1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/output.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 // Convert Nodes to instruction bits and pass off to the VM
  58 void Compile::Output() {
  59   // RootNode goes
  60   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
  61 
  62   // The number of new nodes (mostly MachNop) is proportional to
  63   // the number of java calls and inner loops which are aligned.
  64   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  65                             C->inner_loops()*(OptoLoopAlignment-1)),
  66                            "out of nodes before code generation" ) ) {
  67     return;
  68   }
  69   // Make sure I can find the Start Node
  70   Block *entry = _cfg->get_block(1);
  71   Block *broot = _cfg->get_root_block();
  72 
  73   const StartNode *start = entry->head()->as_Start();
  74 
  75   // Replace StartNode with prolog
  76   MachPrologNode *prolog = new (this) MachPrologNode();
  77   entry->map_node(prolog, 0);
  78   _cfg->map_node_to_block(prolog, entry);
  79   _cfg->unmap_node_from_block(start); // start is no longer in any block
  80 
  81   // Virtual methods need an unverified entry point
  82 
  83   if( is_osr_compilation() ) {
  84     if( PoisonOSREntry ) {
  85       // TODO: Should use a ShouldNotReachHereNode...
  86       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  87     }
  88   } else {
  89     if( _method && !_method->flags().is_static() ) {
  90       // Insert unvalidated entry point
  91       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  92     }
  93 
  94   }
  95 
  96 
  97   // Break before main entry point
  98   if( (_method && _method->break_at_execute())
  99 #ifndef PRODUCT
 100     ||(OptoBreakpoint && is_method_compilation())
 101     ||(OptoBreakpointOSR && is_osr_compilation())
 102     ||(OptoBreakpointC2R && !_method)
 103 #endif
 104     ) {
 105     // checking for _method means that OptoBreakpoint does not apply to
 106     // runtime stubs or frame converters
 107     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 108   }
 109 
 110   // Insert epilogs before every return
 111   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 112     Block* block = _cfg->get_block(i);
 113     if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
 114       Node* m = block->end();
 115       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 116         MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 117         block->add_inst(epilog);
 118         _cfg->map_node_to_block(epilog, block);
 119       }
 120     }
 121   }
 122 
 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
 124   if (ZapDeadCompiledLocals) {
 125     Insert_zap_nodes();
 126   }
 127 # endif
 128 
 129   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
 130   blk_starts[0] = 0;
 131 
 132   // Initialize code buffer and process short branches.
 133   CodeBuffer* cb = init_buffer(blk_starts);
 134 
 135   if (cb == NULL || failing()) {
 136     return;
 137   }
 138 
 139   ScheduleAndBundle();
 140 
 141 #ifndef PRODUCT
 142   if (trace_opto_output()) {
 143     tty->print("\n---- After ScheduleAndBundle ----\n");
 144     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 145       tty->print("\nBB#%03d:\n", i);
 146       Block* block = _cfg->get_block(i);
 147       for (uint j = 0; j < block->number_of_nodes(); j++) {
 148         Node* n = block->get_node(j);
 149         OptoReg::Name reg = _regalloc->get_reg_first(n);
 150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 151         n->dump();
 152       }
 153     }
 154   }
 155 #endif
 156 
 157   if (failing()) {
 158     return;
 159   }
 160 
 161   BuildOopMaps();
 162 
 163   if (failing())  {
 164     return;
 165   }
 166 
 167   fill_buffer(cb, blk_starts);
 168 }
 169 
 170 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 171   // Determine if we need to generate a stack overflow check.
 172   // Do it if the method is not a stub function and
 173   // has java calls or has frame size > vm_page_size/8.
 174   return (UseStackBanging && stub_function() == NULL &&
 175           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 176 }
 177 
 178 bool Compile::need_register_stack_bang() const {
 179   // Determine if we need to generate a register stack overflow check.
 180   // This is only used on architectures which have split register
 181   // and memory stacks (ie. IA64).
 182   // Bang if the method is not a stub function and has java calls
 183   return (stub_function() == NULL && has_java_calls());
 184 }
 185 
 186 # ifdef ENABLE_ZAP_DEAD_LOCALS
 187 
 188 
 189 // In order to catch compiler oop-map bugs, we have implemented
 190 // a debugging mode called ZapDeadCompilerLocals.
 191 // This mode causes the compiler to insert a call to a runtime routine,
 192 // "zap_dead_locals", right before each place in compiled code
 193 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 194 // The runtime routine checks that locations mapped as oops are really
 195 // oops, that locations mapped as values do not look like oops,
 196 // and that locations mapped as dead are not used later
 197 // (by zapping them to an invalid address).
 198 
 199 int Compile::_CompiledZap_count = 0;
 200 
 201 void Compile::Insert_zap_nodes() {
 202   bool skip = false;
 203 
 204 
 205   // Dink with static counts because code code without the extra
 206   // runtime calls is MUCH faster for debugging purposes
 207 
 208        if ( CompileZapFirst  ==  0  ) ; // nothing special
 209   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 210   else if ( CompileZapFirst  == CompiledZap_count() )
 211     warning("starting zap compilation after skipping");
 212 
 213        if ( CompileZapLast  ==  -1  ) ; // nothing special
 214   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 215   else if ( CompileZapLast  ==  CompiledZap_count() )
 216     warning("about to compile last zap");
 217 
 218   ++_CompiledZap_count; // counts skipped zaps, too
 219 
 220   if ( skip )  return;
 221 
 222 
 223   if ( _method == NULL )
 224     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 225 
 226   // Insert call to zap runtime stub before every node with an oop map
 227   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
 228     Block *b = _cfg->get_block(i);
 229     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
 230       Node *n = b->get_node(j);
 231 
 232       // Determining if we should insert a zap-a-lot node in output.
 233       // We do that for all nodes that has oopmap info, except for calls
 234       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 235       // and expect the C code to reset it.  Hence, there can be no safepoints between
 236       // the inlined-allocation and the call to new_Java, etc.
 237       // We also cannot zap monitor calls, as they must hold the microlock
 238       // during the call to Zap, which also wants to grab the microlock.
 239       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 240       if ( insert ) { // it is MachSafePoint
 241         if ( !n->is_MachCall() ) {
 242           insert = false;
 243         } else if ( n->is_MachCall() ) {
 244           MachCallNode* call = n->as_MachCall();
 245           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 246               call->entry_point() == OptoRuntime::new_array_Java() ||
 247               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 248               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 249               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 250               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 251               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 252               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 253               ) {
 254             insert = false;
 255           }
 256         }
 257         if (insert) {
 258           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 259           b->insert_node(zap, j);
 260           _cfg->map_node_to_block(zap, b);
 261           ++j;
 262         }
 263       }
 264     }
 265   }
 266 }
 267 
 268 
 269 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 270   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 271   CallStaticJavaNode* ideal_node =
 272     new (this) CallStaticJavaNode( tf,
 273          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 274                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 275   // We need to copy the OopMap from the site we're zapping at.
 276   // We have to make a copy, because the zap site might not be
 277   // a call site, and zap_dead is a call site.
 278   OopMap* clone = node_to_check->oop_map()->deep_copy();
 279 
 280   // Add the cloned OopMap to the zap node
 281   ideal_node->set_oop_map(clone);
 282   return _matcher->match_sfpt(ideal_node);
 283 }
 284 
 285 bool Compile::is_node_getting_a_safepoint( Node* n) {
 286   // This code duplicates the logic prior to the call of add_safepoint
 287   // below in this file.
 288   if( n->is_MachSafePoint() ) return true;
 289   return false;
 290 }
 291 
 292 # endif // ENABLE_ZAP_DEAD_LOCALS
 293 
 294 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 295 // of a loop. When aligning a loop we need to provide enough instructions
 296 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 297 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 298 // By default, the size is set to 999999 by Block's constructor so that
 299 // a loop will be aligned if the size is not reset here.
 300 //
 301 // Note: Mach instructions could contain several HW instructions
 302 // so the size is estimated only.
 303 //
 304 void Compile::compute_loop_first_inst_sizes() {
 305   // The next condition is used to gate the loop alignment optimization.
 306   // Don't aligned a loop if there are enough instructions at the head of a loop
 307   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 308   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 309   // equal to 11 bytes which is the largest address NOP instruction.
 310   if (MaxLoopPad < OptoLoopAlignment - 1) {
 311     uint last_block = _cfg->number_of_blocks() - 1;
 312     for (uint i = 1; i <= last_block; i++) {
 313       Block* block = _cfg->get_block(i);
 314       // Check the first loop's block which requires an alignment.
 315       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 316         uint sum_size = 0;
 317         uint inst_cnt = NumberOfLoopInstrToAlign;
 318         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 319 
 320         // Check subsequent fallthrough blocks if the loop's first
 321         // block(s) does not have enough instructions.
 322         Block *nb = block;
 323         while(inst_cnt > 0 &&
 324               i < last_block &&
 325               !_cfg->get_block(i + 1)->has_loop_alignment() &&
 326               !nb->has_successor(block)) {
 327           i++;
 328           nb = _cfg->get_block(i);
 329           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 330         } // while( inst_cnt > 0 && i < last_block  )
 331 
 332         block->set_first_inst_size(sum_size);
 333       } // f( b->head()->is_Loop() )
 334     } // for( i <= last_block )
 335   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 336 }
 337 
 338 // The architecture description provides short branch variants for some long
 339 // branch instructions. Replace eligible long branches with short branches.
 340 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 341   // Compute size of each block, method size, and relocation information size
 342   uint nblocks  = _cfg->number_of_blocks();
 343 
 344   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 345   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 347 
 348   // Collect worst case block paddings
 349   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 350   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 351 
 352   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 353   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 354 
 355   bool has_short_branch_candidate = false;
 356 
 357   // Initialize the sizes to 0
 358   code_size  = 0;          // Size in bytes of generated code
 359   stub_size  = 0;          // Size in bytes of all stub entries
 360   // Size in bytes of all relocation entries, including those in local stubs.
 361   // Start with 2-bytes of reloc info for the unvalidated entry point
 362   reloc_size = 1;          // Number of relocation entries
 363 
 364   // Make three passes.  The first computes pessimistic blk_starts,
 365   // relative jmp_offset and reloc_size information.  The second performs
 366   // short branch substitution using the pessimistic sizing.  The
 367   // third inserts nops where needed.
 368 
 369   // Step one, perform a pessimistic sizing pass.
 370   uint last_call_adr = max_uint;
 371   uint last_avoid_back_to_back_adr = max_uint;
 372   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 373   for (uint i = 0; i < nblocks; i++) { // For all blocks
 374     Block* block = _cfg->get_block(i);
 375 
 376     // During short branch replacement, we store the relative (to blk_starts)
 377     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 378     // This is so that we do not need to recompute sizes of all nodes when
 379     // we compute correct blk_starts in our next sizing pass.
 380     jmp_offset[i] = 0;
 381     jmp_size[i]   = 0;
 382     jmp_nidx[i]   = -1;
 383     DEBUG_ONLY( jmp_target[i] = 0; )
 384     DEBUG_ONLY( jmp_rule[i]   = 0; )
 385 
 386     // Sum all instruction sizes to compute block size
 387     uint last_inst = block->number_of_nodes();
 388     uint blk_size = 0;
 389     for (uint j = 0; j < last_inst; j++) {
 390       Node* nj = block->get_node(j);
 391       // Handle machine instruction nodes
 392       if (nj->is_Mach()) {
 393         MachNode *mach = nj->as_Mach();
 394         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 395         reloc_size += mach->reloc();
 396         if (mach->is_MachCall()) {
 397           MachCallNode *mcall = mach->as_MachCall();
 398           // This destination address is NOT PC-relative
 399 
 400           mcall->method_set((intptr_t)mcall->entry_point());
 401 
 402           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 403             stub_size  += CompiledStaticCall::to_interp_stub_size();
 404             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 405           }
 406         } else if (mach->is_MachSafePoint()) {
 407           // If call/safepoint are adjacent, account for possible
 408           // nop to disambiguate the two safepoints.
 409           // ScheduleAndBundle() can rearrange nodes in a block,
 410           // check for all offsets inside this block.
