1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/nmethod.hpp"
  29 #include "code/pcDesc.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "interpreter/bytecode.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/oopMapCache.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "runtime/vframe.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "runtime/vframe_hp.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef TARGET_ARCH_x86
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "vmreg_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_zero
  60 # include "vmreg_zero.inline.hpp"
  61 #endif
  62 #ifdef TARGET_ARCH_arm
  63 # include "vmreg_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_ppc
  66 # include "vmreg_ppc.inline.hpp"
  67 #endif
  68 #ifdef COMPILER2
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc_32
  85 # include "adfiles/ad_ppc_32.hpp"
  86 #endif
  87 #ifdef TARGET_ARCH_MODEL_ppc_64
  88 # include "adfiles/ad_ppc_64.hpp"
  89 #endif
  90 #endif // COMPILER2
  91 
  92 bool DeoptimizationMarker::_is_active = false;
  93 
  94 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  95                                          int  caller_adjustment,
  96                                          int  caller_actual_parameters,
  97                                          int  number_of_frames,
  98                                          intptr_t* frame_sizes,
  99                                          address* frame_pcs,
 100                                          BasicType return_type) {
 101   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 102   _caller_adjustment         = caller_adjustment;
 103   _caller_actual_parameters  = caller_actual_parameters;
 104   _number_of_frames          = number_of_frames;
 105   _frame_sizes               = frame_sizes;
 106   _frame_pcs                 = frame_pcs;
 107   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 108   _return_type               = return_type;
 109   _initial_info              = 0;
 110   // PD (x86 only)
 111   _counter_temp              = 0;
 112   _unpack_kind               = 0;
 113   _sender_sp_temp            = 0;
 114 
 115   _total_frame_sizes         = size_of_frames();
 116 }
 117 
 118 
 119 Deoptimization::UnrollBlock::~UnrollBlock() {
 120   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
 121   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
 122   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
 123 }
 124 
 125 
 126 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 127   assert(register_number < RegisterMap::reg_count, "checking register number");
 128   return &_register_block[register_number * 2];
 129 }
 130 
 131 
 132 
 133 int Deoptimization::UnrollBlock::size_of_frames() const {
 134   // Acount first for the adjustment of the initial frame
 135   int result = _caller_adjustment;
 136   for (int index = 0; index < number_of_frames(); index++) {
 137     result += frame_sizes()[index];
 138   }
 139   return result;
 140 }
 141 
 142 
 143 void Deoptimization::UnrollBlock::print() {
 144   ttyLocker ttyl;
 145   tty->print_cr("UnrollBlock");
 146   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 147   tty->print(   "  frame_sizes: ");
 148   for (int index = 0; index < number_of_frames(); index++) {
 149     tty->print("%d ", frame_sizes()[index]);
 150   }
 151   tty->cr();
 152 }
 153 
 154 
 155 // In order to make fetch_unroll_info work properly with escape
 156 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 157 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 158 // of previously eliminated objects occurs in realloc_objects, which is
 159 // called from the method fetch_unroll_info_helper below.
 160 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 161   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 162   // but makes the entry a little slower. There is however a little dance we have to
 163   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 164 
 165   // fetch_unroll_info() is called at the beginning of the deoptimization
 166   // handler. Note this fact before we start generating temporary frames
 167   // that can confuse an asynchronous stack walker. This counter is
 168   // decremented at the end of unpack_frames().
 169   thread->inc_in_deopt_handler();
 170 
 171   return fetch_unroll_info_helper(thread);
 172 JRT_END
 173 
 174 
 175 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 176 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 177 
 178   // Note: there is a safepoint safety issue here. No matter whether we enter
 179   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 180   // the vframeArray is created.
 181   //
 182 
 183   // Allocate our special deoptimization ResourceMark
 184   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 185   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 186   thread->set_deopt_mark(dmark);
 187 
 188   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 189   RegisterMap map(thread, true);
 190   RegisterMap dummy_map(thread, false);
 191   // Now get the deoptee with a valid map
 192   frame deoptee = stub_frame.sender(&map);
 193   // Set the deoptee nmethod
 194   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 195   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 196 
 197   if (VerifyStack) {
 198     thread->validate_frame_layout();
 199   }
 200 
 201   // Create a growable array of VFrames where each VFrame represents an inlined
 202   // Java frame.  This storage is allocated with the usual system arena.
 203   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 204   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 205   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 206   while (!vf->is_top()) {
 207     assert(vf->is_compiled_frame(), "Wrong frame type");
 208     chunk->push(compiledVFrame::cast(vf));
 209     vf = vf->sender();
 210   }
 211   assert(vf->is_compiled_frame(), "Wrong frame type");
 212   chunk->push(compiledVFrame::cast(vf));
 213 
 214 #ifdef COMPILER2
 215   // Reallocate the non-escaping objects and restore their fields. Then
 216   // relock objects if synchronization on them was eliminated.
 217   if (DoEscapeAnalysis || EliminateNestedLocks) {
 218     if (EliminateAllocations) {
 219       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 220       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 221 
 222       // The flag return_oop() indicates call sites which return oop
 223       // in compiled code. Such sites include java method calls,
 224       // runtime calls (for example, used to allocate new objects/arrays
 225       // on slow code path) and any other calls generated in compiled code.
 226       // It is not guaranteed that we can get such information here only
 227       // by analyzing bytecode in deoptimized frames. This is why this flag
 228       // is set during method compilation (see Compile::Process_OopMap_Node()).
 229       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 230       Handle return_value;
 231       if (save_oop_result) {
 232         // Reallocation may trigger GC. If deoptimization happened on return from
 233         // call which returns oop we need to save it since it is not in oopmap.
 234         oop result = deoptee.saved_oop_result(&map);
 235         assert(result == NULL || result->is_oop(), "must be oop");
 236         return_value = Handle(thread, result);
 237         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 238         if (TraceDeoptimization) {
 239           ttyLocker ttyl;
 240           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
 241         }
 242       }
 243       bool reallocated = false;
 244       if (objects != NULL) {
 245         JRT_BLOCK
 246           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 247         JRT_END
 248       }
 249       if (reallocated) {
 250         reassign_fields(&deoptee, &map, objects);
 251 #ifndef PRODUCT
 252         if (TraceDeoptimization) {
 253           ttyLocker ttyl;
 254           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 255           print_objects(objects);
 256         }
 257 #endif
 258       }
 259       if (save_oop_result) {
 260         // Restore result.
 261         deoptee.set_saved_oop_result(&map, return_value());
 262       }
 263     }
 264     if (EliminateLocks) {
 265 #ifndef PRODUCT
 266       bool first = true;
 267 #endif
 268       for (int i = 0; i < chunk->length(); i++) {
 269         compiledVFrame* cvf = chunk->at(i);
 270         assert (cvf->scope() != NULL,"expect only compiled java frames");
 271         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 272         if (monitors->is_nonempty()) {
 273           relock_objects(monitors, thread);
 274 #ifndef PRODUCT
 275           if (TraceDeoptimization) {
 276             ttyLocker ttyl;
 277             for (int j = 0; j < monitors->length(); j++) {
 278               MonitorInfo* mi = monitors->at(j);
 279               if (mi->eliminated()) {
 280                 if (first) {
 281                   first = false;
 282                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 283                 }
 284                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
 285               }
 286             }
 287           }
 288 #endif
 289         }
 290       }
 291     }
 292   }
 293 #endif // COMPILER2
 294   // Ensure that no safepoint is taken after pointers have been stored
 295   // in fields of rematerialized objects.  If a safepoint occurs from here on
 296   // out the java state residing in the vframeArray will be missed.
 297   No_Safepoint_Verifier no_safepoint;
 298 
 299   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 300 
 301   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 302   thread->set_vframe_array_head(array);
 303 
 304   // Now that the vframeArray has been created if we have any deferred local writes
 305   // added by jvmti then we can free up that structure as the data is now in the
 306   // vframeArray
 307 
 308   if (thread->deferred_locals() != NULL) {
 309     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 310     int i = 0;
 311     do {
 312       // Because of inlining we could have multiple vframes for a single frame
 313       // and several of the vframes could have deferred writes. Find them all.
