1 //
   2 // Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright 2012, 2014 SAP AG. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 //
  27 // PPC64 Architecture Description File
  28 //
  29 
  30 //----------REGISTER DEFINITION BLOCK------------------------------------------
  31 // This information is used by the matcher and the register allocator to
  32 // describe individual registers and classes of registers within the target
  33 // architecture.
  34 register %{
  35 //----------Architecture Description Register Definitions----------------------
  36 // General Registers
  37 // "reg_def"  name (register save type, C convention save type,
  38 //                  ideal register type, encoding);
  39 //
  40 // Register Save Types:
  41 //
  42 //   NS  = No-Save:     The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method, &
  44 //                      that they do not need to be saved at call sites.
  45 //
  46 //   SOC = Save-On-Call: The register allocator assumes that these registers
  47 //                      can be used without saving upon entry to the method,
  48 //                      but that they must be saved at call sites.
  49 //                      These are called "volatiles" on ppc.
  50 //
  51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, but they do not need to be saved at call
  54 //                      sites.
  55 //                      These are called "nonvolatiles" on ppc.
  56 //
  57 //   AS  = Always-Save:   The register allocator assumes that these registers
  58 //                      must be saved before using them upon entry to the
  59 //                      method, & that they must be saved at call sites.
  60 //
  61 // Ideal Register Type is used to determine how to save & restore a
  62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
  64 //
  65 // The encoding number is the actual bit-pattern placed into the opcodes.
  66 //
  67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
  68 // Supplement Version 1.7 as of 2003-10-29.
  69 //
  70 // For each 64-bit register we must define two registers: the register
  71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
  72 // e.g. R3_H, which is needed by the allocator, but is not used
  73 // for stores, loads, etc.
  74 
  75 // ----------------------------
  76 // Integer/Long Registers
  77 // ----------------------------
  78 
  79   // PPC64 has 32 64-bit integer registers.
  80 
  81   // types: v = volatile, nv = non-volatile, s = system
  82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
 100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
 101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
 102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
 103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
 104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
 105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
 106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
 107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
 108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
 109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
 110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
 111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
 112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
 113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
 114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
 115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
 116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
 117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
 118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
 119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
 120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
 121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
 122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
 123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
 124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
 125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
 126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
 127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
 128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
 129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
 130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
 131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
 132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
 133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
 134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
 135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
 136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
 137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
 138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
 139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
 140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
 141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
 142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
 143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
 144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
 145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
 146 
 147 
 148 // ----------------------------
 149 // Float/Double Registers
 150 // ----------------------------
 151 
 152   // Double Registers
 153   // The rules of ADL require that double registers be defined in pairs.
 154   // Each pair must be two 32-bit values, but not necessarily a pair of
 155   // single float registers. In each pair, ADLC-assigned register numbers
 156   // must be adjacent, with the lower number even. Finally, when the
 157   // CPU stores such a register pair to memory, the word associated with
 158   // the lower ADLC-assigned number must be stored to the lower address.
 159 
 160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
 161   // or double precision floating-point value.
 162 
 163   // types: v = volatile, nv = non-volatile, s = system
 164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
 165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
 166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
 167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
 168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
 169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
 170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
 171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
 172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
 173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
 174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
 175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
 176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
 177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
 178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
 179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
 180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
 181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
 182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
 183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
 184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
 185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
 186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
 187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
 188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
 189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
 190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
 191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
 192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
 193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
 194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
 195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
 196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
 197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
 198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
 199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
 200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
 201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
 202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
 203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
 204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
 205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
 206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
 207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
 208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
 209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
 210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
 211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
 212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
 213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
 214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
 215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
 216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
 217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
 218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
 219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
 220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
 221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
 222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
 223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
 224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
 225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
 226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
 227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
 228 
 229 // ----------------------------
 230 // Special Registers
 231 // ----------------------------
 232 
 233 // Condition Codes Flag Registers
 234 
 235   // PPC64 has 8 condition code "registers" which are all contained
 236   // in the CR register.
 237 
 238   // types: v = volatile, nv = non-volatile, s = system
 239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
 240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
 241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
 242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
 243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
 244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
 245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
 246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
 247 
 248   // Special registers of PPC64
 249 
 250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
 251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
 252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
 253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
 254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
 255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
 256 
 257 
 258 // ----------------------------
 259 // Specify priority of register selection within phases of register
 260 // allocation. Highest priority is first. A useful heuristic is to
 261 // give registers a low priority when they are required by machine
 262 // instructions, like EAX and EDX on I486, and choose no-save registers
 263 // before save-on-call, & save-on-call before save-on-entry. Registers
 264 // which participate in fixed calling sequences should come last.
 265 // Registers which are used as pairs must fall on an even boundary.
 266 
 267 // It's worth about 1% on SPEC geomean to get this right.
 268 
 269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
 270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
 271 // R3_num. Therefore, R3_num may not be (and in reality is not)
 272 // the same as R3->encoding()! Furthermore, we cannot make any
 273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
 274 // Additionally, the function
 275 //   static enum RC rc_class(OptoReg::Name reg )
 276 // maps a given <register>_num value to its chunk type (except for flags)
 277 // and its current implementation relies on chunk0 and chunk1 having a
 278 // size of 64 each.
 279 
 280 // If you change this allocation class, please have a look at the
 281 // default values for the parameters RoundRobinIntegerRegIntervalStart
 282 // and RoundRobinFloatRegIntervalStart
 283 
 284 alloc_class chunk0 (
 285   // Chunk0 contains *all* 64 integer registers halves.
 286 
 287   // "non-volatile" registers
 288   R14, R14_H,
 289   R15, R15_H,
 290   R17, R17_H,
 291   R18, R18_H,
 292   R19, R19_H,
 293   R20, R20_H,
 294   R21, R21_H,
 295   R22, R22_H,
 296   R23, R23_H,
 297   R24, R24_H,
 298   R25, R25_H,
 299   R26, R26_H,
 300   R27, R27_H,
 301   R28, R28_H,
 302   R29, R29_H,
 303   R30, R30_H,
 304   R31, R31_H,
 305 
 306   // scratch/special registers
 307   R11, R11_H,
 308   R12, R12_H,
 309 
 310   // argument registers
 311   R10, R10_H,
 312   R9,  R9_H,
 313   R8,  R8_H,
 314   R7,  R7_H,
 315   R6,  R6_H,
 316   R5,  R5_H,
 317   R4,  R4_H,
 318   R3,  R3_H,
 319 
 320   // special registers, not available for allocation
 321   R16, R16_H,     // R16_thread
 322   R13, R13_H,     // system thread id
 323   R2,  R2_H,      // may be used for TOC
 324   R1,  R1_H,      // SP
 325   R0,  R0_H       // R0 (scratch)
 326 );
 327 
 328 // If you change this allocation class, please have a look at the
 329 // default values for the parameters RoundRobinIntegerRegIntervalStart
 330 // and RoundRobinFloatRegIntervalStart
 331 
 332 alloc_class chunk1 (
 333   // Chunk1 contains *all* 64 floating-point registers halves.
 334 
 335   // scratch register
 336   F0,  F0_H,
 337 
 338   // argument registers
 339   F13, F13_H,
 340   F12, F12_H,
 341   F11, F11_H,
 342   F10, F10_H,
 343   F9,  F9_H,
 344   F8,  F8_H,
 345   F7,  F7_H,
 346   F6,  F6_H,
 347   F5,  F5_H,
 348   F4,  F4_H,
 349   F3,  F3_H,
 350   F2,  F2_H,
 351   F1,  F1_H,
 352 
 353   // non-volatile registers
 354   F14, F14_H,
 355   F15, F15_H,
 356   F16, F16_H,
 357   F17, F17_H,
 358   F18, F18_H,
 359   F19, F19_H,
 360   F20, F20_H,
 361   F21, F21_H,
 362   F22, F22_H,
 363   F23, F23_H,
 364   F24, F24_H,
 365   F25, F25_H,
 366   F26, F26_H,
 367   F27, F27_H,
 368   F28, F28_H,
 369   F29, F29_H,
 370   F30, F30_H,
 371   F31, F31_H
 372 );
 373 
 374 alloc_class chunk2 (
 375   // Chunk2 contains *all* 8 condition code registers.
 376 
 377   CCR0,
 378   CCR1,
 379   CCR2,
 380   CCR3,
 381   CCR4,
 382   CCR5,
 383   CCR6,
 384   CCR7
 385 );
 386 
 387 alloc_class chunk3 (
 388   // special registers
 389   // These registers are not allocated, but used for nodes generated by postalloc expand.
 390   SR_XER,
 391   SR_LR,
 392   SR_CTR,
 393   SR_VRSAVE,
 394   SR_SPEFSCR,
 395   SR_PPR
 396 );
 397 
 398 //-------Architecture Description Register Classes-----------------------
 399 
 400 // Several register classes are automatically defined based upon
 401 // information in this architecture description.
 402 
 403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
 405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 407 //
 408 
 409 // ----------------------------
 410 // 32 Bit Register Classes
 411 // ----------------------------
 412 
 413 // We specify registers twice, once as read/write, and once read-only.
 414 // We use the read-only registers for source operands. With this, we
 415 // can include preset read only registers in this class, as a hard-coded
 416 // '0'-register. (We used to simulate this on ppc.)
 417 
 418 // 32 bit registers that can be read and written i.e. these registers
 419 // can be dest (or src) of normal instructions.
 420 reg_class bits32_reg_rw(
 421 /*R0*/              // R0
 422 /*R1*/              // SP
 423   R2,               // TOC
 424   R3,
 425   R4,
 426   R5,
 427   R6,
 428   R7,
 429   R8,
 430   R9,
 431   R10,
 432   R11,
 433   R12,
 434 /*R13*/             // system thread id
 435   R14,
 436   R15,
 437 /*R16*/             // R16_thread
 438   R17,
 439   R18,
 440   R19,
 441   R20,
 442   R21,
 443   R22,
 444   R23,
 445   R24,
 446   R25,
 447   R26,
 448   R27,
 449   R28,
 450 /*R29*/             // global TOC
 451 /*R30*/             // Narrow Oop Base
 452   R31
 453 );
 454 
 455 // 32 bit registers that can only be read i.e. these registers can
 456 // only be src of all instructions.
 457 reg_class bits32_reg_ro(
 458 /*R0*/              // R0
 459 /*R1*/              // SP
 460   R2                // TOC
 461   R3,
 462   R4,
 463   R5,
 464   R6,
 465   R7,
 466   R8,
 467   R9,
 468   R10,
 469   R11,
 470   R12,
 471 /*R13*/             // system thread id
 472   R14,
 473   R15,
 474 /*R16*/             // R16_thread
 475   R17,
 476   R18,
 477   R19,
 478   R20,
 479   R21,
 480   R22,
 481   R23,
 482   R24,
 483   R25,
 484   R26,
 485   R27,
 486   R28,
 487 /*R29*/
 488 /*R30*/             // Narrow Oop Base
 489   R31
 490 );
 491 
 492 // Complement-required-in-pipeline operands for narrow oops.
 493 reg_class bits32_reg_ro_not_complement (
 494 /*R0*/     // R0
 495   R1,      // SP
 496   R2,      // TOC
 497   R3,
 498   R4,
 499   R5,
 500   R6,
 501   R7,
 502   R8,
 503   R9,
 504   R10,
 505   R11,
 506   R12,
 507 /*R13,*/   // system thread id
 508   R14,
 509   R15,
 510   R16,    // R16_thread
 511   R17,
 512   R18,
 513   R19,
 514   R20,
 515   R21,
 516   R22,
 517 /*R23,
 518   R24,
 519   R25,
 520   R26,
 521   R27,
 522   R28,*/
 523 /*R29,*/ // TODO: let allocator handle TOC!!
 524 /*R30,*/
 525   R31
 526 );
 527 
 528 // Complement-required-in-pipeline operands for narrow oops.
 529 // See 64-bit declaration.
 530 reg_class bits32_reg_ro_complement (
 531   R23,
 532   R24,
 533   R25,
 534   R26,
 535   R27,
 536   R28
 537 );
 538 
 539 reg_class rscratch1_bits32_reg(R11);
 540 reg_class rscratch2_bits32_reg(R12);
 541 reg_class rarg1_bits32_reg(R3);
 542 reg_class rarg2_bits32_reg(R4);
 543 reg_class rarg3_bits32_reg(R5);
 544 reg_class rarg4_bits32_reg(R6);
 545 
 546 // ----------------------------
 547 // 64 Bit Register Classes
 548 // ----------------------------
 549 // 64-bit build means 64-bit pointers means hi/lo pairs
 550 
 551 reg_class rscratch1_bits64_reg(R11_H, R11);
 552 reg_class rscratch2_bits64_reg(R12_H, R12);
 553 reg_class rarg1_bits64_reg(R3_H, R3);
 554 reg_class rarg2_bits64_reg(R4_H, R4);
 555 reg_class rarg3_bits64_reg(R5_H, R5);
 556 reg_class rarg4_bits64_reg(R6_H, R6);
 557 // Thread register, 'written' by tlsLoadP, see there.
 558 reg_class thread_bits64_reg(R16_H, R16);
 559 
 560 reg_class r19_bits64_reg(R19_H, R19);
 561 
 562 // 64 bit registers that can be read and written i.e. these registers
 563 // can be dest (or src) of normal instructions.
 564 reg_class bits64_reg_rw(
 565 /*R0_H,  R0*/     // R0
 566 /*R1_H,  R1*/     // SP
 567   R2_H,  R2,      // TOC
 568   R3_H,  R3,
 569   R4_H,  R4,
 570   R5_H,  R5,
 571   R6_H,  R6,
 572   R7_H,  R7,
 573   R8_H,  R8,
 574   R9_H,  R9,
 575   R10_H, R10,
 576   R11_H, R11,
 577   R12_H, R12,
 578 /*R13_H, R13*/   // system thread id
 579   R14_H, R14,
 580   R15_H, R15,
 581 /*R16_H, R16*/   // R16_thread
 582   R17_H, R17,
 583   R18_H, R18,
 584   R19_H, R19,
 585   R20_H, R20,
 586   R21_H, R21,
 587   R22_H, R22,
 588   R23_H, R23,
 589   R24_H, R24,
 590   R25_H, R25,
 591   R26_H, R26,
 592   R27_H, R27,
 593   R28_H, R28,
 594 /*R29_H, R29*/
 595 /*R30_H, R30*/
 596   R31_H, R31
 597 );
 598 
 599 // 64 bit registers used excluding r2, r11 and r12
 600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
 601 // r2, r11 and r12 internally.
 602 reg_class bits64_reg_leaf_call(
 603 /*R0_H,  R0*/     // R0
 604 /*R1_H,  R1*/     // SP
 605 /*R2_H,  R2*/     // TOC
 606   R3_H,  R3,
 607   R4_H,  R4,
 608   R5_H,  R5,
 609   R6_H,  R6,
 610   R7_H,  R7,
 611   R8_H,  R8,
 612   R9_H,  R9,
 613   R10_H, R10,
 614 /*R11_H, R11*/
 615 /*R12_H, R12*/
 616 /*R13_H, R13*/   // system thread id
 617   R14_H, R14,
 618   R15_H, R15,
 619 /*R16_H, R16*/   // R16_thread
 620   R17_H, R17,
 621   R18_H, R18,
 622   R19_H, R19,
 623   R20_H, R20,
 624   R21_H, R21,
 625   R22_H, R22,
 626   R23_H, R23,
 627   R24_H, R24,
 628   R25_H, R25,
 629   R26_H, R26,
 630   R27_H, R27,
 631   R28_H, R28,
 632 /*R29_H, R29*/
 633 /*R30_H, R30*/
 634   R31_H, R31
 635 );
 636 
 637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
 638 // which uses r19 as inline cache internally and expanded LeafCall which uses
 639 // r2, r11 and r12 internally.
 640 reg_class bits64_constant_table_base(
 641 /*R0_H,  R0*/     // R0
 642 /*R1_H,  R1*/     // SP
 643 /*R2_H,  R2*/     // TOC
 644   R3_H,  R3,
 645   R4_H,  R4,
 646   R5_H,  R5,
 647   R6_H,  R6,
 648   R7_H,  R7,
 649   R8_H,  R8,
 650   R9_H,  R9,
 651   R10_H, R10,
 652 /*R11_H, R11*/
 653 /*R12_H, R12*/
 654 /*R13_H, R13*/   // system thread id
 655   R14_H, R14,
 656   R15_H, R15,
 657 /*R16_H, R16*/   // R16_thread
 658   R17_H, R17,
 659   R18_H, R18,
 660 /*R19_H, R19*/
 661   R20_H, R20,
 662   R21_H, R21,
 663   R22_H, R22,
 664   R23_H, R23,
 665   R24_H, R24,
 666   R25_H, R25,
 667   R26_H, R26,
 668   R27_H, R27,
 669   R28_H, R28,
 670 /*R29_H, R29*/
 671 /*R30_H, R30*/
 672   R31_H, R31
 673 );
 674 
 675 // 64 bit registers that can only be read i.e. these registers can
 676 // only be src of all instructions.
 677 reg_class bits64_reg_ro(
 678 /*R0_H,  R0*/     // R0
 679   R1_H,  R1,
 680   R2_H,  R2,       // TOC
 681   R3_H,  R3,
 682   R4_H,  R4,
 683   R5_H,  R5,
 684   R6_H,  R6,
 685   R7_H,  R7,
 686   R8_H,  R8,
 687   R9_H,  R9,
 688   R10_H, R10,
 689   R11_H, R11,
 690   R12_H, R12,
 691 /*R13_H, R13*/   // system thread id
 692   R14_H, R14,
 693   R15_H, R15,
 694   R16_H, R16,    // R16_thread
 695   R17_H, R17,
 696   R18_H, R18,
 697   R19_H, R19,
 698   R20_H, R20,
 699   R21_H, R21,
 700   R22_H, R22,
 701   R23_H, R23,
 702   R24_H, R24,
 703   R25_H, R25,
 704   R26_H, R26,
 705   R27_H, R27,
 706   R28_H, R28,
 707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 708 /*R30_H, R30,*/
 709   R31_H, R31
 710 );
 711 
 712 // Complement-required-in-pipeline operands.
 713 reg_class bits64_reg_ro_not_complement (
 714 /*R0_H,  R0*/     // R0
 715   R1_H,  R1,      // SP
 716   R2_H,  R2,      // TOC
 717   R3_H,  R3,
 718   R4_H,  R4,
 719   R5_H,  R5,
 720   R6_H,  R6,
 721   R7_H,  R7,
 722   R8_H,  R8,
 723   R9_H,  R9,
 724   R10_H, R10,
 725   R11_H, R11,
 726   R12_H, R12,
 727 /*R13_H, R13*/   // system thread id
 728   R14_H, R14,
 729   R15_H, R15,
 730   R16_H, R16,    // R16_thread
 731   R17_H, R17,
 732   R18_H, R18,
 733   R19_H, R19,
 734   R20_H, R20,
 735   R21_H, R21,
 736   R22_H, R22,
 737 /*R23_H, R23,
 738   R24_H, R24,
 739   R25_H, R25,
 740   R26_H, R26,
 741   R27_H, R27,
 742   R28_H, R28,*/
 743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
 744 /*R30_H, R30,*/
 745   R31_H, R31
 746 );
 747 
 748 // Complement-required-in-pipeline operands.
 749 // This register mask is used for the trap instructions that implement
 750 // the null checks on AIX. The trap instruction first computes the
 751 // complement of the value it shall trap on. Because of this, the
 752 // instruction can not be scheduled in the same cycle as an other
 753 // instruction reading the normal value of the same register. So we
 754 // force the value to check into 'bits64_reg_ro_not_complement'
 755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
 756 reg_class bits64_reg_ro_complement (
 757   R23_H, R23,
 758   R24_H, R24,
 759   R25_H, R25,
 760   R26_H, R26,
 761   R27_H, R27,
 762   R28_H, R28
 763 );
 764 
 765 
 766 // ----------------------------
 767 // Special Class for Condition Code Flags Register
 768 
 769 reg_class int_flags(
 770 /*CCR0*/             // scratch
 771 /*CCR1*/             // scratch
 772 /*CCR2*/             // nv!
 773 /*CCR3*/             // nv!
 774 /*CCR4*/             // nv!
 775   CCR5,
 776   CCR6,
 777   CCR7
 778 );
 779 
 780 reg_class int_flags_CR0(CCR0);
 781 reg_class int_flags_CR1(CCR1);
 782 reg_class int_flags_CR6(CCR6);
 783 reg_class ctr_reg(SR_CTR);
 784 
 785 // ----------------------------
 786 // Float Register Classes
 787 // ----------------------------
 788 
 789 reg_class flt_reg(
 790 /*F0*/              // scratch
 791   F1,
 792   F2,
 793   F3,
 794   F4,
 795   F5,
 796   F6,
 797   F7,
 798   F8,
 799   F9,
 800   F10,
 801   F11,
 802   F12,
 803   F13,
 804   F14,              // nv!
 805   F15,              // nv!
 806   F16,              // nv!
 807   F17,              // nv!
 808   F18,              // nv!
 809   F19,              // nv!
 810   F20,              // nv!
 811   F21,              // nv!
 812   F22,              // nv!
 813   F23,              // nv!
 814   F24,              // nv!
 815   F25,              // nv!
 816   F26,              // nv!
 817   F27,              // nv!
 818   F28,              // nv!
 819   F29,              // nv!
 820   F30,              // nv!
 821   F31               // nv!
 822 );
 823 
 824 // Double precision float registers have virtual `high halves' that
 825 // are needed by the allocator.
 826 reg_class dbl_reg(
 827 /*F0,  F0_H*/     // scratch
 828   F1,  F1_H,
 829   F2,  F2_H,
 830   F3,  F3_H,
 831   F4,  F4_H,
 832   F5,  F5_H,
 833   F6,  F6_H,
 834   F7,  F7_H,
 835   F8,  F8_H,
 836   F9,  F9_H,
 837   F10, F10_H,
 838   F11, F11_H,
 839   F12, F12_H,
 840   F13, F13_H,
 841   F14, F14_H,    // nv!
 842   F15, F15_H,    // nv!
 843   F16, F16_H,    // nv!
 844   F17, F17_H,    // nv!
 845   F18, F18_H,    // nv!
 846   F19, F19_H,    // nv!
 847   F20, F20_H,    // nv!
 848   F21, F21_H,    // nv!
 849   F22, F22_H,    // nv!
 850   F23, F23_H,    // nv!
 851   F24, F24_H,    // nv!
 852   F25, F25_H,    // nv!
 853   F26, F26_H,    // nv!
 854   F27, F27_H,    // nv!
 855   F28, F28_H,    // nv!
 856   F29, F29_H,    // nv!
 857   F30, F30_H,    // nv!
 858   F31, F31_H     // nv!
 859 );
 860 
 861  %}
 862 
 863 //----------DEFINITION BLOCK---------------------------------------------------
 864 // Define name --> value mappings to inform the ADLC of an integer valued name
 865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 866 // Format:
 867 //        int_def  <name>         ( <int_value>, <expression>);
 868 // Generated Code in ad_<arch>.hpp
 869 //        #define  <name>   (<expression>)
 870 //        // value == <int_value>
 871 // Generated code in ad_<arch>.cpp adlc_verification()
 872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 873 //
 874 definitions %{
 875   // The default cost (of an ALU instruction).
 876   int_def DEFAULT_COST_LOW        (     30,      30);
 877   int_def DEFAULT_COST            (    100,     100);
 878   int_def HUGE_COST               (1000000, 1000000);
 879 
 880   // Memory refs
 881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
 882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
 883 
 884   // Branches are even more expensive.
 885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
 886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
 887 %}
 888 
 889 
 890 //----------SOURCE BLOCK-------------------------------------------------------
 891 // This is a block of C++ code which provides values, functions, and
 892 // definitions necessary in the rest of the architecture description.
 893 source_hpp %{
 894   // Returns true if Node n is followed by a MemBar node that 
 895   // will do an acquire. If so, this node must not do the acquire
 896   // operation.
 897   bool followed_by_acquire(const Node *n);
 898 %}
 899 
 900 source %{
 901 
 902 // Optimize load-acquire.
 903 //
 904 // Check if acquire is unnecessary due to following operation that does 
 905 // acquire anyways.
 906 // Walk the pattern:
 907 //
 908 //      n: Load.acq
 909 //           |
 910 //      MemBarAcquire
 911 //       |         |
 912 //  Proj(ctrl)  Proj(mem)
 913 //       |         |
 914 //   MemBarRelease/Volatile
 915 // 
 916 bool followed_by_acquire(const Node *load) {
 917   assert(load->is_Load(), "So far implemented only for loads.");
 918 
 919   // Find MemBarAcquire.
 920   const Node *mba = NULL;         
 921   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
 922     const Node *out = load->fast_out(i);
 923     if (out->Opcode() == Op_MemBarAcquire) {
 924       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
 925       mba = out;
 926       break;
 927     }
 928   }
 929   if (!mba) return false;
 930 
 931   // Find following MemBar node.
 932   //
 933   // The following node must be reachable by control AND memory 
 934   // edge to assure no other operations are in between the two nodes.
 935   //
 936   // So first get the Proj node, mem_proj, to use it to iterate forward.
 937   Node *mem_proj = NULL;
 938   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
 939     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
 940     assert(mem_proj->is_Proj(), "only projections here");
 941     ProjNode *proj = mem_proj->as_Proj();
 942     if (proj->_con == TypeFunc::Memory &&
 943         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
 944       break;
 945   }
 946   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
 947 
 948   // Search MemBar behind Proj. If there are other memory operations
 949   // behind the Proj we lost.
 950   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
 951     Node *x = mem_proj->fast_out(j);
 952     // Proj might have an edge to a store or load node which precedes the membar.
 953     if (x->is_Mem()) return false;
 954 
 955     // On PPC64 release and volatile are implemented by an instruction
 956     // that also has acquire semantics. I.e. there is no need for an
 957     // acquire before these.
 958     int xop = x->Opcode();
 959     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
 960       // Make sure we're not missing Call/Phi/MergeMem by checking
 961       // control edges. The control edge must directly lead back
 962       // to the MemBarAcquire
 963       Node *ctrl_proj = x->in(0);
 964       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
 965         return true;
 966       }
 967     }
 968   }
 969 
 970   return false;
 971 }
 972 
 973 #define __ _masm.
 974 
 975 // Tertiary op of a LoadP or StoreP encoding.
 976 #define REGP_OP true
 977 
 978 // ****************************************************************************
 979 
 980 // REQUIRED FUNCTIONALITY
 981 
 982 // !!!!! Special hack to get all type of calls to specify the byte offset
 983 //       from the start of the call to the point where the return address
 984 //       will point.
 985 
 986 // PPC port: Removed use of lazy constant construct.
 987 
 988 int MachCallStaticJavaNode::ret_addr_offset() {
 989   // It's only a single branch-and-link instruction.
 990   return 4;
 991 }
 992 
 993 int MachCallDynamicJavaNode::ret_addr_offset() {
 994   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
 995   // postalloc expanded calls if we use inline caches and do not update method data.
 996   if (UseInlineCaches)
 997     return 4;
 998 
 999   int vtable_index = this->_vtable_index;
1000   if (vtable_index < 0) {
1001     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
1002     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
1003     return 12;
1004   } else {
1005     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
1006     return 24;
1007   }
1008 }
1009 
1010 int MachCallRuntimeNode::ret_addr_offset() {
1011 #if defined(ABI_ELFv2)
1012   return 28;
1013 #else
1014   return 40;
1015 #endif
1016 }
1017 
1018 //=============================================================================
1019 
1020 // condition code conversions
1021 
1022 static int cc_to_boint(int cc) {
1023   return Assembler::bcondCRbiIs0 | (cc & 8);
1024 }
1025 
1026 static int cc_to_inverse_boint(int cc) {
1027   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
1028 }
1029 
1030 static int cc_to_biint(int cc, int flags_reg) {
1031   return (flags_reg << 2) | (cc & 3);
1032 }
1033 
1034 //=============================================================================
1035 
1036 // Compute padding required for nodes which need alignment. The padding
1037 // is the number of bytes (not instructions) which will be inserted before
1038 // the instruction. The padding must match the size of a NOP instruction.
1039 
1040 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
1041   return (3*4-current_offset)&31;
1042 }
1043 
1044 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
1045   return (2*4-current_offset)&31;
1046 }
1047 
1048 int string_indexOf_immNode::compute_padding(int current_offset) const {
1049   return (3*4-current_offset)&31;
1050 }
1051 
1052 int string_indexOfNode::compute_padding(int current_offset) const {
1053   return (1*4-current_offset)&31;
1054 }
1055 
1056 int string_compareNode::compute_padding(int current_offset) const {
1057   return (4*4-current_offset)&31;
1058 }
1059 
1060 int string_equals_immNode::compute_padding(int current_offset) const {
1061   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
1062   return (2*4-current_offset)&31;
1063 }
1064 
1065 int string_equalsNode::compute_padding(int current_offset) const {
1066   return (7*4-current_offset)&31;
1067 }
1068 
1069 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
1070   return (2*4-current_offset)&31;
1071 }
1072 
1073 //=============================================================================
1074 
1075 // Indicate if the safepoint node needs the polling page as an input.
1076 bool SafePointNode::needs_polling_address_input() {
1077   // The address is loaded from thread by a seperate node.
1078   return true;
1079 }
1080 
1081 //=============================================================================
1082 
1083 // Emit an interrupt that is caught by the debugger (for debugging compiler).
1084 void emit_break(CodeBuffer &cbuf) {
1085   MacroAssembler _masm(&cbuf);
1086   __ illtrap();
1087 }
1088 
1089 #ifndef PRODUCT
1090 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1091   st->print("BREAKPOINT");
1092 }
1093 #endif
1094 
1095 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1096   emit_break(cbuf);
1097 }
1098 
1099 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
1100   return MachNode::size(ra_);
1101 }
1102 
1103 //=============================================================================
1104 
1105 void emit_nop(CodeBuffer &cbuf) {
1106   MacroAssembler _masm(&cbuf);
1107   __ nop();
1108 }
1109 
1110 static inline void emit_long(CodeBuffer &cbuf, int value) {
1111   *((int*)(cbuf.insts_end())) = value;
1112   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
1113 }
1114 
1115 //=============================================================================
1116 
1117 // Emit a trampoline stub for a call to a target which is too far away.
1118 //
1119 // code sequences:
1120 //
1121 // call-site:
1122 //   branch-and-link to <destination> or <trampoline stub>
1123 //
1124 // Related trampoline stub for this call-site in the stub section:
1125 //   load the call target from the constant pool
1126 //   branch via CTR (LR/link still points to the call-site above)
1127 
1128 const uint trampoline_stub_size = 6 * BytesPerInstWord;
1129 
1130 void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
1131   // Start the stub.
1132   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
1133   if (stub == NULL) {
1134     Compile::current()->env()->record_out_of_memory_failure();
1135     return;
1136   }
1137 
1138   // For java_to_interp stubs we use R11_scratch1 as scratch register
1139   // and in call trampoline stubs we use R12_scratch2. This way we
1140   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1141   Register reg_scratch = R12_scratch2;
1142 
1143   // Create a trampoline stub relocation which relates this trampoline stub
1144   // with the call instruction at insts_call_instruction_offset in the
1145   // instructions code-section.
1146   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
1147   const int stub_start_offset = __ offset();
1148 
1149   // Now, create the trampoline stub's code:
1150   // - load the TOC
1151   // - load the call target from the constant pool
1152   // - call
1153   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1154   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
1155   __ mtctr(reg_scratch);
1156   __ bctr();
1157 
1158   const address stub_start_addr = __ addr_at(stub_start_offset);
1159 
1160   // FIXME: Assert that the trampoline stub can be identified and patched.
1161 
1162   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
1163   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
1164          "encoded offset into the constant pool must match");
1165   // Trampoline_stub_size should be good.
1166   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
1167   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
1168 
1169   // End the stub.
1170   __ end_a_stub();
1171 }
1172 
1173 // Size of trampoline stub, this doesn't need to be accurate but it must
1174 // be larger or equal to the real size of the stub.
1175 // Used for optimization in Compile::Shorten_branches.
1176 uint size_call_trampoline() {
1177   return trampoline_stub_size;
1178 }
1179 
1180 // Number of relocation entries needed by trampoline stub.
1181 // Used for optimization in Compile::Shorten_branches.
1182 uint reloc_call_trampoline() {
1183   return 5;
1184 }
1185 
1186 //=============================================================================
1187 
1188 // Emit an inline branch-and-link call and a related trampoline stub.
1189 //
1190 // code sequences:
1191 //
1192 // call-site:
1193 //   branch-and-link to <destination> or <trampoline stub>
1194 //
1195 // Related trampoline stub for this call-site in the stub section:
1196 //   load the call target from the constant pool
1197 //   branch via CTR (LR/link still points to the call-site above)
1198 //
1199 
1200 typedef struct {
1201   int insts_call_instruction_offset;
1202   int ret_addr_offset;
1203 } EmitCallOffsets;
1204 
1205 // Emit a branch-and-link instruction that branches to a trampoline.
1206 // - Remember the offset of the branch-and-link instruction.
1207 // - Add a relocation at the branch-and-link instruction.
1208 // - Emit a branch-and-link.
1209 // - Remember the return pc offset.
1210 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
1211   EmitCallOffsets offsets = { -1, -1 };
1212   const int start_offset = __ offset();
1213   offsets.insts_call_instruction_offset = __ offset();
1214 
1215   // No entry point given, use the current pc.
1216   if (entry_point == NULL) entry_point = __ pc();
1217 
1218   if (!Compile::current()->in_scratch_emit_size()) {
1219     // Put the entry point as a constant into the constant pool.
1220     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
1221     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1222 
1223     // Emit the trampoline stub which will be related to the branch-and-link below.
1224     emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
1225     __ relocate(rtype);
1226   }
1227 
1228   // Note: At this point we do not have the address of the trampoline
1229   // stub, and the entry point might be too far away for bl, so __ pc()
1230   // serves as dummy and the bl will be patched later.
1231   __ bl((address) __ pc());
1232 
1233   offsets.ret_addr_offset = __ offset() - start_offset;
1234 
1235   return offsets;
1236 }
1237 
1238 //=============================================================================
1239 
1240 // Factory for creating loadConL* nodes for large/small constant pool.
1241 
1242 static inline jlong replicate_immF(float con) {
1243   // Replicate float con 2 times and pack into vector.
1244   int val = *((int*)&con);
1245   jlong lval = val;
1246   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
1247   return lval;
1248 }
1249 
1250 //=============================================================================
1251 
1252 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
1253 int Compile::ConstantTable::calculate_table_base_offset() const {
1254   return 0;  // absolute addressing, no offset
1255 }
1256 
1257 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
1258 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1259   Compile *C = ra_->C;
1260 
1261   iRegPdstOper *op_dst = new (C) iRegPdstOper();
1262   MachNode *m1 = new (C) loadToc_hiNode();
1263   MachNode *m2 = new (C) loadToc_loNode();
1264 
1265   m1->add_req(NULL);
1266   m2->add_req(NULL, m1);
1267   m1->_opnds[0] = op_dst;
1268   m2->_opnds[0] = op_dst;
1269   m2->_opnds[1] = op_dst;
1270   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1271   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1272   nodes->push(m1);
1273   nodes->push(m2);
1274 }
1275 
1276 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1277   // Is postalloc expanded.
1278   ShouldNotReachHere();
1279 }
1280 
1281 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
1282   return 0;
1283 }
1284 
1285 #ifndef PRODUCT
1286 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1287   st->print("-- \t// MachConstantBaseNode (empty encoding)");
1288 }
1289 #endif
1290 
1291 //=============================================================================
1292 
1293 #ifndef PRODUCT
1294 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1295   Compile* C = ra_->C;
1296   const long framesize = C->frame_slots() << LogBytesPerInt;
1297 
1298   st->print("PROLOG\n\t");
1299   if (C->need_stack_bang(framesize)) {
1300     st->print("stack_overflow_check\n\t");
1301   }
1302 
1303   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
1304     st->print("save return pc\n\t");
1305     st->print("push frame %d\n\t", -framesize);
1306   }
1307 }
1308 #endif
1309 
1310 // Macro used instead of the common __ to emulate the pipes of PPC.
1311 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
1312 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
1313 // still no scheduling of this code is possible, the micro scheduler is aware of the
1314 // code and can update its internal data. The following mechanism is used to achieve this:
1315 // The micro scheduler calls size() of each compound node during scheduling. size() does a
1316 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
1317 #if 0 // TODO: PPC port
1318 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1319                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
1320                 _masm.
1321 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1322                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
1323 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
1324                   C->hb_scheduling()->_pdScheduling->advance_offset
1325 #else
1326 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
1327                   Unimplemented();                                                    \
1328                 _masm.
1329 #define ___stop if (UsePower6SchedulerPPC64)                                          \
1330                   Unimplemented()
1331 #define ___advance if (UsePower6SchedulerPPC64)                                       \
1332                   Unimplemented()
1333 #endif
1334 
1335 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1336   Compile* C = ra_->C;
1337   MacroAssembler _masm(&cbuf);
1338 
1339   const long framesize = C->frame_size_in_bytes();
1340   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
1341 
1342   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
1343 
1344   const Register return_pc            = R20; // Must match return_addr() in frame section.
1345   const Register callers_sp           = R21;
1346   const Register push_frame_temp      = R22;
1347   const Register toc_temp             = R23;
1348   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
1349 
1350   if (method_is_frameless) {
1351     // Add nop at beginning of all frameless methods to prevent any
1352     // oop instructions from getting overwritten by make_not_entrant
1353     // (patching attempt would fail).
1354     ___(nop) nop();
1355   } else {
1356     // Get return pc.
1357     ___(mflr) mflr(return_pc);
1358   }
1359 
1360   // Calls to C2R adapters often do not accept exceptional returns.
1361   // We require that their callers must bang for them. But be
1362   // careful, because some VM calls (such as call site linkage) can
1363   // use several kilobytes of stack. But the stack safety zone should
1364   // account for that. See bugs 4446381, 4468289, 4497237.
1365 
1366   int bangsize = C->bang_size_in_bytes();
1367   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
1368   if (C->need_stack_bang(bangsize) && UseStackBanging) {
1369     // Unfortunately we cannot use the function provided in
1370     // assembler.cpp as we have to emulate the pipes. So I had to
1371     // insert the code of generate_stack_overflow_check(), see
1372     // assembler.cpp for some illuminative comments.
1373     const int page_size = os::vm_page_size();
1374     int bang_end = (StackShadowPages+1) * page_size;
1375 
1376     // This is how far the previous frame's stack banging extended.
1377     const int bang_end_safe = bang_end;
1378 
1379     if (bangsize > page_size) {
1380       bang_end += bangsize;
1381     }
1382 
1383     int bang_offset = bang_end_safe;
1384 
1385     while (bang_offset <= bang_end) {
1386       // Need at least one stack bang at end of shadow zone.
1387 
1388       // Again I had to copy code, this time from assembler_ppc64.cpp,
1389       // bang_stack_with_offset - see there for comments.
1390 
1391       // Stack grows down, caller passes positive offset.
1392       assert(bang_offset > 0, "must bang with positive offset");
1393 
1394       long stdoffset = -bang_offset;
1395 
1396       if (Assembler::is_simm(stdoffset, 16)) {
1397         // Signed 16 bit offset, a simple std is ok.
1398         if (UseLoadInstructionsForStackBangingPPC64) {
1399           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
1400         } else {
1401           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
1402         }
1403       } else if (Assembler::is_simm(stdoffset, 31)) {
1404         // Use largeoffset calculations for addis & ld/std.
1405         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1406         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1407 
1408         Register tmp = R11;
1409         ___(addis) addis(tmp, R1_SP, hi);
1410         if (UseLoadInstructionsForStackBangingPPC64) {
1411           ___(ld) ld(R0, lo, tmp);
1412         } else {
1413           ___(std) std(R0, lo, tmp);
1414         }
1415       } else {
1416         ShouldNotReachHere();
1417       }
1418 
1419       bang_offset += page_size;
1420     }
1421     // R11 trashed
1422   } // C->need_stack_bang(framesize) && UseStackBanging
1423 
1424   unsigned int bytes = (unsigned int)framesize;
1425   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
1426   ciMethod *currMethod = C->method();
1427 
1428   // Optimized version for most common case.
1429   if (UsePower6SchedulerPPC64 &&
1430       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
1431       !(false /* ConstantsALot TODO: PPC port*/)) {
1432     ___(or) mr(callers_sp, R1_SP);
1433     ___(std) std(return_pc, _abi(lr), R1_SP);
1434     ___(stdu) stdu(R1_SP, -offset, R1_SP);
1435     return;
1436   }
1437 
1438   if (!method_is_frameless) {
1439     // Get callers sp.
1440     ___(or) mr(callers_sp, R1_SP);
1441 
1442     // Push method's frame, modifies SP.
1443     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
1444     // The ABI is already accounted for in 'framesize' via the
1445     // 'out_preserve' area.
1446     Register tmp = push_frame_temp;
1447     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
1448     if (Assembler::is_simm(-offset, 16)) {
1449       ___(stdu) stdu(R1_SP, -offset, R1_SP);
1450     } else {
1451       long x = -offset;
1452       // Had to insert load_const(tmp, -offset).
1453       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
1454       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
1455       ___(rldicr) sldi(tmp, tmp, 32);
1456       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
1457       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
1458 
1459       ___(stdux) stdux(R1_SP, R1_SP, tmp);
1460     }
1461   }
1462 #if 0 // TODO: PPC port
1463   // For testing large constant pools, emit a lot of constants to constant pool.
1464   // "Randomize" const_size.
1465   if (ConstantsALot) {
1466     const int num_consts = const_size();
1467     for (int i = 0; i < num_consts; i++) {
1468       __ long_constant(0xB0B5B00BBABE);
1469     }
1470   }
1471 #endif
1472   if (!method_is_frameless) {
1473     // Save return pc.
1474     ___(std) std(return_pc, _abi(lr), callers_sp);
1475   }
1476 }
1477 #undef ___
1478 #undef ___stop
1479 #undef ___advance
1480 
1481 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1482   // Variable size. determine dynamically.
1483   return MachNode::size(ra_);
1484 }
1485 
1486 int MachPrologNode::reloc() const {
1487   // Return number of relocatable values contained in this instruction.
1488   return 1; // 1 reloc entry for load_const(toc).
1489 }
1490 
1491 //=============================================================================
1492 
1493 #ifndef PRODUCT
1494 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1495   Compile* C = ra_->C;
1496 
1497   st->print("EPILOG\n\t");
1498   st->print("restore return pc\n\t");
1499   st->print("pop frame\n\t");
1500 
1501   if (do_polling() && C->is_method_compilation()) {
1502     st->print("touch polling page\n\t");
1503   }
1504 }
1505 #endif
1506 
1507 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1508   Compile* C = ra_->C;
1509   MacroAssembler _masm(&cbuf);
1510 
1511   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1512   assert(framesize >= 0, "negative frame-size?");
1513 
1514   const bool method_needs_polling = do_polling() && C->is_method_compilation();
1515   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
1516   const Register return_pc        = R11;
1517   const Register polling_page     = R12;
1518 
1519   if (!method_is_frameless) {
1520     // Restore return pc relative to callers' sp.
1521     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
1522   }
1523 
1524   if (method_needs_polling) {
1525     if (LoadPollAddressFromThread) {
1526       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1527       Unimplemented();
1528     } else {
1529       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
1530     }
1531   }
1532 
1533   if (!method_is_frameless) {
1534     // Move return pc to LR.
1535     __ mtlr(return_pc);
1536     // Pop frame (fixed frame-size).
1537     __ addi(R1_SP, R1_SP, (int)framesize);
1538   }
1539 
1540   if (method_needs_polling) {
1541     // We need to mark the code position where the load from the safepoint
1542     // polling page was emitted as relocInfo::poll_return_type here.
1543     __ relocate(relocInfo::poll_return_type);
1544     __ load_from_polling_page(polling_page);
1545   }
1546 }
1547 
1548 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1549   // Variable size. Determine dynamically.
1550   return MachNode::size(ra_);
1551 }
1552 
1553 int MachEpilogNode::reloc() const {
1554   // Return number of relocatable values contained in this instruction.
1555   return 1; // 1 for load_from_polling_page.
1556 }
1557 
1558 const Pipeline * MachEpilogNode::pipeline() const {
1559   return MachNode::pipeline_class();
1560 }
1561 
1562 // This method seems to be obsolete. It is declared in machnode.hpp
1563 // and defined in all *.ad files, but it is never called. Should we
1564 // get rid of it?
