1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "vmreg_arm.inline.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_ppc
  48 # include "vmreg_ppc.inline.hpp"
  49 #endif
  50 
  51 
  52 #ifndef PRODUCT
  53 
  54   static LinearScanStatistic _stat_before_alloc;
  55   static LinearScanStatistic _stat_after_asign;
  56   static LinearScanStatistic _stat_final;
  57 
  58   static LinearScanTimers _total_timer;
  59 
  60   // helper macro for short definition of timer
  61   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  62 
  63   // helper macro for short definition of trace-output inside code
  64   #define TRACE_LINEAR_SCAN(level, code)       \
  65     if (TraceLinearScanLevel >= level) {       \
  66       code;                                    \
  67     }
  68 
  69 #else
  70 
  71   #define TIME_LINEAR_SCAN(timer_name)
  72   #define TRACE_LINEAR_SCAN(level, code)
  73 
  74 #endif
  75 
  76 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  77 #ifdef _LP64
  78 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  79 #else
  80 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  81 #endif
  82 
  83 
  84 // Implementation of LinearScan
  85 
  86 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  87  : _compilation(ir->compilation())
  88  , _ir(ir)
  89  , _gen(gen)
  90  , _frame_map(frame_map)
  91  , _num_virtual_regs(gen->max_virtual_register_number())
  92  , _has_fpu_registers(false)
  93  , _num_calls(-1)
  94  , _max_spills(0)
  95  , _unused_spill_slot(-1)
  96  , _intervals(0)   // initialized later with correct length
  97  , _new_intervals_from_allocation(new IntervalList())
  98  , _sorted_intervals(NULL)
  99  , _needs_full_resort(false)
 100  , _lir_ops(0)     // initialized later with correct length
 101  , _block_of_op(0) // initialized later with correct length
 102  , _has_info(0)
 103  , _has_call(0)
 104  , _scope_value_cache(0) // initialized later with correct length
 105  , _interval_in_loop(0, 0) // initialized later with correct length
 106  , _cached_blocks(*ir->linear_scan_order())
 107 #ifdef X86
 108  , _fpu_stack_allocator(NULL)
 109 #endif
 110 {
 111   assert(this->ir() != NULL,          "check if valid");
 112   assert(this->compilation() != NULL, "check if valid");
 113   assert(this->gen() != NULL,         "check if valid");
 114   assert(this->frame_map() != NULL,   "check if valid");
 115 }
 116 
 117 
 118 // ********** functions for converting LIR-Operands to register numbers
 119 //
 120 // Emulate a flat register file comprising physical integer registers,
 121 // physical floating-point registers and virtual registers, in that order.
 122 // Virtual registers already have appropriate numbers, since V0 is
 123 // the number of physical registers.
 124 // Returns -1 for hi word if opr is a single word operand.
 125 //
 126 // Note: the inverse operation (calculating an operand for register numbers)
 127 //       is done in calc_operand_for_interval()
 128 
 129 int LinearScan::reg_num(LIR_Opr opr) {
 130   assert(opr->is_register(), "should not call this otherwise");
 131 
 132   if (opr->is_virtual_register()) {
 133     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 134     return opr->vreg_number();
 135   } else if (opr->is_single_cpu()) {
 136     return opr->cpu_regnr();
 137   } else if (opr->is_double_cpu()) {
 138     return opr->cpu_regnrLo();
 139 #ifdef X86
 140   } else if (opr->is_single_xmm()) {
 141     return opr->fpu_regnr() + pd_first_xmm_reg;
 142   } else if (opr->is_double_xmm()) {
 143     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 144 #endif
 145   } else if (opr->is_single_fpu()) {
 146     return opr->fpu_regnr() + pd_first_fpu_reg;
 147   } else if (opr->is_double_fpu()) {
 148     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 149   } else {
 150     ShouldNotReachHere();
 151     return -1;
 152   }
 153 }
 154 
 155 int LinearScan::reg_numHi(LIR_Opr opr) {
 156   assert(opr->is_register(), "should not call this otherwise");
 157 
 158   if (opr->is_virtual_register()) {
 159     return -1;
 160   } else if (opr->is_single_cpu()) {
 161     return -1;
 162   } else if (opr->is_double_cpu()) {
 163     return opr->cpu_regnrHi();
 164 #ifdef X86
 165   } else if (opr->is_single_xmm()) {
 166     return -1;
 167   } else if (opr->is_double_xmm()) {
 168     return -1;
 169 #endif
 170   } else if (opr->is_single_fpu()) {
 171     return -1;
 172   } else if (opr->is_double_fpu()) {
 173     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 174   } else {
 175     ShouldNotReachHere();
 176     return -1;
 177   }
 178 }
 179 
 180 
 181 // ********** functions for classification of intervals
 182 
 183 bool LinearScan::is_precolored_interval(const Interval* i) {
 184   return i->reg_num() < LinearScan::nof_regs;
 185 }
 186 
 187 bool LinearScan::is_virtual_interval(const Interval* i) {
 188   return i->reg_num() >= LIR_OprDesc::vreg_base;
 189 }
 190 
 191 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 192   return i->reg_num() < LinearScan::nof_cpu_regs;
 193 }
 194 
 195 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 196 #if defined(__SOFTFP__) || defined(E500V2)
 197   return i->reg_num() >= LIR_OprDesc::vreg_base;
 198 #else
 199   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 200 #endif // __SOFTFP__ or E500V2
 201 }
 202 
 203 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 204   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 205 }
 206 
 207 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 208 #if defined(__SOFTFP__) || defined(E500V2)
 209   return false;
 210 #else
 211   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 212 #endif // __SOFTFP__ or E500V2
 213 }
 214 
 215 bool LinearScan::is_in_fpu_register(const Interval* i) {
 216   // fixed intervals not needed for FPU stack allocation
 217   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 218 }
 219 
 220 bool LinearScan::is_oop_interval(const Interval* i) {
 221   // fixed intervals never contain oops
 222   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 223 }
 224 
 225 
 226 // ********** General helper functions
 227 
 228 // compute next unused stack index that can be used for spilling
 229 int LinearScan::allocate_spill_slot(bool double_word) {
 230   int spill_slot;
 231   if (double_word) {
 232     if ((_max_spills & 1) == 1) {
 233       // alignment of double-word values
 234       // the hole because of the alignment is filled with the next single-word value
 235       assert(_unused_spill_slot == -1, "wasting a spill slot");
 236       _unused_spill_slot = _max_spills;
 237       _max_spills++;
 238     }
 239     spill_slot = _max_spills;
 240     _max_spills += 2;
 241 
 242   } else if (_unused_spill_slot != -1) {
 243     // re-use hole that was the result of a previous double-word alignment
 244     spill_slot = _unused_spill_slot;
 245     _unused_spill_slot = -1;
 246 
 247   } else {
 248     spill_slot = _max_spills;
 249     _max_spills++;
 250   }
 251 
 252   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 253 
 254   // the class OopMapValue uses only 11 bits for storing the name of the
 255   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 256   // that is not reported in product builds. Prevent this by checking the
 257   // spill slot here (altough this value and the later used location name
 258   // are slightly different)
 259   if (result > 2000) {
 260     bailout("too many stack slots used");
 261   }
 262 
 263   return result;
 264 }
 265 
 266 void LinearScan::assign_spill_slot(Interval* it) {
 267   // assign the canonical spill slot of the parent (if a part of the interval
 268   // is already spilled) or allocate a new spill slot
 269   if (it->canonical_spill_slot() >= 0) {
 270     it->assign_reg(it->canonical_spill_slot());
 271   } else {
 272     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 273     it->set_canonical_spill_slot(spill);
 274     it->assign_reg(spill);
 275   }
 276 }
 277 
 278 void LinearScan::propagate_spill_slots() {
 279   if (!frame_map()->finalize_frame(max_spills())) {
 280     bailout("frame too large");
 281   }
 282 }
 283 
 284 // create a new interval with a predefined reg_num
 285 // (only used for parent intervals that are created during the building phase)
 286 Interval* LinearScan::create_interval(int reg_num) {
 287   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 288 
 289   Interval* interval = new Interval(reg_num);
 290   _intervals.at_put(reg_num, interval);
 291 
 292   // assign register number for precolored intervals
 293   if (reg_num < LIR_OprDesc::vreg_base) {
 294     interval->assign_reg(reg_num);
 295   }
 296   return interval;
 297 }
 298 
 299 // assign a new reg_num to the interval and append it to the list of intervals
 300 // (only used for child intervals that are created during register allocation)
 301 void LinearScan::append_interval(Interval* it) {
 302   it->set_reg_num(_intervals.length());
 303   _intervals.append(it);
 304   _new_intervals_from_allocation->append(it);
 305 }
 306 
 307 // copy the vreg-flags if an interval is split
 308 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 309   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 310     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 311   }
 312   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 313     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 314   }
 315 
 316   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 317   //       intervals (only the very beginning of the interval must be in memory)
 318 }
 319 
 320 
 321 // ********** spill move optimization
 322 // eliminate moves from register to stack if stack slot is known to be correct
 323 
 324 // called during building of intervals
 325 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 326   assert(interval->is_split_parent(), "can only be called for split parents");
 327 
 328   switch (interval->spill_state()) {
 329     case noDefinitionFound:
 330       assert(interval->spill_definition_pos() == -1, "must no be set before");
 331       interval->set_spill_definition_pos(def_pos);
 332       interval->set_spill_state(oneDefinitionFound);
 333       break;
 334 
 335     case oneDefinitionFound:
 336       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 337       if (def_pos < interval->spill_definition_pos() - 2) {
 338         // second definition found, so no spill optimization possible for this interval
 339         interval->set_spill_state(noOptimization);
 340       } else {
 341         // two consecutive definitions (because of two-operand LIR form)
 342         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 343       }
 344       break;
 345 
 346     case noOptimization:
 347       // nothing to do
 348       break;
 349 
 350     default:
 351       assert(false, "other states not allowed at this time");
 352   }
 353 }
 354 
 355 // called during register allocation
 356 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 357   switch (interval->spill_state()) {
 358     case oneDefinitionFound: {
 359       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 360       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 361 
 362       if (def_loop_depth < spill_loop_depth) {
 363         // the loop depth of the spilling position is higher then the loop depth
 364         // at the definition of the interval -> move write to memory out of loop
 365         // by storing at definitin of the interval
 366         interval->set_spill_state(storeAtDefinition);
 367       } else {
 368         // the interval is currently spilled only once, so for now there is no
 369         // reason to store the interval at the definition
 370         interval->set_spill_state(oneMoveInserted);
 371       }
 372       break;
 373     }
 374 
 375     case oneMoveInserted: {
 376       // the interval is spilled more then once, so it is better to store it to
 377       // memory at the definition
 378       interval->set_spill_state(storeAtDefinition);
 379       break;
 380     }
 381 
 382     case storeAtDefinition:
 383     case startInMemory:
 384     case noOptimization:
 385     case noDefinitionFound:
 386       // nothing to do
 387       break;
 388 
 389     default:
 390       assert(false, "other states not allowed at this time");
 391   }
 392 }
 393 
 394 
 395 bool LinearScan::must_store_at_definition(const Interval* i) {
 396   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 397 }
 398 
 399 // called once before asignment of register numbers
 400 void LinearScan::eliminate_spill_moves() {
 401   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 402   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 403 
 404   // collect all intervals that must be stored after their definion.
 405   // the list is sorted by Interval::spill_definition_pos
 406   Interval* interval;
 407   Interval* temp_list;
 408   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 409 
 410 #ifdef ASSERT
 411   Interval* prev = NULL;
 412   Interval* temp = interval;
 413   while (temp != Interval::end()) {
 414     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 415     if (prev != NULL) {
 416       assert(temp->from() >= prev->from(), "intervals not sorted");
 417       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 418     }
 419 
 420     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 421     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 422     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 423 
 424     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 425 
 426     temp = temp->next();
 427   }
 428 #endif
 429 
 430   LIR_InsertionBuffer insertion_buffer;
 431   int num_blocks = block_count();
 432   for (int i = 0; i < num_blocks; i++) {
 433     BlockBegin* block = block_at(i);
 434     LIR_OpList* instructions = block->lir()->instructions_list();
 435     int         num_inst = instructions->length();
 436     bool        has_new = false;
 437 
 438     // iterate all instructions of the block. skip the first because it is always a label
 439     for (int j = 1; j < num_inst; j++) {
 440       LIR_Op* op = instructions->at(j);
 441       int op_id = op->id();
 442 
 443       if (op_id == -1) {
 444         // remove move from register to stack if the stack slot is guaranteed to be correct.
 445         // only moves that have been inserted by LinearScan can be removed.
 446         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 447         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 448         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 449 
 450         LIR_Op1* op1 = (LIR_Op1*)op;
 451         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 452 
 453         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 454           // move target is a stack slot that is always correct, so eliminate instruction
 455           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 456           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 457         }
 458 
 459       } else {
 460         // insert move from register to stack just after the beginning of the interval
 461         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 462         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 463 
 464         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 465           if (!has_new) {
 466             // prepare insertion buffer (appended when all instructions of the block are processed)
 467             insertion_buffer.init(block->lir());
 468             has_new = true;
 469           }
 470 
 471           LIR_Opr from_opr = operand_for_interval(interval);
 472           LIR_Opr to_opr = canonical_spill_opr(interval);
 473           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 474           assert(to_opr->is_stack(), "to operand must be a stack slot");
 475 
 476           insertion_buffer.move(j, from_opr, to_opr);
 477           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 478 
 479           interval = interval->next();
 480         }
 481       }
 482     } // end of instruction iteration
 483 
 484     if (has_new) {
 485       block->lir()->append(&insertion_buffer);
 486     }
 487   } // end of block iteration
 488 
 489   assert(interval == Interval::end(), "missed an interval");
 490 }
 491 
 492 
 493 // ********** Phase 1: number all instructions in all blocks
 494 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 495 
 496 void LinearScan::number_instructions() {
 497   {
 498     // dummy-timer to measure the cost of the timer itself
 499     // (this time is then subtracted from all other timers to get the real value)
 500     TIME_LINEAR_SCAN(timer_do_nothing);
 501   }
 502   TIME_LINEAR_SCAN(timer_number_instructions);
 503 
 504   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 505   int num_blocks = block_count();
 506   int num_instructions = 0;
 507   int i;
 508   for (i = 0; i < num_blocks; i++) {
 509     num_instructions += block_at(i)->lir()->instructions_list()->length();
 510   }
 511 
 512   // initialize with correct length
 513   _lir_ops = LIR_OpArray(num_instructions);
 514   _block_of_op = BlockBeginArray(num_instructions);
 515 
 516   int op_id = 0;
 517   int idx = 0;
 518 
 519   for (i = 0; i < num_blocks; i++) {
 520     BlockBegin* block = block_at(i);
 521     block->set_first_lir_instruction_id(op_id);
 522     LIR_OpList* instructions = block->lir()->instructions_list();
 523 
 524     int num_inst = instructions->length();
 525     for (int j = 0; j < num_inst; j++) {
 526       LIR_Op* op = instructions->at(j);
 527       op->set_id(op_id);
 528 
 529       _lir_ops.at_put(idx, op);
 530       _block_of_op.at_put(idx, block);
 531       assert(lir_op_with_id(op_id) == op, "must match");
 532 
 533       idx++;
 534       op_id += 2; // numbering of lir_ops by two
 535     }
 536     block->set_last_lir_instruction_id(op_id - 2);
 537   }
 538   assert(idx == num_instructions, "must match");
 539   assert(idx * 2 == op_id, "must match");
 540 
 541   _has_call = BitMap(num_instructions); _has_call.clear();
 542   _has_info = BitMap(num_instructions); _has_info.clear();
 543 }
 544 
 545 
 546 // ********** Phase 2: compute local live sets separately for each block
 547 // (sets live_gen and live_kill for each block)
 548 
 549 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 550   LIR_Opr opr = value->operand();
 551   Constant* con = value->as_Constant();
 552 
 553   // check some asumptions about debug information
 554   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 555   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 556   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 557 
 558   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 559     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 560     int reg = opr->vreg_number();
 561     if (!live_kill.at(reg)) {
 562       live_gen.set_bit(reg);
 563       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 564     }
 565   }
 566 }
 567 
 568 
 569 void LinearScan::compute_local_live_sets() {
 570   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 571 
 572   int  num_blocks = block_count();
 573   int  live_size = live_set_size();
 574   bool local_has_fpu_registers = false;
 575   int  local_num_calls = 0;
 576   LIR_OpVisitState visitor;
 577 
 578   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 579   local_interval_in_loop.clear();
 580 
 581   // iterate all blocks
 582   for (int i = 0; i < num_blocks; i++) {
 583     BlockBegin* block = block_at(i);
 584 
 585     BitMap live_gen(live_size);  live_gen.clear();
 586     BitMap live_kill(live_size); live_kill.clear();
 587 
 588     if (block->is_set(BlockBegin::exception_entry_flag)) {
 589       // Phi functions at the begin of an exception handler are
 590       // implicitly defined (= killed) at the beginning of the block.
 591       for_each_phi_fun(block, phi,
 592         live_kill.set_bit(phi->operand()->vreg_number())
 593       );
 594     }
 595 
 596     LIR_OpList* instructions = block->lir()->instructions_list();
 597     int num_inst = instructions->length();
 598 
 599     // iterate all instructions of the block. skip the first because it is always a label
 600     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 601     for (int j = 1; j < num_inst; j++) {
 602       LIR_Op* op = instructions->at(j);
 603 
 604       // visit operation to collect all operands
 605       visitor.visit(op);
 606 
 607       if (visitor.has_call()) {
 608         _has_call.set_bit(op->id() >> 1);
 609         local_num_calls++;
 610       }
 611       if (visitor.info_count() > 0) {
 612         _has_info.set_bit(op->id() >> 1);
 613       }
 614 
 615       // iterate input operands of instruction
 616       int k, n, reg;
 617       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 618       for (k = 0; k < n; k++) {
 619         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 620         assert(opr->is_register(), "visitor should only return register operands");
 621 
 622         if (opr->is_virtual_register()) {
 623           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 624           reg = opr->vreg_number();
 625           if (!live_kill.at(reg)) {
 626             live_gen.set_bit(reg);
 627             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 628           }
 629           if (block->loop_index() >= 0) {
 630             local_interval_in_loop.set_bit(reg, block->loop_index());
 631           }
 632           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 633         }
 634 
 635 #ifdef ASSERT
 636         // fixed intervals are never live at block boundaries, so
 637         // they need not be processed in live sets.
 638         // this is checked by these assertions to be sure about it.
 639         // the entry block may have incoming values in registers, which is ok.
 640         if (!opr->is_virtual_register() && block != ir()->start()) {
 641           reg = reg_num(opr);
 642           if (is_processed_reg_num(reg)) {
 643             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 644           }
 645           reg = reg_numHi(opr);
 646           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 647             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 648           }
 649         }
 650 #endif
 651       }
 652 
 653       // Add uses of live locals from interpreter's point of view for proper debug information generation
 654       n = visitor.info_count();
 655       for (k = 0; k < n; k++) {
 656         CodeEmitInfo* info = visitor.info_at(k);
 657         ValueStack* stack = info->stack();
 658         for_each_state_value(stack, value,
 659           set_live_gen_kill(value, op, live_gen, live_kill)
 660         );
 661       }
 662 
 663       // iterate temp operands of instruction
 664       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 665       for (k = 0; k < n; k++) {
 666         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 667         assert(opr->is_register(), "visitor should only return register operands");
 668 
 669         if (opr->is_virtual_register()) {
 670           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 671           reg = opr->vreg_number();
 672           live_kill.set_bit(reg);
 673           if (block->loop_index() >= 0) {
 674             local_interval_in_loop.set_bit(reg, block->loop_index());
 675           }
 676           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 677         }
 678 
 679 #ifdef ASSERT
 680         // fixed intervals are never live at block boundaries, so
 681         // they need not be processed in live sets
 682         // process them only in debug mode so that this can be checked
 683         if (!opr->is_virtual_register()) {
 684           reg = reg_num(opr);
 685           if (is_processed_reg_num(reg)) {
 686             live_kill.set_bit(reg_num(opr));
 687           }
 688           reg = reg_numHi(opr);
 689           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 690             live_kill.set_bit(reg);
 691           }
 692         }
 693 #endif
 694       }
 695 
 696       // iterate output operands of instruction
 697       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 698       for (k = 0; k < n; k++) {
 699         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 700         assert(opr->is_register(), "visitor should only return register operands");
 701 
 702         if (opr->is_virtual_register()) {
 703           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 704           reg = opr->vreg_number();
 705           live_kill.set_bit(reg);
 706           if (block->loop_index() >= 0) {
 707             local_interval_in_loop.set_bit(reg, block->loop_index());
 708           }
 709           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 710         }
 711 
 712 #ifdef ASSERT
 713         // fixed intervals are never live at block boundaries, so
 714         // they need not be processed in live sets
 715         // process them only in debug mode so that this can be checked
 716         if (!opr->is_virtual_register()) {
 717           reg = reg_num(opr);
 718           if (is_processed_reg_num(reg)) {
 719             live_kill.set_bit(reg_num(opr));
 720           }
 721           reg = reg_numHi(opr);
 722           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 723             live_kill.set_bit(reg);
 724           }
 725         }
 726 #endif
 727       }
 728     } // end of instruction iteration
 729 
 730     block->set_live_gen (live_gen);
 731     block->set_live_kill(live_kill);
 732     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 733     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 734 
 735     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 736     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 737   } // end of block iteration
 738 
 739   // propagate local calculated information into LinearScan object
 740   _has_fpu_registers = local_has_fpu_registers;
 741   compilation()->set_has_fpu_code(local_has_fpu_registers);
 742 
 743   _num_calls = local_num_calls;
 744   _interval_in_loop = local_interval_in_loop;
 745 }
 746 
 747 
 748 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 749 // (sets live_in and live_out for each block)
 750 
 751 void LinearScan::compute_global_live_sets() {
 752   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 753 
 754   int  num_blocks = block_count();
 755   bool change_occurred;
 756   bool change_occurred_in_block;
 757   int  iteration_count = 0;
 758   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 759 
 760   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 761   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 762   // Exception handlers must be processed because not all live values are
 763   // present in the state array, e.g. because of global value numbering
 764   do {
 765     change_occurred = false;
 766 
 767     // iterate all blocks in reverse order
 768     for (int i = num_blocks - 1; i >= 0; i--) {
 769       BlockBegin* block = block_at(i);
 770 
 771       change_occurred_in_block = false;
 772 
 773       // live_out(block) is the union of live_in(sux), for successors sux of block
 774       int n = block->number_of_sux();
 775       int e = block->number_of_exception_handlers();
 776       if (n + e > 0) {
 777         // block has successors
 778         if (n > 0) {
 779           live_out.set_from(block->sux_at(0)->live_in());
 780           for (int j = 1; j < n; j++) {
 781             live_out.set_union(block->sux_at(j)->live_in());
 782           }
 783         } else {
 784           live_out.clear();
 785         }
 786         for (int j = 0; j < e; j++) {
 787           live_out.set_union(block->exception_handler_at(j)->live_in());
 788         }
 789 
 790         if (!block->live_out().is_same(live_out)) {
 791           // A change occurred.  Swap the old and new live out sets to avoid copying.
 792           BitMap temp = block->live_out();
 793           block->set_live_out(live_out);
 794           live_out = temp;
 795 
 796           change_occurred = true;
 797           change_occurred_in_block = true;
 798         }
 799       }
 800 
 801       if (iteration_count == 0 || change_occurred_in_block) {
 802         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 803         // note: live_in has to be computed only in first iteration or if live_out has changed!