 314       if (list->at(i)->id() == array->original().id()) {
 315         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 316         list->remove_at(i);
 317         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 318         delete dlv;
 319       } else {
 320         i++;
 321       }
 322     } while ( i < list->length() );
 323     if (list->length() == 0) {
 324       thread->set_deferred_locals(NULL);
 325       // free the list and elements back to C heap.
 326       delete list;
 327     }
 328 
 329   }
 330 
 331 #ifndef SHARK
 332   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 333   CodeBlob* cb = stub_frame.cb();
 334   // Verify we have the right vframeArray
 335   assert(cb->frame_size() >= 0, "Unexpected frame size");
 336   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 337 
 338   // If the deopt call site is a MethodHandle invoke call site we have
 339   // to adjust the unpack_sp.
 340   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 341   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 342     unpack_sp = deoptee.unextended_sp();
 343 
 344 #ifdef ASSERT
 345   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 346 #endif
 347 #else
 348   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 349 #endif // !SHARK
 350 
 351   // This is a guarantee instead of an assert because if vframe doesn't match
 352   // we will unpack the wrong deoptimized frame and wind up in strange places
 353   // where it will be very difficult to figure out what went wrong. Better
 354   // to die an early death here than some very obscure death later when the
 355   // trail is cold.
 356   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 357   // in that it will fail to detect a problem when there is one. This needs
 358   // more work in tiger timeframe.
 359   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 360 
 361   int number_of_frames = array->frames();
 362 
 363   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 364   // virtual activation, which is the reverse of the elements in the vframes array.
 365   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 366   // +1 because we always have an interpreter return address for the final slot.
 367   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 368   int popframe_extra_args = 0;
 369   // Create an interpreter return address for the stub to use as its return
 370   // address so the skeletal frames are perfectly walkable
 371   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 372 
 373   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 374   // activation be put back on the expression stack of the caller for reexecution
 375   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 376     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 377   }
 378 
 379   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 380   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 381   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 382   //
 383   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 384   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 385 
 386   // It's possible that the number of parameters at the call site is
 387   // different than number of arguments in the callee when method
 388   // handles are used.  If the caller is interpreted get the real
 389   // value so that the proper amount of space can be added to it's
 390   // frame.
 391   bool caller_was_method_handle = false;
 392   if (deopt_sender.is_interpreted_frame()) {
 393     methodHandle method = deopt_sender.interpreter_frame_method();
 394     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 395     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 396       // Method handle invokes may involve fairly arbitrary chains of
 397       // calls so it's impossible to know how much actual space the
 398       // caller has for locals.
 399       caller_was_method_handle = true;
 400     }
 401   }
 402 
 403   //
 404   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 405   // frame_sizes/frame_pcs[1] next oldest frame (int)
 406   // frame_sizes/frame_pcs[n] youngest frame (int)
 407   //
 408   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 409   // owns the space for the return address to it's caller).  Confusing ain't it.
 410   //
 411   // The vframe array can address vframes with indices running from
 412   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 413   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 414   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 415   // so things look a little strange in this loop.
 416   //
 417   int callee_parameters = 0;
 418   int callee_locals = 0;
 419   for (int index = 0; index < array->frames(); index++ ) {
 420     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 421     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 422     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 423     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 424                                                                                                     callee_locals,
 425                                                                                                     index == array->frames() - 1,
 426                                                                                                     popframe_extra_args);
 427     // This pc doesn't have to be perfect just good enough to identify the frame
 428     // as interpreted so the skeleton frame will be walkable
 429     // The correct pc will be set when the skeleton frame is completely filled out
 430     // The final pc we store in the loop is wrong and will be overwritten below
 431     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 432 
 433     callee_parameters = array->element(index)->method()->size_of_parameters();
 434     callee_locals = array->element(index)->method()->max_locals();
 435     popframe_extra_args = 0;
 436   }
 437 
 438   // Compute whether the root vframe returns a float or double value.
 439   BasicType return_type;
 440   {
 441     HandleMark hm;
 442     methodHandle method(thread, array->element(0)->method());
 443     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 444     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 445   }
 446 
 447   // Compute information for handling adapters and adjusting the frame size of the caller.
 448   int caller_adjustment = 0;
 449 
 450   // Compute the amount the oldest interpreter frame will have to adjust
 451   // its caller's stack by. If the caller is a compiled frame then
 452   // we pretend that the callee has no parameters so that the
 453   // extension counts for the full amount of locals and not just
 454   // locals-parms. This is because without a c2i adapter the parm
 455   // area as created by the compiled frame will not be usable by
 456   // the interpreter. (Depending on the calling convention there
 457   // may not even be enough space).
 458 
 459   // QQQ I'd rather see this pushed down into last_frame_adjust
 460   // and have it take the sender (aka caller).
 461 
 462   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 463     caller_adjustment = last_frame_adjust(0, callee_locals);
 464   } else if (callee_locals > callee_parameters) {
 465     // The caller frame may need extending to accommodate
 466     // non-parameter locals of the first unpacked interpreted frame.
 467     // Compute that adjustment.
 468     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 469   }
 470 
 471   // If the sender is deoptimized the we must retrieve the address of the handler
 472   // since the frame will "magically" show the original pc before the deopt
 473   // and we'd undo the deopt.
 474 
 475   frame_pcs[0] = deopt_sender.raw_pc();
 476 
 477 #ifndef SHARK
 478   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 479 #endif // SHARK
 480 
 481   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 482                                       caller_adjustment * BytesPerWord,
 483                                       caller_was_method_handle ? 0 : callee_parameters,
 484                                       number_of_frames,
 485                                       frame_sizes,
 486                                       frame_pcs,
 487                                       return_type);
 488   // On some platforms, we need a way to pass some platform dependent
 489   // information to the unpacking code so the skeletal frames come out
 490   // correct (initial fp value, unextended sp, ...)
 491   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 492 
 493   if (array->frames() > 1) {
 494     if (VerifyStack && TraceDeoptimization) {
 495       ttyLocker ttyl;
 496       tty->print_cr("Deoptimizing method containing inlining");
 497     }
 498   }
 499 
 500   array->set_unroll_block(info);
 501   return info;
 502 }
 503 
 504 // Called to cleanup deoptimization data structures in normal case
 505 // after unpacking to stack and when stack overflow error occurs
 506 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 507                                         vframeArray *array) {
 508 
 509   // Get array if coming from exception
 510   if (array == NULL) {
 511     array = thread->vframe_array_head();
 512   }
 513   thread->set_vframe_array_head(NULL);
 514 
 515   // Free the previous UnrollBlock
 516   vframeArray* old_array = thread->vframe_array_last();
 517   thread->set_vframe_array_last(array);
 518 
 519   if (old_array != NULL) {
 520     UnrollBlock* old_info = old_array->unroll_block();
 521     old_array->set_unroll_block(NULL);
 522     delete old_info;
 523     delete old_array;
 524   }
 525 
 526   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 527   // inside the vframeArray (StackValueCollections)
 528 
 529   delete thread->deopt_mark();
 530   thread->set_deopt_mark(NULL);
 531   thread->set_deopt_nmethod(NULL);
 532 
 533 
 534   if (JvmtiExport::can_pop_frame()) {
 535 #ifndef CC_INTERP
 536     // Regardless of whether we entered this routine with the pending
 537     // popframe condition bit set, we should always clear it now
 538     thread->clear_popframe_condition();
 539 #else
 540     // C++ interpreter will clear has_pending_popframe when it enters
 541     // with method_resume. For deopt_resume2 we clear it now.
 542     if (thread->popframe_forcing_deopt_reexecution())
 543         thread->clear_popframe_condition();
 544 #endif /* CC_INTERP */
 545   }
 546 
 547   // unpack_frames() is called at the end of the deoptimization handler
 548   // and (in C2) at the end of the uncommon trap handler. Note this fact
 549   // so that an asynchronous stack walker can work again. This counter is
 550   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 551   // the beginning of uncommon_trap().
