     }
2465   }
2466 
2467   // Get the no-exception control from the CatchNode.
2468   set_control(norm);
2469 }
2470 
2471 
2472 //-------------------------------gen_subtype_check-----------------------------
2473 // Generate a subtyping check.  Takes as input the subtype and supertype.
2474 // Returns 2 values: sets the default control() to the true path and returns
2475 // the false path.  Only reads invariant memory; sets no (visible) memory.
2476 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2477 // but that's not exposed to the optimizer.  This call also doesn't take in an
2478 // Object; if you wish to check an Object you need to load the Object's class
2479 // prior to coming here.
2480 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2481   // Fast check for identical types, perhaps identical constants.
2482   // The types can even be identical non-constants, in cases
2483   // involving Array.newInstance, Object.clone, etc.
2484   if (subklass == superklass)
2485     return top();             // false path is dead; no test needed.
2486 
2487   if (_gvn.type(superklass)->singleton()) {
2488     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2489     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2490 
2491     // In the common case of an exact superklass, try to fold up the
2492     // test before generating code.  You may ask, why not just generate
2493     // the code and then let it fold up?  The answer is that the generated
2494     // code will necessarily include null checks, which do not always
2495     // completely fold away.  If they are also needless, then they turn
2496     // into a performance loss.  Example:
2497     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2498     // Here, the type of 'fa' is often exact, so the store check
2499     // of fa[1]=x will fold up, without testing the nullness of x.
2500     switch (static_subtype_check(superk, subk)) {
2501     case SSC_always_false:
2502       {
2503         Node* always_fail = control();
2504         set_control(top());
2505         return always_fail;
2506       }
2507     case SSC_always_true:
2508       return top();
2509     case SSC_easy_test:
2510       {
2511         // Just do a direct pointer compare and be done.
2512         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2513         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2514         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2515         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2516         return       _gvn.transform( new(C) IfFalseNode(iff) );
2517       }
2518     case SSC_full_test:
2519       break;
2520     default:
2521       ShouldNotReachHere();
2522     }
2523   }
2524 
2525   // %%% Possible further optimization:  Even if the superklass is not exact,
2526   // if the subklass is the unique subtype of the superklass, the check
2527   // will always succeed.  We could leave a dependency behind to ensure this.
2528 
2529   // First load the super-klass's check-offset
2530   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2531   Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
2532                                                    TypeInt::INT, MemNode::unordered));
2533   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2534   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2535 
2536   // Load from the sub-klass's super-class display list, or a 1-word cache of
2537   // the secondary superclass list, or a failing value with a sentinel offset
2538   // if the super-klass is an interface or exceptionally deep in the Java
2539   // hierarchy and we have to scan the secondary superclass list the hard way.
2540   // Worst-case type is a little odd: NULL is allowed as a result (usually
2541   // klass loads can never produce a NULL).
2542   Node *chk_off_X = ConvI2X(chk_off);
2543   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2544   // For some types like interfaces the following loadKlass is from a 1-word
2545   // cache which is mutable so can't use immutable memory.  Other
2546   // types load from the super-class display table which is immutable.
2547   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2548   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2549 
2550   // Compile speed common case: ARE a subtype and we canNOT fail
2551   if( superklass == nkls )
2552     return top();             // false path is dead; no test needed.
2553 
2554   // See if we get an immediate positive hit.  Happens roughly 83% of the
2555   // time.  Test to see if the value loaded just previously from the subklass
2556   // is exactly the superklass.
2557   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2558   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2559   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2560   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2561   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2562 
2563   // Compile speed common case: Check for being deterministic right now.  If
2564   // chk_off is a constant and not equal to cacheoff then we are NOT a
2565   // subklass.  In this case we need exactly the 1 test above and we can
2566   // return those results immediately.
2567   if (!might_be_cache) {
2568     Node* not_subtype_ctrl = control();
2569     set_control(iftrue1); // We need exactly the 1 test above
2570     return not_subtype_ctrl;
2571   }
2572 
2573   // Gather the various success & failures here
2574   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2575   record_for_igvn(r_ok_subtype);
2576   RegionNode *r_not_subtype = new (C) RegionNode(3);
2577   record_for_igvn(r_not_subtype);
2578 
2579   r_ok_subtype->init_req(1, iftrue1);
2580 
2581   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2582   // is roughly 63% of the remaining cases).  Test to see if the loaded
2583   // check-offset points into the subklass display list or the 1-element
2584   // cache.  If it points to the display (and NOT the cache) and the display
2585   // missed then it's not a subtype.
2586   Node *cacheoff = _gvn.intcon(cacheoff_con);
2587   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2588   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2589   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2590   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2591   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2592 
2593   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2594   // No performance impact (too rare) but allows sharing of secondary arrays
2595   // which has some footprint reduction.
2596   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2597   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2598   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2599   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2600   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2601 
2602   // -- Roads not taken here: --
2603   // We could also have chosen to perform the self-check at the beginning
2604   // of this code sequence, as the assembler does.  This would not pay off
2605   // the same way, since the optimizer, unlike the assembler, can perform
2606   // static type analysis to fold away many successful self-checks.
2607   // Non-foldable self checks work better here in second position, because
2608   // the initial primary superclass check subsumes a self-check for most
2609   // types.  An exception would be a secondary type like array-of-interface,
2610   // which does not appear in its own primary supertype display.
2611   // Finally, we could have chosen to move the self-check into the
2612   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2613   // dependent manner.  But it is worthwhile to have the check here,
2614   // where it can be perhaps be optimized.  The cost in code space is
2615   // small (register compare, branch).
2616 
2617   // Now do a linear scan of the secondary super-klass array.  Again, no real
2618   // performance impact (too rare) but it's gotta be done.
2619   // Since the code is rarely used, there is no penalty for moving it
2620   // out of line, and it can only improve I-cache density.
2621   // The decision to inline or out-of-line this final check is platform
2622   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2623   Node* psc = _gvn.transform(
2624     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2625 
2626   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2627   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2628   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2629   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2630   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2631 
2632   // Return false path; set default control to true path.
2633   set_control( _gvn.transform(r_ok_subtype) );
2634   return _gvn.transform(r_not_subtype);
2635 }
2636 
2637 //----------------------------static_subtype_check-----------------------------
2638 // Shortcut important common cases when superklass is exact:
2639 // (0) superklass is java.lang.Object (can occur in reflective code)
2640 // (1) subklass is already limited to a subtype of superklass => always ok
2641 // (2) subklass does not overlap with superklass => always fail
2642 // (3) superklass has NO subtypes and we can check with a simple compare.
2643 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2644   if (StressReflectiveCode) {
2645     return SSC_full_test;       // Let caller generate the general case.
2646   }
2647 
2648   if (superk == env()->Object_klass()) {
2649     return SSC_always_true;     // (0) this test cannot fail
2650   }
2651 
2652   ciType* superelem = superk;
2653   if (superelem->is_array_klass())
2654     superelem = superelem->as_array_klass()->base_element_type();
2655 
2656   if (!subk->is_interface()) {  // cannot trust static interface types yet
2657     if (subk->is_subtype_of(superk)) {
2658       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2659     }
2660     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2661         !superk->is_subtype_of(subk)) {
2662       return SSC_always_false;
2663     }
2664   }
2665 
2666   // If casting to an instance klass, it must have no subtypes
2667   if (superk->is_interface()) {
2668     // Cannot trust interfaces yet.
