1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/output.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 // Convert Nodes to instruction bits and pass off to the VM
  58 void Compile::Output() {
  59   // RootNode goes
  60   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
  61 
  62   // The number of new nodes (mostly MachNop) is proportional to
  63   // the number of java calls and inner loops which are aligned.
  64   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  65                             C->inner_loops()*(OptoLoopAlignment-1)),
  66                            "out of nodes before code generation" ) ) {
  67     return;
  68   }
  69   // Make sure I can find the Start Node
  70   Block *entry = _cfg->get_block(1);
  71   Block *broot = _cfg->get_root_block();
  72 
  73   const StartNode *start = entry->head()->as_Start();
  74 
  75   // Replace StartNode with prolog
  76   MachPrologNode *prolog = new (this) MachPrologNode();
  77   entry->map_node(prolog, 0);
  78   _cfg->map_node_to_block(prolog, entry);
  79   _cfg->unmap_node_from_block(start); // start is no longer in any block
  80 
  81   // Virtual methods need an unverified entry point
  82 
  83   if( is_osr_compilation() ) {
  84     if( PoisonOSREntry ) {
  85       // TODO: Should use a ShouldNotReachHereNode...
  86       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  87     }
  88   } else {
  89     if( _method && !_method->flags().is_static() ) {
  90       // Insert unvalidated entry point
  91       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  92     }
  93 
  94   }
  95 
  96 
  97   // Break before main entry point
  98   if( (_method && _method->break_at_execute())
  99 #ifndef PRODUCT
 100     ||(OptoBreakpoint && is_method_compilation())
 101     ||(OptoBreakpointOSR && is_osr_compilation())
 102     ||(OptoBreakpointC2R && !_method)
 103 #endif
 104     ) {
 105     // checking for _method means that OptoBreakpoint does not apply to
 106     // runtime stubs or frame converters
 107     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 108   }
 109 
 110   // Insert epilogs before every return
 111   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 112     Block* block = _cfg->get_block(i);
 113     if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
 114       Node* m = block->end();
 115       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 116         MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 117         block->add_inst(epilog);
 118         _cfg->map_node_to_block(epilog, block);
 119       }
 120     }
 121   }
 122 
 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
 124   if (ZapDeadCompiledLocals) {
 125     Insert_zap_nodes();
 126   }
 127 # endif
 128 
 129   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
 130   blk_starts[0] = 0;
 131 
 132   // Initialize code buffer and process short branches.
 133   CodeBuffer* cb = init_buffer(blk_starts);
 134 
 135   if (cb == NULL || failing()) {
 136     return;
 137   }
 138 
 139   ScheduleAndBundle();
 140 
 141 #ifndef PRODUCT
 142   if (trace_opto_output()) {
 143     tty->print("\n---- After ScheduleAndBundle ----\n");
 144     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 145       tty->print("\nBB#%03d:\n", i);
 146       Block* block = _cfg->get_block(i);
 147       for (uint j = 0; j < block->number_of_nodes(); j++) {
 148         Node* n = block->get_node(j);
 149         OptoReg::Name reg = _regalloc->get_reg_first(n);
 150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 151         n->dump();
 152       }
 153     }
 154   }
 155 #endif
 156 
 157   if (failing()) {
 158     return;
 159   }
 160 
 161   BuildOopMaps();
 162 
 163   if (failing())  {
 164     return;
 165   }
 166 
 167   fill_buffer(cb, blk_starts);
 168 }
 169 
 170 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 171   // Determine if we need to generate a stack overflow check.
 172   // Do it if the method is not a stub function and
 173   // has java calls or has frame size > vm_page_size/8.
 174   // The debug VM checks that deoptimization doesn't trigger an
 175   // unexpected stack overflow (compiled method stack banging should
 176   // guarantee it doesn't happen) so we always need the stack bang in
 177   // a debug VM.
 178   return (UseStackBanging && stub_function() == NULL &&
 179           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
 180            NOT_DEBUG(|| true)));
 181 }
 182 
 183 bool Compile::need_register_stack_bang() const {
 184   // Determine if we need to generate a register stack overflow check.
 185   // This is only used on architectures which have split register
 186   // and memory stacks (ie. IA64).
 187   // Bang if the method is not a stub function and has java calls
 188   return (stub_function() == NULL && has_java_calls());
 189 }
 190 
 191 # ifdef ENABLE_ZAP_DEAD_LOCALS
 192 
 193 
 194 // In order to catch compiler oop-map bugs, we have implemented
 195 // a debugging mode called ZapDeadCompilerLocals.
 196 // This mode causes the compiler to insert a call to a runtime routine,
 197 // "zap_dead_locals", right before each place in compiled code
 198 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 199 // The runtime routine checks that locations mapped as oops are really
 200 // oops, that locations mapped as values do not look like oops,
 201 // and that locations mapped as dead are not used later
 202 // (by zapping them to an invalid address).
 203 
 204 int Compile::_CompiledZap_count = 0;
 205 
 206 void Compile::Insert_zap_nodes() {
 207   bool skip = false;
 208 
 209 
 210   // Dink with static counts because code code without the extra
 211   // runtime calls is MUCH faster for debugging purposes
 212 
 213        if ( CompileZapFirst  ==  0  ) ; // nothing special
 214   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 215   else if ( CompileZapFirst  == CompiledZap_count() )
 216     warning("starting zap compilation after skipping");
 217 
 218        if ( CompileZapLast  ==  -1  ) ; // nothing special
 219   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 220   else if ( CompileZapLast  ==  CompiledZap_count() )
 221     warning("about to compile last zap");
 222 
 223   ++_CompiledZap_count; // counts skipped zaps, too
 224 
 225   if ( skip )  return;
 226 
 227 
 228   if ( _method == NULL )
 229     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 230 
 231   // Insert call to zap runtime stub before every node with an oop map
 232   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
 233     Block *b = _cfg->get_block(i);
 234     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
 235       Node *n = b->get_node(j);
 236 
 237       // Determining if we should insert a zap-a-lot node in output.
 238       // We do that for all nodes that has oopmap info, except for calls
 239       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 240       // and expect the C code to reset it.  Hence, there can be no safepoints between
 241       // the inlined-allocation and the call to new_Java, etc.
 242       // We also cannot zap monitor calls, as they must hold the microlock
 243       // during the call to Zap, which also wants to grab the microlock.
 244       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 245       if ( insert ) { // it is MachSafePoint
 246         if ( !n->is_MachCall() ) {
 247           insert = false;
 248         } else if ( n->is_MachCall() ) {
 249           MachCallNode* call = n->as_MachCall();
 250           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 251               call->entry_point() == OptoRuntime::new_array_Java() ||
 252               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 253               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 254               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 255               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 256               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 257               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 258               ) {
 259             insert = false;
 260           }
 261         }
 262         if (insert) {
 263           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 264           b->insert_node(zap, j);
 265           _cfg->map_node_to_block(zap, b);
 266           ++j;
 267         }
 268       }
 269     }
 270   }
 271 }
 272 
 273 
 274 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 275   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 276   CallStaticJavaNode* ideal_node =
 277     new (this) CallStaticJavaNode( tf,
 278          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 279                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 280   // We need to copy the OopMap from the site we're zapping at.
 281   // We have to make a copy, because the zap site might not be
 282   // a call site, and zap_dead is a call site.
 283   OopMap* clone = node_to_check->oop_map()->deep_copy();
 284 
 285   // Add the cloned OopMap to the zap node
 286   ideal_node->set_oop_map(clone);
 287   return _matcher->match_sfpt(ideal_node);
 288 }
 289 
 290 bool Compile::is_node_getting_a_safepoint( Node* n) {
 291   // This code duplicates the logic prior to the call of add_safepoint
 292   // below in this file.
 293   if( n->is_MachSafePoint() ) return true;
 294   return false;
 295 }
 296 
 297 # endif // ENABLE_ZAP_DEAD_LOCALS
 298 
 299 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 300 // of a loop. When aligning a loop we need to provide enough instructions
 301 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 302 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 303 // By default, the size is set to 999999 by Block's constructor so that
 304 // a loop will be aligned if the size is not reset here.
 305 //
 306 // Note: Mach instructions could contain several HW instructions
 307 // so the size is estimated only.
 308 //
 309 void Compile::compute_loop_first_inst_sizes() {
 310   // The next condition is used to gate the loop alignment optimization.
 311   // Don't aligned a loop if there are enough instructions at the head of a loop
 312   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 313   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 314   // equal to 11 bytes which is the largest address NOP instruction.
 315   if (MaxLoopPad < OptoLoopAlignment - 1) {
 316     uint last_block = _cfg->number_of_blocks() - 1;
 317     for (uint i = 1; i <= last_block; i++) {
 318       Block* block = _cfg->get_block(i);
 319       // Check the first loop's block which requires an alignment.
 320       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 321         uint sum_size = 0;
 322         uint inst_cnt = NumberOfLoopInstrToAlign;
 323         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 324 
 325         // Check subsequent fallthrough blocks if the loop's first
 326         // block(s) does not have enough instructions.
 327         Block *nb = block;
 328         while(inst_cnt > 0 &&
 329               i < last_block &&
 330               !_cfg->get_block(i + 1)->has_loop_alignment() &&
 331               !nb->has_successor(block)) {
 332           i++;
 333           nb = _cfg->get_block(i);
 334           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 335         } // while( inst_cnt > 0 && i < last_block  )
 336 
 337         block->set_first_inst_size(sum_size);
 338       } // f( b->head()->is_Loop() )
 339     } // for( i <= last_block )
 340   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 341 }
 342 
 343 // The architecture description provides short branch variants for some long
 344 // branch instructions. Replace eligible long branches with short branches.
 345 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 346   // Compute size of each block, method size, and relocation information size
 347   uint nblocks  = _cfg->number_of_blocks();
 348 
 349   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 350   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 351   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 352 
 353   // Collect worst case block paddings
 354   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 355   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 356 
 357   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 358   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 359 
 360   bool has_short_branch_candidate = false;
 361 
 362   // Initialize the sizes to 0
 363   code_size  = 0;          // Size in bytes of generated code
 364   stub_size  = 0;          // Size in bytes of all stub entries
 365   // Size in bytes of all relocation entries, including those in local stubs.
 366   // Start with 2-bytes of reloc info for the unvalidated entry point
 367   reloc_size = 1;          // Number of relocation entries
 368 
 369   // Make three passes.  The first computes pessimistic blk_starts,
 370   // relative jmp_offset and reloc_size information.  The second performs
 371   // short branch substitution using the pessimistic sizing.  The
 372   // third inserts nops where needed.
 373 
 374   // Step one, perform a pessimistic sizing pass.
 375   uint last_call_adr = max_uint;
 376   uint last_avoid_back_to_back_adr = max_uint;
 377   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 378   for (uint i = 0; i < nblocks; i++) { // For all blocks
 379     Block* block = _cfg->get_block(i);
 380 
 381     // During short branch replacement, we store the relative (to blk_starts)
 382     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 383     // This is so that we do not need to recompute sizes of all nodes when
 384     // we compute correct blk_starts in our next sizing pass.
 385     jmp_offset[i] = 0;
 386     jmp_size[i]   = 0;
 387     jmp_nidx[i]   = -1;
 388     DEBUG_ONLY( jmp_target[i] = 0; )
 389     DEBUG_ONLY( jmp_rule[i]   = 0; )
 390 
 391     // Sum all instruction sizes to compute block size
 392     uint last_inst = block->number_of_nodes();
 393     uint blk_size = 0;
 394     for (uint j = 0; j < last_inst; j++) {
 395       Node* nj = block->get_node(j);
 396       // Handle machine instruction nodes
 397       if (nj->is_Mach()) {
 398         MachNode *mach = nj->as_Mach();
 399         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 400         reloc_size += mach->reloc();
 401         if (mach->is_MachCall()) {
 402           MachCallNode *mcall = mach->as_MachCall();
 403           // This destination address is NOT PC-relative
 404 
 405           mcall->method_set((intptr_t)mcall->entry_point());
 406 
 407           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 408             stub_size  += CompiledStaticCall::to_interp_stub_size();
 409             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 410           }
 411         } else if (mach->is_MachSafePoint()) {
 412           // If call/safepoint are adjacent, account for possible
 413           // nop to disambiguate the two safepoints.