 804         BitMap live_in = block->live_in();
 805         live_in.set_from(block->live_out());
 806         live_in.set_difference(block->live_kill());
 807         live_in.set_union(block->live_gen());
 808       }
 809 
 810 #ifndef PRODUCT
 811       if (TraceLinearScanLevel >= 4) {
 812         char c = ' ';
 813         if (iteration_count == 0 || change_occurred_in_block) {
 814           c = '*';
 815         }
 816         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 817         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 818       }
 819 #endif
 820     }
 821     iteration_count++;
 822 
 823     if (change_occurred && iteration_count > 50) {
 824       BAILOUT("too many iterations in compute_global_live_sets");
 825     }
 826   } while (change_occurred);
 827 
 828 
 829 #ifdef ASSERT
 830   // check that fixed intervals are not live at block boundaries
 831   // (live set must be empty at fixed intervals)
 832   for (int i = 0; i < num_blocks; i++) {
 833     BlockBegin* block = block_at(i);
 834     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 835       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 836       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 837       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 838     }
 839   }
 840 #endif
 841 
 842   // check that the live_in set of the first block is empty
 843   BitMap live_in_args(ir()->start()->live_in().size());
 844   live_in_args.clear();
 845   if (!ir()->start()->live_in().is_same(live_in_args)) {
 846 #ifdef ASSERT
 847     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 848     tty->print_cr("affected registers:");
 849     print_bitmap(ir()->start()->live_in());
 850 
 851     // print some additional information to simplify debugging
 852     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 853       if (ir()->start()->live_in().at(i)) {
 854         Instruction* instr = gen()->instruction_for_vreg(i);
 855         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 856 
 857         for (int j = 0; j < num_blocks; j++) {
 858           BlockBegin* block = block_at(j);
 859           if (block->live_gen().at(i)) {
 860             tty->print_cr("  used in block B%d", block->block_id());
 861           }
 862           if (block->live_kill().at(i)) {
 863             tty->print_cr("  defined in block B%d", block->block_id());
 864           }
 865         }
 866       }
 867     }
 868 
 869 #endif
 870     // when this fails, virtual registers are used before they are defined.
 871     assert(false, "live_in set of first block must be empty");
 872     // bailout of if this occurs in product mode.
 873     bailout("live_in set of first block not empty");
 874   }
 875 }
 876 
 877 
 878 // ********** Phase 4: build intervals
 879 // (fills the list _intervals)
 880 
 881 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 882   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 883   LIR_Opr opr = value->operand();
 884   Constant* con = value->as_Constant();
 885 
 886   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 887     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 888     add_use(opr, from, to, use_kind);
 889   }
 890 }
 891 
 892 
 893 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 894   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 895   assert(opr->is_register(), "should not be called otherwise");
 896 
 897   if (opr->is_virtual_register()) {
 898     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 899     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 900 
 901   } else {
 902     int reg = reg_num(opr);
 903     if (is_processed_reg_num(reg)) {
 904       add_def(reg, def_pos, use_kind, opr->type_register());
 905     }
 906     reg = reg_numHi(opr);
 907     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 908       add_def(reg, def_pos, use_kind, opr->type_register());
 909     }
 910   }
 911 }
 912 
 913 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 914   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 915   assert(opr->is_register(), "should not be called otherwise");
 916 
 917   if (opr->is_virtual_register()) {
 918     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 919     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 920 
 921   } else {
 922     int reg = reg_num(opr);
 923     if (is_processed_reg_num(reg)) {
 924       add_use(reg, from, to, use_kind, opr->type_register());
 925     }
 926     reg = reg_numHi(opr);
 927     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 928       add_use(reg, from, to, use_kind, opr->type_register());
 929     }
 930   }
 931 }
 932 
 933 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 934   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 935   assert(opr->is_register(), "should not be called otherwise");
 936 
 937   if (opr->is_virtual_register()) {
 938     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 939     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 940 
 941   } else {
 942     int reg = reg_num(opr);
 943     if (is_processed_reg_num(reg)) {
 944       add_temp(reg, temp_pos, use_kind, opr->type_register());
 945     }
 946     reg = reg_numHi(opr);
 947     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 948       add_temp(reg, temp_pos, use_kind, opr->type_register());
 949     }
 950   }
 951 }
 952 
 953 
 954 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 955   Interval* interval = interval_at(reg_num);
 956   if (interval != NULL) {
 957     assert(interval->reg_num() == reg_num, "wrong interval");
 958 
 959     if (type != T_ILLEGAL) {
 960       interval->set_type(type);
 961     }
 962 
 963     Range* r = interval->first();
 964     if (r->from() <= def_pos) {
 965       // Update the starting point (when a range is first created for a use, its
 966       // start is the beginning of the current block until a def is encountered.)
 967       r->set_from(def_pos);
 968       interval->add_use_pos(def_pos, use_kind);
 969 
 970     } else {
 971       // Dead value - make vacuous interval
 972       // also add use_kind for dead intervals
 973       interval->add_range(def_pos, def_pos + 1);
 974       interval->add_use_pos(def_pos, use_kind);
 975       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 976     }
 977 
 978   } else {
 979     // Dead value - make vacuous interval
 980     // also add use_kind for dead intervals
 981     interval = create_interval(reg_num);
 982     if (type != T_ILLEGAL) {
 983       interval->set_type(type);
 984     }
 985 
 986     interval->add_range(def_pos, def_pos + 1);
 987     interval->add_use_pos(def_pos, use_kind);
 988     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 989   }
 990 
 991   change_spill_definition_pos(interval, def_pos);
 992   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 993         // detection of method-parameters and roundfp-results
 994         // TODO: move this directly to position where use-kind is computed
 995     interval->set_spill_state(startInMemory);
 996   }
 997 }
 998 
 999 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
1000   Interval* interval = interval_at(reg_num);
1001   if (interval == NULL) {
1002     interval = create_interval(reg_num);
1003   }
1004   assert(interval->reg_num() == reg_num, "wrong interval");
1005 
1006   if (type != T_ILLEGAL) {
1007     interval->set_type(type);
1008   }
1009 
1010   interval->add_range(from, to);
1011   interval->add_use_pos(to, use_kind);
1012 }
1013 
1014 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1015   Interval* interval = interval_at(reg_num);
1016   if (interval == NULL) {
1017     interval = create_interval(reg_num);
1018   }
1019   assert(interval->reg_num() == reg_num, "wrong interval");
1020 
1021   if (type != T_ILLEGAL) {
1022     interval->set_type(type);
1023   }
1024 
1025   interval->add_range(temp_pos, temp_pos + 1);
1026   interval->add_use_pos(temp_pos, use_kind);
1027 }
1028 
1029 
1030 // the results of this functions are used for optimizing spilling and reloading
1031 // if the functions return shouldHaveRegister and the interval is spilled,
1032 // it is not reloaded to a register.
1033 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1034   if (op->code() == lir_move) {
1035     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1036     LIR_Op1* move = (LIR_Op1*)op;
1037     LIR_Opr res = move->result_opr();
1038     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1039 
1040     if (result_in_memory) {
1041       // Begin of an interval with must_start_in_memory set.
1042       // This interval will always get a stack slot first, so return noUse.
1043       return noUse;
1044 
1045     } else if (move->in_opr()->is_stack()) {
1046       // method argument (condition must be equal to handle_method_arguments)
1047       return noUse;
1048 
1049     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1050       // Move from register to register
1051       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1052         // special handling of phi-function moves inside osr-entry blocks
1053         // input operand must have a register instead of output operand (leads to better register allocation)
1054         return shouldHaveRegister;
1055       }
1056     }
1057   }
1058 
1059   if (opr->is_virtual() &&
1060       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1061     // result is a stack-slot, so prevent immediate reloading
1062     return noUse;
1063   }
1064 
1065   // all other operands require a register
1066   return mustHaveRegister;
1067 }
1068 
1069 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1070   if (op->code() == lir_move) {
1071     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1072     LIR_Op1* move = (LIR_Op1*)op;
1073     LIR_Opr res = move->result_opr();
1074     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1075 
1076     if (result_in_memory) {
1077       // Move to an interval with must_start_in_memory set.
1078       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1079       return mustHaveRegister;
1080 
1081     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1082       // Move from register to register
1083       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1084         // special handling of phi-function moves inside osr-entry blocks
1085         // input operand must have a register instead of output operand (leads to better register allocation)
1086         return mustHaveRegister;
1087       }
1088 
1089       // The input operand is not forced to a register (moves from stack to register are allowed),
1090       // but it is faster if the input operand is in a register
1091       return shouldHaveRegister;
1092     }
1093   }
1094 
1095 
1096 #ifdef X86
1097   if (op->code() == lir_cmove) {
1098     // conditional moves can handle stack operands
1099     assert(op->result_opr()->is_register(), "result must always be in a register");
1100     return shouldHaveRegister;
1101   }
1102 
1103   // optimizations for second input operand of arithmehtic operations on Intel
1104   // this operand is allowed to be on the stack in some cases
1105   BasicType opr_type = opr->type_register();
1106   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1107     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1108       // SSE float instruction (T_DOUBLE only supported with SSE2)
1109       switch (op->code()) {
1110         case lir_cmp:
1111         case lir_add:
1112         case lir_sub:
1113         case lir_mul:
1114         case lir_div:
1115         {
1116           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1117           LIR_Op2* op2 = (LIR_Op2*)op;
1118           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1119             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1120             return shouldHaveRegister;
1121           }
1122         }
1123       }
1124     } else {
1125       // FPU stack float instruction
1126       switch (op->code()) {
1127         case lir_add:
1128         case lir_sub:
1129         case lir_mul:
1130         case lir_div:
1131         {
1132           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1133           LIR_Op2* op2 = (LIR_Op2*)op;
1134           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1135             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1136             return shouldHaveRegister;
1137           }
1138         }
1139       }
1140     }
1141     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1142     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1143     // T_OBJECT doesn't get spilled along with T_LONG.
1144   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1145     // integer instruction (note: long operands must always be in register)
1146     switch (op->code()) {
1147       case lir_cmp:
1148       case lir_add:
1149       case lir_sub:
1150       case lir_logic_and:
1151       case lir_logic_or:
1152       case lir_logic_xor:
1153       {
1154         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1155         LIR_Op2* op2 = (LIR_Op2*)op;
1156         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1157           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1158           return shouldHaveRegister;
1159         }
1160       }
1161     }
1162   }
1163 #endif // X86
1164 
1165   // all other operands require a register
1166   return mustHaveRegister;
1167 }
1168 
1169 
1170 void LinearScan::handle_method_arguments(LIR_Op* op) {
1171   // special handling for method arguments (moves from stack to virtual register):
1172   // the interval gets no register assigned, but the stack slot.
1173   // it is split before the first use by the register allocator.
1174 
1175   if (op->code() == lir_move) {
1176     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1177     LIR_Op1* move = (LIR_Op1*)op;
1178 
1179     if (move->in_opr()->is_stack()) {
1180 #ifdef ASSERT
1181       int arg_size = compilation()->method()->arg_size();
1182       LIR_Opr o = move->in_opr();
1183       if (o->is_single_stack()) {
1184         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1185       } else if (o->is_double_stack()) {
1186         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1187       } else {
1188         ShouldNotReachHere();
1189       }
1190 
1191       assert(move->id() > 0, "invalid id");
1192       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1193       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1194 
1195       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1196 #endif
1197 
1198       Interval* interval = interval_at(reg_num(move->result_opr()));
1199 
1200       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1201       interval->set_canonical_spill_slot(stack_slot);
1202       interval->assign_reg(stack_slot);
1203     }
1204   }
1205 }
1206 
1207 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1208   // special handling for doubleword move from memory to register:
1209   // in this case the registers of the input address and the result
1210   // registers must not overlap -> add a temp range for the input registers
1211   if (op->code() == lir_move) {
1212     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1213     LIR_Op1* move = (LIR_Op1*)op;
1214 
1215     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1216       LIR_Address* address = move->in_opr()->as_address_ptr();
1217       if (address != NULL) {
1218         if (address->base()->is_valid()) {
1219           add_temp(address->base(), op->id(), noUse);
1220         }
1221         if (address->index()->is_valid()) {
1222           add_temp(address->index(), op->id(), noUse);
1223         }
1224       }
1225     }
1226   }
1227 }
1228 
1229 void LinearScan::add_register_hints(LIR_Op* op) {
1230   switch (op->code()) {
1231     case lir_move:      // fall through
1232     case lir_convert: {
1233       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1234       LIR_Op1* move = (LIR_Op1*)op;
1235 
1236       LIR_Opr move_from = move->in_opr();
1237       LIR_Opr move_to = move->result_opr();
1238 
1239       if (move_to->is_register() && move_from->is_register()) {
1240         Interval* from = interval_at(reg_num(move_from));
1241         Interval* to = interval_at(reg_num(move_to));
1242         if (from != NULL && to != NULL) {
1243           to->set_register_hint(from);
1244           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1245         }
1246       }
1247       break;
1248     }
1249     case lir_cmove: {
1250       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1251       LIR_Op2* cmove = (LIR_Op2*)op;
1252 
1253       LIR_Opr move_from = cmove->in_opr1();
1254       LIR_Opr move_to = cmove->result_opr();
1255 
1256       if (move_to->is_register() && move_from->is_register()) {
1257         Interval* from = interval_at(reg_num(move_from));
1258         Interval* to = interval_at(reg_num(move_to));
1259         if (from != NULL && to != NULL) {
1260           to->set_register_hint(from);
1261           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1262         }
1263       }
1264       break;
1265     }
1266   }
1267 }
1268 
1269 
1270 void LinearScan::build_intervals() {
1271   TIME_LINEAR_SCAN(timer_build_intervals);
1272 
1273   // initialize interval list with expected number of intervals
1274   // (32 is added to have some space for split children without having to resize the list)
1275   _intervals = IntervalList(num_virtual_regs() + 32);
1276   // initialize all slots that are used by build_intervals
1277   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1278 
1279   // create a list with all caller-save registers (cpu, fpu, xmm)
1280   // when an instruction is a call, a temp range is created for all these registers
1281   int num_caller_save_registers = 0;
1282   int caller_save_registers[LinearScan::nof_regs];
1283 
1284   int i;
1285   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1286     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1287     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1288     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1289     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1290   }
1291 
1292   // temp ranges for fpu registers are only created when the method has
1293   // virtual fpu operands. Otherwise no allocation for fpu registers is
1294   // perfomed and so the temp ranges would be useless
1295   if (has_fpu_registers()) {
1296 #ifdef X86
1297     if (UseSSE < 2) {
1298 #endif
1299       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1300         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1301         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1302         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1303         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1304       }
1305 #ifdef X86
1306     }
1307     if (UseSSE > 0) {
1308       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1309         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1310         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1311         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1312         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1313       }
1314     }
1315 #endif
1316   }
1317   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1318 
1319 
1320   LIR_OpVisitState visitor;
1321 
1322   // iterate all blocks in reverse order
1323   for (i = block_count() - 1; i >= 0; i--) {
1324     BlockBegin* block = block_at(i);
1325     LIR_OpList* instructions = block->lir()->instructions_list();
1326     int         block_from =   block->first_lir_instruction_id();
1327     int         block_to =     block->last_lir_instruction_id();
1328 
1329     assert(block_from == instructions->at(0)->id(), "must be");
1330     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1331 
1332     // Update intervals for registers live at the end of this block;
1333     BitMap live = block->live_out();
1334     int size = (int)live.size();
1335     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1336       assert(live.at(number), "should not stop here otherwise");
1337       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1338       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1339 
1340       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1341 
1342       // add special use positions for loop-end blocks when the
1343       // interval is used anywhere inside this loop.  It's possible
1344       // that the block was part of a non-natural loop, so it might
1345       // have an invalid loop index.
1346       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1347           block->loop_index() != -1 &&
1348           is_interval_in_loop(number, block->loop_index())) {
1349         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1350       }
1351     }
1352 
1353     // iterate all instructions of the block in reverse order.
1354     // skip the first instruction because it is always a label
1355     // definitions of intervals are processed before uses
1356     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1357     for (int j = instructions->length() - 1; j >= 1; j--) {
1358       LIR_Op* op = instructions->at(j);
1359       int op_id = op->id();
1360 
1361       // visit operation to collect all operands
1362       visitor.visit(op);
1363 
1364       // add a temp range for each register if operation destroys caller-save registers
1365       if (visitor.has_call()) {
1366         for (int k = 0; k < num_caller_save_registers; k++) {
1367           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1368         }
1369         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1370       }
1371 
1372       // Add any platform dependent temps
1373       pd_add_temps(op);
1374 
1375       // visit definitions (output and temp operands)
1376       int k, n;
1377       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1378       for (k = 0; k < n; k++) {
1379         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1380         assert(opr->is_register(), "visitor should only return register operands");
1381         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1382       }
1383 
1384       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1385       for (k = 0; k < n; k++) {
1386         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1387         assert(opr->is_register(), "visitor should only return register operands");
1388         add_temp(opr, op_id, mustHaveRegister);
1389       }
1390 
1391       // visit uses (input operands)
1392       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1393       for (k = 0; k < n; k++) {
1394         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1395         assert(opr->is_register(), "visitor should only return register operands");
1396         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1397       }
1398 
1399       // Add uses of live locals from interpreter's point of view for proper
1400       // debug information generation
1401       // Treat these operands as temp values (if the life range is extended
1402       // to a call site, the value would be in a register at the call otherwise)
1403       n = visitor.info_count();
1404       for (k = 0; k < n; k++) {
1405         CodeEmitInfo* info = visitor.info_at(k);
1406         ValueStack* stack = info->stack();
1407         for_each_state_value(stack, value,
1408           add_use(value, block_from, op_id + 1, noUse);
1409         );
1410       }
1411 
1412       // special steps for some instructions (especially moves)
1413       handle_method_arguments(op);
1414       handle_doubleword_moves(op);
1415       add_register_hints(op);
1416 
1417     } // end of instruction iteration
1418   } // end of block iteration
1419 
1420 
1421   // add the range [0, 1[ to all fixed intervals
1422   // -> the register allocator need not handle unhandled fixed intervals
1423   for (int n = 0; n < LinearScan::nof_regs; n++) {
1424     Interval* interval = interval_at(n);
1425     if (interval != NULL) {
1426       interval->add_range(0, 1);
1427     }
1428   }
1429 }
1430 
1431 
1432 // ********** Phase 5: actual register allocation
1433 
1434 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1435   if (*a != NULL) {
1436     if (*b != NULL) {
1437       return (*a)->from() - (*b)->from();
1438     } else {
1439       return -1;
1440     }
1441   } else {
1442     if (*b != NULL) {
1443       return 1;
1444     } else {
1445       return 0;
1446     }
1447   }
1448 }
1449 
1450 #ifndef PRODUCT
1451 bool LinearScan::is_sorted(IntervalArray* intervals) {
1452   int from = -1;
1453   int i, j;
1454   for (i = 0; i < intervals->length(); i ++) {
1455     Interval* it = intervals->at(i);
1456     if (it != NULL) {
1457       if (from > it->from()) {
1458         assert(false, "");
1459         return false;
1460       }
1461       from = it->from();
1462     }
1463   }
1464 
1465   // check in both directions if sorted list and unsorted list contain same intervals
1466   for (i = 0; i < interval_count(); i++) {
1467     if (interval_at(i) != NULL) {
1468       int num_found = 0;
1469       for (j = 0; j < intervals->length(); j++) {
1470         if (interval_at(i) == intervals->at(j)) {
1471           num_found++;
1472         }
1473       }
1474       assert(num_found == 1, "lists do not contain same intervals");
1475     }
1476   }
1477   for (j = 0; j < intervals->length(); j++) {
1478     int num_found = 0;
1479     for (i = 0; i < interval_count(); i++) {
1480       if (interval_at(i) == intervals->at(j)) {
1481         num_found++;
1482       }
1483     }
1484     assert(num_found == 1, "lists do not contain same intervals");
1485   }
1486 
1487   return true;
1488 }
1489 #endif
1490 
1491 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1492   if (*prev != NULL) {
1493     (*prev)->set_next(interval);
1494   } else {
1495     *first = interval;
1496   }
1497   *prev = interval;
1498 }
1499 
1500 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1501   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1502 
1503   *list1 = *list2 = Interval::end();
1504 
1505   Interval* list1_prev = NULL;
1506   Interval* list2_prev = NULL;
1507   Interval* v;
1508 
1509   const int n = _sorted_intervals->length();
1510   for (int i = 0; i < n; i++) {
1511     v = _sorted_intervals->at(i);
1512     if (v == NULL) continue;
1513 
1514     if (is_list1(v)) {
1515       add_to_list(list1, &list1_prev, v);
1516     } else if (is_list2 == NULL || is_list2(v)) {
1517       add_to_list(list2, &list2_prev, v);
1518     }
1519   }
1520 
1521   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1522   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1523 
1524   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1525   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1526 }
1527 
1528 
1529 void LinearScan::sort_intervals_before_allocation() {
1530   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1531 
1532   if (_needs_full_resort) {
1533     // There is no known reason why this should occur but just in case...
1534     assert(false, "should never occur");
1535     // Re-sort existing interval list because an Interval::from() has changed
1536     _sorted_intervals->sort(interval_cmp);
1537     _needs_full_resort = false;
1538   }
1539 
1540   IntervalList* unsorted_list = &_intervals;
1541   int unsorted_len = unsorted_list->length();
1542   int sorted_len = 0;
1543   int unsorted_idx;
1544   int sorted_idx = 0;
1545   int sorted_from_max = -1;
1546 
1547   // calc number of items for sorted list (sorted list must not contain NULL values)
1548   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1549     if (unsorted_list->at(unsorted_idx) != NULL) {
1550       sorted_len++;
1551     }
1552   }
1553   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1554 
1555   // special sorting algorithm: the original interval-list is almost sorted,
1556   // only some intervals are swapped. So this is much faster than a complete QuickSort
1557   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1558     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1559 
1560     if (cur_interval != NULL) {
1561       int cur_from = cur_interval->from();
1562 
1563       if (sorted_from_max <= cur_from) {
1564         sorted_list->at_put(sorted_idx++, cur_interval);
1565         sorted_from_max = cur_interval->from();
1566       } else {
1567         // the asumption that the intervals are already sorted failed,
1568         // so this interval must be sorted in manually
1569         int j;
1570         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1571           sorted_list->at_put(j + 1, sorted_list->at(j));
1572         }
1573         sorted_list->at_put(j + 1, cur_interval);
1574         sorted_idx++;
1575       }
1576     }
1577   }
1578   _sorted_intervals = sorted_list;
1579   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1580 }
1581 
1582 void LinearScan::sort_intervals_after_allocation() {
1583   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1584 
1585   if (_needs_full_resort) {
1586     // Re-sort existing interval list because an Interval::from() has changed
1587     _sorted_intervals->sort(interval_cmp);
1588     _needs_full_resort = false;
1589   }
1590 
1591   IntervalArray* old_list      = _sorted_intervals;
1592   IntervalList*  new_list      = _new_intervals_from_allocation;
1593   int old_len = old_list->length();
1594   int new_len = new_list->length();
1595 
1596   if (new_len == 0) {
1597     // no intervals have been added during allocation, so sorted list is already up to date
1598     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1599     return;
1600   }
1601 
1602   // conventional sort-algorithm for new intervals
1603   new_list->sort(interval_cmp);
1604 
1605   // merge old and new list (both already sorted) into one combined list
1606   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1607   int old_idx = 0;
1608   int new_idx = 0;
1609 
1610   while (old_idx + new_idx < old_len + new_len) {
1611     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1612       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1613       old_idx++;
1614     } else {
1615       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1616       new_idx++;
1617     }
1618   }
1619 
1620   _sorted_intervals = combined_list;
1621   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1622 }
1623 
1624 
1625 void LinearScan::allocate_registers() {
1626   TIME_LINEAR_SCAN(timer_allocate_registers);
1627 
1628   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1629   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1630 
1631   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1632   if (has_fpu_registers()) {
1633     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1634 #ifdef ASSERT
1635   } else {
1636     // fpu register allocation is omitted because no virtual fpu registers are present
1637     // just check this again...