2669     // %%% S.B. superk->nof_implementors() == 1
2670   } else if (superelem->is_instance_klass()) {
2671     ciInstanceKlass* ik = superelem->as_instance_klass();
2672     if (!ik->has_subklass() && !ik->is_interface()) {
2673       if (!ik->is_final()) {
2674         // Add a dependency if there is a chance of a later subclass.
2675         C->dependencies()->assert_leaf_type(ik);
2676       }
2677       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2678     }
2679   } else {
2680     // A primitive array type has no subtypes.
2681     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2682   }
2683 
2684   return SSC_full_test;
2685 }
2686 
2687 // Profile-driven exact type check:
2688 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2689                                     float prob,
2690                                     Node* *casted_receiver) {
2691   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2692   Node* recv_klass = load_object_klass(receiver);
2693   Node* want_klass = makecon(tklass);
2694   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2695   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2696   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2697   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2698   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2699 
2700   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2701   assert(recv_xtype->klass_is_exact(), "");
2702 
2703   // Subsume downstream occurrences of receiver with a cast to
2704   // recv_xtype, since now we know what the type will be.
2705   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2706   (*casted_receiver) = _gvn.transform(cast);
2707   // (User must make the replace_in_map call.)
2708 
2709   return fail;
2710 }
2711 
2712 
2713 //------------------------------seems_never_null-------------------------------
2714 // Use null_seen information if it is available from the profile.
2715 // If we see an unexpected null at a type check we record it and force a
2716 // recompile; the offending check will be recompiled to handle NULLs.
2717 // If we see several offending BCIs, then all checks in the
2718 // method will be recompiled.
2719 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2720   if (UncommonNullCast               // Cutout for this technique
2721       && obj != null()               // And not the -Xcomp stupid case?
2722       && !too_many_traps(Deoptimization::Reason_null_check)
2723       ) {
2724     if (data == NULL)
2725       // Edge case:  no mature data.  Be optimistic here.
2726       return true;
2727     // If the profile has not seen a null, assume it won't happen.
2728     assert(java_bc() == Bytecodes::_checkcast ||
2729            java_bc() == Bytecodes::_instanceof ||
2730            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2731     return !data->as_BitData()->null_seen();
2732   }
2733   return false;
2734 }
2735 
2736 //------------------------maybe_cast_profiled_receiver-------------------------
2737 // If the profile has seen exactly one type, narrow to exactly that type.
2738 // Subsequent type checks will always fold up.
2739 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2740                                              ciKlass* require_klass,
2741                                              ciKlass* spec_klass,
2742                                              bool safe_for_replace) {
2743   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2744 
2745   Deoptimization::DeoptReason reason = spec_klass == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check;
2746 
2747   // Make sure we haven't already deoptimized from this tactic.
2748   if (too_many_traps(reason))
2749     return NULL;
2750 
2751   // (No, this isn't a call, but it's enough like a virtual call
2752   // to use the same ciMethod accessor to get the profile info...)
2753   // If we have a speculative type use it instead of profiling (which
2754   // may not help us)
2755   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2756   if (exact_kls != NULL) {// no cast failures here
2757     if (require_klass == NULL ||
2758         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2759       // If we narrow the type to match what the type profile sees or
2760       // the speculative type, we can then remove the rest of the
2761       // cast.
2762       // This is a win, even if the exact_kls is very specific,
2763       // because downstream operations, such as method calls,
2764       // will often benefit from the sharper type.
2765       Node* exact_obj = not_null_obj; // will get updated in place...
2766       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2767                                             &exact_obj);
2768       { PreserveJVMState pjvms(this);
2769         set_control(slow_ctl);
2770         uncommon_trap(reason,
2771                       Deoptimization::Action_maybe_recompile);
2772       }
2773       if (safe_for_replace) {
2774         replace_in_map(not_null_obj, exact_obj);
2775       }
2776       return exact_obj;
2777     }
2778     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2779   }
2780 
2781   return NULL;
2782 }
2783 
2784 /**
2785  * Cast obj to type and emit guard unless we had too many traps here
2786  * already
2787  *
2788  * @param obj       node being casted
2789  * @param type      type to cast the node to
2790  * @param not_null  true if we know node cannot be null
2791  */
2792 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2793                                         ciKlass* type,
2794                                         bool not_null) {
2795   // type == NULL if profiling tells us this object is always null
2796   if (type != NULL) {
2797     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2798     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_null_check;
2799     if (!too_many_traps(null_reason) &&
2800         !too_many_traps(class_reason)) {
2801       Node* not_null_obj = NULL;
2802       // not_null is true if we know the object is not null and
2803       // there's no need for a null check
2804       if (!not_null) {
2805         Node* null_ctl = top();
2806         not_null_obj = null_check_oop(obj, &null_ctl, true, true);
2807         assert(null_ctl->is_top(), "no null control here");
2808       } else {
2809         not_null_obj = obj;
2810       }
2811 
2812       Node* exact_obj = not_null_obj;
2813       ciKlass* exact_kls = type;
2814       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2815                                             &exact_obj);
2816       {
2817         PreserveJVMState pjvms(this);
2818         set_control(slow_ctl);
2819         uncommon_trap(class_reason,
2820                       Deoptimization::Action_maybe_recompile);
2821       }
2822       replace_in_map(not_null_obj, exact_obj);
2823       obj = exact_obj;
2824     }
2825   } else {
2826     if (!too_many_traps(Deoptimization::Reason_null_assert)) {
2827       Node* exact_obj = null_assert(obj);
2828       replace_in_map(obj, exact_obj);
2829       obj = exact_obj;
2830     }
2831   }
2832   return obj;
2833 }
2834 
2835 //-------------------------------gen_instanceof--------------------------------
2836 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2837 // and the reflective instance-of call.
2838 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2839   kill_dead_locals();           // Benefit all the uncommon traps
2840   assert( !stopped(), "dead parse path should be checked in callers" );
2841   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2842          "must check for not-null not-dead klass in callers");
2843 
2844   // Make the merge point
2845   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2846   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2847   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2848   C->set_has_split_ifs(true); // Has chance for split-if optimization
2849 
2850   ciProfileData* data = NULL;
2851   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2852     data = method()->method_data()->bci_to_data(bci());
2853   }
2854   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2855                          && seems_never_null(obj, data));
2856 
2857   // Null check; get casted pointer; set region slot 3
2858   Node* null_ctl = top();
2859   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2860 
2861   // If not_null_obj is dead, only null-path is taken
2862   if (stopped()) {              // Doing instance-of on a NULL?
2863     set_control(null_ctl);
2864     return intcon(0);
2865   }
2866   region->init_req(_null_path, null_ctl);
2867   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2868   if (null_ctl == top()) {
2869     // Do this eagerly, so that pattern matches like is_diamond_phi
2870     // will work even during parsing.