1565 int MachEpilogNode::safepoint_offset() const {
1566   assert(do_polling(), "no return for this epilog node");
1567   return 0;
1568 }
1569 
1570 #if 0 // TODO: PPC port
1571 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1572   MacroAssembler _masm(&cbuf);
1573   if (LoadPollAddressFromThread) {
1574     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1575   } else {
1576     _masm.nop();
1577   }
1578 }
1579 
1580 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
1581   if (LoadPollAddressFromThread) {
1582     return 4;
1583   } else {
1584     return 4;
1585   }
1586 }
1587 
1588 #ifndef PRODUCT
1589 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1590   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
1591 }
1592 #endif
1593 
1594 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
1595   return RSCRATCH1_BITS64_REG_mask();
1596 }
1597 #endif // PPC port
1598 
1599 // =============================================================================
1600 
1601 // Figure out which register class each belongs in: rc_int, rc_float or
1602 // rc_stack.
1603 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1604 
1605 static enum RC rc_class(OptoReg::Name reg) {
1606   // Return the register class for the given register. The given register
1607   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
1608   // enumeration in adGlobals_ppc64.hpp.
1609 
1610   if (reg == OptoReg::Bad) return rc_bad;
1611 
1612   // We have 64 integer register halves, starting at index 0.
1613   if (reg < 64) return rc_int;
1614 
1615   // We have 64 floating-point register halves, starting at index 64.
1616   if (reg < 64+64) return rc_float;
1617 
1618   // Between float regs & stack are the flags regs.
1619   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
1620 
1621   return rc_stack;
1622 }
1623 
1624 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
1625                         bool do_print, Compile* C, outputStream *st) {
1626 
1627   assert(opcode == Assembler::LD_OPCODE   ||
1628          opcode == Assembler::STD_OPCODE  ||
1629          opcode == Assembler::LWZ_OPCODE  ||
1630          opcode == Assembler::STW_OPCODE  ||
1631          opcode == Assembler::LFD_OPCODE  ||
1632          opcode == Assembler::STFD_OPCODE ||
1633          opcode == Assembler::LFS_OPCODE  ||
1634          opcode == Assembler::STFS_OPCODE,
1635          "opcode not supported");
1636 
1637   if (cbuf) {
1638     int d =
1639       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
1640         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
1641       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
1642     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
1643   }
1644 #ifndef PRODUCT
1645   else if (do_print) {
1646     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
1647               op_str,
1648               Matcher::regName[reg],
1649               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
1650   }
1651 #endif
1652   return 4; // size
1653 }
1654 
1655 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
1656   Compile* C = ra_->C;
1657 
1658   // Get registers to move.
1659   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
1660   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
1661   OptoReg::Name dst_hi = ra_->get_reg_second(this);
1662   OptoReg::Name dst_lo = ra_->get_reg_first(this);
1663 
1664   enum RC src_hi_rc = rc_class(src_hi);
1665   enum RC src_lo_rc = rc_class(src_lo);
1666   enum RC dst_hi_rc = rc_class(dst_hi);
1667   enum RC dst_lo_rc = rc_class(dst_lo);
1668 
1669   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
1670   if (src_hi != OptoReg::Bad)
1671     assert((src_lo&1)==0 && src_lo+1==src_hi &&
1672            (dst_lo&1)==0 && dst_lo+1==dst_hi,
1673            "expected aligned-adjacent pairs");
1674   // Generate spill code!
1675   int size = 0;
1676 
1677   if (src_lo == dst_lo && src_hi == dst_hi)
1678     return size;            // Self copy, no move.
1679 
1680   // --------------------------------------
1681   // Memory->Memory Spill. Use R0 to hold the value.
1682   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1683     int src_offset = ra_->reg2offset(src_lo);
1684     int dst_offset = ra_->reg2offset(dst_lo);
1685     if (src_hi != OptoReg::Bad) {
1686       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
1687              "expected same type of move for high parts");
1688       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
1689       if (!cbuf && !do_size) st->print("\n\t");
1690       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
1691     } else {
1692       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
1693       if (!cbuf && !do_size) st->print("\n\t");
1694       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
1695     }
1696     return size;
1697   }
1698 
1699   // --------------------------------------
1700   // Check for float->int copy; requires a trip through memory.
1701   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1702     Unimplemented();
1703   }
1704 
1705   // --------------------------------------
1706   // Check for integer reg-reg copy.
1707   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1708       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1709       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1710       size = (Rsrc != Rdst) ? 4 : 0;
1711 
1712       if (cbuf) {
1713         MacroAssembler _masm(cbuf);
1714         if (size) {
1715           __ mr(Rdst, Rsrc);
1716         }
1717       }
1718 #ifndef PRODUCT
1719       else if (!do_size) {
1720         if (size) {
1721           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1722         } else {
1723           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1724         }
1725       }
1726 #endif
1727       return size;
1728   }
1729 
1730   // Check for integer store.
1731   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1732     int dst_offset = ra_->reg2offset(dst_lo);
1733     if (src_hi != OptoReg::Bad) {
1734       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
1735              "expected same type of move for high parts");
1736       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1737     } else {
1738       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
1739     }
1740     return size;
1741   }
1742 
1743   // Check for integer load.
1744   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1745     int src_offset = ra_->reg2offset(src_lo);
1746     if (src_hi != OptoReg::Bad) {
1747       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
1748              "expected same type of move for high parts");
1749       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1750     } else {
1751       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
1752     }
1753     return size;
1754   }
1755 
1756   // Check for float reg-reg copy.
1757   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1758     if (cbuf) {
1759       MacroAssembler _masm(cbuf);
1760       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
1761       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
1762       __ fmr(Rdst, Rsrc);
1763     }
1764 #ifndef PRODUCT
1765     else if (!do_size) {
1766       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1767     }
1768 #endif
1769     return 4;
1770   }
1771 
1772   // Check for float store.
1773   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1774     int dst_offset = ra_->reg2offset(dst_lo);
1775     if (src_hi != OptoReg::Bad) {
1776       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
1777              "expected same type of move for high parts");
1778       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1779     } else {
1780       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
1781     }
1782     return size;
1783   }
1784 
1785   // Check for float load.
1786   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1787     int src_offset = ra_->reg2offset(src_lo);
1788     if (src_hi != OptoReg::Bad) {
1789       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
1790              "expected same type of move for high parts");
1791       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1792     } else {
1793       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
1794     }
1795     return size;
1796   }
1797 
1798   // --------------------------------------------------------------------
1799   // Check for hi bits still needing moving. Only happens for misaligned
1800   // arguments to native calls.
1801   if (src_hi == dst_hi)
1802     return size;               // Self copy; no move.
1803 
1804   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
1805   ShouldNotReachHere(); // Unimplemented
1806   return 0;
1807 }
1808 
1809 #ifndef PRODUCT
1810 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1811   if (!ra_)
1812     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
1813   else
1814     implementation(NULL, ra_, false, st);
1815 }
1816 #endif
1817 
1818 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1819   implementation(&cbuf, ra_, false, NULL);
1820 }
1821 
1822 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1823   return implementation(NULL, ra_, true, NULL);
1824 }
1825 
1826 #if 0 // TODO: PPC port
1827 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
1828 #ifndef PRODUCT
1829   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
1830 #endif
1831   assert(ra_->node_regs_max_index() != 0, "");
1832 
1833   // Get registers to move.
1834   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
1835   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
1836   OptoReg::Name dst_hi = ra_->get_reg_second(n);
1837   OptoReg::Name dst_lo = ra_->get_reg_first(n);
1838 
1839   enum RC src_lo_rc = rc_class(src_lo);
1840   enum RC dst_lo_rc = rc_class(dst_lo);
1841 
1842   if (src_lo == dst_lo && src_hi == dst_hi)
1843     return ppc64Opcode_none;            // Self copy, no move.
1844 
1845   // --------------------------------------
1846   // Memory->Memory Spill. Use R0 to hold the value.
1847   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1848     return ppc64Opcode_compound;
1849   }
1850 
1851   // --------------------------------------
1852   // Check for float->int copy; requires a trip through memory.
1853   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1854     Unimplemented();
1855   }
1856 
1857   // --------------------------------------
1858   // Check for integer reg-reg copy.
1859   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1860     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1861     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1862     if (Rsrc == Rdst) {
1863       return ppc64Opcode_none;
1864     } else {
1865       return ppc64Opcode_or;
1866     }
1867   }
1868 
1869   // Check for integer store.
1870   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1871     if (src_hi != OptoReg::Bad) {
1872       return ppc64Opcode_std;
1873     } else {
1874       return ppc64Opcode_stw;
1875     }
1876   }
1877 
1878   // Check for integer load.
1879   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1880     if (src_hi != OptoReg::Bad) {
1881       return ppc64Opcode_ld;
1882     } else {
1883       return ppc64Opcode_lwz;
1884     }
1885   }
1886 
1887   // Check for float reg-reg copy.
1888   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1889     return ppc64Opcode_fmr;
1890   }
1891 
1892   // Check for float store.
1893   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1894     if (src_hi != OptoReg::Bad) {
1895       return ppc64Opcode_stfd;
1896     } else {
1897       return ppc64Opcode_stfs;
1898     }
1899   }
1900 
1901   // Check for float load.
1902   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1903     if (src_hi != OptoReg::Bad) {
1904       return ppc64Opcode_lfd;
1905     } else {
1906       return ppc64Opcode_lfs;
1907     }
1908   }
1909 
1910   // --------------------------------------------------------------------
1911   // Check for hi bits still needing moving. Only happens for misaligned
1912   // arguments to native calls.
1913   if (src_hi == dst_hi)
1914     return ppc64Opcode_none;               // Self copy; no move.
1915 
1916   ShouldNotReachHere();
1917   return ppc64Opcode_undefined;
1918 }
1919 #endif // PPC port
1920 
1921 #ifndef PRODUCT
1922 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1923   st->print("NOP \t// %d nops to pad for loops.", _count);
1924 }
1925 #endif
1926 
1927 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1928   MacroAssembler _masm(&cbuf);
1929   // _count contains the number of nops needed for padding.
1930   for (int i = 0; i < _count; i++) {
1931     __ nop();
1932   }
1933 }
1934 
1935 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1936    return _count * 4;
1937 }
1938 
1939 #ifndef PRODUCT
1940 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1941   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1942   int reg = ra_->get_reg_first(this);
1943   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
1944 }
1945 #endif
1946 
1947 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1948   MacroAssembler _masm(&cbuf);
1949 
1950   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1951   int reg    = ra_->get_encode(this);
1952 
1953   if (Assembler::is_simm(offset, 16)) {
1954     __ addi(as_Register(reg), R1, offset);
1955   } else {
1956     ShouldNotReachHere();
1957   }
1958 }
1959 
1960 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1961   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
1962   return 4;
1963 }
1964 
1965 #ifndef PRODUCT
1966 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1967   st->print_cr("---- MachUEPNode ----");
1968   st->print_cr("...");
1969 }
1970 #endif
1971 
1972 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1973   // This is the unverified entry point.
1974   MacroAssembler _masm(&cbuf);
1975 
1976   // Inline_cache contains a klass.
1977   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
1978   Register receiver_klass = R0;  // tmp
1979 
1980   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
1981   assert(R11_scratch1 == R11, "need prologue scratch register");
1982 
1983   // Check for NULL argument if we don't have implicit null checks.
1984   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
1985     if (TrapBasedNullChecks) {
1986       __ trap_null_check(R3_ARG1);
1987     } else {
1988       Label valid;
1989       __ cmpdi(CCR0, R3_ARG1, 0);
1990       __ bne_predict_taken(CCR0, valid);
1991       // We have a null argument, branch to ic_miss_stub.
1992       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1993                            relocInfo::runtime_call_type);
1994       __ bind(valid);
1995     }
1996   }
1997   // Assume argument is not NULL, load klass from receiver.
1998   __ load_klass(receiver_klass, R3_ARG1);
1999 
2000   if (TrapBasedICMissChecks) {
2001     __ trap_ic_miss_check(receiver_klass, ic_klass);
2002   } else {
2003     Label valid;
2004     __ cmpd(CCR0, receiver_klass, ic_klass);
2005     __ beq_predict_taken(CCR0, valid);
2006     // We have an unexpected klass, branch to ic_miss_stub.
2007     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2008                          relocInfo::runtime_call_type);
2009     __ bind(valid);
2010   }
2011 
2012   // Argument is valid and klass is as expected, continue.
2013 }
2014 
2015 #if 0 // TODO: PPC port
2016 // Optimize UEP code on z (save a load_const() call in main path).
2017 int MachUEPNode::ep_offset() {
2018   return 0;
2019 }
2020 #endif
2021 
2022 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
2023   // Variable size. Determine dynamically.
2024   return MachNode::size(ra_);
2025 }
2026 
2027 //=============================================================================
2028 
2029 uint size_exception_handler() {
2030   // The exception_handler is a b64_patchable.
2031   return MacroAssembler::b64_patchable_size;
2032 }
2033 
2034 uint size_deopt_handler() {
2035   // The deopt_handler is a bl64_patchable.
2036   return MacroAssembler::bl64_patchable_size;
2037 }
2038 
2039 int emit_exception_handler(CodeBuffer &cbuf) {
2040   MacroAssembler _masm(&cbuf);
2041 
2042   address base = __ start_a_stub(size_exception_handler());
2043   if (base == NULL) return 0; // CodeBuffer::expand failed
2044 
2045   int offset = __ offset();
2046   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
2047                        relocInfo::runtime_call_type);
2048   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
2049   __ end_a_stub();
2050 
2051   return offset;
2052 }
2053 
2054 // The deopt_handler is like the exception handler, but it calls to
2055 // the deoptimization blob instead of jumping to the exception blob.
2056 int emit_deopt_handler(CodeBuffer& cbuf) {
2057   MacroAssembler _masm(&cbuf);
2058 
2059   address base = __ start_a_stub(size_deopt_handler());
2060   if (base == NULL) return 0; // CodeBuffer::expand failed
2061 
2062   int offset = __ offset();
2063   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
2064                         relocInfo::runtime_call_type);
2065   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
2066   __ end_a_stub();
2067 
2068   return offset;
2069 }
2070 
2071 //=============================================================================
2072 
2073 // Use a frame slots bias for frameless methods if accessing the stack.
2074 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
2075   if (as_Register(reg_enc) == R1_SP) {
2076     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
2077   }
2078   return 0;
2079 }
2080 
2081 const bool Matcher::match_rule_supported(int opcode) {
2082   if (!has_match_rule(opcode))
2083     return false;
2084 
2085   switch (opcode) {
2086   case Op_SqrtD:
2087     return VM_Version::has_fsqrt();
2088   case Op_CountLeadingZerosI:
2089   case Op_CountLeadingZerosL:
2090   case Op_CountTrailingZerosI:
2091   case Op_CountTrailingZerosL:
2092     if (!UseCountLeadingZerosInstructionsPPC64)
2093       return false;
2094     break;
2095 
2096   case Op_PopCountI:
2097   case Op_PopCountL:
2098     return (UsePopCountInstruction && VM_Version::has_popcntw());
2099 
2100   case Op_StrComp:
2101     return SpecialStringCompareTo;
2102   case Op_StrEquals:
2103     return SpecialStringEquals;
2104   case Op_StrIndexOf:
2105     return SpecialStringIndexOf;
2106   }
2107 
2108   return true;  // Per default match rules are supported.
2109 }
2110 
2111 int Matcher::regnum_to_fpu_offset(int regnum) {
2112   // No user for this method?
2113   Unimplemented();
2114   return 999;
2115 }
2116 
2117 const bool Matcher::convL2FSupported(void) {
2118   // fcfids can do the conversion (>= Power7).
2119   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
2120   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
2121 }
2122 
2123 // Vector width in bytes.
2124 const int Matcher::vector_width_in_bytes(BasicType bt) {
2125   assert(MaxVectorSize == 8, "");
2126   return 8;
2127 }
2128 
2129 // Vector ideal reg.
2130 const int Matcher::vector_ideal_reg(int size) {
2131   assert(MaxVectorSize == 8 && size == 8, "");
2132   return Op_RegL;
2133 }
2134 
2135 const int Matcher::vector_shift_count_ideal_reg(int size) {
2136   fatal("vector shift is not supported");
2137   return Node::NotAMachineReg;
2138 }
2139 
2140 // Limits on vector size (number of elements) loaded into vector.
2141 const int Matcher::max_vector_size(const BasicType bt) {
2142   assert(is_java_primitive(bt), "only primitive type vectors");
2143   return vector_width_in_bytes(bt)/type2aelembytes(bt);
2144 }
2145 
2146 const int Matcher::min_vector_size(const BasicType bt) {
2147   return max_vector_size(bt); // Same as max.
2148 }
2149 
2150 // PPC doesn't support misaligned vectors store/load.
2151 const bool Matcher::misaligned_vectors_ok() {
2152   return false;
2153 }
2154 
2155 // PPC AES support not yet implemented
2156 const bool Matcher::pass_original_key_for_aes() {
2157   return false;
2158 }
2159 
2160 // RETURNS: whether this branch offset is short enough that a short
2161 // branch can be used.
2162 //
2163 // If the platform does not provide any short branch variants, then
2164 // this method should return `false' for offset 0.
2165 //
2166 // `Compile::Fill_buffer' will decide on basis of this information
2167 // whether to do the pass `Compile::Shorten_branches' at all.
2168 //
2169 // And `Compile::Shorten_branches' will decide on basis of this
2170 // information whether to replace particular branch sites by short
2171 // ones.
2172 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
2173   // Is the offset within the range of a ppc64 pc relative branch?
2174   bool b;
2175 
2176   const int safety_zone = 3 * BytesPerInstWord;
2177   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
2178                          29 - 16 + 1 + 2);
2179   return b;
2180 }
2181 
2182 const bool Matcher::isSimpleConstant64(jlong value) {
2183   // Probably always true, even if a temp register is required.
2184   return true;
2185 }
2186 /* TODO: PPC port
2187 // Make a new machine dependent decode node (with its operands).
2188 MachTypeNode *Matcher::make_decode_node(Compile *C) {
2189   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
2190          "This method is only implemented for unscaled cOops mode so far");
2191   MachTypeNode *decode = new (C) decodeN_unscaledNode();
2192   decode->set_opnd_array(0, new (C) iRegPdstOper());
2193   decode->set_opnd_array(1, new (C) iRegNsrcOper());
2194   return decode;
2195 }
2196 */
2197 // Threshold size for cleararray.
2198 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2199 
2200 // false => size gets scaled to BytesPerLong, ok.
2201 const bool Matcher::init_array_count_is_in_bytes = false;
2202 
2203 // Use conditional move (CMOVL) on Power7.
2204 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
2205 
2206 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
2207 // fsel doesn't accept a condition register as input, so this would be slightly different.
2208 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
2209 
2210 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
2211 const bool Matcher::require_postalloc_expand = true;
2212 
2213 // Should the Matcher clone shifts on addressing modes, expecting them to
2214 // be subsumed into complex addressing expressions or compute them into
2215 // registers? True for Intel but false for most RISCs.
2216 const bool Matcher::clone_shift_expressions = false;
2217 
2218 // Do we need to mask the count passed to shift instructions or does
2219 // the cpu only look at the lower 5/6 bits anyway?
2220 // Off, as masks are generated in expand rules where required.
2221 // Constant shift counts are handled in Ideal phase.
2222 const bool Matcher::need_masked_shift_count = false;
2223 
2224 // This affects two different things:
2225 //  - how Decode nodes are matched
2226 //  - how ImplicitNullCheck opportunities are recognized
2227 // If true, the matcher will try to remove all Decodes and match them
2228 // (as operands) into nodes. NullChecks are not prepared to deal with
2229 // Decodes by final_graph_reshaping().
2230 // If false, final_graph_reshaping() forces the decode behind the Cmp
2231 // for a NullCheck. The matcher matches the Decode node into a register.
2232 // Implicit_null_check optimization moves the Decode along with the
2233 // memory operation back up before the NullCheck.
2234 bool Matcher::narrow_oop_use_complex_address() {
2235   // TODO: PPC port if (MatchDecodeNodes) return true;
2236   return false;
2237 }
2238 
2239 bool Matcher::narrow_klass_use_complex_address() {
2240   NOT_LP64(ShouldNotCallThis());
2241   assert(UseCompressedClassPointers, "only for compressed klass code");
2242   // TODO: PPC port if (MatchDecodeNodes) return true;
2243   return false;
2244 }
2245 
2246 // Is it better to copy float constants, or load them directly from memory?
2247 // Intel can load a float constant from a direct address, requiring no
2248 // extra registers. Most RISCs will have to materialize an address into a
2249 // register first, so they would do better to copy the constant from stack.
2250 const bool Matcher::rematerialize_float_constants = false;
2251 
2252 // If CPU can load and store mis-aligned doubles directly then no fixup is
2253 // needed. Else we split the double into 2 integer pieces and move it
2254 // piece-by-piece. Only happens when passing doubles into C code as the
2255 // Java calling convention forces doubles to be aligned.
2256 const bool Matcher::misaligned_doubles_ok = true;
2257 
2258 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2259  Unimplemented();
2260 }
2261 
2262 // Advertise here if the CPU requires explicit rounding operations
2263 // to implement the UseStrictFP mode.
2264 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2265 
2266 // Do floats take an entire double register or just half?
2267 //
2268 // A float occupies a ppc64 double register. For the allocator, a
2269 // ppc64 double register appears as a pair of float registers.
2270 bool Matcher::float_in_double() { return true; }
2271 
2272 // Do ints take an entire long register or just half?
2273 // The relevant question is how the int is callee-saved:
2274 // the whole long is written but de-opt'ing will have to extract
2275 // the relevant 32 bits.
2276 const bool Matcher::int_in_long = true;
2277 
2278 // Constants for c2c and c calling conventions.
2279 
2280 const MachRegisterNumbers iarg_reg[8] = {
2281   R3_num, R4_num, R5_num, R6_num,
2282   R7_num, R8_num, R9_num, R10_num
2283 };
2284 
2285 const MachRegisterNumbers farg_reg[13] = {
2286   F1_num, F2_num, F3_num, F4_num,
2287   F5_num, F6_num, F7_num, F8_num,
2288   F9_num, F10_num, F11_num, F12_num,
2289   F13_num
2290 };
2291 
2292 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
2293 
2294 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
2295 
2296 // Return whether or not this register is ever used as an argument. This
2297 // function is used on startup to build the trampoline stubs in generateOptoStub.
2298 // Registers not mentioned will be killed by the VM call in the trampoline, and
2299 // arguments in those registers not be available to the callee.
2300 bool Matcher::can_be_java_arg(int reg) {
2301   // We return true for all registers contained in iarg_reg[] and
2302   // farg_reg[] and their virtual halves.
2303   // We must include the virtual halves in order to get STDs and LDs
2304   // instead of STWs and LWs in the trampoline stubs.
2305 
2306   if (   reg == R3_num  || reg == R3_H_num
2307       || reg == R4_num  || reg == R4_H_num
2308       || reg == R5_num  || reg == R5_H_num
2309       || reg == R6_num  || reg == R6_H_num
2310       || reg == R7_num  || reg == R7_H_num
2311       || reg == R8_num  || reg == R8_H_num
2312       || reg == R9_num  || reg == R9_H_num
2313       || reg == R10_num || reg == R10_H_num)
2314     return true;
2315 
2316   if (   reg == F1_num  || reg == F1_H_num
2317       || reg == F2_num  || reg == F2_H_num
2318       || reg == F3_num  || reg == F3_H_num
2319       || reg == F4_num  || reg == F4_H_num
2320       || reg == F5_num  || reg == F5_H_num
2321       || reg == F6_num  || reg == F6_H_num
2322       || reg == F7_num  || reg == F7_H_num
2323       || reg == F8_num  || reg == F8_H_num
2324       || reg == F9_num  || reg == F9_H_num
2325       || reg == F10_num || reg == F10_H_num
2326       || reg == F11_num || reg == F11_H_num
2327       || reg == F12_num || reg == F12_H_num
2328       || reg == F13_num || reg == F13_H_num)
2329     return true;
2330 
2331   return false;
2332 }
2333 
2334 bool Matcher::is_spillable_arg(int reg) {
2335   return can_be_java_arg(reg);
2336 }
2337 
2338 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
2339   return false;
2340 }
2341 
2342 // Register for DIVI projection of divmodI.
2343 RegMask Matcher::divI_proj_mask() {
2344   ShouldNotReachHere();
2345   return RegMask();
2346 }
2347 
2348 // Register for MODI projection of divmodI.
2349 RegMask Matcher::modI_proj_mask() {
2350   ShouldNotReachHere();
2351   return RegMask();
2352 }
2353 
2354 // Register for DIVL projection of divmodL.
2355 RegMask Matcher::divL_proj_mask() {
2356   ShouldNotReachHere();
2357   return RegMask();
2358 }
2359 
2360 // Register for MODL projection of divmodL.
2361 RegMask Matcher::modL_proj_mask() {
2362   ShouldNotReachHere();
2363   return RegMask();
2364 }
2365 
2366 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2367   return RegMask();
2368 }
2369 
2370 %}
2371 
2372 //----------ENCODING BLOCK-----------------------------------------------------
2373 // This block specifies the encoding classes used by the compiler to output
2374 // byte streams. Encoding classes are parameterized macros used by
2375 // Machine Instruction Nodes in order to generate the bit encoding of the
2376 // instruction. Operands specify their base encoding interface with the
2377 // interface keyword. There are currently supported four interfaces,
2378 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
2379 // operand to generate a function which returns its register number when
2380 // queried. CONST_INTER causes an operand to generate a function which
2381 // returns the value of the constant when queried. MEMORY_INTER causes an
2382 // operand to generate four functions which return the Base Register, the
2383 // Index Register, the Scale Value, and the Offset Value of the operand when
2384 // queried. COND_INTER causes an operand to generate six functions which
2385 // return the encoding code (ie - encoding bits for the instruction)
2386 // associated with each basic boolean condition for a conditional instruction.
2387 //
2388 // Instructions specify two basic values for encoding. Again, a function
2389 // is available to check if the constant displacement is an oop. They use the
2390 // ins_encode keyword to specify their encoding classes (which must be
2391 // a sequence of enc_class names, and their parameters, specified in
2392 // the encoding block), and they use the
2393 // opcode keyword to specify, in order, their primary, secondary, and
2394 // tertiary opcode. Only the opcode sections which a particular instruction
2395 // needs for encoding need to be specified.
2396 encode %{
2397   enc_class enc_unimplemented %{
2398     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2399     MacroAssembler _masm(&cbuf);
2400     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
2401   %}
2402 
2403   enc_class enc_untested %{
2404 #ifdef ASSERT
2405     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2406     MacroAssembler _masm(&cbuf);
2407     __ untested("Untested mach node encoding in AD file.");
2408 #else
2409     // TODO: PPC port $archOpcode(ppc64Opcode_none);
2410 #endif
2411   %}
2412 
2413   enc_class enc_lbz(iRegIdst dst, memory mem) %{
2414     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
2415     MacroAssembler _masm(&cbuf);
2416     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2417     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2418   %}
2419 
2420   // Load acquire.
2421   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
2422     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2423     MacroAssembler _masm(&cbuf);
2424     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2425     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2426     __ twi_0($dst$$Register);
2427     __ isync();
2428   %}
2429 
2430   enc_class enc_lhz(iRegIdst dst, memory mem) %{
2431     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
2432 
2433     MacroAssembler _masm(&cbuf);
2434     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2435     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2436   %}
2437 
2438   // Load acquire.
2439   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
2440     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2441 
2442     MacroAssembler _masm(&cbuf);
2443     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2444     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2445     __ twi_0($dst$$Register);
2446     __ isync();
2447   %}
2448 
2449   enc_class enc_lwz(iRegIdst dst, memory mem) %{
2450     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
2451 
2452     MacroAssembler _masm(&cbuf);
2453     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2454     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2455   %}
2456 
2457   // Load acquire.
2458   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
2459     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2460 
2461     MacroAssembler _masm(&cbuf);
2462     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2463     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2464     __ twi_0($dst$$Register);
2465     __ isync();
2466   %}
2467 
2468   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
2469     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2470     MacroAssembler _masm(&cbuf);
2471     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2472     // Operand 'ds' requires 4-alignment.
2473     assert((Idisp & 0x3) == 0, "unaligned offset");
2474     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2475   %}
2476 
2477   // Load acquire.
2478   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
2479     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2480     MacroAssembler _masm(&cbuf);
2481     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2482     // Operand 'ds' requires 4-alignment.
2483     assert((Idisp & 0x3) == 0, "unaligned offset");
2484     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2485     __ twi_0($dst$$Register);
2486     __ isync();
2487   %}
2488 
2489   enc_class enc_lfd(RegF dst, memory mem) %{
2490     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
2491     MacroAssembler _masm(&cbuf);
2492     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2493     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
2494   %}
2495 
2496   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
2497     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2498 
2499     MacroAssembler _masm(&cbuf);
2500     int toc_offset = 0;
2501 
2502     if (!ra_->C->in_scratch_emit_size()) {
2503       address const_toc_addr;
2504       // Create a non-oop constant, no relocation needed.
2505       // If it is an IC, it has a virtual_call_Relocation.
2506       const_toc_addr = __ long_constant((jlong)$src$$constant);
2507 
2508       // Get the constant's TOC offset.
2509       toc_offset = __ offset_to_method_toc(const_toc_addr);
2510 
2511       // Keep the current instruction offset in mind.
2512       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
2513     }
2514 
2515     __ ld($dst$$Register, toc_offset, $toc$$Register);
2516   %}
2517 
2518   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
2519     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2520 
2521     MacroAssembler _masm(&cbuf);
2522 
2523     if (!ra_->C->in_scratch_emit_size()) {
2524       address const_toc_addr;
2525       // Create a non-oop constant, no relocation needed.
2526       // If it is an IC, it has a virtual_call_Relocation.
2527       const_toc_addr = __ long_constant((jlong)$src$$constant);
2528 
2529       // Get the constant's TOC offset.
2530       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2531       // Store the toc offset of the constant.
2532       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
2533 
2534       // Also keep the current instruction offset in mind.
2535       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
2536     }
2537 
2538     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2539   %}
2540 
2541 %} // encode
2542 
2543 source %{
2544 
2545 typedef struct {
2546   loadConL_hiNode *_large_hi;
2547   loadConL_loNode *_large_lo;
2548   loadConLNode    *_small;
2549   MachNode        *_last;
2550 } loadConLNodesTuple;
2551 
2552 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
2553                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
2554   loadConLNodesTuple nodes;
2555 
2556   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2557   if (large_constant_pool) {
2558     // Create new nodes.
2559     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
2560     loadConL_loNode *m2 = new (C) loadConL_loNode();
2561 
2562     // inputs for new nodes
2563     m1->add_req(NULL, toc);
2564     m2->add_req(NULL, m1);
2565 
2566     // operands for new nodes
2567     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
2568     m1->_opnds[1] = immSrc;                 // src
2569     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
2570     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
2571     m2->_opnds[1] = immSrc;                 // src
2572     m2->_opnds[2] = new (C) iRegLdstOper(); // base
2573 
2574     // Initialize ins_attrib TOC fields.
2575     m1->_const_toc_offset = -1;
2576     m2->_const_toc_offset_hi_node = m1;
2577 
2578     // Initialize ins_attrib instruction offset.
2579     m1->_cbuf_insts_offset = -1;
2580 
2581     // register allocation for new nodes
2582     ra_->set_pair(m1->_idx, reg_second, reg_first);
2583     ra_->set_pair(m2->_idx, reg_second, reg_first);
2584 
2585     // Create result.
2586     nodes._large_hi = m1;
2587     nodes._large_lo = m2;
2588     nodes._small = NULL;
2589     nodes._last = nodes._large_lo;
2590     assert(m2->bottom_type()->isa_long(), "must be long");
2591   } else {
2592     loadConLNode *m2 = new (C) loadConLNode();
2593 
2594     // inputs for new nodes
2595     m2->add_req(NULL, toc);
2596 
2597     // operands for new nodes
2598     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
2599     m2->_opnds[1] = immSrc;                 // src
2600     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
2601 
2602     // Initialize ins_attrib instruction offset.
2603     m2->_cbuf_insts_offset = -1;
2604 
2605     // register allocation for new nodes
2606     ra_->set_pair(m2->_idx, reg_second, reg_first);
2607 
2608     // Create result.
2609     nodes._large_hi = NULL;
2610     nodes._large_lo = NULL;
2611     nodes._small = m2;
2612     nodes._last = nodes._small;
2613     assert(m2->bottom_type()->isa_long(), "must be long");
2614   }
2615 
2616   return nodes;
2617 }
2618 
2619 %} // source
2620 
2621 encode %{
2622   // Postalloc expand emitter for loading a long constant from the method's TOC.
2623   // Enc_class needed as consttanttablebase is not supported by postalloc
2624   // expand.
2625   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
2626     // Create new nodes.
2627     loadConLNodesTuple loadConLNodes =
2628       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
2629                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
2630 
2631     // Push new nodes.
2632     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
2633     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
2634 
2635     // some asserts
2636     assert(nodes->length() >= 1, "must have created at least 1 node");
2637     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
2638   %}
2639 
2640   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
2641     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2642 
2643     MacroAssembler _masm(&cbuf);
2644     int toc_offset = 0;
2645 
2646     if (!ra_->C->in_scratch_emit_size()) {
2647       intptr_t val = $src$$constant;
2648       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2649       address const_toc_addr;
2650       if (constant_reloc == relocInfo::oop_type) {
2651         // Create an oop constant and a corresponding relocation.
2652         AddressLiteral a = __ allocate_oop_address((jobject)val);
2653         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2654         __ relocate(a.rspec());
2655       } else if (constant_reloc == relocInfo::metadata_type) {
2656         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2657         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2658         __ relocate(a.rspec());
2659       } else {
2660         // Create a non-oop constant, no relocation needed.
2661         const_toc_addr = __ long_constant((jlong)$src$$constant);
2662       }
2663 
2664       // Get the constant's TOC offset.
2665       toc_offset = __ offset_to_method_toc(const_toc_addr);
2666     }
2667 
2668     __ ld($dst$$Register, toc_offset, $toc$$Register);
2669   %}
2670 
2671   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
2672     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2673 
2674     MacroAssembler _masm(&cbuf);
2675     if (!ra_->C->in_scratch_emit_size()) {
2676       intptr_t val = $src$$constant;
2677       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2678       address const_toc_addr;
2679       if (constant_reloc == relocInfo::oop_type) {
2680         // Create an oop constant and a corresponding relocation.
2681         AddressLiteral a = __ allocate_oop_address((jobject)val);
2682         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2683         __ relocate(a.rspec());
2684       } else if (constant_reloc == relocInfo::metadata_type) {
2685         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
2686         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2687         __ relocate(a.rspec());
2688       } else {  // non-oop pointers, e.g. card mark base, heap top
2689         // Create a non-oop constant, no relocation needed.
2690         const_toc_addr = __ long_constant((jlong)$src$$constant);
2691       }
2692 
2693       // Get the constant's TOC offset.
2694       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2695       // Store the toc offset of the constant.
2696       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
2697     }
2698 
2699     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2700   %}
2701 
2702   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
2703   // Enc_class needed as consttanttablebase is not supported by postalloc
2704   // expand.
2705   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
2706     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2707     if (large_constant_pool) {
2708       // Create new nodes.
2709       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
2710       loadConP_loNode *m2 = new (C) loadConP_loNode();
2711 
2712       // inputs for new nodes
2713       m1->add_req(NULL, n_toc);
2714       m2->add_req(NULL, m1);
2715       
2716       // operands for new nodes
2717       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
2718       m1->_opnds[1] = op_src;                 // src
2719       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
2720       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
2721       m2->_opnds[1] = op_src;                 // src
2722       m2->_opnds[2] = new (C) iRegLdstOper(); // base
2723       
2724       // Initialize ins_attrib TOC fields.
2725       m1->_const_toc_offset = -1;
2726       m2->_const_toc_offset_hi_node = m1;
2727       
2728       // Register allocation for new nodes.
2729       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2730       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2731       
2732       nodes->push(m1);
2733       nodes->push(m2);
2734       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2735     } else {
2736       loadConPNode *m2 = new (C) loadConPNode();
2737       
2738       // inputs for new nodes
2739       m2->add_req(NULL, n_toc);
2740       
2741       // operands for new nodes
2742       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
2743       m2->_opnds[1] = op_src;                 // src
2744       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
2745       
2746       // Register allocation for new nodes.
2747       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2748 
2749       nodes->push(m2);
2750       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2751     }
2752   %}
2753 
2754   // Enc_class needed as consttanttablebase is not supported by postalloc
2755   // expand.
2756   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
2757     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2758 
2759     MachNode *m2;
2760     if (large_constant_pool) {
2761       m2 = new (C) loadConFCompNode();
2762     } else {
2763       m2 = new (C) loadConFNode();
2764     }
2765     // inputs for new nodes
2766     m2->add_req(NULL, n_toc);
2767 
2768     // operands for new nodes
2769     m2->_opnds[0] = op_dst;
2770     m2->_opnds[1] = op_src;
2771     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
2772 
2773     // register allocation for new nodes
2774     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2775     nodes->push(m2);
2776   %}
2777 
2778   // Enc_class needed as consttanttablebase is not supported by postalloc
2779   // expand.
2780   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
2781     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2782 
2783     MachNode *m2;
2784     if (large_constant_pool) {
2785       m2 = new (C) loadConDCompNode();
2786     } else {
2787       m2 = new (C) loadConDNode();
2788     }
2789     // inputs for new nodes
2790     m2->add_req(NULL, n_toc);
2791 
2792     // operands for new nodes
2793     m2->_opnds[0] = op_dst;
2794     m2->_opnds[1] = op_src;
2795     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
2796 
2797     // register allocation for new nodes
2798     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2799     nodes->push(m2);
2800   %}
2801 
2802   enc_class enc_stw(iRegIsrc src, memory mem) %{
2803     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
2804     MacroAssembler _masm(&cbuf);
2805     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2806     __ stw($src$$Register, Idisp, $mem$$base$$Register);
2807   %}
2808 
2809   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
2810     // TODO: PPC port $archOpcode(ppc64Opcode_std);
2811     MacroAssembler _masm(&cbuf);
2812     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2813     // Operand 'ds' requires 4-alignment.
2814     assert((Idisp & 0x3) == 0, "unaligned offset");
2815     __ std($src$$Register, Idisp, $mem$$base$$Register);
2816   %}
2817 
2818   enc_class enc_stfs(RegF src, memory mem) %{
2819     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
2820     MacroAssembler _masm(&cbuf);
2821     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2822     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
2823   %}
2824 
2825   enc_class enc_stfd(RegF src, memory mem) %{
2826     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
2827     MacroAssembler _masm(&cbuf);
2828     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2829     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
2830   %}
2831 
2832   // Use release_store for card-marking to ensure that previous
2833   // oop-stores are visible before the card-mark change.
2834   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
2835     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2836     // FIXME: Implement this as a cmove and use a fixed condition code
2837     // register which is written on every transition to compiled code,
2838     // e.g. in call-stub and when returning from runtime stubs.
2839     //
2840     // Proposed code sequence for the cmove implementation:
2841     //
2842     // Label skip_release;
2843     // __ beq(CCRfixed, skip_release);
2844     // __ release();
2845     // __ bind(skip_release);
2846     // __ stb(card mark);
2847 
2848     MacroAssembler _masm(&cbuf);
2849     Label skip_storestore;
2850 
2851 #if 0 // TODO: PPC port
2852     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
2853     // StoreStore barrier conditionally.
2854     __ lwz(R0, 0, $releaseFieldAddr$$Register);
2855     __ cmpwi(CCR0, R0, 0);
2856     __ beq_predict_taken(CCR0, skip_storestore);
2857 #endif
2858     __ li(R0, 0);
2859     __ membar(Assembler::StoreStore);
2860 #if 0 // TODO: PPC port
2861     __ bind(skip_storestore);
2862 #endif
2863 
2864     // Do the store.
2865     if ($mem$$index == 0) {
2866       __ stb(R0, $mem$$disp, $mem$$base$$Register);
2867     } else {
2868       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
2869       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
2870     }
2871   %}
2872 
2873   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
2874 
2875     if (VM_Version::has_isel()) {
2876       // use isel instruction with Power 7
2877       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
2878       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
2879       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
2880       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
2881 
2882       n_compare->add_req(n_region, n_src);
2883       n_compare->_opnds[0] = op_crx;
2884       n_compare->_opnds[1] = op_src;
2885       n_compare->_opnds[2] = new (C) immL16Oper(0);
2886 
2887       n_sub_base->add_req(n_region, n_src);
2888       n_sub_base->_opnds[0] = op_dst;
2889       n_sub_base->_opnds[1] = op_src;
2890       n_sub_base->_bottom_type = _bottom_type;
2891 
2892       n_shift->add_req(n_region, n_sub_base);
2893       n_shift->_opnds[0] = op_dst;
2894       n_shift->_opnds[1] = op_dst;
2895       n_shift->_bottom_type = _bottom_type;
2896 
2897       n_cond_set->add_req(n_region, n_compare, n_shift);
2898       n_cond_set->_opnds[0] = op_dst;
2899       n_cond_set->_opnds[1] = op_crx;
2900       n_cond_set->_opnds[2] = op_dst;
2901       n_cond_set->_bottom_type = _bottom_type;
2902 
2903       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2904       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2905       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2906       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2907 
2908       nodes->push(n_compare);
2909       nodes->push(n_sub_base);
2910       nodes->push(n_shift);
2911       nodes->push(n_cond_set);
2912 
2913     } else {
2914       // before Power 7
2915       moveRegNode        *n_move     = new (C) moveRegNode();
2916       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
2917       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
2918       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
2919 
2920       n_move->add_req(n_region, n_src);
2921       n_move->_opnds[0] = op_dst;
2922       n_move->_opnds[1] = op_src;
2923       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
2924 
2925       n_compare->add_req(n_region, n_src);
2926       n_compare->add_prec(n_move);
2927 
2928       n_compare->_opnds[0] = op_crx;
2929       n_compare->_opnds[1] = op_src;
2930       n_compare->_opnds[2] = new (C) immL16Oper(0);
2931 
2932       n_sub_base->add_req(n_region, n_compare, n_src);
2933       n_sub_base->_opnds[0] = op_dst;
2934       n_sub_base->_opnds[1] = op_crx;
2935       n_sub_base->_opnds[2] = op_src;
2936       n_sub_base->_bottom_type = _bottom_type;
2937    
2938       n_shift->add_req(n_region, n_sub_base);
2939       n_shift->_opnds[0] = op_dst;
2940       n_shift->_opnds[1] = op_dst;
2941       n_shift->_bottom_type = _bottom_type;
2942    
2943       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2944       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2945       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2946       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2947    
2948       nodes->push(n_move);
2949       nodes->push(n_compare);
2950       nodes->push(n_sub_base);
2951       nodes->push(n_shift);
2952     }
2953 
2954     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2955   %}
2956 
2957   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
2958 
2959     encodeP_subNode *n1 = new (C) encodeP_subNode();
2960     n1->add_req(n_region, n_src);
2961     n1->_opnds[0] = op_dst;
2962     n1->_opnds[1] = op_src;
2963     n1->_bottom_type = _bottom_type;
2964 
2965     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
2966     n2->add_req(n_region, n1);
2967     n2->_opnds[0] = op_dst;
2968     n2->_opnds[1] = op_dst;
2969     n2->_bottom_type = _bottom_type;
2970     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2971     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2972 
2973     nodes->push(n1);
2974     nodes->push(n2);
2975     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2976   %}
2977 
2978   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
2979     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
2980     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
2981 
2982     n_compare->add_req(n_region, n_src);
2983     n_compare->_opnds[0] = op_crx;
2984     n_compare->_opnds[1] = op_src;
2985     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
2986 
2987     n_shift->add_req(n_region, n_src);
2988     n_shift->_opnds[0] = op_dst;
2989     n_shift->_opnds[1] = op_src;
2990     n_shift->_bottom_type = _bottom_type;
2991 
2992     if (VM_Version::has_isel()) {
2993       // use isel instruction with Power 7
2994 
2995       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
2996       n_add_base->add_req(n_region, n_shift);
2997       n_add_base->_opnds[0] = op_dst;
2998       n_add_base->_opnds[1] = op_dst;
2999       n_add_base->_bottom_type = _bottom_type;
3000 
3001       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
3002       n_cond_set->add_req(n_region, n_compare, n_add_base);
3003       n_cond_set->_opnds[0] = op_dst;
3004       n_cond_set->_opnds[1] = op_crx;
3005       n_cond_set->_opnds[2] = op_dst;
3006       n_cond_set->_bottom_type = _bottom_type;
3007 
3008       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3009       ra_->set_oop(n_cond_set, true);
3010 
3011       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3012       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3013       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3014       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3015 
3016       nodes->push(n_compare);
3017       nodes->push(n_shift);
3018       nodes->push(n_add_base);
3019       nodes->push(n_cond_set);
3020 
3021     } else {
3022       // before Power 7
3023       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
3024      
3025       n_add_base->add_req(n_region, n_compare, n_shift);
3026       n_add_base->_opnds[0] = op_dst;
3027       n_add_base->_opnds[1] = op_crx;
3028       n_add_base->_opnds[2] = op_dst;
3029       n_add_base->_bottom_type = _bottom_type;
3030      
3031       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3032       ra_->set_oop(n_add_base, true);
3033      
3034       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3035       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3036       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3037      
3038       nodes->push(n_compare);
3039       nodes->push(n_shift);
3040       nodes->push(n_add_base);
3041     }
3042   %}
3043 
3044   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
3045     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
3046     n1->add_req(n_region, n_src);
3047     n1->_opnds[0] = op_dst;
3048     n1->_opnds[1] = op_src;
3049     n1->_bottom_type = _bottom_type;
3050 
3051     decodeN_addNode *n2 = new (C) decodeN_addNode();
3052     n2->add_req(n_region, n1);
3053     n2->_opnds[0] = op_dst;
3054     n2->_opnds[1] = op_dst;
3055     n2->_bottom_type = _bottom_type;
3056     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3057     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3058 
3059     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3060     ra_->set_oop(n2, true);
3061 
3062     nodes->push(n1);
3063     nodes->push(n2);
3064   %}
3065 
3066   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
3067     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3068 
3069     MacroAssembler _masm(&cbuf);
3070     int cc        = $cmp$$cmpcode;
3071     int flags_reg = $crx$$reg;
3072     Label done;
3073     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3074     // Branch if not (cmp crx).