1638     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1639     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1640 #endif
1641   }
1642 
1643   // allocate cpu registers
1644   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1645   cpu_lsw.walk();
1646   cpu_lsw.finish_allocation();
1647 
1648   if (has_fpu_registers()) {
1649     // allocate fpu registers
1650     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1651     fpu_lsw.walk();
1652     fpu_lsw.finish_allocation();
1653   }
1654 }
1655 
1656 
1657 // ********** Phase 6: resolve data flow
1658 // (insert moves at edges between blocks if intervals have been split)
1659 
1660 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1661 // instead of returning NULL
1662 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1663   Interval* result = interval->split_child_at_op_id(op_id, mode);
1664   if (result != NULL) {
1665     return result;
1666   }
1667 
1668   assert(false, "must find an interval, but do a clean bailout in product mode");
1669   result = new Interval(LIR_OprDesc::vreg_base);
1670   result->assign_reg(0);
1671   result->set_type(T_INT);
1672   BAILOUT_("LinearScan: interval is NULL", result);
1673 }
1674 
1675 
1676 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1677   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1678   assert(interval_at(reg_num) != NULL, "no interval found");
1679 
1680   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1681 }
1682 
1683 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1684   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1685   assert(interval_at(reg_num) != NULL, "no interval found");
1686 
1687   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1688 }
1689 
1690 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1691   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1692   assert(interval_at(reg_num) != NULL, "no interval found");
1693 
1694   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1695 }
1696 
1697 
1698 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1699   DEBUG_ONLY(move_resolver.check_empty());
1700 
1701   const int num_regs = num_virtual_regs();
1702   const int size = live_set_size();
1703   const BitMap live_at_edge = to_block->live_in();
1704 
1705   // visit all registers where the live_at_edge bit is set
1706   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1707     assert(r < num_regs, "live information set for not exisiting interval");
1708     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1709 
1710     Interval* from_interval = interval_at_block_end(from_block, r);
1711     Interval* to_interval = interval_at_block_begin(to_block, r);
1712 
1713     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1714       // need to insert move instruction
1715       move_resolver.add_mapping(from_interval, to_interval);
1716     }
1717   }
1718 }
1719 
1720 
1721 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1722   if (from_block->number_of_sux() <= 1) {
1723     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1724 
1725     LIR_OpList* instructions = from_block->lir()->instructions_list();
1726     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1727     if (branch != NULL) {
1728       // insert moves before branch
1729       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1730       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1731     } else {
1732       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1733     }
1734 
1735   } else {
1736     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1737 #ifdef ASSERT
1738     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1739 
1740     // because the number of predecessor edges matches the number of
1741     // successor edges, blocks which are reached by switch statements
1742     // may have be more than one predecessor but it will be guaranteed
1743     // that all predecessors will be the same.
1744     for (int i = 0; i < to_block->number_of_preds(); i++) {
1745       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1746     }
1747 #endif
1748 
1749     move_resolver.set_insert_position(to_block->lir(), 0);
1750   }
1751 }
1752 
1753 
1754 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1755 void LinearScan::resolve_data_flow() {
1756   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1757 
1758   int num_blocks = block_count();
1759   MoveResolver move_resolver(this);
1760   BitMap block_completed(num_blocks);  block_completed.clear();
1761   BitMap already_resolved(num_blocks); already_resolved.clear();
1762 
1763   int i;
1764   for (i = 0; i < num_blocks; i++) {
1765     BlockBegin* block = block_at(i);
1766 
1767     // check if block has only one predecessor and only one successor
1768     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1769       LIR_OpList* instructions = block->lir()->instructions_list();
1770       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1771       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1772       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1773 
1774       // check if block is empty (only label and branch)
1775       if (instructions->length() == 2) {
1776         BlockBegin* pred = block->pred_at(0);
1777         BlockBegin* sux = block->sux_at(0);
1778 
1779         // prevent optimization of two consecutive blocks
1780         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1781           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1782           block_completed.set_bit(block->linear_scan_number());
1783 
1784           // directly resolve between pred and sux (without looking at the empty block between)
1785           resolve_collect_mappings(pred, sux, move_resolver);
1786           if (move_resolver.has_mappings()) {
1787             move_resolver.set_insert_position(block->lir(), 0);
1788             move_resolver.resolve_and_append_moves();
1789           }
1790         }
1791       }
1792     }
1793   }
1794 
1795 
1796   for (i = 0; i < num_blocks; i++) {
1797     if (!block_completed.at(i)) {
1798       BlockBegin* from_block = block_at(i);
1799       already_resolved.set_from(block_completed);
1800 
1801       int num_sux = from_block->number_of_sux();
1802       for (int s = 0; s < num_sux; s++) {
1803         BlockBegin* to_block = from_block->sux_at(s);
1804 
1805         // check for duplicate edges between the same blocks (can happen with switch blocks)
1806         if (!already_resolved.at(to_block->linear_scan_number())) {
1807           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1808           already_resolved.set_bit(to_block->linear_scan_number());
1809 
1810           // collect all intervals that have been split between from_block and to_block
1811           resolve_collect_mappings(from_block, to_block, move_resolver);
1812           if (move_resolver.has_mappings()) {
1813             resolve_find_insert_pos(from_block, to_block, move_resolver);
1814             move_resolver.resolve_and_append_moves();
1815           }
1816         }
1817       }
1818     }
1819   }
1820 }
1821 
1822 
1823 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1824   if (interval_at(reg_num) == NULL) {
1825     // if a phi function is never used, no interval is created -> ignore this
1826     return;
1827   }
1828 
1829   Interval* interval = interval_at_block_begin(block, reg_num);
1830   int reg = interval->assigned_reg();
1831   int regHi = interval->assigned_regHi();
1832 
1833   if ((reg < nof_regs && interval->always_in_memory()) ||
1834       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1835     // the interval is split to get a short range that is located on the stack
1836     // in the following two cases:
1837     // * the interval started in memory (e.g. method parameter), but is currently in a register
1838     //   this is an optimization for exception handling that reduces the number of moves that
1839     //   are necessary for resolving the states when an exception uses this exception handler
1840     // * the interval would be on the fpu stack at the begin of the exception handler
1841     //   this is not allowed because of the complicated fpu stack handling on Intel
1842 
1843     // range that will be spilled to memory
1844     int from_op_id = block->first_lir_instruction_id();
1845     int to_op_id = from_op_id + 1;  // short live range of length 1
1846     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1847            "no split allowed between exception entry and first instruction");
1848 
1849     if (interval->from() != from_op_id) {
1850       // the part before from_op_id is unchanged
1851       interval = interval->split(from_op_id);
1852       interval->assign_reg(reg, regHi);
1853       append_interval(interval);
1854     } else {
1855       _needs_full_resort = true;
1856     }
1857     assert(interval->from() == from_op_id, "must be true now");
1858 
1859     Interval* spilled_part = interval;
1860     if (interval->to() != to_op_id) {
1861       // the part after to_op_id is unchanged
1862       spilled_part = interval->split_from_start(to_op_id);
1863       append_interval(spilled_part);
1864       move_resolver.add_mapping(spilled_part, interval);
1865     }
1866     assign_spill_slot(spilled_part);
1867 
1868     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1869   }
1870 }
1871 
1872 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1873   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1874   DEBUG_ONLY(move_resolver.check_empty());
1875 
1876   // visit all registers where the live_in bit is set
1877   int size = live_set_size();
1878   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1879     resolve_exception_entry(block, r, move_resolver);
1880   }
1881 
1882   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1883   for_each_phi_fun(block, phi,
1884     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1885   );
1886 
1887   if (move_resolver.has_mappings()) {
1888     // insert moves after first instruction
1889     move_resolver.set_insert_position(block->lir(), 0);
1890     move_resolver.resolve_and_append_moves();
1891   }
1892 }
1893 
1894 
1895 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1896   if (interval_at(reg_num) == NULL) {
1897     // if a phi function is never used, no interval is created -> ignore this
1898     return;
1899   }
1900 
1901   // the computation of to_interval is equal to resolve_collect_mappings,
1902   // but from_interval is more complicated because of phi functions
1903   BlockBegin* to_block = handler->entry_block();
1904   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1905 
1906   if (phi != NULL) {
1907     // phi function of the exception entry block
1908     // no moves are created for this phi function in the LIR_Generator, so the
1909     // interval at the throwing instruction must be searched using the operands
1910     // of the phi function
1911     Value from_value = phi->operand_at(handler->phi_operand());
1912 
1913     // with phi functions it can happen that the same from_value is used in
1914     // multiple mappings, so notify move-resolver that this is allowed
1915     move_resolver.set_multiple_reads_allowed();
1916 
1917     Constant* con = from_value->as_Constant();
1918     if (con != NULL && !con->is_pinned()) {
1919       // unpinned constants may have no register, so add mapping from constant to interval
1920       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1921     } else {
1922       // search split child at the throwing op_id
1923       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1924       move_resolver.add_mapping(from_interval, to_interval);
1925     }
1926 
1927   } else {
1928     // no phi function, so use reg_num also for from_interval
1929     // search split child at the throwing op_id
1930     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1931     if (from_interval != to_interval) {
1932       // optimization to reduce number of moves: when to_interval is on stack and
1933       // the stack slot is known to be always correct, then no move is necessary
1934       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1935         move_resolver.add_mapping(from_interval, to_interval);
1936       }
1937     }
1938   }
1939 }
1940 
1941 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1942   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1943 
1944   DEBUG_ONLY(move_resolver.check_empty());
1945   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1946   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1947   assert(handler->entry_code() == NULL, "code already present");
1948 
1949   // visit all registers where the live_in bit is set
1950   BlockBegin* block = handler->entry_block();
1951   int size = live_set_size();
1952   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1953     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1954   }
1955 
1956   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1957   for_each_phi_fun(block, phi,
1958     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1959   );
1960 
1961   if (move_resolver.has_mappings()) {
1962     LIR_List* entry_code = new LIR_List(compilation());
1963     move_resolver.set_insert_position(entry_code, 0);
1964     move_resolver.resolve_and_append_moves();
1965 
1966     entry_code->jump(handler->entry_block());
1967     handler->set_entry_code(entry_code);
1968   }
1969 }
1970 
1971 
1972 void LinearScan::resolve_exception_handlers() {
1973   MoveResolver move_resolver(this);
1974   LIR_OpVisitState visitor;
1975   int num_blocks = block_count();
1976 
1977   int i;
1978   for (i = 0; i < num_blocks; i++) {
1979     BlockBegin* block = block_at(i);
1980     if (block->is_set(BlockBegin::exception_entry_flag)) {
1981       resolve_exception_entry(block, move_resolver);
1982     }
1983   }
1984 
1985   for (i = 0; i < num_blocks; i++) {
1986     BlockBegin* block = block_at(i);
1987     LIR_List* ops = block->lir();
1988     int num_ops = ops->length();
1989 
1990     // iterate all instructions of the block. skip the first because it is always a label
1991     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1992     for (int j = 1; j < num_ops; j++) {
1993       LIR_Op* op = ops->at(j);
1994       int op_id = op->id();
1995 
1996       if (op_id != -1 && has_info(op_id)) {
1997         // visit operation to collect all operands
1998         visitor.visit(op);
1999         assert(visitor.info_count() > 0, "should not visit otherwise");
2000 
2001         XHandlers* xhandlers = visitor.all_xhandler();
2002         int n = xhandlers->length();
2003         for (int k = 0; k < n; k++) {
2004           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2005         }
2006 
2007 #ifdef ASSERT
2008       } else {
2009         visitor.visit(op);
2010         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2011 #endif
2012       }
2013     }
2014   }
2015 }
2016 
2017 
2018 // ********** Phase 7: assign register numbers back to LIR
2019 // (includes computation of debug information and oop maps)
2020 
2021 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2022   VMReg reg = interval->cached_vm_reg();
2023   if (!reg->is_valid() ) {
2024     reg = vm_reg_for_operand(operand_for_interval(interval));
2025     interval->set_cached_vm_reg(reg);
2026   }
2027   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2028   return reg;
2029 }
2030 
2031 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2032   assert(opr->is_oop(), "currently only implemented for oop operands");
2033   return frame_map()->regname(opr);
2034 }
2035 
2036 
2037 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2038   LIR_Opr opr = interval->cached_opr();
2039   if (opr->is_illegal()) {
2040     opr = calc_operand_for_interval(interval);
2041     interval->set_cached_opr(opr);
2042   }
2043 
2044   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2045   return opr;
2046 }
2047 
2048 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2049   int assigned_reg = interval->assigned_reg();
2050   BasicType type = interval->type();
2051 
2052   if (assigned_reg >= nof_regs) {
2053     // stack slot
2054     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2055     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2056 
2057   } else {
2058     // register
2059     switch (type) {
2060       case T_OBJECT: {
2061         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2062         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2063         return LIR_OprFact::single_cpu_oop(assigned_reg);
2064       }
2065 
2066       case T_ADDRESS: {
2067         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2068         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2069         return LIR_OprFact::single_cpu_address(assigned_reg);
2070       }
2071 
2072       case T_METADATA: {
2073         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2074         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2075         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2076       }
2077 
2078 #ifdef __SOFTFP__
2079       case T_FLOAT:  // fall through
2080 #endif // __SOFTFP__
2081       case T_INT: {
2082         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2083         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2084         return LIR_OprFact::single_cpu(assigned_reg);
2085       }
2086 
2087 #ifdef __SOFTFP__
2088       case T_DOUBLE:  // fall through
2089 #endif // __SOFTFP__
2090       case T_LONG: {
2091         int assigned_regHi = interval->assigned_regHi();
2092         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2093         assert(num_physical_regs(T_LONG) == 1 ||
2094                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2095 
2096         assert(assigned_reg != assigned_regHi, "invalid allocation");
2097         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2098                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2099         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2100         if (requires_adjacent_regs(T_LONG)) {
2101           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2102         }
2103 
2104 #ifdef _LP64
2105         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2106 #else
2107 #if defined(SPARC) || defined(PPC)
2108         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2109 #else
2110         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2111 #endif // SPARC
2112 #endif // LP64
2113       }
2114 
2115 #ifndef __SOFTFP__
2116       case T_FLOAT: {
2117 #ifdef X86
2118         if (UseSSE >= 1) {
2119           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2120           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2121           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2122         }
2123 #endif
2124 
2125         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2126         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2127         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2128       }
2129 
2130       case T_DOUBLE: {
2131 #ifdef X86
2132         if (UseSSE >= 2) {
2133           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2134           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2135           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2136         }
2137 #endif
2138 
2139 #ifdef SPARC
2140         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2141         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2142         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2143         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2144 #elif defined(ARM)
2145         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2146         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2147         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2148         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2149 #else
2150         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2151         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2152         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2153 #endif
2154         return result;
2155       }
2156 #endif // __SOFTFP__
2157 
2158       default: {
2159         ShouldNotReachHere();
2160         return LIR_OprFact::illegalOpr;
2161       }
2162     }
2163   }
2164 }
2165 
2166 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2167   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2168   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2169 }
2170 
2171 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2172   assert(opr->is_virtual(), "should not call this otherwise");
2173 
2174   Interval* interval = interval_at(opr->vreg_number());
2175   assert(interval != NULL, "interval must exist");
2176 
2177   if (op_id != -1) {
2178 #ifdef ASSERT
2179     BlockBegin* block = block_of_op_with_id(op_id);
2180     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2181       // check if spill moves could have been appended at the end of this block, but
2182       // before the branch instruction. So the split child information for this branch would
2183       // be incorrect.
2184       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2185       if (branch != NULL) {
2186         if (block->live_out().at(opr->vreg_number())) {
2187           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2188           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2189         }
2190       }
2191     }
2192 #endif
2193 
2194     // operands are not changed when an interval is split during allocation,
2195     // so search the right interval here
2196     interval = split_child_at_op_id(interval, op_id, mode);
2197   }
2198 
2199   LIR_Opr res = operand_for_interval(interval);
2200 
2201 #ifdef X86
2202   // new semantic for is_last_use: not only set on definite end of interval,
2203   // but also before hole
2204   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2205   // last use information is completely correct
2206   // information is only needed for fpu stack allocation
2207   if (res->is_fpu_register()) {
2208     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2209       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2210       res = res->make_last_use();
2211     }
2212   }
2213 #endif
2214 
2215   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2216 
2217   return res;
2218 }
2219 
2220 
2221 #ifdef ASSERT
2222 // some methods used to check correctness of debug information
2223 
2224 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2225   if (values == NULL) {
2226     return;
2227   }
2228 
2229   for (int i = 0; i < values->length(); i++) {
2230     ScopeValue* value = values->at(i);
2231 
2232     if (value->is_location()) {
2233       Location location = ((LocationValue*)value)->location();
2234       assert(location.where() == Location::on_stack, "value is in register");
2235     }
2236   }
2237 }
2238 
2239 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2240   if (values == NULL) {
2241     return;
2242   }
2243 
2244   for (int i = 0; i < values->length(); i++) {
2245     MonitorValue* value = values->at(i);
2246 
2247     if (value->owner()->is_location()) {
2248       Location location = ((LocationValue*)value->owner())->location();
2249       assert(location.where() == Location::on_stack, "owner is in register");
2250     }
2251     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2252   }
2253 }
2254 
2255 void assert_equal(Location l1, Location l2) {
2256   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2257 }
2258 
2259 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2260   if (v1->is_location()) {
2261     assert(v2->is_location(), "");
2262     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2263   } else if (v1->is_constant_int()) {
2264     assert(v2->is_constant_int(), "");
2265     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2266   } else if (v1->is_constant_double()) {
2267     assert(v2->is_constant_double(), "");
2268     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2269   } else if (v1->is_constant_long()) {
2270     assert(v2->is_constant_long(), "");
2271     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2272   } else if (v1->is_constant_oop()) {
2273     assert(v2->is_constant_oop(), "");
2274     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2275   } else {
2276     ShouldNotReachHere();
2277   }
2278 }
2279 
2280 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2281   assert_equal(m1->owner(), m2->owner());
2282   assert_equal(m1->basic_lock(), m2->basic_lock());
2283 }
2284 
2285 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2286   assert(d1->scope() == d2->scope(), "not equal");
2287   assert(d1->bci() == d2->bci(), "not equal");
2288 
2289   if (d1->locals() != NULL) {
2290     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2291     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2292     for (int i = 0; i < d1->locals()->length(); i++) {
2293       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2294     }
2295   } else {
2296     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2297   }
2298 
2299   if (d1->expressions() != NULL) {
2300     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2301     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2302     for (int i = 0; i < d1->expressions()->length(); i++) {
2303       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2304     }
2305   } else {
2306     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2307   }
2308 
2309   if (d1->monitors() != NULL) {
2310     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2311     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2312     for (int i = 0; i < d1->monitors()->length(); i++) {
2313       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2314     }
2315   } else {
2316     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2317   }
2318 
2319   if (d1->caller() != NULL) {
2320     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2321     assert_equal(d1->caller(), d2->caller());
2322   } else {
2323     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2324   }
2325 }
2326 
2327 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2328   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2329     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2330     switch (code) {
2331       case Bytecodes::_ifnull    : // fall through
2332       case Bytecodes::_ifnonnull : // fall through
2333       case Bytecodes::_ifeq      : // fall through
2334       case Bytecodes::_ifne      : // fall through
2335       case Bytecodes::_iflt      : // fall through
2336       case Bytecodes::_ifge      : // fall through
2337       case Bytecodes::_ifgt      : // fall through
2338       case Bytecodes::_ifle      : // fall through
2339       case Bytecodes::_if_icmpeq : // fall through
2340       case Bytecodes::_if_icmpne : // fall through
2341       case Bytecodes::_if_icmplt : // fall through
2342       case Bytecodes::_if_icmpge : // fall through
2343       case Bytecodes::_if_icmpgt : // fall through
2344       case Bytecodes::_if_icmple : // fall through
2345       case Bytecodes::_if_acmpeq : // fall through
2346       case Bytecodes::_if_acmpne :
2347         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2348         break;
2349     }
2350   }
2351 }
2352 
2353 #endif // ASSERT
2354 
2355 
2356 IntervalWalker* LinearScan::init_compute_oop_maps() {
2357   // setup lists of potential oops for walking
2358   Interval* oop_intervals;
2359   Interval* non_oop_intervals;
2360 
2361   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2362 
2363   // intervals that have no oops inside need not to be processed
2364   // to ensure a walking until the last instruction id, add a dummy interval
2365   // with a high operation id
2366   non_oop_intervals = new Interval(any_reg);
2367   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2368 
2369   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2370 }
2371 
2372 
2373 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2374   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2375 
2376   // walk before the current operation -> intervals that start at
2377   // the operation (= output operands of the operation) are not
2378   // included in the oop map
2379   iw->walk_before(op->id());
2380 
2381   int frame_size = frame_map()->framesize();
2382   int arg_count = frame_map()->oop_map_arg_count();
2383   OopMap* map = new OopMap(frame_size, arg_count);
2384 
2385   // Check if this is a patch site.
2386   bool is_patch_info = false;
2387   if (op->code() == lir_move) {
2388     assert(!is_call_site, "move must not be a call site");
2389     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2390     LIR_Op1* move = (LIR_Op1*)op;
2391 
2392     is_patch_info = move->patch_code() != lir_patch_none;
2393   }
2394 
2395   // Iterate through active intervals
2396   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2397     int assigned_reg = interval->assigned_reg();
2398 
2399     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2400     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2401     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2402 
2403     // Check if this range covers the instruction. Intervals that
2404     // start or end at the current operation are not included in the
2405     // oop map, except in the case of patching moves.  For patching
2406     // moves, any intervals which end at this instruction are included
2407     // in the oop map since we may safepoint while doing the patch
2408     // before we've consumed the inputs.
2409     if (is_patch_info || op->id() < interval->current_to()) {
2410 
2411       // caller-save registers must not be included into oop-maps at calls
2412       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2413 
2414       VMReg name = vm_reg_for_interval(interval);
2415       set_oop(map, name);
2416 
2417       // Spill optimization: when the stack value is guaranteed to be always correct,
2418       // then it must be added to the oop map even if the interval is currently in a register
2419       if (interval->always_in_memory() &&
2420           op->id() > interval->spill_definition_pos() &&
2421           interval->assigned_reg() != interval->canonical_spill_slot()) {
2422         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2423         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2424         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2425 
2426         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2427       }
2428     }
2429   }
2430 
2431   // add oops from lock stack
2432   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2433   int locks_count = info->stack()->total_locks_size();
2434   for (int i = 0; i < locks_count; i++) {
2435     set_oop(map, frame_map()->monitor_object_regname(i));
2436   }
2437 
2438   return map;
2439 }
2440 
2441 
2442 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2443   assert(visitor.info_count() > 0, "no oop map needed");
2444 
2445   // compute oop_map only for first CodeEmitInfo
2446   // because it is (in most cases) equal for all other infos of the same operation
2447   CodeEmitInfo* first_info = visitor.info_at(0);
2448   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2449 
2450   for (int i = 0; i < visitor.info_count(); i++) {
2451     CodeEmitInfo* info = visitor.info_at(i);
2452     OopMap* oop_map = first_oop_map;
2453 
2454     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2455       // this info has a different number of locks then the precomputed oop map
2456       // (possible for lock and unlock instructions) -> compute oop map with
2457       // correct lock information
2458       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2459     }
2460 
2461     if (info->_oop_map == NULL) {
2462       info->_oop_map = oop_map;
2463     } else {
2464       // a CodeEmitInfo can not be shared between different LIR-instructions
2465       // because interval splitting can occur anywhere between two instructions
2466       // and so the oop maps must be different
2467       // -> check if the already set oop_map is exactly the one calculated for this operation
2468       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2469     }
2470   }
2471 }
2472 
2473 
2474 // frequently used constants
2475 // Allocate them with new so they are never destroyed (otherwise, a
2476 // forced exit could destroy these objects while they are still in
2477 // use).