 414           // ScheduleAndBundle() can rearrange nodes in a block,
 415           // check for all offsets inside this block.
 416           if (last_call_adr >= blk_starts[i]) {
 417             blk_size += nop_size;
 418           }
 419         }
 420         if (mach->avoid_back_to_back()) {
 421           // Nop is inserted between "avoid back to back" instructions.
 422           // ScheduleAndBundle() can rearrange nodes in a block,
 423           // check for all offsets inside this block.
 424           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 425             blk_size += nop_size;
 426           }
 427         }
 428         if (mach->may_be_short_branch()) {
 429           if (!nj->is_MachBranch()) {
 430 #ifndef PRODUCT
 431             nj->dump(3);
 432 #endif
 433             Unimplemented();
 434           }
 435           assert(jmp_nidx[i] == -1, "block should have only one branch");
 436           jmp_offset[i] = blk_size;
 437           jmp_size[i]   = nj->size(_regalloc);
 438           jmp_nidx[i]   = j;
 439           has_short_branch_candidate = true;
 440         }
 441       }
 442       blk_size += nj->size(_regalloc);
 443       // Remember end of call offset
 444       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 445         last_call_adr = blk_starts[i]+blk_size;
 446       }
 447       // Remember end of avoid_back_to_back offset
 448       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 449         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 450       }
 451     }
 452 
 453     // When the next block starts a loop, we may insert pad NOP
 454     // instructions.  Since we cannot know our future alignment,
 455     // assume the worst.
 456     if (i < nblocks - 1) {
 457       Block* nb = _cfg->get_block(i + 1);
 458       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 459       if (max_loop_pad > 0) {
 460         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 461         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 462         // If either is the last instruction in this block, bump by
 463         // max_loop_pad in lock-step with blk_size, so sizing
 464         // calculations in subsequent blocks still can conservatively
 465         // detect that it may the last instruction in this block.
 466         if (last_call_adr == blk_starts[i]+blk_size) {
 467           last_call_adr += max_loop_pad;
 468         }
 469         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 470           last_avoid_back_to_back_adr += max_loop_pad;
 471         }
 472         blk_size += max_loop_pad;
 473         block_worst_case_pad[i + 1] = max_loop_pad;
 474       }
 475     }
 476 
 477     // Save block size; update total method size
 478     blk_starts[i+1] = blk_starts[i]+blk_size;
 479   }
 480 
 481   // Step two, replace eligible long jumps.
 482   bool progress = true;
 483   uint last_may_be_short_branch_adr = max_uint;
 484   while (has_short_branch_candidate && progress) {
 485     progress = false;
 486     has_short_branch_candidate = false;
 487     int adjust_block_start = 0;
 488     for (uint i = 0; i < nblocks; i++) {
 489       Block* block = _cfg->get_block(i);
 490       int idx = jmp_nidx[i];
 491       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 492       if (mach != NULL && mach->may_be_short_branch()) {
 493 #ifdef ASSERT
 494         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 495         int j;
 496         // Find the branch; ignore trailing NOPs.
 497         for (j = block->number_of_nodes()-1; j>=0; j--) {
 498           Node* n = block->get_node(j);
 499           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 500             break;
 501         }
 502         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 503 #endif
 504         int br_size = jmp_size[i];
 505         int br_offs = blk_starts[i] + jmp_offset[i];
 506 
 507         // This requires the TRUE branch target be in succs[0]
 508         uint bnum = block->non_connector_successor(0)->_pre_order;
 509         int offset = blk_starts[bnum] - br_offs;
 510         if (bnum > i) { // adjust following block's offset
 511           offset -= adjust_block_start;
 512         }
 513 
 514         // This block can be a loop header, account for the padding
 515         // in the previous block.
 516         int block_padding = block_worst_case_pad[i];
 517         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 518         // In the following code a nop could be inserted before
 519         // the branch which will increase the backward distance.
 520         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 521         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 522 
 523         if (needs_padding && offset <= 0)
 524           offset -= nop_size;
 525 
 526         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 527           // We've got a winner.  Replace this branch.
 528           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 529 
 530           // Update the jmp_size.
 531           int new_size = replacement->size(_regalloc);
 532           int diff     = br_size - new_size;
 533           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 534           // Conservatively take into accound padding between
 535           // avoid_back_to_back branches. Previous branch could be
 536           // converted into avoid_back_to_back branch during next
 537           // rounds.
 538           if (needs_padding && replacement->avoid_back_to_back()) {
 539             jmp_offset[i] += nop_size;
 540             diff -= nop_size;
 541           }
 542           adjust_block_start += diff;
 543           block->map_node(replacement, idx);
 544           mach->subsume_by(replacement, C);
 545           mach = replacement;
 546           progress = true;
 547 
 548           jmp_size[i] = new_size;
 549           DEBUG_ONLY( jmp_target[i] = bnum; );
 550           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 551         } else {
 552           // The jump distance is not short, try again during next iteration.
 553           has_short_branch_candidate = true;
 554         }
 555       } // (mach->may_be_short_branch())
 556       if (mach != NULL && (mach->may_be_short_branch() ||
 557                            mach->avoid_back_to_back())) {
 558         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 559       }
 560       blk_starts[i+1] -= adjust_block_start;
 561     }
 562   }
 563 
 564 #ifdef ASSERT
 565   for (uint i = 0; i < nblocks; i++) { // For all blocks
 566     if (jmp_target[i] != 0) {
 567       int br_size = jmp_size[i];
 568       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 569       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 570         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 571       }
 572       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 573     }
 574   }
 575 #endif
 576 
 577   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 578   // after ScheduleAndBundle().
 579 
 580   // ------------------
 581   // Compute size for code buffer
 582   code_size = blk_starts[nblocks];
 583 
 584   // Relocation records
 585   reloc_size += 1;              // Relo entry for exception handler
 586 
 587   // Adjust reloc_size to number of record of relocation info
 588   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 589   // a relocation index.
 590   // The CodeBuffer will expand the locs array if this estimate is too low.
 591   reloc_size *= 10 / sizeof(relocInfo);
 592 }
 593 
 594 //------------------------------FillLocArray-----------------------------------
 595 // Create a bit of debug info and append it to the array.  The mapping is from
 596 // Java local or expression stack to constant, register or stack-slot.  For
 597 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 598 // entry has been taken care of and caller should skip it).
 599 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 600   // This should never have accepted Bad before
 601   assert(OptoReg::is_valid(regnum), "location must be valid");
 602   return (OptoReg::is_reg(regnum))
 603     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 604     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 605 }
 606 
 607 
 608 ObjectValue*
 609 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 610   for (int i = 0; i < objs->length(); i++) {
 611     assert(objs->at(i)->is_object(), "corrupt object cache");
 612     ObjectValue* sv = (ObjectValue*) objs->at(i);
 613     if (sv->id() == id) {
 614       return sv;
 615     }
 616   }
 617   // Otherwise..
 618   return NULL;
 619 }
 620 
 621 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 622                                      ObjectValue* sv ) {
 623   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 624   objs->append(sv);
 625 }
 626 
 627 
 628 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 629                             GrowableArray<ScopeValue*> *array,
 630                             GrowableArray<ScopeValue*> *objs ) {
 631   assert( local, "use _top instead of null" );
 632   if (array->length() != idx) {
 633     assert(array->length() == idx + 1, "Unexpected array count");
 634     // Old functionality:
 635     //   return
 636     // New functionality:
 637     //   Assert if the local is not top. In product mode let the new node
 638     //   override the old entry.
 639     assert(local == top(), "LocArray collision");
 640     if (local == top()) {
 641       return;
 642     }
 643     array->pop();
 644   }
 645   const Type *t = local->bottom_type();
 646 
 647   // Is it a safepoint scalar object node?
 648   if (local->is_SafePointScalarObject()) {
 649     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 650 
 651     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 652     if (sv == NULL) {
 653       ciKlass* cik = t->is_oopptr()->klass();
 654       assert(cik->is_instance_klass() ||
 655              cik->is_array_klass(), "Not supported allocation.");
 656       sv = new ObjectValue(spobj->_idx,
 657                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 658       Compile::set_sv_for_object_node(objs, sv);
 659 
 660       uint first_ind = spobj->first_index(sfpt->jvms());
 661       for (uint i = 0; i < spobj->n_fields(); i++) {
 662         Node* fld_node = sfpt->in(first_ind+i);
 663         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 664       }
 665     }
 666     array->append(sv);
 667     return;
 668   }
 669 
 670   // Grab the register number for the local
 671   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 672   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 673     // Record the double as two float registers.
 674     // The register mask for such a value always specifies two adjacent
 675     // float registers, with the lower register number even.
 676     // Normally, the allocation of high and low words to these registers
 677     // is irrelevant, because nearly all operations on register pairs
 678     // (e.g., StoreD) treat them as a single unit.
 679     // Here, we assume in addition that the words in these two registers
 680     // stored "naturally" (by operations like StoreD and double stores
 681     // within the interpreter) such that the lower-numbered register
 682     // is written to the lower memory address.  This may seem like
 683     // a machine dependency, but it is not--it is a requirement on
 684     // the author of the <arch>.ad file to ensure that, for every
 685     // even/odd double-register pair to which a double may be allocated,
 686     // the word in the even single-register is stored to the first
 687     // memory word.  (Note that register numbers are completely
 688     // arbitrary, and are not tied to any machine-level encodings.)
 689 #ifdef _LP64
 690     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 691       array->append(new ConstantIntValue(0));
 692       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 693     } else if ( t->base() == Type::Long ) {
 694       array->append(new ConstantIntValue(0));
 695       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 696     } else if ( t->base() == Type::RawPtr ) {
 697       // jsr/ret return address which must be restored into a the full
 698       // width 64-bit stack slot.
 699       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 700     }
 701 #else //_LP64
 702 #ifdef SPARC
 703     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 704       // For SPARC we have to swap high and low words for
 705       // long values stored in a single-register (g0-g7).
 706       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 707       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 708     } else
 709 #endif //SPARC
 710     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 711       // Repack the double/long as two jints.
 712       // The convention the interpreter uses is that the second local
 713       // holds the first raw word of the native double representation.
 714       // This is actually reasonable, since locals and stack arrays
 715       // grow downwards in all implementations.
 716       // (If, on some machine, the interpreter's Java locals or stack
 717       // were to grow upwards, the embedded doubles would be word-swapped.)
 718       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 719       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 720     }
 721 #endif //_LP64
 722     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 723                OptoReg::is_reg(regnum) ) {
 724       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 725                                    ? Location::float_in_dbl : Location::normal ));
 726     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 727       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 728                                    ? Location::int_in_long : Location::normal ));
 729     } else if( t->base() == Type::NarrowOop ) {
 730       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 731     } else {
 732       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 733     }
 734     return;
 735   }
 736 
 737   // No register.  It must be constant data.
 738   switch (t->base()) {
 739   case Type::Half:              // Second half of a double
 740     ShouldNotReachHere();       // Caller should skip 2nd halves
 741     break;
 742   case Type::AnyPtr:
 743     array->append(new ConstantOopWriteValue(NULL));
 744     break;
 745   case Type::AryPtr:
 746   case Type::InstPtr:          // fall through
 747     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 748     break;
 749   case Type::NarrowOop:
 750     if (t == TypeNarrowOop::NULL_PTR) {
 751       array->append(new ConstantOopWriteValue(NULL));
 752     } else {
 753       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 754     }
 755     break;
 756   case Type::Int:
 757     array->append(new ConstantIntValue(t->is_int()->get_con()));
 758     break;
 759   case Type::RawPtr:
 760     // A return address (T_ADDRESS).
 761     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 762 #ifdef _LP64
 763     // Must be restored to the full-width 64-bit stack slot.
 764     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 765 #else
 766     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 767 #endif
 768     break;
 769   case Type::FloatCon: {
 770     float f = t->is_float_constant()->getf();
 771     array->append(new ConstantIntValue(jint_cast(f)));
 772     break;
 773   }
 774   case Type::DoubleCon: {
 775     jdouble d = t->is_double_constant()->getd();
 776 #ifdef _LP64
 777     array->append(new ConstantIntValue(0));
 778     array->append(new ConstantDoubleValue(d));
 779 #else
 780     // Repack the double as two jints.