3075     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
3076     __ mr($dst$$Register, $src$$Register);
3077     // TODO PPC port __ endgroup_if_needed(_size == 12);
3078     __ bind(done);
3079   %}
3080 
3081   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
3082     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3083 
3084     MacroAssembler _masm(&cbuf);
3085     Label done;
3086     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3087     // Branch if not (cmp crx).
3088     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
3089     __ li($dst$$Register, $src$$constant);
3090     // TODO PPC port __ endgroup_if_needed(_size == 12);
3091     __ bind(done);
3092   %}
3093 
3094   // New atomics.
3095   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3096     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3097 
3098     MacroAssembler _masm(&cbuf);
3099     Register Rtmp   = R0;
3100     Register Rres   = $res$$Register;
3101     Register Rsrc   = $src$$Register;
3102     Register Rptr   = $mem_ptr$$Register;
3103     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3104     Register Rold   = RegCollision ? Rtmp : Rres;
3105 
3106     Label Lretry;
3107     __ bind(Lretry);
3108     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3109     __ add(Rtmp, Rsrc, Rold);
3110     __ stwcx_(Rtmp, Rptr);
3111     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3112       __ bne_predict_not_taken(CCR0, Lretry);
3113     } else {
3114       __ bne(                  CCR0, Lretry);
3115     }
3116     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3117     __ fence();
3118   %}
3119 
3120   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3121     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3122 
3123     MacroAssembler _masm(&cbuf);
3124     Register Rtmp   = R0;
3125     Register Rres   = $res$$Register;
3126     Register Rsrc   = $src$$Register;
3127     Register Rptr   = $mem_ptr$$Register;
3128     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3129     Register Rold   = RegCollision ? Rtmp : Rres;
3130 
3131     Label Lretry;
3132     __ bind(Lretry);
3133     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3134     __ add(Rtmp, Rsrc, Rold);
3135     __ stdcx_(Rtmp, Rptr);
3136     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3137       __ bne_predict_not_taken(CCR0, Lretry);
3138     } else {
3139       __ bne(                  CCR0, Lretry);
3140     }
3141     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3142     __ fence();
3143   %}
3144 
3145   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3146     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3147 
3148     MacroAssembler _masm(&cbuf);
3149     Register Rtmp   = R0;
3150     Register Rres   = $res$$Register;
3151     Register Rsrc   = $src$$Register;
3152     Register Rptr   = $mem_ptr$$Register;
3153     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3154     Register Rold   = RegCollision ? Rtmp : Rres;
3155 
3156     Label Lretry;
3157     __ bind(Lretry);
3158     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3159     __ stwcx_(Rsrc, Rptr);
3160     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3161       __ bne_predict_not_taken(CCR0, Lretry);
3162     } else {
3163       __ bne(                  CCR0, Lretry);
3164     }
3165     if (RegCollision) __ mr(Rres, Rtmp);
3166     __ fence();
3167   %}
3168 
3169   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3170     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3171 
3172     MacroAssembler _masm(&cbuf);
3173     Register Rtmp   = R0;
3174     Register Rres   = $res$$Register;
3175     Register Rsrc   = $src$$Register;
3176     Register Rptr   = $mem_ptr$$Register;
3177     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3178     Register Rold   = RegCollision ? Rtmp : Rres;
3179 
3180     Label Lretry;
3181     __ bind(Lretry);
3182     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3183     __ stdcx_(Rsrc, Rptr);
3184     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3185       __ bne_predict_not_taken(CCR0, Lretry);
3186     } else {
3187       __ bne(                  CCR0, Lretry);
3188     }
3189     if (RegCollision) __ mr(Rres, Rtmp);
3190     __ fence();
3191   %}
3192 
3193   // This enc_class is needed so that scheduler gets proper
3194   // input mapping for latency computation.
3195   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
3196     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
3197     MacroAssembler _masm(&cbuf);
3198     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
3199   %}
3200 
3201   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3202     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3203 
3204     MacroAssembler _masm(&cbuf);
3205 
3206     Label done;
3207     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
3208     __ li($dst$$Register, $zero$$constant);
3209     __ beq($crx$$CondRegister, done);
3210     __ li($dst$$Register, $notzero$$constant);
3211     __ bind(done);
3212   %}
3213 
3214   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3215     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3216 
3217     MacroAssembler _masm(&cbuf);
3218 
3219     Label done;
3220     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
3221     __ li($dst$$Register, $zero$$constant);
3222     __ beq($crx$$CondRegister, done);
3223     __ li($dst$$Register, $notzero$$constant);
3224     __ bind(done);
3225   %}
3226 
3227   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
3228     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3229 
3230     MacroAssembler _masm(&cbuf);
3231     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
3232     Label done;
3233     __ bso($crx$$CondRegister, done);
3234     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
3235     // TODO PPC port __ endgroup_if_needed(_size == 12);
3236     __ bind(done);
3237   %}
3238 
3239   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
3240     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3241 
3242     MacroAssembler _masm(&cbuf);
3243     Label d;   // dummy
3244     __ bind(d);
3245     Label* p = ($lbl$$label);
3246     // `p' is `NULL' when this encoding class is used only to
3247     // determine the size of the encoded instruction.
3248     Label& l = (NULL == p)? d : *(p);
3249     int cc = $cmp$$cmpcode;
3250     int flags_reg = $crx$$reg;
3251     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3252     int bhint = Assembler::bhintNoHint;
3253 
3254     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3255       if (_prob <= PROB_NEVER) {
3256         bhint = Assembler::bhintIsNotTaken;
3257       } else if (_prob >= PROB_ALWAYS) {
3258         bhint = Assembler::bhintIsTaken;
3259       }
3260     }
3261 
3262     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3263           cc_to_biint(cc, flags_reg),
3264           l);
3265   %}
3266 
3267   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3268     // The scheduler doesn't know about branch shortening, so we set the opcode
3269     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3270     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3271 
3272     MacroAssembler _masm(&cbuf);
3273     Label d;    // dummy
3274     __ bind(d);
3275     Label* p = ($lbl$$label);
3276     // `p' is `NULL' when this encoding class is used only to
3277     // determine the size of the encoded instruction.
3278     Label& l = (NULL == p)? d : *(p);
3279     int cc = $cmp$$cmpcode;
3280     int flags_reg = $crx$$reg;
3281     int bhint = Assembler::bhintNoHint;
3282 
3283     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3284       if (_prob <= PROB_NEVER) {
3285         bhint = Assembler::bhintIsNotTaken;
3286       } else if (_prob >= PROB_ALWAYS) {
3287         bhint = Assembler::bhintIsTaken;
3288       }
3289     }
3290 
3291     // Tell the conditional far branch to optimize itself when being relocated.
3292     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3293                   cc_to_biint(cc, flags_reg),
3294                   l,
3295                   MacroAssembler::bc_far_optimize_on_relocate);
3296   %}
3297 
3298   // Branch used with Power6 scheduling (can be shortened without changing the node).
3299   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
3300     // The scheduler doesn't know about branch shortening, so we set the opcode
3301     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3302     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3303 
3304     MacroAssembler _masm(&cbuf);
3305     Label d;   // dummy
3306     __ bind(d);
3307     Label* p = ($lbl$$label);
3308     // `p' is `NULL' when this encoding class is used only to
3309     // determine the size of the encoded instruction.
3310     Label& l = (NULL == p)? d : *(p);
3311     int cc = $cmp$$cmpcode;
3312     int flags_reg = $crx$$reg;
3313     int bhint = Assembler::bhintNoHint;
3314 
3315     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3316       if (_prob <= PROB_NEVER) {
3317         bhint = Assembler::bhintIsNotTaken;
3318       } else if (_prob >= PROB_ALWAYS) {
3319         bhint = Assembler::bhintIsTaken;
3320       }
3321     }
3322 
3323 #if 0 // TODO: PPC port
3324     if (_size == 8) {
3325       // Tell the conditional far branch to optimize itself when being relocated.
3326       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3327                     cc_to_biint(cc, flags_reg),
3328                     l,
3329                     MacroAssembler::bc_far_optimize_on_relocate);
3330     } else {
3331       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3332                     cc_to_biint(cc, flags_reg),
3333                     l);
3334     }
3335 #endif
3336     Unimplemented();
3337   %}
3338 
3339   // Postalloc expand emitter for loading a replicatef float constant from
3340   // the method's TOC.
3341   // Enc_class needed as consttanttablebase is not supported by postalloc
3342   // expand.
3343   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
3344     // Create new nodes.
3345 
3346     // Make an operand with the bit pattern to load as float.
3347     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
3348 
3349     loadConLNodesTuple loadConLNodes =
3350       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
3351                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
3352 
3353     // Push new nodes.
3354     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
3355     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
3356 
3357     assert(nodes->length() >= 1, "must have created at least 1 node");
3358     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
3359   %}
3360 
3361   // This enc_class is needed so that scheduler gets proper
3362   // input mapping for latency computation.
3363   enc_class enc_poll(immI dst, iRegLdst poll) %{
3364     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
3365     // Fake operand dst needed for PPC scheduler.
3366     assert($dst$$constant == 0x0, "dst must be 0x0");
3367 
3368     MacroAssembler _masm(&cbuf);
3369     // Mark the code position where the load from the safepoint
3370     // polling page was emitted as relocInfo::poll_type.
3371     __ relocate(relocInfo::poll_type);
3372     __ load_from_polling_page($poll$$Register);
3373   %}
3374 
3375   // A Java static call or a runtime call.
3376   //
3377   // Branch-and-link relative to a trampoline.
3378   // The trampoline loads the target address and does a long branch to there.
3379   // In case we call java, the trampoline branches to a interpreter_stub
3380   // which loads the inline cache and the real call target from the constant pool.
3381   //
3382   // This basically looks like this:
3383   //
3384   // >>>> consts      -+  -+
3385   //                   |   |- offset1
3386   // [call target1]    | <-+
3387   // [IC cache]        |- offset2
3388   // [call target2] <--+
3389   //
3390   // <<<< consts
3391   // >>>> insts
3392   //
3393   // bl offset16               -+  -+             ??? // How many bits available?
3394   //                            |   |
3395   // <<<< insts                 |   |
3396   // >>>> stubs                 |   |
3397   //                            |   |- trampoline_stub_Reloc
3398   // trampoline stub:           | <-+
3399   //   r2 = toc                 |
3400   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
3401   //   mtctr r2                 |
3402   //   bctr                     |- static_stub_Reloc
3403   // comp_to_interp_stub:   <---+
3404   //   r1 = toc
3405   //   ICreg = [r1 + IC_offset]         // Load IC from const section
3406   //   r1    = [r1 + offset2]           // Load call target2 from const section
3407   //   mtctr r1
3408   //   bctr
3409   //
3410   // <<<< stubs
3411   //
3412   // The call instruction in the code either
3413   // - Branches directly to a compiled method if the offset is encodable in instruction.
3414   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
3415   // - Branches to the compiled_to_interp stub if the target is interpreted.
3416   //
3417   // Further there are three relocations from the loads to the constants in
3418   // the constant section.
3419   //
3420   // Usage of r1 and r2 in the stubs allows to distinguish them.
3421   enc_class enc_java_static_call(method meth) %{
3422     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3423 
3424     MacroAssembler _masm(&cbuf);
3425     address entry_point = (address)$meth$$method;
3426 
3427     if (!_method) {
3428       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
3429       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
3430     } else {
3431       // Remember the offset not the address.
3432       const int start_offset = __ offset();
3433       // The trampoline stub.
3434       if (!Compile::current()->in_scratch_emit_size()) {
3435         // No entry point given, use the current pc.
3436         // Make sure branch fits into
3437         if (entry_point == 0) entry_point = __ pc();
3438 
3439         // Put the entry point as a constant into the constant pool.
3440         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3441         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3442 
3443         // Emit the trampoline stub which will be related to the branch-and-link below.
3444         emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3445         __ relocate(_optimized_virtual ?
3446                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
3447       }
3448 
3449       // The real call.
3450       // Note: At this point we do not have the address of the trampoline
3451       // stub, and the entry point might be too far away for bl, so __ pc()
3452       // serves as dummy and the bl will be patched later.
3453       cbuf.set_insts_mark();
3454       __ bl(__ pc());  // Emits a relocation.
3455 
3456       // The stub for call to interpreter.
3457       CompiledStaticCall::emit_to_interp_stub(cbuf);
3458     }
3459   %}
3460 
3461   // Emit a method handle call.
3462   //
3463   // Method handle calls from compiled to compiled are going thru a
3464   // c2i -> i2c adapter, extending the frame for their arguments. The
3465   // caller however, returns directly to the compiled callee, that has
3466   // to cope with the extended frame. We restore the original frame by
3467   // loading the callers sp and adding the calculated framesize.
3468   enc_class enc_java_handle_call(method meth) %{
3469     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3470 
3471     MacroAssembler _masm(&cbuf);
3472     address entry_point = (address)$meth$$method;
3473 
3474     // Remember the offset not the address.
3475     const int start_offset = __ offset();
3476     // The trampoline stub.
3477     if (!ra_->C->in_scratch_emit_size()) {
3478       // No entry point given, use the current pc.
3479       // Make sure branch fits into
3480       if (entry_point == 0) entry_point = __ pc();
3481 
3482       // Put the entry point as a constant into the constant pool.
3483       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3484       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3485 
3486       // Emit the trampoline stub which will be related to the branch-and-link below.
3487       emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3488       assert(_optimized_virtual, "methodHandle call should be a virtual call");
3489       __ relocate(relocInfo::opt_virtual_call_type);
3490     }
3491 
3492     // The real call.
3493     // Note: At this point we do not have the address of the trampoline
3494     // stub, and the entry point might be too far away for bl, so __ pc()
3495     // serves as dummy and the bl will be patched later.
3496     cbuf.set_insts_mark();
3497     __ bl(__ pc());  // Emits a relocation.
3498 
3499     assert(_method, "execute next statement conditionally");
3500     // The stub for call to interpreter.
3501     CompiledStaticCall::emit_to_interp_stub(cbuf);
3502 
3503     // Restore original sp.
3504     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
3505     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
3506     unsigned int bytes = (unsigned int)framesize;
3507     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
3508     if (Assembler::is_simm(-offset, 16)) {
3509       __ addi(R1_SP, R11_scratch1, -offset);
3510     } else {
3511       __ load_const_optimized(R12_scratch2, -offset);
3512       __ add(R1_SP, R11_scratch1, R12_scratch2);
3513     }
3514 #ifdef ASSERT
3515   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
3516   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
3517   __ asm_assert_eq("backlink changed", 0x8000);
3518 #endif
3519     // If fails should store backlink before unextending.
3520 
3521     if (ra_->C->env()->failing()) {
3522       return;
3523     }
3524   %}
3525 
3526   // Second node of expanded dynamic call - the call.
3527   enc_class enc_java_dynamic_call_sched(method meth) %{
3528     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3529 
3530     MacroAssembler _masm(&cbuf);
3531 
3532     if (!ra_->C->in_scratch_emit_size()) {
3533       // Create a call trampoline stub for the given method.
3534       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
3535       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
3536       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
3537       emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
3538 
3539       if (ra_->C->env()->failing())
3540         return;
3541 
3542       // Build relocation at call site with ic position as data.
3543       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
3544              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
3545              "must have one, but can't have both");
3546       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
3547              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
3548              "must contain instruction offset");
3549       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
3550         ? _load_ic_hi_node->_cbuf_insts_offset
3551         : _load_ic_node->_cbuf_insts_offset;
3552       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
3553       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
3554              "should be load from TOC");
3555 
3556       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
3557     }
3558 
3559     // At this point I do not have the address of the trampoline stub,
3560     // and the entry point might be too far away for bl. Pc() serves
3561     // as dummy and bl will be patched later.
3562     __ bl((address) __ pc());
3563   %}
3564 
3565   // postalloc expand emitter for virtual calls.
3566   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
3567 
3568     // Create the nodes for loading the IC from the TOC.
3569     loadConLNodesTuple loadConLNodes_IC =
3570       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
3571                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
3572 
3573     // Create the call node.
3574     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
3575     call->_method_handle_invoke = _method_handle_invoke;
3576     call->_vtable_index      = _vtable_index;
3577     call->_method            = _method;
3578     call->_bci               = _bci;
3579     call->_optimized_virtual = _optimized_virtual;
3580     call->_tf                = _tf;
3581     call->_entry_point       = _entry_point;
3582     call->_cnt               = _cnt;
3583     call->_argsize           = _argsize;
3584     call->_oop_map           = _oop_map;
3585     call->_jvms              = _jvms;
3586     call->_jvmadj            = _jvmadj;
3587     call->_in_rms            = _in_rms;
3588     call->_nesting           = _nesting;
3589 
3590     // New call needs all inputs of old call.
3591     // Req...
3592     for (uint i = 0; i < req(); ++i) {
3593       // The expanded node does not need toc any more.
3594       // Add the inline cache constant here instead.  This expresses the 
3595       // register of the inline cache must be live at the call.
3596       // Else we would have to adapt JVMState by -1.
3597       if (i == mach_constant_base_node_input()) {
3598         call->add_req(loadConLNodes_IC._last);        
3599       } else {
3600         call->add_req(in(i));
3601       }
3602     }
3603     // ...as well as prec
3604     for (uint i = req(); i < len(); ++i) {
3605       call->add_prec(in(i));
3606     }
3607 
3608     // Remember nodes loading the inline cache into r19.
3609     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
3610     call->_load_ic_node    = loadConLNodes_IC._small;
3611 
3612     // Operands for new nodes.
3613     call->_opnds[0] = _opnds[0];
3614     call->_opnds[1] = _opnds[1];
3615 
3616     // Only the inline cache is associated with a register.
3617     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
3618 
3619     // Push new nodes.
3620     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
3621     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
3622     nodes->push(call);
3623   %}
3624 
3625   // Compound version of call dynamic
3626   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
3627     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3628     MacroAssembler _masm(&cbuf);
3629     int start_offset = __ offset();
3630 
3631     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
3632 #if 0
3633     if (_vtable_index < 0) {
3634       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
3635       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
3636       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
3637       AddressLiteral meta = __ allocate_metadata_address((Metadata *)Universe::non_oop_word());
3638 
3639       address virtual_call_meta_addr = __ pc();
3640       __ load_const_from_method_toc(ic_reg, meta, Rtoc);
3641       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
3642       // to determine who we intended to call.
3643       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
3644       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
3645       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3646              "Fix constant in ret_addr_offset()");
3647     } else {
3648       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
3649       // Go thru the vtable. Get receiver klass. Receiver already
3650       // checked for non-null. If we'll go thru a C2I adapter, the
3651       // interpreter expects method in R19_method.
3652 
3653       __ load_klass(R11_scratch1, R3);
3654 
3655       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
3656       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3657       __ li(R19_method, v_off);
3658       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
3659       // NOTE: for vtable dispatches, the vtable entry will never be
3660       // null. However it may very well end up in handle_wrong_method
3661       // if the method is abstract for the particular class.
3662       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
3663       // Call target. Either compiled code or C2I adapter.
3664       __ mtctr(R11_scratch1);
3665       __ bctrl();
3666       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
3667         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
3668       }
3669       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3670              "Fix constant in ret_addr_offset()");
3671     }
3672 #endif
3673     guarantee(0, "Fix handling of toc edge: messes up derived/base pairs.");
3674     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
3675   %}
3676 
3677   // a runtime call
3678   enc_class enc_java_to_runtime_call (method meth) %{
3679     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3680 
3681     MacroAssembler _masm(&cbuf);
3682     const address start_pc = __ pc();
3683 
3684 #if defined(ABI_ELFv2)
3685     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
3686     __ call_c(entry, relocInfo::runtime_call_type);
3687 #else
3688     // The function we're going to call.
3689     FunctionDescriptor fdtemp;
3690     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
3691 
3692     Register Rtoc = R12_scratch2;
3693     // Calculate the method's TOC.
3694     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
3695     // Put entry, env, toc into the constant pool, this needs up to 3 constant
3696     // pool entries; call_c_using_toc will optimize the call.
3697     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
3698 #endif
3699 
3700     // Check the ret_addr_offset.
3701     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
3702            "Fix constant in ret_addr_offset()");
3703   %}
3704 
3705   // Move to ctr for leaf call.
3706   // This enc_class is needed so that scheduler gets proper
3707   // input mapping for latency computation.
3708   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
3709     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
3710     MacroAssembler _masm(&cbuf);
3711     __ mtctr($src$$Register);
3712   %}
3713 
3714   // Postalloc expand emitter for runtime leaf calls.
3715   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
3716     loadConLNodesTuple loadConLNodes_Entry;
3717 #if defined(ABI_ELFv2)
3718     jlong entry_address = (jlong) this->entry_point();
3719     assert(entry_address, "need address here");
3720     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
3721                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3722 #else
3723     // Get the struct that describes the function we are about to call.
3724     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
3725     assert(fd, "need fd here");
3726     jlong entry_address = (jlong) fd->entry();
3727     // new nodes
3728     loadConLNodesTuple loadConLNodes_Env;
3729     loadConLNodesTuple loadConLNodes_Toc;
3730 
3731     // Create nodes and operands for loading the entry point.
3732     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
3733                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3734 
3735 
3736     // Create nodes and operands for loading the env pointer.
3737     if (fd->env() != NULL) {
3738       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
3739                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3740     } else {
3741       loadConLNodes_Env._large_hi = NULL;
3742       loadConLNodes_Env._large_lo = NULL;
3743       loadConLNodes_Env._small    = NULL;
3744       loadConLNodes_Env._last = new (C) loadConL16Node();
3745       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
3746       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
3747       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3748     }
3749 
3750     // Create nodes and operands for loading the Toc point.
3751     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
3752                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
3753 #endif // ABI_ELFv2
3754     // mtctr node
3755     MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
3756 
3757     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
3758     mtctr->add_req(0, loadConLNodes_Entry._last);
3759 
3760     mtctr->_opnds[0] = new (C) iRegLdstOper();
3761     mtctr->_opnds[1] = new (C) iRegLdstOper();
3762 
3763     // call node
3764     MachCallLeafNode *call = new (C) CallLeafDirectNode();
3765 
3766     call->_opnds[0] = _opnds[0];
3767     call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
3768 
3769     // Make the new call node look like the old one.
3770     call->_name        = _name;
3771     call->_tf          = _tf;
3772     call->_entry_point = _entry_point;
3773     call->_cnt         = _cnt;
3774     call->_argsize     = _argsize;
3775     call->_oop_map     = _oop_map;
3776     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
3777     call->_jvms        = NULL;
3778     call->_jvmadj      = _jvmadj;
3779     call->_in_rms      = _in_rms;
3780     call->_nesting     = _nesting;
3781 
3782 
3783     // New call needs all inputs of old call.
3784     // Req...
3785     for (uint i = 0; i < req(); ++i) {
3786       if (i != mach_constant_base_node_input()) {
3787         call->add_req(in(i));
3788       }
3789     }
3790 
3791     // These must be reqired edges, as the registers are live up to
3792     // the call. Else the constants are handled as kills.
3793     call->add_req(mtctr);
3794 #if !defined(ABI_ELFv2)
3795     call->add_req(loadConLNodes_Env._last);
3796     call->add_req(loadConLNodes_Toc._last);
3797 #endif
3798 
3799     // ...as well as prec
3800     for (uint i = req(); i < len(); ++i) {
3801       call->add_prec(in(i));
3802     }
3803 
3804     // registers
3805     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
3806 
3807     // Insert the new nodes.
3808     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
3809     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
3810 #if !defined(ABI_ELFv2)
3811     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
3812     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
3813     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
3814     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
3815 #endif
3816     nodes->push(mtctr);
3817     nodes->push(call);
3818   %}
3819 %}
3820 
3821 //----------FRAME--------------------------------------------------------------
3822 // Definition of frame structure and management information.
3823 
3824 frame %{
3825   // What direction does stack grow in (assumed to be same for native & Java).
3826   stack_direction(TOWARDS_LOW);
3827 
3828   // These two registers define part of the calling convention between
3829   // compiled code and the interpreter.
3830 
3831   // Inline Cache Register or method for I2C.
3832   inline_cache_reg(R19); // R19_method
3833 
3834   // Method Oop Register when calling interpreter.
3835   interpreter_method_oop_reg(R19); // R19_method
3836 
3837   // Optional: name the operand used by cisc-spilling to access
3838   // [stack_pointer + offset].
3839   cisc_spilling_operand_name(indOffset);
3840 
3841   // Number of stack slots consumed by a Monitor enter.
3842   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
3843 
3844   // Compiled code's Frame Pointer.
3845   frame_pointer(R1); // R1_SP
3846 
3847   // Interpreter stores its frame pointer in a register which is
3848   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
3849   // interpreted java to compiled java.
3850   //
3851   // R14_state holds pointer to caller's cInterpreter.
3852   interpreter_frame_pointer(R14); // R14_state
3853 
3854   stack_alignment(frame::alignment_in_bytes);
3855 
3856   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
3857 
3858   // Number of outgoing stack slots killed above the
3859   // out_preserve_stack_slots for calls to C. Supports the var-args
3860   // backing area for register parms.
3861   //
3862   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
3863 
3864   // The after-PROLOG location of the return address. Location of
3865   // return address specifies a type (REG or STACK) and a number
3866   // representing the register number (i.e. - use a register name) or
3867   // stack slot.
3868   //
3869   // A: Link register is stored in stack slot ...
3870   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
3871   // J: Therefore, we make sure that the link register is also in R11_scratch1
3872   //    at the end of the prolog.
3873   // B: We use R20, now.
3874   //return_addr(REG R20);
3875 
3876   // G: After reading the comments made by all the luminaries on their
3877   //    failure to tell the compiler where the return address really is,
3878   //    I hardly dare to try myself.  However, I'm convinced it's in slot
3879   //    4 what apparently works and saves us some spills.
3880   return_addr(STACK 4);
3881 
3882   // This is the body of the function
3883   //
3884   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
3885   //                                  uint length,      // length of array
3886   //                                  bool is_outgoing)
3887   //
3888   // The `sig' array is to be updated. sig[j] represents the location
3889   // of the j-th argument, either a register or a stack slot.
3890 
3891   // Comment taken from i486.ad:
3892   // Body of function which returns an integer array locating
3893   // arguments either in registers or in stack slots. Passed an array
3894   // of ideal registers called "sig" and a "length" count. Stack-slot
3895   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3896   // arguments for a CALLEE. Incoming stack arguments are
3897   // automatically biased by the preserve_stack_slots field above.
3898   calling_convention %{
3899     // No difference between ingoing/outgoing. Just pass false.
3900     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3901   %}
3902 
3903   // Comment taken from i486.ad:
3904   // Body of function which returns an integer array locating
3905   // arguments either in registers or in stack slots. Passed an array
3906   // of ideal registers called "sig" and a "length" count. Stack-slot
3907   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3908   // arguments for a CALLEE. Incoming stack arguments are
3909   // automatically biased by the preserve_stack_slots field above.
3910   c_calling_convention %{
3911     // This is obviously always outgoing.
3912     // C argument in register AND stack slot.
3913     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3914   %}
3915 
3916   // Location of native (C/C++) and interpreter return values. This
3917   // is specified to be the same as Java. In the 32-bit VM, long
3918   // values are actually returned from native calls in O0:O1 and
3919   // returned to the interpreter in I0:I1. The copying to and from
3920   // the register pairs is done by the appropriate call and epilog
3921   // opcodes. This simplifies the register allocator.
3922   c_return_value %{
3923     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3924             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3925             "only return normal values");
3926     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3927     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3928     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3929     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3930   %}
3931 
3932   // Location of compiled Java return values.  Same as C
3933   return_value %{
3934     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3935             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3936             "only return normal values");
3937     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3938     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3939     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3940     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3941   %}
3942 %}
3943 
3944 
3945 //----------ATTRIBUTES---------------------------------------------------------
3946 
3947 //----------Operand Attributes-------------------------------------------------
3948 op_attrib op_cost(1);          // Required cost attribute.
3949 
3950 //----------Instruction Attributes---------------------------------------------
3951 
3952 // Cost attribute. required.
3953 ins_attrib ins_cost(DEFAULT_COST);
3954 
3955 // Is this instruction a non-matching short branch variant of some
3956 // long branch? Not required.
3957 ins_attrib ins_short_branch(0);
3958 
3959 ins_attrib ins_is_TrapBasedCheckNode(true);
3960 
3961 // Number of constants.
3962 // This instruction uses the given number of constants
3963 // (optional attribute).
3964 // This is needed to determine in time whether the constant pool will
3965 // exceed 4000 entries. Before postalloc_expand the overall number of constants
3966 // is determined. It's also used to compute the constant pool size
3967 // in Output().
3968 ins_attrib ins_num_consts(0);
3969 
3970 // Required alignment attribute (must be a power of 2) specifies the
3971 // alignment that some part of the instruction (not necessarily the
3972 // start) requires. If > 1, a compute_padding() function must be
3973 // provided for the instruction.
3974 ins_attrib ins_alignment(1);
3975 
3976 // Enforce/prohibit rematerializations.
3977 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
3978 //   then rematerialization of that instruction is prohibited and the
3979 //   instruction's value will be spilled if necessary.
3980 //   Causes that MachNode::rematerialize() returns false.
3981 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
3982 //   then rematerialization should be enforced and a copy of the instruction
3983 //   should be inserted if possible; rematerialization is not guaranteed.
3984 //   Note: this may result in rematerializations in front of every use.
3985 //   Causes that MachNode::rematerialize() can return true.
3986 // (optional attribute)
3987 ins_attrib ins_cannot_rematerialize(false);
3988 ins_attrib ins_should_rematerialize(false);
3989 
3990 // Instruction has variable size depending on alignment.
3991 ins_attrib ins_variable_size_depending_on_alignment(false);
3992 
3993 // Instruction is a nop.
3994 ins_attrib ins_is_nop(false);
3995 
3996 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
3997 ins_attrib ins_use_mach_if_fast_lock_node(false);
3998 
3999 // Field for the toc offset of a constant.
4000 //
4001 // This is needed if the toc offset is not encodable as an immediate in
4002 // the PPC load instruction. If so, the upper (hi) bits of the offset are
4003 // added to the toc, and from this a load with immediate is performed.
4004 // With postalloc expand, we get two nodes that require the same offset
4005 // but which don't know about each other. The offset is only known
4006 // when the constant is added to the constant pool during emitting.
4007 // It is generated in the 'hi'-node adding the upper bits, and saved
4008 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
4009 // the offset from there when it gets encoded.
4010 ins_attrib ins_field_const_toc_offset(0);
4011 ins_attrib ins_field_const_toc_offset_hi_node(0);
4012 
4013 // A field that can hold the instructions offset in the code buffer.
4014 // Set in the nodes emitter.
4015 ins_attrib ins_field_cbuf_insts_offset(-1);
4016 
4017 // Fields for referencing a call's load-IC-node.
4018 // If the toc offset can not be encoded as an immediate in a load, we
4019 // use two nodes.
4020 ins_attrib ins_field_load_ic_hi_node(0);
4021 ins_attrib ins_field_load_ic_node(0);
4022 
4023 //----------OPERANDS-----------------------------------------------------------
4024 // Operand definitions must precede instruction definitions for correct
4025 // parsing in the ADLC because operands constitute user defined types
4026 // which are used in instruction definitions.
4027 //
4028 // Formats are generated automatically for constants and base registers.
4029 
4030 //----------Simple Operands----------------------------------------------------
4031 // Immediate Operands
4032 
4033 // Integer Immediate: 32-bit
4034 operand immI() %{
4035   match(ConI);
4036   op_cost(40);
4037   format %{ %}
4038   interface(CONST_INTER);
4039 %}
4040 
4041 operand immI8() %{
4042   predicate(Assembler::is_simm(n->get_int(), 8));
4043   op_cost(0);
4044   match(ConI);
4045   format %{ %}
4046   interface(CONST_INTER);
4047 %}
4048 
4049 // Integer Immediate: 16-bit
4050 operand immI16() %{
4051   predicate(Assembler::is_simm(n->get_int(), 16));
4052   op_cost(0);
4053   match(ConI);
4054   format %{ %}
4055   interface(CONST_INTER);
4056 %}
4057 
4058 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
4059 operand immIhi16() %{
4060   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
4061   match(ConI);
4062   op_cost(0);
4063   format %{ %}
4064   interface(CONST_INTER);
4065 %}
4066 
4067 operand immInegpow2() %{
4068   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
4069   match(ConI);
4070   op_cost(0);
4071   format %{ %}
4072   interface(CONST_INTER);
4073 %}
4074 
4075 operand immIpow2minus1() %{
4076   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
4077   match(ConI);
4078   op_cost(0);
4079   format %{ %}
4080   interface(CONST_INTER);
4081 %}
4082 
4083 operand immIpowerOf2() %{
4084   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
4085   match(ConI);
4086   op_cost(0);
4087   format %{ %}
4088   interface(CONST_INTER);
4089 %}
4090 
4091 // Unsigned Integer Immediate: the values 0-31
4092 operand uimmI5() %{
4093   predicate(Assembler::is_uimm(n->get_int(), 5));
4094   match(ConI);
4095   op_cost(0);
4096   format %{ %}
4097   interface(CONST_INTER);
4098 %}
4099 
4100 // Unsigned Integer Immediate: 6-bit
4101 operand uimmI6() %{
4102   predicate(Assembler::is_uimm(n->get_int(), 6));
4103   match(ConI);
4104   op_cost(0);
4105   format %{ %}
4106   interface(CONST_INTER);
4107 %}
4108 
4109 // Unsigned Integer Immediate:  6-bit int, greater than 32
4110 operand uimmI6_ge32() %{
4111   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
4112   match(ConI);
4113   op_cost(0);
4114   format %{ %}
4115   interface(CONST_INTER);
4116 %}
4117 
4118 // Unsigned Integer Immediate: 15-bit
4119 operand uimmI15() %{
4120   predicate(Assembler::is_uimm(n->get_int(), 15));
4121   match(ConI);
4122   op_cost(0);
4123   format %{ %}
4124   interface(CONST_INTER);
4125 %}
4126 
4127 // Unsigned Integer Immediate: 16-bit
4128 operand uimmI16() %{
4129   predicate(Assembler::is_uimm(n->get_int(), 16));
4130   match(ConI);
4131   op_cost(0);
4132   format %{ %}
4133   interface(CONST_INTER);
4134 %}
4135 
4136 // constant 'int 0'.
4137 operand immI_0() %{
4138   predicate(n->get_int() == 0);
4139   match(ConI);
4140   op_cost(0);
4141   format %{ %}
4142   interface(CONST_INTER);
4143 %}
4144 
4145 // constant 'int 1'.
4146 operand immI_1() %{
4147   predicate(n->get_int() == 1);
4148   match(ConI);
4149   op_cost(0);
4150   format %{ %}
4151   interface(CONST_INTER);
4152 %}
4153 
4154 // constant 'int -1'.
4155 operand immI_minus1() %{
4156   predicate(n->get_int() == -1);
4157   match(ConI);
4158   op_cost(0);
4159   format %{ %}
4160   interface(CONST_INTER);
4161 %}
4162 
4163 // int value 16.
4164 operand immI_16() %{
4165   predicate(n->get_int() == 16);
4166   match(ConI);
4167   op_cost(0);
4168   format %{ %}
4169   interface(CONST_INTER);
4170 %}
4171 
4172 // int value 24.
4173 operand immI_24() %{
4174   predicate(n->get_int() == 24);
4175   match(ConI);
4176   op_cost(0);
4177   format %{ %}
4178   interface(CONST_INTER);
4179 %}
4180 
4181 // Compressed oops constants
4182 // Pointer Immediate
4183 operand immN() %{
4184   match(ConN);
4185 
4186   op_cost(10);
4187   format %{ %}
4188   interface(CONST_INTER);
4189 %}
4190 
4191 // NULL Pointer Immediate
4192 operand immN_0() %{
4193   predicate(n->get_narrowcon() == 0);
4194   match(ConN);
4195 
4196   op_cost(0);
4197   format %{ %}
4198   interface(CONST_INTER);
4199 %}
4200 
4201 // Compressed klass constants
4202 operand immNKlass() %{
4203   match(ConNKlass);
4204 
4205   op_cost(0);
4206   format %{ %}
4207   interface(CONST_INTER);
4208 %}
4209 
4210 // This operand can be used to avoid matching of an instruct
4211 // with chain rule.
4212 operand immNKlass_NM() %{
4213   match(ConNKlass);
4214   predicate(false);
4215   op_cost(0);
4216   format %{ %}
4217   interface(CONST_INTER);
4218 %}
4219 
4220 // Pointer Immediate: 64-bit
4221 operand immP() %{
4222   match(ConP);
4223   op_cost(0);
4224   format %{ %}
4225   interface(CONST_INTER);
4226 %}
4227 
4228 // Operand to avoid match of loadConP.
4229 // This operand can be used to avoid matching of an instruct
4230 // with chain rule.
4231 operand immP_NM() %{
4232   match(ConP);
4233   predicate(false);
4234   op_cost(0);
4235   format %{ %}
4236   interface(CONST_INTER);
4237 %}
4238 
4239 // costant 'pointer 0'.
4240 operand immP_0() %{
4241   predicate(n->get_ptr() == 0);
4242   match(ConP);
4243   op_cost(0);
4244   format %{ %}
4245   interface(CONST_INTER);
4246 %}
4247 
4248 // pointer 0x0 or 0x1
4249 operand immP_0or1() %{
4250   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
4251   match(ConP);
4252   op_cost(0);
4253   format %{ %}
4254   interface(CONST_INTER);
4255 %}
4256 
4257 operand immL() %{
4258   match(ConL);
4259   op_cost(40);
4260   format %{ %}
4261   interface(CONST_INTER);
4262 %}
4263 
4264 // Long Immediate: 16-bit
4265 operand immL16() %{
4266   predicate(Assembler::is_simm(n->get_long(), 16));
4267   match(ConL);
4268   op_cost(0);
4269   format %{ %}
4270   interface(CONST_INTER);
4271 %}
4272 
4273 // Long Immediate: 16-bit, 4-aligned
4274 operand immL16Alg4() %{
4275   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
4276   match(ConL);
4277   op_cost(0);
4278   format %{ %}
4279   interface(CONST_INTER);
4280 %}
4281 
4282 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
4283 operand immL32hi16() %{
4284   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
4285   match(ConL);
4286   op_cost(0);
4287   format %{ %}
4288   interface(CONST_INTER);
4289 %}
4290 
4291 // Long Immediate: 32-bit
4292 operand immL32() %{
4293   predicate(Assembler::is_simm(n->get_long(), 32));
4294   match(ConL);
4295   op_cost(0);
4296   format %{ %}
4297   interface(CONST_INTER);
4298 %}
4299 
4300 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
4301 operand immLhighest16() %{
4302   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
4303   match(ConL);
4304   op_cost(0);
4305   format %{ %}
4306   interface(CONST_INTER);
4307 %}
4308 
4309 operand immLnegpow2() %{
4310   predicate(is_power_of_2_long((jlong)-(n->get_long())));
4311   match(ConL);
4312   op_cost(0);
4313   format %{ %}
4314   interface(CONST_INTER);
4315 %}
4316 
4317 operand immLpow2minus1() %{
4318   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
4319             (n->get_long() != (jlong)0xffffffffffffffffL));
4320   match(ConL);
4321   op_cost(0);
4322   format %{ %}
4323   interface(CONST_INTER);
4324 %}
4325 
4326 // constant 'long 0'.
4327 operand immL_0() %{
4328   predicate(n->get_long() == 0L);
4329   match(ConL);
4330   op_cost(0);
4331   format %{ %}
4332   interface(CONST_INTER);
4333 %}
4334 
4335 // constat ' long -1'.
4336 operand immL_minus1() %{
4337   predicate(n->get_long() == -1L);
4338   match(ConL);
4339   op_cost(0);
4340   format %{ %}
4341   interface(CONST_INTER);
4342 %}
4343 
4344 // Long Immediate: low 32-bit mask
4345 operand immL_32bits() %{
4346   predicate(n->get_long() == 0xFFFFFFFFL);
4347   match(ConL);
4348   op_cost(0);
4349   format %{ %}
4350   interface(CONST_INTER);
4351 %}
4352 
4353 // Unsigned Long Immediate: 16-bit
4354 operand uimmL16() %{
4355   predicate(Assembler::is_uimm(n->get_long(), 16));
4356   match(ConL);
4357   op_cost(0);
4358   format %{ %}
4359   interface(CONST_INTER);
4360 %}
4361 
4362 // Float Immediate
4363 operand immF() %{
4364   match(ConF);
4365   op_cost(40);
4366   format %{ %}
4367   interface(CONST_INTER);
4368 %}
4369 
4370 // constant 'float +0.0'.
4371 operand immF_0() %{
4372   predicate((n->getf() == 0) &&
4373             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
4374   match(ConF);
4375   op_cost(0);
4376   format %{ %}
4377   interface(CONST_INTER);
4378 %}
4379 
4380 // Double Immediate
4381 operand immD() %{
4382   match(ConD);
4383   op_cost(40);
4384   format %{ %}
4385   interface(CONST_INTER);
4386 %}
4387 
4388 // Integer Register Operands
4389 // Integer Destination Register
4390 // See definition of reg_class bits32_reg_rw.
4391 operand iRegIdst() %{
4392   constraint(ALLOC_IN_RC(bits32_reg_rw));
4393   match(RegI);
4394   match(rscratch1RegI);
4395   match(rscratch2RegI);
4396   match(rarg1RegI);
4397   match(rarg2RegI);
4398   match(rarg3RegI);
4399   match(rarg4RegI);
4400   format %{ %}
4401   interface(REG_INTER);
4402 %}
4403 
4404 // Integer Source Register
4405 // See definition of reg_class bits32_reg_ro.