 552   thread->dec_in_deopt_handler();
 553 }
 554 
 555 
 556 // Return BasicType of value being returned
 557 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 558 
 559   // We are already active int he special DeoptResourceMark any ResourceObj's we
 560   // allocate will be freed at the end of the routine.
 561 
 562   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 563   // but makes the entry a little slower. There is however a little dance we have to
 564   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 565   ResetNoHandleMark rnhm; // No-op in release/product versions
 566   HandleMark hm;
 567 
 568   frame stub_frame = thread->last_frame();
 569 
 570   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 571   // must point to the vframeArray for the unpack frame.
 572   vframeArray* array = thread->vframe_array_head();
 573 
 574 #ifndef PRODUCT
 575   if (TraceDeoptimization) {
 576     ttyLocker ttyl;
 577     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 578   }
 579 #endif
 580   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 581               stub_frame.pc(), stub_frame.sp(), exec_mode);
 582 
 583   UnrollBlock* info = array->unroll_block();
 584 
 585   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 586   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 587 
 588   BasicType bt = info->return_type();
 589 
 590   // If we have an exception pending, claim that the return type is an oop
 591   // so the deopt_blob does not overwrite the exception_oop.
 592 
 593   if (exec_mode == Unpack_exception)
 594     bt = T_OBJECT;
 595 
 596   // Cleanup thread deopt data
 597   cleanup_deopt_info(thread, array);
 598 
 599 #ifndef PRODUCT
 600   if (VerifyStack) {
 601     ResourceMark res_mark;
 602 
 603     thread->validate_frame_layout();
 604 
 605     // Verify that the just-unpacked frames match the interpreter's
 606     // notions of expression stack and locals
 607     vframeArray* cur_array = thread->vframe_array_last();
 608     RegisterMap rm(thread, false);
 609     rm.set_include_argument_oops(false);
 610     bool is_top_frame = true;
 611     int callee_size_of_parameters = 0;
 612     int callee_max_locals = 0;
 613     for (int i = 0; i < cur_array->frames(); i++) {
 614       vframeArrayElement* el = cur_array->element(i);
 615       frame* iframe = el->iframe();
 616       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 617 
 618       // Get the oop map for this bci
 619       InterpreterOopMap mask;
 620       int cur_invoke_parameter_size = 0;
 621       bool try_next_mask = false;
 622       int next_mask_expression_stack_size = -1;
 623       int top_frame_expression_stack_adjustment = 0;
 624       methodHandle mh(thread, iframe->interpreter_frame_method());
 625       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 626       BytecodeStream str(mh);
 627       str.set_start(iframe->interpreter_frame_bci());
 628       int max_bci = mh->code_size();
 629       // Get to the next bytecode if possible
 630       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 631       // Check to see if we can grab the number of outgoing arguments
 632       // at an uncommon trap for an invoke (where the compiler
 633       // generates debug info before the invoke has executed)
 634       Bytecodes::Code cur_code = str.next();
 635       if (cur_code == Bytecodes::_invokevirtual   ||
 636           cur_code == Bytecodes::_invokespecial   ||
 637           cur_code == Bytecodes::_invokestatic    ||
 638           cur_code == Bytecodes::_invokeinterface ||
 639           cur_code == Bytecodes::_invokedynamic) {
 640         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 641         Symbol* signature = invoke.signature();
 642         ArgumentSizeComputer asc(signature);
 643         cur_invoke_parameter_size = asc.size();
 644         if (invoke.has_receiver()) {
 645           // Add in receiver
 646           ++cur_invoke_parameter_size;
 647         }
 648         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 649           callee_size_of_parameters++;
 650         }
 651       }
 652       if (str.bci() < max_bci) {
 653         Bytecodes::Code bc = str.next();
 654         if (bc >= 0) {
 655           // The interpreter oop map generator reports results before
 656           // the current bytecode has executed except in the case of
 657           // calls. It seems to be hard to tell whether the compiler
 658           // has emitted debug information matching the "state before"
 659           // a given bytecode or the state after, so we try both
 660           switch (cur_code) {
 661             case Bytecodes::_invokevirtual:
 662             case Bytecodes::_invokespecial:
 663             case Bytecodes::_invokestatic:
 664             case Bytecodes::_invokeinterface:
 665             case Bytecodes::_invokedynamic:
 666             case Bytecodes::_athrow:
 667               break;
 668             default: {
 669               InterpreterOopMap next_mask;
 670               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 671               next_mask_expression_stack_size = next_mask.expression_stack_size();
 672               // Need to subtract off the size of the result type of
 673               // the bytecode because this is not described in the
 674               // debug info but returned to the interpreter in the TOS
 675               // caching register
 676               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 677               if (bytecode_result_type != T_ILLEGAL) {
 678                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 679               }
 680               assert(top_frame_expression_stack_adjustment >= 0, "");
 681               try_next_mask = true;
 682               break;
 683             }
 684           }
 685         }
 686       }
 687 
 688       // Verify stack depth and oops in frame
 689       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 690       if (!(
 691             /* SPARC */
 692             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 693             /* x86 */
 694             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 695             (try_next_mask &&
 696              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 697                                                                     top_frame_expression_stack_adjustment))) ||
 698             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 699             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 700              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 701             )) {
 702         ttyLocker ttyl;
 703 
 704         // Print out some information that will help us debug the problem
 705         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 706         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 707         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 708                       iframe->interpreter_frame_expression_stack_size());
 709         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 710         tty->print_cr("  try_next_mask = %d", try_next_mask);
 711         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 712         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 713         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 714         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 715         tty->print_cr("  exec_mode = %d", exec_mode);
 716         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 717         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 718         tty->print_cr("  Interpreted frames:");
 719         for (int k = 0; k < cur_array->frames(); k++) {
 720           vframeArrayElement* el = cur_array->element(k);
 721           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 722         }
 723         cur_array->print_on_2(tty);
 724         guarantee(false, "wrong number of expression stack elements during deopt");
 725       }
 726       VerifyOopClosure verify;
 727       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 728       callee_size_of_parameters = mh->size_of_parameters();
 729       callee_max_locals = mh->max_locals();
 730       is_top_frame = false;
 731     }
 732   }
 733 #endif /* !PRODUCT */
 734 
 735 
 736   return bt;
 737 JRT_END
 738 
 739 
 740 int Deoptimization::deoptimize_dependents() {
 741   Threads::deoptimized_wrt_marked_nmethods();
 742   return 0;
 743 }
 744 
 745 
 746 #ifdef COMPILER2
 747 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 748   Handle pending_exception(thread->pending_exception());
 749   const char* exception_file = thread->exception_file();
 750   int exception_line = thread->exception_line();
 751   thread->clear_pending_exception();
 752 
 753   for (int i = 0; i < objects->length(); i++) {
 754     assert(objects->at(i)->is_object(), "invalid debug information");
 755     ObjectValue* sv = (ObjectValue*) objects->at(i);
 756 
 757     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 758     oop obj = NULL;
 759 
 760     if (k->oop_is_instance()) {
 761       InstanceKlass* ik = InstanceKlass::cast(k());
 762       obj = ik->allocate_instance(CHECK_(false));
 763     } else if (k->oop_is_typeArray()) {
 764       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 765       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 766       int len = sv->field_size() / type2size[ak->element_type()];
 767       obj = ak->allocate(len, CHECK_(false));
 768     } else if (k->oop_is_objArray()) {
 769       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 770       obj = ak->allocate(sv->field_size(), CHECK_(false));
 771     }
 772 
 773     assert(obj != NULL, "allocation failed");
 774     assert(sv->value().is_null(), "redundant reallocation");
 775     sv->set_value(obj);
 776   }
 777 
 778   if (pending_exception.not_null()) {
 779     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 780   }
 781 
 782   return true;
 783 }
 784 
 785 // This assumes that the fields are stored in ObjectValue in the same order
 786 // they are yielded by do_nonstatic_fields.