 781     // The convention the interpreter uses is that the second local
 782     // holds the first raw word of the native double representation.
 783     // This is actually reasonable, since locals and stack arrays
 784     // grow downwards in all implementations.
 785     // (If, on some machine, the interpreter's Java locals or stack
 786     // were to grow upwards, the embedded doubles would be word-swapped.)
 787     jint   *dp = (jint*)&d;
 788     array->append(new ConstantIntValue(dp[1]));
 789     array->append(new ConstantIntValue(dp[0]));
 790 #endif
 791     break;
 792   }
 793   case Type::Long: {
 794     jlong d = t->is_long()->get_con();
 795 #ifdef _LP64
 796     array->append(new ConstantIntValue(0));
 797     array->append(new ConstantLongValue(d));
 798 #else
 799     // Repack the long as two jints.
 800     // The convention the interpreter uses is that the second local
 801     // holds the first raw word of the native double representation.
 802     // This is actually reasonable, since locals and stack arrays
 803     // grow downwards in all implementations.
 804     // (If, on some machine, the interpreter's Java locals or stack
 805     // were to grow upwards, the embedded doubles would be word-swapped.)
 806     jint *dp = (jint*)&d;
 807     array->append(new ConstantIntValue(dp[1]));
 808     array->append(new ConstantIntValue(dp[0]));
 809 #endif
 810     break;
 811   }
 812   case Type::Top:               // Add an illegal value here
 813     array->append(new LocationValue(Location()));
 814     break;
 815   default:
 816     ShouldNotReachHere();
 817     break;
 818   }
 819 }
 820 
 821 // Determine if this node starts a bundle
 822 bool Compile::starts_bundle(const Node *n) const {
 823   return (_node_bundling_limit > n->_idx &&
 824           _node_bundling_base[n->_idx].starts_bundle());
 825 }
 826 
 827 //--------------------------Process_OopMap_Node--------------------------------
 828 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 829 
 830   // Handle special safepoint nodes for synchronization
 831   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 832   MachCallNode      *mcall;
 833 
 834 #ifdef ENABLE_ZAP_DEAD_LOCALS
 835   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 836 #endif
 837 
 838   int safepoint_pc_offset = current_offset;
 839   bool is_method_handle_invoke = false;
 840   bool return_oop = false;
 841 
 842   // Add the safepoint in the DebugInfoRecorder
 843   if( !mach->is_MachCall() ) {
 844     mcall = NULL;
 845     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 846   } else {
 847     mcall = mach->as_MachCall();
 848 
 849     // Is the call a MethodHandle call?
 850     if (mcall->is_MachCallJava()) {
 851       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 852         assert(has_method_handle_invokes(), "must have been set during call generation");
 853         is_method_handle_invoke = true;
 854       }
 855     }
 856 
 857     // Check if a call returns an object.
 858     if (mcall->return_value_is_used() &&
 859         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 860       return_oop = true;
 861     }
 862     safepoint_pc_offset += mcall->ret_addr_offset();
 863     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 864   }
 865 
 866   // Loop over the JVMState list to add scope information
 867   // Do not skip safepoints with a NULL method, they need monitor info
 868   JVMState* youngest_jvms = sfn->jvms();
 869   int max_depth = youngest_jvms->depth();
 870 
 871   // Allocate the object pool for scalar-replaced objects -- the map from
 872   // small-integer keys (which can be recorded in the local and ostack
 873   // arrays) to descriptions of the object state.
 874   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 875 
 876   // Visit scopes from oldest to youngest.
 877   for (int depth = 1; depth <= max_depth; depth++) {
 878     JVMState* jvms = youngest_jvms->of_depth(depth);
 879     int idx;
 880     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 881     // Safepoints that do not have method() set only provide oop-map and monitor info
 882     // to support GC; these do not support deoptimization.
 883     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 884     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 885     int num_mon  = jvms->nof_monitors();
 886     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 887            "JVMS local count must match that of the method");
 888 
 889     // Add Local and Expression Stack Information
 890 
 891     // Insert locals into the locarray
 892     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 893     for( idx = 0; idx < num_locs; idx++ ) {
 894       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 895     }
 896 
 897     // Insert expression stack entries into the exparray
 898     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 899     for( idx = 0; idx < num_exps; idx++ ) {
 900       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 901     }
 902 
 903     // Add in mappings of the monitors
 904     assert( !method ||
 905             !method->is_synchronized() ||
 906             method->is_native() ||
 907             num_mon > 0 ||
 908             !GenerateSynchronizationCode,
 909             "monitors must always exist for synchronized methods");
 910 
 911     // Build the growable array of ScopeValues for exp stack
 912     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 913 
 914     // Loop over monitors and insert into array
 915     for (idx = 0; idx < num_mon; idx++) {
 916       // Grab the node that defines this monitor
 917       Node* box_node = sfn->monitor_box(jvms, idx);
 918       Node* obj_node = sfn->monitor_obj(jvms, idx);
 919 
 920       // Create ScopeValue for object
 921       ScopeValue *scval = NULL;
 922 
 923       if (obj_node->is_SafePointScalarObject()) {
 924         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 925         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 926         if (scval == NULL) {
 927           const Type *t = spobj->bottom_type();
 928           ciKlass* cik = t->is_oopptr()->klass();
 929           assert(cik->is_instance_klass() ||
 930                  cik->is_array_klass(), "Not supported allocation.");
 931           ObjectValue* sv = new ObjectValue(spobj->_idx,
 932                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 933           Compile::set_sv_for_object_node(objs, sv);
 934 
 935           uint first_ind = spobj->first_index(youngest_jvms);
 936           for (uint i = 0; i < spobj->n_fields(); i++) {
 937             Node* fld_node = sfn->in(first_ind+i);
 938             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 939           }
 940           scval = sv;
 941         }
 942       } else if (!obj_node->is_Con()) {
 943         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 944         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 945           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 946         } else {
 947           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 948         }
 949       } else {
 950         const TypePtr *tp = obj_node->get_ptr_type();
 951         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 952       }
 953 
 954       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 955       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 956       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 957       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 958     }
 959 
 960     // We dump the object pool first, since deoptimization reads it in first.
 961     debug_info()->dump_object_pool(objs);
 962 
 963     // Build first class objects to pass to scope
 964     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 965     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 966     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 967 
 968     // Make method available for all Safepoints
 969     ciMethod* scope_method = method ? method : _method;
 970     // Describe the scope here
 971     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 972     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 973     // Now we can describe the scope.
 974     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 975   } // End jvms loop
 976 
 977   // Mark the end of the scope set.
 978   debug_info()->end_safepoint(safepoint_pc_offset);
 979 }
 980 
 981 
 982 
 983 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 984 class NonSafepointEmitter {
 985   Compile*  C;
 986   JVMState* _pending_jvms;
 987   int       _pending_offset;
 988 
 989   void emit_non_safepoint();
 990 
 991  public:
 992   NonSafepointEmitter(Compile* compile) {
 993     this->C = compile;
 994     _pending_jvms = NULL;
 995     _pending_offset = 0;
 996   }
 997 
 998   void observe_instruction(Node* n, int pc_offset) {
 999     if (!C->debug_info()->recording_non_safepoints())  return;
1000 
1001     Node_Notes* nn = C->node_notes_at(n->_idx);
1002     if (nn == NULL || nn->jvms() == NULL)  return;
1003     if (_pending_jvms != NULL &&
1004         _pending_jvms->same_calls_as(nn->jvms())) {
1005       // Repeated JVMS?  Stretch it up here.
1006       _pending_offset = pc_offset;
1007     } else {
1008       if (_pending_jvms != NULL &&
1009           _pending_offset < pc_offset) {
1010         emit_non_safepoint();
1011       }
1012       _pending_jvms = NULL;
1013       if (pc_offset > C->debug_info()->last_pc_offset()) {
1014         // This is the only way _pending_jvms can become non-NULL:
1015         _pending_jvms = nn->jvms();
1016         _pending_offset = pc_offset;
1017       }
1018     }
1019   }
1020 
1021   // Stay out of the way of real safepoints:
1022   void observe_safepoint(JVMState* jvms, int pc_offset) {
1023     if (_pending_jvms != NULL &&
1024         !_pending_jvms->same_calls_as(jvms) &&
1025         _pending_offset < pc_offset) {
1026       emit_non_safepoint();
1027     }
1028     _pending_jvms = NULL;
1029   }
1030 
1031   void flush_at_end() {
1032     if (_pending_jvms != NULL) {
1033       emit_non_safepoint();
1034     }
1035     _pending_jvms = NULL;
1036   }
1037 };
1038 
1039 void NonSafepointEmitter::emit_non_safepoint() {
1040   JVMState* youngest_jvms = _pending_jvms;
1041   int       pc_offset     = _pending_offset;
1042 
1043   // Clear it now:
1044   _pending_jvms = NULL;
1045 
1046   DebugInformationRecorder* debug_info = C->debug_info();
1047   assert(debug_info->recording_non_safepoints(), "sanity");
1048 
1049   debug_info->add_non_safepoint(pc_offset);
1050   int max_depth = youngest_jvms->depth();
1051 
1052   // Visit scopes from oldest to youngest.
1053   for (int depth = 1; depth <= max_depth; depth++) {
1054     JVMState* jvms = youngest_jvms->of_depth(depth);
1055     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1056     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1057     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1058   }
1059 
1060   // Mark the end of the scope set.
1061   debug_info->end_non_safepoint(pc_offset);
1062 }
1063 
1064 //------------------------------init_buffer------------------------------------
1065 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1066 
1067   // Set the initially allocated size
1068   int  code_req   = initial_code_capacity;
1069   int  locs_req   = initial_locs_capacity;
1070   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1071   int  const_req  = initial_const_capacity;
1072 
1073   int  pad_req    = NativeCall::instruction_size;
1074   // The extra spacing after the code is necessary on some platforms.
1075   // Sometimes we need to patch in a jump after the last instruction,
1076   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1077 
1078   // Compute the byte offset where we can store the deopt pc.
1079   if (fixed_slots() != 0) {
1080     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1081   }
1082 
1083   // Compute prolog code size
1084   _method_size = 0;
1085   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1086 #if defined(IA64) && !defined(AIX)
1087   if (save_argument_registers()) {
1088     // 4815101: this is a stub with implicit and unknown precision fp args.
1089     // The usual spill mechanism can only generate stfd's in this case, which
1090     // doesn't work if the fp reg to spill contains a single-precision denorm.
1091     // Instead, we hack around the normal spill mechanism using stfspill's and
1092     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1093     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1094     //
1095     // If we ever implement 16-byte 'registers' == stack slots, we can
1096     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1097     // instead of stfd/stfs/ldfd/ldfs.
1098     _frame_slots += 8*(16/BytesPerInt);
1099   }
1100 #endif
1101   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1102 
1103   if (has_mach_constant_base_node()) {
1104     uint add_size = 0;
1105     // Fill the constant table.
1106     // Note:  This must happen before shorten_branches.
1107     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1108       Block* b = _cfg->get_block(i);
1109 
1110       for (uint j = 0; j < b->number_of_nodes(); j++) {
1111         Node* n = b->get_node(j);
1112 
1113         // If the node is a MachConstantNode evaluate the constant
1114         // value section.
1115         if (n->is_MachConstant()) {
1116           MachConstantNode* machcon = n->as_MachConstant();
1117           machcon->eval_constant(C);
1118         } else if (n->is_Mach()) {
1119           // On Power there are more nodes that issue constants.
1120           add_size += (n->as_Mach()->ins_num_consts() * 8);
1121         }
1122       }
1123     }
1124 
1125     // Calculate the offsets of the constants and the size of the
1126     // constant table (including the padding to the next section).
1127     constant_table().calculate_offsets_and_size();
1128     const_req = constant_table().size() + add_size;
1129   }
1130 
1131   // Initialize the space for the BufferBlob used to find and verify
1132   // instruction size in MachNode::emit_size()
1133   init_scratch_buffer_blob(const_req);
1134   if (failing())  return NULL; // Out of memory
1135 
1136   // Pre-compute the length of blocks and replace
1137   // long branches with short if machine supports it.