4406 operand iRegIsrc() %{
4407   constraint(ALLOC_IN_RC(bits32_reg_ro));
4408   match(RegI);
4409   match(rscratch1RegI);
4410   match(rscratch2RegI);
4411   match(rarg1RegI);
4412   match(rarg2RegI);
4413   match(rarg3RegI);
4414   match(rarg4RegI);
4415   format %{ %}
4416   interface(REG_INTER);
4417 %}
4418 
4419 operand rscratch1RegI() %{
4420   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
4421   match(iRegIdst);
4422   format %{ %}
4423   interface(REG_INTER);
4424 %}
4425 
4426 operand rscratch2RegI() %{
4427   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
4428   match(iRegIdst);
4429   format %{ %}
4430   interface(REG_INTER);
4431 %}
4432 
4433 operand rarg1RegI() %{
4434   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
4435   match(iRegIdst);
4436   format %{ %}
4437   interface(REG_INTER);
4438 %}
4439 
4440 operand rarg2RegI() %{
4441   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
4442   match(iRegIdst);
4443   format %{ %}
4444   interface(REG_INTER);
4445 %}
4446 
4447 operand rarg3RegI() %{
4448   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
4449   match(iRegIdst);
4450   format %{ %}
4451   interface(REG_INTER);
4452 %}
4453 
4454 operand rarg4RegI() %{
4455   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
4456   match(iRegIdst);
4457   format %{ %}
4458   interface(REG_INTER);
4459 %}
4460 
4461 operand rarg1RegL() %{
4462   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4463   match(iRegLdst);
4464   format %{ %}
4465   interface(REG_INTER);
4466 %}
4467 
4468 operand rarg2RegL() %{
4469   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4470   match(iRegLdst);
4471   format %{ %}
4472   interface(REG_INTER);
4473 %}
4474 
4475 operand rarg3RegL() %{
4476   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4477   match(iRegLdst);
4478   format %{ %}
4479   interface(REG_INTER);
4480 %}
4481 
4482 operand rarg4RegL() %{
4483   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4484   match(iRegLdst);
4485   format %{ %}
4486   interface(REG_INTER);
4487 %}
4488 
4489 // Pointer Destination Register
4490 // See definition of reg_class bits64_reg_rw.
4491 operand iRegPdst() %{
4492   constraint(ALLOC_IN_RC(bits64_reg_rw));
4493   match(RegP);
4494   match(rscratch1RegP);
4495   match(rscratch2RegP);
4496   match(rarg1RegP);
4497   match(rarg2RegP);
4498   match(rarg3RegP);
4499   match(rarg4RegP);
4500   format %{ %}
4501   interface(REG_INTER);
4502 %}
4503 
4504 // Pointer Destination Register
4505 // Operand not using r11 and r12 (killed in epilog).
4506 operand iRegPdstNoScratch() %{
4507   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
4508   match(RegP);
4509   match(rarg1RegP);
4510   match(rarg2RegP);
4511   match(rarg3RegP);
4512   match(rarg4RegP);
4513   format %{ %}
4514   interface(REG_INTER);
4515 %}
4516 
4517 // Pointer Source Register
4518 // See definition of reg_class bits64_reg_ro.
4519 operand iRegPsrc() %{
4520   constraint(ALLOC_IN_RC(bits64_reg_ro));
4521   match(RegP);
4522   match(iRegPdst);
4523   match(rscratch1RegP);
4524   match(rscratch2RegP);
4525   match(rarg1RegP);
4526   match(rarg2RegP);
4527   match(rarg3RegP);
4528   match(rarg4RegP);
4529   match(threadRegP);
4530   format %{ %}
4531   interface(REG_INTER);
4532 %}
4533 
4534 // Thread operand.
4535 operand threadRegP() %{
4536   constraint(ALLOC_IN_RC(thread_bits64_reg));
4537   match(iRegPdst);
4538   format %{ "R16" %}
4539   interface(REG_INTER);
4540 %}
4541 
4542 operand rscratch1RegP() %{
4543   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4544   match(iRegPdst);
4545   format %{ "R11" %}
4546   interface(REG_INTER);
4547 %}
4548 
4549 operand rscratch2RegP() %{
4550   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4551   match(iRegPdst);
4552   format %{ %}
4553   interface(REG_INTER);
4554 %}
4555 
4556 operand rarg1RegP() %{
4557   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4558   match(iRegPdst);
4559   format %{ %}
4560   interface(REG_INTER);
4561 %}
4562 
4563 operand rarg2RegP() %{
4564   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4565   match(iRegPdst);
4566   format %{ %}
4567   interface(REG_INTER);
4568 %}
4569 
4570 operand rarg3RegP() %{
4571   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4572   match(iRegPdst);
4573   format %{ %}
4574   interface(REG_INTER);
4575 %}
4576 
4577 operand rarg4RegP() %{
4578   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4579   match(iRegPdst);
4580   format %{ %}
4581   interface(REG_INTER);
4582 %}
4583 
4584 operand iRegNsrc() %{
4585   constraint(ALLOC_IN_RC(bits32_reg_ro));
4586   match(RegN);
4587   match(iRegNdst);
4588 
4589   format %{ %}
4590   interface(REG_INTER);
4591 %}
4592 
4593 operand iRegNdst() %{
4594   constraint(ALLOC_IN_RC(bits32_reg_rw));
4595   match(RegN);
4596 
4597   format %{ %}
4598   interface(REG_INTER);
4599 %}
4600 
4601 // Long Destination Register
4602 // See definition of reg_class bits64_reg_rw.
4603 operand iRegLdst() %{
4604   constraint(ALLOC_IN_RC(bits64_reg_rw));
4605   match(RegL);
4606   match(rscratch1RegL);
4607   match(rscratch2RegL);
4608   format %{ %}
4609   interface(REG_INTER);
4610 %}
4611 
4612 // Long Source Register
4613 // See definition of reg_class bits64_reg_ro.
4614 operand iRegLsrc() %{
4615   constraint(ALLOC_IN_RC(bits64_reg_ro));
4616   match(RegL);
4617   match(iRegLdst);
4618   match(rscratch1RegL);
4619   match(rscratch2RegL);
4620   format %{ %}
4621   interface(REG_INTER);
4622 %}
4623 
4624 // Special operand for ConvL2I.
4625 operand iRegL2Isrc(iRegLsrc reg) %{
4626   constraint(ALLOC_IN_RC(bits64_reg_ro));
4627   match(ConvL2I reg);
4628   format %{ "ConvL2I($reg)" %}
4629   interface(REG_INTER)
4630 %}
4631 
4632 operand rscratch1RegL() %{
4633   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4634   match(RegL);
4635   format %{ %}
4636   interface(REG_INTER);
4637 %}
4638 
4639 operand rscratch2RegL() %{
4640   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4641   match(RegL);
4642   format %{ %}
4643   interface(REG_INTER);
4644 %}
4645 
4646 // Condition Code Flag Registers
4647 operand flagsReg() %{
4648   constraint(ALLOC_IN_RC(int_flags));
4649   match(RegFlags);
4650   format %{ %}
4651   interface(REG_INTER);
4652 %}
4653 
4654 // Condition Code Flag Register CR0
4655 operand flagsRegCR0() %{
4656   constraint(ALLOC_IN_RC(int_flags_CR0));
4657   match(RegFlags);
4658   format %{ "CR0" %}
4659   interface(REG_INTER);
4660 %}
4661 
4662 operand flagsRegCR1() %{
4663   constraint(ALLOC_IN_RC(int_flags_CR1));
4664   match(RegFlags);
4665   format %{ "CR1" %}
4666   interface(REG_INTER);
4667 %}
4668 
4669 operand flagsRegCR6() %{
4670   constraint(ALLOC_IN_RC(int_flags_CR6));
4671   match(RegFlags);
4672   format %{ "CR6" %}
4673   interface(REG_INTER);
4674 %}
4675 
4676 operand regCTR() %{
4677   constraint(ALLOC_IN_RC(ctr_reg));
4678   // RegFlags should work. Introducing a RegSpecial type would cause a
4679   // lot of changes.
4680   match(RegFlags);
4681   format %{"SR_CTR" %}
4682   interface(REG_INTER);
4683 %}
4684 
4685 operand regD() %{
4686   constraint(ALLOC_IN_RC(dbl_reg));
4687   match(RegD);
4688   format %{ %}
4689   interface(REG_INTER);
4690 %}
4691 
4692 operand regF() %{
4693   constraint(ALLOC_IN_RC(flt_reg));
4694   match(RegF);
4695   format %{ %}
4696   interface(REG_INTER);
4697 %}
4698 
4699 // Special Registers
4700 
4701 // Method Register
4702 operand inline_cache_regP(iRegPdst reg) %{
4703   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
4704   match(reg);
4705   format %{ %}
4706   interface(REG_INTER);
4707 %}
4708 
4709 operand compiler_method_oop_regP(iRegPdst reg) %{
4710   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
4711   match(reg);
4712   format %{ %}
4713   interface(REG_INTER);
4714 %}
4715 
4716 operand interpreter_method_oop_regP(iRegPdst reg) %{
4717   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
4718   match(reg);
4719   format %{ %}
4720   interface(REG_INTER);
4721 %}
4722 
4723 // Operands to remove register moves in unscaled mode.
4724 // Match read/write registers with an EncodeP node if neither shift nor add are required.
4725 operand iRegP2N(iRegPsrc reg) %{
4726   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
4727   constraint(ALLOC_IN_RC(bits64_reg_ro));
4728   match(EncodeP reg);
4729   format %{ "$reg" %}
4730   interface(REG_INTER)
4731 %}
4732 
4733 operand iRegN2P(iRegNsrc reg) %{
4734   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4735   constraint(ALLOC_IN_RC(bits32_reg_ro));
4736   match(DecodeN reg);
4737   match(DecodeNKlass reg);
4738   format %{ "$reg" %}
4739   interface(REG_INTER)
4740 %}
4741 
4742 //----------Complex Operands---------------------------------------------------
4743 // Indirect Memory Reference
4744 operand indirect(iRegPsrc reg) %{
4745   constraint(ALLOC_IN_RC(bits64_reg_ro));
4746   match(reg);
4747   op_cost(100);
4748   format %{ "[$reg]" %}
4749   interface(MEMORY_INTER) %{
4750     base($reg);
4751     index(0x0);
4752     scale(0x0);
4753     disp(0x0);
4754   %}
4755 %}
4756 
4757 // Indirect with Offset
4758 operand indOffset16(iRegPsrc reg, immL16 offset) %{
4759   constraint(ALLOC_IN_RC(bits64_reg_ro));
4760   match(AddP reg offset);
4761   op_cost(100);
4762   format %{ "[$reg + $offset]" %}
4763   interface(MEMORY_INTER) %{
4764     base($reg);
4765     index(0x0);
4766     scale(0x0);
4767     disp($offset);
4768   %}
4769 %}
4770 
4771 // Indirect with 4-aligned Offset
4772 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
4773   constraint(ALLOC_IN_RC(bits64_reg_ro));
4774   match(AddP reg offset);
4775   op_cost(100);
4776   format %{ "[$reg + $offset]" %}
4777   interface(MEMORY_INTER) %{
4778     base($reg);
4779     index(0x0);
4780     scale(0x0);
4781     disp($offset);
4782   %}
4783 %}
4784 
4785 //----------Complex Operands for Compressed OOPs-------------------------------
4786 // Compressed OOPs with narrow_oop_shift == 0.
4787 
4788 // Indirect Memory Reference, compressed OOP
4789 operand indirectNarrow(iRegNsrc reg) %{
4790   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4791   constraint(ALLOC_IN_RC(bits64_reg_ro));
4792   match(DecodeN reg);
4793   match(DecodeNKlass reg);
4794   op_cost(100);
4795   format %{ "[$reg]" %}
4796   interface(MEMORY_INTER) %{
4797     base($reg);
4798     index(0x0);
4799     scale(0x0);
4800     disp(0x0);
4801   %}
4802 %}
4803 
4804 // Indirect with Offset, compressed OOP
4805 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
4806   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4807   constraint(ALLOC_IN_RC(bits64_reg_ro));
4808   match(AddP (DecodeN reg) offset);
4809   match(AddP (DecodeNKlass reg) offset);
4810   op_cost(100);
4811   format %{ "[$reg + $offset]" %}
4812   interface(MEMORY_INTER) %{
4813     base($reg);
4814     index(0x0);
4815     scale(0x0);
4816     disp($offset);
4817   %}
4818 %}
4819 
4820 // Indirect with 4-aligned Offset, compressed OOP
4821 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
4822   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4823   constraint(ALLOC_IN_RC(bits64_reg_ro));
4824   match(AddP (DecodeN reg) offset);
4825   match(AddP (DecodeNKlass reg) offset);
4826   op_cost(100);
4827   format %{ "[$reg + $offset]" %}
4828   interface(MEMORY_INTER) %{
4829     base($reg);
4830     index(0x0);
4831     scale(0x0);
4832     disp($offset);
4833   %}
4834 %}
4835 
4836 //----------Special Memory Operands--------------------------------------------
4837 // Stack Slot Operand
4838 //
4839 // This operand is used for loading and storing temporary values on
4840 // the stack where a match requires a value to flow through memory.
4841 operand stackSlotI(sRegI reg) %{
4842   constraint(ALLOC_IN_RC(stack_slots));
4843   op_cost(100);
4844   //match(RegI);
4845   format %{ "[sp+$reg]" %}
4846   interface(MEMORY_INTER) %{
4847     base(0x1);   // R1_SP
4848     index(0x0);
4849     scale(0x0);
4850     disp($reg);  // Stack Offset
4851   %}
4852 %}
4853 
4854 operand stackSlotL(sRegL reg) %{
4855   constraint(ALLOC_IN_RC(stack_slots));
4856   op_cost(100);
4857   //match(RegL);
4858   format %{ "[sp+$reg]" %}
4859   interface(MEMORY_INTER) %{
4860     base(0x1);   // R1_SP
4861     index(0x0);
4862     scale(0x0);
4863     disp($reg);  // Stack Offset
4864   %}
4865 %}
4866 
4867 operand stackSlotP(sRegP reg) %{
4868   constraint(ALLOC_IN_RC(stack_slots));
4869   op_cost(100);
4870   //match(RegP);
4871   format %{ "[sp+$reg]" %}
4872   interface(MEMORY_INTER) %{
4873     base(0x1);   // R1_SP
4874     index(0x0);
4875     scale(0x0);
4876     disp($reg);  // Stack Offset
4877   %}
4878 %}
4879 
4880 operand stackSlotF(sRegF reg) %{
4881   constraint(ALLOC_IN_RC(stack_slots));
4882   op_cost(100);
4883   //match(RegF);
4884   format %{ "[sp+$reg]" %}
4885   interface(MEMORY_INTER) %{
4886     base(0x1);   // R1_SP
4887     index(0x0);
4888     scale(0x0);
4889     disp($reg);  // Stack Offset
4890   %}
4891 %}
4892 
4893 operand stackSlotD(sRegD reg) %{
4894   constraint(ALLOC_IN_RC(stack_slots));
4895   op_cost(100);
4896   //match(RegD);
4897   format %{ "[sp+$reg]" %}
4898   interface(MEMORY_INTER) %{
4899     base(0x1);   // R1_SP
4900     index(0x0);
4901     scale(0x0);
4902     disp($reg);  // Stack Offset
4903   %}
4904 %}
4905 
4906 // Operands for expressing Control Flow
4907 // NOTE: Label is a predefined operand which should not be redefined in
4908 //       the AD file. It is generically handled within the ADLC.
4909 
4910 //----------Conditional Branch Operands----------------------------------------
4911 // Comparison Op
4912 //
4913 // This is the operation of the comparison, and is limited to the
4914 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
4915 // (!=).
4916 //
4917 // Other attributes of the comparison, such as unsignedness, are specified
4918 // by the comparison instruction that sets a condition code flags register.
4919 // That result is represented by a flags operand whose subtype is appropriate
4920 // to the unsignedness (etc.) of the comparison.
4921 //
4922 // Later, the instruction which matches both the Comparison Op (a Bool) and
4923 // the flags (produced by the Cmp) specifies the coding of the comparison op
4924 // by matching a specific subtype of Bool operand below.
4925 
4926 // When used for floating point comparisons: unordered same as less.
4927 operand cmpOp() %{
4928   match(Bool);
4929   format %{ "" %}
4930   interface(COND_INTER) %{
4931                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
4932                            //           BO          &  BI
4933     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
4934     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
4935     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
4936     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
4937     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
4938     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
4939     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
4940     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
4941   %}
4942 %}
4943 
4944 //----------OPERAND CLASSES----------------------------------------------------
4945 // Operand Classes are groups of operands that are used to simplify
4946 // instruction definitions by not requiring the AD writer to specify
4947 // seperate instructions for every form of operand when the
4948 // instruction accepts multiple operand types with the same basic
4949 // encoding and format. The classic case of this is memory operands.
4950 // Indirect is not included since its use is limited to Compare & Swap.
4951 
4952 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
4953 // Memory operand where offsets are 4-aligned. Required for ld, std.
4954 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
4955 opclass indirectMemory(indirect, indirectNarrow);
4956 
4957 // Special opclass for I and ConvL2I.
4958 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
4959 
4960 // Operand classes to match encode and decode. iRegN_P2N is only used
4961 // for storeN. I have never seen an encode node elsewhere.
4962 opclass iRegN_P2N(iRegNsrc, iRegP2N);
4963 opclass iRegP_N2P(iRegPsrc, iRegN2P);
4964 
4965 //----------PIPELINE-----------------------------------------------------------
4966 
4967 pipeline %{
4968 
4969 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
4970 // J. Res. & Dev., No. 1, Jan. 2002.
4971 
4972 //----------ATTRIBUTES---------------------------------------------------------
4973 attributes %{
4974 
4975   // Power4 instructions are of fixed length.
4976   fixed_size_instructions;
4977 
4978   // TODO: if `bundle' means number of instructions fetched
4979   // per cycle, this is 8. If `bundle' means Power4 `group', that is
4980   // max instructions issued per cycle, this is 5.
4981   max_instructions_per_bundle = 8;
4982 
4983   // A Power4 instruction is 4 bytes long.
4984   instruction_unit_size = 4;
4985 
4986   // The Power4 processor fetches 64 bytes...
4987   instruction_fetch_unit_size = 64;
4988 
4989   // ...in one line
4990   instruction_fetch_units = 1
4991 
4992   // Unused, list one so that array generated by adlc is not empty.
4993   // Aix compiler chokes if _nop_count = 0.
4994   nops(fxNop);
4995 %}
4996 
4997 //----------RESOURCES----------------------------------------------------------
4998 // Resources are the functional units available to the machine
4999 resources(
5000    PPC_BR,         // branch unit
5001    PPC_CR,         // condition unit
5002    PPC_FX1,        // integer arithmetic unit 1
5003    PPC_FX2,        // integer arithmetic unit 2
5004    PPC_LDST1,      // load/store unit 1
5005    PPC_LDST2,      // load/store unit 2
5006    PPC_FP1,        // float arithmetic unit 1
5007    PPC_FP2,        // float arithmetic unit 2
5008    PPC_LDST = PPC_LDST1 | PPC_LDST2,
5009    PPC_FX = PPC_FX1 | PPC_FX2,
5010    PPC_FP = PPC_FP1 | PPC_FP2
5011  );
5012 
5013 //----------PIPELINE DESCRIPTION-----------------------------------------------
5014 // Pipeline Description specifies the stages in the machine's pipeline
5015 pipe_desc(
5016    // Power4 longest pipeline path
5017    PPC_IF,   // instruction fetch
5018    PPC_IC,
5019    //PPC_BP, // branch prediction
5020    PPC_D0,   // decode
5021    PPC_D1,   // decode
5022    PPC_D2,   // decode
5023    PPC_D3,   // decode
5024    PPC_Xfer1,
5025    PPC_GD,   // group definition
5026    PPC_MP,   // map
5027    PPC_ISS,  // issue
5028    PPC_RF,   // resource fetch
5029    PPC_EX1,  // execute (all units)
5030    PPC_EX2,  // execute (FP, LDST)
5031    PPC_EX3,  // execute (FP, LDST)
5032    PPC_EX4,  // execute (FP)
5033    PPC_EX5,  // execute (FP)
5034    PPC_EX6,  // execute (FP)
5035    PPC_WB,   // write back
5036    PPC_Xfer2,
5037    PPC_CP
5038  );
5039 
5040 //----------PIPELINE CLASSES---------------------------------------------------
5041 // Pipeline Classes describe the stages in which input and output are
5042 // referenced by the hardware pipeline.
5043 
5044 // Simple pipeline classes.
5045 
5046 // Default pipeline class.
5047 pipe_class pipe_class_default() %{
5048   single_instruction;
5049   fixed_latency(2);
5050 %}
5051 
5052 // Pipeline class for empty instructions.
5053 pipe_class pipe_class_empty() %{
5054   single_instruction;
5055   fixed_latency(0);
5056 %}
5057 
5058 // Pipeline class for compares.
5059 pipe_class pipe_class_compare() %{
5060   single_instruction;
5061   fixed_latency(16);
5062 %}
5063 
5064 // Pipeline class for traps.
5065 pipe_class pipe_class_trap() %{
5066   single_instruction;
5067   fixed_latency(100);
5068 %}
5069 
5070 // Pipeline class for memory operations.
5071 pipe_class pipe_class_memory() %{
5072   single_instruction;
5073   fixed_latency(16);
5074 %}
5075 
5076 // Pipeline class for call.
5077 pipe_class pipe_class_call() %{
5078   single_instruction;
5079   fixed_latency(100);
5080 %}
5081 
5082 // Define the class for the Nop node.
5083 define %{
5084    MachNop = pipe_class_default;
5085 %}
5086 
5087 %}
5088 
5089 //----------INSTRUCTIONS-------------------------------------------------------
5090 
5091 // Naming of instructions:
5092 //   opA_operB / opA_operB_operC:
5093 //     Operation 'op' with one or two source operands 'oper'. Result
5094 //     type is A, source operand types are B and C.
5095 //     Iff A == B == C, B and C are left out.
5096 //
5097 // The instructions are ordered according to the following scheme:
5098 //  - loads
5099 //  - load constants
5100 //  - prefetch
5101 //  - store
5102 //  - encode/decode
5103 //  - membar
5104 //  - conditional moves
5105 //  - compare & swap
5106 //  - arithmetic and logic operations
5107 //    * int: Add, Sub, Mul, Div, Mod
5108 //    * int: lShift, arShift, urShift, rot
5109 //    * float: Add, Sub, Mul, Div
5110 //    * and, or, xor ...
5111 //  - register moves: float <-> int, reg <-> stack, repl
5112 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
5113 //  - conv (low level type cast requiring bit changes (sign extend etc)
5114 //  - compares, range & zero checks.
5115 //  - branches
5116 //  - complex operations, intrinsics, min, max, replicate
5117 //  - lock
5118 //  - Calls
5119 //
5120 // If there are similar instructions with different types they are sorted:
5121 // int before float
5122 // small before big
5123 // signed before unsigned
5124 // e.g., loadS before loadUS before loadI before loadF.
5125 
5126 
5127 //----------Load/Store Instructions--------------------------------------------
5128 
5129 //----------Load Instructions--------------------------------------------------
5130 
5131 // Converts byte to int.
5132 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
5133 // reuses the 'amount' operand, but adlc expects that operand specification
5134 // and operands in match rule are equivalent.
5135 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
5136   effect(DEF dst, USE src);
5137   format %{ "EXTSB   $dst, $src \t// byte->int" %}
5138   size(4);
5139   ins_encode %{
5140     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
5141     __ extsb($dst$$Register, $src$$Register);
5142   %}
5143   ins_pipe(pipe_class_default);
5144 %}
5145 
5146 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
5147   // match-rule, false predicate
5148   match(Set dst (LoadB mem));
5149   predicate(false);
5150 
5151   format %{ "LBZ     $dst, $mem" %}
5152   size(4);
5153   ins_encode( enc_lbz(dst, mem) );
5154   ins_pipe(pipe_class_memory);
5155 %}
5156 
5157 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
5158   // match-rule, false predicate
5159   match(Set dst (LoadB mem));
5160   predicate(false);
5161 
5162   format %{ "LBZ     $dst, $mem\n\t"
5163             "TWI     $dst\n\t"
5164             "ISYNC" %}
5165   size(12);
5166   ins_encode( enc_lbz_ac(dst, mem) );
5167   ins_pipe(pipe_class_memory);
5168 %}
5169 
5170 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5171 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
5172   match(Set dst (LoadB mem));
5173   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5174   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5175   expand %{
5176     iRegIdst tmp;
5177     loadUB_indirect(tmp, mem);
5178     convB2I_reg_2(dst, tmp);
5179   %}
5180 %}
5181 
5182 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
5183   match(Set dst (LoadB mem));
5184   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5185   expand %{
5186     iRegIdst tmp;
5187     loadUB_indirect_ac(tmp, mem);
5188     convB2I_reg_2(dst, tmp);
5189   %}
5190 %}
5191 
5192 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
5193   // match-rule, false predicate
5194   match(Set dst (LoadB mem));
5195   predicate(false);
5196 
5197   format %{ "LBZ     $dst, $mem" %}
5198   size(4);
5199   ins_encode( enc_lbz(dst, mem) );
5200   ins_pipe(pipe_class_memory);
5201 %}
5202 
5203 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
5204   // match-rule, false predicate
5205   match(Set dst (LoadB mem));
5206   predicate(false);
5207 
5208   format %{ "LBZ     $dst, $mem\n\t"
5209             "TWI     $dst\n\t"
5210             "ISYNC" %}
5211   size(12);
5212   ins_encode( enc_lbz_ac(dst, mem) );
5213   ins_pipe(pipe_class_memory);
5214 %}
5215 
5216 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5217 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
5218   match(Set dst (LoadB mem));
5219   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5220   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5221 
5222   expand %{
5223     iRegIdst tmp;
5224     loadUB_indOffset16(tmp, mem);
5225     convB2I_reg_2(dst, tmp);
5226   %}
5227 %}
5228 
5229 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
5230   match(Set dst (LoadB mem));
5231   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5232 
5233   expand %{
5234     iRegIdst tmp;
5235     loadUB_indOffset16_ac(tmp, mem);
5236     convB2I_reg_2(dst, tmp);
5237   %}
5238 %}
5239 
5240 // Load Unsigned Byte (8bit UNsigned) into an int reg.
5241 instruct loadUB(iRegIdst dst, memory mem) %{
5242   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5243   match(Set dst (LoadUB mem));
5244   ins_cost(MEMORY_REF_COST);
5245 
5246   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
5247   size(4);
5248   ins_encode( enc_lbz(dst, mem) );
5249   ins_pipe(pipe_class_memory);
5250 %}
5251 
5252 // Load  Unsigned Byte (8bit UNsigned) acquire.
5253 instruct loadUB_ac(iRegIdst dst, memory mem) %{
5254   match(Set dst (LoadUB mem));
5255   ins_cost(3*MEMORY_REF_COST);
5256 
5257   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
5258             "TWI     $dst\n\t"
5259             "ISYNC" %}
5260   size(12);
5261   ins_encode( enc_lbz_ac(dst, mem) );
5262   ins_pipe(pipe_class_memory);
5263 %}
5264 
5265 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
5266 instruct loadUB2L(iRegLdst dst, memory mem) %{
5267   match(Set dst (ConvI2L (LoadUB mem)));
5268   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5269   ins_cost(MEMORY_REF_COST);
5270 
5271   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
5272   size(4);
5273   ins_encode( enc_lbz(dst, mem) );
5274   ins_pipe(pipe_class_memory);
5275 %}
5276 
5277 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
5278   match(Set dst (ConvI2L (LoadUB mem)));
5279   ins_cost(3*MEMORY_REF_COST);
5280 
5281   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
5282             "TWI     $dst\n\t"
5283             "ISYNC" %}
5284   size(12);
5285   ins_encode( enc_lbz_ac(dst, mem) );
5286   ins_pipe(pipe_class_memory);
5287 %}
5288 
5289 // Load Short (16bit signed)
5290 instruct loadS(iRegIdst dst, memory mem) %{
5291   match(Set dst (LoadS mem));
5292   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5293   ins_cost(MEMORY_REF_COST);
5294 
5295   format %{ "LHA     $dst, $mem" %}
5296   size(4);
5297   ins_encode %{
5298     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
5299     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5300     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5301   %}
5302   ins_pipe(pipe_class_memory);
5303 %}
5304 
5305 // Load Short (16bit signed) acquire.
5306 instruct loadS_ac(iRegIdst dst, memory mem) %{
5307   match(Set dst (LoadS mem));
5308   ins_cost(3*MEMORY_REF_COST);
5309 
5310   format %{ "LHA     $dst, $mem\t acquire\n\t"
5311             "TWI     $dst\n\t"
5312             "ISYNC" %}
5313   size(12);
5314   ins_encode %{
5315     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5316     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5317     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5318     __ twi_0($dst$$Register);
5319     __ isync();
5320   %}
5321   ins_pipe(pipe_class_memory);
5322 %}
5323 
5324 // Load Char (16bit unsigned)
5325 instruct loadUS(iRegIdst dst, memory mem) %{
5326   match(Set dst (LoadUS mem));
5327   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5328   ins_cost(MEMORY_REF_COST);
5329 
5330   format %{ "LHZ     $dst, $mem" %}
5331   size(4);
5332   ins_encode( enc_lhz(dst, mem) );
5333   ins_pipe(pipe_class_memory);
5334 %}
5335 
5336 // Load Char (16bit unsigned) acquire.
5337 instruct loadUS_ac(iRegIdst dst, memory mem) %{
5338   match(Set dst (LoadUS mem));
5339   ins_cost(3*MEMORY_REF_COST);
5340 
5341   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
5342             "TWI     $dst\n\t"
5343             "ISYNC" %}
5344   size(12);
5345   ins_encode( enc_lhz_ac(dst, mem) );
5346   ins_pipe(pipe_class_memory);
5347 %}
5348 
5349 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
5350 instruct loadUS2L(iRegLdst dst, memory mem) %{
5351   match(Set dst (ConvI2L (LoadUS mem)));
5352   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5353   ins_cost(MEMORY_REF_COST);
5354 
5355   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
5356   size(4);
5357   ins_encode( enc_lhz(dst, mem) );
5358   ins_pipe(pipe_class_memory);
5359 %}
5360 
5361 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
5362 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
5363   match(Set dst (ConvI2L (LoadUS mem)));
5364   ins_cost(3*MEMORY_REF_COST);
5365 
5366   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
5367             "TWI     $dst\n\t"
5368             "ISYNC" %}
5369   size(12);
5370   ins_encode( enc_lhz_ac(dst, mem) );
5371   ins_pipe(pipe_class_memory);
5372 %}
5373 
5374 // Load Integer.
5375 instruct loadI(iRegIdst dst, memory mem) %{
5376   match(Set dst (LoadI mem));
5377   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5378   ins_cost(MEMORY_REF_COST);
5379 
5380   format %{ "LWZ     $dst, $mem" %}
5381   size(4);
5382   ins_encode( enc_lwz(dst, mem) );
5383   ins_pipe(pipe_class_memory);
5384 %}
5385 
5386 // Load Integer acquire.
5387 instruct loadI_ac(iRegIdst dst, memory mem) %{
5388   match(Set dst (LoadI mem));
5389   ins_cost(3*MEMORY_REF_COST);
5390 
5391   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
5392             "TWI     $dst\n\t"
5393             "ISYNC" %}
5394   size(12);
5395   ins_encode( enc_lwz_ac(dst, mem) );
5396   ins_pipe(pipe_class_memory);
5397 %}
5398 
5399 // Match loading integer and casting it to unsigned int in 
5400 // long register.
5401 // LoadI + ConvI2L + AndL 0xffffffff.
5402 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
5403   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5404   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
5405   ins_cost(MEMORY_REF_COST);
5406 
5407   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
5408   size(4);
5409   ins_encode( enc_lwz(dst, mem) );
5410   ins_pipe(pipe_class_memory);
5411 %}
5412 
5413 // Match loading integer and casting it to long.
5414 instruct loadI2L(iRegLdst dst, memory mem) %{
5415   match(Set dst (ConvI2L (LoadI mem)));
5416   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5417   ins_cost(MEMORY_REF_COST);
5418 
5419   format %{ "LWA     $dst, $mem \t// loadI2L" %}
5420   size(4);
5421   ins_encode %{
5422     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5423     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5424     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5425   %}
5426   ins_pipe(pipe_class_memory);
5427 %}
5428 
5429 // Match loading integer and casting it to long - acquire.
5430 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
5431   match(Set dst (ConvI2L (LoadI mem)));
5432   ins_cost(3*MEMORY_REF_COST);
5433 
5434   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
5435             "TWI     $dst\n\t"
5436             "ISYNC" %}
5437   size(12);
5438   ins_encode %{
5439     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5440     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5441     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5442     __ twi_0($dst$$Register);
5443     __ isync();
5444   %}
5445   ins_pipe(pipe_class_memory);
5446 %}
5447 
5448 // Load Long - aligned
5449 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
5450   match(Set dst (LoadL mem));
5451   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5452   ins_cost(MEMORY_REF_COST);
5453 
5454   format %{ "LD      $dst, $mem \t// long" %}
5455   size(4);
5456   ins_encode( enc_ld(dst, mem) );
5457   ins_pipe(pipe_class_memory);
5458 %}
5459 
5460 // Load Long - aligned acquire.
5461 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
5462   match(Set dst (LoadL mem));
5463   ins_cost(3*MEMORY_REF_COST);
5464 
5465   format %{ "LD      $dst, $mem \t// long acquire\n\t"
5466             "TWI     $dst\n\t"
5467             "ISYNC" %}
5468   size(12);
5469   ins_encode( enc_ld_ac(dst, mem) );
5470   ins_pipe(pipe_class_memory);
5471 %}
5472 
5473 // Load Long - UNaligned
5474 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
5475   match(Set dst (LoadL_unaligned mem));
5476   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5477   ins_cost(MEMORY_REF_COST);
5478 
5479   format %{ "LD      $dst, $mem \t// unaligned long" %}
5480   size(4);
5481   ins_encode( enc_ld(dst, mem) );
5482   ins_pipe(pipe_class_memory);
5483 %}
5484 
5485 // Load nodes for superwords
5486 
5487 // Load Aligned Packed Byte
5488 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
5489   predicate(n->as_LoadVector()->memory_size() == 8);
5490   match(Set dst (LoadVector mem));
5491   ins_cost(MEMORY_REF_COST);
5492 
5493   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
5494   size(4);
5495   ins_encode( enc_ld(dst, mem) );
5496   ins_pipe(pipe_class_memory);
5497 %}
5498 
5499 // Load Range, range = array length (=jint)
5500 instruct loadRange(iRegIdst dst, memory mem) %{
5501   match(Set dst (LoadRange mem));
5502   ins_cost(MEMORY_REF_COST);
5503 
5504   format %{ "LWZ     $dst, $mem \t// range" %}
5505   size(4);
5506   ins_encode( enc_lwz(dst, mem) );
5507   ins_pipe(pipe_class_memory);
5508 %}
5509 
5510 // Load Compressed Pointer
5511 instruct loadN(iRegNdst dst, memory mem) %{
5512   match(Set dst (LoadN mem));
5513   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5514   ins_cost(MEMORY_REF_COST);
5515 
5516   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
5517   size(4);
5518   ins_encode( enc_lwz(dst, mem) );
5519   ins_pipe(pipe_class_memory);
5520 %}
5521 
5522 // Load Compressed Pointer acquire.
5523 instruct loadN_ac(iRegNdst dst, memory mem) %{
5524   match(Set dst (LoadN mem));
5525   ins_cost(3*MEMORY_REF_COST);
5526 
5527   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
5528             "TWI     $dst\n\t"
5529             "ISYNC" %}
5530   size(12);
5531   ins_encode( enc_lwz_ac(dst, mem) );
5532   ins_pipe(pipe_class_memory);
5533 %}
5534 
5535 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
5536 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
5537   match(Set dst (DecodeN (LoadN mem)));
5538   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
5539   ins_cost(MEMORY_REF_COST);
5540 
5541   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5542   size(4);
5543   ins_encode( enc_lwz(dst, mem) );
5544   ins_pipe(pipe_class_memory);
5545 %}
5546 
5547 // Load Pointer
5548 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
5549   match(Set dst (LoadP mem));
5550   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5551   ins_cost(MEMORY_REF_COST);
5552 
5553   format %{ "LD      $dst, $mem \t// ptr" %}
5554   size(4);
5555   ins_encode( enc_ld(dst, mem) );
5556   ins_pipe(pipe_class_memory);
5557 %}
5558 
5559 // Load Pointer acquire.
5560 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
5561   match(Set dst (LoadP mem));
5562   ins_cost(3*MEMORY_REF_COST);
5563 
5564   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
5565             "TWI     $dst\n\t"
5566             "ISYNC" %}
5567   size(12);
5568   ins_encode( enc_ld_ac(dst, mem) );
5569   ins_pipe(pipe_class_memory);
5570 %}
5571 
5572 // LoadP + CastP2L
5573 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
5574   match(Set dst (CastP2X (LoadP mem)));
5575   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5576   ins_cost(MEMORY_REF_COST);
5577 
5578   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
5579   size(4);
5580   ins_encode( enc_ld(dst, mem) );
5581   ins_pipe(pipe_class_memory);
5582 %}
5583 
5584 // Load compressed klass pointer.
5585 instruct loadNKlass(iRegNdst dst, memory mem) %{
5586   match(Set dst (LoadNKlass mem));
5587   ins_cost(MEMORY_REF_COST);
5588 
5589   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
5590   size(4);
5591   ins_encode( enc_lwz(dst, mem) );
5592   ins_pipe(pipe_class_memory);
5593 %}
5594 
5595 //// Load compressed klass and decode it if narrow_klass_shift == 0.
5596 //// TODO: will narrow_klass_shift ever be 0?
5597 //instruct decodeNKlass2Klass(iRegPdst dst, memory mem) %{
5598 //  match(Set dst (DecodeNKlass (LoadNKlass mem)));
5599 //  predicate(false /* TODO: PPC port Universe::narrow_klass_shift() == 0*);
5600 //  ins_cost(MEMORY_REF_COST);
5601 //
5602 //  format %{ "LWZ     $dst, $mem \t// DecodeNKlass (unscaled)" %}
5603 //  size(4);
5604 //  ins_encode( enc_lwz(dst, mem) );
5605 //  ins_pipe(pipe_class_memory);
5606 //%}
5607 
5608 // Load Klass Pointer
5609 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
5610   match(Set dst (LoadKlass mem));
5611   ins_cost(MEMORY_REF_COST);
5612 
5613   format %{ "LD      $dst, $mem \t// klass ptr" %}
5614   size(4);
5615   ins_encode( enc_ld(dst, mem) );
5616   ins_pipe(pipe_class_memory);
5617 %}
5618 
5619 // Load Float
5620 instruct loadF(regF dst, memory mem) %{
5621   match(Set dst (LoadF mem));
5622   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5623   ins_cost(MEMORY_REF_COST);
5624 
5625   format %{ "LFS     $dst, $mem" %}
5626   size(4);
5627   ins_encode %{
5628     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
5629     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5630     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5631   %}
5632   ins_pipe(pipe_class_memory);
5633 %}
5634 
5635 // Load Float acquire.
5636 instruct loadF_ac(regF dst, memory mem) %{
5637   match(Set dst (LoadF mem));
5638   ins_cost(3*MEMORY_REF_COST);
5639 
5640   format %{ "LFS     $dst, $mem \t// acquire\n\t"
5641             "FCMPU   cr0, $dst, $dst\n\t"
5642             "BNE     cr0, next\n"
5643             "next:\n\t"
5644             "ISYNC" %}
5645   size(16);
5646   ins_encode %{
5647     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5648     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5649     Label next;
5650     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5651     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5652     __ bne(CCR0, next);
5653     __ bind(next);
5654     __ isync();
5655   %}
5656   ins_pipe(pipe_class_memory);
5657 %}
5658 
5659 // Load Double - aligned
5660 instruct loadD(regD dst, memory mem) %{
5661   match(Set dst (LoadD mem));
5662   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5663   ins_cost(MEMORY_REF_COST);
5664 
5665   format %{ "LFD     $dst, $mem" %}
5666   size(4);
5667   ins_encode( enc_lfd(dst, mem) );
5668   ins_pipe(pipe_class_memory);
5669 %}
5670 
5671 // Load Double - aligned acquire.
5672 instruct loadD_ac(regD dst, memory mem) %{
5673   match(Set dst (LoadD mem));
5674   ins_cost(3*MEMORY_REF_COST);
5675 
5676   format %{ "LFD     $dst, $mem \t// acquire\n\t"
5677             "FCMPU   cr0, $dst, $dst\n\t"
5678             "BNE     cr0, next\n"
5679             "next:\n\t"
5680             "ISYNC" %}
5681   size(16);
5682   ins_encode %{
5683     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5684     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5685     Label next;
5686     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5687     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5688     __ bne(CCR0, next);
5689     __ bind(next);
5690     __ isync();
5691   %}
5692   ins_pipe(pipe_class_memory);
5693 %}
5694 
5695 // Load Double - UNaligned
5696 instruct loadD_unaligned(regD dst, memory mem) %{
5697   match(Set dst (LoadD_unaligned mem));
5698   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5699   ins_cost(MEMORY_REF_COST);
5700 
5701   format %{ "LFD     $dst, $mem" %}
5702   size(4);
5703   ins_encode( enc_lfd(dst, mem) );
5704   ins_pipe(pipe_class_memory);
5705 %}
5706 
5707 //----------Constants--------------------------------------------------------
5708 
5709 // Load MachConstantTableBase: add hi offset to global toc.
5710 // TODO: Handle hidden register r29 in bundler!
5711 instruct loadToc_hi(iRegLdst dst) %{
5712   effect(DEF dst);
5713   ins_cost(DEFAULT_COST);
5714 
5715   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
5716   size(4);
5717   ins_encode %{
5718     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5719     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
5720   %}
5721   ins_pipe(pipe_class_default);
5722 %}
5723 
5724 // Load MachConstantTableBase: add lo offset to global toc.
5725 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
5726   effect(DEF dst, USE src);
5727   ins_cost(DEFAULT_COST);
5728 
5729   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
5730   size(4);
5731   ins_encode %{
5732     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5733     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
5734   %}
5735   ins_pipe(pipe_class_default);
5736 %}
5737 
5738 // Load 16-bit integer constant 0xssss????
5739 instruct loadConI16(iRegIdst dst, immI16 src) %{
5740   match(Set dst src);
5741 
5742   format %{ "LI      $dst, $src" %}
5743   size(4);
5744   ins_encode %{
5745     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5746     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
5747   %}
5748   ins_pipe(pipe_class_default);
5749 %}
5750 
5751 // Load integer constant 0x????0000
5752 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
5753   match(Set dst src);
5754   ins_cost(DEFAULT_COST);
5755 
5756   format %{ "LIS     $dst, $src.hi" %}
5757   size(4);
5758   ins_encode %{
5759     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5760     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
5761     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5762   %}
5763   ins_pipe(pipe_class_default);
5764 %}
5765 
5766 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
5767 // and sign extended), this adds the low 16 bits.
5768 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
5769   // no match-rule, false predicate
5770   effect(DEF dst, USE src1, USE src2);
5771   predicate(false);
5772 
5773   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
5774   size(4);
5775   ins_encode %{
5776     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5777     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5778   %}
5779   ins_pipe(pipe_class_default);
5780 %}
5781 
5782 instruct loadConI_Ex(iRegIdst dst, immI src) %{
5783   match(Set dst src);
5784   ins_cost(DEFAULT_COST*2);
5785 
5786   expand %{
5787     // Would like to use $src$$constant.
5788     immI16 srcLo %{ _opnds[1]->constant() %}
5789     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5790     immIhi16 srcHi %{ _opnds[1]->constant() %}
5791     iRegIdst tmpI;
5792     loadConIhi16(tmpI, srcHi);
5793     loadConI32_lo16(dst, tmpI, srcLo);
5794   %}
5795 %}
5796 
5797 // No constant pool entries required.
5798 instruct loadConL16(iRegLdst dst, immL16 src) %{
5799   match(Set dst src);
5800 
5801   format %{ "LI      $dst, $src \t// long" %}
5802   size(4);
5803   ins_encode %{
5804     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5805     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
5806   %}
5807   ins_pipe(pipe_class_default);
5808 %}
5809 
5810 // Load long constant 0xssssssss????0000
5811 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
5812   match(Set dst src);
5813   ins_cost(DEFAULT_COST);
5814 
5815   format %{ "LIS     $dst, $src.hi \t// long" %}
5816   size(4);
5817   ins_encode %{
5818     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5819     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5820   %}
5821   ins_pipe(pipe_class_default);
5822 %}
5823 
5824 // To load a 32 bit constant: merge lower 16 bits into already loaded
5825 // high 16 bits.