2871     assert(_null_path == PATH_LIMIT-1, "delete last");
2872     region->del_req(_null_path);
2873     phi   ->del_req(_null_path);
2874   }
2875 
2876   // Do we know the type check always succeed?
2877   bool known_statically = false;
2878   if (_gvn.type(superklass)->singleton()) {
2879     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2880     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2881     if (subk != NULL && subk->is_loaded()) {
2882       int static_res = static_subtype_check(superk, subk);
2883       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
2884     }
2885   }
2886 
2887   if (known_statically && UseTypeSpeculation) {
2888     // If we know the type check always succeeds then we don't use the
2889     // profiling data at this bytecode. Don't lose it, feed it to the
2890     // type system as a speculative type.
2891     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
2892   } else {
2893     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2894     // We may not have profiling here or it may not help us. If we
2895     // have a speculative type use it to perform an exact cast.
2896     ciKlass* spec_obj_type = obj_type->speculative_type();
2897     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2898       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2899       if (stopped()) {            // Profile disagrees with this path.
2900         set_control(null_ctl);    // Null is the only remaining possibility.
2901         return intcon(0);
2902       }
2903       if (cast_obj != NULL) {
2904         not_null_obj = cast_obj;
2905       }
2906     }
2907   }
2908 
2909   // Load the object's klass
2910   Node* obj_klass = load_object_klass(not_null_obj);
2911 
2912   // Generate the subtype check
2913   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2914 
2915   // Plug in the success path to the general merge in slot 1.
2916   region->init_req(_obj_path, control());
2917   phi   ->init_req(_obj_path, intcon(1));
2918 
2919   // Plug in the failing path to the general merge in slot 2.
2920   region->init_req(_fail_path, not_subtype_ctrl);
2921   phi   ->init_req(_fail_path, intcon(0));
2922 
2923   // Return final merged results
2924   set_control( _gvn.transform(region) );
2925   record_for_igvn(region);
2926   return _gvn.transform(phi);
2927 }
2928 
2929 //-------------------------------gen_checkcast---------------------------------
2930 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2931 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2932 // uncommon-trap paths work.  Adjust stack after this call.
2933 // If failure_control is supplied and not null, it is filled in with
2934 // the control edge for the cast failure.  Otherwise, an appropriate
2935 // uncommon trap or exception is thrown.
2936 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2937                               Node* *failure_control) {
2938   kill_dead_locals();           // Benefit all the uncommon traps
2939   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2940   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2941 
2942   // Fast cutout:  Check the case that the cast is vacuously true.
2943   // This detects the common cases where the test will short-circuit
2944   // away completely.  We do this before we perform the null check,
2945   // because if the test is going to turn into zero code, we don't
2946   // want a residual null check left around.  (Causes a slowdown,
2947   // for example, in some objArray manipulations, such as a[i]=a[j].)
2948   if (tk->singleton()) {
2949     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2950     if (objtp != NULL && objtp->klass() != NULL) {
2951       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2952       case SSC_always_true:
2953         // If we know the type check always succeed then we don't use
2954         // the profiling data at this bytecode. Don't lose it, feed it
2955         // to the type system as a speculative type.
2956         return record_profiled_receiver_for_speculation(obj);
2957       case SSC_always_false:
2958         // It needs a null check because a null will *pass* the cast check.
2959         // A non-null value will always produce an exception.
2960         return null_assert(obj);
2961       }
2962     }
2963   }
2964 
2965   ciProfileData* data = NULL;
2966   bool safe_for_replace = false;
2967   if (failure_control == NULL) {        // use MDO in regular case only
2968     assert(java_bc() == Bytecodes::_aastore ||
2969            java_bc() == Bytecodes::_checkcast,
2970            "interpreter profiles type checks only for these BCs");
2971     data = method()->method_data()->bci_to_data(bci());
2972     safe_for_replace = true;
2973   }
2974 
2975   // Make the merge point
2976   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2977   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2978   Node*       phi    = new (C) PhiNode(region, toop);
2979   C->set_has_split_ifs(true); // Has chance for split-if optimization
2980 
2981   // Use null-cast information if it is available
2982   bool never_see_null = ((failure_control == NULL)  // regular case only
2983                          && seems_never_null(obj, data));
2984 
2985   // Null check; get casted pointer; set region slot 3
2986   Node* null_ctl = top();
2987   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
2988 
2989   // If not_null_obj is dead, only null-path is taken
2990   if (stopped()) {              // Doing instance-of on a NULL?
2991     set_control(null_ctl);
2992     return null();
2993   }
2994   region->init_req(_null_path, null_ctl);
2995   phi   ->init_req(_null_path, null());  // Set null path value
2996   if (null_ctl == top()) {
2997     // Do this eagerly, so that pattern matches like is_diamond_phi
2998     // will work even during parsing.
2999     assert(_null_path == PATH_LIMIT-1, "delete last");
3000     region->del_req(_null_path);
3001     phi   ->del_req(_null_path);
3002   }
3003 
3004   Node* cast_obj = NULL;
3005   const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3006   // We may not have profiling here or it may not help us. If we have
3007   // a speculative type use it to perform an exact cast.
3008   ciKlass* spec_obj_type = obj_type->speculative_type();
3009   if (spec_obj_type != NULL ||
3010       (data != NULL &&
3011        // Counter has never been decremented (due to cast failure).
3012        // ...This is a reasonable thing to expect.  It is true of
3013        // all casts inserted by javac to implement generic types.
3014        data->as_CounterData()->count() >= 0)) {
3015     cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3016     if (cast_obj != NULL) {
3017       if (failure_control != NULL) // failure is now impossible
3018         (*failure_control) = top();
3019       // adjust the type of the phi to the exact klass:
3020       phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3021     }
3022   }
3023 
3024   if (cast_obj == NULL) {
3025     // Load the object's klass
3026     Node* obj_klass = load_object_klass(not_null_obj);
3027 
3028     // Generate the subtype check
3029     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3030 
3031     // Plug in success path into the merge
3032     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
3033                                                          not_null_obj, toop));
3034     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3035     if (failure_control == NULL) {
3036       if (not_subtype_ctrl != top()) { // If failure is possible
3037         PreserveJVMState pjvms(this);
3038         set_control(not_subtype_ctrl);
3039         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3040       }
3041     } else {
3042       (*failure_control) = not_subtype_ctrl;
3043     }
3044   }
3045 
3046   region->init_req(_obj_path, control());
3047   phi   ->init_req(_obj_path, cast_obj);
3048 
3049   // A merge of NULL or Casted-NotNull obj
3050   Node* res = _gvn.transform(phi);
3051 
3052   // Note I do NOT always 'replace_in_map(obj,result)' here.