1138   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1139 
1140   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1141   int exception_handler_req = size_exception_handler();
1142   int deopt_handler_req = size_deopt_handler();
1143   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1144   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1145   stub_req += MAX_stubs_size;   // ensure per-stub margin
1146   code_req += MAX_inst_size;    // ensure per-instruction margin
1147 
1148   if (StressCodeBuffers)
1149     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1150 
1151   int total_req =
1152     const_req +
1153     code_req +
1154     pad_req +
1155     stub_req +
1156     exception_handler_req +
1157     deopt_handler_req;               // deopt handler
1158 
1159   if (has_method_handle_invokes())
1160     total_req += deopt_handler_req;  // deopt MH handler
1161 
1162   CodeBuffer* cb = code_buffer();
1163   cb->initialize(total_req, locs_req);
1164 
1165   // Have we run out of code space?
1166   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1167     C->record_failure("CodeCache is full");
1168     return NULL;
1169   }
1170   // Configure the code buffer.
1171   cb->initialize_consts_size(const_req);
1172   cb->initialize_stubs_size(stub_req);
1173   cb->initialize_oop_recorder(env()->oop_recorder());
1174 
1175   // fill in the nop array for bundling computations
1176   MachNode *_nop_list[Bundle::_nop_count];
1177   Bundle::initialize_nops(_nop_list, this);
1178 
1179   return cb;
1180 }
1181 
1182 //------------------------------fill_buffer------------------------------------
1183 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1184   // blk_starts[] contains offsets calculated during short branches processing,
1185   // offsets should not be increased during following steps.
1186 
1187   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1188   // of a loop. It is used to determine the padding for loop alignment.
1189   compute_loop_first_inst_sizes();
1190 
1191   // Create oopmap set.
1192   _oop_map_set = new OopMapSet();
1193 
1194   // !!!!! This preserves old handling of oopmaps for now
1195   debug_info()->set_oopmaps(_oop_map_set);
1196 
1197   uint nblocks  = _cfg->number_of_blocks();
1198   // Count and start of implicit null check instructions
1199   uint inct_cnt = 0;
1200   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1201 
1202   // Count and start of calls
1203   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1204 
1205   uint  return_offset = 0;
1206   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1207 
1208   int previous_offset = 0;
1209   int current_offset  = 0;
1210   int last_call_offset = -1;
1211   int last_avoid_back_to_back_offset = -1;
1212 #ifdef ASSERT
1213   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1214   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1215   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1216   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1217 #endif
1218 
1219   // Create an array of unused labels, one for each basic block, if printing is enabled
1220 #ifndef PRODUCT
1221   int *node_offsets      = NULL;
1222   uint node_offset_limit = unique();
1223 
1224   if (print_assembly())
1225     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1226 #endif
1227 
1228   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1229 
1230   // Emit the constant table.
1231   if (has_mach_constant_base_node()) {
1232     constant_table().emit(*cb);
1233   }
1234 
1235   // Create an array of labels, one for each basic block
1236   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1237   for (uint i=0; i <= nblocks; i++) {
1238     blk_labels[i].init();
1239   }
1240 
1241   // ------------------
1242   // Now fill in the code buffer
1243   Node *delay_slot = NULL;
1244 
1245   for (uint i = 0; i < nblocks; i++) {
1246     Block* block = _cfg->get_block(i);
1247     Node* head = block->head();
1248 
1249     // If this block needs to start aligned (i.e, can be reached other
1250     // than by falling-thru from the previous block), then force the
1251     // start of a new bundle.
1252     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1253       cb->flush_bundle(true);
1254     }
1255 
1256 #ifdef ASSERT
1257     if (!block->is_connector()) {
1258       stringStream st;
1259       block->dump_head(_cfg, &st);
1260       MacroAssembler(cb).block_comment(st.as_string());
1261     }
1262     jmp_target[i] = 0;
1263     jmp_offset[i] = 0;
1264     jmp_size[i]   = 0;
1265     jmp_rule[i]   = 0;
1266 #endif
1267     int blk_offset = current_offset;
1268 
1269     // Define the label at the beginning of the basic block
1270     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1271 
1272     uint last_inst = block->number_of_nodes();
1273 
1274     // Emit block normally, except for last instruction.
1275     // Emit means "dump code bits into code buffer".
1276     for (uint j = 0; j<last_inst; j++) {
1277 
1278       // Get the node
1279       Node* n = block->get_node(j);
1280 
1281       // See if delay slots are supported
1282       if (valid_bundle_info(n) &&
1283           node_bundling(n)->used_in_unconditional_delay()) {
1284         assert(delay_slot == NULL, "no use of delay slot node");
1285         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1286 
1287         delay_slot = n;
1288         continue;
1289       }
1290 
1291       // If this starts a new instruction group, then flush the current one
1292       // (but allow split bundles)
1293       if (Pipeline::requires_bundling() && starts_bundle(n))
1294         cb->flush_bundle(false);
1295 
1296       // The following logic is duplicated in the code ifdeffed for
1297       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1298       // should be factored out.  Or maybe dispersed to the nodes?
1299 
1300       // Special handling for SafePoint/Call Nodes
1301       bool is_mcall = false;
1302       if (n->is_Mach()) {
1303         MachNode *mach = n->as_Mach();
1304         is_mcall = n->is_MachCall();
1305         bool is_sfn = n->is_MachSafePoint();
1306 
1307         // If this requires all previous instructions be flushed, then do so
1308         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1309           cb->flush_bundle(true);
1310           current_offset = cb->insts_size();
1311         }
1312 
1313         // A padding may be needed again since a previous instruction
1314         // could be moved to delay slot.
1315 
1316         // align the instruction if necessary
1317         int padding = mach->compute_padding(current_offset);
1318         // Make sure safepoint node for polling is distinct from a call's
1319         // return by adding a nop if needed.
1320         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1321           padding = nop_size;
1322         }
1323         if (padding == 0 && mach->avoid_back_to_back() &&
1324             current_offset == last_avoid_back_to_back_offset) {
1325           // Avoid back to back some instructions.
1326           padding = nop_size;
1327         }
1328 
1329         if(padding > 0) {
1330           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1331           int nops_cnt = padding / nop_size;
1332           MachNode *nop = new (this) MachNopNode(nops_cnt);
1333           block->insert_node(nop, j++);
1334           last_inst++;
1335           _cfg->map_node_to_block(nop, block);
1336           nop->emit(*cb, _regalloc);
1337           cb->flush_bundle(true);
1338           current_offset = cb->insts_size();
1339         }
1340 
1341         // Remember the start of the last call in a basic block
1342         if (is_mcall) {
1343           MachCallNode *mcall = mach->as_MachCall();
1344 
1345           // This destination address is NOT PC-relative
1346           mcall->method_set((intptr_t)mcall->entry_point());
1347 
1348           // Save the return address
1349           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1350 
1351           if (mcall->is_MachCallLeaf()) {
1352             is_mcall = false;
1353             is_sfn = false;
1354           }
1355         }
1356 
1357         // sfn will be valid whenever mcall is valid now because of inheritance
1358         if (is_sfn || is_mcall) {
1359 
1360           // Handle special safepoint nodes for synchronization
1361           if (!is_mcall) {
1362             MachSafePointNode *sfn = mach->as_MachSafePoint();
1363             // !!!!! Stubs only need an oopmap right now, so bail out
1364             if (sfn->jvms()->method() == NULL) {
1365               // Write the oopmap directly to the code blob??!!
1366 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1367               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1368 #             endif
1369               continue;
1370             }
1371           } // End synchronization
1372 
1373           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1374                                            current_offset);
1375           Process_OopMap_Node(mach, current_offset);
1376         } // End if safepoint
1377 
1378         // If this is a null check, then add the start of the previous instruction to the list
1379         else if( mach->is_MachNullCheck() ) {
1380           inct_starts[inct_cnt++] = previous_offset;
1381         }
1382 
1383         // If this is a branch, then fill in the label with the target BB's label
1384         else if (mach->is_MachBranch()) {
1385           // This requires the TRUE branch target be in succs[0]
1386           uint block_num = block->non_connector_successor(0)->_pre_order;
1387 
1388           // Try to replace long branch if delay slot is not used,
1389           // it is mostly for back branches since forward branch's
1390           // distance is not updated yet.
1391           bool delay_slot_is_used = valid_bundle_info(n) &&
1392                                     node_bundling(n)->use_unconditional_delay();
1393           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1394            assert(delay_slot == NULL, "not expecting delay slot node");
1395            int br_size = n->size(_regalloc);
1396             int offset = blk_starts[block_num] - current_offset;
1397             if (block_num >= i) {
1398               // Current and following block's offset are not
1399               // finalized yet, adjust distance by the difference
1400               // between calculated and final offsets of current block.
1401               offset -= (blk_starts[i] - blk_offset);
1402             }
1403             // In the following code a nop could be inserted before
1404             // the branch which will increase the backward distance.
1405             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1406             if (needs_padding && offset <= 0)
1407               offset -= nop_size;
1408 
1409             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1410               // We've got a winner.  Replace this branch.
1411               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1412 
1413               // Update the jmp_size.
1414               int new_size = replacement->size(_regalloc);
1415               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1416               // Insert padding between avoid_back_to_back branches.
1417               if (needs_padding && replacement->avoid_back_to_back()) {
1418                 MachNode *nop = new (this) MachNopNode();
1419                 block->insert_node(nop, j++);
1420                 _cfg->map_node_to_block(nop, block);
1421                 last_inst++;
1422                 nop->emit(*cb, _regalloc);
1423                 cb->flush_bundle(true);
1424                 current_offset = cb->insts_size();
1425               }
1426 #ifdef ASSERT
1427               jmp_target[i] = block_num;
1428               jmp_offset[i] = current_offset - blk_offset;
1429               jmp_size[i]   = new_size;
1430               jmp_rule[i]   = mach->rule();
1431 #endif
1432               block->map_node(replacement, j);
1433               mach->subsume_by(replacement, C);
1434               n    = replacement;
1435               mach = replacement;
1436             }
1437           }
1438           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1439         } else if (mach->ideal_Opcode() == Op_Jump) {
1440           for (uint h = 0; h < block->_num_succs; h++) {
1441             Block* succs_block = block->_succs[h];
1442             for (uint j = 1; j < succs_block->num_preds(); j++) {
1443               Node* jpn = succs_block->pred(j);
1444               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1445                 uint block_num = succs_block->non_connector()->_pre_order;
1446                 Label *blkLabel = &blk_labels[block_num];
1447                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1448               }
1449             }
1450           }
1451         }
1452 #ifdef ASSERT
1453         // Check that oop-store precedes the card-mark
1454         else if (mach->ideal_Opcode() == Op_StoreCM) {
1455           uint storeCM_idx = j;
1456           int count = 0;
1457           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1458             Node *oop_store = mach->in(prec);  // Precedence edge
1459             if (oop_store == NULL) continue;
1460             count++;
1461             uint i4;
1462             for (i4 = 0; i4 < last_inst; ++i4) {
1463               if (block->get_node(i4) == oop_store) {
1464                 break;
1465               }
1466             }
1467             // Note: This test can provide a false failure if other precedence
1468             // edges have been added to the storeCMNode.
1469             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1470           }
1471           assert(count > 0, "storeCM expects at least one precedence edge");
1472         }
1473 #endif
1474         else if (!n->is_Proj()) {
1475           // Remember the beginning of the previous instruction, in case
1476           // it's followed by a flag-kill and a null-check.  Happens on
1477           // Intel all the time, with add-to-memory kind of opcodes.
1478           previous_offset = current_offset;
1479         }
1480 
1481         // Not an else-if!
1482         // If this is a trap based cmp then add its offset to the list.
1483         if (mach->is_TrapBasedCheckNode()) {
1484           inct_starts[inct_cnt++] = current_offset;
1485         }
1486       }
1487 
1488       // Verify that there is sufficient space remaining
1489       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1490       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1491         C->record_failure("CodeCache is full");
1492         return;
1493       }
1494 
1495       // Save the offset for the listing
1496 #ifndef PRODUCT
1497       if (node_offsets && n->_idx < node_offset_limit)
1498         node_offsets[n->_idx] = cb->insts_size();
1499 #endif
1500 
1501       // "Normal" instruction case
1502       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1503       n->emit(*cb, _regalloc);
1504       current_offset  = cb->insts_size();
1505 
1506 #ifdef ASSERT
1507       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1508         n->dump();
1509         assert(false, "wrong size of mach node");
1510       }
1511 #endif
1512       non_safepoints.observe_instruction(n, current_offset);
1513 
1514       // mcall is last "call" that can be a safepoint
1515       // record it so we can see if a poll will directly follow it
1516       // in which case we'll need a pad to make the PcDesc sites unique
1517       // see  5010568. This can be slightly inaccurate but conservative
1518       // in the case that return address is not actually at current_offset.