2478 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2479 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2480 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2481 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2482 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2483 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2484 
2485 void LinearScan::init_compute_debug_info() {
2486   // cache for frequently used scope values
2487   // (cpu registers and stack slots)
2488   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2489 }
2490 
2491 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2492   Location loc;
2493   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2494     bailout("too large frame");
2495   }
2496   ScopeValue* object_scope_value = new LocationValue(loc);
2497 
2498   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2499     bailout("too large frame");
2500   }
2501   return new MonitorValue(object_scope_value, loc);
2502 }
2503 
2504 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2505   Location loc;
2506   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2507     bailout("too large frame");
2508   }
2509   return new LocationValue(loc);
2510 }
2511 
2512 
2513 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2514   assert(opr->is_constant(), "should not be called otherwise");
2515 
2516   LIR_Const* c = opr->as_constant_ptr();
2517   BasicType t = c->type();
2518   switch (t) {
2519     case T_OBJECT: {
2520       jobject value = c->as_jobject();
2521       if (value == NULL) {
2522         scope_values->append(_oop_null_scope_value);
2523       } else {
2524         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2525       }
2526       return 1;
2527     }
2528 
2529     case T_INT: // fall through
2530     case T_FLOAT: {
2531       int value = c->as_jint_bits();
2532       switch (value) {
2533         case -1: scope_values->append(_int_m1_scope_value); break;
2534         case 0:  scope_values->append(_int_0_scope_value); break;
2535         case 1:  scope_values->append(_int_1_scope_value); break;
2536         case 2:  scope_values->append(_int_2_scope_value); break;
2537         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2538       }
2539       return 1;
2540     }
2541 
2542     case T_LONG: // fall through
2543     case T_DOUBLE: {
2544 #ifdef _LP64
2545       scope_values->append(_int_0_scope_value);
2546       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2547 #else
2548       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2549         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2550         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2551       } else {
2552         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2553         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2554       }
2555 #endif
2556       return 2;
2557     }
2558 
2559     case T_ADDRESS: {
2560 #ifdef _LP64
2561       scope_values->append(new ConstantLongValue(c->as_jint()));
2562 #else
2563       scope_values->append(new ConstantIntValue(c->as_jint()));
2564 #endif
2565       return 1;
2566     }
2567 
2568     default:
2569       ShouldNotReachHere();
2570       return -1;
2571   }
2572 }
2573 
2574 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2575   if (opr->is_single_stack()) {
2576     int stack_idx = opr->single_stack_ix();
2577     bool is_oop = opr->is_oop_register();
2578     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2579 
2580     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2581     if (sv == NULL) {
2582       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2583       sv = location_for_name(stack_idx, loc_type);
2584       _scope_value_cache.at_put(cache_idx, sv);
2585     }
2586 
2587     // check if cached value is correct
2588     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2589 
2590     scope_values->append(sv);
2591     return 1;
2592 
2593   } else if (opr->is_single_cpu()) {
2594     bool is_oop = opr->is_oop_register();
2595     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2596     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2597 
2598     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2599     if (sv == NULL) {
2600       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2601       VMReg rname = frame_map()->regname(opr);
2602       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2603       _scope_value_cache.at_put(cache_idx, sv);
2604     }
2605 
2606     // check if cached value is correct
2607     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2608 
2609     scope_values->append(sv);
2610     return 1;
2611 
2612 #ifdef X86
2613   } else if (opr->is_single_xmm()) {
2614     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2615     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2616 
2617     scope_values->append(sv);
2618     return 1;
2619 #endif
2620 
2621   } else if (opr->is_single_fpu()) {
2622 #ifdef X86
2623     // the exact location of fpu stack values is only known
2624     // during fpu stack allocation, so the stack allocator object
2625     // must be present
2626     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2627     assert(_fpu_stack_allocator != NULL, "must be present");
2628     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2629 #endif
2630 
2631     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2632     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2633 #ifndef __SOFTFP__
2634 #ifndef VM_LITTLE_ENDIAN
2635     if (! float_saved_as_double) {
2636       // On big endian system, we may have an issue if float registers use only
2637       // the low half of the (same) double registers.
2638       // Both the float and the double could have the same regnr but would correspond
2639       // to two different addresses once saved.
2640 
2641       // get next safely (no assertion checks)
2642       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2643       if (next->is_reg() &&
2644           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2645         // the back-end does use the same numbering for the double and the float
2646         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2647       }
2648     }
2649 #endif
2650 #endif
2651     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2652 
2653     scope_values->append(sv);
2654     return 1;
2655 
2656   } else {
2657     // double-size operands
2658 
2659     ScopeValue* first;
2660     ScopeValue* second;
2661 
2662     if (opr->is_double_stack()) {
2663 #ifdef _LP64
2664       Location loc1;
2665       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2666       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2667         bailout("too large frame");
2668       }
2669       // Does this reverse on x86 vs. sparc?
2670       first =  new LocationValue(loc1);
2671       second = _int_0_scope_value;
2672 #else
2673       Location loc1, loc2;
2674       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2675         bailout("too large frame");
2676       }
2677       first =  new LocationValue(loc1);
2678       second = new LocationValue(loc2);
2679 #endif // _LP64
2680 
2681     } else if (opr->is_double_cpu()) {
2682 #ifdef _LP64
2683       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2684       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2685       second = _int_0_scope_value;
2686 #else
2687       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2688       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2689 
2690       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2691         // lo/hi and swapped relative to first and second, so swap them
2692         VMReg tmp = rname_first;
2693         rname_first = rname_second;
2694         rname_second = tmp;
2695       }
2696 
2697       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2698       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2699 #endif //_LP64
2700 
2701 
2702 #ifdef X86
2703     } else if (opr->is_double_xmm()) {
2704       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2705       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2706 #  ifdef _LP64
2707       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2708       second = _int_0_scope_value;
2709 #  else
2710       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2711       // %%% This is probably a waste but we'll keep things as they were for now
2712       if (true) {
2713         VMReg rname_second = rname_first->next();
2714         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2715       }
2716 #  endif
2717 #endif
2718 
2719     } else if (opr->is_double_fpu()) {
2720       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2721       // the double as float registers in the native ordering. On X86,
2722       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2723       // the low-order word of the double and fpu_regnrLo + 1 is the
2724       // name for the other half.  *first and *second must represent the
2725       // least and most significant words, respectively.
2726 
2727 #ifdef X86
2728       // the exact location of fpu stack values is only known
2729       // during fpu stack allocation, so the stack allocator object
2730       // must be present
2731       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2732       assert(_fpu_stack_allocator != NULL, "must be present");
2733       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2734 
2735       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2736 #endif
2737 #ifdef SPARC
2738       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2739 #endif
2740 #ifdef ARM
2741       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2742 #endif
2743 #ifdef PPC
2744       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2745 #endif
2746 
2747 #ifdef VM_LITTLE_ENDIAN
2748       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2749 #else
2750       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2751 #endif
2752 
2753 #ifdef _LP64
2754       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2755       second = _int_0_scope_value;
2756 #else
2757       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2758       // %%% This is probably a waste but we'll keep things as they were for now
2759       if (true) {
2760         VMReg rname_second = rname_first->next();
2761         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2762       }
2763 #endif
2764 
2765     } else {
2766       ShouldNotReachHere();
2767       first = NULL;
2768       second = NULL;
2769     }
2770 
2771     assert(first != NULL && second != NULL, "must be set");
2772     // The convention the interpreter uses is that the second local
2773     // holds the first raw word of the native double representation.
2774     // This is actually reasonable, since locals and stack arrays
2775     // grow downwards in all implementations.
2776     // (If, on some machine, the interpreter's Java locals or stack
2777     // were to grow upwards, the embedded doubles would be word-swapped.)
2778     scope_values->append(second);
2779     scope_values->append(first);
2780     return 2;
2781   }
2782 }
2783 
2784 
2785 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2786   if (value != NULL) {
2787     LIR_Opr opr = value->operand();
2788     Constant* con = value->as_Constant();
2789 
2790     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2791     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2792 
2793     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2794       // Unpinned constants may have a virtual operand for a part of the lifetime
2795       // or may be illegal when it was optimized away,
2796       // so always use a constant operand
2797       opr = LIR_OprFact::value_type(con->type());
2798     }
2799     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2800 
2801     if (opr->is_virtual()) {
2802       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2803 
2804       BlockBegin* block = block_of_op_with_id(op_id);
2805       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2806         // generating debug information for the last instruction of a block.
2807         // if this instruction is a branch, spill moves are inserted before this branch
2808         // and so the wrong operand would be returned (spill moves at block boundaries are not
2809         // considered in the live ranges of intervals)
2810         // Solution: use the first op_id of the branch target block instead.
2811         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2812           if (block->live_out().at(opr->vreg_number())) {
2813             op_id = block->sux_at(0)->first_lir_instruction_id();
2814             mode = LIR_OpVisitState::outputMode;
2815           }
2816         }
2817       }
2818 
2819       // Get current location of operand
2820       // The operand must be live because debug information is considered when building the intervals
2821       // if the interval is not live, color_lir_opr will cause an assertion failure
2822       opr = color_lir_opr(opr, op_id, mode);
2823       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2824 
2825       // Append to ScopeValue array
2826       return append_scope_value_for_operand(opr, scope_values);
2827 
2828     } else {
2829       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2830       assert(opr->is_constant(), "operand must be constant");
2831 
2832       return append_scope_value_for_constant(opr, scope_values);
2833     }
2834   } else {
2835     // append a dummy value because real value not needed
2836     scope_values->append(_illegal_value);
2837     return 1;
2838   }
2839 }
2840 
2841 
2842 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2843   IRScopeDebugInfo* caller_debug_info = NULL;
2844 
2845   ValueStack* caller_state = cur_state->caller_state();
2846   if (caller_state != NULL) {
2847     // process recursively to compute outermost scope first
2848     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2849   }
2850 
2851   // initialize these to null.
2852   // If we don't need deopt info or there are no locals, expressions or monitors,
2853   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2854   GrowableArray<ScopeValue*>*   locals      = NULL;
2855   GrowableArray<ScopeValue*>*   expressions = NULL;
2856   GrowableArray<MonitorValue*>* monitors    = NULL;
2857 
2858   // describe local variable values
2859   int nof_locals = cur_state->locals_size();
2860   if (nof_locals > 0) {
2861     locals = new GrowableArray<ScopeValue*>(nof_locals);
2862 
2863     int pos = 0;
2864     while (pos < nof_locals) {
2865       assert(pos < cur_state->locals_size(), "why not?");
2866 
2867       Value local = cur_state->local_at(pos);
2868       pos += append_scope_value(op_id, local, locals);
2869 
2870       assert(locals->length() == pos, "must match");
2871     }
2872     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2873     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2874   } else if (cur_scope->method()->max_locals() > 0) {
2875     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2876     nof_locals = cur_scope->method()->max_locals();
2877     locals = new GrowableArray<ScopeValue*>(nof_locals);
2878     for(int i = 0; i < nof_locals; i++) {
2879       locals->append(_illegal_value);
2880     }
2881   }
2882 
2883   // describe expression stack
2884   int nof_stack = cur_state->stack_size();
2885   if (nof_stack > 0) {
2886     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2887 
2888     int pos = 0;
2889     while (pos < nof_stack) {
2890       Value expression = cur_state->stack_at_inc(pos);
2891       append_scope_value(op_id, expression, expressions);
2892 
2893       assert(expressions->length() == pos, "must match");
2894     }
2895     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2896   }
2897 
2898   // describe monitors
2899   int nof_locks = cur_state->locks_size();
2900   if (nof_locks > 0) {
2901     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2902     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2903     for (int i = 0; i < nof_locks; i++) {
2904       monitors->append(location_for_monitor_index(lock_offset + i));
2905     }
2906   }
2907 
2908   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2909 }
2910 
2911 
2912 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2913   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2914 
2915   IRScope* innermost_scope = info->scope();
2916   ValueStack* innermost_state = info->stack();
2917 
2918   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2919 
2920   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2921 
2922   if (info->_scope_debug_info == NULL) {
2923     // compute debug information
2924     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2925   } else {
2926     // debug information already set. Check that it is correct from the current point of view
2927     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2928   }
2929 }
2930 
2931 
2932 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2933   LIR_OpVisitState visitor;
2934   int num_inst = instructions->length();
2935   bool has_dead = false;
2936 
2937   for (int j = 0; j < num_inst; j++) {
2938     LIR_Op* op = instructions->at(j);
2939     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2940       has_dead = true;
2941       continue;
2942     }
2943     int op_id = op->id();
2944 
2945     // visit instruction to get list of operands
2946     visitor.visit(op);
2947 
2948     // iterate all modes of the visitor and process all virtual operands
2949     for_each_visitor_mode(mode) {
2950       int n = visitor.opr_count(mode);
2951       for (int k = 0; k < n; k++) {
2952         LIR_Opr opr = visitor.opr_at(mode, k);
2953         if (opr->is_virtual_register()) {
2954           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2955         }
2956       }
2957     }
2958 
2959     if (visitor.info_count() > 0) {
2960       // exception handling
2961       if (compilation()->has_exception_handlers()) {
2962         XHandlers* xhandlers = visitor.all_xhandler();
2963         int n = xhandlers->length();
2964         for (int k = 0; k < n; k++) {
2965           XHandler* handler = xhandlers->handler_at(k);
2966           if (handler->entry_code() != NULL) {
2967             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2968           }
2969         }
2970       } else {
2971         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2972       }
2973 
2974       // compute oop map
2975       assert(iw != NULL, "needed for compute_oop_map");
2976       compute_oop_map(iw, visitor, op);
2977 
2978       // compute debug information
2979       if (!use_fpu_stack_allocation()) {
2980         // compute debug information if fpu stack allocation is not needed.
2981         // when fpu stack allocation is needed, the debug information can not
2982         // be computed here because the exact location of fpu operands is not known
2983         // -> debug information is created inside the fpu stack allocator
2984         int n = visitor.info_count();
2985         for (int k = 0; k < n; k++) {
2986           compute_debug_info(visitor.info_at(k), op_id);
2987         }
2988       }
2989     }
2990 
2991 #ifdef ASSERT
2992     // make sure we haven't made the op invalid.
2993     op->verify();
2994 #endif
2995 
2996     // remove useless moves
2997     if (op->code() == lir_move) {
2998       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2999       LIR_Op1* move = (LIR_Op1*)op;
3000       LIR_Opr src = move->in_opr();
3001       LIR_Opr dst = move->result_opr();
3002       if (dst == src ||
3003           !dst->is_pointer() && !src->is_pointer() &&
3004           src->is_same_register(dst)) {
3005         instructions->at_put(j, NULL);
3006         has_dead = true;
3007       }
3008     }
3009   }
3010 
3011   if (has_dead) {
3012     // iterate all instructions of the block and remove all null-values.
3013     int insert_point = 0;
3014     for (int j = 0; j < num_inst; j++) {
3015       LIR_Op* op = instructions->at(j);
3016       if (op != NULL) {
3017         if (insert_point != j) {
3018           instructions->at_put(insert_point, op);
3019         }
3020         insert_point++;
3021       }
3022     }
3023     instructions->truncate(insert_point);
3024   }
3025 }
3026 
3027 void LinearScan::assign_reg_num() {
3028   TIME_LINEAR_SCAN(timer_assign_reg_num);
3029 
3030   init_compute_debug_info();
3031   IntervalWalker* iw = init_compute_oop_maps();
3032 
3033   int num_blocks = block_count();
3034   for (int i = 0; i < num_blocks; i++) {
3035     BlockBegin* block = block_at(i);
3036     assign_reg_num(block->lir()->instructions_list(), iw);
3037   }
3038 }
3039 
3040 
3041 void LinearScan::do_linear_scan() {
3042   NOT_PRODUCT(_total_timer.begin_method());
3043 
3044   number_instructions();
3045 
3046   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3047 
3048   compute_local_live_sets();
3049   compute_global_live_sets();
3050   CHECK_BAILOUT();
3051 
3052   build_intervals();
3053   CHECK_BAILOUT();
3054   sort_intervals_before_allocation();
3055 
3056   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3057   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3058 
3059   allocate_registers();
3060   CHECK_BAILOUT();
3061 
3062   resolve_data_flow();
3063   if (compilation()->has_exception_handlers()) {
3064     resolve_exception_handlers();
3065   }
3066   // fill in number of spill slots into frame_map
3067   propagate_spill_slots();
3068   CHECK_BAILOUT();
3069 
3070   NOT_PRODUCT(print_intervals("After Register Allocation"));
3071   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3072 
3073   sort_intervals_after_allocation();
3074 
3075   DEBUG_ONLY(verify());
3076 
3077   eliminate_spill_moves();
3078   assign_reg_num();
3079   CHECK_BAILOUT();
3080 
3081   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3082   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3083 
3084   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3085 
3086     if (use_fpu_stack_allocation()) {
3087       allocate_fpu_stack(); // Only has effect on Intel
3088       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3089     }
3090   }
3091 
3092   { TIME_LINEAR_SCAN(timer_optimize_lir);
3093 
3094     EdgeMoveOptimizer::optimize(ir()->code());
3095     ControlFlowOptimizer::optimize(ir()->code());
3096     // check that cfg is still correct after optimizations
3097     ir()->verify();
3098   }
3099 
3100   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3101   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3102   NOT_PRODUCT(_total_timer.end_method(this));
3103 }
3104 
3105 
3106 // ********** Printing functions
3107 
3108 #ifndef PRODUCT
3109 
3110 void LinearScan::print_timers(double total) {
3111   _total_timer.print(total);
3112 }
3113 
3114 void LinearScan::print_statistics() {
3115   _stat_before_alloc.print("before allocation");
3116   _stat_after_asign.print("after assignment of register");
3117   _stat_final.print("after optimization");
3118 }
3119 
3120 void LinearScan::print_bitmap(BitMap& b) {
3121   for (unsigned int i = 0; i < b.size(); i++) {
3122     if (b.at(i)) tty->print("%d ", i);
3123   }
3124   tty->cr();
3125 }
3126 
3127 void LinearScan::print_intervals(const char* label) {
3128   if (TraceLinearScanLevel >= 1) {
3129     int i;
3130     tty->cr();
3131     tty->print_cr("%s", label);
3132 
3133     for (i = 0; i < interval_count(); i++) {
3134       Interval* interval = interval_at(i);
3135       if (interval != NULL) {
3136         interval->print();
3137       }
3138     }
3139 
3140     tty->cr();
3141     tty->print_cr("--- Basic Blocks ---");
3142     for (i = 0; i < block_count(); i++) {
3143       BlockBegin* block = block_at(i);
3144       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3145     }
3146     tty->cr();
3147     tty->cr();
3148   }
3149 
3150   if (PrintCFGToFile) {
3151     CFGPrinter::print_intervals(&_intervals, label);
3152   }
3153 }
3154 
3155 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3156   if (TraceLinearScanLevel >= level) {
3157     tty->cr();
3158     tty->print_cr("%s", label);
3159     print_LIR(ir()->linear_scan_order());
3160     tty->cr();
3161   }
3162 
3163   if (level == 1 && PrintCFGToFile) {
3164     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3165   }
3166 }
3167 
3168 #endif //PRODUCT
3169 
3170 
3171 // ********** verification functions for allocation
3172 // (check that all intervals have a correct register and that no registers are overwritten)
3173 #ifdef ASSERT
3174 
3175 void LinearScan::verify() {
3176   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3177   verify_intervals();
3178 
3179   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3180   verify_no_oops_in_fixed_intervals();
3181 
3182   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3183   verify_constants();
3184 
3185   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3186   verify_registers();
3187 
3188   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3189 }
3190 
3191 void LinearScan::verify_intervals() {
3192   int len = interval_count();
3193   bool has_error = false;
3194 
3195   for (int i = 0; i < len; i++) {
3196     Interval* i1 = interval_at(i);
3197     if (i1 == NULL) continue;
3198 
3199     i1->check_split_children();
3200 
3201     if (i1->reg_num() != i) {
3202       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3203       has_error = true;
3204     }
3205 
3206     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3207       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3208       has_error = true;
3209     }
3210 
3211     if (i1->assigned_reg() == any_reg) {
3212       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3213       has_error = true;
3214     }
3215 
3216     if (i1->assigned_reg() == i1->assigned_regHi()) {
3217       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3218       has_error = true;
3219     }
3220 
3221     if (!is_processed_reg_num(i1->assigned_reg())) {
3222       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3223       has_error = true;
3224     }
3225 
3226     if (i1->first() == Range::end()) {
3227       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3228       has_error = true;
3229     }
3230 
3231     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3232       if (r->from() >= r->to()) {
3233         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3234         has_error = true;
3235       }
3236     }
3237 
3238     for (int j = i + 1; j < len; j++) {
3239       Interval* i2 = interval_at(j);
3240       if (i2 == NULL) continue;
3241 
3242       // special intervals that are created in MoveResolver
3243       // -> ignore them because the range information has no meaning there
3244       if (i1->from() == 1 && i1->to() == 2) continue;
3245       if (i2->from() == 1 && i2->to() == 2) continue;
3246 
3247       int r1 = i1->assigned_reg();
3248       int r1Hi = i1->assigned_regHi();
3249       int r2 = i2->assigned_reg();
3250       int r2Hi = i2->assigned_regHi();
3251       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3252         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3253         i1->print(); tty->cr();
3254         i2->print(); tty->cr();
3255         has_error = true;
3256       }
3257     }
3258   }
3259 
3260   assert(has_error == false, "register allocation invalid");
3261 }
3262 
3263 
3264 void LinearScan::verify_no_oops_in_fixed_intervals() {
3265   Interval* fixed_intervals;
3266   Interval* other_intervals;
3267   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3268 
3269   // to ensure a walking until the last instruction id, add a dummy interval
3270   // with a high operation id
3271   other_intervals = new Interval(any_reg);
3272   other_intervals->add_range(max_jint - 2, max_jint - 1);
3273   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3274 
3275   LIR_OpVisitState visitor;
3276   for (int i = 0; i < block_count(); i++) {
3277     BlockBegin* block = block_at(i);
3278 
3279     LIR_OpList* instructions = block->lir()->instructions_list();
3280 
3281     for (int j = 0; j < instructions->length(); j++) {
3282       LIR_Op* op = instructions->at(j);
3283       int op_id = op->id();
3284 
3285       visitor.visit(op);
3286 
3287       if (visitor.info_count() > 0) {
3288         iw->walk_before(op->id());
3289         bool check_live = true;
3290         if (op->code() == lir_move) {
3291           LIR_Op1* move = (LIR_Op1*)op;
3292           check_live = (move->patch_code() == lir_patch_none);
3293         }
3294         LIR_OpBranch* branch = op->as_OpBranch();
3295         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3296           // Don't bother checking the stub in this case since the
3297           // exception stub will never return to normal control flow.
3298           check_live = false;
3299         }
3300 
3301         // Make sure none of the fixed registers is live across an
3302         // oopmap since we can't handle that correctly.
3303         if (check_live) {
3304           for (Interval* interval = iw->active_first(fixedKind);
3305                interval != Interval::end();
3306                interval = interval->next()) {
3307             if (interval->current_to() > op->id() + 1) {
3308               // This interval is live out of this op so make sure
3309               // that this interval represents some value that's
3310               // referenced by this op either as an input or output.