 411           if (last_call_adr >= blk_starts[i]) {
 412             blk_size += nop_size;
 413           }
 414         }
 415         if (mach->avoid_back_to_back()) {
 416           // Nop is inserted between "avoid back to back" instructions.
 417           // ScheduleAndBundle() can rearrange nodes in a block,
 418           // check for all offsets inside this block.
 419           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 420             blk_size += nop_size;
 421           }
 422         }
 423         if (mach->may_be_short_branch()) {
 424           if (!nj->is_MachBranch()) {
 425 #ifndef PRODUCT
 426             nj->dump(3);
 427 #endif
 428             Unimplemented();
 429           }
 430           assert(jmp_nidx[i] == -1, "block should have only one branch");
 431           jmp_offset[i] = blk_size;
 432           jmp_size[i]   = nj->size(_regalloc);
 433           jmp_nidx[i]   = j;
 434           has_short_branch_candidate = true;
 435         }
 436       }
 437       blk_size += nj->size(_regalloc);
 438       // Remember end of call offset
 439       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 440         last_call_adr = blk_starts[i]+blk_size;
 441       }
 442       // Remember end of avoid_back_to_back offset
 443       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 444         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 445       }
 446     }
 447 
 448     // When the next block starts a loop, we may insert pad NOP
 449     // instructions.  Since we cannot know our future alignment,
 450     // assume the worst.
 451     if (i < nblocks - 1) {
 452       Block* nb = _cfg->get_block(i + 1);
 453       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 454       if (max_loop_pad > 0) {
 455         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 456         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 457         // If either is the last instruction in this block, bump by
 458         // max_loop_pad in lock-step with blk_size, so sizing
 459         // calculations in subsequent blocks still can conservatively
 460         // detect that it may the last instruction in this block.
 461         if (last_call_adr == blk_starts[i]+blk_size) {
 462           last_call_adr += max_loop_pad;
 463         }
 464         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 465           last_avoid_back_to_back_adr += max_loop_pad;
 466         }
 467         blk_size += max_loop_pad;
 468         block_worst_case_pad[i + 1] = max_loop_pad;
 469       }
 470     }
 471 
 472     // Save block size; update total method size
 473     blk_starts[i+1] = blk_starts[i]+blk_size;
 474   }
 475 
 476   // Step two, replace eligible long jumps.
 477   bool progress = true;
 478   uint last_may_be_short_branch_adr = max_uint;
 479   while (has_short_branch_candidate && progress) {
 480     progress = false;
 481     has_short_branch_candidate = false;
 482     int adjust_block_start = 0;
 483     for (uint i = 0; i < nblocks; i++) {
 484       Block* block = _cfg->get_block(i);
 485       int idx = jmp_nidx[i];
 486       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 487       if (mach != NULL && mach->may_be_short_branch()) {
 488 #ifdef ASSERT
 489         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 490         int j;
 491         // Find the branch; ignore trailing NOPs.
 492         for (j = block->number_of_nodes()-1; j>=0; j--) {
 493           Node* n = block->get_node(j);
 494           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 495             break;
 496         }
 497         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 498 #endif
 499         int br_size = jmp_size[i];
 500         int br_offs = blk_starts[i] + jmp_offset[i];
 501 
 502         // This requires the TRUE branch target be in succs[0]
 503         uint bnum = block->non_connector_successor(0)->_pre_order;
 504         int offset = blk_starts[bnum] - br_offs;
 505         if (bnum > i) { // adjust following block's offset
 506           offset -= adjust_block_start;
 507         }
 508 
 509         // This block can be a loop header, account for the padding
 510         // in the previous block.
 511         int block_padding = block_worst_case_pad[i];
 512         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 513         // In the following code a nop could be inserted before
 514         // the branch which will increase the backward distance.
 515         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 516         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 517 
 518         if (needs_padding && offset <= 0)
 519           offset -= nop_size;
 520 
 521         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 522           // We've got a winner.  Replace this branch.
 523           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 524 
 525           // Update the jmp_size.
 526           int new_size = replacement->size(_regalloc);
 527           int diff     = br_size - new_size;
 528           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 529           // Conservatively take into accound padding between
 530           // avoid_back_to_back branches. Previous branch could be
 531           // converted into avoid_back_to_back branch during next
 532           // rounds.
 533           if (needs_padding && replacement->avoid_back_to_back()) {
 534             jmp_offset[i] += nop_size;
 535             diff -= nop_size;
 536           }
 537           adjust_block_start += diff;
 538           block->map_node(replacement, idx);
 539           mach->subsume_by(replacement, C);
 540           mach = replacement;
 541           progress = true;
 542 
 543           jmp_size[i] = new_size;
 544           DEBUG_ONLY( jmp_target[i] = bnum; );
 545           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 546         } else {
 547           // The jump distance is not short, try again during next iteration.
 548           has_short_branch_candidate = true;
 549         }
 550       } // (mach->may_be_short_branch())
 551       if (mach != NULL && (mach->may_be_short_branch() ||
 552                            mach->avoid_back_to_back())) {
 553         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 554       }
 555       blk_starts[i+1] -= adjust_block_start;
 556     }
 557   }
 558 
 559 #ifdef ASSERT
 560   for (uint i = 0; i < nblocks; i++) { // For all blocks
 561     if (jmp_target[i] != 0) {
 562       int br_size = jmp_size[i];
 563       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 564       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 565         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 566       }
 567       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 568     }
 569   }
 570 #endif
 571 
 572   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 573   // after ScheduleAndBundle().
 574 
 575   // ------------------
 576   // Compute size for code buffer
 577   code_size = blk_starts[nblocks];
 578 
 579   // Relocation records
 580   reloc_size += 1;              // Relo entry for exception handler
 581 
 582   // Adjust reloc_size to number of record of relocation info
 583   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 584   // a relocation index.
 585   // The CodeBuffer will expand the locs array if this estimate is too low.
 586   reloc_size *= 10 / sizeof(relocInfo);
 587 }
 588 
 589 //------------------------------FillLocArray-----------------------------------
 590 // Create a bit of debug info and append it to the array.  The mapping is from
 591 // Java local or expression stack to constant, register or stack-slot.  For
 592 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 593 // entry has been taken care of and caller should skip it).
 594 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 595   // This should never have accepted Bad before
 596   assert(OptoReg::is_valid(regnum), "location must be valid");
 597   return (OptoReg::is_reg(regnum))
 598     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 599     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 600 }
 601 
 602 
 603 ObjectValue*
 604 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 605   for (int i = 0; i < objs->length(); i++) {
 606     assert(objs->at(i)->is_object(), "corrupt object cache");
 607     ObjectValue* sv = (ObjectValue*) objs->at(i);
 608     if (sv->id() == id) {
 609       return sv;
 610     }
 611   }
 612   // Otherwise..
 613   return NULL;
 614 }
 615 
 616 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 617                                      ObjectValue* sv ) {
 618   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 619   objs->append(sv);
 620 }
 621 
 622 
 623 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 624                             GrowableArray<ScopeValue*> *array,
 625                             GrowableArray<ScopeValue*> *objs ) {
 626   assert( local, "use _top instead of null" );
 627   if (array->length() != idx) {
 628     assert(array->length() == idx + 1, "Unexpected array count");
 629     // Old functionality:
 630     //   return
 631     // New functionality:
 632     //   Assert if the local is not top. In product mode let the new node
 633     //   override the old entry.
 634     assert(local == top(), "LocArray collision");
 635     if (local == top()) {
 636       return;
 637     }
 638     array->pop();
 639   }
 640   const Type *t = local->bottom_type();
 641 
 642   // Is it a safepoint scalar object node?
 643   if (local->is_SafePointScalarObject()) {
 644     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 645 
 646     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 647     if (sv == NULL) {
 648       ciKlass* cik = t->is_oopptr()->klass();
 649       assert(cik->is_instance_klass() ||
 650              cik->is_array_klass(), "Not supported allocation.");
 651       sv = new ObjectValue(spobj->_idx,
 652                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 653       Compile::set_sv_for_object_node(objs, sv);
 654 
 655       uint first_ind = spobj->first_index(sfpt->jvms());
 656       for (uint i = 0; i < spobj->n_fields(); i++) {
 657         Node* fld_node = sfpt->in(first_ind+i);
 658         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 659       }
 660     }
 661     array->append(sv);
 662     return;
 663   }
 664 
 665   // Grab the register number for the local
 666   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 667   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 668     // Record the double as two float registers.
 669     // The register mask for such a value always specifies two adjacent
 670     // float registers, with the lower register number even.
 671     // Normally, the allocation of high and low words to these registers
 672     // is irrelevant, because nearly all operations on register pairs
 673     // (e.g., StoreD) treat them as a single unit.
 674     // Here, we assume in addition that the words in these two registers
 675     // stored "naturally" (by operations like StoreD and double stores
 676     // within the interpreter) such that the lower-numbered register
 677     // is written to the lower memory address.  This may seem like
 678     // a machine dependency, but it is not--it is a requirement on
 679     // the author of the <arch>.ad file to ensure that, for every
 680     // even/odd double-register pair to which a double may be allocated,
 681     // the word in the even single-register is stored to the first
 682     // memory word.  (Note that register numbers are completely
 683     // arbitrary, and are not tied to any machine-level encodings.)
 684 #ifdef _LP64
 685     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 686       array->append(new ConstantIntValue(0));
 687       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 688     } else if ( t->base() == Type::Long ) {
 689       array->append(new ConstantIntValue(0));
 690       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 691     } else if ( t->base() == Type::RawPtr ) {
 692       // jsr/ret return address which must be restored into a the full
 693       // width 64-bit stack slot.
 694       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 695     }
 696 #else //_LP64
 697 #ifdef SPARC
 698     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 699       // For SPARC we have to swap high and low words for
 700       // long values stored in a single-register (g0-g7).
 701       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 702       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 703     } else
 704 #endif //SPARC
 705     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 706       // Repack the double/long as two jints.
 707       // The convention the interpreter uses is that the second local
 708       // holds the first raw word of the native double representation.
 709       // This is actually reasonable, since locals and stack arrays
 710       // grow downwards in all implementations.
 711       // (If, on some machine, the interpreter's Java locals or stack
 712       // were to grow upwards, the embedded doubles would be word-swapped.)
 713       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 714       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 715     }
 716 #endif //_LP64
 717     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 718                OptoReg::is_reg(regnum) ) {
 719       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 720                                    ? Location::float_in_dbl : Location::normal ));
 721     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 722       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 723                                    ? Location::int_in_long : Location::normal ));
 724     } else if( t->base() == Type::NarrowOop ) {
 725       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 726     } else {
 727       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 728     }
 729     return;
 730   }
 731 
 732   // No register.  It must be constant data.
 733   switch (t->base()) {
 734   case Type::Half:              // Second half of a double
 735     ShouldNotReachHere();       // Caller should skip 2nd halves
 736     break;
 737   case Type::AnyPtr:
 738     array->append(new ConstantOopWriteValue(NULL));
 739     break;
 740   case Type::AryPtr:
 741   case Type::InstPtr:          // fall through
 742     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 743     break;
 744   case Type::NarrowOop:
 745     if (t == TypeNarrowOop::NULL_PTR) {
 746       array->append(new ConstantOopWriteValue(NULL));
 747     } else {
 748       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 749     }
 750     break;
 751   case Type::Int:
 752     array->append(new ConstantIntValue(t->is_int()->get_con()));
 753     break;
 754   case Type::RawPtr:
 755     // A return address (T_ADDRESS).
 756     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 757 #ifdef _LP64
 758     // Must be restored to the full-width 64-bit stack slot.
 759     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 760 #else
 761     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 762 #endif
 763     break;
 764   case Type::FloatCon: {
 765     float f = t->is_float_constant()->getf();
 766     array->append(new ConstantIntValue(jint_cast(f)));
 767     break;
 768   }
 769   case Type::DoubleCon: {
 770     jdouble d = t->is_double_constant()->getd();
 771 #ifdef _LP64
 772     array->append(new ConstantIntValue(0));
 773     array->append(new ConstantDoubleValue(d));
 774 #else
 775     // Repack the double as two jints.
 776     // The convention the interpreter uses is that the second local
 777     // holds the first raw word of the native double representation.
 778     // This is actually reasonable, since locals and stack arrays
 779     // grow downwards in all implementations.