1519       // This is a small price to pay.
1520 
1521       if (is_mcall) {
1522         last_call_offset = current_offset;
1523       }
1524 
1525       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1526         // Avoid back to back some instructions.
1527         last_avoid_back_to_back_offset = current_offset;
1528       }
1529 
1530       // See if this instruction has a delay slot
1531       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1532         assert(delay_slot != NULL, "expecting delay slot node");
1533 
1534         // Back up 1 instruction
1535         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1536 
1537         // Save the offset for the listing
1538 #ifndef PRODUCT
1539         if (node_offsets && delay_slot->_idx < node_offset_limit)
1540           node_offsets[delay_slot->_idx] = cb->insts_size();
1541 #endif
1542 
1543         // Support a SafePoint in the delay slot
1544         if (delay_slot->is_MachSafePoint()) {
1545           MachNode *mach = delay_slot->as_Mach();
1546           // !!!!! Stubs only need an oopmap right now, so bail out
1547           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1548             // Write the oopmap directly to the code blob??!!
1549 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1550             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1551 #           endif
1552             delay_slot = NULL;
1553             continue;
1554           }
1555 
1556           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1557           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1558                                            adjusted_offset);
1559           // Generate an OopMap entry
1560           Process_OopMap_Node(mach, adjusted_offset);
1561         }
1562 
1563         // Insert the delay slot instruction
1564         delay_slot->emit(*cb, _regalloc);
1565 
1566         // Don't reuse it
1567         delay_slot = NULL;
1568       }
1569 
1570     } // End for all instructions in block
1571 
1572     // If the next block is the top of a loop, pad this block out to align
1573     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1574     if (i < nblocks-1) {
1575       Block *nb = _cfg->get_block(i + 1);
1576       int padding = nb->alignment_padding(current_offset);
1577       if( padding > 0 ) {
1578         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1579         block->insert_node(nop, block->number_of_nodes());
1580         _cfg->map_node_to_block(nop, block);
1581         nop->emit(*cb, _regalloc);
1582         current_offset = cb->insts_size();
1583       }
1584     }
1585     // Verify that the distance for generated before forward
1586     // short branches is still valid.
1587     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1588 
1589     // Save new block start offset
1590     blk_starts[i] = blk_offset;
1591   } // End of for all blocks
1592   blk_starts[nblocks] = current_offset;
1593 
1594   non_safepoints.flush_at_end();
1595 
1596   // Offset too large?
1597   if (failing())  return;
1598 
1599   // Define a pseudo-label at the end of the code
1600   MacroAssembler(cb).bind( blk_labels[nblocks] );
1601 
1602   // Compute the size of the first block
1603   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1604 
1605   assert(cb->insts_size() < 500000, "method is unreasonably large");
1606 
1607 #ifdef ASSERT
1608   for (uint i = 0; i < nblocks; i++) { // For all blocks
1609     if (jmp_target[i] != 0) {
1610       int br_size = jmp_size[i];
1611       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1612       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1613         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1614         assert(false, "Displacement too large for short jmp");
1615       }
1616     }
1617   }
1618 #endif
1619 
1620 #ifndef PRODUCT
1621   // Information on the size of the method, without the extraneous code
1622   Scheduling::increment_method_size(cb->insts_size());
1623 #endif
1624 
1625   // ------------------
1626   // Fill in exception table entries.
1627   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1628 
1629   // Only java methods have exception handlers and deopt handlers
1630   if (_method) {
1631     // Emit the exception handler code.
1632     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1633     // Emit the deopt handler code.
1634     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1635 
1636     // Emit the MethodHandle deopt handler code (if required).
1637     if (has_method_handle_invokes()) {
1638       // We can use the same code as for the normal deopt handler, we
1639       // just need a different entry point address.
1640       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1641     }
1642   }
1643 
1644   // One last check for failed CodeBuffer::expand:
1645   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1646     C->record_failure("CodeCache is full");
1647     return;
1648   }
1649 
1650 #ifndef PRODUCT
1651   // Dump the assembly code, including basic-block numbers
1652   if (print_assembly()) {
1653     ttyLocker ttyl;  // keep the following output all in one block
1654     if (!VMThread::should_terminate()) {  // test this under the tty lock
1655       // This output goes directly to the tty, not the compiler log.
1656       // To enable tools to match it up with the compilation activity,
1657       // be sure to tag this tty output with the compile ID.
1658       if (xtty != NULL) {
1659         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1660                    is_osr_compilation()    ? " compile_kind='osr'" :
1661                    "");
1662       }
1663       if (method() != NULL) {
1664         method()->print_metadata();
1665       }
1666       dump_asm(node_offsets, node_offset_limit);
1667       if (xtty != NULL) {
1668         xtty->tail("opto_assembly");
1669       }
1670     }
1671   }
1672 #endif
1673 
1674 }
1675 
1676 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1677   _inc_table.set_size(cnt);
1678 
1679   uint inct_cnt = 0;
1680   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1681     Block* block = _cfg->get_block(i);
1682     Node *n = NULL;
1683     int j;
1684 
1685     // Find the branch; ignore trailing NOPs.
1686     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1687       n = block->get_node(j);
1688       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1689         break;
1690       }
1691     }
1692 
1693     // If we didn't find anything, continue
1694     if (j < 0) {
1695       continue;
1696     }
1697 
1698     // Compute ExceptionHandlerTable subtable entry and add it
1699     // (skip empty blocks)
1700     if (n->is_Catch()) {
1701 
1702       // Get the offset of the return from the call
1703       uint call_return = call_returns[block->_pre_order];
1704 #ifdef ASSERT
1705       assert( call_return > 0, "no call seen for this basic block" );
1706       while (block->get_node(--j)->is_MachProj()) ;
1707       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1708 #endif
1709       // last instruction is a CatchNode, find it's CatchProjNodes
1710       int nof_succs = block->_num_succs;
1711       // allocate space
1712       GrowableArray<intptr_t> handler_bcis(nof_succs);
1713       GrowableArray<intptr_t> handler_pcos(nof_succs);
1714       // iterate through all successors
1715       for (int j = 0; j < nof_succs; j++) {
1716         Block* s = block->_succs[j];
1717         bool found_p = false;
1718         for (uint k = 1; k < s->num_preds(); k++) {
1719           Node* pk = s->pred(k);
1720           if (pk->is_CatchProj() && pk->in(0) == n) {
1721             const CatchProjNode* p = pk->as_CatchProj();
1722             found_p = true;
1723             // add the corresponding handler bci & pco information
1724             if (p->_con != CatchProjNode::fall_through_index) {
1725               // p leads to an exception handler (and is not fall through)
1726               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1727               // no duplicates, please
1728               if (!handler_bcis.contains(p->handler_bci())) {
1729                 uint block_num = s->non_connector()->_pre_order;
1730                 handler_bcis.append(p->handler_bci());
1731                 handler_pcos.append(blk_labels[block_num].loc_pos());
1732               }
1733             }
1734           }
1735         }
1736         assert(found_p, "no matching predecessor found");
1737         // Note:  Due to empty block removal, one block may have
1738         // several CatchProj inputs, from the same Catch.
1739       }
1740 
1741       // Set the offset of the return from the call
1742       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1743       continue;
1744     }
1745 
1746     // Handle implicit null exception table updates
1747     if (n->is_MachNullCheck()) {
1748       uint block_num = block->non_connector_successor(0)->_pre_order;
1749       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1750       continue;
1751     }
1752     // Handle implicit exception table updates: trap instructions.
1753     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1754       uint block_num = block->non_connector_successor(0)->_pre_order;
1755       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1756       continue;
1757     }
1758   } // End of for all blocks fill in exception table entries
1759 }
1760 
1761 // Static Variables
1762 #ifndef PRODUCT
1763 uint Scheduling::_total_nop_size = 0;
1764 uint Scheduling::_total_method_size = 0;
1765 uint Scheduling::_total_branches = 0;
1766 uint Scheduling::_total_unconditional_delays = 0;
1767 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1768 #endif
1769 
1770 // Initializer for class Scheduling
1771 
1772 Scheduling::Scheduling(Arena *arena, Compile &compile)
1773   : _arena(arena),
1774     _cfg(compile.cfg()),
1775     _regalloc(compile.regalloc()),
1776     _reg_node(arena),
1777     _bundle_instr_count(0),
1778     _bundle_cycle_number(0),
1779     _scheduled(arena),
1780     _available(arena),
1781     _next_node(NULL),
1782     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1783     _pinch_free_list(arena)
1784 #ifndef PRODUCT
1785   , _branches(0)
1786   , _unconditional_delays(0)
1787 #endif
1788 {
1789   // Create a MachNopNode
1790   _nop = new (&compile) MachNopNode();
1791 
1792   // Now that the nops are in the array, save the count
1793   // (but allow entries for the nops)
1794   _node_bundling_limit = compile.unique();
1795   uint node_max = _regalloc->node_regs_max_index();
1796 
1797   compile.set_node_bundling_limit(_node_bundling_limit);
1798 
1799   // This one is persistent within the Compile class
1800   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1801 
1802   // Allocate space for fixed-size arrays
1803   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1804   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1805   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1806 
1807   // Clear the arrays
1808   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1809   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1810   memset(_uses,               0, node_max * sizeof(short));
1811   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1812 
1813   // Clear the bundling information
1814   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1815 
1816   // Get the last node
1817   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1818 
1819   _next_node = block->get_node(block->number_of_nodes() - 1);
1820 }
1821 
1822 #ifndef PRODUCT
1823 // Scheduling destructor
1824 Scheduling::~Scheduling() {
1825   _total_branches             += _branches;
1826   _total_unconditional_delays += _unconditional_delays;
1827 }
1828 #endif
1829 
1830 // Step ahead "i" cycles
1831 void Scheduling::step(uint i) {
1832 
1833   Bundle *bundle = node_bundling(_next_node);
1834   bundle->set_starts_bundle();
1835 
1836   // Update the bundle record, but leave the flags information alone
1837   if (_bundle_instr_count > 0) {
1838     bundle->set_instr_count(_bundle_instr_count);
1839     bundle->set_resources_used(_bundle_use.resourcesUsed());
1840   }
1841 
1842   // Update the state information
1843   _bundle_instr_count = 0;
1844   _bundle_cycle_number += i;
1845   _bundle_use.step(i);
1846 }
1847 
1848 void Scheduling::step_and_clear() {
1849   Bundle *bundle = node_bundling(_next_node);
1850   bundle->set_starts_bundle();
1851 
1852   // Update the bundle record
1853   if (_bundle_instr_count > 0) {
1854     bundle->set_instr_count(_bundle_instr_count);
1855     bundle->set_resources_used(_bundle_use.resourcesUsed());
1856 
1857     _bundle_cycle_number += 1;
1858   }
1859 
1860   // Clear the bundling information
1861   _bundle_instr_count = 0;
1862   _bundle_use.reset();
1863 
1864   memcpy(_bundle_use_elements,
1865     Pipeline_Use::elaborated_elements,
1866     sizeof(Pipeline_Use::elaborated_elements));
1867 }
1868 
1869 // Perform instruction scheduling and bundling over the sequence of
1870 // instructions in backwards order.
1871 void Compile::ScheduleAndBundle() {
1872 
1873   // Don't optimize this if it isn't a method
1874   if (!_method)
1875     return;
1876 
1877   // Don't optimize this if scheduling is disabled
1878   if (!do_scheduling())
1879     return;
1880 
1881   // Scheduling code works only with pairs (8 bytes) maximum.
