1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_MacroAssembler.hpp"
  27 #include "c1/c1_Runtime1.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "runtime/basicLock.hpp"
  34 #include "runtime/biasedLocking.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 
  38 int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) {
  39   const int aligned_mask = BytesPerWord -1;
  40   const int hdr_offset = oopDesc::mark_offset_in_bytes();
  41   assert(hdr == rax, "hdr must be rax, for the cmpxchg instruction");
  42   assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
  43   Label done;
  44   int null_check_offset = -1;
  45 
  46   verify_oop(obj);
  47 
  48   // save object being locked into the BasicObjectLock
  49   movptr(Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()), obj);
  50 
  51   if (UseBiasedLocking) {
  52     assert(scratch != noreg, "should have scratch register at this point");
  53     null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case);
  54   } else {
  55     null_check_offset = offset();
  56   }
  57 
  58   // Load object header
  59   movptr(hdr, Address(obj, hdr_offset));
  60   // and mark it as unlocked
  61   orptr(hdr, markOopDesc::unlocked_value);
  62   // save unlocked object header into the displaced header location on the stack
  63   movptr(Address(disp_hdr, 0), hdr);
  64   // test if object header is still the same (i.e. unlocked), and if so, store the
  65   // displaced header address in the object header - if it is not the same, get the
  66   // object header instead
  67   if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg!
  68   cmpxchgptr(disp_hdr, Address(obj, hdr_offset));
  69   // if the object header was the same, we're done
  70   if (PrintBiasedLockingStatistics) {
  71     cond_inc32(Assembler::equal,
  72                ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr()));
  73   }
  74   jcc(Assembler::equal, done);
  75   // if the object header was not the same, it is now in the hdr register
  76   // => test if it is a stack pointer into the same stack (recursive locking), i.e.:
  77   //
  78   // 1) (hdr & aligned_mask) == 0
  79   // 2) rsp <= hdr
  80   // 3) hdr <= rsp + page_size
  81   //
  82   // these 3 tests can be done by evaluating the following expression:
  83   //
  84   // (hdr - rsp) & (aligned_mask - page_size)
  85   //
  86   // assuming both the stack pointer and page_size have their least
  87   // significant 2 bits cleared and page_size is a power of 2
  88   subptr(hdr, rsp);
  89   andptr(hdr, aligned_mask - os::vm_page_size());
  90   // for recursive locking, the result is zero => save it in the displaced header
  91   // location (NULL in the displaced hdr location indicates recursive locking)
  92   movptr(Address(disp_hdr, 0), hdr);
  93   // otherwise we don't care about the result and handle locking via runtime call
  94   jcc(Assembler::notZero, slow_case);
  95   // done
  96   bind(done);
  97   return null_check_offset;
  98 }
  99 
 100 
 101 void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) {
 102   const int aligned_mask = BytesPerWord -1;
 103   const int hdr_offset = oopDesc::mark_offset_in_bytes();
 104   assert(disp_hdr == rax, "disp_hdr must be rax, for the cmpxchg instruction");
 105   assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
 106   Label done;
 107 
 108   if (UseBiasedLocking) {
 109     // load object
 110     movptr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
 111     biased_locking_exit(obj, hdr, done);
 112   }
 113 
 114   // load displaced header
 115   movptr(hdr, Address(disp_hdr, 0));
 116   // if the loaded hdr is NULL we had recursive locking
 117   testptr(hdr, hdr);
 118   // if we had recursive locking, we are done
 119   jcc(Assembler::zero, done);
 120   if (!UseBiasedLocking) {
 121     // load object
 122     movptr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
 123   }
 124   verify_oop(obj);
 125   // test if object header is pointing to the displaced header, and if so, restore
 126   // the displaced header in the object - if the object header is not pointing to
 127   // the displaced header, get the object header instead
 128   if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg!