 787 class FieldReassigner: public FieldClosure {
 788   frame* _fr;
 789   RegisterMap* _reg_map;
 790   ObjectValue* _sv;
 791   InstanceKlass* _ik;
 792   oop _obj;
 793 
 794   int _i;
 795 public:
 796   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 797     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 798 
 799   int i() const { return _i; }
 800 
 801 
 802   void do_field(fieldDescriptor* fd) {
 803     intptr_t val;
 804     StackValue* value =
 805       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 806     int offset = fd->offset();
 807     switch (fd->field_type()) {
 808     case T_OBJECT: case T_ARRAY:
 809       assert(value->type() == T_OBJECT, "Agreement.");
 810       _obj->obj_field_put(offset, value->get_obj()());
 811       break;
 812 
 813     case T_LONG: case T_DOUBLE: {
 814       assert(value->type() == T_INT, "Agreement.");
 815       StackValue* low =
 816         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 817 #ifdef _LP64
 818       jlong res = (jlong)low->get_int();
 819 #else
 820 #ifdef SPARC
 821       // For SPARC we have to swap high and low words.
 822       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 823 #else
 824       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 825 #endif //SPARC
 826 #endif
 827       _obj->long_field_put(offset, res);
 828       break;
 829     }
 830     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 831     case T_INT: case T_FLOAT: // 4 bytes.
 832       assert(value->type() == T_INT, "Agreement.");
 833       val = value->get_int();
 834       _obj->int_field_put(offset, (jint)*((jint*)&val));
 835       break;
 836 
 837     case T_SHORT: case T_CHAR: // 2 bytes
 838       assert(value->type() == T_INT, "Agreement.");
 839       val = value->get_int();
 840       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 841       break;
 842 
 843     case T_BOOLEAN: case T_BYTE: // 1 byte
 844       assert(value->type() == T_INT, "Agreement.");
 845       val = value->get_int();
 846       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 847       break;
 848 
 849     default:
 850       ShouldNotReachHere();
 851     }
 852     _i++;
 853   }
 854 };
 855 
 856 // restore elements of an eliminated type array
 857 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 858   int index = 0;
 859   intptr_t val;
 860 
 861   for (int i = 0; i < sv->field_size(); i++) {
 862     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 863     switch(type) {
 864     case T_LONG: case T_DOUBLE: {
 865       assert(value->type() == T_INT, "Agreement.");
 866       StackValue* low =
 867         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 868 #ifdef _LP64
 869       jlong res = (jlong)low->get_int();
 870 #else
 871 #ifdef SPARC
 872       // For SPARC we have to swap high and low words.
 873       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 874 #else
 875       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 876 #endif //SPARC
 877 #endif
 878       obj->long_at_put(index, res);
 879       break;
 880     }
 881 
 882     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 883     case T_INT: case T_FLOAT: // 4 bytes.
 884       assert(value->type() == T_INT, "Agreement.");
 885       val = value->get_int();
 886       obj->int_at_put(index, (jint)*((jint*)&val));
 887       break;
 888 
 889     case T_SHORT: case T_CHAR: // 2 bytes
 890       assert(value->type() == T_INT, "Agreement.");
 891       val = value->get_int();
 892       obj->short_at_put(index, (jshort)*((jint*)&val));
 893       break;
 894 
 895     case T_BOOLEAN: case T_BYTE: // 1 byte
 896       assert(value->type() == T_INT, "Agreement.");
 897       val = value->get_int();
 898       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 899       break;
 900 
 901       default:
 902         ShouldNotReachHere();
 903     }
 904     index++;
 905   }
 906 }
 907 
 908 
 909 // restore fields of an eliminated object array
 910 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 911   for (int i = 0; i < sv->field_size(); i++) {
 912     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 913     assert(value->type() == T_OBJECT, "object element expected");
 914     obj->obj_at_put(i, value->get_obj()());
 915   }
 916 }
 917 
 918 
 919 // restore fields of all eliminated objects and arrays
 920 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 921   for (int i = 0; i < objects->length(); i++) {
 922     ObjectValue* sv = (ObjectValue*) objects->at(i);
 923     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 924     Handle obj = sv->value();
 925     assert(obj.not_null(), "reallocation was missed");
 926 
 927     if (k->oop_is_instance()) {
 928       InstanceKlass* ik = InstanceKlass::cast(k());
 929       FieldReassigner reassign(fr, reg_map, sv, obj());
 930       ik->do_nonstatic_fields(&reassign);
 931     } else if (k->oop_is_typeArray()) {
 932       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 933       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 934     } else if (k->oop_is_objArray()) {
 935       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 936     }
 937   }
 938 }
 939 
 940 
 941 // relock objects for which synchronization was eliminated
 942 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 943   for (int i = 0; i < monitors->length(); i++) {
 944     MonitorInfo* mon_info = monitors->at(i);
 945     if (mon_info->eliminated()) {
 946       assert(mon_info->owner() != NULL, "reallocation was missed");
 947       Handle obj = Handle(mon_info->owner());
 948       markOop mark = obj->mark();
 949       if (UseBiasedLocking && mark->has_bias_pattern()) {
 950         // New allocated objects may have the mark set to anonymously biased.
 951         // Also the deoptimized method may called methods with synchronization
 952         // where the thread-local object is bias locked to the current thread.
 953         assert(mark->is_biased_anonymously() ||
 954                mark->biased_locker() == thread, "should be locked to current thread");
 955         // Reset mark word to unbiased prototype.
 956         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 957         obj->set_mark(unbiased_prototype);
 958       }
 959       BasicLock* lock = mon_info->lock();
 960       ObjectSynchronizer::slow_enter(obj, lock, thread);
 961     }
 962     assert(mon_info->owner()->is_locked(), "object must be locked now");
 963   }
 964 }
 965 
 966 
 967 #ifndef PRODUCT
 968 // print information about reallocated objects
 969 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 970   fieldDescriptor fd;
 971 
 972   for (int i = 0; i < objects->length(); i++) {
 973     ObjectValue* sv = (ObjectValue*) objects->at(i);
 974     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 975     Handle obj = sv->value();
 976 
 977     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
 978     k->print_value();
 979     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 980     tty->cr();
 981 
 982     if (Verbose) {
 983       k->oop_print_on(obj(), tty);
 984     }
 985   }
 986 }
 987 #endif
 988 #endif // COMPILER2
 989 
 990 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 991   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
 992 
 993 #ifndef PRODUCT
 994   if (TraceDeoptimization) {
 995     ttyLocker ttyl;
 996     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 997     fr.print_on(tty);
 998     tty->print_cr("     Virtual frames (innermost first):");
 999     for (int index = 0; index < chunk->length(); index++) {
1000       compiledVFrame* vf = chunk->at(index);
1001       tty->print("       %2d - ", index);
1002       vf->print_value();
1003       int bci = chunk->at(index)->raw_bci();
1004       const char* code_name;
1005       if (bci == SynchronizationEntryBCI) {
1006         code_name = "sync entry";
1007       } else {
1008         Bytecodes::Code code = vf->method()->code_at(bci);
1009         code_name = Bytecodes::name(code);
1010       }
1011       tty->print(" - %s", code_name);
1012       tty->print_cr(" @ bci %d ", bci);
1013       if (Verbose) {
1014         vf->print();
1015         tty->cr();
1016       }
1017     }
1018   }
1019 #endif
1020 
1021   // Register map for next frame (used for stack crawl).  We capture
1022   // the state of the deopt'ing frame's caller.  Thus if we need to
1023   // stuff a C2I adapter we can properly fill in the callee-save
1024   // register locations.
1025   frame caller = fr.sender(reg_map);
1026   int frame_size = caller.sp() - fr.sp();
1027 
1028   frame sender = caller;
1029 
1030   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1031   // the vframeArray containing the unpacking information is allocated in the C heap.