3053   //  if( tk->klass()->can_be_primary_super()  )
3054     // This means that if I successfully store an Object into an array-of-String
3055     // I 'forget' that the Object is really now known to be a String.  I have to
3056     // do this because we don't have true union types for interfaces - if I store
3057     // a Baz into an array-of-Interface and then tell the optimizer it's an
3058     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3059     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3060   //  replace_in_map( obj, res );
3061 
3062   // Return final merged results
3063   set_control( _gvn.transform(region) );
3064   record_for_igvn(region);
3065   return res;
3066 }
3067 
3068 //------------------------------next_monitor-----------------------------------
3069 // What number should be given to the next monitor?
3070 int GraphKit::next_monitor() {
3071   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3072   int next = current + C->sync_stack_slots();
3073   // Keep the toplevel high water mark current:
3074   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3075   return current;
3076 }
3077 
3078 //------------------------------insert_mem_bar---------------------------------
3079 // Memory barrier to avoid floating things around
3080 // The membar serves as a pinch point between both control and all memory slices.
3081 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3082   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3083   mb->init_req(TypeFunc::Control, control());
3084   mb->init_req(TypeFunc::Memory,  reset_memory());
3085   Node* membar = _gvn.transform(mb);
3086   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3087   set_all_memory_call(membar);
3088   return membar;
3089 }
3090 
3091 //-------------------------insert_mem_bar_volatile----------------------------
3092 // Memory barrier to avoid floating things around
3093 // The membar serves as a pinch point between both control and memory(alias_idx).
3094 // If you want to make a pinch point on all memory slices, do not use this
3095 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3096 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3097   // When Parse::do_put_xxx updates a volatile field, it appends a series
3098   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3099   // The first membar is on the same memory slice as the field store opcode.
3100   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3101   // All the other membars (for other volatile slices, including AliasIdxBot,
3102   // which stands for all unknown volatile slices) are control-dependent
3103   // on the first membar.  This prevents later volatile loads or stores
3104   // from sliding up past the just-emitted store.
3105 
3106   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3107   mb->set_req(TypeFunc::Control,control());
3108   if (alias_idx == Compile::AliasIdxBot) {
3109     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3110   } else {
3111     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3112     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3113   }
3114   Node* membar = _gvn.transform(mb);
3115   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
3116   if (alias_idx == Compile::AliasIdxBot) {
3117     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
3118   } else {
3119     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
3120   }
3121   return membar;
3122 }
3123 
3124 //------------------------------shared_lock------------------------------------
3125 // Emit locking code.
3126 FastLockNode* GraphKit::shared_lock(Node* obj) {
3127   // bci is either a monitorenter bc or InvocationEntryBci
3128   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3129   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3130 
3131   if( !GenerateSynchronizationCode )
3132     return NULL;                // Not locking things?
3133   if (stopped())                // Dead monitor?
3134     return NULL;
3135 
3136   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3137 
3138   // Box the stack location
3139   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
3140   Node* mem = reset_memory();
3141 
3142   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
3143   if (PrintPreciseBiasedLockingStatistics) {
3144     // Create the counters for this fast lock.
3145     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3146   }
3147   // Add monitor to debug info for the slow path.  If we block inside the
3148   // slow path and de-opt, we need the monitor hanging around
3149   map()->push_monitor( flock );
3150 
3151   const TypeFunc *tf = LockNode::lock_type();
3152   LockNode *lock = new (C) LockNode(C, tf);
3153 
3154   lock->init_req( TypeFunc::Control, control() );
3155   lock->init_req( TypeFunc::Memory , mem );
3156   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3157   lock->init_req( TypeFunc::FramePtr, frameptr() );
3158   lock->init_req( TypeFunc::ReturnAdr, top() );
3159 
3160   lock->init_req(TypeFunc::Parms + 0, obj);
3161   lock->init_req(TypeFunc::Parms + 1, box);
3162   lock->init_req(TypeFunc::Parms + 2, flock);
3163   add_safepoint_edges(lock);
3164 
3165   lock = _gvn.transform( lock )->as_Lock();
3166 
3167   // lock has no side-effects, sets few values
3168   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3169 
3170   insert_mem_bar(Op_MemBarAcquireLock);
3171 
3172   // Add this to the worklist so that the lock can be eliminated
3173   record_for_igvn(lock);
3174 
3175 #ifndef PRODUCT
3176   if (PrintLockStatistics) {
3177     // Update the counter for this lock.  Don't bother using an atomic
3178     // operation since we don't require absolute accuracy.
3179     lock->create_lock_counter(map()->jvms());
3180     increment_counter(lock->counter()->addr());
3181   }
3182 #endif
3183 
3184   return flock;
3185 }
3186 
3187 
3188 //------------------------------shared_unlock----------------------------------
3189 // Emit unlocking code.
3190 void GraphKit::shared_unlock(Node* box, Node* obj) {
3191   // bci is either a monitorenter bc or InvocationEntryBci
3192   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3193   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3194 
3195   if( !GenerateSynchronizationCode )
3196     return;
3197   if (stopped()) {               // Dead monitor?
3198     map()->pop_monitor();        // Kill monitor from debug info
3199     return;
3200   }
3201 
3202   // Memory barrier to avoid floating things down past the locked region
3203   insert_mem_bar(Op_MemBarReleaseLock);
3204 
3205   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3206   UnlockNode *unlock = new (C) UnlockNode(C, tf);
3207   uint raw_idx = Compile::AliasIdxRaw;
3208   unlock->init_req( TypeFunc::Control, control() );
3209   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3210   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3211   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3212   unlock->init_req( TypeFunc::ReturnAdr, top() );
3213 
3214   unlock->init_req(TypeFunc::Parms + 0, obj);
3215   unlock->init_req(TypeFunc::Parms + 1, box);
3216   unlock = _gvn.transform(unlock)->as_Unlock();
3217 
3218   Node* mem = reset_memory();
3219 
3220   // unlock has no side-effects, sets few values
3221   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3222 
3223   // Kill monitor from debug info
3224   map()->pop_monitor( );
3225 }
3226 
3227 //-------------------------------get_layout_helper-----------------------------
3228 // If the given klass is a constant or known to be an array,
3229 // fetch the constant layout helper value into constant_value
3230 // and return (Node*)NULL.  Otherwise, load the non-constant
3231 // layout helper value, and return the node which represents it.
3232 // This two-faced routine is useful because allocation sites
3233 // almost always feature constant types.
3234 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3235   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3236   if (!StressReflectiveCode && inst_klass != NULL) {
3237     ciKlass* klass = inst_klass->klass();
3238     bool    xklass = inst_klass->klass_is_exact();
3239     if (xklass || klass->is_array_klass()) {
3240       jint lhelper = klass->layout_helper();
3241       if (lhelper != Klass::_lh_neutral_value) {
3242         constant_value = lhelper;
3243         return (Node*) NULL;
3244       }
3245     }
3246   }
3247   constant_value = Klass::_lh_neutral_value;  // put in a known value
3248   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3249   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3250 }
3251 
3252 // We just put in an allocate/initialize with a big raw-memory effect.
3253 // Hook selected additional alias categories on the initialization.