 780     // (If, on some machine, the interpreter's Java locals or stack
 781     // were to grow upwards, the embedded doubles would be word-swapped.)
 782     jint   *dp = (jint*)&d;
 783     array->append(new ConstantIntValue(dp[1]));
 784     array->append(new ConstantIntValue(dp[0]));
 785 #endif
 786     break;
 787   }
 788   case Type::Long: {
 789     jlong d = t->is_long()->get_con();
 790 #ifdef _LP64
 791     array->append(new ConstantIntValue(0));
 792     array->append(new ConstantLongValue(d));
 793 #else
 794     // Repack the long as two jints.
 795     // The convention the interpreter uses is that the second local
 796     // holds the first raw word of the native double representation.
 797     // This is actually reasonable, since locals and stack arrays
 798     // grow downwards in all implementations.
 799     // (If, on some machine, the interpreter's Java locals or stack
 800     // were to grow upwards, the embedded doubles would be word-swapped.)
 801     jint *dp = (jint*)&d;
 802     array->append(new ConstantIntValue(dp[1]));
 803     array->append(new ConstantIntValue(dp[0]));
 804 #endif
 805     break;
 806   }
 807   case Type::Top:               // Add an illegal value here
 808     array->append(new LocationValue(Location()));
 809     break;
 810   default:
 811     ShouldNotReachHere();
 812     break;
 813   }
 814 }
 815 
 816 // Determine if this node starts a bundle
 817 bool Compile::starts_bundle(const Node *n) const {
 818   return (_node_bundling_limit > n->_idx &&
 819           _node_bundling_base[n->_idx].starts_bundle());
 820 }
 821 
 822 //--------------------------Process_OopMap_Node--------------------------------
 823 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 824 
 825   // Handle special safepoint nodes for synchronization
 826   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 827   MachCallNode      *mcall;
 828 
 829 #ifdef ENABLE_ZAP_DEAD_LOCALS
 830   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 831 #endif
 832 
 833   int safepoint_pc_offset = current_offset;
 834   bool is_method_handle_invoke = false;
 835   bool return_oop = false;
 836 
 837   // Add the safepoint in the DebugInfoRecorder
 838   if( !mach->is_MachCall() ) {
 839     mcall = NULL;
 840     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 841   } else {
 842     mcall = mach->as_MachCall();
 843 
 844     // Is the call a MethodHandle call?
 845     if (mcall->is_MachCallJava()) {
 846       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 847         assert(has_method_handle_invokes(), "must have been set during call generation");
 848         is_method_handle_invoke = true;
 849       }
 850     }
 851 
 852     // Check if a call returns an object.
 853     if (mcall->return_value_is_used() &&
 854         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 855       return_oop = true;
 856     }
 857     safepoint_pc_offset += mcall->ret_addr_offset();
 858     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 859   }
 860 
 861   // Loop over the JVMState list to add scope information
 862   // Do not skip safepoints with a NULL method, they need monitor info
 863   JVMState* youngest_jvms = sfn->jvms();
 864   int max_depth = youngest_jvms->depth();
 865 
 866   // Allocate the object pool for scalar-replaced objects -- the map from
 867   // small-integer keys (which can be recorded in the local and ostack
 868   // arrays) to descriptions of the object state.
 869   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 870 
 871   // Visit scopes from oldest to youngest.
 872   for (int depth = 1; depth <= max_depth; depth++) {
 873     JVMState* jvms = youngest_jvms->of_depth(depth);
 874     int idx;
 875     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 876     // Safepoints that do not have method() set only provide oop-map and monitor info
 877     // to support GC; these do not support deoptimization.
 878     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 879     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 880     int num_mon  = jvms->nof_monitors();
 881     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 882            "JVMS local count must match that of the method");
 883 
 884     // Add Local and Expression Stack Information
 885 
 886     // Insert locals into the locarray
 887     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 888     for( idx = 0; idx < num_locs; idx++ ) {
 889       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 890     }
 891 
 892     // Insert expression stack entries into the exparray
 893     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 894     for( idx = 0; idx < num_exps; idx++ ) {
 895       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 896     }
 897 
 898     // Add in mappings of the monitors
 899     assert( !method ||
 900             !method->is_synchronized() ||
 901             method->is_native() ||
 902             num_mon > 0 ||
 903             !GenerateSynchronizationCode,
 904             "monitors must always exist for synchronized methods");
 905 
 906     // Build the growable array of ScopeValues for exp stack
 907     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 908 
 909     // Loop over monitors and insert into array
 910     for (idx = 0; idx < num_mon; idx++) {
 911       // Grab the node that defines this monitor
 912       Node* box_node = sfn->monitor_box(jvms, idx);
 913       Node* obj_node = sfn->monitor_obj(jvms, idx);
 914 
 915       // Create ScopeValue for object
 916       ScopeValue *scval = NULL;
 917 
 918       if (obj_node->is_SafePointScalarObject()) {
 919         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 920         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 921         if (scval == NULL) {
 922           const Type *t = spobj->bottom_type();
 923           ciKlass* cik = t->is_oopptr()->klass();
 924           assert(cik->is_instance_klass() ||
 925                  cik->is_array_klass(), "Not supported allocation.");
 926           ObjectValue* sv = new ObjectValue(spobj->_idx,
 927                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 928           Compile::set_sv_for_object_node(objs, sv);
 929 
 930           uint first_ind = spobj->first_index(youngest_jvms);
 931           for (uint i = 0; i < spobj->n_fields(); i++) {
 932             Node* fld_node = sfn->in(first_ind+i);
 933             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 934           }
 935           scval = sv;
 936         }
 937       } else if (!obj_node->is_Con()) {
 938         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 939         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 940           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 941         } else {
 942           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 943         }
 944       } else {
 945         const TypePtr *tp = obj_node->get_ptr_type();
 946         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 947       }
 948 
 949       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 950       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 951       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 952       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 953     }
 954 
 955     // We dump the object pool first, since deoptimization reads it in first.
 956     debug_info()->dump_object_pool(objs);
 957 
 958     // Build first class objects to pass to scope
 959     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 960     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 961     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 962 
 963     // Make method available for all Safepoints
 964     ciMethod* scope_method = method ? method : _method;
 965     // Describe the scope here
 966     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 967     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 968     // Now we can describe the scope.
 969     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 970   } // End jvms loop
 971 
 972   // Mark the end of the scope set.
 973   debug_info()->end_safepoint(safepoint_pc_offset);
 974 }
 975 
 976 
 977 
 978 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 979 class NonSafepointEmitter {
 980   Compile*  C;
 981   JVMState* _pending_jvms;
 982   int       _pending_offset;
 983 
 984   void emit_non_safepoint();
 985 
 986  public:
 987   NonSafepointEmitter(Compile* compile) {
 988     this->C = compile;
 989     _pending_jvms = NULL;
 990     _pending_offset = 0;
 991   }
 992 
 993   void observe_instruction(Node* n, int pc_offset) {
 994     if (!C->debug_info()->recording_non_safepoints())  return;
 995 
 996     Node_Notes* nn = C->node_notes_at(n->_idx);
 997     if (nn == NULL || nn->jvms() == NULL)  return;
 998     if (_pending_jvms != NULL &&
 999         _pending_jvms->same_calls_as(nn->jvms())) {
1000       // Repeated JVMS?  Stretch it up here.
1001       _pending_offset = pc_offset;
1002     } else {
1003       if (_pending_jvms != NULL &&
1004           _pending_offset < pc_offset) {
1005         emit_non_safepoint();
1006       }
1007       _pending_jvms = NULL;
1008       if (pc_offset > C->debug_info()->last_pc_offset()) {
1009         // This is the only way _pending_jvms can become non-NULL:
1010         _pending_jvms = nn->jvms();
1011         _pending_offset = pc_offset;
1012       }
1013     }
1014   }
1015 
1016   // Stay out of the way of real safepoints:
1017   void observe_safepoint(JVMState* jvms, int pc_offset) {
1018     if (_pending_jvms != NULL &&
1019         !_pending_jvms->same_calls_as(jvms) &&
1020         _pending_offset < pc_offset) {
1021       emit_non_safepoint();
1022     }
1023     _pending_jvms = NULL;
1024   }
1025 
1026   void flush_at_end() {
1027     if (_pending_jvms != NULL) {
1028       emit_non_safepoint();
1029     }
1030     _pending_jvms = NULL;
1031   }
1032 };
1033 
1034 void NonSafepointEmitter::emit_non_safepoint() {
1035   JVMState* youngest_jvms = _pending_jvms;
1036   int       pc_offset     = _pending_offset;
1037 
1038   // Clear it now:
1039   _pending_jvms = NULL;
1040 
1041   DebugInformationRecorder* debug_info = C->debug_info();
1042   assert(debug_info->recording_non_safepoints(), "sanity");
1043 
1044   debug_info->add_non_safepoint(pc_offset);
1045   int max_depth = youngest_jvms->depth();
1046 
1047   // Visit scopes from oldest to youngest.
1048   for (int depth = 1; depth <= max_depth; depth++) {
1049     JVMState* jvms = youngest_jvms->of_depth(depth);
1050     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1051     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1052     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1053   }
1054 
1055   // Mark the end of the scope set.
1056   debug_info->end_non_safepoint(pc_offset);
1057 }
1058 
1059 //------------------------------init_buffer------------------------------------
1060 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1061 
1062   // Set the initially allocated size
1063   int  code_req   = initial_code_capacity;
1064   int  locs_req   = initial_locs_capacity;
1065   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1066   int  const_req  = initial_const_capacity;
1067 
1068   int  pad_req    = NativeCall::instruction_size;
1069   // The extra spacing after the code is necessary on some platforms.
1070   // Sometimes we need to patch in a jump after the last instruction,
1071   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1072 
1073   // Compute the byte offset where we can store the deopt pc.
1074   if (fixed_slots() != 0) {
1075     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1076   }
1077 
1078   // Compute prolog code size
1079   _method_size = 0;
1080   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1081 #if defined(IA64) && !defined(AIX)
1082   if (save_argument_registers()) {
1083     // 4815101: this is a stub with implicit and unknown precision fp args.
1084     // The usual spill mechanism can only generate stfd's in this case, which
1085     // doesn't work if the fp reg to spill contains a single-precision denorm.
1086     // Instead, we hack around the normal spill mechanism using stfspill's and
1087     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1088     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1089     //
1090     // If we ever implement 16-byte 'registers' == stack slots, we can
1091     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1092     // instead of stfd/stfs/ldfd/ldfs.
1093     _frame_slots += 8*(16/BytesPerInt);
1094   }
1095 #endif
1096   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1097 
1098   if (has_mach_constant_base_node()) {
1099     uint add_size = 0;
1100     // Fill the constant table.
1101     // Note:  This must happen before shorten_branches.
1102     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1103       Block* b = _cfg->get_block(i);
1104 
1105       for (uint j = 0; j < b->number_of_nodes(); j++) {
1106         Node* n = b->get_node(j);
1107 
1108         // If the node is a MachConstantNode evaluate the constant
1109         // value section.
1110         if (n->is_MachConstant()) {
1111           MachConstantNode* machcon = n->as_MachConstant();
1112           machcon->eval_constant(C);
1113         } else if (n->is_Mach()) {
1114           // On Power there are more nodes that issue constants.
1115           add_size += (n->as_Mach()->ins_num_consts() * 8);
1116         }
1117       }
1118     }
1119 
1120     // Calculate the offsets of the constants and the size of the
1121     // constant table (including the padding to the next section).
1122     constant_table().calculate_offsets_and_size();
1123     const_req = constant_table().size() + add_size;
1124   }
1125 
1126   // Initialize the space for the BufferBlob used to find and verify
1127   // instruction size in MachNode::emit_size()
1128   init_scratch_buffer_blob(const_req);
1129   if (failing())  return NULL; // Out of memory
1130 
1131   // Pre-compute the length of blocks and replace
1132   // long branches with short if machine supports it.