1032   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1033   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
1034 
1035   // Compare the vframeArray to the collected vframes
1036   assert(array->structural_compare(thread, chunk), "just checking");
1037 
1038 #ifndef PRODUCT
1039   if (TraceDeoptimization) {
1040     ttyLocker ttyl;
1041     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1042   }
1043 #endif // PRODUCT
1044 
1045   return array;
1046 }
1047 
1048 
1049 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1050   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1051   for (int i = 0; i < monitors->length(); i++) {
1052     MonitorInfo* mon_info = monitors->at(i);
1053     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1054       objects_to_revoke->append(Handle(mon_info->owner()));
1055     }
1056   }
1057 }
1058 
1059 
1060 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1061   if (!UseBiasedLocking) {
1062     return;
1063   }
1064 
1065   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1066 
1067   // Unfortunately we don't have a RegisterMap available in most of
1068   // the places we want to call this routine so we need to walk the
1069   // stack again to update the register map.
1070   if (map == NULL || !map->update_map()) {
1071     StackFrameStream sfs(thread, true);
1072     bool found = false;
1073     while (!found && !sfs.is_done()) {
1074       frame* cur = sfs.current();
1075       sfs.next();
1076       found = cur->id() == fr.id();
1077     }
1078     assert(found, "frame to be deoptimized not found on target thread's stack");
1079     map = sfs.register_map();
1080   }
1081 
1082   vframe* vf = vframe::new_vframe(&fr, map, thread);
1083   compiledVFrame* cvf = compiledVFrame::cast(vf);
1084   // Revoke monitors' biases in all scopes
1085   while (!cvf->is_top()) {
1086     collect_monitors(cvf, objects_to_revoke);
1087     cvf = compiledVFrame::cast(cvf->sender());
1088   }
1089   collect_monitors(cvf, objects_to_revoke);
1090 
1091   if (SafepointSynchronize::is_at_safepoint()) {
1092     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1093   } else {
1094     BiasedLocking::revoke(objects_to_revoke);
1095   }
1096 }
1097 
1098 
1099 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1100   if (!UseBiasedLocking) {
1101     return;
1102   }
1103 
1104   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1105   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1106   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1107     if (jt->has_last_Java_frame()) {
1108       StackFrameStream sfs(jt, true);
1109       while (!sfs.is_done()) {
1110         frame* cur = sfs.current();
1111         if (cb->contains(cur->pc())) {
1112           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1113           compiledVFrame* cvf = compiledVFrame::cast(vf);
1114           // Revoke monitors' biases in all scopes
1115           while (!cvf->is_top()) {
1116             collect_monitors(cvf, objects_to_revoke);
1117             cvf = compiledVFrame::cast(cvf->sender());
1118           }
1119           collect_monitors(cvf, objects_to_revoke);
1120         }
1121         sfs.next();
1122       }
1123     }
1124   }
1125   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1126 }
1127 
1128 
1129 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1130   assert(fr.can_be_deoptimized(), "checking frame type");
1131 
1132   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1133 
1134   // Patch the nmethod so that when execution returns to it we will
1135   // deopt the execution state and return to the interpreter.
1136   fr.deoptimize(thread);
1137 }
1138 
1139 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1140   // Deoptimize only if the frame comes from compile code.
1141   // Do not deoptimize the frame which is already patched
1142   // during the execution of the loops below.
1143   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1144     return;
1145   }
1146   ResourceMark rm;
1147   DeoptimizationMarker dm;
1148   if (UseBiasedLocking) {
1149     revoke_biases_of_monitors(thread, fr, map);
1150   }
1151   deoptimize_single_frame(thread, fr);
1152 
1153 }
1154 
1155 
1156 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1157   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1158          "can only deoptimize other thread at a safepoint");
1159   // Compute frame and register map based on thread and sp.
1160   RegisterMap reg_map(thread, UseBiasedLocking);
1161   frame fr = thread->last_frame();
1162   while (fr.id() != id) {
1163     fr = fr.sender(&reg_map);
1164   }
1165   deoptimize(thread, fr, &reg_map);
1166 }
1167 
1168 
1169 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1170   if (thread == Thread::current()) {
1171     Deoptimization::deoptimize_frame_internal(thread, id);
1172   } else {
1173     VM_DeoptimizeFrame deopt(thread, id);
1174     VMThread::execute(&deopt);
1175   }
1176 }
1177 
1178 
1179 // JVMTI PopFrame support
1180 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1181 {
1182   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1183 }
1184 JRT_END
1185 
1186 
1187 #if defined(COMPILER2) || defined(SHARK)
1188 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1189   // in case of an unresolved klass entry, load the class.
1190   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1191     Klass* tk = constant_pool->klass_at(index, CHECK);
1192     return;
1193   }
1194 
1195   if (!constant_pool->tag_at(index).is_symbol()) return;
1196 
1197   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1198   Symbol*  symbol  = constant_pool->symbol_at(index);
1199 
1200   // class name?
1201   if (symbol->byte_at(0) != '(') {
1202     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1203     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1204     return;
1205   }
1206 
1207   // then it must be a signature!
1208   ResourceMark rm(THREAD);
1209   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1210     if (ss.is_object()) {
1211       Symbol* class_name = ss.as_symbol(CHECK);
1212       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1213       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1214     }
1215   }
1216 }
1217 
1218 
1219 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1220   EXCEPTION_MARK;
1221   load_class_by_index(constant_pool, index, THREAD);
1222   if (HAS_PENDING_EXCEPTION) {
1223     // Exception happened during classloading. We ignore the exception here, since it
1224     // is going to be rethrown since the current activation is going to be deoptimized and
1225     // the interpreter will re-execute the bytecode.
1226     CLEAR_PENDING_EXCEPTION;
1227     // Class loading called java code which may have caused a stack
1228     // overflow. If the exception was thrown right before the return
1229     // to the runtime the stack is no longer guarded. Reguard the
1230     // stack otherwise if we return to the uncommon trap blob and the
1231     // stack bang causes a stack overflow we crash.
1232     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1233     JavaThread* thread = (JavaThread*)THREAD;
1234     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1235     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1236     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1237   }
1238 }
1239 
1240 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1241   HandleMark hm;
1242 
1243   // uncommon_trap() is called at the beginning of the uncommon trap
1244   // handler. Note this fact before we start generating temporary frames
1245   // that can confuse an asynchronous stack walker. This counter is
1246   // decremented at the end of unpack_frames().
1247   thread->inc_in_deopt_handler();
1248 
1249   // We need to update the map if we have biased locking.
1250   RegisterMap reg_map(thread, UseBiasedLocking);
1251   frame stub_frame = thread->last_frame();
1252   frame fr = stub_frame.sender(&reg_map);
1253   // Make sure the calling nmethod is not getting deoptimized and removed
1254   // before we are done with it.
1255   nmethodLocker nl(fr.pc());
1256 
1257   // Log a message
1258   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1259               trap_request, fr.pc());
1260 
1261   {
1262     ResourceMark rm;
1263 
1264     // Revoke biases of any monitors in the frame to ensure we can migrate them
1265     revoke_biases_of_monitors(thread, fr, &reg_map);
1266 
1267     DeoptReason reason = trap_request_reason(trap_request);
1268     DeoptAction action = trap_request_action(trap_request);
1269     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1270 
1271     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1272     compiledVFrame* cvf = compiledVFrame::cast(vf);
1273 
1274     nmethod* nm = cvf->code();
1275 
1276     ScopeDesc*      trap_scope  = cvf->scope();
1277     methodHandle    trap_method = trap_scope->method();
1278     int             trap_bci    = trap_scope->bci();
1279     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1280 
1281     // Record this event in the histogram.
1282     gather_statistics(reason, action, trap_bc);
1283 
1284     // Ensure that we can record deopt. history:
1285     bool create_if_missing = ProfileTraps;
1286 
1287     MethodData* trap_mdo =
1288       get_method_data(thread, trap_method, create_if_missing);
1289 
1290     // Log a message
1291     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1292                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
1293                               trap_method->name_and_sig_as_C_string(), trap_bci);
1294 
1295     // Print a bunch of diagnostics, if requested.