3254 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3255                                 MergeMemNode* init_in_merge,
3256                                 Node* init_out_raw) {
3257   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3258   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3259 
3260   Node* prevmem = kit.memory(alias_idx);
3261   init_in_merge->set_memory_at(alias_idx, prevmem);
3262   kit.set_memory(init_out_raw, alias_idx);
3263 }
3264 
3265 //---------------------------set_output_for_allocation-------------------------
3266 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3267                                           const TypeOopPtr* oop_type) {
3268   int rawidx = Compile::AliasIdxRaw;
3269   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3270   add_safepoint_edges(alloc);
3271   Node* allocx = _gvn.transform(alloc);
3272   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3273   // create memory projection for i_o
3274   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3275   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3276 
3277   // create a memory projection as for the normal control path
3278   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3279   set_memory(malloc, rawidx);
3280 
3281   // a normal slow-call doesn't change i_o, but an allocation does
3282   // we create a separate i_o projection for the normal control path
3283   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3284   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3285 
3286   // put in an initialization barrier
3287   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3288                                                  rawoop)->as_Initialize();
3289   assert(alloc->initialization() == init,  "2-way macro link must work");
3290   assert(init ->allocation()     == alloc, "2-way macro link must work");
3291   {
3292     // Extract memory strands which may participate in the new object's
3293     // initialization, and source them from the new InitializeNode.
3294     // This will allow us to observe initializations when they occur,
3295     // and link them properly (as a group) to the InitializeNode.
3296     assert(init->in(InitializeNode::Memory) == malloc, "");
3297     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3298     init->set_req(InitializeNode::Memory, minit_in);
3299     record_for_igvn(minit_in); // fold it up later, if possible
3300     Node* minit_out = memory(rawidx);
3301     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3302     if (oop_type->isa_aryptr()) {
3303       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3304       int            elemidx  = C->get_alias_index(telemref);
3305       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3306     } else if (oop_type->isa_instptr()) {
3307       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3308       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3309         ciField* field = ik->nonstatic_field_at(i);
3310         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3311           continue;  // do not bother to track really large numbers of fields
3312         // Find (or create) the alias category for this field:
3313         int fieldidx = C->alias_type(field)->index();
3314         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3315       }
3316     }
3317   }
3318 
3319   // Cast raw oop to the real thing...
3320   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3321   javaoop = _gvn.transform(javaoop);
3322   C->set_recent_alloc(control(), javaoop);
3323   assert(just_allocated_object(control()) == javaoop, "just allocated");
3324 
3325 #ifdef ASSERT
3326   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3327     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3328            "Ideal_allocation works");
3329     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3330            "Ideal_allocation works");
3331     if (alloc->is_AllocateArray()) {
3332       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3333              "Ideal_allocation works");
3334       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3335              "Ideal_allocation works");
3336     } else {
3337       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3338     }
3339   }
3340 #endif //ASSERT
3341 
3342   return javaoop;
3343 }
3344 
3345 //---------------------------new_instance--------------------------------------
3346 // This routine takes a klass_node which may be constant (for a static type)
3347 // or may be non-constant (for reflective code).  It will work equally well
3348 // for either, and the graph will fold nicely if the optimizer later reduces
3349 // the type to a constant.
3350 // The optional arguments are for specialized use by intrinsics:
3351 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3352 //  - If 'return_size_val', report the the total object size to the caller.
3353 Node* GraphKit::new_instance(Node* klass_node,
3354                              Node* extra_slow_test,
3355                              Node* *return_size_val) {
3356   // Compute size in doublewords
3357   // The size is always an integral number of doublewords, represented
3358   // as a positive bytewise size stored in the klass's layout_helper.
3359   // The layout_helper also encodes (in a low bit) the need for a slow path.
3360   jint  layout_con = Klass::_lh_neutral_value;
3361   Node* layout_val = get_layout_helper(klass_node, layout_con);
3362   int   layout_is_con = (layout_val == NULL);
3363 
3364   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3365   // Generate the initial go-slow test.  It's either ALWAYS (return a
3366   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3367   // case) a computed value derived from the layout_helper.
3368   Node* initial_slow_test = NULL;
3369   if (layout_is_con) {
3370     assert(!StressReflectiveCode, "stress mode does not use these paths");
3371     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3372     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3373 
3374   } else {   // reflective case
3375     // This reflective path is used by Unsafe.allocateInstance.
3376     // (It may be stress-tested by specifying StressReflectiveCode.)
3377     // Basically, we want to get into the VM is there's an illegal argument.
3378     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3379     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3380     if (extra_slow_test != intcon(0)) {
3381       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3382     }
3383     // (Macro-expander will further convert this to a Bool, if necessary.)
3384   }
3385 
3386   // Find the size in bytes.  This is easy; it's the layout_helper.
3387   // The size value must be valid even if the slow path is taken.
3388   Node* size = NULL;
3389   if (layout_is_con) {
3390     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3391   } else {   // reflective case
3392     // This reflective path is used by clone and Unsafe.allocateInstance.
3393     size = ConvI2X(layout_val);
3394 
3395     // Clear the low bits to extract layout_helper_size_in_bytes:
3396     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3397     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3398     size = _gvn.transform( new (C) AndXNode(size, mask) );
3399   }
3400   if (return_size_val != NULL) {
3401     (*return_size_val) = size;
3402   }
3403 
3404   // This is a precise notnull oop of the klass.
3405   // (Actually, it need not be precise if this is a reflective allocation.)
3406   // It's what we cast the result to.
3407   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3408   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3409   const TypeOopPtr* oop_type = tklass->as_instance_type();
3410 
3411   // Now generate allocation code
3412 
3413   // The entire memory state is needed for slow path of the allocation
3414   // since GC and deoptimization can happened.
3415   Node *mem = reset_memory();
3416   set_all_memory(mem); // Create new memory state
3417 
3418   AllocateNode* alloc
3419     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3420                            control(), mem, i_o(),
3421                            size, klass_node,
3422                            initial_slow_test);
3423 
3424   return set_output_for_allocation(alloc, oop_type);
3425 }
3426 
3427 //-------------------------------new_array-------------------------------------
3428 // helper for both newarray and anewarray
3429 // The 'length' parameter is (obviously) the length of the array.
3430 // See comments on new_instance for the meaning of the other arguments.
3431 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3432                           Node* length,         // number of array elements
3433                           int   nargs,          // number of arguments to push back for uncommon trap
3434                           Node* *return_size_val) {
3435   jint  layout_con = Klass::_lh_neutral_value;
3436   Node* layout_val = get_layout_helper(klass_node, layout_con);
3437   int   layout_is_con = (layout_val == NULL);
3438 
3439   if (!layout_is_con && !StressReflectiveCode &&
3440       !too_many_traps(Deoptimization::Reason_class_check)) {
3441     // This is a reflective array creation site.
3442     // Optimistically assume that it is a subtype of Object[],
3443     // so that we can fold up all the address arithmetic.