1882   if (max_vector_size() > 8)
1883     return;
1884 
1885   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1886 
1887   // Create a data structure for all the scheduling information
1888   Scheduling scheduling(Thread::current()->resource_area(), *this);
1889 
1890   // Walk backwards over each basic block, computing the needed alignment
1891   // Walk over all the basic blocks
1892   scheduling.DoScheduling();
1893 }
1894 
1895 // Compute the latency of all the instructions.  This is fairly simple,
1896 // because we already have a legal ordering.  Walk over the instructions
1897 // from first to last, and compute the latency of the instruction based
1898 // on the latency of the preceding instruction(s).
1899 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1900 #ifndef PRODUCT
1901   if (_cfg->C->trace_opto_output())
1902     tty->print("# -> ComputeLocalLatenciesForward\n");
1903 #endif
1904 
1905   // Walk over all the schedulable instructions
1906   for( uint j=_bb_start; j < _bb_end; j++ ) {
1907 
1908     // This is a kludge, forcing all latency calculations to start at 1.
1909     // Used to allow latency 0 to force an instruction to the beginning
1910     // of the bb
1911     uint latency = 1;
1912     Node *use = bb->get_node(j);
1913     uint nlen = use->len();
1914 
1915     // Walk over all the inputs
1916     for ( uint k=0; k < nlen; k++ ) {
1917       Node *def = use->in(k);
1918       if (!def)
1919         continue;
1920 
1921       uint l = _node_latency[def->_idx] + use->latency(k);
1922       if (latency < l)
1923         latency = l;
1924     }
1925 
1926     _node_latency[use->_idx] = latency;
1927 
1928 #ifndef PRODUCT
1929     if (_cfg->C->trace_opto_output()) {
1930       tty->print("# latency %4d: ", latency);
1931       use->dump();
1932     }
1933 #endif
1934   }
1935 
1936 #ifndef PRODUCT
1937   if (_cfg->C->trace_opto_output())
1938     tty->print("# <- ComputeLocalLatenciesForward\n");
1939 #endif
1940 
1941 } // end ComputeLocalLatenciesForward
1942 
1943 // See if this node fits into the present instruction bundle
1944 bool Scheduling::NodeFitsInBundle(Node *n) {
1945   uint n_idx = n->_idx;
1946 
1947   // If this is the unconditional delay instruction, then it fits
1948   if (n == _unconditional_delay_slot) {
1949 #ifndef PRODUCT
1950     if (_cfg->C->trace_opto_output())
1951       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1952 #endif
1953     return (true);
1954   }
1955 
1956   // If the node cannot be scheduled this cycle, skip it
1957   if (_current_latency[n_idx] > _bundle_cycle_number) {
1958 #ifndef PRODUCT
1959     if (_cfg->C->trace_opto_output())
1960       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1961         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1962 #endif
1963     return (false);
1964   }
1965 
1966   const Pipeline *node_pipeline = n->pipeline();
1967 
1968   uint instruction_count = node_pipeline->instructionCount();
1969   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1970     instruction_count = 0;
1971   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1972     instruction_count++;
1973 
1974   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1975 #ifndef PRODUCT
1976     if (_cfg->C->trace_opto_output())
1977       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1978         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1979 #endif
1980     return (false);
1981   }
1982 
1983   // Don't allow non-machine nodes to be handled this way
1984   if (!n->is_Mach() && instruction_count == 0)
1985     return (false);
1986 
1987   // See if there is any overlap
1988   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1989 
1990   if (delay > 0) {
1991 #ifndef PRODUCT
1992     if (_cfg->C->trace_opto_output())
1993       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1994 #endif
1995     return false;
1996   }
1997 
1998 #ifndef PRODUCT
1999   if (_cfg->C->trace_opto_output())
2000     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2001 #endif
2002 
2003   return true;
2004 }
2005 
2006 Node * Scheduling::ChooseNodeToBundle() {
2007   uint siz = _available.size();
2008 
2009   if (siz == 0) {
2010 
2011 #ifndef PRODUCT
2012     if (_cfg->C->trace_opto_output())
2013       tty->print("#   ChooseNodeToBundle: NULL\n");
2014 #endif
2015     return (NULL);
2016   }
2017 
2018   // Fast path, if only 1 instruction in the bundle
2019   if (siz == 1) {
2020 #ifndef PRODUCT
2021     if (_cfg->C->trace_opto_output()) {
2022       tty->print("#   ChooseNodeToBundle (only 1): ");
2023       _available[0]->dump();
2024     }
2025 #endif
2026     return (_available[0]);
2027   }
2028 
2029   // Don't bother, if the bundle is already full
2030   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2031     for ( uint i = 0; i < siz; i++ ) {
2032       Node *n = _available[i];
2033 
2034       // Skip projections, we'll handle them another way
2035       if (n->is_Proj())
2036         continue;
2037 
2038       // This presupposed that instructions are inserted into the
2039       // available list in a legality order; i.e. instructions that
2040       // must be inserted first are at the head of the list
2041       if (NodeFitsInBundle(n)) {
2042 #ifndef PRODUCT
2043         if (_cfg->C->trace_opto_output()) {
2044           tty->print("#   ChooseNodeToBundle: ");
2045           n->dump();
2046         }
2047 #endif
2048         return (n);
2049       }
2050     }
2051   }
2052 
2053   // Nothing fits in this bundle, choose the highest priority
2054 #ifndef PRODUCT
2055   if (_cfg->C->trace_opto_output()) {
2056     tty->print("#   ChooseNodeToBundle: ");
2057     _available[0]->dump();
2058   }
2059 #endif
2060 
2061   return _available[0];
2062 }
2063 
2064 void Scheduling::AddNodeToAvailableList(Node *n) {
2065   assert( !n->is_Proj(), "projections never directly made available" );
2066 #ifndef PRODUCT
2067   if (_cfg->C->trace_opto_output()) {
2068     tty->print("#   AddNodeToAvailableList: ");
2069     n->dump();
2070   }
2071 #endif
2072 
2073   int latency = _current_latency[n->_idx];
2074 
2075   // Insert in latency order (insertion sort)
2076   uint i;
2077   for ( i=0; i < _available.size(); i++ )
2078     if (_current_latency[_available[i]->_idx] > latency)
2079       break;
2080 
2081   // Special Check for compares following branches
2082   if( n->is_Mach() && _scheduled.size() > 0 ) {
2083     int op = n->as_Mach()->ideal_Opcode();
2084     Node *last = _scheduled[0];
2085     if( last->is_MachIf() && last->in(1) == n &&
2086         ( op == Op_CmpI ||
2087           op == Op_CmpU ||
2088           op == Op_CmpP ||
2089           op == Op_CmpF ||
2090           op == Op_CmpD ||
2091           op == Op_CmpL ) ) {
2092 
2093       // Recalculate position, moving to front of same latency
2094       for ( i=0 ; i < _available.size(); i++ )
2095         if (_current_latency[_available[i]->_idx] >= latency)
2096           break;
2097     }
2098   }
2099 
2100   // Insert the node in the available list
2101   _available.insert(i, n);
2102 
2103 #ifndef PRODUCT
2104   if (_cfg->C->trace_opto_output())
2105     dump_available();
2106 #endif
2107 }
2108 
2109 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2110   for ( uint i=0; i < n->len(); i++ ) {
2111     Node *def = n->in(i);
2112     if (!def) continue;
2113     if( def->is_Proj() )        // If this is a machine projection, then
2114       def = def->in(0);         // propagate usage thru to the base instruction
2115 
2116     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2117       continue;
2118     }
2119 
2120     // Compute the latency
2121     uint l = _bundle_cycle_number + n->latency(i);
2122     if (_current_latency[def->_idx] < l)
2123       _current_latency[def->_idx] = l;
2124 
2125     // If this does not have uses then schedule it
2126     if ((--_uses[def->_idx]) == 0)
2127       AddNodeToAvailableList(def);
2128   }
2129 }
2130 
2131 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2132 #ifndef PRODUCT
2133   if (_cfg->C->trace_opto_output()) {
2134     tty->print("#   AddNodeToBundle: ");
2135     n->dump();
2136   }
2137 #endif
2138 
2139   // Remove this from the available list
2140   uint i;
2141   for (i = 0; i < _available.size(); i++)
2142     if (_available[i] == n)
2143       break;
2144   assert(i < _available.size(), "entry in _available list not found");
2145   _available.remove(i);
2146 
2147   // See if this fits in the current bundle
2148   const Pipeline *node_pipeline = n->pipeline();
2149   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2150 
2151   // Check for instructions to be placed in the delay slot. We
2152   // do this before we actually schedule the current instruction,
2153   // because the delay slot follows the current instruction.
2154   if (Pipeline::_branch_has_delay_slot &&
2155       node_pipeline->hasBranchDelay() &&
2156       !_unconditional_delay_slot) {
2157 
2158     uint siz = _available.size();
2159 
2160     // Conditional branches can support an instruction that
2161     // is unconditionally executed and not dependent by the
2162     // branch, OR a conditionally executed instruction if
2163     // the branch is taken.  In practice, this means that
2164     // the first instruction at the branch target is
2165     // copied to the delay slot, and the branch goes to
2166     // the instruction after that at the branch target
2167     if ( n->is_MachBranch() ) {
2168 
2169       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2170       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2171 
2172 #ifndef PRODUCT
2173       _branches++;
2174 #endif
2175 
2176       // At least 1 instruction is on the available list
2177       // that is not dependent on the branch
2178       for (uint i = 0; i < siz; i++) {
2179         Node *d = _available[i];
2180         const Pipeline *avail_pipeline = d->pipeline();
2181 
2182         // Don't allow safepoints in the branch shadow, that will
2183         // cause a number of difficulties
2184         if ( avail_pipeline->instructionCount() == 1 &&
2185             !avail_pipeline->hasMultipleBundles() &&
2186             !avail_pipeline->hasBranchDelay() &&
2187             Pipeline::instr_has_unit_size() &&
2188             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2189             NodeFitsInBundle(d) &&
2190             !node_bundling(d)->used_in_delay()) {
2191 
2192           if (d->is_Mach() && !d->is_MachSafePoint()) {
2193             // A node that fits in the delay slot was found, so we need to
2194             // set the appropriate bits in the bundle pipeline information so
2195             // that it correctly indicates resource usage.  Later, when we
2196             // attempt to add this instruction to the bundle, we will skip
2197             // setting the resource usage.
2198             _unconditional_delay_slot = d;
2199             node_bundling(n)->set_use_unconditional_delay();
2200             node_bundling(d)->set_used_in_unconditional_delay();
2201             _bundle_use.add_usage(avail_pipeline->resourceUse());
2202             _current_latency[d->_idx] = _bundle_cycle_number;
2203             _next_node = d;
2204             ++_bundle_instr_count;
2205 #ifndef PRODUCT
2206             _unconditional_delays++;
2207 #endif
2208             break;
2209           }
2210         }
2211       }
2212     }
2213 
2214     // No delay slot, add a nop to the usage
2215     if (!_unconditional_delay_slot) {
2216       // See if adding an instruction in the delay slot will overflow
2217       // the bundle.