1133   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1134 
1135   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1136   int exception_handler_req = size_exception_handler();
1137   int deopt_handler_req = size_deopt_handler();
1138   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1139   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1140   stub_req += MAX_stubs_size;   // ensure per-stub margin
1141   code_req += MAX_inst_size;    // ensure per-instruction margin
1142 
1143   if (StressCodeBuffers)
1144     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1145 
1146   int total_req =
1147     const_req +
1148     code_req +
1149     pad_req +
1150     stub_req +
1151     exception_handler_req +
1152     deopt_handler_req;               // deopt handler
1153 
1154   if (has_method_handle_invokes())
1155     total_req += deopt_handler_req;  // deopt MH handler
1156 
1157   CodeBuffer* cb = code_buffer();
1158   cb->initialize(total_req, locs_req);
1159 
1160   // Have we run out of code space?
1161   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1162     C->record_failure("CodeCache is full");
1163     return NULL;
1164   }
1165   // Configure the code buffer.
1166   cb->initialize_consts_size(const_req);
1167   cb->initialize_stubs_size(stub_req);
1168   cb->initialize_oop_recorder(env()->oop_recorder());
1169 
1170   // fill in the nop array for bundling computations
1171   MachNode *_nop_list[Bundle::_nop_count];
1172   Bundle::initialize_nops(_nop_list, this);
1173 
1174   return cb;
1175 }
1176 
1177 //------------------------------fill_buffer------------------------------------
1178 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1179   // blk_starts[] contains offsets calculated during short branches processing,
1180   // offsets should not be increased during following steps.
1181 
1182   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1183   // of a loop. It is used to determine the padding for loop alignment.
1184   compute_loop_first_inst_sizes();
1185 
1186   // Create oopmap set.
1187   _oop_map_set = new OopMapSet();
1188 
1189   // !!!!! This preserves old handling of oopmaps for now
1190   debug_info()->set_oopmaps(_oop_map_set);
1191 
1192   uint nblocks  = _cfg->number_of_blocks();
1193   // Count and start of implicit null check instructions
1194   uint inct_cnt = 0;
1195   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1196 
1197   // Count and start of calls
1198   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1199 
1200   uint  return_offset = 0;
1201   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1202 
1203   int previous_offset = 0;
1204   int current_offset  = 0;
1205   int last_call_offset = -1;
1206   int last_avoid_back_to_back_offset = -1;
1207 #ifdef ASSERT
1208   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1209   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1210   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1211   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1212 #endif
1213 
1214   // Create an array of unused labels, one for each basic block, if printing is enabled
1215 #ifndef PRODUCT
1216   int *node_offsets      = NULL;
1217   uint node_offset_limit = unique();
1218 
1219   if (print_assembly())
1220     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1221 #endif
1222 
1223   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1224 
1225   // Emit the constant table.
1226   if (has_mach_constant_base_node()) {
1227     constant_table().emit(*cb);
1228   }
1229 
1230   // Create an array of labels, one for each basic block
1231   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1232   for (uint i=0; i <= nblocks; i++) {
1233     blk_labels[i].init();
1234   }
1235 
1236   // ------------------
1237   // Now fill in the code buffer
1238   Node *delay_slot = NULL;
1239 
1240   for (uint i = 0; i < nblocks; i++) {
1241     Block* block = _cfg->get_block(i);
1242     Node* head = block->head();
1243 
1244     // If this block needs to start aligned (i.e, can be reached other
1245     // than by falling-thru from the previous block), then force the
1246     // start of a new bundle.
1247     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1248       cb->flush_bundle(true);
1249     }
1250 
1251 #ifdef ASSERT
1252     if (!block->is_connector()) {
1253       stringStream st;
1254       block->dump_head(_cfg, &st);
1255       MacroAssembler(cb).block_comment(st.as_string());
1256     }
1257     jmp_target[i] = 0;
1258     jmp_offset[i] = 0;
1259     jmp_size[i]   = 0;
1260     jmp_rule[i]   = 0;
1261 #endif
1262     int blk_offset = current_offset;
1263 
1264     // Define the label at the beginning of the basic block
1265     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1266 
1267     uint last_inst = block->number_of_nodes();
1268 
1269     // Emit block normally, except for last instruction.
1270     // Emit means "dump code bits into code buffer".
1271     for (uint j = 0; j<last_inst; j++) {
1272 
1273       // Get the node
1274       Node* n = block->get_node(j);
1275 
1276       // See if delay slots are supported
1277       if (valid_bundle_info(n) &&
1278           node_bundling(n)->used_in_unconditional_delay()) {
1279         assert(delay_slot == NULL, "no use of delay slot node");
1280         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1281 
1282         delay_slot = n;
1283         continue;
1284       }
1285 
1286       // If this starts a new instruction group, then flush the current one
1287       // (but allow split bundles)
1288       if (Pipeline::requires_bundling() && starts_bundle(n))
1289         cb->flush_bundle(false);
1290 
1291       // The following logic is duplicated in the code ifdeffed for
1292       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1293       // should be factored out.  Or maybe dispersed to the nodes?
1294 
1295       // Special handling for SafePoint/Call Nodes
1296       bool is_mcall = false;
1297       if (n->is_Mach()) {
1298         MachNode *mach = n->as_Mach();
1299         is_mcall = n->is_MachCall();
1300         bool is_sfn = n->is_MachSafePoint();
1301 
1302         // If this requires all previous instructions be flushed, then do so
1303         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1304           cb->flush_bundle(true);
1305           current_offset = cb->insts_size();
1306         }
1307 
1308         // A padding may be needed again since a previous instruction
1309         // could be moved to delay slot.
1310 
1311         // align the instruction if necessary
1312         int padding = mach->compute_padding(current_offset);
1313         // Make sure safepoint node for polling is distinct from a call's
1314         // return by adding a nop if needed.
1315         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1316           padding = nop_size;
1317         }
1318         if (padding == 0 && mach->avoid_back_to_back() &&
1319             current_offset == last_avoid_back_to_back_offset) {
1320           // Avoid back to back some instructions.
1321           padding = nop_size;
1322         }
1323 
1324         if(padding > 0) {
1325           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1326           int nops_cnt = padding / nop_size;
1327           MachNode *nop = new (this) MachNopNode(nops_cnt);
1328           block->insert_node(nop, j++);
1329           last_inst++;
1330           _cfg->map_node_to_block(nop, block);
1331           nop->emit(*cb, _regalloc);
1332           cb->flush_bundle(true);
1333           current_offset = cb->insts_size();
1334         }
1335 
1336         // Remember the start of the last call in a basic block
1337         if (is_mcall) {
1338           MachCallNode *mcall = mach->as_MachCall();
1339 
1340           // This destination address is NOT PC-relative
1341           mcall->method_set((intptr_t)mcall->entry_point());
1342 
1343           // Save the return address
1344           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1345 
1346           if (mcall->is_MachCallLeaf()) {
1347             is_mcall = false;
1348             is_sfn = false;
1349           }
1350         }
1351 
1352         // sfn will be valid whenever mcall is valid now because of inheritance
1353         if (is_sfn || is_mcall) {
1354 
1355           // Handle special safepoint nodes for synchronization
1356           if (!is_mcall) {
1357             MachSafePointNode *sfn = mach->as_MachSafePoint();
1358             // !!!!! Stubs only need an oopmap right now, so bail out
1359             if (sfn->jvms()->method() == NULL) {
1360               // Write the oopmap directly to the code blob??!!
1361 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1362               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1363 #             endif
1364               continue;
1365             }
1366           } // End synchronization
1367 
1368           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1369                                            current_offset);
1370           Process_OopMap_Node(mach, current_offset);
1371         } // End if safepoint
1372 
1373         // If this is a null check, then add the start of the previous instruction to the list
1374         else if( mach->is_MachNullCheck() ) {
1375           inct_starts[inct_cnt++] = previous_offset;
1376         }
1377 
1378         // If this is a branch, then fill in the label with the target BB's label
1379         else if (mach->is_MachBranch()) {
1380           // This requires the TRUE branch target be in succs[0]
1381           uint block_num = block->non_connector_successor(0)->_pre_order;
1382 
1383           // Try to replace long branch if delay slot is not used,
1384           // it is mostly for back branches since forward branch's
1385           // distance is not updated yet.
1386           bool delay_slot_is_used = valid_bundle_info(n) &&
1387                                     node_bundling(n)->use_unconditional_delay();
1388           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1389            assert(delay_slot == NULL, "not expecting delay slot node");
1390            int br_size = n->size(_regalloc);
1391             int offset = blk_starts[block_num] - current_offset;
1392             if (block_num >= i) {
1393               // Current and following block's offset are not
1394               // finalized yet, adjust distance by the difference
1395               // between calculated and final offsets of current block.
1396               offset -= (blk_starts[i] - blk_offset);
1397             }
1398             // In the following code a nop could be inserted before
1399             // the branch which will increase the backward distance.
1400             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1401             if (needs_padding && offset <= 0)
1402               offset -= nop_size;
1403 
1404             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1405               // We've got a winner.  Replace this branch.
1406               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1407 
1408               // Update the jmp_size.
1409               int new_size = replacement->size(_regalloc);
1410               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1411               // Insert padding between avoid_back_to_back branches.
1412               if (needs_padding && replacement->avoid_back_to_back()) {
1413                 MachNode *nop = new (this) MachNopNode();
1414                 block->insert_node(nop, j++);
1415                 _cfg->map_node_to_block(nop, block);
1416                 last_inst++;
1417                 nop->emit(*cb, _regalloc);
1418                 cb->flush_bundle(true);
1419                 current_offset = cb->insts_size();
1420               }
1421 #ifdef ASSERT
1422               jmp_target[i] = block_num;
1423               jmp_offset[i] = current_offset - blk_offset;
1424               jmp_size[i]   = new_size;
1425               jmp_rule[i]   = mach->rule();
1426 #endif
1427               block->map_node(replacement, j);
1428               mach->subsume_by(replacement, C);
1429               n    = replacement;
1430               mach = replacement;
1431             }
1432           }
1433           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1434         } else if (mach->ideal_Opcode() == Op_Jump) {
1435           for (uint h = 0; h < block->_num_succs; h++) {
1436             Block* succs_block = block->_succs[h];
1437             for (uint j = 1; j < succs_block->num_preds(); j++) {
1438               Node* jpn = succs_block->pred(j);
1439               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1440                 uint block_num = succs_block->non_connector()->_pre_order;
1441                 Label *blkLabel = &blk_labels[block_num];
1442                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1443               }
1444             }
1445           }
1446         }
1447 #ifdef ASSERT
1448         // Check that oop-store precedes the card-mark
1449         else if (mach->ideal_Opcode() == Op_StoreCM) {
1450           uint storeCM_idx = j;
1451           int count = 0;
1452           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1453             Node *oop_store = mach->in(prec);  // Precedence edge
1454             if (oop_store == NULL) continue;
1455             count++;
1456             uint i4;
1457             for (i4 = 0; i4 < last_inst; ++i4) {
1458               if (block->get_node(i4) == oop_store) {
1459                 break;
1460               }
1461             }
1462             // Note: This test can provide a false failure if other precedence
1463             // edges have been added to the storeCMNode.
1464             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1465           }
1466           assert(count > 0, "storeCM expects at least one precedence edge");
1467         }
1468 #endif
1469         else if (!n->is_Proj()) {
1470           // Remember the beginning of the previous instruction, in case
1471           // it's followed by a flag-kill and a null-check.  Happens on
1472           // Intel all the time, with add-to-memory kind of opcodes.
1473           previous_offset = current_offset;
1474         }
1475 
1476         // Not an else-if!
1477         // If this is a trap based cmp then add its offset to the list.
1478         if (mach->is_TrapBasedCheckNode()) {
1479           inct_starts[inct_cnt++] = current_offset;
1480         }
1481       }
1482 
1483       // Verify that there is sufficient space remaining
1484       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1485       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1486         C->record_failure("CodeCache is full");
1487         return;
1488       }
1489 
1490       // Save the offset for the listing
1491 #ifndef PRODUCT
1492       if (node_offsets && n->_idx < node_offset_limit)
1493         node_offsets[n->_idx] = cb->insts_size();
1494 #endif
1495 
1496       // "Normal" instruction case
1497       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1498       n->emit(*cb, _regalloc);
1499       current_offset  = cb->insts_size();
1500 
1501 #ifdef ASSERT
1502       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1503         n->dump();
1504         assert(false, "wrong size of mach node");
1505       }
1506 #endif
1507       non_safepoints.observe_instruction(n, current_offset);
1508 
1509       // mcall is last "call" that can be a safepoint
1510       // record it so we can see if a poll will directly follow it
1511       // in which case we'll need a pad to make the PcDesc sites unique
1512       // see  5010568. This can be slightly inaccurate but conservative
1513       // in the case that return address is not actually at current_offset.