3311               bool ok = false;
3312               for_each_visitor_mode(mode) {
3313                 int n = visitor.opr_count(mode);
3314                 for (int k = 0; k < n; k++) {
3315                   LIR_Opr opr = visitor.opr_at(mode, k);
3316                   if (opr->is_fixed_cpu()) {
3317                     if (interval_at(reg_num(opr)) == interval) {
3318                       ok = true;
3319                       break;
3320                     }
3321                     int hi = reg_numHi(opr);
3322                     if (hi != -1 && interval_at(hi) == interval) {
3323                       ok = true;
3324                       break;
3325                     }
3326                   }
3327                 }
3328               }
3329               assert(ok, "fixed intervals should never be live across an oopmap point");
3330             }
3331           }
3332         }
3333       }
3334 
3335       // oop-maps at calls do not contain registers, so check is not needed
3336       if (!visitor.has_call()) {
3337 
3338         for_each_visitor_mode(mode) {
3339           int n = visitor.opr_count(mode);
3340           for (int k = 0; k < n; k++) {
3341             LIR_Opr opr = visitor.opr_at(mode, k);
3342 
3343             if (opr->is_fixed_cpu() && opr->is_oop()) {
3344               // operand is a non-virtual cpu register and contains an oop
3345               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3346 
3347               Interval* interval = interval_at(reg_num(opr));
3348               assert(interval != NULL, "no interval");
3349 
3350               if (mode == LIR_OpVisitState::inputMode) {
3351                 if (interval->to() >= op_id + 1) {
3352                   assert(interval->to() < op_id + 2 ||
3353                          interval->has_hole_between(op_id, op_id + 2),
3354                          "oop input operand live after instruction");
3355                 }
3356               } else if (mode == LIR_OpVisitState::outputMode) {
3357                 if (interval->from() <= op_id - 1) {
3358                   assert(interval->has_hole_between(op_id - 1, op_id),
3359                          "oop input operand live after instruction");
3360                 }
3361               }
3362             }
3363           }
3364         }
3365       }
3366     }
3367   }
3368 }
3369 
3370 
3371 void LinearScan::verify_constants() {
3372   int num_regs = num_virtual_regs();
3373   int size = live_set_size();
3374   int num_blocks = block_count();
3375 
3376   for (int i = 0; i < num_blocks; i++) {
3377     BlockBegin* block = block_at(i);
3378     BitMap live_at_edge = block->live_in();
3379 
3380     // visit all registers where the live_at_edge bit is set
3381     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3382       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3383 
3384       Value value = gen()->instruction_for_vreg(r);
3385 
3386       assert(value != NULL, "all intervals live across block boundaries must have Value");
3387       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3388       assert(value->operand()->vreg_number() == r, "register number must match");
3389       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3390     }
3391   }
3392 }
3393 
3394 
3395 class RegisterVerifier: public StackObj {
3396  private:
3397   LinearScan*   _allocator;
3398   BlockList     _work_list;      // all blocks that must be processed
3399   IntervalsList _saved_states;   // saved information of previous check
3400 
3401   // simplified access to methods of LinearScan
3402   Compilation*  compilation() const              { return _allocator->compilation(); }
3403   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3404   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3405 
3406   // currently, only registers are processed
3407   int           state_size()                     { return LinearScan::nof_regs; }
3408 
3409   // accessors
3410   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3411   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3412   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3413 
3414   // helper functions
3415   IntervalList* copy(IntervalList* input_state);
3416   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3417   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3418 
3419   void process_block(BlockBegin* block);
3420   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3421   void process_successor(BlockBegin* block, IntervalList* input_state);
3422   void process_operations(LIR_List* ops, IntervalList* input_state);
3423 
3424  public:
3425   RegisterVerifier(LinearScan* allocator)
3426     : _allocator(allocator)
3427     , _work_list(16)
3428     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3429   { }
3430 
3431   void verify(BlockBegin* start);
3432 };
3433 
3434 
3435 // entry function from LinearScan that starts the verification
3436 void LinearScan::verify_registers() {
3437   RegisterVerifier verifier(this);
3438   verifier.verify(block_at(0));
3439 }
3440 
3441 
3442 void RegisterVerifier::verify(BlockBegin* start) {
3443   // setup input registers (method arguments) for first block
3444   IntervalList* input_state = new IntervalList(state_size(), NULL);
3445   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3446   for (int n = 0; n < args->length(); n++) {
3447     LIR_Opr opr = args->at(n);
3448     if (opr->is_register()) {
3449       Interval* interval = interval_at(reg_num(opr));
3450 
3451       if (interval->assigned_reg() < state_size()) {
3452         input_state->at_put(interval->assigned_reg(), interval);
3453       }
3454       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3455         input_state->at_put(interval->assigned_regHi(), interval);
3456       }
3457     }
3458   }
3459 
3460   set_state_for_block(start, input_state);
3461   add_to_work_list(start);
3462 
3463   // main loop for verification
3464   do {
3465     BlockBegin* block = _work_list.at(0);
3466     _work_list.remove_at(0);
3467 
3468     process_block(block);
3469   } while (!_work_list.is_empty());
3470 }
3471 
3472 void RegisterVerifier::process_block(BlockBegin* block) {
3473   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3474 
3475   // must copy state because it is modified
3476   IntervalList* input_state = copy(state_for_block(block));
3477 
3478   if (TraceLinearScanLevel >= 4) {
3479     tty->print_cr("Input-State of intervals:");
3480     tty->print("    ");
3481     for (int i = 0; i < state_size(); i++) {
3482       if (input_state->at(i) != NULL) {
3483         tty->print(" %4d", input_state->at(i)->reg_num());
3484       } else {
3485         tty->print("   __");
3486       }
3487     }
3488     tty->cr();
3489     tty->cr();
3490   }
3491 
3492   // process all operations of the block
3493   process_operations(block->lir(), input_state);
3494 
3495   // iterate all successors
3496   for (int i = 0; i < block->number_of_sux(); i++) {
3497     process_successor(block->sux_at(i), input_state);
3498   }
3499 }
3500 
3501 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3502   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3503 
3504   // must copy state because it is modified
3505   input_state = copy(input_state);
3506 
3507   if (xhandler->entry_code() != NULL) {
3508     process_operations(xhandler->entry_code(), input_state);
3509   }
3510   process_successor(xhandler->entry_block(), input_state);
3511 }
3512 
3513 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3514   IntervalList* saved_state = state_for_block(block);
3515 
3516   if (saved_state != NULL) {
3517     // this block was already processed before.
3518     // check if new input_state is consistent with saved_state
3519 
3520     bool saved_state_correct = true;
3521     for (int i = 0; i < state_size(); i++) {
3522       if (input_state->at(i) != saved_state->at(i)) {
3523         // current input_state and previous saved_state assume a different
3524         // interval in this register -> assume that this register is invalid
3525         if (saved_state->at(i) != NULL) {
3526           // invalidate old calculation only if it assumed that
3527           // register was valid. when the register was already invalid,
3528           // then the old calculation was correct.
3529           saved_state_correct = false;
3530           saved_state->at_put(i, NULL);
3531 
3532           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3533         }
3534       }
3535     }
3536 
3537     if (saved_state_correct) {
3538       // already processed block with correct input_state
3539       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3540     } else {
3541       // must re-visit this block
3542       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3543       add_to_work_list(block);
3544     }
3545 
3546   } else {
3547     // block was not processed before, so set initial input_state
3548     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3549 
3550     set_state_for_block(block, copy(input_state));
3551     add_to_work_list(block);
3552   }
3553 }
3554 
3555 
3556 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3557   IntervalList* copy_state = new IntervalList(input_state->length());
3558   copy_state->push_all(input_state);
3559   return copy_state;
3560 }
3561 
3562 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3563   if (reg != LinearScan::any_reg && reg < state_size()) {
3564     if (interval != NULL) {
3565       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3566     } else if (input_state->at(reg) != NULL) {
3567       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3568     }
3569 
3570     input_state->at_put(reg, interval);
3571   }
3572 }
3573 
3574 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3575   if (reg != LinearScan::any_reg && reg < state_size()) {
3576     if (input_state->at(reg) != interval) {
3577       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3578       return true;
3579     }
3580   }
3581   return false;
3582 }
3583 
3584 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3585   // visit all instructions of the block
3586   LIR_OpVisitState visitor;
3587   bool has_error = false;
3588 
3589   for (int i = 0; i < ops->length(); i++) {
3590     LIR_Op* op = ops->at(i);
3591     visitor.visit(op);
3592 
3593     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3594 
3595     // check if input operands are correct
3596     int j;
3597     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3598     for (j = 0; j < n; j++) {
3599       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3600       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3601         Interval* interval = interval_at(reg_num(opr));
3602         if (op->id() != -1) {
3603           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3604         }
3605 
3606         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3607         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3608 
3609         // When an operand is marked with is_last_use, then the fpu stack allocator
3610         // removes the register from the fpu stack -> the register contains no value
3611         if (opr->is_last_use()) {
3612           state_put(input_state, interval->assigned_reg(),   NULL);
3613           state_put(input_state, interval->assigned_regHi(), NULL);
3614         }
3615       }
3616     }
3617 
3618     // invalidate all caller save registers at calls
3619     if (visitor.has_call()) {
3620       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3621         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3622       }
3623       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3624         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3625       }
3626 
3627 #ifdef X86
3628       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3629         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3630       }
3631 #endif
3632     }
3633 
3634     // process xhandler before output and temp operands
3635     XHandlers* xhandlers = visitor.all_xhandler();
3636     n = xhandlers->length();
3637     for (int k = 0; k < n; k++) {
3638       process_xhandler(xhandlers->handler_at(k), input_state);
3639     }
3640 
3641     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3642     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3643     for (j = 0; j < n; j++) {
3644       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3645       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3646         Interval* interval = interval_at(reg_num(opr));
3647         if (op->id() != -1) {
3648           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3649         }
3650 
3651         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3652         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3653       }
3654     }
3655 
3656     // set output operands
3657     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3658     for (j = 0; j < n; j++) {
3659       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3660       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3661         Interval* interval = interval_at(reg_num(opr));
3662         if (op->id() != -1) {
3663           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3664         }
3665 
3666         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3667         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3668       }
3669     }
3670   }
3671   assert(has_error == false, "Error in register allocation");
3672 }
3673 
3674 #endif // ASSERT
3675 
3676 
3677 
3678 // **** Implementation of MoveResolver ******************************
3679 
3680 MoveResolver::MoveResolver(LinearScan* allocator) :
3681   _allocator(allocator),
3682   _multiple_reads_allowed(false),
3683   _mapping_from(8),
3684   _mapping_from_opr(8),
3685   _mapping_to(8),
3686   _insert_list(NULL),
3687   _insert_idx(-1),
3688   _insertion_buffer()
3689 {
3690   for (int i = 0; i < LinearScan::nof_regs; i++) {
3691     _register_blocked[i] = 0;
3692   }
3693   DEBUG_ONLY(check_empty());
3694 }
3695 
3696 
3697 #ifdef ASSERT
3698 
3699 void MoveResolver::check_empty() {
3700   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3701   for (int i = 0; i < LinearScan::nof_regs; i++) {
3702     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3703   }
3704   assert(_multiple_reads_allowed == false, "must have default value");
3705 }
3706 
3707 void MoveResolver::verify_before_resolve() {
3708   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3709   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3710   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3711 
3712   int i, j;
3713   if (!_multiple_reads_allowed) {
3714     for (i = 0; i < _mapping_from.length(); i++) {
3715       for (j = i + 1; j < _mapping_from.length(); j++) {
3716         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3717       }
3718     }
3719   }
3720 
3721   for (i = 0; i < _mapping_to.length(); i++) {
3722     for (j = i + 1; j < _mapping_to.length(); j++) {
3723       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3724     }
3725   }
3726 
3727 
3728   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3729   used_regs.clear();
3730   if (!_multiple_reads_allowed) {
3731     for (i = 0; i < _mapping_from.length(); i++) {
3732       Interval* it = _mapping_from.at(i);
3733       if (it != NULL) {
3734         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3735         used_regs.set_bit(it->assigned_reg());
3736 
3737         if (it->assigned_regHi() != LinearScan::any_reg) {
3738           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3739           used_regs.set_bit(it->assigned_regHi());
3740         }
3741       }
3742     }
3743   }
3744 
3745   used_regs.clear();
3746   for (i = 0; i < _mapping_to.length(); i++) {
3747     Interval* it = _mapping_to.at(i);
3748     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3749     used_regs.set_bit(it->assigned_reg());
3750 
3751     if (it->assigned_regHi() != LinearScan::any_reg) {
3752       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3753       used_regs.set_bit(it->assigned_regHi());
3754     }
3755   }
3756 
3757   used_regs.clear();
3758   for (i = 0; i < _mapping_from.length(); i++) {
3759     Interval* it = _mapping_from.at(i);
3760     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3761       used_regs.set_bit(it->assigned_reg());
3762     }
3763   }
3764   for (i = 0; i < _mapping_to.length(); i++) {
3765     Interval* it = _mapping_to.at(i);
3766     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3767   }
3768 }
3769 
3770 #endif // ASSERT
3771 
3772 
3773 // mark assigned_reg and assigned_regHi of the interval as blocked
3774 void MoveResolver::block_registers(Interval* it) {
3775   int reg = it->assigned_reg();
3776   if (reg < LinearScan::nof_regs) {
3777     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3778     set_register_blocked(reg, 1);
3779   }
3780   reg = it->assigned_regHi();
3781   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3782     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3783     set_register_blocked(reg, 1);
3784   }
3785 }
3786 
3787 // mark assigned_reg and assigned_regHi of the interval as unblocked
3788 void MoveResolver::unblock_registers(Interval* it) {
3789   int reg = it->assigned_reg();
3790   if (reg < LinearScan::nof_regs) {
3791     assert(register_blocked(reg) > 0, "register already marked as unused");
3792     set_register_blocked(reg, -1);
3793   }
3794   reg = it->assigned_regHi();
3795   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3796     assert(register_blocked(reg) > 0, "register already marked as unused");
3797     set_register_blocked(reg, -1);
3798   }
3799 }
3800 
3801 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3802 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3803   int from_reg = -1;
3804   int from_regHi = -1;
3805   if (from != NULL) {
3806     from_reg = from->assigned_reg();
3807     from_regHi = from->assigned_regHi();
3808   }
3809 
3810   int reg = to->assigned_reg();
3811   if (reg < LinearScan::nof_regs) {
3812     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3813       return false;
3814     }
3815   }
3816   reg = to->assigned_regHi();
3817   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3818     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3819       return false;
3820     }
3821   }
3822 
3823   return true;
3824 }
3825 
3826 
3827 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3828   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3829   _insertion_buffer.init(list);
3830 }
3831 
3832 void MoveResolver::append_insertion_buffer() {
3833   if (_insertion_buffer.initialized()) {
3834     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3835   }
3836   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3837 
3838   _insert_list = NULL;
3839   _insert_idx = -1;
3840 }
3841 
3842 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3843   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3844   assert(from_interval->type() == to_interval->type(), "move between different types");
3845   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3846   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3847 
3848   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3849   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3850 
3851   if (!_multiple_reads_allowed) {
3852     // the last_use flag is an optimization for FPU stack allocation. When the same
3853     // input interval is used in more than one move, then it is too difficult to determine
3854     // if this move is really the last use.
3855     from_opr = from_opr->make_last_use();
3856   }
3857   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3858 
3859   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3860 }
3861 
3862 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3863   assert(from_opr->type() == to_interval->type(), "move between different types");
3864   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3865   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3866 
3867   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3868   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3869 
3870   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3871 }
3872 
3873 
3874 void MoveResolver::resolve_mappings() {
3875   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3876   DEBUG_ONLY(verify_before_resolve());
3877 
3878   // Block all registers that are used as input operands of a move.
3879   // When a register is blocked, no move to this register is emitted.
3880   // This is necessary for detecting cycles in moves.
3881   int i;
3882   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3883     Interval* from_interval = _mapping_from.at(i);
3884     if (from_interval != NULL) {
3885       block_registers(from_interval);
3886     }
3887   }
3888 
3889   int spill_candidate = -1;
3890   while (_mapping_from.length() > 0) {
3891     bool processed_interval = false;
3892 
3893     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3894       Interval* from_interval = _mapping_from.at(i);
3895       Interval* to_interval = _mapping_to.at(i);
3896 
3897       if (save_to_process_move(from_interval, to_interval)) {
3898         // this inverval can be processed because target is free
3899         if (from_interval != NULL) {
3900           insert_move(from_interval, to_interval);
3901           unblock_registers(from_interval);
3902         } else {
3903           insert_move(_mapping_from_opr.at(i), to_interval);
3904         }
3905         _mapping_from.remove_at(i);
3906         _mapping_from_opr.remove_at(i);
3907         _mapping_to.remove_at(i);
3908 
3909         processed_interval = true;
3910       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3911         // this interval cannot be processed now because target is not free
3912         // it starts in a register, so it is a possible candidate for spilling
3913         spill_candidate = i;
3914       }
3915     }
3916 
3917     if (!processed_interval) {
3918       // no move could be processed because there is a cycle in the move list
3919       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3920       assert(spill_candidate != -1, "no interval in register for spilling found");
3921 
3922       // create a new spill interval and assign a stack slot to it
3923       Interval* from_interval = _mapping_from.at(spill_candidate);
3924       Interval* spill_interval = new Interval(-1);
3925       spill_interval->set_type(from_interval->type());
3926 
3927       // add a dummy range because real position is difficult to calculate
3928       // Note: this range is a special case when the integrity of the allocation is checked
3929       spill_interval->add_range(1, 2);
3930 
3931       //       do not allocate a new spill slot for temporary interval, but
3932       //       use spill slot assigned to from_interval. Otherwise moves from
3933       //       one stack slot to another can happen (not allowed by LIR_Assembler
3934       int spill_slot = from_interval->canonical_spill_slot();
3935       if (spill_slot < 0) {
3936         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3937         from_interval->set_canonical_spill_slot(spill_slot);
3938       }
3939       spill_interval->assign_reg(spill_slot);
3940       allocator()->append_interval(spill_interval);
3941 
3942       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3943 
3944       // insert a move from register to stack and update the mapping
3945       insert_move(from_interval, spill_interval);
3946       _mapping_from.at_put(spill_candidate, spill_interval);
3947       unblock_registers(from_interval);
3948     }
3949   }
3950 
3951   // reset to default value
3952   _multiple_reads_allowed = false;
3953 
3954   // check that all intervals have been processed
3955   DEBUG_ONLY(check_empty());
3956 }
3957 
3958 
3959 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3960   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3961   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3962 
3963   create_insertion_buffer(insert_list);
3964   _insert_list = insert_list;
3965   _insert_idx = insert_idx;
3966 }
3967 
3968 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3969   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3970 
3971   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3972     // insert position changed -> resolve current mappings
3973     resolve_mappings();
3974   }
3975 
3976   if (insert_list != _insert_list) {
3977     // block changed -> append insertion_buffer because it is
3978     // bound to a specific block and create a new insertion_buffer
3979     append_insertion_buffer();
3980     create_insertion_buffer(insert_list);
3981   }
3982 
3983   _insert_list = insert_list;
3984   _insert_idx = insert_idx;
3985 }
3986 
3987 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3988   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3989 
3990   _mapping_from.append(from_interval);
3991   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3992   _mapping_to.append(to_interval);
3993 }
3994 
3995 
3996 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3997   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3998   assert(from_opr->is_constant(), "only for constants");
3999 
4000   _mapping_from.append(NULL);
4001   _mapping_from_opr.append(from_opr);
4002   _mapping_to.append(to_interval);
4003 }
4004 
4005 void MoveResolver::resolve_and_append_moves() {
4006   if (has_mappings()) {
4007     resolve_mappings();
4008   }
4009   append_insertion_buffer();
4010 }
4011 
4012 
4013 
4014 // **** Implementation of Range *************************************
4015 
4016 Range::Range(int from, int to, Range* next) :
4017   _from(from),
4018   _to(to),
4019   _next(next)
4020 {
4021 }
4022 
4023 // initialize sentinel
4024 Range* Range::_end = NULL;
4025 void Range::initialize(Arena* arena) {
4026   _end = new (arena) Range(max_jint, max_jint, NULL);
4027 }
4028 
4029 int Range::intersects_at(Range* r2) const {
4030   const Range* r1 = this;
4031 
4032   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4033   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4034 
4035   do {
4036     if (r1->from() < r2->from()) {
4037       if (r1->to() <= r2->from()) {
4038         r1 = r1->next(); if (r1 == _end) return -1;
4039       } else {
4040         return r2->from();
4041       }
4042     } else if (r2->from() < r1->from()) {
4043       if (r2->to() <= r1->from()) {
4044         r2 = r2->next(); if (r2 == _end) return -1;
4045       } else {
4046         return r1->from();
4047       }
4048     } else { // r1->from() == r2->from()
4049       if (r1->from() == r1->to()) {
4050         r1 = r1->next(); if (r1 == _end) return -1;
4051       } else if (r2->from() == r2->to()) {
4052         r2 = r2->next(); if (r2 == _end) return -1;
4053       } else {
4054         return r1->from();
4055       }
4056     }
4057   } while (true);
4058 }
4059 
4060 #ifndef PRODUCT
4061 void Range::print(outputStream* out) const {
4062   out->print("[%d, %d[ ", _from, _to);
4063 }
4064 #endif
4065 
4066 
4067 
4068 // **** Implementation of Interval **********************************
4069 
4070 // initialize sentinel
4071 Interval* Interval::_end = NULL;
4072 void Interval::initialize(Arena* arena) {
4073   Range::initialize(arena);
4074   _end = new (arena) Interval(-1);
4075 }
4076 
4077 Interval::Interval(int reg_num) :
4078   _reg_num(reg_num),
4079   _type(T_ILLEGAL),
4080   _first(Range::end()),
4081   _use_pos_and_kinds(12),
4082   _current(Range::end()),
4083   _next(_end),
4084   _state(invalidState),
4085   _assigned_reg(LinearScan::any_reg),
4086   _assigned_regHi(LinearScan::any_reg),
4087   _cached_to(-1),
4088   _cached_opr(LIR_OprFact::illegalOpr),
4089   _cached_vm_reg(VMRegImpl::Bad()),
4090   _split_children(0),
4091   _canonical_spill_slot(-1),
4092   _insert_move_when_activated(false),
4093   _register_hint(NULL),
4094   _spill_state(noDefinitionFound),
4095   _spill_definition_pos(-1)
4096 {
4097   _split_parent = this;
4098   _current_split_child = this;
4099 }
4100 
4101 int Interval::calc_to() {
4102   assert(_first != Range::end(), "interval has no range");
4103 
4104   Range* r = _first;
4105   while (r->next() != Range::end()) {
4106     r = r->next();
4107   }
4108   return r->to();
4109 }
4110 
4111 
4112 #ifdef ASSERT
4113 // consistency check of split-children
4114 void Interval::check_split_children() {
4115   if (_split_children.length() > 0) {
4116     assert(is_split_parent(), "only split parents can have children");
4117 
4118     for (int i = 0; i < _split_children.length(); i++) {
4119       Interval* i1 = _split_children.at(i);
4120 
4121       assert(i1->split_parent() == this, "not a split child of this interval");
4122       assert(i1->type() == type(), "must be equal for all split children");
4123       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4124 
4125       for (int j = i + 1; j < _split_children.length(); j++) {
4126         Interval* i2 = _split_children.at(j);
4127 
4128         assert(i1->reg_num() != i2->reg_num(), "same register number");
4129 
4130         if (i1->from() < i2->from()) {
4131           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4132         } else {
4133           assert(i2->from() < i1->from(), "intervals start at same op_id");
4134           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4135         }
4136       }
4137     }
4138   }
4139 }
4140 #endif // ASSERT
4141 
4142 Interval* Interval::register_hint(bool search_split_child) const {
4143   if (!search_split_child) {
4144     return _register_hint;
4145   }
4146 
4147   if (_register_hint != NULL) {
4148     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4149 
4150     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4151       return _register_hint;
4152 
4153     } else if (_register_hint->_split_children.length() > 0) {
4154       // search the first split child that has a register assigned
4155       int len = _register_hint->_split_children.length();
4156       for (int i = 0; i < len; i++) {
4157         Interval* cur = _register_hint->_split_children.at(i);
4158 
4159         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4160           return cur;
4161         }
4162       }
4163     }
4164   }
4165 
4166   // no hint interval found that has a register assigned
4167   return NULL;
4168 }
4169 
4170 
4171 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4172   assert(is_split_parent(), "can only be called for split parents");
4173   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4174 
4175   Interval* result;
4176   if (_split_children.length() == 0) {
4177     result = this;
4178   } else {
4179     result = NULL;
4180     int len = _split_children.length();
4181 
4182     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4183     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4184 
4185     int i;
4186     for (i = 0; i < len; i++) {
4187       Interval* cur = _split_children.at(i);
4188       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4189         if (i > 0) {
4190           // exchange current split child to start of list (faster access for next call)
4191           _split_children.at_put(i, _split_children.at(0));
4192           _split_children.at_put(0, cur);
4193         }
4194 
4195         // interval found
4196         result = cur;
4197         break;
4198       }
4199     }
4200 
4201 #ifdef ASSERT
4202     for (i = 0; i < len; i++) {
4203       Interval* tmp = _split_children.at(i);
4204       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4205         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4206         result->print();
4207         tmp->print();
4208         assert(false, "two valid result intervals found");
4209       }
4210     }
4211 #endif
4212   }
4213 
4214   assert(result != NULL, "no matching interval found");
4215   assert(result->covers(op_id, mode), "op_id not covered by interval");
4216 
4217   return result;
4218 }
4219 
4220 
4221 // returns the last split child that ends before the given op_id
4222 Interval* Interval::split_child_before_op_id(int op_id) {
4223   assert(op_id >= 0, "invalid op_id");
4224 
4225   Interval* parent = split_parent();
4226   Interval* result = NULL;
4227 
4228   int len = parent->_split_children.length();
4229   assert(len > 0, "no split children available");
4230 
4231   for (int i = len - 1; i >= 0; i--) {
4232     Interval* cur = parent->_split_children.at(i);
4233     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4234       result = cur;
4235     }
4236   }
4237 
4238   assert(result != NULL, "no split child found");
4239   return result;
4240 }
4241 
4242 
4243 // checks if op_id is covered by any split child
4244 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4245   assert(is_split_parent(), "can only be called for split parents");
4246   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4247 
4248   if (_split_children.length() == 0) {
4249     // simple case if interval was not split
4250     return covers(op_id, mode);
4251 
4252   } else {
4253     // extended case: check all split children
4254     int len = _split_children.length();
4255     for (int i = 0; i < len; i++) {
4256       Interval* cur = _split_children.at(i);
4257       if (cur->covers(op_id, mode)) {
4258         return true;
4259       }
4260     }
4261     return false;
4262   }
4263 }
4264 
4265 
4266 // Note: use positions are sorted descending -> first use has highest index
4267 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4268   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4269 
4270   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4271     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4272       return _use_pos_and_kinds.at(i);
4273     }
4274   }
4275   return max_jint;
4276 }
4277 
4278 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4279   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4280 
4281   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4282     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4283       return _use_pos_and_kinds.at(i);
4284     }
4285   }
4286   return max_jint;
4287 }
4288 
4289 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4290   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4291 
4292   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4293     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4294       return _use_pos_and_kinds.at(i);
4295     }
4296   }
4297   return max_jint;
4298 }
4299 
4300 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4301   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4302 
4303   int prev = 0;
4304   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4305     if (_use_pos_and_kinds.at(i) > from) {
4306       return prev;
4307     }
4308     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4309       prev = _use_pos_and_kinds.at(i);
4310     }
4311   }
4312   return prev;
4313 }
4314 
4315 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4316   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4317 
4318   // do not add use positions for precolored intervals because
4319   // they are never used
4320   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4321 #ifdef ASSERT
4322     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4323     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4324       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4325       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4326       if (i > 0) {
4327         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4328       }
4329     }
4330 #endif
4331 
4332     // Note: add_use is called in descending order, so list gets sorted
4333     //       automatically by just appending new use positions
4334     int len = _use_pos_and_kinds.length();
4335     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4336       _use_pos_and_kinds.append(pos);
4337       _use_pos_and_kinds.append(use_kind);
4338     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4339       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4340       _use_pos_and_kinds.at_put(len - 1, use_kind);
4341     }
4342   }
4343 }
4344 
4345 void Interval::add_range(int from, int to) {
4346   assert(from < to, "invalid range");
4347   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4348   assert(from <= first()->to(), "not inserting at begin of interval");
4349 
4350   if (first()->from() <= to) {
4351     // join intersecting ranges
4352     first()->set_from(MIN2(from, first()->from()));
4353     first()->set_to  (MAX2(to,   first()->to()));
4354   } else {
4355     // insert new range
4356     _first = new Range(from, to, first());
4357   }
4358 }
4359 
4360 Interval* Interval::new_split_child() {
4361   // allocate new interval
4362   Interval* result = new Interval(-1);
4363   result->set_type(type());
4364 
4365   Interval* parent = split_parent();
4366   result->_split_parent = parent;
4367   result->set_register_hint(parent);
4368 
4369   // insert new interval in children-list of parent
4370   if (parent->_split_children.length() == 0) {
4371     assert(is_split_parent(), "list must be initialized at first split");
4372 
4373     parent->_split_children = IntervalList(4);
4374     parent->_split_children.append(this);
4375   }
4376   parent->_split_children.append(result);
4377 
4378   return result;
4379 }
4380 
4381 // split this interval at the specified position and return
4382 // the remainder as a new interval.