2218       if (!NodeFitsInBundle(_nop)) {
2219 #ifndef PRODUCT
2220         if (_cfg->C->trace_opto_output())
2221           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2222 #endif
2223         step(1);
2224       }
2225 
2226       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2227       _next_node = _nop;
2228       ++_bundle_instr_count;
2229     }
2230 
2231     // See if the instruction in the delay slot requires a
2232     // step of the bundles
2233     if (!NodeFitsInBundle(n)) {
2234 #ifndef PRODUCT
2235         if (_cfg->C->trace_opto_output())
2236           tty->print("#  *** STEP(branch won't fit) ***\n");
2237 #endif
2238         // Update the state information
2239         _bundle_instr_count = 0;
2240         _bundle_cycle_number += 1;
2241         _bundle_use.step(1);
2242     }
2243   }
2244 
2245   // Get the number of instructions
2246   uint instruction_count = node_pipeline->instructionCount();
2247   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2248     instruction_count = 0;
2249 
2250   // Compute the latency information
2251   uint delay = 0;
2252 
2253   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2254     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2255     if (relative_latency < 0)
2256       relative_latency = 0;
2257 
2258     delay = _bundle_use.full_latency(relative_latency, node_usage);
2259 
2260     // Does not fit in this bundle, start a new one
2261     if (delay > 0) {
2262       step(delay);
2263 
2264 #ifndef PRODUCT
2265       if (_cfg->C->trace_opto_output())
2266         tty->print("#  *** STEP(%d) ***\n", delay);
2267 #endif
2268     }
2269   }
2270 
2271   // If this was placed in the delay slot, ignore it
2272   if (n != _unconditional_delay_slot) {
2273 
2274     if (delay == 0) {
2275       if (node_pipeline->hasMultipleBundles()) {
2276 #ifndef PRODUCT
2277         if (_cfg->C->trace_opto_output())
2278           tty->print("#  *** STEP(multiple instructions) ***\n");
2279 #endif
2280         step(1);
2281       }
2282 
2283       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2284 #ifndef PRODUCT
2285         if (_cfg->C->trace_opto_output())
2286           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2287             instruction_count + _bundle_instr_count,
2288             Pipeline::_max_instrs_per_cycle);
2289 #endif
2290         step(1);
2291       }
2292     }
2293 
2294     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2295       _bundle_instr_count++;
2296 
2297     // Set the node's latency
2298     _current_latency[n->_idx] = _bundle_cycle_number;
2299 
2300     // Now merge the functional unit information
2301     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2302       _bundle_use.add_usage(node_usage);
2303 
2304     // Increment the number of instructions in this bundle
2305     _bundle_instr_count += instruction_count;
2306 
2307     // Remember this node for later
2308     if (n->is_Mach())
2309       _next_node = n;
2310   }
2311 
2312   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2313   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2314   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2315   // into the block.  All other scheduled nodes get put in the schedule here.
2316   int op = n->Opcode();
2317   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2318       (op != Op_Node &&         // Not an unused antidepedence node and
2319        // not an unallocated boxlock
2320        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2321 
2322     // Push any trailing projections
2323     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2324       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2325         Node *foi = n->fast_out(i);
2326         if( foi->is_Proj() )
2327           _scheduled.push(foi);
2328       }
2329     }
2330 
2331     // Put the instruction in the schedule list
2332     _scheduled.push(n);
2333   }
2334 
2335 #ifndef PRODUCT
2336   if (_cfg->C->trace_opto_output())
2337     dump_available();
2338 #endif
2339 
2340   // Walk all the definitions, decrementing use counts, and
2341   // if a definition has a 0 use count, place it in the available list.
2342   DecrementUseCounts(n,bb);
2343 }
2344 
2345 // This method sets the use count within a basic block.  We will ignore all
2346 // uses outside the current basic block.  As we are doing a backwards walk,
2347 // any node we reach that has a use count of 0 may be scheduled.  This also
2348 // avoids the problem of cyclic references from phi nodes, as long as phi
2349 // nodes are at the front of the basic block.  This method also initializes
2350 // the available list to the set of instructions that have no uses within this
2351 // basic block.
2352 void Scheduling::ComputeUseCount(const Block *bb) {
2353 #ifndef PRODUCT
2354   if (_cfg->C->trace_opto_output())
2355     tty->print("# -> ComputeUseCount\n");
2356 #endif
2357 
2358   // Clear the list of available and scheduled instructions, just in case
2359   _available.clear();
2360   _scheduled.clear();
2361 
2362   // No delay slot specified
2363   _unconditional_delay_slot = NULL;
2364 
2365 #ifdef ASSERT
2366   for( uint i=0; i < bb->number_of_nodes(); i++ )
2367     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2368 #endif
2369 
2370   // Force the _uses count to never go to zero for unscheduable pieces
2371   // of the block
2372   for( uint k = 0; k < _bb_start; k++ )
2373     _uses[bb->get_node(k)->_idx] = 1;
2374   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2375     _uses[bb->get_node(l)->_idx] = 1;
2376 
2377   // Iterate backwards over the instructions in the block.  Don't count the
2378   // branch projections at end or the block header instructions.
2379   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2380     Node *n = bb->get_node(j);
2381     if( n->is_Proj() ) continue; // Projections handled another way
2382 
2383     // Account for all uses
2384     for ( uint k = 0; k < n->len(); k++ ) {
2385       Node *inp = n->in(k);
2386       if (!inp) continue;
2387       assert(inp != n, "no cycles allowed" );
2388       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2389         if (inp->is_Proj()) { // Skip through Proj's
2390           inp = inp->in(0);
2391         }
2392         ++_uses[inp->_idx];     // Count 1 block-local use
2393       }
2394     }
2395 
2396     // If this instruction has a 0 use count, then it is available
2397     if (!_uses[n->_idx]) {
2398       _current_latency[n->_idx] = _bundle_cycle_number;
2399       AddNodeToAvailableList(n);
2400     }
2401 
2402 #ifndef PRODUCT
2403     if (_cfg->C->trace_opto_output()) {
2404       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2405       n->dump();
2406     }
2407 #endif
2408   }
2409 
2410 #ifndef PRODUCT
2411   if (_cfg->C->trace_opto_output())
2412     tty->print("# <- ComputeUseCount\n");
2413 #endif
2414 }
2415 
2416 // This routine performs scheduling on each basic block in reverse order,
2417 // using instruction latencies and taking into account function unit
2418 // availability.
2419 void Scheduling::DoScheduling() {
2420 #ifndef PRODUCT
2421   if (_cfg->C->trace_opto_output())
2422     tty->print("# -> DoScheduling\n");
2423 #endif
2424 
2425   Block *succ_bb = NULL;
2426   Block *bb;
2427 
2428   // Walk over all the basic blocks in reverse order
2429   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2430     bb = _cfg->get_block(i);
2431 
2432 #ifndef PRODUCT
2433     if (_cfg->C->trace_opto_output()) {
2434       tty->print("#  Schedule BB#%03d (initial)\n", i);
2435       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2436         bb->get_node(j)->dump();
2437       }
2438     }
2439 #endif
2440 
2441     // On the head node, skip processing
2442     if (bb == _cfg->get_root_block()) {
2443       continue;
2444     }
2445 
2446     // Skip empty, connector blocks
2447     if (bb->is_connector())
2448       continue;
2449 
2450     // If the following block is not the sole successor of
2451     // this one, then reset the pipeline information
2452     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2453 #ifndef PRODUCT
2454       if (_cfg->C->trace_opto_output()) {
2455         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2456                    _next_node->_idx, _bundle_instr_count);
2457       }
2458 #endif
2459       step_and_clear();
2460     }
2461 
2462     // Leave untouched the starting instruction, any Phis, a CreateEx node
2463     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2464     _bb_end = bb->number_of_nodes()-1;
2465     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2466       Node *n = bb->get_node(_bb_start);
2467       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2468       // Also, MachIdealNodes do not get scheduled
2469       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2470       MachNode *mach = n->as_Mach();
2471       int iop = mach->ideal_Opcode();
2472       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2473       if( iop == Op_Con ) continue;      // Do not schedule Top
2474       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2475           mach->pipeline() == MachNode::pipeline_class() &&
2476           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2477         continue;
2478       break;                    // Funny loop structure to be sure...
2479     }
2480     // Compute last "interesting" instruction in block - last instruction we
2481     // might schedule.  _bb_end points just after last schedulable inst.  We
2482     // normally schedule conditional branches (despite them being forced last
2483     // in the block), because they have delay slots we can fill.  Calls all
2484     // have their delay slots filled in the template expansions, so we don't
2485     // bother scheduling them.
2486     Node *last = bb->get_node(_bb_end);
2487     // Ignore trailing NOPs.
2488     while (_bb_end > 0 && last->is_Mach() &&
2489            last->as_Mach()->ideal_Opcode() == Op_Con) {
2490       last = bb->get_node(--_bb_end);
2491     }
2492     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2493     if( last->is_Catch() ||
2494        // Exclude unreachable path case when Halt node is in a separate block.
2495        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2496       // There must be a prior call.  Skip it.
2497       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2498         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2499       }
2500     } else if( last->is_MachNullCheck() ) {
2501       // Backup so the last null-checked memory instruction is
2502       // outside the schedulable range. Skip over the nullcheck,
2503       // projection, and the memory nodes.
2504       Node *mem = last->in(1);
2505       do {
2506         _bb_end--;
2507       } while (mem != bb->get_node(_bb_end));
2508     } else {
2509       // Set _bb_end to point after last schedulable inst.
2510       _bb_end++;
2511     }
2512 
2513     assert( _bb_start <= _bb_end, "inverted block ends" );
2514 
2515     // Compute the register antidependencies for the basic block
2516     ComputeRegisterAntidependencies(bb);
2517     if (_cfg->C->failing())  return;  // too many D-U pinch points
2518 
2519     // Compute intra-bb latencies for the nodes
2520     ComputeLocalLatenciesForward(bb);
2521 
2522     // Compute the usage within the block, and set the list of all nodes
2523     // in the block that have no uses within the block.
2524     ComputeUseCount(bb);
2525 
2526     // Schedule the remaining instructions in the block
2527     while ( _available.size() > 0 ) {
2528       Node *n = ChooseNodeToBundle();
2529       guarantee(n != NULL, "no nodes available");
2530       AddNodeToBundle(n,bb);
2531     }
2532 
2533     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2534 #ifdef ASSERT
2535     for( uint l = _bb_start; l < _bb_end; l++ ) {
2536       Node *n = bb->get_node(l);
2537       uint m;
2538       for( m = 0; m < _bb_end-_bb_start; m++ )
2539         if( _scheduled[m] == n )
2540           break;
2541       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2542     }
2543 #endif
2544 
2545     // Now copy the instructions (in reverse order) back to the block
2546     for ( uint k = _bb_start; k < _bb_end; k++ )
2547       bb->map_node(_scheduled[_bb_end-k-1], k);
2548 
2549 #ifndef PRODUCT
2550     if (_cfg->C->trace_opto_output()) {
2551       tty->print("#  Schedule BB#%03d (final)\n", i);
2552       uint current = 0;
2553       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2554         Node *n = bb->get_node(j);
2555         if( valid_bundle_info(n) ) {
2556           Bundle *bundle = node_bundling(n);
2557           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2558             tty->print("*** Bundle: ");
2559             bundle->dump();
2560           }
2561           n->dump();
2562         }
2563       }
2564     }
2565 #endif
2566 #ifdef ASSERT
2567   verify_good_schedule(bb,"after block local scheduling");
2568 #endif
2569   }
2570 
2571 #ifndef PRODUCT
2572   if (_cfg->C->trace_opto_output())
2573     tty->print("# <- DoScheduling\n");
2574 #endif
2575 
2576   // Record final node-bundling array location
2577   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2578 
2579 } // end DoScheduling
2580 
2581 // Verify that no live-range used in the block is killed in the block by a
2582 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2583 
2584 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2585 static bool edge_from_to( Node *from, Node *to ) {
2586   for( uint i=0; i<from->len(); i++ )
2587     if( from->in(i) == to )
2588       return true;
2589   return false;
2590 }
2591 
2592 #ifdef ASSERT
2593 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2594   // Check for bad kills
2595   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2596     Node *prior_use = _reg_node[def];
2597     if( prior_use && !edge_from_to(prior_use,n) ) {
2598       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2599       n->dump();
2600       tty->print_cr("...");
2601       prior_use->dump();
2602       assert(edge_from_to(prior_use,n),msg);
2603     }
2604     _reg_node.map(def,NULL); // Kill live USEs
2605   }
2606 }
2607 
2608 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2609 
2610   // Zap to something reasonable for the verify code
2611   _reg_node.clear();
2612 
2613   // Walk over the block backwards.  Check to make sure each DEF doesn't
2614   // kill a live value (other than the one it's supposed to).  Add each
2615   // USE to the live set.