5826 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
5827   // no match-rule, false predicate
5828   effect(DEF dst, USE src1, USE src2);
5829   predicate(false);
5830 
5831   format %{ "ORI     $dst, $src1, $src2.lo" %}
5832   size(4);
5833   ins_encode %{
5834     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5835     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5836   %}
5837   ins_pipe(pipe_class_default);
5838 %}
5839 
5840 // Load 32-bit long constant
5841 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
5842   match(Set dst src);
5843   ins_cost(DEFAULT_COST*2);
5844 
5845   expand %{
5846     // Would like to use $src$$constant.
5847     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
5848     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5849     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
5850     iRegLdst tmpL;
5851     loadConL32hi16(tmpL, srcHi);
5852     loadConL32_lo16(dst, tmpL, srcLo);
5853   %}
5854 %}
5855 
5856 // Load long constant 0x????000000000000.
5857 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
5858   match(Set dst src);
5859   ins_cost(DEFAULT_COST);
5860 
5861   expand %{
5862     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
5863     immI shift32 %{ 32 %}
5864     iRegLdst tmpL;
5865     loadConL32hi16(tmpL, srcHi);
5866     lshiftL_regL_immI(dst, tmpL, shift32);
5867   %}
5868 %}
5869 
5870 // Expand node for constant pool load: small offset.
5871 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
5872   effect(DEF dst, USE src, USE toc);
5873   ins_cost(MEMORY_REF_COST);
5874 
5875   ins_num_consts(1);
5876   // Needed so that CallDynamicJavaDirect can compute the address of this
5877   // instruction for relocation.
5878   ins_field_cbuf_insts_offset(int);
5879 
5880   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
5881   size(4);
5882   ins_encode( enc_load_long_constL(dst, src, toc) );
5883   ins_pipe(pipe_class_memory);
5884 %}
5885 
5886 // Expand node for constant pool load: large offset.
5887 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
5888   effect(DEF dst, USE src, USE toc);
5889   predicate(false);
5890 
5891   ins_num_consts(1);
5892   ins_field_const_toc_offset(int);
5893   // Needed so that CallDynamicJavaDirect can compute the address of this
5894   // instruction for relocation.
5895   ins_field_cbuf_insts_offset(int);
5896 
5897   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
5898   size(4);
5899   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
5900   ins_pipe(pipe_class_default);
5901 %}
5902 
5903 // Expand node for constant pool load: large offset.
5904 // No constant pool entries required.
5905 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
5906   effect(DEF dst, USE src, USE base);
5907   predicate(false);
5908 
5909   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
5910 
5911   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
5912   size(4);
5913   ins_encode %{
5914     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
5915     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
5916     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
5917   %}
5918   ins_pipe(pipe_class_memory);
5919 %}
5920 
5921 // Load long constant from constant table. Expand in case of
5922 // offset > 16 bit is needed.
5923 // Adlc adds toc node MachConstantTableBase.
5924 instruct loadConL_Ex(iRegLdst dst, immL src) %{
5925   match(Set dst src);
5926   ins_cost(MEMORY_REF_COST);
5927 
5928   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
5929   // We can not inline the enc_class for the expand as that does not support constanttablebase.
5930   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
5931 %}
5932 
5933 // Load NULL as compressed oop.
5934 instruct loadConN0(iRegNdst dst, immN_0 src) %{
5935   match(Set dst src);
5936   ins_cost(DEFAULT_COST);
5937 
5938   format %{ "LI      $dst, $src \t// compressed ptr" %}
5939   size(4);
5940   ins_encode %{
5941     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5942     __ li($dst$$Register, 0);
5943   %}
5944   ins_pipe(pipe_class_default);
5945 %}
5946 
5947 // Load hi part of compressed oop constant.
5948 instruct loadConN_hi(iRegNdst dst, immN src) %{
5949   effect(DEF dst, USE src);
5950   ins_cost(DEFAULT_COST);
5951 
5952   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
5953   size(4);
5954   ins_encode %{
5955     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5956     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
5957   %}
5958   ins_pipe(pipe_class_default);
5959 %}
5960 
5961 // Add lo part of compressed oop constant to already loaded hi part.
5962 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
5963   effect(DEF dst, USE src1, USE src2);
5964   ins_cost(DEFAULT_COST);
5965 
5966   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
5967   size(4);
5968   ins_encode %{
5969     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5970     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
5971     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
5972     RelocationHolder rspec = oop_Relocation::spec(oop_index);
5973     __ relocate(rspec, 1);
5974     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
5975   %}
5976   ins_pipe(pipe_class_default);
5977 %}
5978 
5979 // Needed to postalloc expand loadConN: ConN is loaded as ConI
5980 // leaving the upper 32 bits with sign-extension bits.
5981 // This clears these bits: dst = src & 0xFFFFFFFF.
5982 // TODO: Eventually call this maskN_regN_FFFFFFFF.
5983 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
5984   effect(DEF dst, USE src);
5985   predicate(false);
5986 
5987   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
5988   size(4);
5989   ins_encode %{
5990     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
5991     __ clrldi($dst$$Register, $src$$Register, 0x20);
5992   %}
5993   ins_pipe(pipe_class_default);
5994 %}
5995 
5996 // Loading ConN must be postalloc expanded so that edges between
5997 // the nodes are safe. They may not interfere with a safepoint.
5998 // GL TODO: This needs three instructions: better put this into the constant pool.
5999 instruct loadConN_Ex(iRegNdst dst, immN src) %{
6000   match(Set dst src);
6001   ins_cost(DEFAULT_COST*2);
6002 
6003   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6004   postalloc_expand %{
6005     MachNode *m1 = new (C) loadConN_hiNode();
6006     MachNode *m2 = new (C) loadConN_loNode();
6007     MachNode *m3 = new (C) clearMs32bNode();
6008     m1->add_req(NULL);
6009     m2->add_req(NULL, m1);
6010     m3->add_req(NULL, m2);
6011     m1->_opnds[0] = op_dst;
6012     m1->_opnds[1] = op_src;
6013     m2->_opnds[0] = op_dst;
6014     m2->_opnds[1] = op_dst;
6015     m2->_opnds[2] = op_src;
6016     m3->_opnds[0] = op_dst;
6017     m3->_opnds[1] = op_dst;
6018     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6019     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6020     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6021     nodes->push(m1);
6022     nodes->push(m2);
6023     nodes->push(m3);
6024   %}
6025 %}
6026 
6027 instruct loadConNKlass_hi(iRegNdst dst, immNKlass src) %{
6028   effect(DEF dst, USE src);
6029   ins_cost(DEFAULT_COST);
6030 
6031   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
6032   size(4);
6033   ins_encode %{
6034     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
6035     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
6036     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
6037   %}
6038   ins_pipe(pipe_class_default);
6039 %}
6040 
6041 // This needs a match rule so that build_oop_map knows this is 
6042 // not a narrow oop.
6043 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6044   match(Set dst src1);
6045   effect(TEMP src2);
6046   ins_cost(DEFAULT_COST);
6047 
6048   format %{ "ADDI    $dst, $src1, $src2 \t// narrow oop lo" %}
6049   size(4);
6050   ins_encode %{
6051     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6052     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
6053     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6054     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
6055     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6056 
6057     __ relocate(rspec, 1);
6058     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
6059   %}
6060   ins_pipe(pipe_class_default);
6061 %}
6062 
6063 // Loading ConNKlass must be postalloc expanded so that edges between
6064 // the nodes are safe. They may not interfere with a safepoint.
6065 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
6066   match(Set dst src);
6067   ins_cost(DEFAULT_COST*2);
6068 
6069   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6070   postalloc_expand %{
6071     // Load high bits into register. Sign extended.
6072     MachNode *m1 = new (C) loadConNKlass_hiNode();
6073     m1->add_req(NULL);
6074     m1->_opnds[0] = op_dst;
6075     m1->_opnds[1] = op_src;
6076     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6077     nodes->push(m1);
6078 
6079     MachNode *m2 = m1;
6080     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
6081       // Value might be 1-extended. Mask out these bits.
6082       m2 = new (C) clearMs32bNode();
6083       m2->add_req(NULL, m1);
6084       m2->_opnds[0] = op_dst;
6085       m2->_opnds[1] = op_dst;
6086       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6087       nodes->push(m2);
6088     }
6089 
6090     MachNode *m3 = new (C) loadConNKlass_loNode();
6091     m3->add_req(NULL, m2);
6092     m3->_opnds[0] = op_dst;
6093     m3->_opnds[1] = op_src;
6094     m3->_opnds[2] = op_dst;
6095     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6096     nodes->push(m3);
6097   %}
6098 %}
6099 
6100 // 0x1 is used in object initialization (initial object header).
6101 // No constant pool entries required.
6102 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
6103   match(Set dst src);
6104 
6105   format %{ "LI      $dst, $src \t// ptr" %}
6106   size(4);
6107   ins_encode %{
6108     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6109     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
6110   %}
6111   ins_pipe(pipe_class_default);
6112 %}
6113 
6114 // Expand node for constant pool load: small offset.
6115 // The match rule is needed to generate the correct bottom_type(),
6116 // however this node should never match. The use of predicate is not
6117 // possible since ADLC forbids predicates for chain rules. The higher
6118 // costs do not prevent matching in this case. For that reason the
6119 // operand immP_NM with predicate(false) is used.
6120 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6121   match(Set dst src);
6122   effect(TEMP toc);
6123 
6124   ins_num_consts(1);
6125 
6126   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
6127   size(4);
6128   ins_encode( enc_load_long_constP(dst, src, toc) );
6129   ins_pipe(pipe_class_memory);
6130 %}
6131 
6132 // Expand node for constant pool load: large offset.
6133 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6134   effect(DEF dst, USE src, USE toc);
6135   predicate(false);
6136 
6137   ins_num_consts(1);
6138   ins_field_const_toc_offset(int);
6139 
6140   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
6141   size(4);
6142   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
6143   ins_pipe(pipe_class_default);
6144 %}
6145 
6146 // Expand node for constant pool load: large offset.
6147 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
6148   match(Set dst src);
6149   effect(TEMP base);
6150 
6151   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
6152 
6153   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
6154   size(4);
6155   ins_encode %{
6156     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
6157     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
6158     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
6159   %}
6160   ins_pipe(pipe_class_memory);
6161 %}
6162 
6163 // Load pointer constant from constant table. Expand in case an
6164 // offset > 16 bit is needed.
6165 // Adlc adds toc node MachConstantTableBase.
6166 instruct loadConP_Ex(iRegPdst dst, immP src) %{
6167   match(Set dst src);
6168   ins_cost(MEMORY_REF_COST);
6169 
6170   // This rule does not use "expand" because then
6171   // the result type is not known to be an Oop.  An ADLC
6172   // enhancement will be needed to make that work - not worth it!
6173 
6174   // If this instruction rematerializes, it prolongs the live range
6175   // of the toc node, causing illegal graphs.
6176   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
6177   ins_cannot_rematerialize(true);
6178 
6179   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
6180   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
6181 %}
6182 
6183 // Expand node for constant pool load: small offset.
6184 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
6185   effect(DEF dst, USE src, USE toc);
6186   ins_cost(MEMORY_REF_COST);
6187 
6188   ins_num_consts(1);
6189 
6190   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
6191   size(4);
6192   ins_encode %{
6193     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
6194     address float_address = __ float_constant($src$$constant);
6195     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
6196   %}
6197   ins_pipe(pipe_class_memory);
6198 %}
6199 
6200 // Expand node for constant pool load: large offset.
6201 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
6202   effect(DEF dst, USE src, USE toc);
6203   ins_cost(MEMORY_REF_COST);
6204 
6205   ins_num_consts(1);
6206 
6207   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6208             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
6209             "ADDIS   $toc, $toc, -offset_hi"%}
6210   size(12);
6211   ins_encode %{
6212     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6213     FloatRegister Rdst    = $dst$$FloatRegister;
6214     Register Rtoc         = $toc$$Register;
6215     address float_address = __ float_constant($src$$constant);
6216     int offset            = __ offset_to_method_toc(float_address);
6217     int hi = (offset + (1<<15))>>16;
6218     int lo = offset - hi * (1<<16);
6219 
6220     __ addis(Rtoc, Rtoc, hi);
6221     __ lfs(Rdst, lo, Rtoc);
6222     __ addis(Rtoc, Rtoc, -hi);
6223   %}
6224   ins_pipe(pipe_class_memory);
6225 %}
6226 
6227 // Adlc adds toc node MachConstantTableBase.
6228 instruct loadConF_Ex(regF dst, immF src) %{
6229   match(Set dst src);
6230   ins_cost(MEMORY_REF_COST);
6231 
6232   // See loadConP.
6233   ins_cannot_rematerialize(true);
6234 
6235   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6236   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
6237 %}
6238 
6239 // Expand node for constant pool load: small offset.
6240 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
6241   effect(DEF dst, USE src, USE toc);
6242   ins_cost(MEMORY_REF_COST);
6243 
6244   ins_num_consts(1);
6245 
6246   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
6247   size(4);
6248   ins_encode %{
6249     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
6250     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
6251     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
6252   %}
6253   ins_pipe(pipe_class_memory);
6254 %}
6255 
6256 // Expand node for constant pool load: large offset.
6257 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
6258   effect(DEF dst, USE src, USE toc);
6259   ins_cost(MEMORY_REF_COST);
6260 
6261   ins_num_consts(1);
6262 
6263   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6264             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
6265             "ADDIS   $toc, $toc, -offset_hi" %}
6266   size(12);
6267   ins_encode %{
6268     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6269     FloatRegister Rdst    = $dst$$FloatRegister;
6270     Register      Rtoc    = $toc$$Register;
6271     address float_address = __ double_constant($src$$constant);
6272     int offset            = __ offset_to_method_toc(float_address);
6273     int hi = (offset + (1<<15))>>16;
6274     int lo = offset - hi * (1<<16);
6275 
6276     __ addis(Rtoc, Rtoc, hi);
6277     __ lfd(Rdst, lo, Rtoc);
6278     __ addis(Rtoc, Rtoc, -hi);
6279   %}
6280   ins_pipe(pipe_class_memory);
6281 %}
6282 
6283 // Adlc adds toc node MachConstantTableBase.
6284 instruct loadConD_Ex(regD dst, immD src) %{
6285   match(Set dst src);
6286   ins_cost(MEMORY_REF_COST);
6287 
6288   // See loadConP.
6289   ins_cannot_rematerialize(true);
6290 
6291   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6292   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
6293 %}
6294 
6295 // Prefetch instructions.
6296 // Must be safe to execute with invalid address (cannot fault).
6297 
6298 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
6299   match(PrefetchRead (AddP mem src));
6300   ins_cost(MEMORY_REF_COST);
6301 
6302   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
6303   size(4);
6304   ins_encode %{
6305     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6306     __ dcbt($src$$Register, $mem$$base$$Register);
6307   %}
6308   ins_pipe(pipe_class_memory);
6309 %}
6310 
6311 instruct prefetchr_no_offset(indirectMemory mem) %{
6312   match(PrefetchRead mem);
6313   ins_cost(MEMORY_REF_COST);
6314 
6315   format %{ "PREFETCH $mem" %}
6316   size(4);
6317   ins_encode %{
6318     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
6319     __ dcbt($mem$$base$$Register);
6320   %}
6321   ins_pipe(pipe_class_memory);
6322 %}
6323 
6324 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
6325   match(PrefetchWrite (AddP mem src));
6326   ins_cost(MEMORY_REF_COST);
6327 
6328   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
6329   size(4);
6330   ins_encode %{
6331     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6332     __ dcbtst($src$$Register, $mem$$base$$Register);
6333   %}
6334   ins_pipe(pipe_class_memory);
6335 %}
6336 
6337 instruct prefetchw_no_offset(indirectMemory mem) %{
6338   match(PrefetchWrite mem);
6339   ins_cost(MEMORY_REF_COST);
6340 
6341   format %{ "PREFETCH $mem" %}
6342   size(4);
6343   ins_encode %{
6344     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6345     __ dcbtst($mem$$base$$Register);
6346   %}
6347   ins_pipe(pipe_class_memory);
6348 %}
6349 
6350 // Special prefetch versions which use the dcbz instruction.
6351 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
6352   match(PrefetchAllocation (AddP mem src));
6353   predicate(AllocatePrefetchStyle == 3);
6354   ins_cost(MEMORY_REF_COST);
6355 
6356   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
6357   size(4);
6358   ins_encode %{
6359     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6360     __ dcbz($src$$Register, $mem$$base$$Register);
6361   %}
6362   ins_pipe(pipe_class_memory);
6363 %}
6364 
6365 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
6366   match(PrefetchAllocation mem);
6367   predicate(AllocatePrefetchStyle == 3);
6368   ins_cost(MEMORY_REF_COST);
6369 
6370   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
6371   size(4);
6372   ins_encode %{
6373     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6374     __ dcbz($mem$$base$$Register);
6375   %}
6376   ins_pipe(pipe_class_memory);
6377 %}
6378 
6379 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
6380   match(PrefetchAllocation (AddP mem src));
6381   predicate(AllocatePrefetchStyle != 3);
6382   ins_cost(MEMORY_REF_COST);
6383 
6384   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
6385   size(4);
6386   ins_encode %{
6387     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6388     __ dcbtst($src$$Register, $mem$$base$$Register);
6389   %}
6390   ins_pipe(pipe_class_memory);
6391 %}
6392 
6393 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
6394   match(PrefetchAllocation mem);
6395   predicate(AllocatePrefetchStyle != 3);
6396   ins_cost(MEMORY_REF_COST);
6397 
6398   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
6399   size(4);
6400   ins_encode %{
6401     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6402     __ dcbtst($mem$$base$$Register);
6403   %}
6404   ins_pipe(pipe_class_memory);
6405 %}
6406 
6407 //----------Store Instructions-------------------------------------------------
6408 
6409 // Store Byte
6410 instruct storeB(memory mem, iRegIsrc src) %{
6411   match(Set mem (StoreB mem src));
6412   ins_cost(MEMORY_REF_COST);
6413 
6414   format %{ "STB     $src, $mem \t// byte" %}
6415   size(4);
6416   ins_encode %{
6417     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
6418     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6419     __ stb($src$$Register, Idisp, $mem$$base$$Register);
6420   %}
6421   ins_pipe(pipe_class_memory);
6422 %}
6423 
6424 // Store Char/Short
6425 instruct storeC(memory mem, iRegIsrc src) %{
6426   match(Set mem (StoreC mem src));
6427   ins_cost(MEMORY_REF_COST);
6428 
6429   format %{ "STH     $src, $mem \t// short" %}
6430   size(4);
6431   ins_encode %{
6432     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
6433     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6434     __ sth($src$$Register, Idisp, $mem$$base$$Register);
6435   %}
6436   ins_pipe(pipe_class_memory);
6437 %}
6438 
6439 // Store Integer
6440 instruct storeI(memory mem, iRegIsrc src) %{
6441   match(Set mem (StoreI mem src));
6442   ins_cost(MEMORY_REF_COST);
6443 
6444   format %{ "STW     $src, $mem" %}
6445   size(4);
6446   ins_encode( enc_stw(src, mem) );
6447   ins_pipe(pipe_class_memory);
6448 %}
6449 
6450 // ConvL2I + StoreI.
6451 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
6452   match(Set mem (StoreI mem (ConvL2I src)));
6453   ins_cost(MEMORY_REF_COST);
6454 
6455   format %{ "STW     l2i($src), $mem" %}
6456   size(4);
6457   ins_encode( enc_stw(src, mem) );
6458   ins_pipe(pipe_class_memory);
6459 %}
6460 
6461 // Store Long
6462 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
6463   match(Set mem (StoreL mem src));
6464   ins_cost(MEMORY_REF_COST);
6465 
6466   format %{ "STD     $src, $mem \t// long" %}
6467   size(4);
6468   ins_encode( enc_std(src, mem) );
6469   ins_pipe(pipe_class_memory);
6470 %}
6471 
6472 // Store super word nodes.
6473 
6474 // Store Aligned Packed Byte long register to memory
6475 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
6476   predicate(n->as_StoreVector()->memory_size() == 8);
6477   match(Set mem (StoreVector mem src));
6478   ins_cost(MEMORY_REF_COST);
6479 
6480   format %{ "STD     $mem, $src \t// packed8B" %}
6481   size(4);
6482   ins_encode( enc_std(src, mem) );
6483   ins_pipe(pipe_class_memory);
6484 %}
6485 
6486 // Store Compressed Oop
6487 instruct storeN(memory dst, iRegN_P2N src) %{
6488   match(Set dst (StoreN dst src));
6489   ins_cost(MEMORY_REF_COST);
6490 
6491   format %{ "STW     $src, $dst \t// compressed oop" %}
6492   size(4);
6493   ins_encode( enc_stw(src, dst) );
6494   ins_pipe(pipe_class_memory);
6495 %}
6496 
6497 // Store Compressed KLass
6498 instruct storeNKlass(memory dst, iRegN_P2N src) %{
6499   match(Set dst (StoreNKlass dst src));
6500   ins_cost(MEMORY_REF_COST);
6501 
6502   format %{ "STW     $src, $dst \t// compressed klass" %}
6503   size(4);
6504   ins_encode( enc_stw(src, dst) );
6505   ins_pipe(pipe_class_memory);
6506 %}
6507 
6508 // Store Pointer
6509 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
6510   match(Set dst (StoreP dst src));
6511   ins_cost(MEMORY_REF_COST);
6512 
6513   format %{ "STD     $src, $dst \t// ptr" %}
6514   size(4);
6515   ins_encode( enc_std(src, dst) );
6516   ins_pipe(pipe_class_memory);
6517 %}
6518 
6519 // Store Float
6520 instruct storeF(memory mem, regF src) %{
6521   match(Set mem (StoreF mem src));
6522   ins_cost(MEMORY_REF_COST);
6523 
6524   format %{ "STFS    $src, $mem" %}
6525   size(4);
6526   ins_encode( enc_stfs(src, mem) );
6527   ins_pipe(pipe_class_memory);
6528 %}
6529 
6530 // Store Double
6531 instruct storeD(memory mem, regD src) %{
6532   match(Set mem (StoreD mem src));
6533   ins_cost(MEMORY_REF_COST);
6534 
6535   format %{ "STFD    $src, $mem" %}
6536   size(4);
6537   ins_encode( enc_stfd(src, mem) );
6538   ins_pipe(pipe_class_memory);
6539 %}
6540 
6541 //----------Store Instructions With Zeros--------------------------------------
6542 
6543 // Card-mark for CMS garbage collection.
6544 // This cardmark does an optimization so that it must not always
6545 // do a releasing store. For this, it gets the address of
6546 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
6547 // (Using releaseFieldAddr in the match rule is a hack.)
6548 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
6549   match(Set mem (StoreCM mem releaseFieldAddr));
6550   predicate(false);
6551   ins_cost(MEMORY_REF_COST);
6552 
6553   // See loadConP.
6554   ins_cannot_rematerialize(true);
6555 
6556   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
6557   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
6558   ins_pipe(pipe_class_memory);
6559 %}
6560 
6561 // Card-mark for CMS garbage collection.
6562 // This cardmark does an optimization so that it must not always
6563 // do a releasing store. For this, it needs the constant address of
6564 // CMSCollectorCardTableModRefBSExt::_requires_release.
6565 // This constant address is split off here by expand so we can use
6566 // adlc / matcher functionality to load it from the constant section.
6567 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
6568   match(Set mem (StoreCM mem zero));
6569   predicate(UseConcMarkSweepGC);
6570 
6571   expand %{
6572     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
6573     iRegLdst releaseFieldAddress;
6574     loadConL_Ex(releaseFieldAddress, baseImm);
6575     storeCM_CMS(mem, releaseFieldAddress);
6576   %}
6577 %}
6578 
6579 instruct storeCM_G1(memory mem, immI_0 zero) %{
6580   match(Set mem (StoreCM mem zero));
6581   predicate(UseG1GC);
6582   ins_cost(MEMORY_REF_COST);
6583 
6584   ins_cannot_rematerialize(true);
6585 
6586   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
6587   size(8);
6588   ins_encode %{
6589     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6590     __ li(R0, 0);
6591     //__ release(); // G1: oops are allowed to get visible after dirty marking
6592     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
6593     __ stb(R0, $mem$$disp, $mem$$base$$Register);
6594   %}
6595   ins_pipe(pipe_class_memory);
6596 %}
6597 
6598 // Convert oop pointer into compressed form.
6599 
6600 // Nodes for postalloc expand.
6601 
6602 // Shift node for expand.
6603 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
6604   // The match rule is needed to make it a 'MachTypeNode'!
6605   match(Set dst (EncodeP src));
6606   predicate(false);
6607 
6608   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6609   size(4);
6610   ins_encode %{
6611     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6612     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6613   %}
6614   ins_pipe(pipe_class_default);
6615 %}
6616 
6617 // Add node for expand.
6618 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
6619   // The match rule is needed to make it a 'MachTypeNode'!
6620   match(Set dst (EncodeP src));
6621   predicate(false);
6622 
6623   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
6624   size(4);
6625   ins_encode %{
6626     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6627     __ subf($dst$$Register, R30, $src$$Register);
6628   %}
6629   ins_pipe(pipe_class_default);
6630 %}
6631 
6632 // Conditional sub base.
6633 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6634   // The match rule is needed to make it a 'MachTypeNode'!
6635   match(Set dst (EncodeP (Binary crx src1)));
6636   predicate(false);
6637 
6638   ins_variable_size_depending_on_alignment(true);
6639 
6640   format %{ "BEQ     $crx, done\n\t"
6641             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
6642             "done:" %}
6643   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
6644   ins_encode %{
6645     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6646     Label done;
6647     __ beq($crx$$CondRegister, done);
6648     __ subf($dst$$Register, R30, $src1$$Register);
6649     // TODO PPC port __ endgroup_if_needed(_size == 12);
6650     __ bind(done);
6651   %}
6652   ins_pipe(pipe_class_default);
6653 %}
6654 
6655 // Power 7 can use isel instruction
6656 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
6657   // The match rule is needed to make it a 'MachTypeNode'!
6658   match(Set dst (EncodeP (Binary crx src1)));
6659   predicate(false);
6660 
6661   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
6662   size(4);
6663   ins_encode %{
6664     // This is a Power7 instruction for which no machine description exists.
6665     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
6666     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6667   %}
6668   ins_pipe(pipe_class_default);
6669 %}
6670 
6671 // base != 0
6672 // 32G aligned narrow oop base.
6673 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
6674   match(Set dst (EncodeP src));
6675   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
6676 
6677   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6678   size(4);
6679   ins_encode %{
6680     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6681     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6682   %}
6683   ins_pipe(pipe_class_default);
6684 %}
6685 
6686 // shift != 0, base != 0
6687 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
6688   match(Set dst (EncodeP src));
6689   effect(TEMP crx);
6690   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
6691             Universe::narrow_oop_shift() != 0 &&
6692             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6693 
6694   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
6695   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
6696 %}
6697 
6698 // shift != 0, base != 0
6699 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
6700   match(Set dst (EncodeP src));
6701   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
6702             Universe::narrow_oop_shift() != 0 &&
6703             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
6704 
6705   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
6706   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
6707 %}
6708 
6709 // shift != 0, base == 0
6710 // TODO: This is the same as encodeP_shift. Merge!
6711 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
6712   match(Set dst (EncodeP src));
6713   predicate(Universe::narrow_oop_shift() != 0 &&
6714             Universe::narrow_oop_base() ==0);
6715 
6716   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
6717   size(4);
6718   ins_encode %{
6719     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6720     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6721   %}
6722   ins_pipe(pipe_class_default);
6723 %}
6724 
6725 // Compressed OOPs with narrow_oop_shift == 0.
6726 // shift == 0, base == 0
6727 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
6728   match(Set dst (EncodeP src));
6729   predicate(Universe::narrow_oop_shift() == 0);
6730 
6731   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
6732   // variable size, 0 or 4.
6733   ins_encode %{
6734     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6735     __ mr_if_needed($dst$$Register, $src$$Register);
6736   %}
6737   ins_pipe(pipe_class_default);
6738 %}
6739 
6740 // Decode nodes.
6741 
6742 // Shift node for expand.
6743 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
6744   // The match rule is needed to make it a 'MachTypeNode'!
6745   match(Set dst (DecodeN src));
6746   predicate(false);
6747 
6748   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
6749   size(4);
6750   ins_encode %{
6751     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6752     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6753   %}
6754   ins_pipe(pipe_class_default);
6755 %}
6756 
6757 // Add node for expand.
6758 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
6759   // The match rule is needed to make it a 'MachTypeNode'!
6760   match(Set dst (DecodeN src));
6761   predicate(false);
6762 
6763   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
6764   size(4);
6765   ins_encode %{
6766     // TODO: PPC port $archOpcode(ppc64Opcode_add);
6767     __ add($dst$$Register, $src$$Register, R30);
6768   %}
6769   ins_pipe(pipe_class_default);
6770 %}
6771 
6772 // conditianal add base for expand
6773 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6774   // The match rule is needed to make it a 'MachTypeNode'!
6775   // NOTICE that the rule is nonsense - we just have to make sure that:
6776   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6777   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6778   match(Set dst (DecodeN (Binary crx src1)));
6779   predicate(false);
6780 
6781   ins_variable_size_depending_on_alignment(true);
6782 
6783   format %{ "BEQ     $crx, done\n\t"
6784             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
6785             "done:" %}
6786   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
6787   ins_encode %{
6788     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
6789     Label done;
6790     __ beq($crx$$CondRegister, done);
6791     __ add($dst$$Register, $src1$$Register, R30);
6792     // TODO PPC port  __ endgroup_if_needed(_size == 12);
6793     __ bind(done);
6794   %}
6795   ins_pipe(pipe_class_default);
6796 %}
6797 
6798 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
6799   // The match rule is needed to make it a 'MachTypeNode'!
6800   // NOTICE that the rule is nonsense - we just have to make sure that:
6801   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6802   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6803   match(Set dst (DecodeN (Binary crx src1)));
6804   predicate(false);
6805 
6806   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
6807   size(4);
6808   ins_encode %{
6809     // This is a Power7 instruction for which no machine description exists.
6810     // TODO: PPC port $archOpcode(ppc64Opcode_compound); 
6811     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6812   %}
6813   ins_pipe(pipe_class_default);
6814 %}
6815 
6816 //  shift != 0, base != 0
6817 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6818   match(Set dst (DecodeN src));
6819   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6820              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6821             Universe::narrow_oop_shift() != 0 &&
6822             Universe::narrow_oop_base() != 0);
6823   effect(TEMP crx);
6824 
6825   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
6826   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
6827 %}
6828 
6829 // shift != 0, base == 0
6830 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
6831   match(Set dst (DecodeN src));
6832   predicate(Universe::narrow_oop_shift() != 0 &&
6833             Universe::narrow_oop_base() == 0);
6834 
6835   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
6836   size(4);
6837   ins_encode %{
6838     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6839     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6840   %}
6841   ins_pipe(pipe_class_default);
6842 %}
6843 
6844 // src != 0, shift != 0, base != 0
6845 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
6846   match(Set dst (DecodeN src));
6847   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6848              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6849             Universe::narrow_oop_shift() != 0 &&
6850             Universe::narrow_oop_base() != 0);
6851 
6852   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
6853   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
6854 %}
6855 
6856 // Compressed OOPs with narrow_oop_shift == 0.
6857 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
6858   match(Set dst (DecodeN src));
6859   predicate(Universe::narrow_oop_shift() == 0);
6860   ins_cost(DEFAULT_COST);
6861 
6862   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
6863   // variable size, 0 or 4.
6864   ins_encode %{
6865     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6866     __ mr_if_needed($dst$$Register, $src$$Register);
6867   %}
6868   ins_pipe(pipe_class_default);
6869 %}
6870 
6871 // Convert compressed oop into int for vectors alignment masking.
6872 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
6873   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6874   predicate(Universe::narrow_oop_shift() == 0);
6875   ins_cost(DEFAULT_COST);
6876 
6877   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
6878   // variable size, 0 or 4.
6879   ins_encode %{
6880     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6881     __ mr_if_needed($dst$$Register, $src$$Register);
6882   %}
6883   ins_pipe(pipe_class_default);
6884 %}
6885 
6886 // Convert klass pointer into compressed form.
6887 
6888 // Nodes for postalloc expand.
6889 
6890 // Shift node for expand.
6891 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
6892   // The match rule is needed to make it a 'MachTypeNode'!
6893   match(Set dst (EncodePKlass src));
6894   predicate(false);
6895 
6896   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6897   size(4);
6898   ins_encode %{
6899     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6900     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
6901   %}
6902   ins_pipe(pipe_class_default);
6903 %}
6904 
6905 // Add node for expand.
6906 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
6907   // The match rule is needed to make it a 'MachTypeNode'!
6908   match(Set dst (EncodePKlass (Binary base src)));
6909   predicate(false);
6910 
6911   format %{ "SUB     $dst, $base, $src \t// encode" %}
6912   size(4);
6913   ins_encode %{
6914     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6915     __ subf($dst$$Register, $base$$Register, $src$$Register);
6916   %}
6917   ins_pipe(pipe_class_default);
6918 %}
6919 
6920 // base != 0
6921 // 32G aligned narrow oop base.
6922 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
6923   match(Set dst (EncodePKlass src));
6924   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
6925 
6926   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
6927   size(4);
6928   ins_encode %{
6929     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6930     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6931   %}
6932   ins_pipe(pipe_class_default);
6933 %}
6934 
6935 // shift != 0, base != 0
6936 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
6937   match(Set dst (EncodePKlass (Binary base src)));
6938   predicate(false);
6939 
6940   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
6941   postalloc_expand %{
6942     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
6943     n1->add_req(n_region, n_base, n_src);
6944     n1->_opnds[0] = op_dst;
6945     n1->_opnds[1] = op_base;
6946     n1->_opnds[2] = op_src;
6947     n1->_bottom_type = _bottom_type;
6948 
6949     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
6950     n2->add_req(n_region, n1);
6951     n2->_opnds[0] = op_dst;
6952     n2->_opnds[1] = op_dst;
6953     n2->_bottom_type = _bottom_type;
6954     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6955     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6956 
6957     nodes->push(n1);
6958     nodes->push(n2);
6959   %}
6960 %}
6961 
6962 // shift != 0, base != 0
6963 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
6964   match(Set dst (EncodePKlass src));
6965   //predicate(Universe::narrow_klass_shift() != 0 &&
6966   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
6967 
6968   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
6969   ins_cost(DEFAULT_COST*2);  // Don't count constant.
6970   expand %{
6971     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
6972     iRegLdst base;
6973     loadConL_Ex(base, baseImm);
6974     encodePKlass_not_null_Ex(dst, base, src);
6975   %}
6976 %}
6977 
6978 // Decode nodes.
6979 
6980 // Shift node for expand.
6981 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
6982   // The match rule is needed to make it a 'MachTypeNode'!
6983   match(Set dst (DecodeNKlass src));
6984   predicate(false);
6985 
6986   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
6987   size(4);
6988   ins_encode %{
6989     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6990     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
6991   %}
6992   ins_pipe(pipe_class_default);
6993 %}
6994 
6995 // Add node for expand.
6996 
6997 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
6998   // The match rule is needed to make it a 'MachTypeNode'!
6999   match(Set dst (DecodeNKlass (Binary base src)));
7000   predicate(false);
7001 
7002   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
7003   size(4);
7004   ins_encode %{
7005     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7006     __ add($dst$$Register, $base$$Register, $src$$Register);
7007   %}
7008   ins_pipe(pipe_class_default);
7009 %}
7010 
7011 // src != 0, shift != 0, base != 0
7012 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
7013   match(Set dst (DecodeNKlass (Binary base src)));
7014   //effect(kill src); // We need a register for the immediate result after shifting.
7015   predicate(false);
7016 
7017   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
7018   postalloc_expand %{
7019     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
7020     n1->add_req(n_region, n_base, n_src);
7021     n1->_opnds[0] = op_dst;
7022     n1->_opnds[1] = op_base;
7023     n1->_opnds[2] = op_src;
7024     n1->_bottom_type = _bottom_type;
7025 
7026     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
7027     n2->add_req(n_region, n2);
7028     n2->_opnds[0] = op_dst;
7029     n2->_opnds[1] = op_dst;
7030     n2->_bottom_type = _bottom_type;
7031 
7032     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7033     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7034 
7035     nodes->push(n1);
7036     nodes->push(n2);
7037   %}
7038 %}
7039 
7040 // src != 0, shift != 0, base != 0
7041 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
7042   match(Set dst (DecodeNKlass src));
7043   // predicate(Universe::narrow_klass_shift() != 0 &&
7044   //           Universe::narrow_klass_base() != 0);
7045 
7046   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
7047 
7048   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7049   expand %{
7050     // We add first, then we shift. Like this, we can get along with one register less.
7051     // But we have to load the base pre-shifted.
7052     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
7053     iRegLdst base;
7054     loadConL_Ex(base, baseImm);
7055     decodeNKlass_notNull_addBase_Ex(dst, base, src);
7056   %}
7057 %}
7058 
7059 //----------MemBar Instructions-----------------------------------------------
7060 // Memory barrier flavors
7061 
7062 instruct membar_acquire() %{
7063   match(LoadFence);
7064   ins_cost(4*MEMORY_REF_COST);
7065 
7066   format %{ "MEMBAR-acquire" %}
7067   size(4);
7068   ins_encode %{
7069     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7070     __ acquire();
7071   %}
7072   ins_pipe(pipe_class_default);
7073 %}
7074 
7075 instruct unnecessary_membar_acquire() %{
7076   match(MemBarAcquire);
7077   ins_cost(0);
7078 
7079   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
7080   size(0);
7081   ins_encode( /*empty*/ );
7082   ins_pipe(pipe_class_default);
7083 %}
7084 
7085 instruct membar_acquire_lock() %{
7086   match(MemBarAcquireLock);
7087   ins_cost(0);
7088 
7089   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
7090   size(0);
7091   ins_encode( /*empty*/ );
7092   ins_pipe(pipe_class_default);
7093 %}
7094 
7095 instruct membar_release() %{
7096   match(MemBarRelease);
7097   match(StoreFence);
7098   ins_cost(4*MEMORY_REF_COST);
7099 
7100   format %{ "MEMBAR-release" %}
7101   size(4);
7102   ins_encode %{
7103     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7104     __ release();
7105   %}
7106   ins_pipe(pipe_class_default);
7107 %}
7108 
7109 instruct membar_storestore() %{
7110   match(MemBarStoreStore);
7111   ins_cost(4*MEMORY_REF_COST);
7112 
7113   format %{ "MEMBAR-store-store" %}
7114   size(4);
7115   ins_encode %{
7116     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7117     __ membar(Assembler::StoreStore);
7118   %}
7119   ins_pipe(pipe_class_default);
7120 %}
7121 
7122 instruct membar_release_lock() %{
7123   match(MemBarReleaseLock);
7124   ins_cost(0);
7125 
7126   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
7127   size(0);
7128   ins_encode( /*empty*/ );
7129   ins_pipe(pipe_class_default);
7130 %}
7131 
7132 instruct membar_volatile() %{
7133   match(MemBarVolatile);
7134   ins_cost(4*MEMORY_REF_COST);
7135 
7136   format %{ "MEMBAR-volatile" %}
7137   size(4);
7138   ins_encode %{
7139     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
7140     __ fence();
7141   %}
7142   ins_pipe(pipe_class_default);
7143 %}
7144 
7145 // This optimization is wrong on PPC. The following pattern is not supported:
7146 //  MemBarVolatile
7147 //   ^        ^
7148 //   |        |
7149 //  CtrlProj MemProj
7150 //   ^        ^
7151 //   |        |
7152 //   |       Load
7153 //   |
7154 //  MemBarVolatile
7155 //
7156 //  The first MemBarVolatile could get optimized out! According to
7157 //  Vladimir, this pattern can not occur on Oracle platforms.
7158 //  However, it does occur on PPC64 (because of membars in
7159 //  inline_unsafe_load_store).
7160 //
7161 // Add this node again if we found a good solution for inline_unsafe_load_store().
7162 // Don't forget to look at the implementation of post_store_load_barrier again, 
7163 // we did other fixes in that method.
7164 //instruct unnecessary_membar_volatile() %{
7165 //  match(MemBarVolatile);
7166 //  predicate(Matcher::post_store_load_barrier(n));
7167 //  ins_cost(0);
7168 //
7169 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
7170 //  size(0);
7171 //  ins_encode( /*empty*/ );
7172 //  ins_pipe(pipe_class_default);
7173 //%}
7174 
7175 instruct membar_CPUOrder() %{
7176   match(MemBarCPUOrder);
7177   ins_cost(0);
7178 
7179   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
7180   size(0);
7181   ins_encode( /*empty*/ );
7182   ins_pipe(pipe_class_default);
7183 %}
7184 
7185 //----------Conditional Move---------------------------------------------------
7186 
7187 // Cmove using isel.
7188 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7189   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7190   predicate(VM_Version::has_isel());
7191   ins_cost(DEFAULT_COST);
7192 
7193   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7194   size(4);
7195   ins_encode %{
7196     // This is a Power7 instruction for which no machine description
7197     // exists. Anyways, the scheduler should be off on Power7.
7198     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7199     int cc        = $cmp$$cmpcode;
7200     __ isel($dst$$Register, $crx$$CondRegister, 
7201             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7202   %}
7203   ins_pipe(pipe_class_default);
7204 %}
7205 
7206 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
7207   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7208   predicate(!VM_Version::has_isel());
7209   ins_cost(DEFAULT_COST+BRANCH_COST);
7210 
7211   ins_variable_size_depending_on_alignment(true);
7212 
7213   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7214   // Worst case is branch + move + stop, no stop without scheduler
7215   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7216   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7217   ins_pipe(pipe_class_default);
7218 %}
7219 
7220 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
7221   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7222   ins_cost(DEFAULT_COST+BRANCH_COST);
7223 
7224   ins_variable_size_depending_on_alignment(true);
7225 
7226   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7227   // Worst case is branch + move + stop, no stop without scheduler
7228   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7229   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7230   ins_pipe(pipe_class_default);
7231 %}
7232 
7233 // Cmove using isel.
7234 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7235   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7236   predicate(VM_Version::has_isel());
7237   ins_cost(DEFAULT_COST);
7238 
7239   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7240   size(4);
7241   ins_encode %{
7242     // This is a Power7 instruction for which no machine description
7243     // exists. Anyways, the scheduler should be off on Power7.
7244     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7245     int cc        = $cmp$$cmpcode;
7246     __ isel($dst$$Register, $crx$$CondRegister, 
7247             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7248   %}
7249   ins_pipe(pipe_class_default);
7250 %}
7251 
7252 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
7253   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7254   predicate(!VM_Version::has_isel());
7255   ins_cost(DEFAULT_COST+BRANCH_COST);
7256 
7257   ins_variable_size_depending_on_alignment(true);
7258 
7259   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7260   // Worst case is branch + move + stop, no stop without scheduler.
7261   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7262   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7263   ins_pipe(pipe_class_default);
7264 %}
7265 
7266 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
7267   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7268   ins_cost(DEFAULT_COST+BRANCH_COST);
7269 
7270   ins_variable_size_depending_on_alignment(true);
7271 
7272   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7273   // Worst case is branch + move + stop, no stop without scheduler.
7274   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7275   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7276   ins_pipe(pipe_class_default);
7277 %}
7278 
7279 // Cmove using isel.
7280 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7281   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7282   predicate(VM_Version::has_isel());
7283   ins_cost(DEFAULT_COST);
7284 
7285   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7286   size(4);
7287   ins_encode %{
7288     // This is a Power7 instruction for which no machine description
7289     // exists. Anyways, the scheduler should be off on Power7.
7290     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7291     int cc        = $cmp$$cmpcode;
7292     __ isel($dst$$Register, $crx$$CondRegister, 
7293             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7294   %}
7295   ins_pipe(pipe_class_default);
7296 %}
7297 
7298 // Conditional move for RegN. Only cmov(reg, reg).
7299 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
7300   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7301   predicate(!VM_Version::has_isel());
7302   ins_cost(DEFAULT_COST+BRANCH_COST);
7303 
7304   ins_variable_size_depending_on_alignment(true);
7305 
7306   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7307   // Worst case is branch + move + stop, no stop without scheduler.
7308   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7309   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7310   ins_pipe(pipe_class_default);
7311 %}
7312 
7313 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
7314   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7315   ins_cost(DEFAULT_COST+BRANCH_COST);
7316 
7317   ins_variable_size_depending_on_alignment(true);
7318 
7319   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7320   // Worst case is branch + move + stop, no stop without scheduler.