1514       // This is a small price to pay.
1515 
1516       if (is_mcall) {
1517         last_call_offset = current_offset;
1518       }
1519 
1520       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1521         // Avoid back to back some instructions.
1522         last_avoid_back_to_back_offset = current_offset;
1523       }
1524 
1525       // See if this instruction has a delay slot
1526       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1527         assert(delay_slot != NULL, "expecting delay slot node");
1528 
1529         // Back up 1 instruction
1530         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1531 
1532         // Save the offset for the listing
1533 #ifndef PRODUCT
1534         if (node_offsets && delay_slot->_idx < node_offset_limit)
1535           node_offsets[delay_slot->_idx] = cb->insts_size();
1536 #endif
1537 
1538         // Support a SafePoint in the delay slot
1539         if (delay_slot->is_MachSafePoint()) {
1540           MachNode *mach = delay_slot->as_Mach();
1541           // !!!!! Stubs only need an oopmap right now, so bail out
1542           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1543             // Write the oopmap directly to the code blob??!!
1544 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1545             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1546 #           endif
1547             delay_slot = NULL;
1548             continue;
1549           }
1550 
1551           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1552           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1553                                            adjusted_offset);
1554           // Generate an OopMap entry
1555           Process_OopMap_Node(mach, adjusted_offset);
1556         }
1557 
1558         // Insert the delay slot instruction
1559         delay_slot->emit(*cb, _regalloc);
1560 
1561         // Don't reuse it
1562         delay_slot = NULL;
1563       }
1564 
1565     } // End for all instructions in block
1566 
1567     // If the next block is the top of a loop, pad this block out to align
1568     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1569     if (i < nblocks-1) {
1570       Block *nb = _cfg->get_block(i + 1);
1571       int padding = nb->alignment_padding(current_offset);
1572       if( padding > 0 ) {
1573         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1574         block->insert_node(nop, block->number_of_nodes());
1575         _cfg->map_node_to_block(nop, block);
1576         nop->emit(*cb, _regalloc);
1577         current_offset = cb->insts_size();
1578       }
1579     }
1580     // Verify that the distance for generated before forward
1581     // short branches is still valid.
1582     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1583 
1584     // Save new block start offset
1585     blk_starts[i] = blk_offset;
1586   } // End of for all blocks
1587   blk_starts[nblocks] = current_offset;
1588 
1589   non_safepoints.flush_at_end();
1590 
1591   // Offset too large?
1592   if (failing())  return;
1593 
1594   // Define a pseudo-label at the end of the code
1595   MacroAssembler(cb).bind( blk_labels[nblocks] );
1596 
1597   // Compute the size of the first block
1598   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1599 
1600   assert(cb->insts_size() < 500000, "method is unreasonably large");
1601 
1602 #ifdef ASSERT
1603   for (uint i = 0; i < nblocks; i++) { // For all blocks
1604     if (jmp_target[i] != 0) {
1605       int br_size = jmp_size[i];
1606       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1607       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1608         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1609         assert(false, "Displacement too large for short jmp");
1610       }
1611     }
1612   }
1613 #endif
1614 
1615 #ifndef PRODUCT
1616   // Information on the size of the method, without the extraneous code
1617   Scheduling::increment_method_size(cb->insts_size());
1618 #endif
1619 
1620   // ------------------
1621   // Fill in exception table entries.
1622   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1623 
1624   // Only java methods have exception handlers and deopt handlers
1625   if (_method) {
1626     // Emit the exception handler code.
1627     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1628     // Emit the deopt handler code.
1629     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1630 
1631     // Emit the MethodHandle deopt handler code (if required).
1632     if (has_method_handle_invokes()) {
1633       // We can use the same code as for the normal deopt handler, we
1634       // just need a different entry point address.
1635       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1636     }
1637   }
1638 
1639   // One last check for failed CodeBuffer::expand:
1640   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1641     C->record_failure("CodeCache is full");
1642     return;
1643   }
1644 
1645 #ifndef PRODUCT
1646   // Dump the assembly code, including basic-block numbers
1647   if (print_assembly()) {
1648     ttyLocker ttyl;  // keep the following output all in one block
1649     if (!VMThread::should_terminate()) {  // test this under the tty lock
1650       // This output goes directly to the tty, not the compiler log.
1651       // To enable tools to match it up with the compilation activity,
1652       // be sure to tag this tty output with the compile ID.
1653       if (xtty != NULL) {
1654         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1655                    is_osr_compilation()    ? " compile_kind='osr'" :
1656                    "");
1657       }
1658       if (method() != NULL) {
1659         method()->print_metadata();
1660       }
1661       dump_asm(node_offsets, node_offset_limit);
1662       if (xtty != NULL) {
1663         xtty->tail("opto_assembly");
1664       }
1665     }
1666   }
1667 #endif
1668 
1669 }
1670 
1671 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1672   _inc_table.set_size(cnt);
1673 
1674   uint inct_cnt = 0;
1675   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1676     Block* block = _cfg->get_block(i);
1677     Node *n = NULL;
1678     int j;
1679 
1680     // Find the branch; ignore trailing NOPs.
1681     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1682       n = block->get_node(j);
1683       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1684         break;
1685       }
1686     }
1687 
1688     // If we didn't find anything, continue
1689     if (j < 0) {
1690       continue;
1691     }
1692 
1693     // Compute ExceptionHandlerTable subtable entry and add it
1694     // (skip empty blocks)
1695     if (n->is_Catch()) {
1696 
1697       // Get the offset of the return from the call
1698       uint call_return = call_returns[block->_pre_order];
1699 #ifdef ASSERT
1700       assert( call_return > 0, "no call seen for this basic block" );
1701       while (block->get_node(--j)->is_MachProj()) ;
1702       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1703 #endif
1704       // last instruction is a CatchNode, find it's CatchProjNodes
1705       int nof_succs = block->_num_succs;
1706       // allocate space
1707       GrowableArray<intptr_t> handler_bcis(nof_succs);
1708       GrowableArray<intptr_t> handler_pcos(nof_succs);
1709       // iterate through all successors
1710       for (int j = 0; j < nof_succs; j++) {
1711         Block* s = block->_succs[j];
1712         bool found_p = false;
1713         for (uint k = 1; k < s->num_preds(); k++) {
1714           Node* pk = s->pred(k);
1715           if (pk->is_CatchProj() && pk->in(0) == n) {
1716             const CatchProjNode* p = pk->as_CatchProj();
1717             found_p = true;
1718             // add the corresponding handler bci & pco information
1719             if (p->_con != CatchProjNode::fall_through_index) {
1720               // p leads to an exception handler (and is not fall through)
1721               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1722               // no duplicates, please
1723               if (!handler_bcis.contains(p->handler_bci())) {
1724                 uint block_num = s->non_connector()->_pre_order;
1725                 handler_bcis.append(p->handler_bci());
1726                 handler_pcos.append(blk_labels[block_num].loc_pos());
1727               }
1728             }
1729           }
1730         }
1731         assert(found_p, "no matching predecessor found");
1732         // Note:  Due to empty block removal, one block may have
1733         // several CatchProj inputs, from the same Catch.
1734       }
1735 
1736       // Set the offset of the return from the call
1737       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1738       continue;
1739     }
1740 
1741     // Handle implicit null exception table updates
1742     if (n->is_MachNullCheck()) {
1743       uint block_num = block->non_connector_successor(0)->_pre_order;
1744       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1745       continue;
1746     }
1747     // Handle implicit exception table updates: trap instructions.
1748     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1749       uint block_num = block->non_connector_successor(0)->_pre_order;
1750       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1751       continue;
1752     }
1753   } // End of for all blocks fill in exception table entries
1754 }
1755 
1756 // Static Variables
1757 #ifndef PRODUCT
1758 uint Scheduling::_total_nop_size = 0;
1759 uint Scheduling::_total_method_size = 0;
1760 uint Scheduling::_total_branches = 0;
1761 uint Scheduling::_total_unconditional_delays = 0;
1762 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1763 #endif
1764 
1765 // Initializer for class Scheduling
1766 
1767 Scheduling::Scheduling(Arena *arena, Compile &compile)
1768   : _arena(arena),
1769     _cfg(compile.cfg()),
1770     _regalloc(compile.regalloc()),
1771     _reg_node(arena),
1772     _bundle_instr_count(0),
1773     _bundle_cycle_number(0),
1774     _scheduled(arena),
1775     _available(arena),
1776     _next_node(NULL),
1777     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1778     _pinch_free_list(arena)
1779 #ifndef PRODUCT
1780   , _branches(0)
1781   , _unconditional_delays(0)
1782 #endif
1783 {
1784   // Create a MachNopNode
1785   _nop = new (&compile) MachNopNode();
1786 
1787   // Now that the nops are in the array, save the count
1788   // (but allow entries for the nops)
1789   _node_bundling_limit = compile.unique();
1790   uint node_max = _regalloc->node_regs_max_index();
1791 
1792   compile.set_node_bundling_limit(_node_bundling_limit);
1793 
1794   // This one is persistent within the Compile class
1795   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1796 
1797   // Allocate space for fixed-size arrays
1798   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1799   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1800   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1801 
1802   // Clear the arrays
1803   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1804   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1805   memset(_uses,               0, node_max * sizeof(short));
1806   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1807 
1808   // Clear the bundling information
1809   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1810 
1811   // Get the last node
1812   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1813 
1814   _next_node = block->get_node(block->number_of_nodes() - 1);
1815 }
1816 
1817 #ifndef PRODUCT
1818 // Scheduling destructor
1819 Scheduling::~Scheduling() {
1820   _total_branches             += _branches;
1821   _total_unconditional_delays += _unconditional_delays;
1822 }
1823 #endif
1824 
1825 // Step ahead "i" cycles
1826 void Scheduling::step(uint i) {
1827 
1828   Bundle *bundle = node_bundling(_next_node);
1829   bundle->set_starts_bundle();
1830 
1831   // Update the bundle record, but leave the flags information alone
1832   if (_bundle_instr_count > 0) {
1833     bundle->set_instr_count(_bundle_instr_count);
1834     bundle->set_resources_used(_bundle_use.resourcesUsed());
1835   }
1836 
1837   // Update the state information
1838   _bundle_instr_count = 0;
1839   _bundle_cycle_number += i;
1840   _bundle_use.step(i);
1841 }
1842 
1843 void Scheduling::step_and_clear() {
1844   Bundle *bundle = node_bundling(_next_node);
1845   bundle->set_starts_bundle();
1846 
1847   // Update the bundle record
1848   if (_bundle_instr_count > 0) {
1849     bundle->set_instr_count(_bundle_instr_count);
1850     bundle->set_resources_used(_bundle_use.resourcesUsed());
1851 
1852     _bundle_cycle_number += 1;
1853   }
1854 
1855   // Clear the bundling information
1856   _bundle_instr_count = 0;
1857   _bundle_use.reset();
1858 
1859   memcpy(_bundle_use_elements,
1860     Pipeline_Use::elaborated_elements,
1861     sizeof(Pipeline_Use::elaborated_elements));
1862 }
1863 
1864 // Perform instruction scheduling and bundling over the sequence of
1865 // instructions in backwards order.
1866 void Compile::ScheduleAndBundle() {
1867 
1868   // Don't optimize this if it isn't a method
1869   if (!_method)
1870     return;
1871 
1872   // Don't optimize this if scheduling is disabled
1873   if (!do_scheduling())
1874     return;
1875 
1876   // Scheduling code works only with pairs (8 bytes) maximum.