2616   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2617     Node *n = b->get_node(i);
2618     int n_op = n->Opcode();
2619     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2620       // Fat-proj kills a slew of registers
2621       RegMask rm = n->out_RegMask();// Make local copy
2622       while( rm.is_NotEmpty() ) {
2623         OptoReg::Name kill = rm.find_first_elem();
2624         rm.Remove(kill);
2625         verify_do_def( n, kill, msg );
2626       }
2627     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2628       // Get DEF'd registers the normal way
2629       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2630       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2631     }
2632 
2633     // Now make all USEs live
2634     for( uint i=1; i<n->req(); i++ ) {
2635       Node *def = n->in(i);
2636       assert(def != 0, "input edge required");
2637       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2638       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2639       if( OptoReg::is_valid(reg_lo) ) {
2640         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2641         _reg_node.map(reg_lo,n);
2642       }
2643       if( OptoReg::is_valid(reg_hi) ) {
2644         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2645         _reg_node.map(reg_hi,n);
2646       }
2647     }
2648 
2649   }
2650 
2651   // Zap to something reasonable for the Antidependence code
2652   _reg_node.clear();
2653 }
2654 #endif
2655 
2656 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2657 static void add_prec_edge_from_to( Node *from, Node *to ) {
2658   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2659     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2660     from = from->in(0);
2661   }
2662   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2663       !edge_from_to( from, to ) ) // Avoid duplicate edge
2664     from->add_prec(to);
2665 }
2666 
2667 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2668   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2669     return;
2670 
2671   Node *pinch = _reg_node[def_reg]; // Get pinch point
2672   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2673       is_def ) {    // Check for a true def (not a kill)
2674     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2675     return;
2676   }
2677 
2678   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2679   debug_only( def = (Node*)0xdeadbeef; )
2680 
2681   // After some number of kills there _may_ be a later def
2682   Node *later_def = NULL;
2683 
2684   // Finding a kill requires a real pinch-point.
2685   // Check for not already having a pinch-point.
2686   // Pinch points are Op_Node's.
2687   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2688     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2689     if ( _pinch_free_list.size() > 0) {
2690       pinch = _pinch_free_list.pop();
2691     } else {
2692       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2693     }
2694     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2695       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2696       return;
2697     }
2698     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2699     _reg_node.map(def_reg,pinch); // Record pinch-point
2700     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2701     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2702       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2703       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2704       later_def = NULL;           // and no later def
2705     }
2706     pinch->set_req(0,later_def);  // Hook later def so we can find it
2707   } else {                        // Else have valid pinch point
2708     if( pinch->in(0) )            // If there is a later-def
2709       later_def = pinch->in(0);   // Get it
2710   }
2711 
2712   // Add output-dependence edge from later def to kill
2713   if( later_def )               // If there is some original def
2714     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2715 
2716   // See if current kill is also a use, and so is forced to be the pinch-point.
2717   if( pinch->Opcode() == Op_Node ) {
2718     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2719     for( uint i=1; i<uses->req(); i++ ) {
2720       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2721           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2722         // Yes, found a use/kill pinch-point
2723         pinch->set_req(0,NULL);  //
2724         pinch->replace_by(kill); // Move anti-dep edges up
2725         pinch = kill;
2726         _reg_node.map(def_reg,pinch);
2727         return;
2728       }
2729     }
2730   }
2731 
2732   // Add edge from kill to pinch-point
2733   add_prec_edge_from_to(kill,pinch);
2734 }
2735 
2736 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2737   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2738     return;
2739   Node *pinch = _reg_node[use_reg]; // Get pinch point
2740   // Check for no later def_reg/kill in block
2741   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2742       // Use has to be block-local as well
2743       _cfg->get_block_for_node(use) == b) {
2744     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2745         pinch->req() == 1 ) {   // pinch not yet in block?
2746       pinch->del_req(0);        // yank pointer to later-def, also set flag
2747       // Insert the pinch-point in the block just after the last use
2748       b->insert_node(pinch, b->find_node(use) + 1);
2749       _bb_end++;                // Increase size scheduled region in block
2750     }
2751 
2752     add_prec_edge_from_to(pinch,use);
2753   }
2754 }
2755 
2756 // We insert antidependences between the reads and following write of
2757 // allocated registers to prevent illegal code motion. Hopefully, the
2758 // number of added references should be fairly small, especially as we
2759 // are only adding references within the current basic block.
2760 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2761 
2762 #ifdef ASSERT
2763   verify_good_schedule(b,"before block local scheduling");
2764 #endif
2765 
2766   // A valid schedule, for each register independently, is an endless cycle
2767   // of: a def, then some uses (connected to the def by true dependencies),
2768   // then some kills (defs with no uses), finally the cycle repeats with a new
2769   // def.  The uses are allowed to float relative to each other, as are the
2770   // kills.  No use is allowed to slide past a kill (or def).  This requires
2771   // antidependencies between all uses of a single def and all kills that
2772   // follow, up to the next def.  More edges are redundant, because later defs
2773   // & kills are already serialized with true or antidependencies.  To keep
2774   // the edge count down, we add a 'pinch point' node if there's more than
2775   // one use or more than one kill/def.
2776 
2777   // We add dependencies in one bottom-up pass.
2778 
2779   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2780 
2781   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2782   // register.  If not, we record the DEF/KILL in _reg_node, the
2783   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2784   // "pinch point", a new Node that's in the graph but not in the block.
2785   // We put edges from the prior and current DEF/KILLs to the pinch point.
2786   // We put the pinch point in _reg_node.  If there's already a pinch point
2787   // we merely add an edge from the current DEF/KILL to the pinch point.
2788 
2789   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2790   // put an edge from the pinch point to the USE.
2791 
2792   // To be expedient, the _reg_node array is pre-allocated for the whole
2793   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2794   // or a valid def/kill/pinch-point, or a leftover node from some prior
2795   // block.  Leftover node from some prior block is treated like a NULL (no
2796   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2797   // it being in the current block.
2798   bool fat_proj_seen = false;
2799   uint last_safept = _bb_end-1;
2800   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2801   Node* last_safept_node = end_node;
2802   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2803     Node *n = b->get_node(i);
2804     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2805     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2806       // Fat-proj kills a slew of registers
2807       // This can add edges to 'n' and obscure whether or not it was a def,
2808       // hence the is_def flag.
2809       fat_proj_seen = true;
2810       RegMask rm = n->out_RegMask();// Make local copy
2811       while( rm.is_NotEmpty() ) {
2812         OptoReg::Name kill = rm.find_first_elem();
2813         rm.Remove(kill);
2814         anti_do_def( b, n, kill, is_def );
2815       }
2816     } else {
2817       // Get DEF'd registers the normal way
2818       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2819       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2820     }
2821 
2822     // Kill projections on a branch should appear to occur on the
2823     // branch, not afterwards, so grab the masks from the projections
2824     // and process them.
2825     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2826       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2827         Node* use = n->fast_out(i);
2828         if (use->is_Proj()) {
2829           RegMask rm = use->out_RegMask();// Make local copy
2830           while( rm.is_NotEmpty() ) {
2831             OptoReg::Name kill = rm.find_first_elem();
2832             rm.Remove(kill);
2833             anti_do_def( b, n, kill, false );
2834           }
2835         }
2836       }
2837     }
2838 
2839     // Check each register used by this instruction for a following DEF/KILL
2840     // that must occur afterward and requires an anti-dependence edge.
2841     for( uint j=0; j<n->req(); j++ ) {
2842       Node *def = n->in(j);
2843       if( def ) {
2844         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2845         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2846         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2847       }
2848     }
2849     // Do not allow defs of new derived values to float above GC
2850     // points unless the base is definitely available at the GC point.
2851 
2852     Node *m = b->get_node(i);
2853 
2854     // Add precedence edge from following safepoint to use of derived pointer
2855     if( last_safept_node != end_node &&
2856         m != last_safept_node) {
2857       for (uint k = 1; k < m->req(); k++) {
2858         const Type *t = m->in(k)->bottom_type();
2859         if( t->isa_oop_ptr() &&
2860             t->is_ptr()->offset() != 0 ) {
2861           last_safept_node->add_prec( m );
2862           break;
2863         }
2864       }
2865     }
2866 
2867     if( n->jvms() ) {           // Precedence edge from derived to safept
2868       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2869       if( b->get_node(last_safept) != last_safept_node ) {
2870         last_safept = b->find_node(last_safept_node);
2871       }
2872       for( uint j=last_safept; j > i; j-- ) {
2873         Node *mach = b->get_node(j);
2874         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2875           mach->add_prec( n );
2876       }
2877       last_safept = i;
2878       last_safept_node = m;
2879     }
2880   }
2881 
2882   if (fat_proj_seen) {
2883     // Garbage collect pinch nodes that were not consumed.
2884     // They are usually created by a fat kill MachProj for a call.
2885     garbage_collect_pinch_nodes();
2886   }
2887 }
2888 
2889 // Garbage collect pinch nodes for reuse by other blocks.
2890 //
2891 // The block scheduler's insertion of anti-dependence
2892 // edges creates many pinch nodes when the block contains
2893 // 2 or more Calls.  A pinch node is used to prevent a
2894 // combinatorial explosion of edges.  If a set of kills for a
2895 // register is anti-dependent on a set of uses (or defs), rather
2896 // than adding an edge in the graph between each pair of kill
2897 // and use (or def), a pinch is inserted between them:
2898 //
2899 //            use1   use2  use3
2900 //                \   |   /
2901 //                 \  |  /
2902 //                  pinch
2903 //                 /  |  \
2904 //                /   |   \
2905 //            kill1 kill2 kill3
2906 //
2907 // One pinch node is created per register killed when
2908 // the second call is encountered during a backwards pass
2909 // over the block.  Most of these pinch nodes are never
2910 // wired into the graph because the register is never
2911 // used or def'ed in the block.
2912 //
2913 void Scheduling::garbage_collect_pinch_nodes() {
2914 #ifndef PRODUCT
2915     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2916 #endif
2917     int trace_cnt = 0;
2918     for (uint k = 0; k < _reg_node.Size(); k++) {
2919       Node* pinch = _reg_node[k];
2920       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2921           // no predecence input edges
2922           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2923         cleanup_pinch(pinch);
2924         _pinch_free_list.push(pinch);
2925         _reg_node.map(k, NULL);
2926 #ifndef PRODUCT
2927         if (_cfg->C->trace_opto_output()) {
2928           trace_cnt++;
2929           if (trace_cnt > 40) {
2930             tty->print("\n");
2931             trace_cnt = 0;
2932           }
2933           tty->print(" %d", pinch->_idx);
2934         }
2935 #endif
2936       }
2937     }
2938 #ifndef PRODUCT
2939     if (_cfg->C->trace_opto_output()) tty->print("\n");
2940 #endif
2941 }
2942 
2943 // Clean up a pinch node for reuse.
2944 void Scheduling::cleanup_pinch( Node *pinch ) {
2945   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2946 
2947   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2948     Node* use = pinch->last_out(i);
2949     uint uses_found = 0;
2950     for (uint j = use->req(); j < use->len(); j++) {
2951       if (use->in(j) == pinch) {
2952         use->rm_prec(j);
2953         uses_found++;
2954       }
2955     }
2956     assert(uses_found > 0, "must be a precedence edge");
2957     i -= uses_found;    // we deleted 1 or more copies of this edge
2958   }
2959   // May have a later_def entry
2960   pinch->set_req(0, NULL);
2961 }
2962 
2963 #ifndef PRODUCT
2964 
2965 void Scheduling::dump_available() const {
2966   tty->print("#Availist  ");
2967   for (uint i = 0; i < _available.size(); i++)
2968     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2969   tty->cr();
2970 }
2971 
2972 // Print Scheduling Statistics
2973 void Scheduling::print_statistics() {
2974   // Print the size added by nops for bundling
2975   tty->print("Nops added %d bytes to total of %d bytes",
2976     _total_nop_size, _total_method_size);
2977   if (_total_method_size > 0)
2978     tty->print(", for %.2f%%",
2979       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2980   tty->print("\n");
2981 
2982   // Print the number of branch shadows filled
2983   if (Pipeline::_branch_has_delay_slot) {
2984     tty->print("Of %d branches, %d had unconditional delay slots filled",
2985       _total_branches, _total_unconditional_delays);
2986     if (_total_branches > 0)
2987       tty->print(", for %.2f%%",
2988         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2989     tty->print("\n");
2990   }
2991 
2992   uint total_instructions = 0, total_bundles = 0;
2993 
2994   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2995     uint bundle_count   = _total_instructions_per_bundle[i];
2996     total_instructions += bundle_count * i;
2997     total_bundles      += bundle_count;
2998   }
2999 
3000   if (total_bundles > 0)
3001     tty->print("Average ILP (excluding nops) is %.2f\n",
3002       ((double)total_instructions) / ((double)total_bundles));
3003 }
3004 #endif