3444     layout_con = Klass::array_layout_helper(T_OBJECT);
3445     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3446     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3447     { BuildCutout unless(this, bol_lh, PROB_MAX);
3448       inc_sp(nargs);
3449       uncommon_trap(Deoptimization::Reason_class_check,
3450                     Deoptimization::Action_maybe_recompile);
3451     }
3452     layout_val = NULL;
3453     layout_is_con = true;
3454   }
3455 
3456   // Generate the initial go-slow test.  Make sure we do not overflow
3457   // if length is huge (near 2Gig) or negative!  We do not need
3458   // exact double-words here, just a close approximation of needed
3459   // double-words.  We can't add any offset or rounding bits, lest we
3460   // take a size -1 of bytes and make it positive.  Use an unsigned
3461   // compare, so negative sizes look hugely positive.
3462   int fast_size_limit = FastAllocateSizeLimit;
3463   if (layout_is_con) {
3464     assert(!StressReflectiveCode, "stress mode does not use these paths");
3465     // Increase the size limit if we have exact knowledge of array type.
3466     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3467     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3468   }
3469 
3470   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3471   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3472   if (initial_slow_test->is_Bool()) {
3473     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3474     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3475   }
3476 
3477   // --- Size Computation ---
3478   // array_size = round_to_heap(array_header + (length << elem_shift));
3479   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3480   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3481   // The rounding mask is strength-reduced, if possible.
3482   int round_mask = MinObjAlignmentInBytes - 1;
3483   Node* header_size = NULL;
3484   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3485   // (T_BYTE has the weakest alignment and size restrictions...)
3486   if (layout_is_con) {
3487     int       hsize  = Klass::layout_helper_header_size(layout_con);
3488     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3489     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3490     if ((round_mask & ~right_n_bits(eshift)) == 0)
3491       round_mask = 0;  // strength-reduce it if it goes away completely
3492     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3493     assert(header_size_min <= hsize, "generic minimum is smallest");
3494     header_size_min = hsize;
3495     header_size = intcon(hsize + round_mask);
3496   } else {
3497     Node* hss   = intcon(Klass::_lh_header_size_shift);
3498     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3499     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3500     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3501     Node* mask  = intcon(round_mask);
3502     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3503   }
3504 
3505   Node* elem_shift = NULL;
3506   if (layout_is_con) {
3507     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3508     if (eshift != 0)
3509       elem_shift = intcon(eshift);
3510   } else {
3511     // There is no need to mask or shift this value.
3512     // The semantics of LShiftINode include an implicit mask to 0x1F.
3513     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3514     elem_shift = layout_val;
3515   }
3516 
3517   // Transition to native address size for all offset calculations:
3518   Node* lengthx = ConvI2X(length);
3519   Node* headerx = ConvI2X(header_size);
3520 #ifdef _LP64
3521   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3522     if (tllen != NULL && tllen->_lo < 0) {
3523       // Add a manual constraint to a positive range.  Cf. array_element_address.
3524       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3525       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3526       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3527       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3528     }
3529   }
3530 #endif
3531 
3532   // Combine header size (plus rounding) and body size.  Then round down.
3533   // This computation cannot overflow, because it is used only in two
3534   // places, one where the length is sharply limited, and the other
3535   // after a successful allocation.
3536   Node* abody = lengthx;
3537   if (elem_shift != NULL)
3538     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3539   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3540   if (round_mask != 0) {
3541     Node* mask = MakeConX(~round_mask);
3542     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3543   }
3544   // else if round_mask == 0, the size computation is self-rounding
3545 
3546   if (return_size_val != NULL) {
3547     // This is the size
3548     (*return_size_val) = size;
3549   }
3550 
3551   // Now generate allocation code
3552 
3553   // The entire memory state is needed for slow path of the allocation
3554   // since GC and deoptimization can happened.
3555   Node *mem = reset_memory();
3556   set_all_memory(mem); // Create new memory state
3557 
3558   // Create the AllocateArrayNode and its result projections
3559   AllocateArrayNode* alloc
3560     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3561                                 control(), mem, i_o(),
3562                                 size, klass_node,
3563                                 initial_slow_test,
3564                                 length);
3565 
3566   // Cast to correct type.  Note that the klass_node may be constant or not,
3567   // and in the latter case the actual array type will be inexact also.
3568   // (This happens via a non-constant argument to inline_native_newArray.)
3569   // In any case, the value of klass_node provides the desired array type.
3570   const TypeInt* length_type = _gvn.find_int_type(length);
3571   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3572   if (ary_type->isa_aryptr() && length_type != NULL) {
3573     // Try to get a better type than POS for the size
3574     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3575   }
3576 
3577   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3578 
3579   // Cast length on remaining path to be as narrow as possible
3580   if (map()->find_edge(length) >= 0) {
3581     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3582     if (ccast != length) {
3583       _gvn.set_type_bottom(ccast);
3584       record_for_igvn(ccast);
3585       replace_in_map(length, ccast);
3586     }
3587   }
3588 
3589   return javaoop;
3590 }
3591 
3592 // The following "Ideal_foo" functions are placed here because they recognize
3593 // the graph shapes created by the functions immediately above.
3594 
3595 //---------------------------Ideal_allocation----------------------------------
3596 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3597 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3598   if (ptr == NULL) {     // reduce dumb test in callers
3599     return NULL;
3600   }
3601   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3602     ptr = ptr->in(1);
3603     if (ptr == NULL) return NULL;
3604   }
3605   // Return NULL for allocations with several casts:
3606   //   j.l.reflect.Array.newInstance(jobject, jint)
3607   //   Object.clone()
3608   // to keep more precise type from last cast.
3609   if (ptr->is_Proj()) {
3610     Node* allo = ptr->in(0);
3611     if (allo != NULL && allo->is_Allocate()) {
3612       return allo->as_Allocate();
3613     }
3614   }
3615   // Report failure to match.
3616   return NULL;
3617 }
3618 
3619 // Fancy version which also strips off an offset (and reports it to caller).
3620 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3621                                              intptr_t& offset) {
3622   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3623   if (base == NULL)  return NULL;
3624   return Ideal_allocation(base, phase);
3625 }
3626 
3627 // Trace Initialize <- Proj[Parm] <- Allocate
3628 AllocateNode* InitializeNode::allocation() {
3629   Node* rawoop = in(InitializeNode::RawAddress);
3630   if (rawoop->is_Proj()) {
3631     Node* alloc = rawoop->in(0);
3632     if (alloc->is_Allocate()) {
3633       return alloc->as_Allocate();
3634     }
3635   }
3636   return NULL;
3637 }
3638 
3639 // Trace Allocate -> Proj[Parm] -> Initialize
3640 InitializeNode* AllocateNode::initialization() {
3641   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3642   if (rawoop == NULL)  return NULL;
3643   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3644     Node* init = rawoop->fast_out(i);
3645     if (init->is_Initialize()) {
3646       assert(init->as_Initialize()->allocation() == this, "2-way link");
3647       return init->as_Initialize();
3648     }
3649   }
3650   return NULL;
3651 }
3652 
3653 //----------------------------- loop predicates ---------------------------
3654 
3655 //------------------------------add_predicate_impl----------------------------
3656 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3657   // Too many traps seen?