1296     if (TraceDeoptimization || LogCompilation) {
1297       ResourceMark rm;
1298       ttyLocker ttyl;
1299       char buf[100];
1300       if (xtty != NULL) {
1301         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1302                          os::current_thread_id(),
1303                          format_trap_request(buf, sizeof(buf), trap_request));
1304         nm->log_identity(xtty);
1305       }
1306       Symbol* class_name = NULL;
1307       bool unresolved = false;
1308       if (unloaded_class_index >= 0) {
1309         constantPoolHandle constants (THREAD, trap_method->constants());
1310         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1311           class_name = constants->klass_name_at(unloaded_class_index);
1312           unresolved = true;
1313           if (xtty != NULL)
1314             xtty->print(" unresolved='1'");
1315         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1316           class_name = constants->symbol_at(unloaded_class_index);
1317         }
1318         if (xtty != NULL)
1319           xtty->name(class_name);
1320       }
1321       if (xtty != NULL && trap_mdo != NULL) {
1322         // Dump the relevant MDO state.
1323         // This is the deopt count for the current reason, any previous
1324         // reasons or recompiles seen at this point.
1325         int dcnt = trap_mdo->trap_count(reason);
1326         if (dcnt != 0)
1327           xtty->print(" count='%d'", dcnt);
1328         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1329         int dos = (pdata == NULL)? 0: pdata->trap_state();
1330         if (dos != 0) {
1331           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1332           if (trap_state_is_recompiled(dos)) {
1333             int recnt2 = trap_mdo->overflow_recompile_count();
1334             if (recnt2 != 0)
1335               xtty->print(" recompiles2='%d'", recnt2);
1336           }
1337         }
1338       }
1339       if (xtty != NULL) {
1340         xtty->stamp();
1341         xtty->end_head();
1342       }
1343       if (TraceDeoptimization) {  // make noise on the tty
1344         tty->print("Uncommon trap occurred in");
1345         nm->method()->print_short_name(tty);
1346         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1347                    fr.pc(),
1348                    os::current_thread_id(),
1349                    trap_reason_name(reason),
1350                    trap_action_name(action),
1351                    unloaded_class_index);
1352         if (class_name != NULL) {
1353           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1354           class_name->print_symbol_on(tty);
1355         }
1356         tty->cr();
1357       }
1358       if (xtty != NULL) {
1359         // Log the precise location of the trap.
1360         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1361           xtty->begin_elem("jvms bci='%d'", sd->bci());
1362           xtty->method(sd->method());
1363           xtty->end_elem();
1364           if (sd->is_top())  break;
1365         }
1366         xtty->tail("uncommon_trap");
1367       }
1368     }
1369     // (End diagnostic printout.)
1370 
1371     // Load class if necessary
1372     if (unloaded_class_index >= 0) {
1373       constantPoolHandle constants(THREAD, trap_method->constants());
1374       load_class_by_index(constants, unloaded_class_index);
1375     }
1376 
1377     // Flush the nmethod if necessary and desirable.
1378     //
1379     // We need to avoid situations where we are re-flushing the nmethod
1380     // because of a hot deoptimization site.  Repeated flushes at the same
1381     // point need to be detected by the compiler and avoided.  If the compiler
1382     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1383     // module must take measures to avoid an infinite cycle of recompilation
1384     // and deoptimization.  There are several such measures:
1385     //
1386     //   1. If a recompilation is ordered a second time at some site X
1387     //   and for the same reason R, the action is adjusted to 'reinterpret',
1388     //   to give the interpreter time to exercise the method more thoroughly.
1389     //   If this happens, the method's overflow_recompile_count is incremented.
1390     //
1391     //   2. If the compiler fails to reduce the deoptimization rate, then
1392     //   the method's overflow_recompile_count will begin to exceed the set
1393     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1394     //   is adjusted to 'make_not_compilable', and the method is abandoned
1395     //   to the interpreter.  This is a performance hit for hot methods,
1396     //   but is better than a disastrous infinite cycle of recompilations.
1397     //   (Actually, only the method containing the site X is abandoned.)
1398     //
1399     //   3. In parallel with the previous measures, if the total number of
1400     //   recompilations of a method exceeds the much larger set limit
1401     //   PerMethodRecompilationCutoff, the method is abandoned.
1402     //   This should only happen if the method is very large and has
1403     //   many "lukewarm" deoptimizations.  The code which enforces this
1404     //   limit is elsewhere (class nmethod, class Method).
1405     //
1406     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1407     // to recompile at each bytecode independently of the per-BCI cutoff.
1408     //
1409     // The decision to update code is up to the compiler, and is encoded
1410     // in the Action_xxx code.  If the compiler requests Action_none
1411     // no trap state is changed, no compiled code is changed, and the
1412     // computation suffers along in the interpreter.
1413     //
1414     // The other action codes specify various tactics for decompilation
1415     // and recompilation.  Action_maybe_recompile is the loosest, and
1416     // allows the compiled code to stay around until enough traps are seen,
1417     // and until the compiler gets around to recompiling the trapping method.
1418     //
1419     // The other actions cause immediate removal of the present code.
1420 
1421     bool update_trap_state = true;
1422     bool make_not_entrant = false;
1423     bool make_not_compilable = false;
1424     bool reprofile = false;
1425     switch (action) {
1426     case Action_none:
1427       // Keep the old code.
1428       update_trap_state = false;
1429       break;
1430     case Action_maybe_recompile:
1431       // Do not need to invalidate the present code, but we can
1432       // initiate another
1433       // Start compiler without (necessarily) invalidating the nmethod.
1434       // The system will tolerate the old code, but new code should be
1435       // generated when possible.
1436       break;
1437     case Action_reinterpret:
1438       // Go back into the interpreter for a while, and then consider
1439       // recompiling form scratch.
1440       make_not_entrant = true;
1441       // Reset invocation counter for outer most method.
1442       // This will allow the interpreter to exercise the bytecodes
1443       // for a while before recompiling.
1444       // By contrast, Action_make_not_entrant is immediate.
1445       //
1446       // Note that the compiler will track null_check, null_assert,
1447       // range_check, and class_check events and log them as if they
1448       // had been traps taken from compiled code.  This will update
1449       // the MDO trap history so that the next compilation will
1450       // properly detect hot trap sites.
1451       reprofile = true;
1452       break;
1453     case Action_make_not_entrant:
1454       // Request immediate recompilation, and get rid of the old code.
1455       // Make them not entrant, so next time they are called they get
1456       // recompiled.  Unloaded classes are loaded now so recompile before next
1457       // time they are called.  Same for uninitialized.  The interpreter will
1458       // link the missing class, if any.
1459       make_not_entrant = true;
1460       break;
1461     case Action_make_not_compilable:
1462       // Give up on compiling this method at all.
1463       make_not_entrant = true;
1464       make_not_compilable = true;
1465       break;
1466     default:
1467       ShouldNotReachHere();
1468     }
1469 
1470     // Setting +ProfileTraps fixes the following, on all platforms:
1471     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1472     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1473     // recompile relies on a MethodData* to record heroic opt failures.
1474 
1475     // Whether the interpreter is producing MDO data or not, we also need
1476     // to use the MDO to detect hot deoptimization points and control
1477     // aggressive optimization.
1478     bool inc_recompile_count = false;
1479     ProfileData* pdata = NULL;
1480     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1481       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1482       uint this_trap_count = 0;
1483       bool maybe_prior_trap = false;
1484       bool maybe_prior_recompile = false;
1485       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1486                                    nm->method(),
1487                                    //outputs:
1488                                    this_trap_count,
1489                                    maybe_prior_trap,
1490                                    maybe_prior_recompile);
1491       // Because the interpreter also counts null, div0, range, and class
1492       // checks, these traps from compiled code are double-counted.
1493       // This is harmless; it just means that the PerXTrapLimit values
1494       // are in effect a little smaller than they look.
1495 
1496       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1497       if (per_bc_reason != Reason_none) {
1498         // Now take action based on the partially known per-BCI history.
1499         if (maybe_prior_trap
1500             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1501           // If there are too many traps at this BCI, force a recompile.