4383 //
4384 // when an interval is split, a bi-directional link is established between the original interval
4385 // (the split parent) and the intervals that are split off this interval (the split children)
4386 // When a split child is split again, the new created interval is also a direct child
4387 // of the original parent (there is no tree of split children stored, but a flat list)
4388 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4389 //
4390 // Note: The new interval has no valid reg_num
4391 Interval* Interval::split(int split_pos) {
4392   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4393 
4394   // allocate new interval
4395   Interval* result = new_split_child();
4396 
4397   // split the ranges
4398   Range* prev = NULL;
4399   Range* cur = _first;
4400   while (cur != Range::end() && cur->to() <= split_pos) {
4401     prev = cur;
4402     cur = cur->next();
4403   }
4404   assert(cur != Range::end(), "split interval after end of last range");
4405 
4406   if (cur->from() < split_pos) {
4407     result->_first = new Range(split_pos, cur->to(), cur->next());
4408     cur->set_to(split_pos);
4409     cur->set_next(Range::end());
4410 
4411   } else {
4412     assert(prev != NULL, "split before start of first range");
4413     result->_first = cur;
4414     prev->set_next(Range::end());
4415   }
4416   result->_current = result->_first;
4417   _cached_to = -1; // clear cached value
4418 
4419   // split list of use positions
4420   int total_len = _use_pos_and_kinds.length();
4421   int start_idx = total_len - 2;
4422   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4423     start_idx -= 2;
4424   }
4425 
4426   intStack new_use_pos_and_kinds(total_len - start_idx);
4427   int i;
4428   for (i = start_idx + 2; i < total_len; i++) {
4429     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4430   }
4431 
4432   _use_pos_and_kinds.truncate(start_idx + 2);
4433   result->_use_pos_and_kinds = _use_pos_and_kinds;
4434   _use_pos_and_kinds = new_use_pos_and_kinds;
4435 
4436 #ifdef ASSERT
4437   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4438   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4439   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4440 
4441   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4442     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4443     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4444   }
4445   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4446     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4447     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4448   }
4449 #endif
4450 
4451   return result;
4452 }
4453 
4454 // split this interval at the specified position and return
4455 // the head as a new interval (the original interval is the tail)
4456 //
4457 // Currently, only the first range can be split, and the new interval
4458 // must not have split positions
4459 Interval* Interval::split_from_start(int split_pos) {
4460   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4461   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4462   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4463   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4464 
4465   // allocate new interval
4466   Interval* result = new_split_child();
4467 
4468   // the new created interval has only one range (checked by assertion above),
4469   // so the splitting of the ranges is very simple
4470   result->add_range(_first->from(), split_pos);
4471 
4472   if (split_pos == _first->to()) {
4473     assert(_first->next() != Range::end(), "must not be at end");
4474     _first = _first->next();
4475   } else {
4476     _first->set_from(split_pos);
4477   }
4478 
4479   return result;
4480 }
4481 
4482 
4483 // returns true if the op_id is inside the interval
4484 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4485   Range* cur  = _first;
4486 
4487   while (cur != Range::end() && cur->to() < op_id) {
4488     cur = cur->next();
4489   }
4490   if (cur != Range::end()) {
4491     assert(cur->to() != cur->next()->from(), "ranges not separated");
4492 
4493     if (mode == LIR_OpVisitState::outputMode) {
4494       return cur->from() <= op_id && op_id < cur->to();
4495     } else {
4496       return cur->from() <= op_id && op_id <= cur->to();
4497     }
4498   }
4499   return false;
4500 }
4501 
4502 // returns true if the interval has any hole between hole_from and hole_to
4503 // (even if the hole has only the length 1)
4504 bool Interval::has_hole_between(int hole_from, int hole_to) {
4505   assert(hole_from < hole_to, "check");
4506   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4507 
4508   Range* cur  = _first;
4509   while (cur != Range::end()) {
4510     assert(cur->to() < cur->next()->from(), "no space between ranges");
4511 
4512     // hole-range starts before this range -> hole
4513     if (hole_from < cur->from()) {
4514       return true;
4515 
4516     // hole-range completely inside this range -> no hole
4517     } else if (hole_to <= cur->to()) {
4518       return false;
4519 
4520     // overlapping of hole-range with this range -> hole
4521     } else if (hole_from <= cur->to()) {
4522       return true;
4523     }
4524 
4525     cur = cur->next();
4526   }
4527 
4528   return false;
4529 }
4530 
4531 
4532 #ifndef PRODUCT
4533 void Interval::print(outputStream* out) const {
4534   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4535   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4536 
4537   const char* type_name;
4538   LIR_Opr opr = LIR_OprFact::illegal();
4539   if (reg_num() < LIR_OprDesc::vreg_base) {
4540     type_name = "fixed";
4541     // need a temporary operand for fixed intervals because type() cannot be called
4542     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4543       opr = LIR_OprFact::single_cpu(assigned_reg());
4544     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4545       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4546 #ifdef X86
4547     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4548       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4549 #endif
4550     } else {
4551       ShouldNotReachHere();
4552     }
4553   } else {
4554     type_name = type2name(type());
4555     if (assigned_reg() != -1 &&
4556         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4557       opr = LinearScan::calc_operand_for_interval(this);
4558     }
4559   }
4560 
4561   out->print("%d %s ", reg_num(), type_name);
4562   if (opr->is_valid()) {
4563     out->print("\"");
4564     opr->print(out);
4565     out->print("\" ");
4566   }
4567   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4568 
4569   // print ranges
4570   Range* cur = _first;
4571   while (cur != Range::end()) {
4572     cur->print(out);
4573     cur = cur->next();
4574     assert(cur != NULL, "range list not closed with range sentinel");
4575   }
4576 
4577   // print use positions
4578   int prev = 0;
4579   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4580   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4581     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4582     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4583 
4584     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4585     prev = _use_pos_and_kinds.at(i);
4586   }
4587 
4588   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4589   out->cr();
4590 }
4591 #endif
4592 
4593 
4594 
4595 // **** Implementation of IntervalWalker ****************************
4596 
4597 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4598  : _compilation(allocator->compilation())
4599  , _allocator(allocator)
4600 {
4601   _unhandled_first[fixedKind] = unhandled_fixed_first;
4602   _unhandled_first[anyKind]   = unhandled_any_first;
4603   _active_first[fixedKind]    = Interval::end();
4604   _inactive_first[fixedKind]  = Interval::end();
4605   _active_first[anyKind]      = Interval::end();
4606   _inactive_first[anyKind]    = Interval::end();
4607   _current_position = -1;
4608   _current = NULL;
4609   next_interval();
4610 }
4611 
4612 
4613 // append interval at top of list
4614 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4615   interval->set_next(*list); *list = interval;
4616 }
4617 
4618 
4619 // append interval in order of current range from()
4620 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4621   Interval* prev = NULL;
4622   Interval* cur  = *list;
4623   while (cur->current_from() < interval->current_from()) {
4624     prev = cur; cur = cur->next();
4625   }
4626   if (prev == NULL) {
4627     *list = interval;
4628   } else {
4629     prev->set_next(interval);
4630   }
4631   interval->set_next(cur);
4632 }
4633 
4634 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4635   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4636 
4637   Interval* prev = NULL;
4638   Interval* cur  = *list;
4639   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4640     prev = cur; cur = cur->next();
4641   }
4642   if (prev == NULL) {
4643     *list = interval;
4644   } else {
4645     prev->set_next(interval);
4646   }
4647   interval->set_next(cur);
4648 }
4649 
4650 
4651 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4652   while (*list != Interval::end() && *list != i) {
4653     list = (*list)->next_addr();
4654   }
4655   if (*list != Interval::end()) {
4656     assert(*list == i, "check");
4657     *list = (*list)->next();
4658     return true;
4659   } else {
4660     return false;
4661   }
4662 }
4663 
4664 void IntervalWalker::remove_from_list(Interval* i) {
4665   bool deleted;
4666 
4667   if (i->state() == activeState) {
4668     deleted = remove_from_list(active_first_addr(anyKind), i);
4669   } else {
4670     assert(i->state() == inactiveState, "invalid state");
4671     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4672   }
4673 
4674   assert(deleted, "interval has not been found in list");
4675 }
4676 
4677 
4678 void IntervalWalker::walk_to(IntervalState state, int from) {
4679   assert (state == activeState || state == inactiveState, "wrong state");
4680   for_each_interval_kind(kind) {
4681     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4682     Interval* next   = *prev;
4683     while (next->current_from() <= from) {
4684       Interval* cur = next;
4685       next = cur->next();
4686 
4687       bool range_has_changed = false;
4688       while (cur->current_to() <= from) {
4689         cur->next_range();
4690         range_has_changed = true;
4691       }
4692 
4693       // also handle move from inactive list to active list
4694       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4695 
4696       if (range_has_changed) {
4697         // remove cur from list
4698         *prev = next;
4699         if (cur->current_at_end()) {
4700           // move to handled state (not maintained as a list)
4701           cur->set_state(handledState);
4702           interval_moved(cur, kind, state, handledState);
4703         } else if (cur->current_from() <= from){
4704           // sort into active list
4705           append_sorted(active_first_addr(kind), cur);
4706           cur->set_state(activeState);
4707           if (*prev == cur) {
4708             assert(state == activeState, "check");
4709             prev = cur->next_addr();
4710           }
4711           interval_moved(cur, kind, state, activeState);
4712         } else {
4713           // sort into inactive list
4714           append_sorted(inactive_first_addr(kind), cur);
4715           cur->set_state(inactiveState);
4716           if (*prev == cur) {
4717             assert(state == inactiveState, "check");
4718             prev = cur->next_addr();
4719           }
4720           interval_moved(cur, kind, state, inactiveState);
4721         }
4722       } else {
4723         prev = cur->next_addr();
4724         continue;
4725       }
4726     }
4727   }
4728 }
4729 
4730 
4731 void IntervalWalker::next_interval() {
4732   IntervalKind kind;
4733   Interval* any   = _unhandled_first[anyKind];
4734   Interval* fixed = _unhandled_first[fixedKind];
4735 
4736   if (any != Interval::end()) {
4737     // intervals may start at same position -> prefer fixed interval
4738     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4739 
4740     assert (kind == fixedKind && fixed->from() <= any->from() ||
4741             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4742     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4743 
4744   } else if (fixed != Interval::end()) {
4745     kind = fixedKind;
4746   } else {
4747     _current = NULL; return;
4748   }
4749   _current_kind = kind;
4750   _current = _unhandled_first[kind];
4751   _unhandled_first[kind] = _current->next();
4752   _current->set_next(Interval::end());
4753   _current->rewind_range();
4754 }
4755 
4756 
4757 void IntervalWalker::walk_to(int lir_op_id) {
4758   assert(_current_position <= lir_op_id, "can not walk backwards");
4759   while (current() != NULL) {
4760     bool is_active = current()->from() <= lir_op_id;
4761     int id = is_active ? current()->from() : lir_op_id;
4762 
4763     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4764 
4765     // set _current_position prior to call of walk_to
4766     _current_position = id;
4767 
4768     // call walk_to even if _current_position == id
4769     walk_to(activeState, id);
4770     walk_to(inactiveState, id);
4771 
4772     if (is_active) {
4773       current()->set_state(activeState);
4774       if (activate_current()) {
4775         append_sorted(active_first_addr(current_kind()), current());
4776         interval_moved(current(), current_kind(), unhandledState, activeState);
4777       }
4778 
4779       next_interval();
4780     } else {
4781       return;
4782     }
4783   }
4784 }
4785 
4786 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4787 #ifndef PRODUCT
4788   if (TraceLinearScanLevel >= 4) {
4789     #define print_state(state) \
4790     switch(state) {\
4791       case unhandledState: tty->print("unhandled"); break;\
4792       case activeState: tty->print("active"); break;\
4793       case inactiveState: tty->print("inactive"); break;\
4794       case handledState: tty->print("handled"); break;\
4795       default: ShouldNotReachHere(); \
4796     }
4797 
4798     print_state(from); tty->print(" to "); print_state(to);
4799     tty->fill_to(23);
4800     interval->print();
4801 
4802     #undef print_state
4803   }
4804 #endif
4805 }
4806 
4807 
4808 
4809 // **** Implementation of LinearScanWalker **************************
4810 
4811 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4812   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4813   , _move_resolver(allocator)
4814 {
4815   for (int i = 0; i < LinearScan::nof_regs; i++) {
4816     _spill_intervals[i] = new IntervalList(2);
4817   }
4818 }
4819 
4820 
4821 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4822   for (int i = _first_reg; i <= _last_reg; i++) {
4823     _use_pos[i] = max_jint;
4824 
4825     if (!only_process_use_pos) {
4826       _block_pos[i] = max_jint;
4827       _spill_intervals[i]->clear();
4828     }
4829   }
4830 }
4831 
4832 inline void LinearScanWalker::exclude_from_use(int reg) {
4833   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4834   if (reg >= _first_reg && reg <= _last_reg) {
4835     _use_pos[reg] = 0;
4836   }
4837 }
4838 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4839   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4840 
4841   exclude_from_use(i->assigned_reg());
4842   exclude_from_use(i->assigned_regHi());
4843 }
4844 
4845 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4846   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4847 
4848   if (reg >= _first_reg && reg <= _last_reg) {
4849     if (_use_pos[reg] > use_pos) {
4850       _use_pos[reg] = use_pos;
4851     }
4852     if (!only_process_use_pos) {
4853       _spill_intervals[reg]->append(i);
4854     }
4855   }
4856 }
4857 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4858   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4859   if (use_pos != -1) {
4860     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4861     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4862   }
4863 }
4864 
4865 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4866   if (reg >= _first_reg && reg <= _last_reg) {
4867     if (_block_pos[reg] > block_pos) {
4868       _block_pos[reg] = block_pos;
4869     }
4870     if (_use_pos[reg] > block_pos) {
4871       _use_pos[reg] = block_pos;
4872     }
4873   }
4874 }
4875 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4876   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4877   if (block_pos != -1) {
4878     set_block_pos(i->assigned_reg(), i, block_pos);
4879     set_block_pos(i->assigned_regHi(), i, block_pos);
4880   }
4881 }
4882 
4883 
4884 void LinearScanWalker::free_exclude_active_fixed() {
4885   Interval* list = active_first(fixedKind);
4886   while (list != Interval::end()) {
4887     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4888     exclude_from_use(list);
4889     list = list->next();
4890   }
4891 }
4892 
4893 void LinearScanWalker::free_exclude_active_any() {
4894   Interval* list = active_first(anyKind);
4895   while (list != Interval::end()) {
4896     exclude_from_use(list);
4897     list = list->next();
4898   }
4899 }
4900 
4901 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4902   Interval* list = inactive_first(fixedKind);
4903   while (list != Interval::end()) {
4904     if (cur->to() <= list->current_from()) {
4905       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4906       set_use_pos(list, list->current_from(), true);
4907     } else {
4908       set_use_pos(list, list->current_intersects_at(cur), true);
4909     }
4910     list = list->next();
4911   }
4912 }
4913 
4914 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4915   Interval* list = inactive_first(anyKind);
4916   while (list != Interval::end()) {
4917     set_use_pos(list, list->current_intersects_at(cur), true);
4918     list = list->next();
4919   }
4920 }
4921 
4922 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4923   Interval* list = unhandled_first(kind);
4924   while (list != Interval::end()) {
4925     set_use_pos(list, list->intersects_at(cur), true);
4926     if (kind == fixedKind && cur->to() <= list->from()) {
4927       set_use_pos(list, list->from(), true);
4928     }
4929     list = list->next();
4930   }
4931 }
4932 
4933 void LinearScanWalker::spill_exclude_active_fixed() {
4934   Interval* list = active_first(fixedKind);
4935   while (list != Interval::end()) {
4936     exclude_from_use(list);
4937     list = list->next();
4938   }
4939 }
4940 
4941 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4942   Interval* list = unhandled_first(fixedKind);
4943   while (list != Interval::end()) {
4944     set_block_pos(list, list->intersects_at(cur));
4945     list = list->next();
4946   }
4947 }
4948 
4949 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4950   Interval* list = inactive_first(fixedKind);
4951   while (list != Interval::end()) {
4952     if (cur->to() > list->current_from()) {
4953       set_block_pos(list, list->current_intersects_at(cur));
4954     } else {
4955       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4956     }
4957 
4958     list = list->next();
4959   }
4960 }
4961 
4962 void LinearScanWalker::spill_collect_active_any() {
4963   Interval* list = active_first(anyKind);
4964   while (list != Interval::end()) {
4965     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4966     list = list->next();
4967   }
4968 }
4969 
4970 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4971   Interval* list = inactive_first(anyKind);
4972   while (list != Interval::end()) {
4973     if (list->current_intersects(cur)) {
4974       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4975     }
4976     list = list->next();
4977   }
4978 }
4979 
4980 
4981 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4982   // output all moves here. When source and target are equal, the move is
4983   // optimized away later in assign_reg_nums
4984 
4985   op_id = (op_id + 1) & ~1;
4986   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4987   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4988 
4989   // calculate index of instruction inside instruction list of current block
4990   // the minimal index (for a block with no spill moves) can be calculated because the
4991   // numbering of instructions is known.
4992   // When the block already contains spill moves, the index must be increased until the
4993   // correct index is reached.
4994   LIR_OpList* list = op_block->lir()->instructions_list();
4995   int index = (op_id - list->at(0)->id()) / 2;
4996   assert(list->at(index)->id() <= op_id, "error in calculation");
4997 
4998   while (list->at(index)->id() != op_id) {
4999     index++;
5000     assert(0 <= index && index < list->length(), "index out of bounds");
5001   }
5002   assert(1 <= index && index < list->length(), "index out of bounds");
5003   assert(list->at(index)->id() == op_id, "error in calculation");
5004 
5005   // insert new instruction before instruction at position index
5006   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5007   _move_resolver.add_mapping(src_it, dst_it);
5008 }
5009 
5010 
5011 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5012   int from_block_nr = min_block->linear_scan_number();
5013   int to_block_nr = max_block->linear_scan_number();
5014 
5015   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5016   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5017   assert(from_block_nr < to_block_nr, "must cross block boundary");
5018 
5019   // Try to split at end of max_block. If this would be after
5020   // max_split_pos, then use the begin of max_block
5021   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5022   if (optimal_split_pos > max_split_pos) {
5023     optimal_split_pos = max_block->first_lir_instruction_id();
5024   }
5025 
5026   int min_loop_depth = max_block->loop_depth();
5027   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5028     BlockBegin* cur = block_at(i);
5029 
5030     if (cur->loop_depth() < min_loop_depth) {
5031       // block with lower loop-depth found -> split at the end of this block
5032       min_loop_depth = cur->loop_depth();
5033       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5034     }
5035   }
5036   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5037 
5038   return optimal_split_pos;
5039 }
5040 
5041 
5042 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5043   int optimal_split_pos = -1;
5044   if (min_split_pos == max_split_pos) {
5045     // trivial case, no optimization of split position possible
5046     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5047     optimal_split_pos = min_split_pos;
5048 
5049   } else {
5050     assert(min_split_pos < max_split_pos, "must be true then");
5051     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5052 
5053     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5054     // beginning of a block, then min_split_pos is also a possible split position.