7321   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7322   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7323   ins_pipe(pipe_class_default);
7324 %}
7325 
7326 // Cmove using isel.
7327 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
7328   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7329   predicate(VM_Version::has_isel());
7330   ins_cost(DEFAULT_COST);
7331 
7332   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7333   size(4);
7334   ins_encode %{
7335     // This is a Power7 instruction for which no machine description
7336     // exists. Anyways, the scheduler should be off on Power7.
7337     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7338     int cc        = $cmp$$cmpcode;
7339     __ isel($dst$$Register, $crx$$CondRegister, 
7340             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7341   %}
7342   ins_pipe(pipe_class_default);
7343 %}
7344 
7345 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
7346   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7347   predicate(!VM_Version::has_isel());
7348   ins_cost(DEFAULT_COST+BRANCH_COST);
7349 
7350   ins_variable_size_depending_on_alignment(true);
7351 
7352   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7353   // Worst case is branch + move + stop, no stop without scheduler.
7354   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7355   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7356   ins_pipe(pipe_class_default);
7357 %}
7358 
7359 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
7360   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7361   ins_cost(DEFAULT_COST+BRANCH_COST);
7362 
7363   ins_variable_size_depending_on_alignment(true);
7364 
7365   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7366   // Worst case is branch + move + stop, no stop without scheduler.
7367   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7368   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7369   ins_pipe(pipe_class_default);
7370 %}
7371 
7372 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
7373   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
7374   ins_cost(DEFAULT_COST+BRANCH_COST);
7375 
7376   ins_variable_size_depending_on_alignment(true);
7377 
7378   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7379   // Worst case is branch + move + stop, no stop without scheduler.
7380   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7381   ins_encode %{
7382     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7383     Label done;
7384     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7385     // Branch if not (cmp crx).
7386     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7387     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7388     // TODO PPC port __ endgroup_if_needed(_size == 12);
7389     __ bind(done);
7390   %}
7391   ins_pipe(pipe_class_default);
7392 %}
7393 
7394 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
7395   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
7396   ins_cost(DEFAULT_COST+BRANCH_COST);
7397 
7398   ins_variable_size_depending_on_alignment(true);
7399 
7400   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7401   // Worst case is branch + move + stop, no stop without scheduler.
7402   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7403   ins_encode %{
7404     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7405     Label done;
7406     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7407     // Branch if not (cmp crx).
7408     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7409     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7410     // TODO PPC port __ endgroup_if_needed(_size == 12);
7411     __ bind(done);
7412   %}
7413   ins_pipe(pipe_class_default);
7414 %}
7415 
7416 //----------Conditional_store--------------------------------------------------
7417 // Conditional-store of the updated heap-top.
7418 // Used during allocation of the shared heap.
7419 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
7420 
7421 // As compareAndSwapL, but return flag register instead of boolean value in
7422 // int register.
7423 // Used by sun/misc/AtomicLongCSImpl.java.
7424 // Mem_ptr must be a memory operand, else this node does not get
7425 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7426 // can be rematerialized which leads to errors.
7427 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
7428   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
7429   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7430   ins_encode %{
7431     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7432     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7433                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7434                 noreg, NULL, true);
7435   %}
7436   ins_pipe(pipe_class_default);
7437 %}
7438 
7439 // As compareAndSwapP, but return flag register instead of boolean value in
7440 // int register.
7441 // This instruction is matched if UseTLAB is off.
7442 // Mem_ptr must be a memory operand, else this node does not get
7443 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7444 // can be rematerialized which leads to errors.
7445 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
7446   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
7447   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7448   ins_encode %{
7449     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7450     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7451                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
7452                 noreg, NULL, true);
7453   %}
7454   ins_pipe(pipe_class_default);
7455 %}
7456 
7457 // Implement LoadPLocked. Must be ordered against changes of the memory location
7458 // by storePConditional.
7459 // Don't know whether this is ever used.
7460 instruct loadPLocked(iRegPdst dst, memory mem) %{
7461   match(Set dst (LoadPLocked mem));
7462   ins_cost(MEMORY_REF_COST);
7463 
7464   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
7465             "TWI     $dst\n\t"
7466             "ISYNC" %}
7467   size(12);
7468   ins_encode( enc_ld_ac(dst, mem) );
7469   ins_pipe(pipe_class_memory);
7470 %}
7471 
7472 //----------Compare-And-Swap---------------------------------------------------
7473 
7474 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
7475 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
7476 // matched.
7477 
7478 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
7479   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
7480   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7481   // Variable size: instruction count smaller if regs are disjoint.
7482   ins_encode %{
7483     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7484     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7485     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register, 
7486                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(), 
7487                 $res$$Register, true);
7488   %}
7489   ins_pipe(pipe_class_default);
7490 %}
7491 
7492 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
7493   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
7494   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7495   // Variable size: instruction count smaller if regs are disjoint.
7496   ins_encode %{
7497     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7498     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7499     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7500                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7501                 $res$$Register, true);
7502   %}
7503   ins_pipe(pipe_class_default);
7504 %}
7505 
7506 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
7507   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
7508   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
7509   // Variable size: instruction count smaller if regs are disjoint.
7510   ins_encode %{
7511     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7512     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7513     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7514                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7515                 $res$$Register, NULL, true);
7516   %}
7517   ins_pipe(pipe_class_default);
7518 %}
7519 
7520 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
7521   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
7522   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
7523   // Variable size: instruction count smaller if regs are disjoint.
7524   ins_encode %{
7525     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7526     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7527     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7528                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7529                 $res$$Register, NULL, true);
7530   %}
7531   ins_pipe(pipe_class_default);
7532 %}
7533 
7534 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7535   match(Set res (GetAndAddI mem_ptr src));
7536   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
7537   // Variable size: instruction count smaller if regs are disjoint.
7538   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
7539   ins_pipe(pipe_class_default);
7540 %}
7541 
7542 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7543   match(Set res (GetAndAddL mem_ptr src));
7544   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
7545   // Variable size: instruction count smaller if regs are disjoint.
7546   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
7547   ins_pipe(pipe_class_default);
7548 %}
7549 
7550 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
7551   match(Set res (GetAndSetI mem_ptr src));
7552   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
7553   // Variable size: instruction count smaller if regs are disjoint.
7554   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7555   ins_pipe(pipe_class_default);
7556 %}
7557 
7558 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
7559   match(Set res (GetAndSetL mem_ptr src));
7560   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
7561   // Variable size: instruction count smaller if regs are disjoint.
7562   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7563   ins_pipe(pipe_class_default);
7564 %}
7565 
7566 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
7567   match(Set res (GetAndSetP mem_ptr src));
7568   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
7569   // Variable size: instruction count smaller if regs are disjoint.
7570   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7571   ins_pipe(pipe_class_default);
7572 %}
7573 
7574 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
7575   match(Set res (GetAndSetN mem_ptr src));
7576   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
7577   // Variable size: instruction count smaller if regs are disjoint.
7578   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7579   ins_pipe(pipe_class_default);
7580 %}
7581 
7582 //----------Arithmetic Instructions--------------------------------------------
7583 // Addition Instructions
7584 
7585 // Register Addition
7586 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
7587   match(Set dst (AddI src1 src2));
7588   format %{ "ADD     $dst, $src1, $src2" %}
7589   size(4);
7590   ins_encode %{
7591     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7592     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7593   %}
7594   ins_pipe(pipe_class_default);
7595 %}
7596 
7597 // Expand does not work with above instruct. (??)
7598 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7599   // no match-rule
7600   effect(DEF dst, USE src1, USE src2);
7601   format %{ "ADD     $dst, $src1, $src2" %}
7602   size(4);
7603   ins_encode %{
7604     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7605     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7606   %}
7607   ins_pipe(pipe_class_default);
7608 %}
7609 
7610 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
7611   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
7612   ins_cost(DEFAULT_COST*3);
7613 
7614   expand %{
7615     // FIXME: we should do this in the ideal world.
7616     iRegIdst tmp1;
7617     iRegIdst tmp2;
7618     addI_reg_reg(tmp1, src1, src2);
7619     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
7620     addI_reg_reg(dst, tmp1, tmp2);
7621   %}
7622 %}
7623 
7624 // Immediate Addition
7625 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7626   match(Set dst (AddI src1 src2));
7627   format %{ "ADDI    $dst, $src1, $src2" %}
7628   size(4);
7629   ins_encode %{
7630     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7631     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7632   %}
7633   ins_pipe(pipe_class_default);
7634 %}
7635 
7636 // Immediate Addition with 16-bit shifted operand
7637 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
7638   match(Set dst (AddI src1 src2));
7639   format %{ "ADDIS   $dst, $src1, $src2" %}
7640   size(4);
7641   ins_encode %{
7642     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7643     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7644   %}
7645   ins_pipe(pipe_class_default);
7646 %}
7647 
7648 // Long Addition
7649 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7650   match(Set dst (AddL src1 src2));
7651   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7652   size(4);
7653   ins_encode %{
7654     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7655     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7656   %}
7657   ins_pipe(pipe_class_default);
7658 %}
7659 
7660 // Expand does not work with above instruct. (??)
7661 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7662   // no match-rule
7663   effect(DEF dst, USE src1, USE src2);
7664   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7665   size(4);
7666   ins_encode %{
7667     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7668     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7669   %}
7670   ins_pipe(pipe_class_default);
7671 %}
7672 
7673 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
7674   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
7675   ins_cost(DEFAULT_COST*3);
7676 
7677   expand %{
7678     // FIXME: we should do this in the ideal world.
7679     iRegLdst tmp1;
7680     iRegLdst tmp2;
7681     addL_reg_reg(tmp1, src1, src2);
7682     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
7683     addL_reg_reg(dst, tmp1, tmp2);
7684   %}
7685 %}
7686 
7687 // AddL + ConvL2I.
7688 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7689   match(Set dst (ConvL2I (AddL src1 src2)));
7690 
7691   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
7692   size(4);
7693   ins_encode %{
7694     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7695     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7696   %}
7697   ins_pipe(pipe_class_default);
7698 %}
7699 
7700 // No constant pool entries required.
7701 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7702   match(Set dst (AddL src1 src2));
7703 
7704   format %{ "ADDI    $dst, $src1, $src2" %}
7705   size(4);
7706   ins_encode %{
7707     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7708     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7709   %}
7710   ins_pipe(pipe_class_default);
7711 %}
7712 
7713 // Long Immediate Addition with 16-bit shifted operand.
7714 // No constant pool entries required.
7715 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
7716   match(Set dst (AddL src1 src2));
7717 
7718   format %{ "ADDIS   $dst, $src1, $src2" %}
7719   size(4);
7720   ins_encode %{
7721     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7722     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7723   %}
7724   ins_pipe(pipe_class_default);
7725 %}
7726 
7727 // Pointer Register Addition
7728 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
7729   match(Set dst (AddP src1 src2));
7730   format %{ "ADD     $dst, $src1, $src2" %}
7731   size(4);
7732   ins_encode %{
7733     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7734     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7735   %}
7736   ins_pipe(pipe_class_default);
7737 %}
7738 
7739 // Pointer Immediate Addition
7740 // No constant pool entries required.
7741 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
7742   match(Set dst (AddP src1 src2));
7743 
7744   format %{ "ADDI    $dst, $src1, $src2" %}
7745   size(4);
7746   ins_encode %{
7747     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7748     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7749   %}
7750   ins_pipe(pipe_class_default);
7751 %}
7752 
7753 // Pointer Immediate Addition with 16-bit shifted operand.
7754 // No constant pool entries required.
7755 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
7756   match(Set dst (AddP src1 src2));
7757 
7758   format %{ "ADDIS   $dst, $src1, $src2" %}
7759   size(4);
7760   ins_encode %{
7761     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7762     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7763   %}
7764   ins_pipe(pipe_class_default);
7765 %}
7766 
7767 //---------------------
7768 // Subtraction Instructions
7769 
7770 // Register Subtraction
7771 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7772   match(Set dst (SubI src1 src2));
7773   format %{ "SUBF    $dst, $src2, $src1" %}
7774   size(4);
7775   ins_encode %{
7776     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7777     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7778   %}
7779   ins_pipe(pipe_class_default);
7780 %}
7781 
7782 // Immediate Subtraction
7783 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
7784 // so this rule seems to be unused.
7785 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7786   match(Set dst (SubI src1 src2));
7787   format %{ "SUBI    $dst, $src1, $src2" %}
7788   size(4);
7789   ins_encode %{
7790     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7791     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7792   %}
7793   ins_pipe(pipe_class_default);
7794 %}
7795 
7796 // SubI from constant (using subfic).
7797 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
7798   match(Set dst (SubI src1 src2));
7799   format %{ "SUBI    $dst, $src1, $src2" %}
7800 
7801   size(4);
7802   ins_encode %{
7803     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
7804     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
7805   %}
7806   ins_pipe(pipe_class_default);
7807 %}
7808 
7809 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
7810 // positive integers and 0xF...F for negative ones.
7811 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
7812   // no match-rule, false predicate
7813   effect(DEF dst, USE src);
7814   predicate(false);
7815 
7816   format %{ "SRAWI   $dst, $src, #31" %}
7817   size(4);
7818   ins_encode %{
7819     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
7820     __ srawi($dst$$Register, $src$$Register, 0x1f);
7821   %}
7822   ins_pipe(pipe_class_default);
7823 %}
7824 
7825 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
7826   match(Set dst (AbsI src));
7827   ins_cost(DEFAULT_COST*3);
7828 
7829   expand %{
7830     iRegIdst tmp1;
7831     iRegIdst tmp2;
7832     signmask32I_regI(tmp1, src);
7833     xorI_reg_reg(tmp2, tmp1, src);
7834     subI_reg_reg(dst, tmp2, tmp1);
7835   %}
7836 %}
7837 
7838 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
7839   match(Set dst (SubI zero src2));
7840   format %{ "NEG     $dst, $src2" %}
7841   size(4);
7842   ins_encode %{
7843     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7844     __ neg($dst$$Register, $src2$$Register);
7845   %}
7846   ins_pipe(pipe_class_default);
7847 %}
7848 
7849 // Long subtraction
7850 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7851   match(Set dst (SubL src1 src2));
7852   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
7853   size(4);
7854   ins_encode %{
7855     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7856     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7857   %}
7858   ins_pipe(pipe_class_default);
7859 %}
7860 
7861 // SubL + convL2I.
7862 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7863   match(Set dst (ConvL2I (SubL src1 src2)));
7864 
7865   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
7866   size(4);
7867   ins_encode %{
7868     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7869     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7870   %}
7871   ins_pipe(pipe_class_default);
7872 %}
7873 
7874 // Immediate Subtraction
7875 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
7876 // so this rule seems to be unused.
7877 // No constant pool entries required.
7878 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7879   match(Set dst (SubL src1 src2));
7880 
7881   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
7882   size(4);
7883   ins_encode %{
7884     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7885     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
7886   %}
7887   ins_pipe(pipe_class_default);
7888 %}
7889 
7890 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7891 // positive longs and 0xF...F for negative ones.
7892 instruct signmask64I_regI(iRegIdst dst, iRegIsrc src) %{
7893   // no match-rule, false predicate
7894   effect(DEF dst, USE src);
7895   predicate(false);
7896 
7897   format %{ "SRADI   $dst, $src, #63" %}
7898   size(4);
7899   ins_encode %{
7900     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7901     __ sradi($dst$$Register, $src$$Register, 0x3f);
7902   %}
7903   ins_pipe(pipe_class_default);
7904 %}
7905 
7906 // Long negation
7907 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
7908   match(Set dst (SubL zero src2));
7909   format %{ "NEG     $dst, $src2 \t// long" %}
7910   size(4);
7911   ins_encode %{
7912     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7913     __ neg($dst$$Register, $src2$$Register);
7914   %}
7915   ins_pipe(pipe_class_default);
7916 %}
7917 
7918 // NegL + ConvL2I.
7919 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
7920   match(Set dst (ConvL2I (SubL zero src2)));
7921 
7922   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
7923   size(4);
7924   ins_encode %{
7925     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7926     __ neg($dst$$Register, $src2$$Register);
7927   %}
7928   ins_pipe(pipe_class_default);
7929 %}
7930 
7931 // Multiplication Instructions
7932 // Integer Multiplication
7933 
7934 // Register Multiplication
7935 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7936   match(Set dst (MulI src1 src2));
7937   ins_cost(DEFAULT_COST);
7938 
7939   format %{ "MULLW   $dst, $src1, $src2" %}
7940   size(4);
7941   ins_encode %{
7942     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
7943     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
7944   %}
7945   ins_pipe(pipe_class_default);
7946 %}
7947 
7948 // Immediate Multiplication
7949 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7950   match(Set dst (MulI src1 src2));
7951   ins_cost(DEFAULT_COST);
7952 
7953   format %{ "MULLI   $dst, $src1, $src2" %}
7954   size(4);
7955   ins_encode %{
7956     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
7957     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
7958   %}
7959   ins_pipe(pipe_class_default);
7960 %}
7961 
7962 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7963   match(Set dst (MulL src1 src2));
7964   ins_cost(DEFAULT_COST);
7965 
7966   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
7967   size(4);
7968   ins_encode %{
7969     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
7970     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
7971   %}
7972   ins_pipe(pipe_class_default);
7973 %}
7974 
7975 // Multiply high for optimized long division by constant.
7976 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7977   match(Set dst (MulHiL src1 src2));
7978   ins_cost(DEFAULT_COST);
7979 
7980   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
7981   size(4);
7982   ins_encode %{
7983     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
7984     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
7985   %}
7986   ins_pipe(pipe_class_default);
7987 %}
7988 
7989 // Immediate Multiplication
7990 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7991   match(Set dst (MulL src1 src2));
7992   ins_cost(DEFAULT_COST);
7993 
7994   format %{ "MULLI   $dst, $src1, $src2" %}
7995   size(4);
7996   ins_encode %{
7997     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
7998     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
7999   %}
8000   ins_pipe(pipe_class_default);
8001 %}
8002 
8003 // Integer Division with Immediate -1: Negate.
8004 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
8005   match(Set dst (DivI src1 src2));
8006   ins_cost(DEFAULT_COST);
8007 
8008   format %{ "NEG     $dst, $src1 \t// /-1" %}
8009   size(4);
8010   ins_encode %{
8011     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8012     __ neg($dst$$Register, $src1$$Register);
8013   %}
8014   ins_pipe(pipe_class_default);
8015 %}
8016 
8017 // Integer Division with constant, but not -1.
8018 // We should be able to improve this by checking the type of src2.
8019 // It might well be that src2 is known to be positive.
8020 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8021   match(Set dst (DivI src1 src2));
8022   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
8023   ins_cost(2*DEFAULT_COST);
8024 
8025   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
8026   size(4);
8027   ins_encode %{
8028     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
8029     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
8030   %}
8031   ins_pipe(pipe_class_default);
8032 %}
8033 
8034 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
8035   effect(USE_DEF dst, USE src1, USE crx);
8036   predicate(false);
8037 
8038   ins_variable_size_depending_on_alignment(true);
8039 
8040   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8041   // Worst case is branch + move + stop, no stop without scheduler.
8042   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8043   ins_encode %{
8044     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8045     Label done;
8046     __ bne($crx$$CondRegister, done);
8047     __ neg($dst$$Register, $src1$$Register);
8048     // TODO PPC port __ endgroup_if_needed(_size == 12);
8049     __ bind(done);
8050   %}
8051   ins_pipe(pipe_class_default);
8052 %}
8053 
8054 // Integer Division with Registers not containing constants.
8055 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8056   match(Set dst (DivI src1 src2));
8057   ins_cost(10*DEFAULT_COST);
8058 
8059   expand %{
8060     immI16 imm %{ (int)-1 %}
8061     flagsReg tmp1;
8062     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8063     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8064     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8065   %}
8066 %}
8067 
8068 // Long Division with Immediate -1: Negate.
8069 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
8070   match(Set dst (DivL src1 src2));
8071   ins_cost(DEFAULT_COST);
8072 
8073   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
8074   size(4);
8075   ins_encode %{
8076     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8077     __ neg($dst$$Register, $src1$$Register);
8078   %}
8079   ins_pipe(pipe_class_default);
8080 %}
8081 
8082 // Long Division with constant, but not -1.
8083 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8084   match(Set dst (DivL src1 src2));
8085   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
8086   ins_cost(2*DEFAULT_COST);
8087 
8088   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
8089   size(4);
8090   ins_encode %{
8091     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
8092     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
8093   %}
8094   ins_pipe(pipe_class_default);
8095 %}
8096 
8097 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
8098   effect(USE_DEF dst, USE src1, USE crx);
8099   predicate(false);
8100 
8101   ins_variable_size_depending_on_alignment(true);
8102 
8103   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8104   // Worst case is branch + move + stop, no stop without scheduler.
8105   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8106   ins_encode %{
8107     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8108     Label done;
8109     __ bne($crx$$CondRegister, done);
8110     __ neg($dst$$Register, $src1$$Register);
8111     // TODO PPC port __ endgroup_if_needed(_size == 12);
8112     __ bind(done);
8113   %}
8114   ins_pipe(pipe_class_default);
8115 %}
8116 
8117 // Long Division with Registers not containing constants.
8118 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8119   match(Set dst (DivL src1 src2));
8120   ins_cost(10*DEFAULT_COST);
8121 
8122   expand %{
8123     immL16 imm %{ (int)-1 %}
8124     flagsReg tmp1;
8125     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8126     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8127     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8128   %}
8129 %}
8130 
8131 // Integer Remainder with registers.
8132 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8133   match(Set dst (ModI src1 src2));
8134   ins_cost(10*DEFAULT_COST);
8135 
8136   expand %{
8137     immI16 imm %{ (int)-1 %}
8138     flagsReg tmp1;
8139     iRegIdst tmp2;
8140     iRegIdst tmp3;
8141     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
8142     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
8143     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
8144     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
8145     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
8146   %}
8147 %}
8148 
8149 // Long Remainder with registers
8150 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
8151   match(Set dst (ModL src1 src2));
8152   ins_cost(10*DEFAULT_COST);
8153 
8154   expand %{
8155     immL16 imm %{ (int)-1 %}
8156     flagsReg tmp1;
8157     iRegLdst tmp2;
8158     iRegLdst tmp3;
8159     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
8160     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
8161     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
8162     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
8163     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
8164   %}
8165 %}
8166 
8167 // Integer Shift Instructions
8168 
8169 // Register Shift Left
8170 
8171 // Clear all but the lowest #mask bits.
8172 // Used to normalize shift amounts in registers.
8173 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
8174   // no match-rule, false predicate
8175   effect(DEF dst, USE src, USE mask);
8176   predicate(false);
8177 
8178   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
8179   size(4);
8180   ins_encode %{
8181     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8182     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
8183   %}
8184   ins_pipe(pipe_class_default);
8185 %}
8186 
8187 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8188   // no match-rule, false predicate
8189   effect(DEF dst, USE src1, USE src2);
8190   predicate(false);
8191 
8192   format %{ "SLW     $dst, $src1, $src2" %}
8193   size(4);
8194   ins_encode %{
8195     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
8196     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
8197   %}
8198   ins_pipe(pipe_class_default);
8199 %}
8200 
8201 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8202   match(Set dst (LShiftI src1 src2));
8203   ins_cost(DEFAULT_COST*2);
8204   expand %{
8205     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8206     iRegIdst tmpI;
8207     maskI_reg_imm(tmpI, src2, mask);
8208     lShiftI_reg_reg(dst, src1, tmpI);
8209   %}
8210 %}
8211 
8212 // Register Shift Left Immediate
8213 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8214   match(Set dst (LShiftI src1 src2));
8215 
8216   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
8217   size(4);
8218   ins_encode %{
8219     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8220     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8221   %}
8222   ins_pipe(pipe_class_default);
8223 %}
8224 
8225 // AndI with negpow2-constant + LShiftI
8226 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8227   match(Set dst (LShiftI (AndI src1 src2) src3));
8228   predicate(UseRotateAndMaskInstructionsPPC64);
8229 
8230   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
8231   size(4);
8232   ins_encode %{
8233     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8234     long src2      = $src2$$constant;
8235     long src3      = $src3$$constant;
8236     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8237     if (maskbits >= 32) {
8238       __ li($dst$$Register, 0); // addi
8239     } else {
8240       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
8241     }
8242   %}
8243   ins_pipe(pipe_class_default);
8244 %}
8245 
8246 // RShiftI + AndI with negpow2-constant + LShiftI
8247 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8248   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
8249   predicate(UseRotateAndMaskInstructionsPPC64);
8250 
8251   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
8252   size(4);
8253   ins_encode %{
8254     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8255     long src2      = $src2$$constant;
8256     long src3      = $src3$$constant;
8257     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8258     if (maskbits >= 32) {
8259       __ li($dst$$Register, 0); // addi
8260     } else {
8261       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
8262     }
8263   %}
8264   ins_pipe(pipe_class_default);
8265 %}
8266 
8267 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8268   // no match-rule, false predicate
8269   effect(DEF dst, USE src1, USE src2);
8270   predicate(false);
8271 
8272   format %{ "SLD     $dst, $src1, $src2" %}
8273   size(4);
8274   ins_encode %{
8275     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
8276     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
8277   %}
8278   ins_pipe(pipe_class_default);
8279 %}
8280 
8281 // Register Shift Left
8282 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8283   match(Set dst (LShiftL src1 src2));
8284   ins_cost(DEFAULT_COST*2);
8285   expand %{
8286     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8287     iRegIdst tmpI;
8288     maskI_reg_imm(tmpI, src2, mask);
8289     lShiftL_regL_regI(dst, src1, tmpI);
8290   %}
8291 %}
8292 
8293 // Register Shift Left Immediate
8294 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8295   match(Set dst (LShiftL src1 src2));
8296   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
8297   size(4);
8298   ins_encode %{
8299     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8300     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8301   %}
8302   ins_pipe(pipe_class_default);
8303 %}
8304 
8305 // If we shift more than 32 bits, we need not convert I2L.
8306 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
8307   match(Set dst (LShiftL (ConvI2L src1) src2));
8308   ins_cost(DEFAULT_COST);
8309 
8310   size(4);
8311   format %{ "SLDI    $dst, i2l($src1), $src2" %}
8312   ins_encode %{
8313     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8314     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8315   %}
8316   ins_pipe(pipe_class_default);
8317 %}
8318 
8319 // Shift a postivie int to the left.
8320 // Clrlsldi clears the upper 32 bits and shifts.
8321 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
8322   match(Set dst (LShiftL (ConvI2L src1) src2));
8323   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
8324 
8325   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
8326   size(4);
8327   ins_encode %{
8328     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
8329     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
8330   %}
8331   ins_pipe(pipe_class_default);
8332 %}
8333 
8334 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8335   // no match-rule, false predicate
8336   effect(DEF dst, USE src1, USE src2);
8337   predicate(false);
8338 
8339   format %{ "SRAW    $dst, $src1, $src2" %}
8340   size(4);
8341   ins_encode %{
8342     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
8343     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
8344   %}
8345   ins_pipe(pipe_class_default);
8346 %}
8347 
8348 // Register Arithmetic Shift Right
8349 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8350   match(Set dst (RShiftI src1 src2));
8351   ins_cost(DEFAULT_COST*2);
8352   expand %{
8353     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8354     iRegIdst tmpI;
8355     maskI_reg_imm(tmpI, src2, mask);
8356     arShiftI_reg_reg(dst, src1, tmpI);
8357   %}
8358 %}
8359 
8360 // Register Arithmetic Shift Right Immediate
8361 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8362   match(Set dst (RShiftI src1 src2));
8363 
8364   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
8365   size(4);
8366   ins_encode %{
8367     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
8368     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8369   %}
8370   ins_pipe(pipe_class_default);
8371 %}
8372 
8373 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8374   // no match-rule, false predicate
8375   effect(DEF dst, USE src1, USE src2);
8376   predicate(false);
8377 
8378   format %{ "SRAD    $dst, $src1, $src2" %}
8379   size(4);
8380   ins_encode %{
8381     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
8382     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
8383   %}
8384   ins_pipe(pipe_class_default);
8385 %}
8386 
8387 // Register Shift Right Arithmetic Long
8388 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8389   match(Set dst (RShiftL src1 src2));
8390   ins_cost(DEFAULT_COST*2);
8391 
8392   expand %{
8393     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8394     iRegIdst tmpI;
8395     maskI_reg_imm(tmpI, src2, mask);
8396     arShiftL_regL_regI(dst, src1, tmpI);
8397   %}
8398 %}
8399 
8400 // Register Shift Right Immediate
8401 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8402   match(Set dst (RShiftL src1 src2));
8403 
8404   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
8405   size(4);
8406   ins_encode %{
8407     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8408     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8409   %}
8410   ins_pipe(pipe_class_default);
8411 %}
8412 
8413 // RShiftL + ConvL2I
8414 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8415   match(Set dst (ConvL2I (RShiftL src1 src2)));
8416 
8417   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8418   size(4);
8419   ins_encode %{
8420     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8421     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8422   %}
8423   ins_pipe(pipe_class_default);
8424 %}
8425 
8426 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8427   // no match-rule, false predicate
8428   effect(DEF dst, USE src1, USE src2);
8429   predicate(false);
8430 
8431   format %{ "SRW     $dst, $src1, $src2" %}
8432   size(4);
8433   ins_encode %{
8434     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
8435     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
8436   %}
8437   ins_pipe(pipe_class_default);
8438 %}
8439 
8440 // Register Shift Right
8441 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8442   match(Set dst (URShiftI src1 src2));
8443   ins_cost(DEFAULT_COST*2);
8444 
8445   expand %{
8446     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8447     iRegIdst tmpI;
8448     maskI_reg_imm(tmpI, src2, mask);
8449     urShiftI_reg_reg(dst, src1, tmpI);
8450   %}
8451 %}
8452 
8453 // Register Shift Right Immediate
8454 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8455   match(Set dst (URShiftI src1 src2));
8456 
8457   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
8458   size(4);
8459   ins_encode %{
8460     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8461     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8462   %}
8463   ins_pipe(pipe_class_default);
8464 %}
8465 
8466 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8467   // no match-rule, false predicate
8468   effect(DEF dst, USE src1, USE src2);
8469   predicate(false);
8470 
8471   format %{ "SRD     $dst, $src1, $src2" %}
8472   size(4);
8473   ins_encode %{
8474     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
8475     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
8476   %}
8477   ins_pipe(pipe_class_default);
8478 %}
8479 
8480 // Register Shift Right
8481 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8482   match(Set dst (URShiftL src1 src2));
8483   ins_cost(DEFAULT_COST*2);
8484 
8485   expand %{
8486     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8487     iRegIdst tmpI;
8488     maskI_reg_imm(tmpI, src2, mask);
8489     urShiftL_regL_regI(dst, src1, tmpI);
8490   %}
8491 %}
8492 
8493 // Register Shift Right Immediate
8494 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8495   match(Set dst (URShiftL src1 src2));
8496 
8497   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
8498   size(4);
8499   ins_encode %{
8500     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8501     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8502   %}
8503   ins_pipe(pipe_class_default);
8504 %}
8505 
8506 // URShiftL + ConvL2I.
8507 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8508   match(Set dst (ConvL2I (URShiftL src1 src2)));
8509 
8510   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8511   size(4);
8512   ins_encode %{
8513     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8514     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8515   %}
8516   ins_pipe(pipe_class_default);
8517 %}
8518 
8519 // Register Shift Right Immediate with a CastP2X
8520 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
8521   match(Set dst (URShiftL (CastP2X src1) src2));
8522 
8523   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
8524   size(4);
8525   ins_encode %{
8526     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8527     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8528   %}
8529   ins_pipe(pipe_class_default);
8530 %}
8531 
8532 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
8533   match(Set dst (ConvL2I (ConvI2L src)));
8534 
8535   format %{ "EXTSW   $dst, $src \t// int->int" %}
8536   size(4);
8537   ins_encode %{
8538     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
8539     __ extsw($dst$$Register, $src$$Register);
8540   %}
8541   ins_pipe(pipe_class_default);
8542 %}
8543 
8544 //----------Rotate Instructions------------------------------------------------
8545 
8546 // Rotate Left by 8-bit immediate
8547 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
8548   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
8549   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8550 
8551   format %{ "ROTLWI  $dst, $src, $lshift" %}
8552   size(4);
8553   ins_encode %{
8554     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8555     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
8556   %}
8557   ins_pipe(pipe_class_default);
8558 %}
8559 
8560 // Rotate Right by 8-bit immediate
8561 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
8562   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
8563   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8564 
8565   format %{ "ROTRWI  $dst, $rshift" %}
8566   size(4);
8567   ins_encode %{
8568     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8569     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
8570   %}
8571   ins_pipe(pipe_class_default);
8572 %}
8573 
8574 //----------Floating Point Arithmetic Instructions-----------------------------
8575 
8576 // Add float single precision
8577 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
8578   match(Set dst (AddF src1 src2));
8579 
8580   format %{ "FADDS   $dst, $src1, $src2" %}
8581   size(4);
8582   ins_encode %{
8583     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
8584     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8585   %}
8586   ins_pipe(pipe_class_default);
8587 %}
8588 
8589 // Add float double precision
8590 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
8591   match(Set dst (AddD src1 src2));
8592 
8593   format %{ "FADD    $dst, $src1, $src2" %}
8594   size(4);
8595   ins_encode %{
8596     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
8597     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8598   %}
8599   ins_pipe(pipe_class_default);
8600 %}
8601 
8602 // Sub float single precision
8603 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
8604   match(Set dst (SubF src1 src2));
8605 
8606   format %{ "FSUBS   $dst, $src1, $src2" %}
8607   size(4);
8608   ins_encode %{
8609     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
8610     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8611   %}
8612   ins_pipe(pipe_class_default);
8613 %}
8614 
8615 // Sub float double precision
8616 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
8617   match(Set dst (SubD src1 src2));
8618   format %{ "FSUB    $dst, $src1, $src2" %}
8619   size(4);
8620   ins_encode %{
8621     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
8622     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8623   %}
8624   ins_pipe(pipe_class_default);
8625 %}
8626 
8627 // Mul float single precision
8628 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
8629   match(Set dst (MulF src1 src2));
8630   format %{ "FMULS   $dst, $src1, $src2" %}
8631   size(4);
8632   ins_encode %{
8633     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
8634     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8635   %}
8636   ins_pipe(pipe_class_default);
8637 %}
8638 
8639 // Mul float double precision
8640 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
8641   match(Set dst (MulD src1 src2));
8642   format %{ "FMUL    $dst, $src1, $src2" %}
8643   size(4);
8644   ins_encode %{
8645     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
8646     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8647   %}
8648   ins_pipe(pipe_class_default);
8649 %}
8650 
8651 // Div float single precision
8652 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
8653   match(Set dst (DivF src1 src2));
8654   format %{ "FDIVS   $dst, $src1, $src2" %}
8655   size(4);
8656   ins_encode %{
8657     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
8658     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8659   %}
8660   ins_pipe(pipe_class_default);
8661 %}
8662 
8663 // Div float double precision
8664 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
8665   match(Set dst (DivD src1 src2));
8666   format %{ "FDIV    $dst, $src1, $src2" %}
8667   size(4);
8668   ins_encode %{
8669     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
8670     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8671   %}
8672   ins_pipe(pipe_class_default);
8673 %}
8674 
8675 // Absolute float single precision
8676 instruct absF_reg(regF dst, regF src) %{
8677   match(Set dst (AbsF src));
8678   format %{ "FABS    $dst, $src \t// float" %}
8679   size(4);
8680   ins_encode %{
8681     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8682     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8683   %}
8684   ins_pipe(pipe_class_default);
8685 %}
8686 
8687 // Absolute float double precision
8688 instruct absD_reg(regD dst, regD src) %{
8689   match(Set dst (AbsD src));
8690   format %{ "FABS    $dst, $src \t// double" %}
8691   size(4);
8692   ins_encode %{
8693     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8694     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8695   %}
8696   ins_pipe(pipe_class_default);
8697 %}
8698 
8699 instruct negF_reg(regF dst, regF src) %{
8700   match(Set dst (NegF src));
8701   format %{ "FNEG    $dst, $src \t// float" %}
8702   size(4);
8703   ins_encode %{
8704     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8705     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8706   %}
8707   ins_pipe(pipe_class_default);
8708 %}
8709 
8710 instruct negD_reg(regD dst, regD src) %{
8711   match(Set dst (NegD src));
8712   format %{ "FNEG    $dst, $src \t// double" %}
8713   size(4);
8714   ins_encode %{
8715     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8716     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8717   %}
8718   ins_pipe(pipe_class_default);
8719 %}
8720 
8721 // AbsF + NegF.
8722 instruct negF_absF_reg(regF dst, regF src) %{
8723   match(Set dst (NegF (AbsF src)));
8724   format %{ "FNABS   $dst, $src \t// float" %}
8725   size(4);
8726   ins_encode %{
8727     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8728     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8729   %}
8730   ins_pipe(pipe_class_default);
8731 %}
8732 
8733 // AbsD + NegD.
8734 instruct negD_absD_reg(regD dst, regD src) %{
8735   match(Set dst (NegD (AbsD src)));
8736   format %{ "FNABS   $dst, $src \t// double" %}
8737   size(4);
8738   ins_encode %{
8739     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8740     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8741   %}
8742   ins_pipe(pipe_class_default);
8743 %}
8744 
8745 // VM_Version::has_fsqrt() decides if this node will be used.
8746 // Sqrt float double precision
8747 instruct sqrtD_reg(regD dst, regD src) %{
8748   match(Set dst (SqrtD src));
8749   format %{ "FSQRT   $dst, $src" %}
8750   size(4);
8751   ins_encode %{
8752     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
8753     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
8754   %}
8755   ins_pipe(pipe_class_default);
8756 %}
8757 
8758 // Single-precision sqrt.
8759 instruct sqrtF_reg(regF dst, regF src) %{
8760   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8761   ins_cost(DEFAULT_COST);
8762 
8763   format %{ "FSQRTS  $dst, $src" %}
8764   size(4);
8765   ins_encode %{
8766     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
8767     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
8768   %}
8769   ins_pipe(pipe_class_default);
8770 %}
8771 
8772 instruct roundDouble_nop(regD dst) %{
8773   match(Set dst (RoundDouble dst));
8774   ins_cost(0);
8775 
8776   format %{ " -- \t// RoundDouble not needed - empty" %}
8777   size(0);
8778   // PPC results are already "rounded" (i.e., normal-format IEEE).
8779   ins_encode( /*empty*/ );
8780   ins_pipe(pipe_class_default);
8781 %}
8782 
8783 instruct roundFloat_nop(regF dst) %{
8784   match(Set dst (RoundFloat dst));
8785   ins_cost(0);
8786 
8787   format %{ " -- \t// RoundFloat not needed - empty" %}
8788   size(0);
8789   // PPC results are already "rounded" (i.e., normal-format IEEE).
8790   ins_encode( /*empty*/ );
8791   ins_pipe(pipe_class_default);
8792 %}
8793 
8794 //----------Logical Instructions-----------------------------------------------
8795 
8796 // And Instructions
8797 
8798 // Register And
8799 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8800   match(Set dst (AndI src1 src2));
8801   format %{ "AND     $dst, $src1, $src2" %}
8802   size(4);
8803   ins_encode %{
8804     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8805     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8806   %}
8807   ins_pipe(pipe_class_default);
8808 %}
8809 
8810 // Immediate And
8811 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
8812   match(Set dst (AndI src1 src2));
8813   effect(KILL cr0);
8814 
8815   format %{ "ANDI    $dst, $src1, $src2" %}
8816   size(4);
8817   ins_encode %{
8818     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8819     // FIXME: avoid andi_ ?
8820     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8821   %}
8822   ins_pipe(pipe_class_default);
8823 %}
8824 
8825 // Immediate And where the immediate is a negative power of 2.
8826 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
8827   match(Set dst (AndI src1 src2));
8828   format %{ "ANDWI   $dst, $src1, $src2" %}
8829   size(4);
8830   ins_encode %{
8831     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8832     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
8833   %}
8834   ins_pipe(pipe_class_default);
8835 %}
8836 
8837 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
8838   match(Set dst (AndI src1 src2));
8839   format %{ "ANDWI   $dst, $src1, $src2" %}
8840   size(4);
8841   ins_encode %{
8842     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8843     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8844   %}
8845   ins_pipe(pipe_class_default);
8846 %}
8847 
8848 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
8849   match(Set dst (AndI src1 src2));
8850   predicate(UseRotateAndMaskInstructionsPPC64);
8851   format %{ "ANDWI   $dst, $src1, $src2" %}
8852   size(4);
8853   ins_encode %{
8854     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8855     __ rlwinm($dst$$Register, $src1$$Register, 0, 
8856               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
8857   %}
8858   ins_pipe(pipe_class_default);
8859 %}
8860 
8861 // Register And Long
8862 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8863   match(Set dst (AndL src1 src2));
8864   ins_cost(DEFAULT_COST);
8865 
8866   format %{ "AND     $dst, $src1, $src2 \t// long" %}
8867   size(4);
8868   ins_encode %{
8869     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8870     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8871   %}
8872   ins_pipe(pipe_class_default);
8873 %}
8874 
8875 // Immediate And long
8876 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
8877   match(Set dst (AndL src1 src2));
8878   effect(KILL cr0);
8879   ins_cost(DEFAULT_COST);
8880 
8881   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
8882   size(4);
8883   ins_encode %{
8884     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8885     // FIXME: avoid andi_ ?
8886     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8887   %}
8888   ins_pipe(pipe_class_default);
8889 %}
8890 
8891 // Immediate And Long where the immediate is a negative power of 2.
8892 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
8893   match(Set dst (AndL src1 src2));
8894   format %{ "ANDDI   $dst, $src1, $src2" %}
8895   size(4);
8896   ins_encode %{
8897     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8898     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
8899   %}
8900   ins_pipe(pipe_class_default);
8901 %}
8902 
8903 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8904   match(Set dst (AndL src1 src2));
8905   format %{ "ANDDI   $dst, $src1, $src2" %}
8906   size(4);
8907   ins_encode %{
8908     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8909     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8910   %}
8911   ins_pipe(pipe_class_default);
8912 %}
8913 
8914 // AndL + ConvL2I.
8915 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8916   match(Set dst (ConvL2I (AndL src1 src2)));
8917   ins_cost(DEFAULT_COST);
8918 
8919   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
8920   size(4);
8921   ins_encode %{
8922     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8923     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8924   %}
8925   ins_pipe(pipe_class_default);
8926 %}
8927 
8928 // Or Instructions
8929 
8930 // Register Or
8931 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8932   match(Set dst (OrI src1 src2));
8933   format %{ "OR      $dst, $src1, $src2" %}
8934   size(4);
8935   ins_encode %{
8936     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8937     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8938   %}
8939   ins_pipe(pipe_class_default);
8940 %}
8941 
8942 // Expand does not work with above instruct. (??)
8943 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8944   // no match-rule
8945   effect(DEF dst, USE src1, USE src2);
8946   format %{ "OR      $dst, $src1, $src2" %}
8947   size(4);
8948   ins_encode %{
8949     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8950     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8951   %}
8952   ins_pipe(pipe_class_default);
8953 %}
8954 
8955 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
8956   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
8957   ins_cost(DEFAULT_COST*3);
8958 
8959   expand %{
8960     // FIXME: we should do this in the ideal world.
8961     iRegIdst tmp1;
8962     iRegIdst tmp2;
8963     orI_reg_reg(tmp1, src1, src2);
8964     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
8965     orI_reg_reg(dst, tmp1, tmp2);
8966   %}
8967 %}
8968 
8969 // Immediate Or
8970 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
8971   match(Set dst (OrI src1 src2));
8972   format %{ "ORI     $dst, $src1, $src2" %}
8973   size(4);
8974   ins_encode %{
8975     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
8976     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
8977   %}
8978   ins_pipe(pipe_class_default);
8979 %}
8980 
8981 // Register Or Long
8982 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8983   match(Set dst (OrL src1 src2));
8984   ins_cost(DEFAULT_COST);
8985 
8986   size(4);
8987   format %{ "OR      $dst, $src1, $src2 \t// long" %}
8988   ins_encode %{
8989     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8990     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8991   %}
8992   ins_pipe(pipe_class_default);
8993 %}
8994 
8995 // OrL + ConvL2I.