1502           // This will allow the compiler to see the limit overflow, and
1503           // take corrective action, if possible.  The compiler generally
1504           // does not use the exact PerBytecodeTrapLimit value, but instead
1505           // changes its tactics if it sees any traps at all.  This provides
1506           // a little hysteresis, delaying a recompile until a trap happens
1507           // several times.
1508           //
1509           // Actually, since there is only one bit of counter per BCI,
1510           // the possible per-BCI counts are {0,1,(per-method count)}.
1511           // This produces accurate results if in fact there is only
1512           // one hot trap site, but begins to get fuzzy if there are
1513           // many sites.  For example, if there are ten sites each
1514           // trapping two or more times, they each get the blame for
1515           // all of their traps.
1516           make_not_entrant = true;
1517         }
1518 
1519         // Detect repeated recompilation at the same BCI, and enforce a limit.
1520         if (make_not_entrant && maybe_prior_recompile) {
1521           // More than one recompile at this point.
1522           inc_recompile_count = maybe_prior_trap;
1523         }
1524       } else {
1525         // For reasons which are not recorded per-bytecode, we simply
1526         // force recompiles unconditionally.
1527         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1528         make_not_entrant = true;
1529       }
1530 
1531       // Go back to the compiler if there are too many traps in this method.
1532       if (this_trap_count >= per_method_trap_limit(reason)) {
1533         // If there are too many traps in this method, force a recompile.
1534         // This will allow the compiler to see the limit overflow, and
1535         // take corrective action, if possible.
1536         // (This condition is an unlikely backstop only, because the
1537         // PerBytecodeTrapLimit is more likely to take effect first,
1538         // if it is applicable.)
1539         make_not_entrant = true;
1540       }
1541 
1542       // Here's more hysteresis:  If there has been a recompile at
1543       // this trap point already, run the method in the interpreter
1544       // for a while to exercise it more thoroughly.
1545       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1546         reprofile = true;
1547       }
1548 
1549     }
1550 
1551     // Take requested actions on the method:
1552 
1553     // Recompile
1554     if (make_not_entrant) {
1555       if (!nm->make_not_entrant()) {
1556         return; // the call did not change nmethod's state
1557       }
1558 
1559       if (pdata != NULL) {
1560         // Record the recompilation event, if any.
1561         int tstate0 = pdata->trap_state();
1562         int tstate1 = trap_state_set_recompiled(tstate0, true);
1563         if (tstate1 != tstate0)
1564           pdata->set_trap_state(tstate1);
1565       }
1566     }
1567 
1568     if (inc_recompile_count) {
1569       trap_mdo->inc_overflow_recompile_count();
1570       if ((uint)trap_mdo->overflow_recompile_count() >
1571           (uint)PerBytecodeRecompilationCutoff) {
1572         // Give up on the method containing the bad BCI.
1573         if (trap_method() == nm->method()) {
1574           make_not_compilable = true;
1575         } else {
1576           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1577           // But give grace to the enclosing nm->method().
1578         }
1579       }
1580     }
1581 
1582     // Reprofile
1583     if (reprofile) {
1584       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1585     }
1586 
1587     // Give up compiling
1588     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1589       assert(make_not_entrant, "consistent");
1590       nm->method()->set_not_compilable(CompLevel_full_optimization);
1591     }
1592 
1593   } // Free marked resources
1594 
1595 }
1596 JRT_END
1597 
1598 MethodData*
1599 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1600                                 bool create_if_missing) {
1601   Thread* THREAD = thread;
1602   MethodData* mdo = m()->method_data();
1603   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1604     // Build an MDO.  Ignore errors like OutOfMemory;
1605     // that simply means we won't have an MDO to update.
1606     Method::build_interpreter_method_data(m, THREAD);
1607     if (HAS_PENDING_EXCEPTION) {
1608       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1609       CLEAR_PENDING_EXCEPTION;
1610     }
1611     mdo = m()->method_data();
1612   }
1613   return mdo;
1614 }
1615 
1616 ProfileData*
1617 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1618                                          int trap_bci,
1619                                          Deoptimization::DeoptReason reason,
1620                                          Method* compiled_method,
1621                                          //outputs:
1622                                          uint& ret_this_trap_count,
1623                                          bool& ret_maybe_prior_trap,
1624                                          bool& ret_maybe_prior_recompile) {
1625   uint prior_trap_count = trap_mdo->trap_count(reason);
1626   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1627 
1628   // If the runtime cannot find a place to store trap history,
1629   // it is estimated based on the general condition of the method.
1630   // If the method has ever been recompiled, or has ever incurred
1631   // a trap with the present reason , then this BCI is assumed
1632   // (pessimistically) to be the culprit.
1633   bool maybe_prior_trap      = (prior_trap_count != 0);
1634   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1635   ProfileData* pdata = NULL;
1636 
1637 
1638   // For reasons which are recorded per bytecode, we check per-BCI data.
1639   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1640   if (per_bc_reason != Reason_none) {
1641     // Find the profile data for this BCI.  If there isn't one,
1642     // try to allocate one from the MDO's set of spares.
1643     // This will let us detect a repeated trap at this point.
1644     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1645 
1646     if (pdata != NULL) {
1647       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1648         if (LogCompilation && xtty != NULL) {
1649           ttyLocker ttyl;
1650           // no more room for speculative traps in this MDO
1651           xtty->elem("speculative_traps_oom");
1652         }
1653       }
1654       // Query the trap state of this profile datum.
1655       int tstate0 = pdata->trap_state();
1656       if (!trap_state_has_reason(tstate0, per_bc_reason))
1657         maybe_prior_trap = false;
1658       if (!trap_state_is_recompiled(tstate0))
1659         maybe_prior_recompile = false;
1660 
1661       // Update the trap state of this profile datum.
1662       int tstate1 = tstate0;
1663       // Record the reason.
1664       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1665       // Store the updated state on the MDO, for next time.
1666       if (tstate1 != tstate0)
1667         pdata->set_trap_state(tstate1);
1668     } else {
1669       if (LogCompilation && xtty != NULL) {
1670         ttyLocker ttyl;
1671         // Missing MDP?  Leave a small complaint in the log.
1672         xtty->elem("missing_mdp bci='%d'", trap_bci);
1673       }
1674     }
1675   }
1676 
1677   // Return results:
1678   ret_this_trap_count = this_trap_count;
1679   ret_maybe_prior_trap = maybe_prior_trap;
1680   ret_maybe_prior_recompile = maybe_prior_recompile;
1681   return pdata;
1682 }
1683 
1684 void
1685 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1686   ResourceMark rm;
1687   // Ignored outputs:
1688   uint ignore_this_trap_count;
1689   bool ignore_maybe_prior_trap;
1690   bool ignore_maybe_prior_recompile;
1691   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1692   query_update_method_data(trap_mdo, trap_bci,
1693                            (DeoptReason)reason,
1694                            NULL,
1695                            ignore_this_trap_count,
1696                            ignore_maybe_prior_trap,
1697                            ignore_maybe_prior_recompile);
1698 }
1699 
1700 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1701 
1702   // Still in Java no safepoints
1703   {
1704     // This enters VM and may safepoint
1705     uncommon_trap_inner(thread, trap_request);
1706   }
1707   return fetch_unroll_info_helper(thread);
1708 }
1709 
1710 // Local derived constants.
1711 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1712 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1713 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1714 
1715 //---------------------------trap_state_reason---------------------------------
1716 Deoptimization::DeoptReason
1717 Deoptimization::trap_state_reason(int trap_state) {
1718   // This assert provides the link between the width of DataLayout::trap_bits
1719   // and the encoding of "recorded" reasons.  It ensures there are enough
1720   // bits to store all needed reasons in the per-BCI MDO profile.