 129   cmpxchgptr(hdr, Address(obj, hdr_offset));
 130   // if the object header was not pointing to the displaced header,
 131   // we do unlocking via runtime call
 132   jcc(Assembler::notEqual, slow_case);
 133   // done
 134   bind(done);
 135 }
 136 
 137 
 138 // Defines obj, preserves var_size_in_bytes
 139 void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) {
 140   if (UseTLAB) {
 141     tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
 142   } else {
 143     eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
 144     incr_allocated_bytes(noreg, var_size_in_bytes, con_size_in_bytes, t1);
 145   }
 146 }
 147 
 148 
 149 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
 150   assert_different_registers(obj, klass, len);
 151   if (UseBiasedLocking && !len->is_valid()) {
 152     assert_different_registers(obj, klass, len, t1, t2);
 153     movptr(t1, Address(klass, Klass::prototype_header_offset()));
 154     movptr(Address(obj, oopDesc::mark_offset_in_bytes()), t1);
 155   } else {
 156     // This assumes that all prototype bits fit in an int32_t
 157     movptr(Address(obj, oopDesc::mark_offset_in_bytes ()), (int32_t)(intptr_t)markOopDesc::prototype());
 158   }
 159 #ifdef _LP64
 160   if (UseCompressedClassPointers) { // Take care not to kill klass
 161     movptr(t1, klass);
 162     encode_klass_not_null(t1);
 163     movl(Address(obj, oopDesc::klass_offset_in_bytes()), t1);
 164   } else
 165 #endif
 166   {
 167     movptr(Address(obj, oopDesc::klass_offset_in_bytes()), klass);
 168   }
 169 
 170   if (len->is_valid()) {
 171     movl(Address(obj, arrayOopDesc::length_offset_in_bytes()), len);
 172   }
 173 #ifdef _LP64
 174   else if (UseCompressedClassPointers) {
 175     xorptr(t1, t1);
 176     store_klass_gap(obj, t1);
 177   }
 178 #endif
 179 }
 180 
 181 
 182 // preserves obj, destroys len_in_bytes
 183 void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) {
 184   Label done;
 185   assert(obj != len_in_bytes && obj != t1 && t1 != len_in_bytes, "registers must be different");
 186   assert((hdr_size_in_bytes & (BytesPerWord - 1)) == 0, "header size is not a multiple of BytesPerWord");
 187   Register index = len_in_bytes;
 188   // index is positive and ptr sized
 189   subptr(index, hdr_size_in_bytes);
 190   jcc(Assembler::zero, done);
 191   // initialize topmost word, divide index by 2, check if odd and test if zero
 192   // note: for the remaining code to work, index must be a multiple of BytesPerWord
 193 #ifdef ASSERT
 194   { Label L;
 195     testptr(index, BytesPerWord - 1);
 196     jcc(Assembler::zero, L);
 197     stop("index is not a multiple of BytesPerWord");
 198     bind(L);
 199   }
 200 #endif
 201   xorptr(t1, t1);    // use _zero reg to clear memory (shorter code)
 202   if (UseIncDec) {
 203     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
 204   } else {
 205     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
 206     shrptr(index, 1);
 207   }
 208 #ifndef _LP64
 209   // index could have been not a multiple of 8 (i.e., bit 2 was set)
 210   { Label even;
 211     // note: if index was a multiple of 8, than it cannot
 212     //       be 0 now otherwise it must have been 0 before
 213     //       => if it is even, we don't need to check for 0 again
 214     jcc(Assembler::carryClear, even);
 215     // clear topmost word (no jump needed if conditional assignment would work here)
 216     movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 0*BytesPerWord), t1);
 217     // index could be 0 now, need to check again
 218     jcc(Assembler::zero, done);
 219     bind(even);
 220   }
 221 #endif // !_LP64
 222   // initialize remaining object fields: rdx is a multiple of 2 now
 223   { Label loop;
 224     bind(loop);
 225     movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 1*BytesPerWord), t1);
 226     NOT_LP64(movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 2*BytesPerWord), t1);)
 227     decrement(index);
 228     jcc(Assembler::notZero, loop);
 229   }
 230 
 231   // done
 232   bind(done);
 233 }
 234 
 235 
 236 void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) {
 237   assert(obj == rax, "obj must be in rax, for cmpxchg");
 238   assert_different_registers(obj, t1, t2); // XXX really?