1877   if (max_vector_size() > 8)
1878     return;
1879 
1880   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1881 
1882   // Create a data structure for all the scheduling information
1883   Scheduling scheduling(Thread::current()->resource_area(), *this);
1884 
1885   // Walk backwards over each basic block, computing the needed alignment
1886   // Walk over all the basic blocks
1887   scheduling.DoScheduling();
1888 }
1889 
1890 // Compute the latency of all the instructions.  This is fairly simple,
1891 // because we already have a legal ordering.  Walk over the instructions
1892 // from first to last, and compute the latency of the instruction based
1893 // on the latency of the preceding instruction(s).
1894 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1895 #ifndef PRODUCT
1896   if (_cfg->C->trace_opto_output())
1897     tty->print("# -> ComputeLocalLatenciesForward\n");
1898 #endif
1899 
1900   // Walk over all the schedulable instructions
1901   for( uint j=_bb_start; j < _bb_end; j++ ) {
1902 
1903     // This is a kludge, forcing all latency calculations to start at 1.
1904     // Used to allow latency 0 to force an instruction to the beginning
1905     // of the bb
1906     uint latency = 1;
1907     Node *use = bb->get_node(j);
1908     uint nlen = use->len();
1909 
1910     // Walk over all the inputs
1911     for ( uint k=0; k < nlen; k++ ) {
1912       Node *def = use->in(k);
1913       if (!def)
1914         continue;
1915 
1916       uint l = _node_latency[def->_idx] + use->latency(k);
1917       if (latency < l)
1918         latency = l;
1919     }
1920 
1921     _node_latency[use->_idx] = latency;
1922 
1923 #ifndef PRODUCT
1924     if (_cfg->C->trace_opto_output()) {
1925       tty->print("# latency %4d: ", latency);
1926       use->dump();
1927     }
1928 #endif
1929   }
1930 
1931 #ifndef PRODUCT
1932   if (_cfg->C->trace_opto_output())
1933     tty->print("# <- ComputeLocalLatenciesForward\n");
1934 #endif
1935 
1936 } // end ComputeLocalLatenciesForward
1937 
1938 // See if this node fits into the present instruction bundle
1939 bool Scheduling::NodeFitsInBundle(Node *n) {
1940   uint n_idx = n->_idx;
1941 
1942   // If this is the unconditional delay instruction, then it fits
1943   if (n == _unconditional_delay_slot) {
1944 #ifndef PRODUCT
1945     if (_cfg->C->trace_opto_output())
1946       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1947 #endif
1948     return (true);
1949   }
1950 
1951   // If the node cannot be scheduled this cycle, skip it
1952   if (_current_latency[n_idx] > _bundle_cycle_number) {
1953 #ifndef PRODUCT
1954     if (_cfg->C->trace_opto_output())
1955       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1956         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1957 #endif
1958     return (false);
1959   }
1960 
1961   const Pipeline *node_pipeline = n->pipeline();
1962 
1963   uint instruction_count = node_pipeline->instructionCount();
1964   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1965     instruction_count = 0;
1966   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1967     instruction_count++;
1968 
1969   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1970 #ifndef PRODUCT
1971     if (_cfg->C->trace_opto_output())
1972       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1973         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1974 #endif
1975     return (false);
1976   }
1977 
1978   // Don't allow non-machine nodes to be handled this way
1979   if (!n->is_Mach() && instruction_count == 0)
1980     return (false);
1981 
1982   // See if there is any overlap
1983   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1984 
1985   if (delay > 0) {
1986 #ifndef PRODUCT
1987     if (_cfg->C->trace_opto_output())
1988       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1989 #endif
1990     return false;
1991   }
1992 
1993 #ifndef PRODUCT
1994   if (_cfg->C->trace_opto_output())
1995     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1996 #endif
1997 
1998   return true;
1999 }
2000 
2001 Node * Scheduling::ChooseNodeToBundle() {
2002   uint siz = _available.size();
2003 
2004   if (siz == 0) {
2005 
2006 #ifndef PRODUCT
2007     if (_cfg->C->trace_opto_output())
2008       tty->print("#   ChooseNodeToBundle: NULL\n");
2009 #endif
2010     return (NULL);
2011   }
2012 
2013   // Fast path, if only 1 instruction in the bundle
2014   if (siz == 1) {
2015 #ifndef PRODUCT
2016     if (_cfg->C->trace_opto_output()) {
2017       tty->print("#   ChooseNodeToBundle (only 1): ");
2018       _available[0]->dump();
2019     }
2020 #endif
2021     return (_available[0]);
2022   }
2023 
2024   // Don't bother, if the bundle is already full
2025   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2026     for ( uint i = 0; i < siz; i++ ) {
2027       Node *n = _available[i];
2028 
2029       // Skip projections, we'll handle them another way
2030       if (n->is_Proj())
2031         continue;
2032 
2033       // This presupposed that instructions are inserted into the
2034       // available list in a legality order; i.e. instructions that
2035       // must be inserted first are at the head of the list
2036       if (NodeFitsInBundle(n)) {
2037 #ifndef PRODUCT
2038         if (_cfg->C->trace_opto_output()) {
2039           tty->print("#   ChooseNodeToBundle: ");
2040           n->dump();
2041         }
2042 #endif
2043         return (n);
2044       }
2045     }
2046   }
2047 
2048   // Nothing fits in this bundle, choose the highest priority
2049 #ifndef PRODUCT
2050   if (_cfg->C->trace_opto_output()) {
2051     tty->print("#   ChooseNodeToBundle: ");
2052     _available[0]->dump();
2053   }
2054 #endif
2055 
2056   return _available[0];
2057 }
2058 
2059 void Scheduling::AddNodeToAvailableList(Node *n) {
2060   assert( !n->is_Proj(), "projections never directly made available" );
2061 #ifndef PRODUCT
2062   if (_cfg->C->trace_opto_output()) {
2063     tty->print("#   AddNodeToAvailableList: ");
2064     n->dump();
2065   }
2066 #endif
2067 
2068   int latency = _current_latency[n->_idx];
2069 
2070   // Insert in latency order (insertion sort)
2071   uint i;
2072   for ( i=0; i < _available.size(); i++ )
2073     if (_current_latency[_available[i]->_idx] > latency)
2074       break;
2075 
2076   // Special Check for compares following branches
2077   if( n->is_Mach() && _scheduled.size() > 0 ) {
2078     int op = n->as_Mach()->ideal_Opcode();
2079     Node *last = _scheduled[0];
2080     if( last->is_MachIf() && last->in(1) == n &&
2081         ( op == Op_CmpI ||
2082           op == Op_CmpU ||
2083           op == Op_CmpP ||
2084           op == Op_CmpF ||
2085           op == Op_CmpD ||
2086           op == Op_CmpL ) ) {
2087 
2088       // Recalculate position, moving to front of same latency
2089       for ( i=0 ; i < _available.size(); i++ )
2090         if (_current_latency[_available[i]->_idx] >= latency)
2091           break;
2092     }
2093   }
2094 
2095   // Insert the node in the available list
2096   _available.insert(i, n);
2097 
2098 #ifndef PRODUCT
2099   if (_cfg->C->trace_opto_output())
2100     dump_available();
2101 #endif
2102 }
2103 
2104 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2105   for ( uint i=0; i < n->len(); i++ ) {
2106     Node *def = n->in(i);
2107     if (!def) continue;
2108     if( def->is_Proj() )        // If this is a machine projection, then
2109       def = def->in(0);         // propagate usage thru to the base instruction
2110 
2111     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2112       continue;
2113     }
2114 
2115     // Compute the latency
2116     uint l = _bundle_cycle_number + n->latency(i);
2117     if (_current_latency[def->_idx] < l)
2118       _current_latency[def->_idx] = l;
2119 
2120     // If this does not have uses then schedule it
2121     if ((--_uses[def->_idx]) == 0)
2122       AddNodeToAvailableList(def);
2123   }
2124 }
2125 
2126 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2127 #ifndef PRODUCT
2128   if (_cfg->C->trace_opto_output()) {
2129     tty->print("#   AddNodeToBundle: ");
2130     n->dump();
2131   }
2132 #endif
2133 
2134   // Remove this from the available list
2135   uint i;
2136   for (i = 0; i < _available.size(); i++)
2137     if (_available[i] == n)
2138       break;
2139   assert(i < _available.size(), "entry in _available list not found");
2140   _available.remove(i);
2141 
2142   // See if this fits in the current bundle
2143   const Pipeline *node_pipeline = n->pipeline();
2144   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2145 
2146   // Check for instructions to be placed in the delay slot. We
2147   // do this before we actually schedule the current instruction,
2148   // because the delay slot follows the current instruction.
2149   if (Pipeline::_branch_has_delay_slot &&
2150       node_pipeline->hasBranchDelay() &&
2151       !_unconditional_delay_slot) {
2152 
2153     uint siz = _available.size();
2154 
2155     // Conditional branches can support an instruction that
2156     // is unconditionally executed and not dependent by the
2157     // branch, OR a conditionally executed instruction if
2158     // the branch is taken.  In practice, this means that
2159     // the first instruction at the branch target is
2160     // copied to the delay slot, and the branch goes to
2161     // the instruction after that at the branch target
2162     if ( n->is_MachBranch() ) {
2163 
2164       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2165       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2166 
2167 #ifndef PRODUCT
2168       _branches++;
2169 #endif
2170 
2171       // At least 1 instruction is on the available list
2172       // that is not dependent on the branch
2173       for (uint i = 0; i < siz; i++) {
2174         Node *d = _available[i];
2175         const Pipeline *avail_pipeline = d->pipeline();
2176 
2177         // Don't allow safepoints in the branch shadow, that will
2178         // cause a number of difficulties
2179         if ( avail_pipeline->instructionCount() == 1 &&
2180             !avail_pipeline->hasMultipleBundles() &&
2181             !avail_pipeline->hasBranchDelay() &&
2182             Pipeline::instr_has_unit_size() &&
2183             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2184             NodeFitsInBundle(d) &&
2185             !node_bundling(d)->used_in_delay()) {
2186 
2187           if (d->is_Mach() && !d->is_MachSafePoint()) {
2188             // A node that fits in the delay slot was found, so we need to
2189             // set the appropriate bits in the bundle pipeline information so
2190             // that it correctly indicates resource usage.  Later, when we
2191             // attempt to add this instruction to the bundle, we will skip
2192             // setting the resource usage.
2193             _unconditional_delay_slot = d;
2194             node_bundling(n)->set_use_unconditional_delay();
2195             node_bundling(d)->set_used_in_unconditional_delay();
2196             _bundle_use.add_usage(avail_pipeline->resourceUse());
2197             _current_latency[d->_idx] = _bundle_cycle_number;
2198             _next_node = d;
2199             ++_bundle_instr_count;
2200 #ifndef PRODUCT
2201             _unconditional_delays++;
2202 #endif
2203             break;
2204           }
2205         }
2206       }
2207     }
2208 
2209     // No delay slot, add a nop to the usage
2210     if (!_unconditional_delay_slot) {
2211       // See if adding an instruction in the delay slot will overflow
2212       // the bundle.