5055     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5056     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5057 
5058     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5059     // when an interval ends at the end of the last block of the method
5060     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5061     // block at this op_id)
5062     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5063 
5064     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5065     if (min_block == max_block) {
5066       // split position cannot be moved to block boundary, so split as late as possible
5067       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5068       optimal_split_pos = max_split_pos;
5069 
5070     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5071       // Do not move split position if the interval has a hole before max_split_pos.
5072       // Intervals resulting from Phi-Functions have more than one definition (marked
5073       // as mustHaveRegister) with a hole before each definition. When the register is needed
5074       // for the second definition, an earlier reloading is unnecessary.
5075       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5076       optimal_split_pos = max_split_pos;
5077 
5078     } else {
5079       // seach optimal block boundary between min_split_pos and max_split_pos
5080       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5081 
5082       if (do_loop_optimization) {
5083         // Loop optimization: if a loop-end marker is found between min- and max-position,
5084         // then split before this loop
5085         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5086         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5087 
5088         assert(loop_end_pos > min_split_pos, "invalid order");
5089         if (loop_end_pos < max_split_pos) {
5090           // loop-end marker found between min- and max-position
5091           // if it is not the end marker for the same loop as the min-position, then move
5092           // the max-position to this loop block.
5093           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5094           // of the interval (normally, only mustHaveRegister causes a reloading)
5095           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5096 
5097           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5098           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5099 
5100           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5101           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5102             optimal_split_pos = -1;
5103             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5104           } else {
5105             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5106           }
5107         }
5108       }
5109 
5110       if (optimal_split_pos == -1) {
5111         // not calculated by loop optimization
5112         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5113       }
5114     }
5115   }
5116   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5117 
5118   return optimal_split_pos;
5119 }
5120 
5121 
5122 /*
5123   split an interval at the optimal position between min_split_pos and
5124   max_split_pos in two parts:
5125   1) the left part has already a location assigned
5126   2) the right part is sorted into to the unhandled-list
5127 */
5128 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5129   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5130   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5131 
5132   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5133   assert(current_position() < min_split_pos, "cannot split before current position");
5134   assert(min_split_pos <= max_split_pos,     "invalid order");
5135   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5136 
5137   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5138 
5139   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5140   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5141   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5142 
5143   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5144     // the split position would be just before the end of the interval
5145     // -> no split at all necessary
5146     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5147     return;
5148   }
5149 
5150   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5151   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5152 
5153   if (!allocator()->is_block_begin(optimal_split_pos)) {
5154     // move position before actual instruction (odd op_id)
5155     optimal_split_pos = (optimal_split_pos - 1) | 1;
5156   }
5157 
5158   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5159   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5160   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5161 
5162   Interval* split_part = it->split(optimal_split_pos);
5163 
5164   allocator()->append_interval(split_part);
5165   allocator()->copy_register_flags(it, split_part);
5166   split_part->set_insert_move_when_activated(move_necessary);
5167   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5168 
5169   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5170   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5171   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5172 }
5173 
5174 /*
5175   split an interval at the optimal position between min_split_pos and
5176   max_split_pos in two parts:
5177   1) the left part has already a location assigned
5178   2) the right part is always on the stack and therefore ignored in further processing
5179 */
5180 void LinearScanWalker::split_for_spilling(Interval* it) {
5181   // calculate allowed range of splitting position
5182   int max_split_pos = current_position();
5183   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5184 
5185   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5186   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5187 
5188   assert(it->state() == activeState,     "why spill interval that is not active?");
5189   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5190   assert(min_split_pos <= max_split_pos, "invalid order");
5191   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5192   assert(current_position() < it->to(),  "interval must not end before current position");
5193 
5194   if (min_split_pos == it->from()) {
5195     // the whole interval is never used, so spill it entirely to memory
5196     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5197     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5198 
5199     allocator()->assign_spill_slot(it);
5200     allocator()->change_spill_state(it, min_split_pos);
5201 
5202     // Also kick parent intervals out of register to memory when they have no use
5203     // position. This avoids short interval in register surrounded by intervals in
5204     // memory -> avoid useless moves from memory to register and back
5205     Interval* parent = it;
5206     while (parent != NULL && parent->is_split_child()) {
5207       parent = parent->split_child_before_op_id(parent->from());
5208 
5209       if (parent->assigned_reg() < LinearScan::nof_regs) {
5210         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5211           // parent is never used, so kick it out of its assigned register
5212           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5213           allocator()->assign_spill_slot(parent);
5214         } else {
5215           // do not go further back because the register is actually used by the interval
5216           parent = NULL;
5217         }
5218       }
5219     }
5220 
5221   } else {
5222     // search optimal split pos, split interval and spill only the right hand part
5223     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5224 
5225     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5226     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5227     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5228 
5229     if (!allocator()->is_block_begin(optimal_split_pos)) {
5230       // move position before actual instruction (odd op_id)
5231       optimal_split_pos = (optimal_split_pos - 1) | 1;
5232     }
5233 
5234     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5235     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5236     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5237 
5238     Interval* spilled_part = it->split(optimal_split_pos);
5239     allocator()->append_interval(spilled_part);
5240     allocator()->assign_spill_slot(spilled_part);
5241     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5242 
5243     if (!allocator()->is_block_begin(optimal_split_pos)) {
5244       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5245       insert_move(optimal_split_pos, it, spilled_part);
5246     }
5247 
5248     // the current_split_child is needed later when moves are inserted for reloading
5249     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5250     spilled_part->make_current_split_child();
5251 
5252     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5253     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5254     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5255   }
5256 }
5257 
5258 
5259 void LinearScanWalker::split_stack_interval(Interval* it) {
5260   int min_split_pos = current_position() + 1;
5261   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5262 
5263   split_before_usage(it, min_split_pos, max_split_pos);
5264 }
5265 
5266 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5267   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5268   int max_split_pos = register_available_until;
5269 
5270   split_before_usage(it, min_split_pos, max_split_pos);
5271 }
5272 
5273 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5274   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5275 
5276   int current_pos = current_position();
5277   if (it->state() == inactiveState) {
5278     // the interval is currently inactive, so no spill slot is needed for now.
5279     // when the split part is activated, the interval has a new chance to get a register,
5280     // so in the best case no stack slot is necessary
5281     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5282     split_before_usage(it, current_pos + 1, current_pos + 1);
5283 
5284   } else {
5285     // search the position where the interval must have a register and split
5286     // at the optimal position before.
5287     // The new created part is added to the unhandled list and will get a register
5288     // when it is activated
5289     int min_split_pos = current_pos + 1;
5290     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5291 
5292     split_before_usage(it, min_split_pos, max_split_pos);
5293 
5294     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5295     split_for_spilling(it);
5296   }
5297 }
5298 
5299 
5300 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5301   int min_full_reg = any_reg;
5302   int max_partial_reg = any_reg;
5303 
5304   for (int i = _first_reg; i <= _last_reg; i++) {
5305     if (i == ignore_reg) {
5306       // this register must be ignored
5307 
5308     } else if (_use_pos[i] >= interval_to) {
5309       // this register is free for the full interval
5310       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5311         min_full_reg = i;
5312       }
5313     } else if (_use_pos[i] > reg_needed_until) {
5314       // this register is at least free until reg_needed_until
5315       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5316         max_partial_reg = i;
5317       }
5318     }
5319   }
5320 
5321   if (min_full_reg != any_reg) {
5322     return min_full_reg;
5323   } else if (max_partial_reg != any_reg) {
5324     *need_split = true;
5325     return max_partial_reg;
5326   } else {
5327     return any_reg;
5328   }
5329 }
5330 
5331 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5332   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5333 
5334   int min_full_reg = any_reg;
5335   int max_partial_reg = any_reg;
5336 
5337   for (int i = _first_reg; i < _last_reg; i+=2) {
5338     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5339       // this register is free for the full interval
5340       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5341         min_full_reg = i;
5342       }
5343     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5344       // this register is at least free until reg_needed_until
5345       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5346         max_partial_reg = i;
5347       }
5348     }
5349   }
5350 
5351   if (min_full_reg != any_reg) {
5352     return min_full_reg;
5353   } else if (max_partial_reg != any_reg) {
5354     *need_split = true;
5355     return max_partial_reg;
5356   } else {
5357     return any_reg;
5358   }
5359 }
5360 
5361 
5362 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5363   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5364 
5365   init_use_lists(true);
5366   free_exclude_active_fixed();
5367   free_exclude_active_any();
5368   free_collect_inactive_fixed(cur);
5369   free_collect_inactive_any(cur);
5370 //  free_collect_unhandled(fixedKind, cur);
5371   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5372 
5373   // _use_pos contains the start of the next interval that has this register assigned
5374   // (either as a fixed register or a normal allocated register in the past)
5375   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5376   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5377   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5378 
5379   int hint_reg, hint_regHi;
5380   Interval* register_hint = cur->register_hint();
5381   if (register_hint != NULL) {
5382     hint_reg = register_hint->assigned_reg();
5383     hint_regHi = register_hint->assigned_regHi();
5384 
5385     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5386       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5387       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5388     }
5389     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5390 
5391   } else {
5392     hint_reg = any_reg;
5393     hint_regHi = any_reg;
5394   }
5395   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5396   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5397 
5398   // the register must be free at least until this position
5399   int reg_needed_until = cur->from() + 1;
5400   int interval_to = cur->to();
5401 
5402   bool need_split = false;
5403   int split_pos = -1;
5404   int reg = any_reg;
5405   int regHi = any_reg;
5406 
5407   if (_adjacent_regs) {
5408     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5409     regHi = reg + 1;
5410     if (reg == any_reg) {
5411       return false;
5412     }
5413     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5414 
5415   } else {
5416     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5417     if (reg == any_reg) {
5418       return false;
5419     }
5420     split_pos = _use_pos[reg];
5421 
5422     if (_num_phys_regs == 2) {
5423       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5424 
5425       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5426         // do not split interval if only one register can be assigned until the split pos
5427         // (when one register is found for the whole interval, split&spill is only
5428         // performed for the hi register)
5429         return false;
5430 
5431       } else if (regHi != any_reg) {
5432         split_pos = MIN2(split_pos, _use_pos[regHi]);
5433 
5434         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5435         if (reg > regHi) {
5436           int temp = reg;
5437           reg = regHi;
5438           regHi = temp;
5439         }
5440       }
5441     }
5442   }
5443 
5444   cur->assign_reg(reg, regHi);
5445   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5446 
5447   assert(split_pos > 0, "invalid split_pos");
5448   if (need_split) {
5449     // register not available for full interval, so split it
5450     split_when_partial_register_available(cur, split_pos);
5451   }
5452 
5453   // only return true if interval is completely assigned
5454   return _num_phys_regs == 1 || regHi != any_reg;
5455 }
5456 
5457 
5458 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5459   int max_reg = any_reg;
5460 
5461   for (int i = _first_reg; i <= _last_reg; i++) {
5462     if (i == ignore_reg) {
5463       // this register must be ignored
5464 
5465     } else if (_use_pos[i] > reg_needed_until) {
5466       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5467         max_reg = i;
5468       }
5469     }
5470   }
5471 
5472   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5473     *need_split = true;
5474   }
5475 
5476   return max_reg;
5477 }
5478 
5479 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5480   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5481 
5482   int max_reg = any_reg;
5483 
5484   for (int i = _first_reg; i < _last_reg; i+=2) {
5485     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5486       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5487         max_reg = i;
5488       }
5489     }
5490   }
5491 
5492   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5493     *need_split = true;
5494   }
5495 
5496   return max_reg;
5497 }
5498 
5499 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5500   assert(reg != any_reg, "no register assigned");
5501 
5502   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5503     Interval* it = _spill_intervals[reg]->at(i);
5504     remove_from_list(it);
5505     split_and_spill_interval(it);
5506   }
5507 
5508   if (regHi != any_reg) {
5509     IntervalList* processed = _spill_intervals[reg];
5510     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5511       Interval* it = _spill_intervals[regHi]->at(i);
5512       if (processed->index_of(it) == -1) {
5513         remove_from_list(it);
5514         split_and_spill_interval(it);
5515       }
5516     }
5517   }
5518 }
5519 
5520 
5521 // Split an Interval and spill it to memory so that cur can be placed in a register
5522 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5523   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5524 
5525   // collect current usage of registers
5526   init_use_lists(false);
5527   spill_exclude_active_fixed();
5528 //  spill_block_unhandled_fixed(cur);
5529   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5530   spill_block_inactive_fixed(cur);
5531   spill_collect_active_any();
5532   spill_collect_inactive_any(cur);
5533 
5534 #ifndef PRODUCT
5535   if (TraceLinearScanLevel >= 4) {
5536     tty->print_cr("      state of registers:");
5537     for (int i = _first_reg; i <= _last_reg; i++) {
5538       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5539       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5540         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5541       }
5542       tty->cr();
5543     }
5544   }
5545 #endif
5546 
5547   // the register must be free at least until this position
5548   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5549   int interval_to = cur->to();
5550   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5551 
5552   int split_pos = 0;
5553   int use_pos = 0;
5554   bool need_split = false;
5555   int reg, regHi;
5556 
5557   if (_adjacent_regs) {
5558     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5559     regHi = reg + 1;
5560 
5561     if (reg != any_reg) {
5562       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5563       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5564     }
5565   } else {
5566     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5567     regHi = any_reg;
5568 
5569     if (reg != any_reg) {
5570       use_pos = _use_pos[reg];
5571       split_pos = _block_pos[reg];
5572 
5573       if (_num_phys_regs == 2) {
5574         if (cur->assigned_reg() != any_reg) {
5575           regHi = reg;
5576           reg = cur->assigned_reg();
5577         } else {
5578           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5579           if (regHi != any_reg) {
5580             use_pos = MIN2(use_pos, _use_pos[regHi]);
5581             split_pos = MIN2(split_pos, _block_pos[regHi]);
5582           }
5583         }
5584 
5585         if (regHi != any_reg && reg > regHi) {
5586           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5587           int temp = reg;
5588           reg = regHi;
5589           regHi = temp;
5590         }
5591       }
5592     }
5593   }
5594 
5595   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5596     // the first use of cur is later than the spilling position -> spill cur
5597     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5598 
5599     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5600       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5601       // assign a reasonable register and do a bailout in product mode to avoid errors
5602       allocator()->assign_spill_slot(cur);
5603       BAILOUT("LinearScan: no register found");
5604     }
5605 
5606     split_and_spill_interval(cur);
5607   } else {
5608     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5609     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5610     assert(split_pos > 0, "invalid split_pos");
5611     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5612 
5613     cur->assign_reg(reg, regHi);
5614     if (need_split) {
5615       // register not available for full interval, so split it
5616       split_when_partial_register_available(cur, split_pos);
5617     }
5618 
5619     // perform splitting and spilling for all affected intervalls
5620     split_and_spill_intersecting_intervals(reg, regHi);
5621   }
5622 }
5623 
5624 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5625 #ifdef X86
5626   // fast calculation of intervals that can never get a register because the
5627   // the next instruction is a call that blocks all registers
5628   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5629 
5630   // check if this interval is the result of a split operation
5631   // (an interval got a register until this position)
5632   int pos = cur->from();
5633   if ((pos & 1) == 1) {
5634     // the current instruction is a call that blocks all registers
5635     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5636       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5637 
5638       // safety check that there is really no register available
5639       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5640       return true;
5641     }
5642 
5643   }
5644 #endif
5645   return false;
5646 }
5647 
5648 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5649   BasicType type = cur->type();
5650   _num_phys_regs = LinearScan::num_physical_regs(type);
5651   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5652 
5653   if (pd_init_regs_for_alloc(cur)) {
5654     // the appropriate register range was selected.
5655   } else if (type == T_FLOAT || type == T_DOUBLE) {
5656     _first_reg = pd_first_fpu_reg;
5657     _last_reg = pd_last_fpu_reg;
5658   } else {
5659     _first_reg = pd_first_cpu_reg;
5660     _last_reg = FrameMap::last_cpu_reg();
5661   }
5662 
5663   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5664   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5665 }
5666 
5667 
5668 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5669   if (op->code() != lir_move) {
5670     return false;
5671   }
5672   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5673 
5674   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5675   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5676   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5677 }
5678 
5679 // optimization (especially for phi functions of nested loops):
5680 // assign same spill slot to non-intersecting intervals
5681 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5682   if (cur->is_split_child()) {
5683     // optimization is only suitable for split parents
5684     return;
5685   }
5686 
5687   Interval* register_hint = cur->register_hint(false);
5688   if (register_hint == NULL) {
5689     // cur is not the target of a move, otherwise register_hint would be set
5690     return;
5691   }
5692   assert(register_hint->is_split_parent(), "register hint must be split parent");
5693 
5694   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5695     // combining the stack slots for intervals where spill move optimization is applied
5696     // is not benefitial and would cause problems
5697     return;
5698   }
5699 
5700   int begin_pos = cur->from();
5701   int end_pos = cur->to();
5702   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5703     // safety check that lir_op_with_id is allowed
5704     return;
5705   }
5706 
5707   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5708     // cur and register_hint are not connected with two moves
5709     return;
5710   }
5711 
5712   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5713   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5714   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5715     // register_hint must be split, otherwise the re-writing of use positions does not work
5716     return;
5717   }
5718 
5719   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5720   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5721   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5722   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5723 
5724   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5725     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5726     return;
5727   }
5728   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5729 
5730   // modify intervals such that cur gets the same stack slot as register_hint
5731   // delete use positions to prevent the intervals to get a register at beginning
5732   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5733   cur->remove_first_use_pos();
5734   end_hint->remove_first_use_pos();
5735 }
5736 
5737 
5738 // allocate a physical register or memory location to an interval
5739 bool LinearScanWalker::activate_current() {
5740   Interval* cur = current();
5741   bool result = true;
5742 
5743   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5744   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5745 
5746   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5747     // activating an interval that has a stack slot assigned -> split it at first use position
5748     // used for method parameters
5749     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5750 
5751     split_stack_interval(cur);
5752     result = false;
5753 
5754   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5755     // activating an interval that must start in a stack slot, but may get a register later
5756     // used for lir_roundfp: rounding is done by store to stack and reload later
5757     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5758     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5759 
5760     allocator()->assign_spill_slot(cur);
5761     split_stack_interval(cur);
5762     result = false;
5763 
5764   } else if (cur->assigned_reg() == any_reg) {
5765     // interval has not assigned register -> normal allocation
5766     // (this is the normal case for most intervals)
5767     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5768 
5769     // assign same spill slot to non-intersecting intervals
5770     combine_spilled_intervals(cur);
5771 
5772     init_vars_for_alloc(cur);
5773     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5774       // no empty register available.
5775       // split and spill another interval so that this interval gets a register
5776       alloc_locked_reg(cur);
5777     }
5778 
5779     // spilled intervals need not be move to active-list
5780     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5781       result = false;
5782     }
5783   }
5784 
5785   // load spilled values that become active from stack slot to register
5786   if (cur->insert_move_when_activated()) {
5787     assert(cur->is_split_child(), "must be");
5788     assert(cur->current_split_child() != NULL, "must be");
5789     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5790     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5791 
5792     insert_move(cur->from(), cur->current_split_child(), cur);
5793   }
5794   cur->make_current_split_child();
5795 
5796   return result; // true = interval is moved to active list
5797 }
5798 
5799 
5800 // Implementation of EdgeMoveOptimizer
5801 
5802 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5803   _edge_instructions(4),
5804   _edge_instructions_idx(4)
5805 {
5806 }
5807 
5808 void EdgeMoveOptimizer::optimize(BlockList* code) {
5809   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5810 
5811   // ignore the first block in the list (index 0 is not processed)
5812   for (int i = code->length() - 1; i >= 1; i--) {
5813     BlockBegin* block = code->at(i);
5814 
5815     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5816       optimizer.optimize_moves_at_block_end(block);
5817     }
5818     if (block->number_of_sux() == 2) {
5819       optimizer.optimize_moves_at_block_begin(block);
5820     }
5821   }
5822 }
5823 
5824 
5825 // clear all internal data structures
5826 void EdgeMoveOptimizer::init_instructions() {
5827   _edge_instructions.clear();
5828   _edge_instructions_idx.clear();
5829 }
5830 
5831 // append a lir-instruction-list and the index of the current operation in to the list
5832 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5833   _edge_instructions.append(instructions);
5834   _edge_instructions_idx.append(instructions_idx);
5835 }
5836 
5837 // return the current operation of the given edge (predecessor or successor)
5838 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5839   LIR_OpList* instructions = _edge_instructions.at(edge);
5840   int idx = _edge_instructions_idx.at(edge);
5841 
5842   if (idx < instructions->length()) {
5843     return instructions->at(idx);
5844   } else {
5845     return NULL;
5846   }
5847 }
5848 
5849 // removes the current operation of the given edge (predecessor or successor)
5850 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5851   LIR_OpList* instructions = _edge_instructions.at(edge);
5852   int idx = _edge_instructions_idx.at(edge);
5853   instructions->remove_at(idx);
5854 
5855   if (decrement_index) {
5856     _edge_instructions_idx.at_put(edge, idx - 1);
5857   }
5858 }
5859 
5860 
5861 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5862   if (op1 == NULL || op2 == NULL) {
5863     // at least one block is already empty -> no optimization possible
5864     return true;
5865   }
5866 
5867   if (op1->code() == lir_move && op2->code() == lir_move) {
5868     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5869     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5870     LIR_Op1* move1 = (LIR_Op1*)op1;
5871     LIR_Op1* move2 = (LIR_Op1*)op2;
5872     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5873       // these moves are exactly equal and can be optimized
5874       return false;
5875     }
5876 
5877   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5878     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5879     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5880     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5881     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5882     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5883       // equal FPU stack operations can be optimized
5884       return false;
5885     }
5886 
5887   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5888     // equal FPU stack operations can be optimized
5889     return false;
5890   }
5891 
5892   // no optimization possible
5893   return true;
5894 }
5895 
5896 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5897   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5898 
5899   if (block->is_predecessor(block)) {
5900     // currently we can't handle this correctly.
5901     return;
5902   }
5903 
5904   init_instructions();
5905   int num_preds = block->number_of_preds();
5906   assert(num_preds > 1, "do not call otherwise");
5907   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5908 
5909   // setup a list with the lir-instructions of all predecessors
5910   int i;
5911   for (i = 0; i < num_preds; i++) {
5912     BlockBegin* pred = block->pred_at(i);
5913     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5914 
5915     if (pred->number_of_sux() != 1) {
5916       // this can happen with switch-statements where multiple edges are between
5917       // the same blocks.
5918       return;
5919     }
5920 
5921     assert(pred->number_of_sux() == 1, "can handle only one successor");
5922     assert(pred->sux_at(0) == block, "invalid control flow");
5923     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5924     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5925     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5926 
5927     if (pred_instructions->last()->info() != NULL) {
5928       // can not optimize instructions when debug info is needed
5929       return;
5930     }
5931 
5932     // ignore the unconditional branch at the end of the block
5933     append_instructions(pred_instructions, pred_instructions->length() - 2);
5934   }
5935 
5936 
5937   // process lir-instructions while all predecessors end with the same instruction
5938   while (true) {
5939     LIR_Op* op = instruction_at(0);
5940     for (i = 1; i < num_preds; i++) {
5941       if (operations_different(op, instruction_at(i))) {
5942         // these instructions are different and cannot be optimized ->
5943         // no further optimization possible
5944         return;
5945       }
5946     }
5947 
5948     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5949 
5950     // insert the instruction at the beginning of the current block
5951     block->lir()->insert_before(1, op);
5952 
5953     // delete the instruction at the end of all predecessors
5954     for (i = 0; i < num_preds; i++) {
5955       remove_cur_instruction(i, true);
5956     }
5957   }
5958 }
5959 
5960 
5961 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5962   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5963 
5964   init_instructions();
5965   int num_sux = block->number_of_sux();
5966 
5967   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5968 
5969   assert(num_sux == 2, "method should not be called otherwise");
5970   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5971   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5972   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5973 
5974   if (cur_instructions->last()->info() != NULL) {
5975     // can no optimize instructions when debug info is needed
5976     return;
5977   }
5978 
5979   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5980   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5981     // not a valid case for optimization
5982     // currently, only blocks that end with two branches (conditional branch followed
5983     // by unconditional branch) are optimized
5984     return;
5985   }
5986 
5987   // now it is guaranteed that the block ends with two branch instructions.