3658   if (too_many_traps(reason)) {
3659 #ifdef ASSERT
3660     if (TraceLoopPredicate) {
3661       int tc = C->trap_count(reason);
3662       tty->print("too many traps=%s tcount=%d in ",
3663                     Deoptimization::trap_reason_name(reason), tc);
3664       method()->print(); // which method has too many predicate traps
3665       tty->cr();
3666     }
3667 #endif
3668     // We cannot afford to take more traps here,
3669     // do not generate predicate.
3670     return;
3671   }
3672 
3673   Node *cont    = _gvn.intcon(1);
3674   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3675   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3676   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3677   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3678   C->add_predicate_opaq(opq);
3679   {
3680     PreserveJVMState pjvms(this);
3681     set_control(iffalse);
3682     inc_sp(nargs);
3683     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3684   }
3685   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3686   set_control(iftrue);
3687 }
3688 
3689 //------------------------------add_predicate---------------------------------
3690 void GraphKit::add_predicate(int nargs) {
3691   if (UseLoopPredicate) {
3692     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3693   }
3694   // loop's limit check predicate should be near the loop.
3695   if (LoopLimitCheck) {
3696     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3697   }
3698 }
3699 
3700 //----------------------------- store barriers ----------------------------
3701 #define __ ideal.
3702 
3703 void GraphKit::sync_kit(IdealKit& ideal) {
3704   set_all_memory(__ merged_memory());
3705   set_i_o(__ i_o());
3706   set_control(__ ctrl());
3707 }
3708 
3709 void GraphKit::final_sync(IdealKit& ideal) {
3710   // Final sync IdealKit and graphKit.
3711   sync_kit(ideal);
3712 }
3713 
3714 // vanilla/CMS post barrier
3715 // Insert a write-barrier store.  This is to let generational GC work; we have
3716 // to flag all oop-stores before the next GC point.
3717 void GraphKit::write_barrier_post(Node* oop_store,
3718                                   Node* obj,
3719                                   Node* adr,
3720                                   uint  adr_idx,
3721                                   Node* val,
3722                                   bool use_precise) {
3723   // No store check needed if we're storing a NULL or an old object
3724   // (latter case is probably a string constant). The concurrent
3725   // mark sweep garbage collector, however, needs to have all nonNull
3726   // oop updates flagged via card-marks.
3727   if (val != NULL && val->is_Con()) {
3728     // must be either an oop or NULL
3729     const Type* t = val->bottom_type();
3730     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3731       // stores of null never (?) need barriers
3732       return;
3733   }
3734 
3735   if (use_ReduceInitialCardMarks()
3736       && obj == just_allocated_object(control())) {
3737     // We can skip marks on a freshly-allocated object in Eden.
3738     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3739     // That routine informs GC to take appropriate compensating steps,
3740     // upon a slow-path allocation, so as to make this card-mark
3741     // elision safe.
3742     return;
3743   }
3744 
3745   if (!use_precise) {
3746     // All card marks for a (non-array) instance are in one place:
3747     adr = obj;
3748   }
3749   // (Else it's an array (or unknown), and we want more precise card marks.)
3750   assert(adr != NULL, "");
3751 
3752   IdealKit ideal(this, true);
3753 
3754   // Convert the pointer to an int prior to doing math on it
3755   Node* cast = __ CastPX(__ ctrl(), adr);
3756 
3757   // Divide by card size
3758   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3759          "Only one we handle so far.");
3760   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3761 
3762   // Combine card table base and card offset
3763   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3764 
3765   // Get the alias_index for raw card-mark memory
3766   int adr_type = Compile::AliasIdxRaw;
3767   Node*   zero = __ ConI(0); // Dirty card value
3768   BasicType bt = T_BYTE;
3769 
3770   if (UseCondCardMark) {
3771     // The classic GC reference write barrier is typically implemented
3772     // as a store into the global card mark table.  Unfortunately
3773     // unconditional stores can result in false sharing and excessive
3774     // coherence traffic as well as false transactional aborts.
3775     // UseCondCardMark enables MP "polite" conditional card mark
3776     // stores.  In theory we could relax the load from ctrl() to
3777     // no_ctrl, but that doesn't buy much latitude.
3778     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3779     __ if_then(card_val, BoolTest::ne, zero);
3780   }
3781 
3782   // Smash zero into card
3783   if( !UseConcMarkSweepGC ) {
3784     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
3785   } else {
3786     // Specialized path for CM store barrier
3787     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3788   }
3789 
3790   if (UseCondCardMark) {
3791     __ end_if();
3792   }
3793 
3794   // Final sync IdealKit and GraphKit.
3795   final_sync(ideal);
3796 }
3797 
3798 // G1 pre/post barriers
3799 void GraphKit::g1_write_barrier_pre(bool do_load,
3800                                     Node* obj,
3801                                     Node* adr,
3802                                     uint alias_idx,
3803                                     Node* val,
3804                                     const TypeOopPtr* val_type,
3805                                     Node* pre_val,
3806                                     BasicType bt) {
3807 
3808   // Some sanity checks
3809   // Note: val is unused in this routine.
3810 
3811   if (do_load) {
3812     // We need to generate the load of the previous value
3813     assert(obj != NULL, "must have a base");
3814     assert(adr != NULL, "where are loading from?");
3815     assert(pre_val == NULL, "loaded already?");
3816     assert(val_type != NULL, "need a type");
3817   } else {
3818     // In this case both val_type and alias_idx are unused.
3819     assert(pre_val != NULL, "must be loaded already");
3820     // Nothing to be done if pre_val is null.
3821     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
3822     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3823   }
3824   assert(bt == T_OBJECT, "or we shouldn't be here");
3825 
3826   IdealKit ideal(this, true);
3827 
3828   Node* tls = __ thread(); // ThreadLocalStorage
3829 
3830   Node* no_ctrl = NULL;
3831   Node* no_base = __ top();
3832   Node* zero  = __ ConI(0);
3833   Node* zeroX = __ ConX(0);
3834 
3835   float likely  = PROB_LIKELY(0.999);
3836   float unlikely  = PROB_UNLIKELY(0.999);
3837 
3838   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3839   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3840 
3841   // Offsets into the thread
3842   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3843                                           PtrQueue::byte_offset_of_active());
3844   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3845                                           PtrQueue::byte_offset_of_index());
3846   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3847                                           PtrQueue::byte_offset_of_buf());
3848 
3849   // Now the actual pointers into the thread
3850   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3851   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3852   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3853 
3854   // Now some of the values
3855   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3856 
3857   // if (!marking)
3858   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3859     BasicType index_bt = TypeX_X->basic_type();
3860     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3861     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3862 
3863     if (do_load) {
3864       // load original value
3865       // alias_idx correct??
3866       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3867     }
3868 
3869     // if (pre_val != NULL)
3870     __ if_then(pre_val, BoolTest::ne, null()); {
3871       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3872 
3873       // is the queue for this thread full?
3874       __ if_then(index, BoolTest::ne, zeroX, likely); {
3875 
3876         // decrement the index
3877         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3878 
3879         // Now get the buffer location we will log the previous value into and store it
3880         Node *log_addr = __ AddP(no_base, buffer, next_index);
3881         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
3882         // update the index
3883         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
3884 
3885       } __ else_(); {
3886 
3887         // logging buffer is full, call the runtime
3888         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3889         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3890       } __ end_if();  // (!index)
3891     } __ end_if();  // (pre_val != NULL)
3892   } __ end_if();  // (!marking)
3893 
3894   // Final sync IdealKit and GraphKit.