2213       if (!NodeFitsInBundle(_nop)) {
2214 #ifndef PRODUCT
2215         if (_cfg->C->trace_opto_output())
2216           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2217 #endif
2218         step(1);
2219       }
2220 
2221       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2222       _next_node = _nop;
2223       ++_bundle_instr_count;
2224     }
2225 
2226     // See if the instruction in the delay slot requires a
2227     // step of the bundles
2228     if (!NodeFitsInBundle(n)) {
2229 #ifndef PRODUCT
2230         if (_cfg->C->trace_opto_output())
2231           tty->print("#  *** STEP(branch won't fit) ***\n");
2232 #endif
2233         // Update the state information
2234         _bundle_instr_count = 0;
2235         _bundle_cycle_number += 1;
2236         _bundle_use.step(1);
2237     }
2238   }
2239 
2240   // Get the number of instructions
2241   uint instruction_count = node_pipeline->instructionCount();
2242   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2243     instruction_count = 0;
2244 
2245   // Compute the latency information
2246   uint delay = 0;
2247 
2248   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2249     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2250     if (relative_latency < 0)
2251       relative_latency = 0;
2252 
2253     delay = _bundle_use.full_latency(relative_latency, node_usage);
2254 
2255     // Does not fit in this bundle, start a new one
2256     if (delay > 0) {
2257       step(delay);
2258 
2259 #ifndef PRODUCT
2260       if (_cfg->C->trace_opto_output())
2261         tty->print("#  *** STEP(%d) ***\n", delay);
2262 #endif
2263     }
2264   }
2265 
2266   // If this was placed in the delay slot, ignore it
2267   if (n != _unconditional_delay_slot) {
2268 
2269     if (delay == 0) {
2270       if (node_pipeline->hasMultipleBundles()) {
2271 #ifndef PRODUCT
2272         if (_cfg->C->trace_opto_output())
2273           tty->print("#  *** STEP(multiple instructions) ***\n");
2274 #endif
2275         step(1);
2276       }
2277 
2278       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2279 #ifndef PRODUCT
2280         if (_cfg->C->trace_opto_output())
2281           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2282             instruction_count + _bundle_instr_count,
2283             Pipeline::_max_instrs_per_cycle);
2284 #endif
2285         step(1);
2286       }
2287     }
2288 
2289     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2290       _bundle_instr_count++;
2291 
2292     // Set the node's latency
2293     _current_latency[n->_idx] = _bundle_cycle_number;
2294 
2295     // Now merge the functional unit information
2296     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2297       _bundle_use.add_usage(node_usage);
2298 
2299     // Increment the number of instructions in this bundle
2300     _bundle_instr_count += instruction_count;
2301 
2302     // Remember this node for later
2303     if (n->is_Mach())
2304       _next_node = n;
2305   }
2306 
2307   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2308   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2309   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2310   // into the block.  All other scheduled nodes get put in the schedule here.
2311   int op = n->Opcode();
2312   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2313       (op != Op_Node &&         // Not an unused antidepedence node and
2314        // not an unallocated boxlock
2315        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2316 
2317     // Push any trailing projections
2318     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2319       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2320         Node *foi = n->fast_out(i);
2321         if( foi->is_Proj() )
2322           _scheduled.push(foi);
2323       }
2324     }
2325 
2326     // Put the instruction in the schedule list
2327     _scheduled.push(n);
2328   }
2329 
2330 #ifndef PRODUCT
2331   if (_cfg->C->trace_opto_output())
2332     dump_available();
2333 #endif
2334 
2335   // Walk all the definitions, decrementing use counts, and
2336   // if a definition has a 0 use count, place it in the available list.
2337   DecrementUseCounts(n,bb);
2338 }
2339 
2340 // This method sets the use count within a basic block.  We will ignore all
2341 // uses outside the current basic block.  As we are doing a backwards walk,
2342 // any node we reach that has a use count of 0 may be scheduled.  This also
2343 // avoids the problem of cyclic references from phi nodes, as long as phi
2344 // nodes are at the front of the basic block.  This method also initializes
2345 // the available list to the set of instructions that have no uses within this
2346 // basic block.
2347 void Scheduling::ComputeUseCount(const Block *bb) {
2348 #ifndef PRODUCT
2349   if (_cfg->C->trace_opto_output())
2350     tty->print("# -> ComputeUseCount\n");
2351 #endif
2352 
2353   // Clear the list of available and scheduled instructions, just in case
2354   _available.clear();
2355   _scheduled.clear();
2356 
2357   // No delay slot specified
2358   _unconditional_delay_slot = NULL;
2359 
2360 #ifdef ASSERT
2361   for( uint i=0; i < bb->number_of_nodes(); i++ )
2362     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2363 #endif
2364 
2365   // Force the _uses count to never go to zero for unscheduable pieces
2366   // of the block
2367   for( uint k = 0; k < _bb_start; k++ )
2368     _uses[bb->get_node(k)->_idx] = 1;
2369   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2370     _uses[bb->get_node(l)->_idx] = 1;
2371 
2372   // Iterate backwards over the instructions in the block.  Don't count the
2373   // branch projections at end or the block header instructions.
2374   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2375     Node *n = bb->get_node(j);
2376     if( n->is_Proj() ) continue; // Projections handled another way
2377 
2378     // Account for all uses
2379     for ( uint k = 0; k < n->len(); k++ ) {
2380       Node *inp = n->in(k);
2381       if (!inp) continue;
2382       assert(inp != n, "no cycles allowed" );
2383       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2384         if (inp->is_Proj()) { // Skip through Proj's
2385           inp = inp->in(0);
2386         }
2387         ++_uses[inp->_idx];     // Count 1 block-local use
2388       }
2389     }
2390 
2391     // If this instruction has a 0 use count, then it is available
2392     if (!_uses[n->_idx]) {
2393       _current_latency[n->_idx] = _bundle_cycle_number;
2394       AddNodeToAvailableList(n);
2395     }
2396 
2397 #ifndef PRODUCT
2398     if (_cfg->C->trace_opto_output()) {
2399       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2400       n->dump();
2401     }
2402 #endif
2403   }
2404 
2405 #ifndef PRODUCT
2406   if (_cfg->C->trace_opto_output())
2407     tty->print("# <- ComputeUseCount\n");
2408 #endif
2409 }
2410 
2411 // This routine performs scheduling on each basic block in reverse order,
2412 // using instruction latencies and taking into account function unit
2413 // availability.
2414 void Scheduling::DoScheduling() {
2415 #ifndef PRODUCT
2416   if (_cfg->C->trace_opto_output())
2417     tty->print("# -> DoScheduling\n");
2418 #endif
2419 
2420   Block *succ_bb = NULL;
2421   Block *bb;
2422 
2423   // Walk over all the basic blocks in reverse order
2424   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2425     bb = _cfg->get_block(i);
2426 
2427 #ifndef PRODUCT
2428     if (_cfg->C->trace_opto_output()) {
2429       tty->print("#  Schedule BB#%03d (initial)\n", i);
2430       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2431         bb->get_node(j)->dump();
2432       }
2433     }
2434 #endif
2435 
2436     // On the head node, skip processing
2437     if (bb == _cfg->get_root_block()) {
2438       continue;
2439     }
2440 
2441     // Skip empty, connector blocks
2442     if (bb->is_connector())
2443       continue;
2444 
2445     // If the following block is not the sole successor of
2446     // this one, then reset the pipeline information
2447     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2448 #ifndef PRODUCT
2449       if (_cfg->C->trace_opto_output()) {
2450         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2451                    _next_node->_idx, _bundle_instr_count);
2452       }
2453 #endif
2454       step_and_clear();
2455     }
2456 
2457     // Leave untouched the starting instruction, any Phis, a CreateEx node
2458     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2459     _bb_end = bb->number_of_nodes()-1;
2460     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2461       Node *n = bb->get_node(_bb_start);
2462       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2463       // Also, MachIdealNodes do not get scheduled
2464       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2465       MachNode *mach = n->as_Mach();
2466       int iop = mach->ideal_Opcode();
2467       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2468       if( iop == Op_Con ) continue;      // Do not schedule Top
2469       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2470           mach->pipeline() == MachNode::pipeline_class() &&
2471           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2472         continue;
2473       break;                    // Funny loop structure to be sure...
2474     }
2475     // Compute last "interesting" instruction in block - last instruction we
2476     // might schedule.  _bb_end points just after last schedulable inst.  We
2477     // normally schedule conditional branches (despite them being forced last
2478     // in the block), because they have delay slots we can fill.  Calls all
2479     // have their delay slots filled in the template expansions, so we don't
2480     // bother scheduling them.
2481     Node *last = bb->get_node(_bb_end);
2482     // Ignore trailing NOPs.
2483     while (_bb_end > 0 && last->is_Mach() &&
2484            last->as_Mach()->ideal_Opcode() == Op_Con) {
2485       last = bb->get_node(--_bb_end);
2486     }
2487     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2488     if( last->is_Catch() ||
2489        // Exclude unreachable path case when Halt node is in a separate block.
2490        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2491       // There must be a prior call.  Skip it.
2492       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2493         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2494       }
2495     } else if( last->is_MachNullCheck() ) {
2496       // Backup so the last null-checked memory instruction is
2497       // outside the schedulable range. Skip over the nullcheck,
2498       // projection, and the memory nodes.
2499       Node *mem = last->in(1);
2500       do {
2501         _bb_end--;
2502       } while (mem != bb->get_node(_bb_end));
2503     } else {
2504       // Set _bb_end to point after last schedulable inst.
2505       _bb_end++;
2506     }
2507 
2508     assert( _bb_start <= _bb_end, "inverted block ends" );
2509 
2510     // Compute the register antidependencies for the basic block
2511     ComputeRegisterAntidependencies(bb);
2512     if (_cfg->C->failing())  return;  // too many D-U pinch points
2513 
2514     // Compute intra-bb latencies for the nodes
2515     ComputeLocalLatenciesForward(bb);
2516 
2517     // Compute the usage within the block, and set the list of all nodes
2518     // in the block that have no uses within the block.
2519     ComputeUseCount(bb);
2520 
2521     // Schedule the remaining instructions in the block
2522     while ( _available.size() > 0 ) {
2523       Node *n = ChooseNodeToBundle();
2524       guarantee(n != NULL, "no nodes available");
2525       AddNodeToBundle(n,bb);
2526     }
2527 
2528     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2529 #ifdef ASSERT
2530     for( uint l = _bb_start; l < _bb_end; l++ ) {
2531       Node *n = bb->get_node(l);
2532       uint m;
2533       for( m = 0; m < _bb_end-_bb_start; m++ )
2534         if( _scheduled[m] == n )
2535           break;
2536       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2537     }
2538 #endif
2539 
2540     // Now copy the instructions (in reverse order) back to the block
2541     for ( uint k = _bb_start; k < _bb_end; k++ )
2542       bb->map_node(_scheduled[_bb_end-k-1], k);
2543 
2544 #ifndef PRODUCT
2545     if (_cfg->C->trace_opto_output()) {
2546       tty->print("#  Schedule BB#%03d (final)\n", i);
2547       uint current = 0;
2548       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2549         Node *n = bb->get_node(j);
2550         if( valid_bundle_info(n) ) {
2551           Bundle *bundle = node_bundling(n);
2552           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2553             tty->print("*** Bundle: ");
2554             bundle->dump();
2555           }
2556           n->dump();
2557         }
2558       }
2559     }
2560 #endif
2561 #ifdef ASSERT
2562   verify_good_schedule(bb,"after block local scheduling");
2563 #endif
2564   }
2565 
2566 #ifndef PRODUCT
2567   if (_cfg->C->trace_opto_output())
2568     tty->print("# <- DoScheduling\n");
2569 #endif
2570 
2571   // Record final node-bundling array location
2572   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2573 
2574 } // end DoScheduling
2575 
2576 // Verify that no live-range used in the block is killed in the block by a
2577 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2578 
2579 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2580 static bool edge_from_to( Node *from, Node *to ) {
2581   for( uint i=0; i<from->len(); i++ )
2582     if( from->in(i) == to )
2583       return true;
2584   return false;
2585 }
2586 
2587 #ifdef ASSERT
2588 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2589   // Check for bad kills
2590   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2591     Node *prior_use = _reg_node[def];
2592     if( prior_use && !edge_from_to(prior_use,n) ) {
2593       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2594       n->dump();
2595       tty->print_cr("...");
2596       prior_use->dump();
2597       assert(edge_from_to(prior_use,n),msg);
2598     }
2599     _reg_node.map(def,NULL); // Kill live USEs
2600   }
2601 }
2602 
2603 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2604 
2605   // Zap to something reasonable for the verify code
2606   _reg_node.clear();
2607 
2608   // Walk over the block backwards.  Check to make sure each DEF doesn't
2609   // kill a live value (other than the one it's supposed to).  Add each
2610   // USE to the live set.