 239   assert(header_size >= 0 && object_size >= header_size, "illegal sizes");
 240 
 241   try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case);
 242 
 243   initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2);
 244 }
 245 
 246 void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2) {
 247   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0,
 248          "con_size_in_bytes is not multiple of alignment");
 249   const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
 250 
 251   initialize_header(obj, klass, noreg, t1, t2);
 252 
 253   // clear rest of allocated space
 254   const Register t1_zero = t1;
 255   const Register index = t2;
 256   const int threshold = 6 * BytesPerWord;   // approximate break even point for code size (see comments below)
 257   if (var_size_in_bytes != noreg) {
 258     mov(index, var_size_in_bytes);
 259     initialize_body(obj, index, hdr_size_in_bytes, t1_zero);
 260   } else if (con_size_in_bytes <= threshold) {
 261     // use explicit null stores
 262     // code size = 2 + 3*n bytes (n = number of fields to clear)
 263     xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code)
 264     for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += BytesPerWord)
 265       movptr(Address(obj, i), t1_zero);
 266   } else if (con_size_in_bytes > hdr_size_in_bytes) {
 267     // use loop to null out the fields
 268     // code size = 16 bytes for even n (n = number of fields to clear)
 269     // initialize last object field first if odd number of fields
 270     xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code)
 271     movptr(index, (con_size_in_bytes - hdr_size_in_bytes) >> 3);
 272     // initialize last object field if constant size is odd
 273     if (((con_size_in_bytes - hdr_size_in_bytes) & 4) != 0)
 274       movptr(Address(obj, con_size_in_bytes - (1*BytesPerWord)), t1_zero);
 275     // initialize remaining object fields: rdx is a multiple of 2
 276     { Label loop;
 277       bind(loop);
 278       movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - (1*BytesPerWord)),
 279              t1_zero);
 280       NOT_LP64(movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - (2*BytesPerWord)),
 281              t1_zero);)
 282       decrement(index);
 283       jcc(Assembler::notZero, loop);
 284     }
 285   }
 286 
 287   if (CURRENT_ENV->dtrace_alloc_probes()) {
 288     assert(obj == rax, "must be");
 289     call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
 290   }
 291 
 292   verify_oop(obj);
 293 }
 294 
 295 void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int header_size, Address::ScaleFactor f, Register klass, Label& slow_case) {
 296   assert(obj == rax, "obj must be in rax, for cmpxchg");
 297   assert_different_registers(obj, len, t1, t2, klass);
 298 
 299   // determine alignment mask
 300   assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
 301 
 302   // check for negative or excessive length
 303   cmpptr(len, (int32_t)max_array_allocation_length);
 304   jcc(Assembler::above, slow_case);
 305 
 306   const Register arr_size = t2; // okay to be the same
 307   // align object end
 308   movptr(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask);
 309   lea(arr_size, Address(arr_size, len, f));
 310   andptr(arr_size, ~MinObjAlignmentInBytesMask);
 311 
 312   try_allocate(obj, arr_size, 0, t1, t2, slow_case);
 313 
 314   initialize_header(obj, klass, len, t1, t2);
 315 
 316   // clear rest of allocated space
 317   const Register len_zero = len;
 318   initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero);
 319 
 320   if (CURRENT_ENV->dtrace_alloc_probes()) {
 321     assert(obj == rax, "must be");
 322     call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
 323   }
 324 
 325   verify_oop(obj);
 326 }
 327 
 328 
 329 
 330 void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
 331   verify_oop(receiver);
 332   // explicit NULL check not needed since load from [klass_offset] causes a trap
 333   // check against inline cache
 334   assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check");
 335   int start_offset = offset();
 336 
 337   if (UseCompressedClassPointers) {
 338     load_klass(rscratch1, receiver);
 339     cmpptr(rscratch1, iCache);
 340   } else {
 341     cmpptr(iCache, Address(receiver, oopDesc::klass_offset_in_bytes()));
 342   }
 343   // if icache check fails, then jump to runtime routine
 344   // Note: RECEIVER must still contain the receiver!