8996 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
8997   match(Set dst (ConvL2I (OrL src1 src2)));
8998   ins_cost(DEFAULT_COST);
8999 
9000   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
9001   size(4);
9002   ins_encode %{
9003     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9004     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9005   %}
9006   ins_pipe(pipe_class_default);
9007 %}
9008 
9009 // Immediate Or long
9010 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
9011   match(Set dst (OrL src1 con));
9012   ins_cost(DEFAULT_COST);
9013 
9014   format %{ "ORI     $dst, $src1, $con \t// long" %}
9015   size(4);
9016   ins_encode %{
9017     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9018     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
9019   %}
9020   ins_pipe(pipe_class_default);
9021 %}
9022 
9023 // Xor Instructions
9024 
9025 // Register Xor
9026 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9027   match(Set dst (XorI src1 src2));
9028   format %{ "XOR     $dst, $src1, $src2" %}
9029   size(4);
9030   ins_encode %{
9031     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9032     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9033   %}
9034   ins_pipe(pipe_class_default);
9035 %}
9036 
9037 // Expand does not work with above instruct. (??)
9038 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9039   // no match-rule
9040   effect(DEF dst, USE src1, USE src2);
9041   format %{ "XOR     $dst, $src1, $src2" %}
9042   size(4);
9043   ins_encode %{
9044     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9045     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9046   %}
9047   ins_pipe(pipe_class_default);
9048 %}
9049 
9050 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9051   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
9052   ins_cost(DEFAULT_COST*3);
9053 
9054   expand %{
9055     // FIXME: we should do this in the ideal world.
9056     iRegIdst tmp1;
9057     iRegIdst tmp2;
9058     xorI_reg_reg(tmp1, src1, src2);
9059     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
9060     xorI_reg_reg(dst, tmp1, tmp2);
9061   %}
9062 %}
9063 
9064 // Immediate Xor
9065 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9066   match(Set dst (XorI src1 src2));
9067   format %{ "XORI    $dst, $src1, $src2" %}
9068   size(4);
9069   ins_encode %{
9070     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9071     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9072   %}
9073   ins_pipe(pipe_class_default);
9074 %}
9075 
9076 // Register Xor Long
9077 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9078   match(Set dst (XorL src1 src2));
9079   ins_cost(DEFAULT_COST);
9080 
9081   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
9082   size(4);
9083   ins_encode %{
9084     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9085     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9086   %}
9087   ins_pipe(pipe_class_default);
9088 %}
9089 
9090 // XorL + ConvL2I.
9091 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9092   match(Set dst (ConvL2I (XorL src1 src2)));
9093   ins_cost(DEFAULT_COST);
9094 
9095   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
9096   size(4);
9097   ins_encode %{
9098     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9099     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9100   %}
9101   ins_pipe(pipe_class_default);
9102 %}
9103 
9104 // Immediate Xor Long
9105 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
9106   match(Set dst (XorL src1 src2));
9107   ins_cost(DEFAULT_COST);
9108 
9109   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
9110   size(4);
9111   ins_encode %{
9112     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9113     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9114   %}
9115   ins_pipe(pipe_class_default);
9116 %}
9117 
9118 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
9119   match(Set dst (XorI src1 src2));
9120   ins_cost(DEFAULT_COST);
9121 
9122   format %{ "NOT     $dst, $src1 ($src2)" %}
9123   size(4);
9124   ins_encode %{
9125     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9126     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9127   %}
9128   ins_pipe(pipe_class_default);
9129 %}
9130 
9131 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
9132   match(Set dst (XorL src1 src2));
9133   ins_cost(DEFAULT_COST);
9134 
9135   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
9136   size(4);
9137   ins_encode %{
9138     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9139     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9140   %}
9141   ins_pipe(pipe_class_default);
9142 %}
9143 
9144 // And-complement
9145 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
9146   match(Set dst (AndI (XorI src1 src2) src3));
9147   ins_cost(DEFAULT_COST);
9148 
9149   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
9150   size(4);
9151   ins_encode( enc_andc(dst, src3, src1) );
9152   ins_pipe(pipe_class_default);
9153 %}
9154 
9155 // And-complement
9156 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9157   // no match-rule, false predicate
9158   effect(DEF dst, USE src1, USE src2);
9159   predicate(false);
9160 
9161   format %{ "ANDC    $dst, $src1, $src2" %}
9162   size(4);
9163   ins_encode %{
9164     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
9165     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
9166   %}
9167   ins_pipe(pipe_class_default);
9168 %}
9169 
9170 //----------Moves between int/long and float/double----------------------------
9171 //
9172 // The following rules move values from int/long registers/stack-locations
9173 // to float/double registers/stack-locations and vice versa, without doing any
9174 // conversions. These rules are used to implement the bit-conversion methods
9175 // of java.lang.Float etc., e.g.
9176 //   int   floatToIntBits(float value)
9177 //   float intBitsToFloat(int bits)
9178 //
9179 // Notes on the implementation on ppc64:
9180 // We only provide rules which move between a register and a stack-location,
9181 // because we always have to go through memory when moving between a float
9182 // register and an integer register.
9183 
9184 //---------- Chain stack slots between similar types --------
9185 
9186 // These are needed so that the rules below can match.
9187 
9188 // Load integer from stack slot
9189 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
9190   match(Set dst src);
9191   ins_cost(MEMORY_REF_COST);
9192 
9193   format %{ "LWZ     $dst, $src" %}
9194   size(4);
9195   ins_encode( enc_lwz(dst, src) );
9196   ins_pipe(pipe_class_memory);
9197 %}
9198 
9199 // Store integer to stack slot
9200 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
9201   match(Set dst src);
9202   ins_cost(MEMORY_REF_COST);
9203 
9204   format %{ "STW     $src, $dst \t// stk" %}
9205   size(4);
9206   ins_encode( enc_stw(src, dst) ); // rs=rt
9207   ins_pipe(pipe_class_memory);
9208 %}
9209 
9210 // Load long from stack slot
9211 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
9212   match(Set dst src);
9213   ins_cost(MEMORY_REF_COST);
9214 
9215   format %{ "LD      $dst, $src \t// long" %}
9216   size(4);
9217   ins_encode( enc_ld(dst, src) );
9218   ins_pipe(pipe_class_memory);
9219 %}
9220 
9221 // Store long to stack slot
9222 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
9223   match(Set dst src);
9224   ins_cost(MEMORY_REF_COST);
9225 
9226   format %{ "STD     $src, $dst \t// long" %}
9227   size(4);
9228   ins_encode( enc_std(src, dst) ); // rs=rt
9229   ins_pipe(pipe_class_memory);
9230 %}
9231 
9232 //----------Moves between int and float
9233 
9234 // Move float value from float stack-location to integer register.
9235 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
9236   match(Set dst (MoveF2I src));
9237   ins_cost(MEMORY_REF_COST);
9238 
9239   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
9240   size(4);
9241   ins_encode( enc_lwz(dst, src) );
9242   ins_pipe(pipe_class_memory);
9243 %}
9244 
9245 // Move float value from float register to integer stack-location.
9246 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
9247   match(Set dst (MoveF2I src));
9248   ins_cost(MEMORY_REF_COST);
9249 
9250   format %{ "STFS    $src, $dst \t// MoveF2I" %}
9251   size(4);
9252   ins_encode( enc_stfs(src, dst) );
9253   ins_pipe(pipe_class_memory);
9254 %}
9255 
9256 // Move integer value from integer stack-location to float register.
9257 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
9258   match(Set dst (MoveI2F src));
9259   ins_cost(MEMORY_REF_COST);
9260 
9261   format %{ "LFS     $dst, $src \t// MoveI2F" %}
9262   size(4);
9263   ins_encode %{
9264     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
9265     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
9266     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
9267   %}
9268   ins_pipe(pipe_class_memory);
9269 %}
9270 
9271 // Move integer value from integer register to float stack-location.
9272 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
9273   match(Set dst (MoveI2F src));
9274   ins_cost(MEMORY_REF_COST);
9275 
9276   format %{ "STW     $src, $dst \t// MoveI2F" %}
9277   size(4);
9278   ins_encode( enc_stw(src, dst) );
9279   ins_pipe(pipe_class_memory);
9280 %}
9281 
9282 //----------Moves between long and float
9283 
9284 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
9285   // no match-rule, false predicate
9286   effect(DEF dst, USE src);
9287   predicate(false);
9288 
9289   format %{ "storeD  $src, $dst \t// STACK" %}
9290   size(4);
9291   ins_encode( enc_stfd(src, dst) );
9292   ins_pipe(pipe_class_default);
9293 %}
9294 
9295 //----------Moves between long and double
9296 
9297 // Move double value from double stack-location to long register.
9298 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
9299   match(Set dst (MoveD2L src));
9300   ins_cost(MEMORY_REF_COST);
9301   size(4);
9302   format %{ "LD      $dst, $src \t// MoveD2L" %}
9303   ins_encode( enc_ld(dst, src) );
9304   ins_pipe(pipe_class_memory);
9305 %}
9306 
9307 // Move double value from double register to long stack-location.
9308 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
9309   match(Set dst (MoveD2L src));
9310   effect(DEF dst, USE src);
9311   ins_cost(MEMORY_REF_COST);
9312 
9313   format %{ "STFD    $src, $dst \t// MoveD2L" %}
9314   size(4);
9315   ins_encode( enc_stfd(src, dst) );
9316   ins_pipe(pipe_class_memory);
9317 %}
9318 
9319 // Move long value from long stack-location to double register.
9320 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
9321   match(Set dst (MoveL2D src));
9322   ins_cost(MEMORY_REF_COST);
9323 
9324   format %{ "LFD     $dst, $src \t// MoveL2D" %}
9325   size(4);
9326   ins_encode( enc_lfd(dst, src) );
9327   ins_pipe(pipe_class_memory);
9328 %}
9329 
9330 // Move long value from long register to double stack-location.
9331 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
9332   match(Set dst (MoveL2D src));
9333   ins_cost(MEMORY_REF_COST);
9334 
9335   format %{ "STD     $src, $dst \t// MoveL2D" %}
9336   size(4);
9337   ins_encode( enc_std(src, dst) );
9338   ins_pipe(pipe_class_memory);
9339 %}
9340 
9341 //----------Register Move Instructions-----------------------------------------
9342 
9343 // Replicate for Superword
9344 
9345 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
9346   predicate(false);
9347   effect(DEF dst, USE src);
9348 
9349   format %{ "MR      $dst, $src \t// replicate " %}
9350   // variable size, 0 or 4.
9351   ins_encode %{
9352     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9353     __ mr_if_needed($dst$$Register, $src$$Register);
9354   %}
9355   ins_pipe(pipe_class_default);
9356 %}
9357 
9358 //----------Cast instructions (Java-level type cast)---------------------------
9359 
9360 // Cast Long to Pointer for unsafe natives.
9361 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
9362   match(Set dst (CastX2P src));
9363 
9364   format %{ "MR      $dst, $src \t// Long->Ptr" %}
9365   // variable size, 0 or 4.
9366   ins_encode %{
9367     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9368     __ mr_if_needed($dst$$Register, $src$$Register);
9369   %}
9370  ins_pipe(pipe_class_default);
9371 %}
9372 
9373 // Cast Pointer to Long for unsafe natives.
9374 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
9375   match(Set dst (CastP2X src));
9376 
9377   format %{ "MR      $dst, $src \t// Ptr->Long" %}
9378   // variable size, 0 or 4.
9379   ins_encode %{
9380     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9381     __ mr_if_needed($dst$$Register, $src$$Register);
9382   %}
9383   ins_pipe(pipe_class_default);
9384 %}
9385 
9386 instruct castPP(iRegPdst dst) %{
9387   match(Set dst (CastPP dst));
9388   format %{ " -- \t// castPP of $dst" %}
9389   size(0);
9390   ins_encode( /*empty*/ );
9391   ins_pipe(pipe_class_default);
9392 %}
9393 
9394 instruct castII(iRegIdst dst) %{
9395   match(Set dst (CastII dst));
9396   format %{ " -- \t// castII of $dst" %}
9397   size(0);
9398   ins_encode( /*empty*/ );
9399   ins_pipe(pipe_class_default);
9400 %}
9401 
9402 instruct checkCastPP(iRegPdst dst) %{
9403   match(Set dst (CheckCastPP dst));
9404   format %{ " -- \t// checkcastPP of $dst" %}
9405   size(0);
9406   ins_encode( /*empty*/ );
9407   ins_pipe(pipe_class_default);
9408 %}
9409 
9410 //----------Convert instructions-----------------------------------------------
9411 
9412 // Convert to boolean.
9413 
9414 // int_to_bool(src) : { 1   if src != 0
9415 //                    { 0   else
9416 //
9417 // strategy:
9418 // 1) Count leading zeros of 32 bit-value src,
9419 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
9420 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9421 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9422 
9423 // convI2Bool
9424 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
9425   match(Set dst (Conv2B src));
9426   predicate(UseCountLeadingZerosInstructionsPPC64);
9427   ins_cost(DEFAULT_COST);
9428 
9429   expand %{
9430     immI shiftAmount %{ 0x5 %}
9431     uimmI16 mask %{ 0x1 %}
9432     iRegIdst tmp1;
9433     iRegIdst tmp2;
9434     countLeadingZerosI(tmp1, src);
9435     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9436     xorI_reg_uimm16(dst, tmp2, mask);
9437   %}
9438 %}
9439 
9440 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
9441   match(Set dst (Conv2B src));
9442   effect(TEMP crx);
9443   predicate(!UseCountLeadingZerosInstructionsPPC64);
9444   ins_cost(DEFAULT_COST);
9445 
9446   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
9447             "LI      $dst, #0\n\t"
9448             "BEQ     $crx, done\n\t"
9449             "LI      $dst, #1\n"
9450             "done:" %}
9451   size(16);
9452   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
9453   ins_pipe(pipe_class_compare);
9454 %}
9455 
9456 // ConvI2B + XorI
9457 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
9458   match(Set dst (XorI (Conv2B src) mask));
9459   predicate(UseCountLeadingZerosInstructionsPPC64);
9460   ins_cost(DEFAULT_COST);
9461 
9462   expand %{
9463     immI shiftAmount %{ 0x5 %}
9464     iRegIdst tmp1;
9465     countLeadingZerosI(tmp1, src);
9466     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9467   %}
9468 %}
9469 
9470 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
9471   match(Set dst (XorI (Conv2B src) mask));
9472   effect(TEMP crx);
9473   predicate(!UseCountLeadingZerosInstructionsPPC64);
9474   ins_cost(DEFAULT_COST);
9475 
9476   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
9477             "LI      $dst, #1\n\t"
9478             "BEQ     $crx, done\n\t"
9479             "LI      $dst, #0\n"
9480             "done:" %}
9481   size(16);
9482   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
9483   ins_pipe(pipe_class_compare);
9484 %}
9485 
9486 // AndI 0b0..010..0 + ConvI2B
9487 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
9488   match(Set dst (Conv2B (AndI src mask)));
9489   predicate(UseRotateAndMaskInstructionsPPC64);
9490   ins_cost(DEFAULT_COST);
9491 
9492   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
9493   size(4);
9494   ins_encode %{
9495     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
9496     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
9497   %}
9498   ins_pipe(pipe_class_default);
9499 %}
9500 
9501 // Convert pointer to boolean.
9502 //
9503 // ptr_to_bool(src) : { 1   if src != 0
9504 //                    { 0   else
9505 //
9506 // strategy:
9507 // 1) Count leading zeros of 64 bit-value src,
9508 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
9509 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9510 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9511 
9512 // ConvP2B
9513 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
9514   match(Set dst (Conv2B src));
9515   predicate(UseCountLeadingZerosInstructionsPPC64);
9516   ins_cost(DEFAULT_COST);
9517 
9518   expand %{
9519     immI shiftAmount %{ 0x6 %}
9520     uimmI16 mask %{ 0x1 %}
9521     iRegIdst tmp1;
9522     iRegIdst tmp2;
9523     countLeadingZerosP(tmp1, src);
9524     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9525     xorI_reg_uimm16(dst, tmp2, mask);
9526   %}
9527 %}
9528 
9529 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
9530   match(Set dst (Conv2B src));
9531   effect(TEMP crx);
9532   predicate(!UseCountLeadingZerosInstructionsPPC64);
9533   ins_cost(DEFAULT_COST);
9534 
9535   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
9536             "LI      $dst, #0\n\t"
9537             "BEQ     $crx, done\n\t"
9538             "LI      $dst, #1\n"
9539             "done:" %}
9540   size(16);
9541   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
9542   ins_pipe(pipe_class_compare);
9543 %}
9544 
9545 // ConvP2B + XorI
9546 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
9547   match(Set dst (XorI (Conv2B src) mask));
9548   predicate(UseCountLeadingZerosInstructionsPPC64);
9549   ins_cost(DEFAULT_COST);
9550 
9551   expand %{
9552     immI shiftAmount %{ 0x6 %}
9553     iRegIdst tmp1;
9554     countLeadingZerosP(tmp1, src);
9555     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9556   %}
9557 %}
9558 
9559 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
9560   match(Set dst (XorI (Conv2B src) mask));
9561   effect(TEMP crx);
9562   predicate(!UseCountLeadingZerosInstructionsPPC64);
9563   ins_cost(DEFAULT_COST);
9564 
9565   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
9566             "LI      $dst, #1\n\t"
9567             "BEQ     $crx, done\n\t"
9568             "LI      $dst, #0\n"
9569             "done:" %}
9570   size(16);
9571   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
9572   ins_pipe(pipe_class_compare);
9573 %}
9574 
9575 // if src1 < src2, return -1 else return 0
9576 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9577   match(Set dst (CmpLTMask src1 src2));
9578   ins_cost(DEFAULT_COST*4);
9579 
9580   expand %{
9581     iRegIdst src1s;
9582     iRegIdst src2s;
9583     iRegIdst diff;
9584     sxtI_reg(src1s, src1); // ensure proper sign extention
9585     sxtI_reg(src2s, src2); // ensure proper sign extention
9586     subI_reg_reg(diff, src1s, src2s);
9587     // Need to consider >=33 bit result, therefore we need signmaskL.
9588     signmask64I_regI(dst, diff);
9589   %}
9590 %}
9591 
9592 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
9593   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
9594   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
9595   size(4);
9596   ins_encode %{
9597     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
9598     __ srawi($dst$$Register, $src1$$Register, 0x1f);
9599   %}
9600   ins_pipe(pipe_class_default);
9601 %}
9602 
9603 //----------Arithmetic Conversion Instructions---------------------------------
9604 
9605 // Convert to Byte  -- nop
9606 // Convert to Short -- nop
9607 
9608 // Convert to Int
9609 
9610 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
9611   match(Set dst (RShiftI (LShiftI src amount) amount));
9612   format %{ "EXTSB   $dst, $src \t// byte->int" %}
9613   size(4);
9614   ins_encode %{
9615     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
9616     __ extsb($dst$$Register, $src$$Register);
9617   %}
9618   ins_pipe(pipe_class_default);
9619 %}
9620 
9621 // LShiftI 16 + RShiftI 16 converts short to int.
9622 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
9623   match(Set dst (RShiftI (LShiftI src amount) amount));
9624   format %{ "EXTSH   $dst, $src \t// short->int" %}
9625   size(4);
9626   ins_encode %{
9627     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
9628     __ extsh($dst$$Register, $src$$Register);
9629   %}
9630   ins_pipe(pipe_class_default);
9631 %}
9632 
9633 // ConvL2I + ConvI2L: Sign extend int in long register.
9634 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
9635   match(Set dst (ConvI2L (ConvL2I src)));
9636 
9637   format %{ "EXTSW   $dst, $src \t// long->long" %}
9638   size(4);
9639   ins_encode %{
9640     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9641     __ extsw($dst$$Register, $src$$Register);
9642   %}
9643   ins_pipe(pipe_class_default);
9644 %}
9645 
9646 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
9647   match(Set dst (ConvL2I src));
9648   format %{ "MR      $dst, $src \t// long->int" %}
9649   // variable size, 0 or 4
9650   ins_encode %{
9651     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9652     __ mr_if_needed($dst$$Register, $src$$Register);
9653   %}
9654   ins_pipe(pipe_class_default);
9655 %}
9656 
9657 instruct convD2IRaw_regD(regD dst, regD src) %{
9658   // no match-rule, false predicate
9659   effect(DEF dst, USE src);
9660   predicate(false);
9661 
9662   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
9663   size(4);
9664   ins_encode %{
9665     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
9666     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9667   %}
9668   ins_pipe(pipe_class_default);
9669 %}
9670 
9671 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
9672   // no match-rule, false predicate
9673   effect(DEF dst, USE crx, USE src);
9674   predicate(false);
9675 
9676   ins_variable_size_depending_on_alignment(true);
9677 
9678   format %{ "cmovI   $crx, $dst, $src" %}
9679   // Worst case is branch + move + stop, no stop without scheduler.
9680   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
9681   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9682   ins_pipe(pipe_class_default);
9683 %}
9684 
9685 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
9686   // no match-rule, false predicate
9687   effect(DEF dst, USE crx, USE mem);
9688   predicate(false);
9689 
9690   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
9691   postalloc_expand %{
9692     //
9693     // replaces
9694     //
9695     //   region  dst  crx  mem
9696     //    \       |    |   /
9697     //     dst=cmovI_bso_stackSlotL_conLvalue0
9698     //
9699     // with
9700     //
9701     //   region  dst
9702     //    \       /
9703     //     dst=loadConI16(0)
9704     //      |
9705     //      ^  region  dst  crx  mem
9706     //      |   \       |    |    /
9707     //      dst=cmovI_bso_stackSlotL
9708     //
9709 
9710     // Create new nodes.
9711     MachNode *m1 = new (C) loadConI16Node();
9712     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
9713 
9714     // inputs for new nodes
9715     m1->add_req(n_region);
9716     m2->add_req(n_region, n_crx, n_mem);
9717 
9718     // precedences for new nodes
9719     m2->add_prec(m1);
9720 
9721     // operands for new nodes
9722     m1->_opnds[0] = op_dst;
9723     m1->_opnds[1] = new (C) immI16Oper(0);
9724 
9725     m2->_opnds[0] = op_dst;
9726     m2->_opnds[1] = op_crx;
9727     m2->_opnds[2] = op_mem;
9728 
9729     // registers for new nodes
9730     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9731     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9732 
9733     // Insert new nodes.
9734     nodes->push(m1);
9735     nodes->push(m2);
9736   %}
9737 %}
9738 
9739 // Double to Int conversion, NaN is mapped to 0.
9740 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
9741   match(Set dst (ConvD2I src));
9742   ins_cost(DEFAULT_COST);
9743 
9744   expand %{
9745     regD tmpD;
9746     stackSlotL tmpS;
9747     flagsReg crx;
9748     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9749     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
9750     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9751     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9752   %}
9753 %}
9754 
9755 instruct convF2IRaw_regF(regF dst, regF src) %{
9756   // no match-rule, false predicate
9757   effect(DEF dst, USE src);
9758   predicate(false);
9759 
9760   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
9761   size(4);
9762   ins_encode %{
9763     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9764     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9765   %}
9766   ins_pipe(pipe_class_default);
9767 %}
9768 
9769 // Float to Int conversion, NaN is mapped to 0.
9770 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
9771   match(Set dst (ConvF2I src));
9772   ins_cost(DEFAULT_COST);
9773 
9774   expand %{
9775     regF tmpF;
9776     stackSlotL tmpS;
9777     flagsReg crx;
9778     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9779     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
9780     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9781     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9782   %}
9783 %}
9784 
9785 // Convert to Long
9786 
9787 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
9788   match(Set dst (ConvI2L src));
9789   format %{ "EXTSW   $dst, $src \t// int->long" %}
9790   size(4);
9791   ins_encode %{
9792     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9793     __ extsw($dst$$Register, $src$$Register);
9794   %}
9795   ins_pipe(pipe_class_default);
9796 %}
9797 
9798 // Zero-extend: convert unsigned int to long (convUI2L).
9799 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
9800   match(Set dst (AndL (ConvI2L src) mask));
9801   ins_cost(DEFAULT_COST);
9802 
9803   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9804   size(4);
9805   ins_encode %{
9806     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9807     __ clrldi($dst$$Register, $src$$Register, 32);
9808   %}
9809   ins_pipe(pipe_class_default);
9810 %}
9811 
9812 // Zero-extend: convert unsigned int to long in long register.
9813 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
9814   match(Set dst (AndL src mask));
9815   ins_cost(DEFAULT_COST);
9816 
9817   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9818   size(4);
9819   ins_encode %{
9820     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9821     __ clrldi($dst$$Register, $src$$Register, 32);
9822   %}
9823   ins_pipe(pipe_class_default);
9824 %}
9825 
9826 instruct convF2LRaw_regF(regF dst, regF src) %{
9827   // no match-rule, false predicate
9828   effect(DEF dst, USE src);
9829   predicate(false);
9830 
9831   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
9832   size(4);
9833   ins_encode %{
9834     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9835     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9836   %}
9837   ins_pipe(pipe_class_default);
9838 %}
9839 
9840 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
9841   // no match-rule, false predicate
9842   effect(DEF dst, USE crx, USE src);
9843   predicate(false);
9844 
9845   ins_variable_size_depending_on_alignment(true);
9846 
9847   format %{ "cmovL   $crx, $dst, $src" %}
9848   // Worst case is branch + move + stop, no stop without scheduler.
9849   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
9850   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9851   ins_pipe(pipe_class_default);
9852 %}
9853 
9854 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
9855   // no match-rule, false predicate
9856   effect(DEF dst, USE crx, USE mem);
9857   predicate(false);
9858 
9859   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
9860   postalloc_expand %{
9861     //
9862     // replaces
9863     //
9864     //   region  dst  crx  mem
9865     //    \       |    |   /
9866     //     dst=cmovL_bso_stackSlotL_conLvalue0
9867     //
9868     // with
9869     //
9870     //   region  dst
9871     //    \       /
9872     //     dst=loadConL16(0)
9873     //      |
9874     //      ^  region  dst  crx  mem
9875     //      |   \       |    |    /
9876     //      dst=cmovL_bso_stackSlotL
9877     //
9878 
9879     // Create new nodes.
9880     MachNode *m1 = new (C) loadConL16Node();
9881     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
9882 
9883     // inputs for new nodes
9884     m1->add_req(n_region);
9885     m2->add_req(n_region, n_crx, n_mem);
9886     m2->add_prec(m1);
9887 
9888     // operands for new nodes
9889     m1->_opnds[0] = op_dst;
9890     m1->_opnds[1] = new (C) immL16Oper(0);
9891     m2->_opnds[0] = op_dst;
9892     m2->_opnds[1] = op_crx;
9893     m2->_opnds[2] = op_mem;
9894 
9895     // registers for new nodes
9896     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9897     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9898 
9899     // Insert new nodes.
9900     nodes->push(m1);
9901     nodes->push(m2);
9902   %}
9903 %}
9904 
9905 // Float to Long conversion, NaN is mapped to 0.
9906 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
9907   match(Set dst (ConvF2L src));
9908   ins_cost(DEFAULT_COST);
9909 
9910   expand %{
9911     regF tmpF;
9912     stackSlotL tmpS;
9913     flagsReg crx;
9914     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9915     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
9916     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9917     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9918   %}
9919 %}
9920 
9921 instruct convD2LRaw_regD(regD dst, regD src) %{
9922   // no match-rule, false predicate
9923   effect(DEF dst, USE src);
9924   predicate(false);
9925 
9926   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
9927   size(4);
9928   ins_encode %{
9929     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9930     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9931   %}
9932   ins_pipe(pipe_class_default);
9933 %}
9934 
9935 // Double to Long conversion, NaN is mapped to 0.
9936 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
9937   match(Set dst (ConvD2L src));
9938   ins_cost(DEFAULT_COST);
9939 
9940   expand %{
9941     regD tmpD;
9942     stackSlotL tmpS;
9943     flagsReg crx;
9944     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9945     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
9946     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9947     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9948   %}
9949 %}
9950 
9951 // Convert to Float
9952 
9953 // Placed here as needed in expand.
9954 instruct convL2DRaw_regD(regD dst, regD src) %{
9955   // no match-rule, false predicate
9956   effect(DEF dst, USE src);
9957   predicate(false);
9958 
9959   format %{ "FCFID $dst, $src \t// convL2D" %}
9960   size(4);
9961   ins_encode %{
9962     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
9963     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
9964   %}
9965   ins_pipe(pipe_class_default);
9966 %}
9967 
9968 // Placed here as needed in expand.
9969 instruct convD2F_reg(regF dst, regD src) %{
9970   match(Set dst (ConvD2F src));
9971   format %{ "FRSP    $dst, $src \t// convD2F" %}
9972   size(4);
9973   ins_encode %{
9974     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
9975     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
9976   %}
9977   ins_pipe(pipe_class_default);
9978 %}
9979 
9980 // Integer to Float conversion.
9981 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
9982   match(Set dst (ConvI2F src));
9983   predicate(!VM_Version::has_fcfids());
9984   ins_cost(DEFAULT_COST);
9985 
9986   expand %{
9987     iRegLdst tmpL;
9988     stackSlotL tmpS;
9989     regD tmpD;
9990     regD tmpD2;
9991     convI2L_reg(tmpL, src);              // Sign-extension int to long.
9992     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
9993     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
9994     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
9995     convD2F_reg(dst, tmpD2);             // Convert double to float.
9996   %}
9997 %}
9998 
9999 instruct convL2FRaw_regF(regF dst, regD src) %{
10000   // no match-rule, false predicate
10001   effect(DEF dst, USE src);
10002   predicate(false);
10003 
10004   format %{ "FCFIDS $dst, $src \t// convL2F" %}
10005   size(4);
10006   ins_encode %{
10007     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10008     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
10009   %}
10010   ins_pipe(pipe_class_default);
10011 %}
10012 
10013 // Integer to Float conversion. Special version for Power7.
10014 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
10015   match(Set dst (ConvI2F src));
10016   predicate(VM_Version::has_fcfids());
10017   ins_cost(DEFAULT_COST);
10018 
10019   expand %{
10020     iRegLdst tmpL;
10021     stackSlotL tmpS;
10022     regD tmpD;
10023     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10024     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10025     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10026     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10027   %}
10028 %}
10029 
10030 // L2F to avoid runtime call.
10031 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
10032   match(Set dst (ConvL2F src));
10033   predicate(VM_Version::has_fcfids());
10034   ins_cost(DEFAULT_COST);
10035 
10036   expand %{
10037     stackSlotL tmpS;
10038     regD tmpD;
10039     regL_to_stkL(tmpS, src);             // Store long to stack.
10040     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10041     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10042   %}
10043 %}
10044 
10045 // Moved up as used in expand.
10046 //instruct convD2F_reg(regF dst, regD src) %{%}
10047 
10048 // Convert to Double
10049 
10050 // Integer to Double conversion.
10051 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
10052   match(Set dst (ConvI2D src));
10053   ins_cost(DEFAULT_COST);
10054 
10055   expand %{
10056     iRegLdst tmpL;
10057     stackSlotL tmpS;
10058     regD tmpD;
10059     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10060     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10061     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10062     convL2DRaw_regD(dst, tmpD);          // Convert to double.
10063   %}
10064 %}
10065 
10066 // Long to Double conversion
10067 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
10068   match(Set dst (ConvL2D src));
10069   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10070 
10071   expand %{
10072     regD tmpD;
10073     moveL2D_stack_reg(tmpD, src);
10074     convL2DRaw_regD(dst, tmpD);
10075   %}
10076 %}
10077 
10078 instruct convF2D_reg(regD dst, regF src) %{
10079   match(Set dst (ConvF2D src));
10080   format %{ "FMR     $dst, $src \t// float->double" %}
10081   // variable size, 0 or 4
10082   ins_encode %{
10083     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
10084     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
10085   %}
10086   ins_pipe(pipe_class_default);
10087 %}
10088 
10089 //----------Control Flow Instructions------------------------------------------
10090 // Compare Instructions
10091 
10092 // Compare Integers
10093 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10094   match(Set crx (CmpI src1 src2));
10095   size(4);
10096   format %{ "CMPW    $crx, $src1, $src2" %}
10097   ins_encode %{
10098     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10099     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10100   %}
10101   ins_pipe(pipe_class_compare);
10102 %}
10103 
10104 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
10105   match(Set crx (CmpI src1 src2));
10106   format %{ "CMPWI   $crx, $src1, $src2" %}
10107   size(4);
10108   ins_encode %{
10109     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10110     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10111   %}
10112   ins_pipe(pipe_class_compare);
10113 %}
10114 
10115 // (src1 & src2) == 0?
10116 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
10117   match(Set cr0 (CmpI (AndI src1 src2) zero));
10118   // r0 is killed
10119   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
10120   size(4);
10121   ins_encode %{
10122     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10123     // FIXME: avoid andi_ ?
10124     __ andi_(R0, $src1$$Register, $src2$$constant);
10125   %}
10126   ins_pipe(pipe_class_compare);
10127 %}
10128 
10129 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
10130   match(Set crx (CmpL src1 src2));
10131   format %{ "CMPD    $crx, $src1, $src2" %}
10132   size(4);
10133   ins_encode %{
10134     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10135     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
10136   %}
10137   ins_pipe(pipe_class_compare);
10138 %}
10139 
10140 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
10141   match(Set crx (CmpL src1 src2));
10142   format %{ "CMPDI   $crx, $src1, $src2" %}
10143   size(4);
10144   ins_encode %{
10145     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10146     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10147   %}
10148   ins_pipe(pipe_class_compare);
10149 %}
10150 
10151 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
10152   match(Set cr0 (CmpL (AndL src1 src2) zero));
10153   // r0 is killed
10154   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
10155   size(4);
10156   ins_encode %{
10157     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
10158     __ and_(R0, $src1$$Register, $src2$$Register);
10159   %}
10160   ins_pipe(pipe_class_compare);
10161 %}
10162 
10163 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
10164   match(Set cr0 (CmpL (AndL src1 src2) zero));
10165   // r0 is killed
10166   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
10167   size(4);
10168   ins_encode %{
10169     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10170     // FIXME: avoid andi_ ?
10171     __ andi_(R0, $src1$$Register, $src2$$constant);
10172   %}
10173   ins_pipe(pipe_class_compare);
10174 %}
10175 
10176 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
10177   // no match-rule, false predicate
10178   effect(DEF dst, USE crx);
10179   predicate(false);
10180 
10181   ins_variable_size_depending_on_alignment(true);
10182 
10183   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
10184   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
10185   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
10186   ins_encode %{
10187     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
10188     Label done;
10189     // li(Rdst, 0);              // equal -> 0
10190     __ beq($crx$$CondRegister, done);
10191     __ li($dst$$Register, 1);    // greater -> +1
10192     __ bgt($crx$$CondRegister, done);
10193     __ li($dst$$Register, -1);   // unordered or less -> -1
10194     // TODO: PPC port__ endgroup_if_needed(_size == 20);
10195     __ bind(done);
10196   %}
10197   ins_pipe(pipe_class_compare);
10198 %}
10199 
10200 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
10201   // no match-rule, false predicate
10202   effect(DEF dst, USE crx);
10203   predicate(false);
10204 
10205   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
10206   postalloc_expand %{
10207     //
10208     // replaces
10209     //
10210     //   region  crx
10211     //    \       |
10212     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
10213     //
10214     // with
10215     //
10216     //   region
10217     //    \
10218     //     dst=loadConI16(0)
10219     //      |
10220     //      ^  region  crx
10221     //      |   \       |
10222     //      dst=cmovI_conIvalueMinus1_conIvalue1
10223     //
10224 
10225     // Create new nodes.
10226     MachNode *m1 = new (C) loadConI16Node();
10227     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
10228 
10229     // inputs for new nodes
10230     m1->add_req(n_region);
10231     m2->add_req(n_region, n_crx);
10232     m2->add_prec(m1);
10233 
10234     // operands for new nodes
10235     m1->_opnds[0] = op_dst;
10236     m1->_opnds[1] = new (C) immI16Oper(0);
10237     m2->_opnds[0] = op_dst;
10238     m2->_opnds[1] = op_crx;
10239 
10240     // registers for new nodes
10241     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10242     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10243 
10244     // Insert new nodes.
10245     nodes->push(m1);
10246     nodes->push(m2);
10247   %}
10248 %}
10249 
10250 // Manifest a CmpL3 result in an integer register. Very painful.
10251 // This is the test to avoid.
10252 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
10253 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
10254   match(Set dst (CmpL3 src1 src2));
10255   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10256 
10257   expand %{
10258     flagsReg tmp1;
10259     cmpL_reg_reg(tmp1, src1, src2);
10260     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10261   %}
10262 %}
10263 
10264 // Implicit range checks.
10265 // A range check in the ideal world has one of the following shapes:
10266 //  - (If le (CmpU length index)), (IfTrue  throw exception)
10267 //  - (If lt (CmpU index length)), (IfFalse throw exception)
10268 //
10269 // Match range check 'If le (CmpU length index)'.
10270 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
10271   match(If cmp (CmpU src_length index));
10272   effect(USE labl);
10273   predicate(TrapBasedRangeChecks &&
10274             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
10275             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
10276             (Matcher::branches_to_uncommon_trap(_leaf)));
10277 
10278   ins_is_TrapBasedCheckNode(true);
10279 
10280   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
10281   size(4);
10282   ins_encode %{
10283     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10284     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
10285       __ trap_range_check_le($src_length$$Register, $index$$constant);
10286     } else {
10287       // Both successors are uncommon traps, probability is 0.
10288       // Node got flipped during fixup flow.
10289       assert($cmp$$cmpcode == 0x9, "must be greater");
10290       __ trap_range_check_g($src_length$$Register, $index$$constant);
10291     }
10292   %}
10293   ins_pipe(pipe_class_trap);
10294 %}
10295 
10296 // Match range check 'If lt (CmpU index length)'.
10297 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
10298   match(If cmp (CmpU src_index src_length));
10299   effect(USE labl);
10300   predicate(TrapBasedRangeChecks &&
10301             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10302             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10303             (Matcher::branches_to_uncommon_trap(_leaf)));
10304 
10305   ins_is_TrapBasedCheckNode(true);
10306 
10307   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
10308   size(4);
10309   ins_encode %{
10310     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
10311     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10312       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
10313     } else {
10314       // Both successors are uncommon traps, probability is 0.
10315       // Node got flipped during fixup flow.
10316       assert($cmp$$cmpcode == 0x8, "must be less");
10317       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
10318     }
10319   %}
10320   ins_pipe(pipe_class_trap);
10321 %}
10322 
10323 // Match range check 'If lt (CmpU index length)'.
10324 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
10325   match(If cmp (CmpU src_index length));
10326   effect(USE labl);
10327   predicate(TrapBasedRangeChecks &&
10328             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10329             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10330             (Matcher::branches_to_uncommon_trap(_leaf)));
10331 
10332   ins_is_TrapBasedCheckNode(true);
10333 
10334   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
10335   size(4);
10336   ins_encode %{
10337     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10338     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10339       __ trap_range_check_ge($src_index$$Register, $length$$constant);
10340     } else {
10341       // Both successors are uncommon traps, probability is 0.
10342       // Node got flipped during fixup flow.
10343       assert($cmp$$cmpcode == 0x8, "must be less");
10344       __ trap_range_check_l($src_index$$Register, $length$$constant);
10345     }
10346   %}
10347   ins_pipe(pipe_class_trap);
10348 %}
10349 
10350 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10351   match(Set crx (CmpU src1 src2));
10352   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
10353   size(4);
10354   ins_encode %{
10355     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10356     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10357   %}
10358   ins_pipe(pipe_class_compare);
10359 %}
10360 
10361 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
10362   match(Set crx (CmpU src1 src2));
10363   size(4);
10364   format %{ "CMPLWI  $crx, $src1, $src2" %}
10365   ins_encode %{
10366     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10367     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10368   %}
10369   ins_pipe(pipe_class_compare);
10370 %}
10371 
10372 // Implicit zero checks (more implicit null checks).
10373 // No constant pool entries required.
10374 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
10375   match(If cmp (CmpN value zero));
10376   effect(USE labl);
10377   predicate(TrapBasedNullChecks &&
10378             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10379             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10380             Matcher::branches_to_uncommon_trap(_leaf));
10381   ins_cost(1);
10382 
10383   ins_is_TrapBasedCheckNode(true);
10384 
10385   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
10386   size(4);
10387   ins_encode %{
10388     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10389     if ($cmp$$cmpcode == 0xA) {
10390       __ trap_null_check($value$$Register);
10391     } else {
10392       // Both successors are uncommon traps, probability is 0.
10393       // Node got flipped during fixup flow.
10394       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10395       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10396     }
10397   %}
10398   ins_pipe(pipe_class_trap);
10399 %}
10400 
10401 // Compare narrow oops.
10402 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
10403   match(Set crx (CmpN src1 src2));
10404 
10405   size(4);
10406   ins_cost(DEFAULT_COST);
10407   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
10408   ins_encode %{
10409     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10410     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10411   %}
10412   ins_pipe(pipe_class_compare);
10413 %}
10414 
10415 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
10416   match(Set crx (CmpN src1 src2));
10417   // Make this more expensive than zeroCheckN_iReg_imm0.
10418   ins_cost(DEFAULT_COST);
10419 
10420   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
10421   size(4);
10422   ins_encode %{
10423     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10424     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10425   %}
10426   ins_pipe(pipe_class_compare);
10427 %}
10428 
10429 // Implicit zero checks (more implicit null checks).
10430 // No constant pool entries required.
10431 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
10432   match(If cmp (CmpP value zero));
10433   effect(USE labl);
10434   predicate(TrapBasedNullChecks &&
10435             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10436             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10437             Matcher::branches_to_uncommon_trap(_leaf));
10438 
10439   ins_is_TrapBasedCheckNode(true);
10440 
10441   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
10442   size(4);
10443   ins_encode %{
10444     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10445     if ($cmp$$cmpcode == 0xA) {
10446       __ trap_null_check($value$$Register);
10447     } else {
10448       // Both successors are uncommon traps, probability is 0.
10449       // Node got flipped during fixup flow.
10450       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10451       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10452     }
10453   %}
10454   ins_pipe(pipe_class_trap);
10455 %}
10456 
10457 // Compare Pointers
10458 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
10459   match(Set crx (CmpP src1 src2));
10460   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
10461   size(4);
10462   ins_encode %{
10463     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10464     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
10465   %}
10466   ins_pipe(pipe_class_compare);
10467 %}
10468 
10469 // Used in postalloc expand.
10470 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
10471   // This match rule prevents reordering of node before a safepoint.
10472   // This only makes sense if this instructions is used exclusively
10473   // for the expansion of EncodeP!
10474   match(Set crx (CmpP src1 src2));
10475   predicate(false);
10476 
10477   format %{ "CMPDI   $crx, $src1, $src2" %}
10478   size(4);
10479   ins_encode %{
10480     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10481     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10482   %}
10483   ins_pipe(pipe_class_compare);
10484 %}
10485 
10486 //----------Float Compares----------------------------------------------------
10487 
10488 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
10489   // no match-rule, false predicate
10490   effect(DEF crx, USE src1, USE src2);
10491   predicate(false);
10492 
10493   format %{ "cmpFUrd $crx, $src1, $src2" %}
10494   size(4);
10495   ins_encode %{
10496     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10497     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10498   %}
10499   ins_pipe(pipe_class_default);
10500 %}
10501 
10502 instruct cmov_bns_less(flagsReg crx) %{
10503   // no match-rule, false predicate
10504   effect(DEF crx);
10505   predicate(false);
10506 
10507   ins_variable_size_depending_on_alignment(true);
10508 
10509   format %{ "cmov    $crx" %}
10510   // Worst case is branch + move + stop, no stop without scheduler.
10511   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
10512   ins_encode %{
10513     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
10514     Label done;
10515     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
10516     __ li(R0, 0);
10517     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
10518     // TODO PPC port __ endgroup_if_needed(_size == 16);
10519     __ bind(done);
10520   %}
10521   ins_pipe(pipe_class_default);
10522 %}
10523 
10524 // Compare floating, generate condition code.
10525 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
10526   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
10527   //
10528   // The following code sequence occurs a lot in mpegaudio:
10529   //
10530   // block BXX:
10531   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
10532   //    cmpFUrd CCR6, F11, F9
10533   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
10534   //    cmov CCR6
10535   // 8: instruct branchConSched:
10536   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
10537   match(Set crx (CmpF src1 src2));
10538   ins_cost(DEFAULT_COST+BRANCH_COST);
10539 
10540   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
10541   postalloc_expand %{
10542     //
10543     // replaces
10544     //
10545     //   region  src1  src2
10546     //    \       |     |
10547     //     crx=cmpF_reg_reg
10548     //
10549     // with
10550     //
10551     //   region  src1  src2
10552     //    \       |     |
10553     //     crx=cmpFUnordered_reg_reg
10554     //      |
10555     //      ^  region
10556     //      |   \
10557     //      crx=cmov_bns_less
10558     //
10559 
10560     // Create new nodes.