3895   final_sync(ideal);
3896 }
3897 
3898 //
3899 // Update the card table and add card address to the queue
3900 //
3901 void GraphKit::g1_mark_card(IdealKit& ideal,
3902                             Node* card_adr,
3903                             Node* oop_store,
3904                             uint oop_alias_idx,
3905                             Node* index,
3906                             Node* index_adr,
3907                             Node* buffer,
3908                             const TypeFunc* tf) {
3909 
3910   Node* zero  = __ ConI(0);
3911   Node* zeroX = __ ConX(0);
3912   Node* no_base = __ top();
3913   BasicType card_bt = T_BYTE;
3914   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3915   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3916 
3917   //  Now do the queue work
3918   __ if_then(index, BoolTest::ne, zeroX); {
3919 
3920     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3921     Node* log_addr = __ AddP(no_base, buffer, next_index);
3922 
3923     // Order, see storeCM.
3924     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
3925     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
3926 
3927   } __ else_(); {
3928     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3929   } __ end_if();
3930 
3931 }
3932 
3933 void GraphKit::g1_write_barrier_post(Node* oop_store,
3934                                      Node* obj,
3935                                      Node* adr,
3936                                      uint alias_idx,
3937                                      Node* val,
3938                                      BasicType bt,
3939                                      bool use_precise) {
3940   // If we are writing a NULL then we need no post barrier
3941 
3942   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3943     // Must be NULL
3944     const Type* t = val->bottom_type();
3945     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3946     // No post barrier if writing NULLx
3947     return;
3948   }
3949 
3950   if (!use_precise) {
3951     // All card marks for a (non-array) instance are in one place:
3952     adr = obj;
3953   }
3954   // (Else it's an array (or unknown), and we want more precise card marks.)
3955   assert(adr != NULL, "");
3956 
3957   IdealKit ideal(this, true);
3958 
3959   Node* tls = __ thread(); // ThreadLocalStorage
3960 
3961   Node* no_base = __ top();
3962   float likely  = PROB_LIKELY(0.999);
3963   float unlikely  = PROB_UNLIKELY(0.999);
3964   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
3965   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
3966   Node* zeroX = __ ConX(0);
3967 
3968   // Get the alias_index for raw card-mark memory
3969   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3970 
3971   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3972 
3973   // Offsets into the thread
3974   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3975                                      PtrQueue::byte_offset_of_index());
3976   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3977                                      PtrQueue::byte_offset_of_buf());
3978 
3979   // Pointers into the thread
3980 
3981   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3982   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3983 
3984   // Now some values
3985   // Use ctrl to avoid hoisting these values past a safepoint, which could
3986   // potentially reset these fields in the JavaThread.
3987   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
3988   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3989 
3990   // Convert the store obj pointer to an int prior to doing math on it
3991   // Must use ctrl to prevent "integerized oop" existing across safepoint
3992   Node* cast =  __ CastPX(__ ctrl(), adr);
3993 
3994   // Divide pointer by card size
3995   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3996 
3997   // Combine card table base and card offset
3998   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3999 
4000   // If we know the value being stored does it cross regions?
4001 
4002   if (val != NULL) {
4003     // Does the store cause us to cross regions?
4004 
4005     // Should be able to do an unsigned compare of region_size instead of
4006     // and extra shift. Do we have an unsigned compare??
4007     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
4008     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
4009 
4010     // if (xor_res == 0) same region so skip
4011     __ if_then(xor_res, BoolTest::ne, zeroX); {
4012 
4013       // No barrier if we are storing a NULL
4014       __ if_then(val, BoolTest::ne, null(), unlikely); {
4015 
4016         // Ok must mark the card if not already dirty
4017 
4018         // load the original value of the card
4019         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4020 
4021         __ if_then(card_val, BoolTest::ne, young_card); {
4022           sync_kit(ideal);
4023           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
4024           insert_mem_bar(Op_MemBarVolatile, oop_store);
4025           __ sync_kit(this);
4026 
4027           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
4028           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
4029             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4030           } __ end_if();
4031         } __ end_if();
4032       } __ end_if();
4033     } __ end_if();
4034   } else {
4035     // Object.clone() instrinsic uses this path.
4036     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
4037   }
4038 
4039   // Final sync IdealKit and GraphKit.
4040   final_sync(ideal);
4041 }
4042 #undef __
4043 
4044 
4045 
4046 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
4047   if (java_lang_String::has_offset_field()) {
4048     int offset_offset = java_lang_String::offset_offset_in_bytes();
4049     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4050                                                        false, NULL, 0);
4051     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4052     int offset_field_idx = C->get_alias_index(offset_field_type);
4053     return make_load(ctrl,
4054                      basic_plus_adr(str, str, offset_offset),
4055                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
4056   } else {
4057     return intcon(0);
4058   }
4059 }
4060 
4061 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
4062   if (java_lang_String::has_count_field()) {
4063     int count_offset = java_lang_String::count_offset_in_bytes();
4064     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4065                                                        false, NULL, 0);
4066     const TypePtr* count_field_type = string_type->add_offset(count_offset);
4067     int count_field_idx = C->get_alias_index(count_field_type);
4068     return make_load(ctrl,
4069                      basic_plus_adr(str, str, count_offset),
4070                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
4071   } else {
4072     return load_array_length(load_String_value(ctrl, str));
4073   }
4074 }
4075 
4076 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
4077   int value_offset = java_lang_String::value_offset_in_bytes();
4078   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4079                                                      false, NULL, 0);
4080   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4081   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
4082                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
4083                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
4084   int value_field_idx = C->get_alias_index(value_field_type);
4085   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
4086                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
4087   // String.value field is known to be @Stable.
4088   if (UseImplicitStableValues) {
4089     load = cast_array_to_stable(load, value_type);
4090   }
4091   return load;
4092 }
4093 
4094 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
4095   int offset_offset = java_lang_String::offset_offset_in_bytes();
4096   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4097                                                      false, NULL, 0);
4098   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
4099   int offset_field_idx = C->get_alias_index(offset_field_type);
4100   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
4101                   value, T_INT, offset_field_idx, MemNode::unordered);
4102 }
4103 
4104 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
4105   int value_offset = java_lang_String::value_offset_in_bytes();
4106   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4107                                                      false, NULL, 0);
4108   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4109 
4110   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
4111       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
4112 }
4113 
4114 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
4115   int count_offset = java_lang_String::count_offset_in_bytes();
4116   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4117                                                      false, NULL, 0);
4118   const TypePtr* count_field_type = string_type->add_offset(count_offset);
4119   int count_field_idx = C->get_alias_index(count_field_type);
4120   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
4121                   value, T_INT, count_field_idx, MemNode::unordered);
4122 }
4123 
4124 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
4125   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
4126   // assumption of CCP analysis.
4127   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
4128 }