 345   jump_cc(Assembler::notEqual,
 346           RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 347   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 348   assert(UseCompressedClassPointers || offset() - start_offset == ic_cmp_size, "check alignment in emit_method_entry");
 349 }
 350 
 351 
 352 void C1_MacroAssembler::build_frame(int frame_size_in_bytes) {
 353   // Make sure there is enough stack space for this method's activation.
 354   // Note that we do this before doing an enter(). This matches the
 355   // ordering of C2's stack overflow check / rsp decrement and allows
 356   // the SharedRuntime stack overflow handling to be consistent
 357   // between the two compilers.
 358   generate_stack_overflow_check(frame_size_in_bytes);
 359 
 360   push(rbp);
 361 #ifdef TIERED
 362   // c2 leaves fpu stack dirty. Clean it on entry
 363   if (UseSSE < 2 ) {
 364     empty_FPU_stack();
 365   }
 366 #endif // TIERED
 367   decrement(rsp, frame_size_in_bytes); // does not emit code for frame_size == 0
 368 }
 369 
 370 
 371 void C1_MacroAssembler::remove_frame(int frame_size_in_bytes) {
 372   increment(rsp, frame_size_in_bytes);  // Does not emit code for frame_size == 0
 373   pop(rbp);
 374 }
 375 
 376 
 377 void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
 378   if (C1Breakpoint) int3();
 379   inline_cache_check(receiver, ic_klass);
 380 }
 381 
 382 
 383 void C1_MacroAssembler::verified_entry() {
 384   if (C1Breakpoint || VerifyFPU || !UseStackBanging) {
 385     // Verified Entry first instruction should be 5 bytes long for correct
 386     // patching by patch_verified_entry().
 387     //
 388     // C1Breakpoint and VerifyFPU have one byte first instruction.
 389     // Also first instruction will be one byte "push(rbp)" if stack banging
 390     // code is not generated (see build_frame() above).
 391     // For all these cases generate long instruction first.
 392     fat_nop();
 393   }
 394   if (C1Breakpoint)int3();
 395   // build frame
 396   verify_FPU(0, "method_entry");
 397 }
 398 
 399 
 400 #ifndef PRODUCT
 401 
 402 void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
 403   if (!VerifyOops) return;
 404   verify_oop_addr(Address(rsp, stack_offset));
 405 }
 406 
 407 void C1_MacroAssembler::verify_not_null_oop(Register r) {
 408   if (!VerifyOops) return;
 409   Label not_null;
 410   testptr(r, r);
 411   jcc(Assembler::notZero, not_null);
 412   stop("non-null oop required");
 413   bind(not_null);
 414   verify_oop(r);
 415 }
 416 
 417 void C1_MacroAssembler::invalidate_registers(bool inv_rax, bool inv_rbx, bool inv_rcx, bool inv_rdx, bool inv_rsi, bool inv_rdi) {
 418 #ifdef ASSERT
 419   if (inv_rax) movptr(rax, 0xDEAD);
 420   if (inv_rbx) movptr(rbx, 0xDEAD);
 421   if (inv_rcx) movptr(rcx, 0xDEAD);
 422   if (inv_rdx) movptr(rdx, 0xDEAD);
 423   if (inv_rsi) movptr(rsi, 0xDEAD);
 424   if (inv_rdi) movptr(rdi, 0xDEAD);
 425 #endif
 426 }
 427 
 428 #endif // ifndef PRODUCT