10561     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
10562     MachNode *m2 = new (C) cmov_bns_lessNode();
10563 
10564     // inputs for new nodes
10565     m1->add_req(n_region, n_src1, n_src2);
10566     m2->add_req(n_region);
10567     m2->add_prec(m1);
10568 
10569     // operands for new nodes
10570     m1->_opnds[0] = op_crx;
10571     m1->_opnds[1] = op_src1;
10572     m1->_opnds[2] = op_src2;
10573     m2->_opnds[0] = op_crx;
10574 
10575     // registers for new nodes
10576     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10577     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10578 
10579     // Insert new nodes.
10580     nodes->push(m1);
10581     nodes->push(m2);
10582   %}
10583 %}
10584 
10585 // Compare float, generate -1,0,1
10586 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
10587   match(Set dst (CmpF3 src1 src2));
10588   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10589 
10590   expand %{
10591     flagsReg tmp1;
10592     cmpFUnordered_reg_reg(tmp1, src1, src2);
10593     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10594   %}
10595 %}
10596 
10597 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
10598   // no match-rule, false predicate
10599   effect(DEF crx, USE src1, USE src2);
10600   predicate(false);
10601 
10602   format %{ "cmpFUrd $crx, $src1, $src2" %}
10603   size(4);
10604   ins_encode %{
10605     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10606     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10607   %}
10608   ins_pipe(pipe_class_default);
10609 %}
10610 
10611 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
10612   match(Set crx (CmpD src1 src2));
10613   ins_cost(DEFAULT_COST+BRANCH_COST);
10614 
10615   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
10616   postalloc_expand %{
10617     //
10618     // replaces
10619     //
10620     //   region  src1  src2
10621     //    \       |     |
10622     //     crx=cmpD_reg_reg
10623     //
10624     // with
10625     //
10626     //   region  src1  src2
10627     //    \       |     |
10628     //     crx=cmpDUnordered_reg_reg
10629     //      |
10630     //      ^  region
10631     //      |   \
10632     //      crx=cmov_bns_less
10633     //
10634 
10635     // create new nodes
10636     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
10637     MachNode *m2 = new (C) cmov_bns_lessNode();
10638 
10639     // inputs for new nodes
10640     m1->add_req(n_region, n_src1, n_src2);
10641     m2->add_req(n_region);
10642     m2->add_prec(m1);
10643 
10644     // operands for new nodes
10645     m1->_opnds[0] = op_crx;
10646     m1->_opnds[1] = op_src1;
10647     m1->_opnds[2] = op_src2;
10648     m2->_opnds[0] = op_crx;
10649 
10650     // registers for new nodes
10651     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10652     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10653 
10654     // Insert new nodes.
10655     nodes->push(m1);
10656     nodes->push(m2);
10657   %}
10658 %}
10659 
10660 // Compare double, generate -1,0,1
10661 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
10662   match(Set dst (CmpD3 src1 src2));
10663   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10664 
10665   expand %{
10666     flagsReg tmp1;
10667     cmpDUnordered_reg_reg(tmp1, src1, src2);
10668     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10669   %}
10670 %}
10671 
10672 //----------Branches---------------------------------------------------------
10673 // Jump
10674 
10675 // Direct Branch.
10676 instruct branch(label labl) %{
10677   match(Goto);
10678   effect(USE labl);
10679   ins_cost(BRANCH_COST);
10680 
10681   format %{ "B       $labl" %}
10682   size(4);
10683   ins_encode %{
10684     // TODO: PPC port $archOpcode(ppc64Opcode_b);
10685      Label d;    // dummy
10686      __ bind(d);
10687      Label* p = $labl$$label;
10688      // `p' is `NULL' when this encoding class is used only to
10689      // determine the size of the encoded instruction.
10690      Label& l = (NULL == p)? d : *(p);
10691      __ b(l);
10692   %}
10693   ins_pipe(pipe_class_default);
10694 %}
10695 
10696 // Conditional Near Branch
10697 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
10698   // Same match rule as `branchConFar'.
10699   match(If cmp crx);
10700   effect(USE lbl);
10701   ins_cost(BRANCH_COST);
10702 
10703   // If set to 1 this indicates that the current instruction is a
10704   // short variant of a long branch. This avoids using this
10705   // instruction in first-pass matching. It will then only be used in
10706   // the `Shorten_branches' pass.
10707   ins_short_branch(1);
10708 
10709   format %{ "B$cmp     $crx, $lbl" %}
10710   size(4);
10711   ins_encode( enc_bc(crx, cmp, lbl) );
10712   ins_pipe(pipe_class_default);
10713 %}
10714 
10715 // This is for cases when the ppc64 `bc' instruction does not
10716 // reach far enough. So we emit a far branch here, which is more
10717 // expensive.
10718 //
10719 // Conditional Far Branch
10720 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
10721   // Same match rule as `branchCon'.
10722   match(If cmp crx);
10723   effect(USE crx, USE lbl);
10724   predicate(!false /* TODO: PPC port HB_Schedule*/);
10725   // Higher cost than `branchCon'.
10726   ins_cost(5*BRANCH_COST);
10727 
10728   // This is not a short variant of a branch, but the long variant.
10729   ins_short_branch(0);
10730 
10731   format %{ "B_FAR$cmp $crx, $lbl" %}
10732   size(8);
10733   ins_encode( enc_bc_far(crx, cmp, lbl) );
10734   ins_pipe(pipe_class_default);
10735 %}
10736 
10737 // Conditional Branch used with Power6 scheduler (can be far or short).
10738 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
10739   // Same match rule as `branchCon'.
10740   match(If cmp crx);
10741   effect(USE crx, USE lbl);
10742   predicate(false /* TODO: PPC port HB_Schedule*/);
10743   // Higher cost than `branchCon'.
10744   ins_cost(5*BRANCH_COST);
10745 
10746   // Actually size doesn't depend on alignment but on shortening.
10747   ins_variable_size_depending_on_alignment(true);
10748   // long variant.
10749   ins_short_branch(0);
10750 
10751   format %{ "B_FAR$cmp $crx, $lbl" %}
10752   size(8); // worst case
10753   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
10754   ins_pipe(pipe_class_default);
10755 %}
10756 
10757 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
10758   match(CountedLoopEnd cmp crx);
10759   effect(USE labl);
10760   ins_cost(BRANCH_COST);
10761 
10762   // short variant.
10763   ins_short_branch(1);
10764 
10765   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
10766   size(4);
10767   ins_encode( enc_bc(crx, cmp, labl) );
10768   ins_pipe(pipe_class_default);
10769 %}
10770 
10771 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
10772   match(CountedLoopEnd cmp crx);
10773   effect(USE labl);
10774   predicate(!false /* TODO: PPC port HB_Schedule */);
10775   ins_cost(BRANCH_COST);
10776 
10777   // Long variant.
10778   ins_short_branch(0);
10779 
10780   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10781   size(8);
10782   ins_encode( enc_bc_far(crx, cmp, labl) );
10783   ins_pipe(pipe_class_default);
10784 %}
10785 
10786 // Conditional Branch used with Power6 scheduler (can be far or short).
10787 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
10788   match(CountedLoopEnd cmp crx);
10789   effect(USE labl);
10790   predicate(false /* TODO: PPC port HB_Schedule */);
10791   // Higher cost than `branchCon'.
10792   ins_cost(5*BRANCH_COST);
10793 
10794   // Actually size doesn't depend on alignment but on shortening.
10795   ins_variable_size_depending_on_alignment(true);
10796   // Long variant.
10797   ins_short_branch(0);
10798 
10799   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10800   size(8); // worst case
10801   ins_encode( enc_bc_short_far(crx, cmp, labl) );
10802   ins_pipe(pipe_class_default);
10803 %}
10804 
10805 // ============================================================================
10806 // Java runtime operations, intrinsics and other complex operations.
10807 
10808 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
10809 // array for an instance of the superklass. Set a hidden internal cache on a
10810 // hit (cache is checked with exposed code in gen_subtype_check()). Return
10811 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
10812 //
10813 // GL TODO: Improve this.
10814 // - result should not be a TEMP
10815 // - Add match rule as on sparc avoiding additional Cmp.
10816 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
10817                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
10818   match(Set result (PartialSubtypeCheck subklass superklass));
10819   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
10820   ins_cost(DEFAULT_COST*10);
10821 
10822   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
10823   ins_encode %{
10824     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10825     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register, 
10826                                      $tmp_klass$$Register, NULL, $result$$Register);
10827   %}
10828   ins_pipe(pipe_class_default);
10829 %}
10830 
10831 // inlined locking and unlocking
10832 
10833 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10834   match(Set crx (FastLock oop box));
10835   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10836   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
10837 
10838   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
10839   ins_encode %{
10840     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10841     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10842                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10843     // If locking was successfull, crx should indicate 'EQ'.
10844     // The compiler generates a branch to the runtime call to
10845     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10846   %}
10847   ins_pipe(pipe_class_compare);
10848 %}
10849 
10850 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10851   match(Set crx (FastUnlock oop box));
10852   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10853 
10854   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
10855   ins_encode %{
10856     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10857     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10858                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
10859     // If unlocking was successfull, crx should indicate 'EQ'.
10860     // The compiler generates a branch to the runtime call to
10861     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
10862   %}
10863   ins_pipe(pipe_class_compare);
10864 %}
10865 
10866 // Align address.
10867 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
10868   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
10869 
10870   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
10871   size(4);
10872   ins_encode %{
10873     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
10874     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
10875   %}
10876   ins_pipe(pipe_class_default);
10877 %}
10878 
10879 // Array size computation.
10880 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
10881   match(Set dst (SubL (CastP2X end) (CastP2X start)));
10882 
10883   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
10884   size(4);
10885   ins_encode %{
10886     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
10887     __ subf($dst$$Register, $start$$Register, $end$$Register);
10888   %}
10889   ins_pipe(pipe_class_default);
10890 %}
10891 
10892 // Clear-array with dynamic array-size.
10893 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
10894   match(Set dummy (ClearArray cnt base));
10895   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
10896   ins_cost(MEMORY_REF_COST);
10897 
10898   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
10899 
10900   format %{ "ClearArray $cnt, $base" %}
10901   ins_encode %{
10902     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10903     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
10904   %}
10905   ins_pipe(pipe_class_default);
10906 %}
10907 
10908 // String_IndexOf for needle of length 1.
10909 //
10910 // Match needle into immediate operands: no loadConP node needed. Saves one
10911 // register and two instructions over string_indexOf_imm1Node.
10912 //
10913 // Assumes register result differs from all input registers.
10914 //
10915 // Preserves registers haystack, haycnt
10916 // Kills     registers tmp1, tmp2
10917 // Defines   registers result
10918 //
10919 // Use dst register classes if register gets killed, as it is the case for tmp registers!
10920 //
10921 // Unfortunately this does not match too often. In many situations the AddP is used
10922 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
10923 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
10924                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
10925                                   iRegIdst tmp1, iRegIdst tmp2,
10926                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
10927   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
10928   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
10929 
10930   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
10931 
10932   ins_cost(150);
10933   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
10934             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
10935 
10936   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
10937   ins_encode %{
10938     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10939     immPOper *needleOper = (immPOper *)$needleImm;
10940     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
10941     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
10942 
10943     __ string_indexof_1($result$$Register,
10944                         $haystack$$Register, $haycnt$$Register,
10945                         R0, needle_values->char_at(0),
10946                         $tmp1$$Register, $tmp2$$Register);
10947   %}
10948   ins_pipe(pipe_class_compare);
10949 %}
10950 
10951 // String_IndexOf for needle of length 1.
10952 //
10953 // Special case requires less registers and emits less instructions.
10954 //
10955 // Assumes register result differs from all input registers.
10956 //
10957 // Preserves registers haystack, haycnt
10958 // Kills     registers tmp1, tmp2, needle
10959 // Defines   registers result
10960 //
10961 // Use dst register classes if register gets killed, as it is the case for tmp registers!
10962 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
10963                              rscratch2RegP needle, immI_1 needlecntImm,
10964                              iRegIdst tmp1, iRegIdst tmp2,
10965                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
10966   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
10967   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
10968          TEMP tmp1, TEMP tmp2);
10969   // Required for EA: check if it is still a type_array.
10970   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
10971             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
10972   ins_cost(180);
10973 
10974   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
10975 
10976   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
10977             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
10978   ins_encode %{
10979     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10980     Node *ndl = in(operand_index($needle));  // The node that defines needle.
10981     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
10982     guarantee(needle_values, "sanity");
10983     if (needle_values != NULL) {
10984       __ string_indexof_1($result$$Register,
10985                           $haystack$$Register, $haycnt$$Register,
10986                           R0, needle_values->char_at(0),
10987                           $tmp1$$Register, $tmp2$$Register);
10988     } else {
10989       __ string_indexof_1($result$$Register,
10990                           $haystack$$Register, $haycnt$$Register,
10991                           $needle$$Register, 0,
10992                           $tmp1$$Register, $tmp2$$Register);
10993     }
10994   %}
10995   ins_pipe(pipe_class_compare);
10996 %}
10997 
10998 // String_IndexOf.
10999 //
11000 // Length of needle as immediate. This saves instruction loading constant needle
11001 // length.
11002 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
11003 // completely or do it in vector instruction. This should save registers for
11004 // needlecnt and needle.
11005 //
11006 // Assumes register result differs from all input registers.
11007 // Overwrites haycnt, needlecnt.
11008 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11009 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
11010                             iRegPsrc needle, uimmI15 needlecntImm,
11011                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
11012                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11013   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11014   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
11015          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
11016   // Required for EA: check if it is still a type_array.
11017   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11018             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11019   ins_cost(250);
11020 
11021   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11022 
11023   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11024             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
11025   ins_encode %{
11026     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11027     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11028     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11029 
11030     __ string_indexof($result$$Register,
11031                       $haystack$$Register, $haycnt$$Register,
11032                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
11033                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11034   %}
11035   ins_pipe(pipe_class_compare);
11036 %}
11037 
11038 // StrIndexOf node.
11039 //
11040 // Assumes register result differs from all input registers.
11041 // Overwrites haycnt, needlecnt.
11042 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11043 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
11044                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
11045                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11046   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
11047   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
11048          TEMP result,
11049          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
11050   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
11051   ins_cost(300);
11052 
11053   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11054 
11055   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
11056              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
11057   ins_encode %{
11058     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11059     __ string_indexof($result$$Register,
11060                       $haystack$$Register, $haycnt$$Register,
11061                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
11062                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11063   %}
11064   ins_pipe(pipe_class_compare);
11065 %}
11066 
11067 // String equals with immediate.
11068 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
11069                            iRegPdst tmp1, iRegPdst tmp2,
11070                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
11071   match(Set result (StrEquals (Binary str1 str2) cntImm));
11072   effect(TEMP result, TEMP tmp1, TEMP tmp2,
11073          KILL cr0, KILL cr6, KILL ctr);
11074   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11075   ins_cost(250);
11076 
11077   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11078 
11079   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
11080             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
11081   ins_encode %{
11082     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11083     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
11084                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
11085   %}
11086   ins_pipe(pipe_class_compare);
11087 %}
11088 
11089 // String equals.
11090 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11091 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
11092                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
11093                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
11094   match(Set result (StrEquals (Binary str1 str2) cnt));
11095   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
11096          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
11097   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
11098   ins_cost(300);
11099 
11100   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11101 
11102   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
11103             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
11104   ins_encode %{
11105     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11106     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
11107                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
11108   %}
11109   ins_pipe(pipe_class_compare);
11110 %}
11111 
11112 // String compare.
11113 // Char[] pointers are passed in.
11114 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11115 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
11116                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
11117   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11118   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
11119   ins_cost(300);
11120 
11121   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11122 
11123   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
11124             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
11125   ins_encode %{
11126     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11127     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
11128                       $result$$Register, $tmp$$Register);
11129   %}
11130   ins_pipe(pipe_class_compare);
11131 %}
11132 
11133 //---------- Min/Max Instructions ---------------------------------------------
11134 
11135 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11136   match(Set dst (MinI src1 src2));
11137   ins_cost(DEFAULT_COST*6);
11138 
11139   expand %{
11140     iRegIdst src1s;
11141     iRegIdst src2s;
11142     iRegIdst diff;
11143     iRegIdst sm;
11144     iRegIdst doz; // difference or zero
11145     sxtI_reg(src1s, src1); // Ensure proper sign extention.
11146     sxtI_reg(src2s, src2); // Ensure proper sign extention.
11147     subI_reg_reg(diff, src2s, src1s);
11148     // Need to consider >=33 bit result, therefore we need signmaskL.
11149     signmask64I_regI(sm, diff);
11150     andI_reg_reg(doz, diff, sm); // <=0
11151     addI_reg_reg(dst, doz, src1s);
11152   %}
11153 %}
11154 
11155 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11156   match(Set dst (MaxI src1 src2));
11157   ins_cost(DEFAULT_COST*6);
11158 
11159   expand %{
11160     immI_minus1 m1 %{ -1 %}
11161     iRegIdst src1s;
11162     iRegIdst src2s;
11163     iRegIdst diff;
11164     iRegIdst sm;
11165     iRegIdst doz; // difference or zero
11166     sxtI_reg(src1s, src1); // Ensure proper sign extention.
11167     sxtI_reg(src2s, src2); // Ensure proper sign extention.
11168     subI_reg_reg(diff, src2s, src1s);
11169     // Need to consider >=33 bit result, therefore we need signmaskL.
11170     signmask64I_regI(sm, diff);
11171     andcI_reg_reg(doz, sm, m1, diff); // >=0
11172     addI_reg_reg(dst, doz, src1s);
11173   %}
11174 %}
11175 
11176 //---------- Population Count Instructions ------------------------------------
11177 
11178 // Popcnt for Power7.
11179 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
11180   match(Set dst (PopCountI src));
11181   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11182   ins_cost(DEFAULT_COST);
11183 
11184   format %{ "POPCNTW $dst, $src" %}
11185   size(4);
11186   ins_encode %{
11187     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11188     __ popcntw($dst$$Register, $src$$Register);
11189   %}
11190   ins_pipe(pipe_class_default);
11191 %}
11192 
11193 // Popcnt for Power7.
11194 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
11195   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11196   match(Set dst (PopCountL src));
11197   ins_cost(DEFAULT_COST);
11198 
11199   format %{ "POPCNTD $dst, $src" %}
11200   size(4);
11201   ins_encode %{
11202     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11203     __ popcntd($dst$$Register, $src$$Register);
11204   %}
11205   ins_pipe(pipe_class_default);
11206 %}
11207 
11208 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
11209   match(Set dst (CountLeadingZerosI src));
11210   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11211   ins_cost(DEFAULT_COST);
11212 
11213   format %{ "CNTLZW  $dst, $src" %}
11214   size(4);
11215   ins_encode %{
11216     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
11217     __ cntlzw($dst$$Register, $src$$Register);
11218   %}
11219   ins_pipe(pipe_class_default);
11220 %}
11221 
11222 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
11223   match(Set dst (CountLeadingZerosL src));
11224   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11225   ins_cost(DEFAULT_COST);
11226 
11227   format %{ "CNTLZD  $dst, $src" %}
11228   size(4);
11229   ins_encode %{
11230     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11231     __ cntlzd($dst$$Register, $src$$Register);
11232   %}
11233   ins_pipe(pipe_class_default);
11234 %}
11235 
11236 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
11237   // no match-rule, false predicate
11238   effect(DEF dst, USE src);
11239   predicate(false);
11240 
11241   format %{ "CNTLZD  $dst, $src" %}
11242   size(4);
11243   ins_encode %{
11244     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11245     __ cntlzd($dst$$Register, $src$$Register);
11246   %}
11247   ins_pipe(pipe_class_default);
11248 %}
11249 
11250 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
11251   match(Set dst (CountTrailingZerosI src));
11252   predicate(UseCountLeadingZerosInstructionsPPC64);
11253   ins_cost(DEFAULT_COST);
11254 
11255   expand %{
11256     immI16 imm1 %{ (int)-1 %}
11257     immI16 imm2 %{ (int)32 %}
11258     immI_minus1 m1 %{ -1 %}
11259     iRegIdst tmpI1;
11260     iRegIdst tmpI2;
11261     iRegIdst tmpI3;
11262     addI_reg_imm16(tmpI1, src, imm1);
11263     andcI_reg_reg(tmpI2, src, m1, tmpI1);
11264     countLeadingZerosI(tmpI3, tmpI2);
11265     subI_imm16_reg(dst, imm2, tmpI3);
11266   %}
11267 %}
11268 
11269 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
11270   match(Set dst (CountTrailingZerosL src));
11271   predicate(UseCountLeadingZerosInstructionsPPC64);
11272   ins_cost(DEFAULT_COST);
11273 
11274   expand %{
11275     immL16 imm1 %{ (long)-1 %}
11276     immI16 imm2 %{ (int)64 %}
11277     iRegLdst tmpL1;
11278     iRegLdst tmpL2;
11279     iRegIdst tmpL3;
11280     addL_reg_imm16(tmpL1, src, imm1);
11281     andcL_reg_reg(tmpL2, tmpL1, src);
11282     countLeadingZerosL(tmpL3, tmpL2);
11283     subI_imm16_reg(dst, imm2, tmpL3);
11284  %}
11285 %}
11286 
11287 // Expand nodes for byte_reverse_int.
11288 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11289   effect(DEF dst, USE src, USE pos, USE shift);
11290   predicate(false);
11291 
11292   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11293   size(4);
11294   ins_encode %{
11295     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11296     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11297   %}
11298   ins_pipe(pipe_class_default);
11299 %}
11300 
11301 // As insrwi_a, but with USE_DEF.
11302 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11303   effect(USE_DEF dst, USE src, USE pos, USE shift);
11304   predicate(false);
11305 
11306   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11307   size(4);
11308   ins_encode %{
11309     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11310     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11311   %}
11312   ins_pipe(pipe_class_default);
11313 %}
11314 
11315 // Just slightly faster than java implementation.
11316 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
11317   match(Set dst (ReverseBytesI src));
11318   predicate(UseCountLeadingZerosInstructionsPPC64);
11319   ins_cost(DEFAULT_COST);
11320 
11321   expand %{
11322     immI16 imm24 %{ (int) 24 %}
11323     immI16 imm16 %{ (int) 16 %}
11324     immI16  imm8 %{ (int)  8 %}
11325     immI16  imm4 %{ (int)  4 %}
11326     immI16  imm0 %{ (int)  0 %}
11327     iRegLdst tmpI1;
11328     iRegLdst tmpI2;
11329     iRegLdst tmpI3;
11330 
11331     urShiftI_reg_imm(tmpI1, src, imm24);
11332     insrwi_a(dst, tmpI1, imm24, imm8);
11333     urShiftI_reg_imm(tmpI2, src, imm16);
11334     insrwi(dst, tmpI2, imm8, imm16);
11335     urShiftI_reg_imm(tmpI3, src, imm8);
11336     insrwi(dst, tmpI3, imm8, imm8);
11337     insrwi(dst, src, imm0, imm8);
11338   %}
11339 %}
11340 
11341 //---------- Replicate Vector Instructions ------------------------------------
11342 
11343 // Insrdi does replicate if src == dst.
11344 instruct repl32(iRegLdst dst) %{
11345   predicate(false);
11346   effect(USE_DEF dst);
11347 
11348   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
11349   size(4);
11350   ins_encode %{
11351     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11352     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
11353   %}
11354   ins_pipe(pipe_class_default);
11355 %}
11356 
11357 // Insrdi does replicate if src == dst.
11358 instruct repl48(iRegLdst dst) %{
11359   predicate(false);
11360   effect(USE_DEF dst);
11361 
11362   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
11363   size(4);
11364   ins_encode %{
11365     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11366     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
11367   %}
11368   ins_pipe(pipe_class_default);
11369 %}
11370 
11371 // Insrdi does replicate if src == dst.
11372 instruct repl56(iRegLdst dst) %{
11373   predicate(false);
11374   effect(USE_DEF dst);
11375 
11376   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
11377   size(4);
11378   ins_encode %{
11379     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11380     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
11381   %}
11382   ins_pipe(pipe_class_default);
11383 %}
11384 
11385 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11386   match(Set dst (ReplicateB src));
11387   predicate(n->as_Vector()->length() == 8);
11388   expand %{
11389     moveReg(dst, src);
11390     repl56(dst);
11391     repl48(dst);
11392     repl32(dst);
11393   %}
11394 %}
11395 
11396 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
11397   match(Set dst (ReplicateB zero));
11398   predicate(n->as_Vector()->length() == 8);
11399   format %{ "LI      $dst, #0 \t// replicate8B" %}
11400   size(4);
11401   ins_encode %{
11402     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11403     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11404   %}
11405   ins_pipe(pipe_class_default);
11406 %}
11407 
11408 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
11409   match(Set dst (ReplicateB src));
11410   predicate(n->as_Vector()->length() == 8);
11411   format %{ "LI      $dst, #-1 \t// replicate8B" %}
11412   size(4);
11413   ins_encode %{
11414     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11415     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11416   %}
11417   ins_pipe(pipe_class_default);
11418 %}
11419 
11420 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11421   match(Set dst (ReplicateS src));
11422   predicate(n->as_Vector()->length() == 4);
11423   expand %{
11424     moveReg(dst, src);
11425     repl48(dst);
11426     repl32(dst);
11427   %}
11428 %}
11429 
11430 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
11431   match(Set dst (ReplicateS zero));
11432   predicate(n->as_Vector()->length() == 4);
11433   format %{ "LI      $dst, #0 \t// replicate4C" %}
11434   size(4);
11435   ins_encode %{
11436     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11437     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11438   %}
11439   ins_pipe(pipe_class_default);
11440 %}
11441 
11442 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
11443   match(Set dst (ReplicateS src));
11444   predicate(n->as_Vector()->length() == 4);
11445   format %{ "LI      $dst, -1 \t// replicate4C" %}
11446   size(4);
11447   ins_encode %{
11448     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11449     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11450   %}
11451   ins_pipe(pipe_class_default);
11452 %}
11453 
11454 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11455   match(Set dst (ReplicateI src));
11456   predicate(n->as_Vector()->length() == 2);
11457   ins_cost(2 * DEFAULT_COST);
11458   expand %{
11459     moveReg(dst, src);
11460     repl32(dst);
11461   %}
11462 %}
11463 
11464 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
11465   match(Set dst (ReplicateI zero));
11466   predicate(n->as_Vector()->length() == 2);
11467   format %{ "LI      $dst, #0 \t// replicate4C" %}
11468   size(4);
11469   ins_encode %{
11470     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11471     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11472   %}
11473   ins_pipe(pipe_class_default);
11474 %}
11475 
11476 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
11477   match(Set dst (ReplicateI src));
11478   predicate(n->as_Vector()->length() == 2);
11479   format %{ "LI      $dst, -1 \t// replicate4C" %}
11480   size(4);
11481   ins_encode %{
11482     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11483     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11484   %}
11485   ins_pipe(pipe_class_default);
11486 %}
11487 
11488 // Move float to int register via stack, replicate.
11489 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
11490   match(Set dst (ReplicateF src));
11491   predicate(n->as_Vector()->length() == 2);
11492   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
11493   expand %{
11494     stackSlotL tmpS;
11495     iRegIdst tmpI;
11496     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
11497     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
11498     moveReg(dst, tmpI);             // Move int to long reg.
11499     repl32(dst);                    // Replicate bitpattern.
11500   %}
11501 %}
11502 
11503 // Replicate scalar constant to packed float values in Double register
11504 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
11505   match(Set dst (ReplicateF src));
11506   predicate(n->as_Vector()->length() == 2);
11507   ins_cost(5 * DEFAULT_COST);
11508 
11509   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
11510   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
11511 %}
11512 
11513 // Replicate scalar zero constant to packed float values in Double register
11514 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
11515   match(Set dst (ReplicateF zero));
11516   predicate(n->as_Vector()->length() == 2);
11517 
11518   format %{ "LI      $dst, #0 \t// replicate2F" %}
11519   ins_encode %{
11520     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11521     __ li($dst$$Register, 0x0);
11522   %}
11523   ins_pipe(pipe_class_default);
11524 %}
11525 
11526 // ============================================================================
11527 // Safepoint Instruction
11528 
11529 instruct safePoint_poll(iRegPdst poll) %{
11530   match(SafePoint poll);
11531   predicate(LoadPollAddressFromThread);
11532 
11533   // It caused problems to add the effect that r0 is killed, but this
11534   // effect no longer needs to be mentioned, since r0 is not contained
11535   // in a reg_class.
11536 
11537   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
11538   size(4);
11539   ins_encode( enc_poll(0x0, poll) );
11540   ins_pipe(pipe_class_default);
11541 %}
11542 
11543 // Safepoint without per-thread support. Load address of page to poll
11544 // as constant.
11545 // Rscratch2RegP is R12.
11546 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
11547 // a seperate node so that the oop map is at the right location.
11548 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
11549   match(SafePoint poll);
11550   predicate(!LoadPollAddressFromThread);
11551 
11552   // It caused problems to add the effect that r0 is killed, but this
11553   // effect no longer needs to be mentioned, since r0 is not contained
11554   // in a reg_class.
11555 
11556   format %{ "LD      R12, addr of polling page\n\t"
11557             "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
11558   ins_encode( enc_poll(0x0, poll) );
11559   ins_pipe(pipe_class_default);
11560 %}
11561 
11562 // ============================================================================
11563 // Call Instructions
11564 
11565 // Call Java Static Instruction
11566 
11567 // Schedulable version of call static node.
11568 instruct CallStaticJavaDirect(method meth) %{
11569   match(CallStaticJava);
11570   effect(USE meth);
11571   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
11572   ins_cost(CALL_COST);
11573 
11574   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11575 
11576   format %{ "CALL,static $meth \t// ==> " %}
11577   size(4);
11578   ins_encode( enc_java_static_call(meth) );
11579   ins_pipe(pipe_class_call);
11580 %}
11581 
11582 // Schedulable version of call static node.
11583 instruct CallStaticJavaDirectHandle(method meth) %{
11584   match(CallStaticJava);
11585   effect(USE meth);
11586   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
11587   ins_cost(CALL_COST);
11588 
11589   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11590 
11591   format %{ "CALL,static $meth \t// ==> " %}
11592   ins_encode( enc_java_handle_call(meth) );
11593   ins_pipe(pipe_class_call);
11594 %}
11595 
11596 // Call Java Dynamic Instruction
11597 
11598 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
11599 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
11600 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
11601 // The call destination must still be placed in the constant pool.
11602 instruct CallDynamicJavaDirectSched(method meth) %{
11603   match(CallDynamicJava); // To get all the data fields we need ...
11604   effect(USE meth);
11605   predicate(false);       // ... but never match.
11606 
11607   ins_field_load_ic_hi_node(loadConL_hiNode*);
11608   ins_field_load_ic_node(loadConLNode*);
11609   ins_num_consts(1 /* 1 patchable constant: call destination */);
11610 
11611   format %{ "BL        \t// dynamic $meth ==> " %}
11612   size(4);
11613   ins_encode( enc_java_dynamic_call_sched(meth) );
11614   ins_pipe(pipe_class_call);
11615 %}
11616 
11617 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
11618 // We use postalloc expanded calls if we use inline caches
11619 // and do not update method data.
11620 //
11621 // This instruction has two constants: inline cache (IC) and call destination.
11622 // Loading the inline cache will be postalloc expanded, thus leaving a call with
11623 // one constant.
11624 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
11625   match(CallDynamicJava);
11626   effect(USE meth);
11627   predicate(UseInlineCaches);
11628   ins_cost(CALL_COST);
11629 
11630   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
11631 
11632   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
11633   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
11634 %}
11635 
11636 // Compound version of call dynamic java
11637 // We use postalloc expanded calls if we use inline caches
11638 // and do not update method data.
11639 instruct CallDynamicJavaDirect(method meth) %{
11640   match(CallDynamicJava);
11641   effect(USE meth);
11642   predicate(!UseInlineCaches);
11643   ins_cost(CALL_COST);
11644 
11645   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
11646   ins_num_consts(4);
11647 
11648   format %{ "CALL,dynamic $meth \t// ==> " %}
11649   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
11650   ins_pipe(pipe_class_call);
11651 %}
11652 
11653 // Call Runtime Instruction
11654 
11655 instruct CallRuntimeDirect(method meth) %{
11656   match(CallRuntime);
11657   effect(USE meth);
11658   ins_cost(CALL_COST);
11659 
11660   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11661   // env for callee, C-toc.
11662   ins_num_consts(3);
11663 
11664   format %{ "CALL,runtime" %}
11665   ins_encode( enc_java_to_runtime_call(meth) );
11666   ins_pipe(pipe_class_call);
11667 %}
11668 
11669 // Call Leaf
11670 
11671 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
11672 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
11673   effect(DEF dst, USE src);
11674 
11675   ins_num_consts(1);
11676 
11677   format %{ "MTCTR   $src" %}
11678   size(4);
11679   ins_encode( enc_leaf_call_mtctr(src) );
11680   ins_pipe(pipe_class_default);
11681 %}
11682 
11683 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
11684 instruct CallLeafDirect(method meth) %{
11685   match(CallLeaf);   // To get the data all the data fields we need ...
11686   effect(USE meth);
11687   predicate(false);  // but never match.
11688 
11689   format %{ "BCTRL     \t// leaf call $meth ==> " %}
11690   size(4);
11691   ins_encode %{
11692     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
11693     __ bctrl();
11694   %}
11695   ins_pipe(pipe_class_call);
11696 %}
11697 
11698 // postalloc expand of CallLeafDirect.
11699 // Load adress to call from TOC, then bl to it.
11700 instruct CallLeafDirect_Ex(method meth) %{
11701   match(CallLeaf);
11702   effect(USE meth);
11703   ins_cost(CALL_COST);
11704 
11705   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
11706   // env for callee, C-toc.
11707   ins_num_consts(3);
11708 
11709   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
11710   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11711 %}
11712 
11713 // Call runtime without safepoint - same as CallLeaf.
11714 // postalloc expand of CallLeafNoFPDirect.
11715 // Load adress to call from TOC, then bl to it.
11716 instruct CallLeafNoFPDirect_Ex(method meth) %{
11717   match(CallLeafNoFP);
11718   effect(USE meth);
11719   ins_cost(CALL_COST);
11720 
11721   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11722   // env for callee, C-toc.
11723   ins_num_consts(3);
11724 
11725   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
11726   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11727 %}
11728 
11729 // Tail Call; Jump from runtime stub to Java code.
11730 // Also known as an 'interprocedural jump'.
11731 // Target of jump will eventually return to caller.
11732 // TailJump below removes the return address.
11733 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
11734   match(TailCall jump_target method_oop);
11735   ins_cost(CALL_COST);
11736 
11737   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
11738             "BCTR         \t// tail call" %}
11739   size(8);
11740   ins_encode %{
11741     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11742     __ mtctr($jump_target$$Register);
11743     __ bctr();
11744   %}
11745   ins_pipe(pipe_class_call);
11746 %}
11747 
11748 // Return Instruction
11749 instruct Ret() %{
11750   match(Return);
11751   format %{ "BLR      \t// branch to link register" %}
11752   size(4);
11753   ins_encode %{
11754     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
11755     // LR is restored in MachEpilogNode. Just do the RET here.
11756     __ blr();
11757   %}
11758   ins_pipe(pipe_class_default);
11759 %}
11760 
11761 // Tail Jump; remove the return address; jump to target.
11762 // TailCall above leaves the return address around.
11763 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
11764 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
11765 // "restore" before this instruction (in Epilogue), we need to materialize it
11766 // in %i0.
11767 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
11768   match(TailJump jump_target ex_oop);
11769   ins_cost(CALL_COST);
11770 
11771   format %{ "LD      R4_ARG2 = LR\n\t"
11772             "MTCTR   $jump_target\n\t"
11773             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
11774   size(12);
11775   ins_encode %{
11776     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11777     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
11778     __ mtctr($jump_target$$Register);
11779     __ bctr();
11780   %}
11781   ins_pipe(pipe_class_call);
11782 %}
11783 
11784 // Create exception oop: created by stack-crawling runtime code.
11785 // Created exception is now available to this handler, and is setup
11786 // just prior to jumping to this handler. No code emitted.
11787 instruct CreateException(rarg1RegP ex_oop) %{
11788   match(Set ex_oop (CreateEx));
11789   ins_cost(0);
11790 
11791   format %{ " -- \t// exception oop; no code emitted" %}
11792   size(0);
11793   ins_encode( /*empty*/ );
11794   ins_pipe(pipe_class_default);
11795 %}
11796 
11797 // Rethrow exception: The exception oop will come in the first
11798 // argument position. Then JUMP (not call) to the rethrow stub code.
11799 instruct RethrowException() %{
11800   match(Rethrow);
11801   ins_cost(CALL_COST);
11802 
11803   format %{ "Jmp     rethrow_stub" %}
11804   ins_encode %{
11805     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11806     cbuf.set_insts_mark();
11807     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
11808   %}
11809   ins_pipe(pipe_class_call);
11810 %}
11811 
11812 // Die now.
11813 instruct ShouldNotReachHere() %{
11814   match(Halt);
11815   ins_cost(CALL_COST);
11816 
11817   format %{ "ShouldNotReachHere" %}
11818   size(4);
11819   ins_encode %{
11820     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
11821     __ trap_should_not_reach_here();
11822   %}
11823   ins_pipe(pipe_class_default);
11824 %}
11825 
11826 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
11827 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
11828 // Get a DEF on threadRegP, no costs, no encoding, use
11829 // 'ins_should_rematerialize(true)' to avoid spilling.
11830 instruct tlsLoadP(threadRegP dst) %{
11831   match(Set dst (ThreadLocal));
11832   ins_cost(0);
11833 
11834   ins_should_rematerialize(true);
11835 
11836   format %{ " -- \t// $dst=Thread::current(), empty" %}
11837   size(0);
11838   ins_encode( /*empty*/ );
11839   ins_pipe(pipe_class_empty);
11840 %}
11841 
11842 //---Some PPC specific nodes---------------------------------------------------
11843 
11844 // Stop a group.
11845 instruct endGroup() %{
11846   ins_cost(0);
11847 
11848   ins_is_nop(true);
11849 
11850   format %{ "End Bundle (ori r1, r1, 0)" %}
11851   size(4);
11852   ins_encode %{
11853     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
11854     __ endgroup();
11855   %}
11856   ins_pipe(pipe_class_default);
11857 %}
11858 
11859 // Nop instructions
11860 
11861 instruct fxNop() %{
11862   ins_cost(0);
11863 
11864   ins_is_nop(true);
11865 
11866   format %{ "fxNop" %}
11867   size(4);
11868   ins_encode %{
11869     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11870     __ nop();
11871   %}
11872   ins_pipe(pipe_class_default);
11873 %}
11874 
11875 instruct fpNop0() %{
11876   ins_cost(0);
11877 
11878   ins_is_nop(true);
11879 
11880   format %{ "fpNop0" %}
11881   size(4);
11882   ins_encode %{
11883     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11884     __ fpnop0();
11885   %}
11886   ins_pipe(pipe_class_default);
11887 %}
11888 
11889 instruct fpNop1() %{
11890   ins_cost(0);
11891 
11892   ins_is_nop(true);
11893 
11894   format %{ "fpNop1" %}
11895   size(4);
11896   ins_encode %{
11897     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
11898     __ fpnop1();
11899   %}
11900   ins_pipe(pipe_class_default);
11901 %}
11902 
11903 instruct brNop0() %{
11904   ins_cost(0);
11905   size(4);
11906   format %{ "brNop0" %}
11907   ins_encode %{
11908     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11909     __ brnop0();
11910   %}
11911   ins_is_nop(true);
11912   ins_pipe(pipe_class_default);
11913 %}
11914 
11915 instruct brNop1() %{
11916   ins_cost(0);
11917 
11918   ins_is_nop(true);
11919 
11920   format %{ "brNop1" %}
11921   size(4);
11922   ins_encode %{
11923     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11924     __ brnop1();
11925   %}
11926   ins_pipe(pipe_class_default);
11927 %}
11928 
11929 instruct brNop2() %{
11930   ins_cost(0);
11931 
11932   ins_is_nop(true);
11933 
11934   format %{ "brNop2" %}
11935   size(4);
11936   ins_encode %{
11937     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
11938     __ brnop2();
11939   %}
11940   ins_pipe(pipe_class_default);
11941 %}
11942 
11943 //----------PEEPHOLE RULES-----------------------------------------------------
11944 // These must follow all instruction definitions as they use the names
11945 // defined in the instructions definitions.
11946 //
11947 // peepmatch ( root_instr_name [preceeding_instruction]* );
11948 //
11949 // peepconstraint %{
11950 // (instruction_number.operand_name relational_op instruction_number.operand_name
11951 //  [, ...] );
11952 // // instruction numbers are zero-based using left to right order in peepmatch
11953 //
11954 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
11955 // // provide an instruction_number.operand_name for each operand that appears
11956 // // in the replacement instruction's match rule
11957 //
11958 // ---------VM FLAGS---------------------------------------------------------
11959 //
11960 // All peephole optimizations can be turned off using -XX:-OptoPeephole
11961 //
11962 // Each peephole rule is given an identifying number starting with zero and
11963 // increasing by one in the order seen by the parser. An individual peephole
11964 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11965 // on the command-line.
11966 //
11967 // ---------CURRENT LIMITATIONS----------------------------------------------
11968 //
11969 // Only match adjacent instructions in same basic block
11970 // Only equality constraints
11971 // Only constraints between operands, not (0.dest_reg == EAX_enc)
11972 // Only one replacement instruction
11973 //
11974 // ---------EXAMPLE----------------------------------------------------------
11975 //
11976 // // pertinent parts of existing instructions in architecture description
11977 // instruct movI(eRegI dst, eRegI src) %{
11978 //   match(Set dst (CopyI src));
11979 // %}
11980 //
11981 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
11982 //   match(Set dst (AddI dst src));
11983 //   effect(KILL cr);
11984 // %}
11985 //
11986 // // Change (inc mov) to lea
11987 // peephole %{
11988 //   // increment preceeded by register-register move
11989 //   peepmatch ( incI_eReg movI );
11990 //   // require that the destination register of the increment
11991 //   // match the destination register of the move
11992 //   peepconstraint ( 0.dst == 1.dst );
11993 //   // construct a replacement instruction that sets
11994 //   // the destination to ( move's source register + one )
11995 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
11996 // %}
11997 //
11998 // Implementation no longer uses movX instructions since
11999 // machine-independent system no longer uses CopyX nodes.
12000 //
12001 // peephole %{
12002 //   peepmatch ( incI_eReg movI );
12003 //   peepconstraint ( 0.dst == 1.dst );
12004 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12005 // %}
12006 //
12007 // peephole %{
12008 //   peepmatch ( decI_eReg movI );
12009 //   peepconstraint ( 0.dst == 1.dst );
12010 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12011 // %}
12012 //
12013 // peephole %{
12014 //   peepmatch ( addI_eReg_imm movI );
12015 //   peepconstraint ( 0.dst == 1.dst );
12016 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12017 // %}
12018 //
12019 // peephole %{
12020 //   peepmatch ( addP_eReg_imm movP );
12021 //   peepconstraint ( 0.dst == 1.dst );
12022 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12023 // %}
12024 
12025 // // Change load of spilled value to only a spill
12026 // instruct storeI(memory mem, eRegI src) %{
12027 //   match(Set mem (StoreI mem src));
12028 // %}
12029 //
12030 // instruct loadI(eRegI dst, memory mem) %{
12031 //   match(Set dst (LoadI mem));
12032 // %}
12033 //
12034 peephole %{
12035   peepmatch ( loadI storeI );
12036   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12037   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12038 %}
12039 
12040 peephole %{
12041   peepmatch ( loadL storeL );
12042   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12043   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
12044 %}
12045 
12046 peephole %{
12047   peepmatch ( loadP storeP );
12048   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
12049   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
12050 %}
12051 
12052 //----------SMARTSPILL RULES---------------------------------------------------
12053 // These must follow all instruction definitions as they use the names
12054 // defined in the instructions definitions.