2611   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2612     Node *n = b->get_node(i);
2613     int n_op = n->Opcode();
2614     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2615       // Fat-proj kills a slew of registers
2616       RegMask rm = n->out_RegMask();// Make local copy
2617       while( rm.is_NotEmpty() ) {
2618         OptoReg::Name kill = rm.find_first_elem();
2619         rm.Remove(kill);
2620         verify_do_def( n, kill, msg );
2621       }
2622     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2623       // Get DEF'd registers the normal way
2624       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2625       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2626     }
2627 
2628     // Now make all USEs live
2629     for( uint i=1; i<n->req(); i++ ) {
2630       Node *def = n->in(i);
2631       assert(def != 0, "input edge required");
2632       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2633       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2634       if( OptoReg::is_valid(reg_lo) ) {
2635         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2636         _reg_node.map(reg_lo,n);
2637       }
2638       if( OptoReg::is_valid(reg_hi) ) {
2639         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2640         _reg_node.map(reg_hi,n);
2641       }
2642     }
2643 
2644   }
2645 
2646   // Zap to something reasonable for the Antidependence code
2647   _reg_node.clear();
2648 }
2649 #endif
2650 
2651 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2652 static void add_prec_edge_from_to( Node *from, Node *to ) {
2653   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2654     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2655     from = from->in(0);
2656   }
2657   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2658       !edge_from_to( from, to ) ) // Avoid duplicate edge
2659     from->add_prec(to);
2660 }
2661 
2662 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2663   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2664     return;
2665 
2666   Node *pinch = _reg_node[def_reg]; // Get pinch point
2667   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2668       is_def ) {    // Check for a true def (not a kill)
2669     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2670     return;
2671   }
2672 
2673   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2674   debug_only( def = (Node*)0xdeadbeef; )
2675 
2676   // After some number of kills there _may_ be a later def
2677   Node *later_def = NULL;
2678 
2679   // Finding a kill requires a real pinch-point.
2680   // Check for not already having a pinch-point.
2681   // Pinch points are Op_Node's.
2682   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2683     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2684     if ( _pinch_free_list.size() > 0) {
2685       pinch = _pinch_free_list.pop();
2686     } else {
2687       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2688     }
2689     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2690       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2691       return;
2692     }
2693     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2694     _reg_node.map(def_reg,pinch); // Record pinch-point
2695     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2696     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2697       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2698       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2699       later_def = NULL;           // and no later def
2700     }
2701     pinch->set_req(0,later_def);  // Hook later def so we can find it
2702   } else {                        // Else have valid pinch point
2703     if( pinch->in(0) )            // If there is a later-def
2704       later_def = pinch->in(0);   // Get it
2705   }
2706 
2707   // Add output-dependence edge from later def to kill
2708   if( later_def )               // If there is some original def
2709     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2710 
2711   // See if current kill is also a use, and so is forced to be the pinch-point.
2712   if( pinch->Opcode() == Op_Node ) {
2713     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2714     for( uint i=1; i<uses->req(); i++ ) {
2715       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2716           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2717         // Yes, found a use/kill pinch-point
2718         pinch->set_req(0,NULL);  //
2719         pinch->replace_by(kill); // Move anti-dep edges up
2720         pinch = kill;
2721         _reg_node.map(def_reg,pinch);
2722         return;
2723       }
2724     }
2725   }
2726 
2727   // Add edge from kill to pinch-point
2728   add_prec_edge_from_to(kill,pinch);
2729 }
2730 
2731 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2732   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2733     return;
2734   Node *pinch = _reg_node[use_reg]; // Get pinch point
2735   // Check for no later def_reg/kill in block
2736   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2737       // Use has to be block-local as well
2738       _cfg->get_block_for_node(use) == b) {
2739     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2740         pinch->req() == 1 ) {   // pinch not yet in block?
2741       pinch->del_req(0);        // yank pointer to later-def, also set flag
2742       // Insert the pinch-point in the block just after the last use
2743       b->insert_node(pinch, b->find_node(use) + 1);
2744       _bb_end++;                // Increase size scheduled region in block
2745     }
2746 
2747     add_prec_edge_from_to(pinch,use);
2748   }
2749 }
2750 
2751 // We insert antidependences between the reads and following write of
2752 // allocated registers to prevent illegal code motion. Hopefully, the
2753 // number of added references should be fairly small, especially as we
2754 // are only adding references within the current basic block.
2755 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2756 
2757 #ifdef ASSERT
2758   verify_good_schedule(b,"before block local scheduling");
2759 #endif
2760 
2761   // A valid schedule, for each register independently, is an endless cycle
2762   // of: a def, then some uses (connected to the def by true dependencies),
2763   // then some kills (defs with no uses), finally the cycle repeats with a new
2764   // def.  The uses are allowed to float relative to each other, as are the
2765   // kills.  No use is allowed to slide past a kill (or def).  This requires
2766   // antidependencies between all uses of a single def and all kills that
2767   // follow, up to the next def.  More edges are redundant, because later defs
2768   // & kills are already serialized with true or antidependencies.  To keep
2769   // the edge count down, we add a 'pinch point' node if there's more than
2770   // one use or more than one kill/def.
2771 
2772   // We add dependencies in one bottom-up pass.
2773 
2774   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2775 
2776   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2777   // register.  If not, we record the DEF/KILL in _reg_node, the
2778   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2779   // "pinch point", a new Node that's in the graph but not in the block.
2780   // We put edges from the prior and current DEF/KILLs to the pinch point.
2781   // We put the pinch point in _reg_node.  If there's already a pinch point
2782   // we merely add an edge from the current DEF/KILL to the pinch point.
2783 
2784   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2785   // put an edge from the pinch point to the USE.
2786 
2787   // To be expedient, the _reg_node array is pre-allocated for the whole
2788   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2789   // or a valid def/kill/pinch-point, or a leftover node from some prior
2790   // block.  Leftover node from some prior block is treated like a NULL (no
2791   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2792   // it being in the current block.
2793   bool fat_proj_seen = false;
2794   uint last_safept = _bb_end-1;
2795   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2796   Node* last_safept_node = end_node;
2797   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2798     Node *n = b->get_node(i);
2799     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2800     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2801       // Fat-proj kills a slew of registers
2802       // This can add edges to 'n' and obscure whether or not it was a def,
2803       // hence the is_def flag.
2804       fat_proj_seen = true;
2805       RegMask rm = n->out_RegMask();// Make local copy
2806       while( rm.is_NotEmpty() ) {
2807         OptoReg::Name kill = rm.find_first_elem();
2808         rm.Remove(kill);
2809         anti_do_def( b, n, kill, is_def );
2810       }
2811     } else {
2812       // Get DEF'd registers the normal way
2813       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2814       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2815     }
2816 
2817     // Kill projections on a branch should appear to occur on the
2818     // branch, not afterwards, so grab the masks from the projections
2819     // and process them.
2820     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2821       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2822         Node* use = n->fast_out(i);
2823         if (use->is_Proj()) {
2824           RegMask rm = use->out_RegMask();// Make local copy
2825           while( rm.is_NotEmpty() ) {
2826             OptoReg::Name kill = rm.find_first_elem();
2827             rm.Remove(kill);
2828             anti_do_def( b, n, kill, false );
2829           }
2830         }
2831       }
2832     }
2833 
2834     // Check each register used by this instruction for a following DEF/KILL
2835     // that must occur afterward and requires an anti-dependence edge.
2836     for( uint j=0; j<n->req(); j++ ) {
2837       Node *def = n->in(j);
2838       if( def ) {
2839         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2840         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2841         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2842       }
2843     }
2844     // Do not allow defs of new derived values to float above GC
2845     // points unless the base is definitely available at the GC point.
2846 
2847     Node *m = b->get_node(i);
2848 
2849     // Add precedence edge from following safepoint to use of derived pointer
2850     if( last_safept_node != end_node &&
2851         m != last_safept_node) {
2852       for (uint k = 1; k < m->req(); k++) {
2853         const Type *t = m->in(k)->bottom_type();
2854         if( t->isa_oop_ptr() &&
2855             t->is_ptr()->offset() != 0 ) {
2856           last_safept_node->add_prec( m );
2857           break;
2858         }
2859       }
2860     }
2861 
2862     if( n->jvms() ) {           // Precedence edge from derived to safept
2863       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2864       if( b->get_node(last_safept) != last_safept_node ) {
2865         last_safept = b->find_node(last_safept_node);
2866       }
2867       for( uint j=last_safept; j > i; j-- ) {
2868         Node *mach = b->get_node(j);
2869         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2870           mach->add_prec( n );
2871       }
2872       last_safept = i;
2873       last_safept_node = m;
2874     }
2875   }
2876 
2877   if (fat_proj_seen) {
2878     // Garbage collect pinch nodes that were not consumed.
2879     // They are usually created by a fat kill MachProj for a call.
2880     garbage_collect_pinch_nodes();
2881   }
2882 }
2883 
2884 // Garbage collect pinch nodes for reuse by other blocks.
2885 //
2886 // The block scheduler's insertion of anti-dependence
2887 // edges creates many pinch nodes when the block contains
2888 // 2 or more Calls.  A pinch node is used to prevent a
2889 // combinatorial explosion of edges.  If a set of kills for a
2890 // register is anti-dependent on a set of uses (or defs), rather
2891 // than adding an edge in the graph between each pair of kill
2892 // and use (or def), a pinch is inserted between them:
2893 //
2894 //            use1   use2  use3
2895 //                \   |   /
2896 //                 \  |  /
2897 //                  pinch
2898 //                 /  |  \
2899 //                /   |   \
2900 //            kill1 kill2 kill3
2901 //
2902 // One pinch node is created per register killed when
2903 // the second call is encountered during a backwards pass
2904 // over the block.  Most of these pinch nodes are never
2905 // wired into the graph because the register is never
2906 // used or def'ed in the block.
2907 //
2908 void Scheduling::garbage_collect_pinch_nodes() {
2909 #ifndef PRODUCT
2910     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2911 #endif
2912     int trace_cnt = 0;
2913     for (uint k = 0; k < _reg_node.Size(); k++) {
2914       Node* pinch = _reg_node[k];
2915       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2916           // no predecence input edges
2917           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2918         cleanup_pinch(pinch);
2919         _pinch_free_list.push(pinch);
2920         _reg_node.map(k, NULL);
2921 #ifndef PRODUCT
2922         if (_cfg->C->trace_opto_output()) {
2923           trace_cnt++;
2924           if (trace_cnt > 40) {
2925             tty->print("\n");
2926             trace_cnt = 0;
2927           }
2928           tty->print(" %d", pinch->_idx);
2929         }
2930 #endif
2931       }
2932     }
2933 #ifndef PRODUCT
2934     if (_cfg->C->trace_opto_output()) tty->print("\n");
2935 #endif
2936 }
2937 
2938 // Clean up a pinch node for reuse.
2939 void Scheduling::cleanup_pinch( Node *pinch ) {
2940   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2941 
2942   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2943     Node* use = pinch->last_out(i);
2944     uint uses_found = 0;
2945     for (uint j = use->req(); j < use->len(); j++) {
2946       if (use->in(j) == pinch) {
2947         use->rm_prec(j);
2948         uses_found++;
2949       }
2950     }
2951     assert(uses_found > 0, "must be a precedence edge");
2952     i -= uses_found;    // we deleted 1 or more copies of this edge
2953   }
2954   // May have a later_def entry
2955   pinch->set_req(0, NULL);
2956 }
2957 
2958 #ifndef PRODUCT
2959 
2960 void Scheduling::dump_available() const {
2961   tty->print("#Availist  ");
2962   for (uint i = 0; i < _available.size(); i++)
2963     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2964   tty->cr();
2965 }
2966 
2967 // Print Scheduling Statistics
2968 void Scheduling::print_statistics() {
2969   // Print the size added by nops for bundling
2970   tty->print("Nops added %d bytes to total of %d bytes",
2971     _total_nop_size, _total_method_size);
2972   if (_total_method_size > 0)
2973     tty->print(", for %.2f%%",
2974       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2975   tty->print("\n");
2976 
2977   // Print the number of branch shadows filled
2978   if (Pipeline::_branch_has_delay_slot) {
2979     tty->print("Of %d branches, %d had unconditional delay slots filled",
2980       _total_branches, _total_unconditional_delays);
2981     if (_total_branches > 0)
2982       tty->print(", for %.2f%%",
2983         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2984     tty->print("\n");
2985   }
2986 
2987   uint total_instructions = 0, total_bundles = 0;
2988 
2989   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2990     uint bundle_count   = _total_instructions_per_bundle[i];
2991     total_instructions += bundle_count * i;
2992     total_bundles      += bundle_count;
2993   }
2994 
2995   if (total_bundles > 0)
2996     tty->print("Average ILP (excluding nops) is %.2f\n",
2997       ((double)total_instructions) / ((double)total_bundles));
2998 }
2999 #endif