1721   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1722   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1723   trap_state -= recompile_bit;
1724   if (trap_state == DS_REASON_MASK) {
1725     return Reason_many;
1726   } else {
1727     assert((int)Reason_none == 0, "state=0 => Reason_none");
1728     return (DeoptReason)trap_state;
1729   }
1730 }
1731 //-------------------------trap_state_has_reason-------------------------------
1732 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1733   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1734   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1735   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1736   trap_state -= recompile_bit;
1737   if (trap_state == DS_REASON_MASK) {
1738     return -1;  // true, unspecifically (bottom of state lattice)
1739   } else if (trap_state == reason) {
1740     return 1;   // true, definitely
1741   } else if (trap_state == 0) {
1742     return 0;   // false, definitely (top of state lattice)
1743   } else {
1744     return 0;   // false, definitely
1745   }
1746 }
1747 //-------------------------trap_state_add_reason-------------------------------
1748 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1749   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1750   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1751   trap_state -= recompile_bit;
1752   if (trap_state == DS_REASON_MASK) {
1753     return trap_state + recompile_bit;     // already at state lattice bottom
1754   } else if (trap_state == reason) {
1755     return trap_state + recompile_bit;     // the condition is already true
1756   } else if (trap_state == 0) {
1757     return reason + recompile_bit;          // no condition has yet been true
1758   } else {
1759     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1760   }
1761 }
1762 //-----------------------trap_state_is_recompiled------------------------------
1763 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1764   return (trap_state & DS_RECOMPILE_BIT) != 0;
1765 }
1766 //-----------------------trap_state_set_recompiled-----------------------------
1767 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1768   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1769   else    return trap_state & ~DS_RECOMPILE_BIT;
1770 }
1771 //---------------------------format_trap_state---------------------------------
1772 // This is used for debugging and diagnostics, including LogFile output.
1773 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1774                                               int trap_state) {
1775   DeoptReason reason      = trap_state_reason(trap_state);
1776   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1777   // Re-encode the state from its decoded components.
1778   int decoded_state = 0;
1779   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1780     decoded_state = trap_state_add_reason(decoded_state, reason);
1781   if (recomp_flag)
1782     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1783   // If the state re-encodes properly, format it symbolically.
1784   // Because this routine is used for debugging and diagnostics,
1785   // be robust even if the state is a strange value.
1786   size_t len;
1787   if (decoded_state != trap_state) {
1788     // Random buggy state that doesn't decode??
1789     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1790   } else {
1791     len = jio_snprintf(buf, buflen, "%s%s",
1792                        trap_reason_name(reason),
1793                        recomp_flag ? " recompiled" : "");
1794   }
1795   if (len >= buflen)
1796     buf[buflen-1] = '\0';
1797   return buf;
1798 }
1799 
1800 
1801 //--------------------------------statics--------------------------------------
1802 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1803   = Deoptimization::Action_reinterpret;
1804 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1805   // Note:  Keep this in sync. with enum DeoptReason.
1806   "none",
1807   "null_check",
1808   "null_assert",
1809   "range_check",
1810   "class_check",
1811   "array_check",
1812   "intrinsic",
1813   "bimorphic",
1814   "unloaded",
1815   "uninitialized",
1816   "unreached",
1817   "unhandled",
1818   "constraint",
1819   "div0_check",
1820   "age",
1821   "predicate",
1822   "loop_limit_check",
1823   "speculate_class_check"
1824 };
1825 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1826   // Note:  Keep this in sync. with enum DeoptAction.
1827   "none",
1828   "maybe_recompile",
1829   "reinterpret",
1830   "make_not_entrant",
1831   "make_not_compilable"
1832 };
1833 
1834 const char* Deoptimization::trap_reason_name(int reason) {
1835   if (reason == Reason_many)  return "many";
1836   if ((uint)reason < Reason_LIMIT)
1837     return _trap_reason_name[reason];
1838   static char buf[20];
1839   sprintf(buf, "reason%d", reason);
1840   return buf;
1841 }
1842 const char* Deoptimization::trap_action_name(int action) {
1843   if ((uint)action < Action_LIMIT)
1844     return _trap_action_name[action];
1845   static char buf[20];
1846   sprintf(buf, "action%d", action);
1847   return buf;
1848 }
1849 
1850 // This is used for debugging and diagnostics, including LogFile output.
1851 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1852                                                 int trap_request) {
1853   jint unloaded_class_index = trap_request_index(trap_request);
1854   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1855   const char* action = trap_action_name(trap_request_action(trap_request));
1856   size_t len;
1857   if (unloaded_class_index < 0) {
1858     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1859                        reason, action);
1860   } else {
1861     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1862                        reason, action, unloaded_class_index);
1863   }
1864   if (len >= buflen)
1865     buf[buflen-1] = '\0';
1866   return buf;
1867 }
1868 
1869 juint Deoptimization::_deoptimization_hist
1870         [Deoptimization::Reason_LIMIT]
1871     [1 + Deoptimization::Action_LIMIT]
1872         [Deoptimization::BC_CASE_LIMIT]
1873   = {0};
1874 
1875 enum {
1876   LSB_BITS = 8,
1877   LSB_MASK = right_n_bits(LSB_BITS)
1878 };
1879 
1880 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1881                                        Bytecodes::Code bc) {
1882   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1883   assert(action >= 0 && action < Action_LIMIT, "oob");
1884   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1885   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1886   juint* cases = _deoptimization_hist[reason][1+action];
1887   juint* bc_counter_addr = NULL;
1888   juint  bc_counter      = 0;
1889   // Look for an unused counter, or an exact match to this BC.
1890   if (bc != Bytecodes::_illegal) {
1891     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1892       juint* counter_addr = &cases[bc_case];
1893       juint  counter = *counter_addr;
1894       if ((counter == 0 && bc_counter_addr == NULL)
1895           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1896         // this counter is either free or is already devoted to this BC
1897         bc_counter_addr = counter_addr;
1898         bc_counter = counter | bc;
1899       }
1900     }
1901   }
1902   if (bc_counter_addr == NULL) {
1903     // Overflow, or no given bytecode.
1904     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1905     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1906   }
1907   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1908 }
1909 
1910 jint Deoptimization::total_deoptimization_count() {
1911   return _deoptimization_hist[Reason_none][0][0];
1912 }
1913 
1914 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1915   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1916   return _deoptimization_hist[reason][0][0];
1917 }
1918 
1919 void Deoptimization::print_statistics() {
1920   juint total = total_deoptimization_count();
1921   juint account = total;
1922   if (total != 0) {
1923     ttyLocker ttyl;
1924     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1925     tty->print_cr("Deoptimization traps recorded:");
1926     #define PRINT_STAT_LINE(name, r) \
1927       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1928     PRINT_STAT_LINE("total", total);
1929     // For each non-zero entry in the histogram, print the reason,
1930     // the action, and (if specifically known) the type of bytecode.
1931     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1932       for (int action = 0; action < Action_LIMIT; action++) {
1933         juint* cases = _deoptimization_hist[reason][1+action];
1934         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1935           juint counter = cases[bc_case];
1936           if (counter != 0) {
1937             char name[1*K];
1938             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1939             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1940               bc = Bytecodes::_illegal;
1941             sprintf(name, "%s/%s/%s",
1942                     trap_reason_name(reason),
1943                     trap_action_name(action),
1944                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1945             juint r = counter >> LSB_BITS;
1946             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1947             account -= r;
1948           }
1949         }
1950       }
1951     }
1952     if (account != 0) {
1953       PRINT_STAT_LINE("unaccounted", account);
1954     }
1955     #undef PRINT_STAT_LINE
1956     if (xtty != NULL)  xtty->tail("statistics");
1957   }
1958 }
1959 #else // COMPILER2 || SHARK
1960 
1961 
1962 // Stubs for C1 only system.
1963 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1964   return false;
1965 }
1966 
1967 const char* Deoptimization::trap_reason_name(int reason) {
1968   return "unknown";
1969 }
1970 
1971 void Deoptimization::print_statistics() {
1972   // no output
1973 }
1974 
1975 void
1976 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1977   // no udpate
1978 }
1979 
1980 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1981   return 0;
1982 }
1983 
1984 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1985                                        Bytecodes::Code bc) {
1986   // no update
1987 }
1988 
1989 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1990                                               int trap_state) {
1991   jio_snprintf(buf, buflen, "#%d", trap_state);
1992   return buf;
1993 }
1994 
1995 #endif // COMPILER2 || SHARK