5988   // the instructions are inserted at the end of the block before these two branches
5989   int insert_idx = cur_instructions->length() - 2;
5990 
5991   int i;
5992 #ifdef ASSERT
5993   for (i = insert_idx - 1; i >= 0; i--) {
5994     LIR_Op* op = cur_instructions->at(i);
5995     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5996       assert(false, "block with two successors can have only two branch instructions");
5997     }
5998   }
5999 #endif
6000 
6001   // setup a list with the lir-instructions of all successors
6002   for (i = 0; i < num_sux; i++) {
6003     BlockBegin* sux = block->sux_at(i);
6004     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6005 
6006     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6007 
6008     if (sux->number_of_preds() != 1) {
6009       // this can happen with switch-statements where multiple edges are between
6010       // the same blocks.
6011       return;
6012     }
6013     assert(sux->pred_at(0) == block, "invalid control flow");
6014     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6015 
6016     // ignore the label at the beginning of the block
6017     append_instructions(sux_instructions, 1);
6018   }
6019 
6020   // process lir-instructions while all successors begin with the same instruction
6021   while (true) {
6022     LIR_Op* op = instruction_at(0);
6023     for (i = 1; i < num_sux; i++) {
6024       if (operations_different(op, instruction_at(i))) {
6025         // these instructions are different and cannot be optimized ->
6026         // no further optimization possible
6027         return;
6028       }
6029     }
6030 
6031     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6032 
6033     // insert instruction at end of current block
6034     block->lir()->insert_before(insert_idx, op);
6035     insert_idx++;
6036 
6037     // delete the instructions at the beginning of all successors
6038     for (i = 0; i < num_sux; i++) {
6039       remove_cur_instruction(i, false);
6040     }
6041   }
6042 }
6043 
6044 
6045 // Implementation of ControlFlowOptimizer
6046 
6047 ControlFlowOptimizer::ControlFlowOptimizer() :
6048   _original_preds(4)
6049 {
6050 }
6051 
6052 void ControlFlowOptimizer::optimize(BlockList* code) {
6053   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6054 
6055   // push the OSR entry block to the end so that we're not jumping over it.
6056   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6057   if (osr_entry) {
6058     int index = osr_entry->linear_scan_number();
6059     assert(code->at(index) == osr_entry, "wrong index");
6060     code->remove_at(index);
6061     code->append(osr_entry);
6062   }
6063 
6064   optimizer.reorder_short_loops(code);
6065   optimizer.delete_empty_blocks(code);
6066   optimizer.delete_unnecessary_jumps(code);
6067   optimizer.delete_jumps_to_return(code);
6068 }
6069 
6070 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6071   int i = header_idx + 1;
6072   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6073   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6074     i++;
6075   }
6076 
6077   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6078     int end_idx = i - 1;
6079     BlockBegin* end_block = code->at(end_idx);
6080 
6081     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6082       // short loop from header_idx to end_idx found -> reorder blocks such that
6083       // the header_block is the last block instead of the first block of the loop
6084       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6085                                          end_idx - header_idx + 1,
6086                                          header_block->block_id(), end_block->block_id()));
6087 
6088       for (int j = header_idx; j < end_idx; j++) {
6089         code->at_put(j, code->at(j + 1));
6090       }
6091       code->at_put(end_idx, header_block);
6092 
6093       // correct the flags so that any loop alignment occurs in the right place.
6094       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6095       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6096       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6097     }
6098   }
6099 }
6100 
6101 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6102   for (int i = code->length() - 1; i >= 0; i--) {
6103     BlockBegin* block = code->at(i);
6104 
6105     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6106       reorder_short_loop(code, block, i);
6107     }
6108   }
6109 
6110   DEBUG_ONLY(verify(code));
6111 }
6112 
6113 // only blocks with exactly one successor can be deleted. Such blocks
6114 // must always end with an unconditional branch to this successor
6115 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6116   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6117     return false;
6118   }
6119 
6120   LIR_OpList* instructions = block->lir()->instructions_list();
6121 
6122   assert(instructions->length() >= 2, "block must have label and branch");
6123   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6124   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6125   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6126   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6127 
6128   // block must have exactly one successor
6129 
6130   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6131     return true;
6132   }
6133   return false;
6134 }
6135 
6136 // substitute branch targets in all branch-instructions of this blocks
6137 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6138   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6139 
6140   LIR_OpList* instructions = block->lir()->instructions_list();
6141 
6142   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6143   for (int i = instructions->length() - 1; i >= 1; i--) {
6144     LIR_Op* op = instructions->at(i);
6145 
6146     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6147       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6148       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6149 
6150       if (branch->block() == target_from) {
6151         branch->change_block(target_to);
6152       }
6153       if (branch->ublock() == target_from) {
6154         branch->change_ublock(target_to);
6155       }
6156     }
6157   }
6158 }
6159 
6160 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6161   int old_pos = 0;
6162   int new_pos = 0;
6163   int num_blocks = code->length();
6164 
6165   while (old_pos < num_blocks) {
6166     BlockBegin* block = code->at(old_pos);
6167 
6168     if (can_delete_block(block)) {
6169       BlockBegin* new_target = block->sux_at(0);
6170 
6171       // propagate backward branch target flag for correct code alignment
6172       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6173         new_target->set(BlockBegin::backward_branch_target_flag);
6174       }
6175 
6176       // collect a list with all predecessors that contains each predecessor only once
6177       // the predecessors of cur are changed during the substitution, so a copy of the
6178       // predecessor list is necessary
6179       int j;
6180       _original_preds.clear();
6181       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6182         BlockBegin* pred = block->pred_at(j);
6183         if (_original_preds.index_of(pred) == -1) {
6184           _original_preds.append(pred);
6185         }
6186       }
6187 
6188       for (j = _original_preds.length() - 1; j >= 0; j--) {
6189         BlockBegin* pred = _original_preds.at(j);
6190         substitute_branch_target(pred, block, new_target);
6191         pred->substitute_sux(block, new_target);
6192       }
6193     } else {
6194       // adjust position of this block in the block list if blocks before
6195       // have been deleted
6196       if (new_pos != old_pos) {
6197         code->at_put(new_pos, code->at(old_pos));
6198       }
6199       new_pos++;
6200     }
6201     old_pos++;
6202   }
6203   code->truncate(new_pos);
6204 
6205   DEBUG_ONLY(verify(code));
6206 }
6207 
6208 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6209   // skip the last block because there a branch is always necessary
6210   for (int i = code->length() - 2; i >= 0; i--) {
6211     BlockBegin* block = code->at(i);
6212     LIR_OpList* instructions = block->lir()->instructions_list();
6213 
6214     LIR_Op* last_op = instructions->last();
6215     if (last_op->code() == lir_branch) {
6216       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6217       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6218 
6219       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6220       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6221 
6222       if (last_branch->info() == NULL) {
6223         if (last_branch->block() == code->at(i + 1)) {
6224 
6225           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6226 
6227           // delete last branch instruction
6228           instructions->truncate(instructions->length() - 1);
6229 
6230         } else {
6231           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6232           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6233             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6234             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6235 
6236             if (prev_branch->stub() == NULL) {
6237 
6238               LIR_Op2* prev_cmp = NULL;
6239 
6240               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6241                 prev_op = instructions->at(j);
6242                 if (prev_op->code() == lir_cmp) {
6243                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6244                   prev_cmp = (LIR_Op2*)prev_op;
6245                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6246                 }
6247               }
6248               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6249               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6250 
6251                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6252 
6253                 // eliminate a conditional branch to the immediate successor
6254                 prev_branch->change_block(last_branch->block());
6255                 prev_branch->negate_cond();
6256                 prev_cmp->set_condition(prev_branch->cond());
6257                 instructions->truncate(instructions->length() - 1);
6258               }
6259             }
6260           }
6261         }
6262       }
6263     }
6264   }
6265 
6266   DEBUG_ONLY(verify(code));
6267 }
6268 
6269 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6270 #ifdef ASSERT
6271   BitMap return_converted(BlockBegin::number_of_blocks());
6272   return_converted.clear();
6273 #endif
6274 
6275   for (int i = code->length() - 1; i >= 0; i--) {
6276     BlockBegin* block = code->at(i);
6277     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6278     LIR_Op*     cur_last_op = cur_instructions->last();
6279 
6280     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6281     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6282       // the block contains only a label and a return
6283       // if a predecessor ends with an unconditional jump to this block, then the jump
6284       // can be replaced with a return instruction
6285       //
6286       // Note: the original block with only a return statement cannot be deleted completely
6287       //       because the predecessors might have other (conditional) jumps to this block
6288       //       -> this may lead to unnecesary return instructions in the final code
6289 
6290       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6291       assert(block->number_of_sux() == 0 ||
6292              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6293              "blocks that end with return must not have successors");
6294 
6295       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6296       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6297 
6298       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6299         BlockBegin* pred = block->pred_at(j);
6300         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6301         LIR_Op*     pred_last_op = pred_instructions->last();
6302 
6303         if (pred_last_op->code() == lir_branch) {
6304           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6305           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6306 
6307           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6308             // replace the jump to a return with a direct return
6309             // Note: currently the edge between the blocks is not deleted
6310             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6311 #ifdef ASSERT
6312             return_converted.set_bit(pred->block_id());
6313 #endif
6314           }
6315         }
6316       }
6317     }
6318   }
6319 }
6320 
6321 
6322 #ifdef ASSERT
6323 void ControlFlowOptimizer::verify(BlockList* code) {
6324   for (int i = 0; i < code->length(); i++) {
6325     BlockBegin* block = code->at(i);
6326     LIR_OpList* instructions = block->lir()->instructions_list();
6327 
6328     int j;
6329     for (j = 0; j < instructions->length(); j++) {
6330       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6331 
6332       if (op_branch != NULL) {
6333         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6334         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6335       }
6336     }
6337 
6338     for (j = 0; j < block->number_of_sux() - 1; j++) {
6339       BlockBegin* sux = block->sux_at(j);
6340       assert(code->index_of(sux) != -1, "successor not valid");
6341     }
6342 
6343     for (j = 0; j < block->number_of_preds() - 1; j++) {
6344       BlockBegin* pred = block->pred_at(j);
6345       assert(code->index_of(pred) != -1, "successor not valid");
6346     }
6347   }
6348 }
6349 #endif
6350 
6351 
6352 #ifndef PRODUCT
6353 
6354 // Implementation of LinearStatistic
6355 
6356 const char* LinearScanStatistic::counter_name(int counter_idx) {
6357   switch (counter_idx) {
6358     case counter_method:          return "compiled methods";
6359     case counter_fpu_method:      return "methods using fpu";
6360     case counter_loop_method:     return "methods with loops";
6361     case counter_exception_method:return "methods with xhandler";
6362 
6363     case counter_loop:            return "loops";
6364     case counter_block:           return "blocks";
6365     case counter_loop_block:      return "blocks inside loop";
6366     case counter_exception_block: return "exception handler entries";
6367     case counter_interval:        return "intervals";
6368     case counter_fixed_interval:  return "fixed intervals";
6369     case counter_range:           return "ranges";
6370     case counter_fixed_range:     return "fixed ranges";
6371     case counter_use_pos:         return "use positions";
6372     case counter_fixed_use_pos:   return "fixed use positions";
6373     case counter_spill_slots:     return "spill slots";
6374 
6375     // counter for classes of lir instructions
6376     case counter_instruction:     return "total instructions";
6377     case counter_label:           return "labels";
6378     case counter_entry:           return "method entries";
6379     case counter_return:          return "method returns";
6380     case counter_call:            return "method calls";
6381     case counter_move:            return "moves";
6382     case counter_cmp:             return "compare";
6383     case counter_cond_branch:     return "conditional branches";
6384     case counter_uncond_branch:   return "unconditional branches";
6385     case counter_stub_branch:     return "branches to stub";
6386     case counter_alu:             return "artithmetic + logic";
6387     case counter_alloc:           return "allocations";
6388     case counter_sync:            return "synchronisation";
6389     case counter_throw:           return "throw";
6390     case counter_unwind:          return "unwind";
6391     case counter_typecheck:       return "type+null-checks";
6392     case counter_fpu_stack:       return "fpu-stack";
6393     case counter_misc_inst:       return "other instructions";
6394     case counter_other_inst:      return "misc. instructions";
6395 
6396     // counter for different types of moves
6397     case counter_move_total:      return "total moves";
6398     case counter_move_reg_reg:    return "register->register";
6399     case counter_move_reg_stack:  return "register->stack";
6400     case counter_move_stack_reg:  return "stack->register";
6401     case counter_move_stack_stack:return "stack->stack";
6402     case counter_move_reg_mem:    return "register->memory";
6403     case counter_move_mem_reg:    return "memory->register";
6404     case counter_move_const_any:  return "constant->any";
6405 
6406     case blank_line_1:            return "";
6407     case blank_line_2:            return "";
6408 
6409     default: ShouldNotReachHere(); return "";
6410   }
6411 }
6412 
6413 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6414   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6415     return counter_method;
6416   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6417     return counter_block;
6418   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6419     return counter_instruction;
6420   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6421     return counter_move_total;
6422   }
6423   return invalid_counter;
6424 }
6425 
6426 LinearScanStatistic::LinearScanStatistic() {
6427   for (int i = 0; i < number_of_counters; i++) {
6428     _counters_sum[i] = 0;
6429     _counters_max[i] = -1;
6430   }
6431 
6432 }
6433 
6434 // add the method-local numbers to the total sum
6435 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6436   for (int i = 0; i < number_of_counters; i++) {
6437     _counters_sum[i] += method_statistic._counters_sum[i];
6438     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6439   }
6440 }
6441 
6442 void LinearScanStatistic::print(const char* title) {
6443   if (CountLinearScan || TraceLinearScanLevel > 0) {
6444     tty->cr();
6445     tty->print_cr("***** LinearScan statistic - %s *****", title);
6446 
6447     for (int i = 0; i < number_of_counters; i++) {
6448       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6449         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6450 
6451         if (base_counter(i) != invalid_counter) {
6452           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6453         } else {
6454           tty->print("           ");
6455         }
6456 
6457         if (_counters_max[i] >= 0) {
6458           tty->print("%8d", _counters_max[i]);
6459         }
6460       }
6461       tty->cr();
6462     }
6463   }
6464 }
6465 
6466 void LinearScanStatistic::collect(LinearScan* allocator) {
6467   inc_counter(counter_method);
6468   if (allocator->has_fpu_registers()) {
6469     inc_counter(counter_fpu_method);
6470   }
6471   if (allocator->num_loops() > 0) {
6472     inc_counter(counter_loop_method);
6473   }
6474   inc_counter(counter_loop, allocator->num_loops());
6475   inc_counter(counter_spill_slots, allocator->max_spills());
6476 
6477   int i;
6478   for (i = 0; i < allocator->interval_count(); i++) {
6479     Interval* cur = allocator->interval_at(i);
6480 
6481     if (cur != NULL) {
6482       inc_counter(counter_interval);
6483       inc_counter(counter_use_pos, cur->num_use_positions());
6484       if (LinearScan::is_precolored_interval(cur)) {
6485         inc_counter(counter_fixed_interval);
6486         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6487       }
6488 
6489       Range* range = cur->first();
6490       while (range != Range::end()) {
6491         inc_counter(counter_range);
6492         if (LinearScan::is_precolored_interval(cur)) {
6493           inc_counter(counter_fixed_range);
6494         }
6495         range = range->next();
6496       }
6497     }
6498   }
6499 
6500   bool has_xhandlers = false;
6501   // Note: only count blocks that are in code-emit order
6502   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6503     BlockBegin* cur = allocator->ir()->code()->at(i);
6504 
6505     inc_counter(counter_block);
6506     if (cur->loop_depth() > 0) {
6507       inc_counter(counter_loop_block);
6508     }
6509     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6510       inc_counter(counter_exception_block);
6511       has_xhandlers = true;
6512     }
6513 
6514     LIR_OpList* instructions = cur->lir()->instructions_list();
6515     for (int j = 0; j < instructions->length(); j++) {
6516       LIR_Op* op = instructions->at(j);
6517 
6518       inc_counter(counter_instruction);
6519 
6520       switch (op->code()) {
6521         case lir_label:           inc_counter(counter_label); break;
6522         case lir_std_entry:
6523         case lir_osr_entry:       inc_counter(counter_entry); break;
6524         case lir_return:          inc_counter(counter_return); break;
6525 
6526         case lir_rtcall:
6527         case lir_static_call:
6528         case lir_optvirtual_call:
6529         case lir_virtual_call:    inc_counter(counter_call); break;
6530 
6531         case lir_move: {
6532           inc_counter(counter_move);
6533           inc_counter(counter_move_total);
6534 
6535           LIR_Opr in = op->as_Op1()->in_opr();
6536           LIR_Opr res = op->as_Op1()->result_opr();
6537           if (in->is_register()) {
6538             if (res->is_register()) {
6539               inc_counter(counter_move_reg_reg);
6540             } else if (res->is_stack()) {
6541               inc_counter(counter_move_reg_stack);
6542             } else if (res->is_address()) {
6543               inc_counter(counter_move_reg_mem);
6544             } else {
6545               ShouldNotReachHere();
6546             }
6547           } else if (in->is_stack()) {
6548             if (res->is_register()) {
6549               inc_counter(counter_move_stack_reg);
6550             } else {
6551               inc_counter(counter_move_stack_stack);
6552             }
6553           } else if (in->is_address()) {
6554             assert(res->is_register(), "must be");
6555             inc_counter(counter_move_mem_reg);
6556           } else if (in->is_constant()) {
6557             inc_counter(counter_move_const_any);
6558           } else {
6559             ShouldNotReachHere();
6560           }
6561           break;
6562         }
6563 
6564         case lir_cmp:             inc_counter(counter_cmp); break;
6565 
6566         case lir_branch:
6567         case lir_cond_float_branch: {
6568           LIR_OpBranch* branch = op->as_OpBranch();
6569           if (branch->block() == NULL) {
6570             inc_counter(counter_stub_branch);
6571           } else if (branch->cond() == lir_cond_always) {
6572             inc_counter(counter_uncond_branch);
6573           } else {
6574             inc_counter(counter_cond_branch);
6575           }
6576           break;
6577         }
6578 
6579         case lir_neg:
6580         case lir_add:
6581         case lir_sub:
6582         case lir_mul:
6583         case lir_mul_strictfp:
6584         case lir_div:
6585         case lir_div_strictfp:
6586         case lir_rem:
6587         case lir_sqrt:
6588         case lir_sin:
6589         case lir_cos:
6590         case lir_abs:
6591         case lir_log10:
6592         case lir_log:
6593         case lir_pow:
6594         case lir_exp:
6595         case lir_logic_and:
6596         case lir_logic_or:
6597         case lir_logic_xor:
6598         case lir_shl:
6599         case lir_shr:
6600         case lir_ushr:            inc_counter(counter_alu); break;
6601 
6602         case lir_alloc_object:
6603         case lir_alloc_array:     inc_counter(counter_alloc); break;
6604 
6605         case lir_monaddr:
6606         case lir_lock:
6607         case lir_unlock:          inc_counter(counter_sync); break;
6608 
6609         case lir_throw:           inc_counter(counter_throw); break;
6610 
6611         case lir_unwind:          inc_counter(counter_unwind); break;
6612 
6613         case lir_null_check:
6614         case lir_leal:
6615         case lir_instanceof:
6616         case lir_checkcast:
6617         case lir_store_check:     inc_counter(counter_typecheck); break;
6618 
6619         case lir_fpop_raw:
6620         case lir_fxch:
6621         case lir_fld:             inc_counter(counter_fpu_stack); break;
6622 
6623         case lir_nop:
6624         case lir_push:
6625         case lir_pop:
6626         case lir_convert:
6627         case lir_roundfp:
6628         case lir_cmove:           inc_counter(counter_misc_inst); break;
6629 
6630         default:                  inc_counter(counter_other_inst); break;
6631       }
6632     }
6633   }
6634 
6635   if (has_xhandlers) {
6636     inc_counter(counter_exception_method);
6637   }
6638 }
6639 
6640 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6641   if (CountLinearScan || TraceLinearScanLevel > 0) {
6642 
6643     LinearScanStatistic local_statistic = LinearScanStatistic();
6644 
6645     local_statistic.collect(allocator);
6646     global_statistic.sum_up(local_statistic);
6647 
6648     if (TraceLinearScanLevel > 2) {
6649       local_statistic.print("current local statistic");
6650     }
6651   }
6652 }
6653 
6654 
6655 // Implementation of LinearTimers
6656 
6657 LinearScanTimers::LinearScanTimers() {
6658   for (int i = 0; i < number_of_timers; i++) {
6659     timer(i)->reset();
6660   }
6661 }
6662 
6663 const char* LinearScanTimers::timer_name(int idx) {
6664   switch (idx) {
6665     case timer_do_nothing:               return "Nothing (Time Check)";
6666     case timer_number_instructions:      return "Number Instructions";
6667     case timer_compute_local_live_sets:  return "Local Live Sets";
6668     case timer_compute_global_live_sets: return "Global Live Sets";
6669     case timer_build_intervals:          return "Build Intervals";
6670     case timer_sort_intervals_before:    return "Sort Intervals Before";
6671     case timer_allocate_registers:       return "Allocate Registers";
6672     case timer_resolve_data_flow:        return "Resolve Data Flow";
6673     case timer_sort_intervals_after:     return "Sort Intervals After";
6674     case timer_eliminate_spill_moves:    return "Spill optimization";
6675     case timer_assign_reg_num:           return "Assign Reg Num";
6676     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6677     case timer_optimize_lir:             return "Optimize LIR";
6678     default: ShouldNotReachHere();       return "";
6679   }
6680 }
6681 
6682 void LinearScanTimers::begin_method() {
6683   if (TimeEachLinearScan) {
6684     // reset all timers to measure only current method
6685     for (int i = 0; i < number_of_timers; i++) {
6686       timer(i)->reset();
6687     }
6688   }
6689 }
6690 
6691 void LinearScanTimers::end_method(LinearScan* allocator) {
6692   if (TimeEachLinearScan) {
6693 
6694     double c = timer(timer_do_nothing)->seconds();
6695     double total = 0;
6696     for (int i = 1; i < number_of_timers; i++) {
6697       total += timer(i)->seconds() - c;
6698     }
6699 
6700     if (total >= 0.0005) {
6701       // print all information in one line for automatic processing
6702       tty->print("@"); allocator->compilation()->method()->print_name();
6703 
6704       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6705       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6706       tty->print("@ %d ", allocator->block_count());
6707       tty->print("@ %d ", allocator->num_virtual_regs());
6708       tty->print("@ %d ", allocator->interval_count());
6709       tty->print("@ %d ", allocator->_num_calls);
6710       tty->print("@ %d ", allocator->num_loops());
6711 
6712       tty->print("@ %6.6f ", total);
6713       for (int i = 1; i < number_of_timers; i++) {
6714         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6715       }
6716       tty->cr();
6717     }
6718   }
6719 }
6720 
6721 void LinearScanTimers::print(double total_time) {
6722   if (TimeLinearScan) {
6723     // correction value: sum of dummy-timer that only measures the time that
6724     // is necesary to start and stop itself
6725     double c = timer(timer_do_nothing)->seconds();
6726 
6727     for (int i = 0; i < number_of_timers; i++) {
6728       double t = timer(i)->seconds();
6729       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6730     }
6731   }
6732 }
6733 
6734 #endif // #ifndef PRODUCT