1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  88 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  92 
  93 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  97 
  98 #ifdef COMPILER2
  99 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 100 #endif // COMPILER2
 101 
 102 
 103 //----------------------------generate_stubs-----------------------------------
 104 void SharedRuntime::generate_stubs() {
 105   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 106   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 107   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 108   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 109   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 110   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 111 
 112 #ifdef COMPILER2
 113   // Vectors are generated only by C2.
 114   if (is_wide_vector(MaxVectorSize)) {
 115     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 116   }
 117 #endif // COMPILER2
 118   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 119   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 120 
 121   generate_deopt_blob();
 122 
 123 #ifdef COMPILER2
 124   generate_uncommon_trap_blob();
 125 #endif // COMPILER2
 126 }
 127 
 128 #include <math.h>
 129 
 130 // Implementation of SharedRuntime
 131 
 132 #ifndef PRODUCT
 133 // For statistics
 134 int SharedRuntime::_ic_miss_ctr = 0;
 135 int SharedRuntime::_wrong_method_ctr = 0;
 136 int SharedRuntime::_resolve_static_ctr = 0;
 137 int SharedRuntime::_resolve_virtual_ctr = 0;
 138 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 139 int SharedRuntime::_implicit_null_throws = 0;
 140 int SharedRuntime::_implicit_div0_throws = 0;
 141 int SharedRuntime::_throw_null_ctr = 0;
 142 
 143 int SharedRuntime::_nof_normal_calls = 0;
 144 int SharedRuntime::_nof_optimized_calls = 0;
 145 int SharedRuntime::_nof_inlined_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_calls = 0;
 147 int SharedRuntime::_nof_static_calls = 0;
 148 int SharedRuntime::_nof_inlined_static_calls = 0;
 149 int SharedRuntime::_nof_interface_calls = 0;
 150 int SharedRuntime::_nof_optimized_interface_calls = 0;
 151 int SharedRuntime::_nof_inlined_interface_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 153 int SharedRuntime::_nof_removable_exceptions = 0;
 154 
 155 int SharedRuntime::_new_instance_ctr=0;
 156 int SharedRuntime::_new_array_ctr=0;
 157 int SharedRuntime::_multi1_ctr=0;
 158 int SharedRuntime::_multi2_ctr=0;
 159 int SharedRuntime::_multi3_ctr=0;
 160 int SharedRuntime::_multi4_ctr=0;
 161 int SharedRuntime::_multi5_ctr=0;
 162 int SharedRuntime::_mon_enter_stub_ctr=0;
 163 int SharedRuntime::_mon_exit_stub_ctr=0;
 164 int SharedRuntime::_mon_enter_ctr=0;
 165 int SharedRuntime::_mon_exit_ctr=0;
 166 int SharedRuntime::_partial_subtype_ctr=0;
 167 int SharedRuntime::_jbyte_array_copy_ctr=0;
 168 int SharedRuntime::_jshort_array_copy_ctr=0;
 169 int SharedRuntime::_jint_array_copy_ctr=0;
 170 int SharedRuntime::_jlong_array_copy_ctr=0;
 171 int SharedRuntime::_oop_array_copy_ctr=0;
 172 int SharedRuntime::_checkcast_array_copy_ctr=0;
 173 int SharedRuntime::_unsafe_array_copy_ctr=0;
 174 int SharedRuntime::_generic_array_copy_ctr=0;
 175 int SharedRuntime::_slow_array_copy_ctr=0;
 176 int SharedRuntime::_find_handler_ctr=0;
 177 int SharedRuntime::_rethrow_ctr=0;
 178 
 179 int     SharedRuntime::_ICmiss_index                    = 0;
 180 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 181 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 182 
 183 
 184 void SharedRuntime::trace_ic_miss(address at) {
 185   for (int i = 0; i < _ICmiss_index; i++) {
 186     if (_ICmiss_at[i] == at) {
 187       _ICmiss_count[i]++;
 188       return;
 189     }
 190   }
 191   int index = _ICmiss_index++;
 192   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 193   _ICmiss_at[index] = at;
 194   _ICmiss_count[index] = 1;
 195 }
 196 
 197 void SharedRuntime::print_ic_miss_histogram() {
 198   if (ICMissHistogram) {
 199     tty->print_cr ("IC Miss Histogram:");
 200     int tot_misses = 0;
 201     for (int i = 0; i < _ICmiss_index; i++) {
 202       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 203       tot_misses += _ICmiss_count[i];
 204     }
 205     tty->print_cr ("Total IC misses: %7d", tot_misses);
 206   }
 207 }
 208 #endif // PRODUCT
 209 
 210 #if INCLUDE_ALL_GCS
 211 
 212 // G1 write-barrier pre: executed before a pointer store.
 213 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 214   if (orig == NULL) {
 215     assert(false, "should be optimized out");
 216     return;
 217   }
 218   assert(orig->is_oop(true /* ignore mark word */), "Error");
 219   // store the original value that was in the field reference
 220   thread->satb_mark_queue().enqueue(orig);
 221 JRT_END
 222 
 223 // G1 write-barrier post: executed after a pointer store.
 224 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 225   thread->dirty_card_queue().enqueue(card_addr);
 226 JRT_END
 227 
 228 #endif // INCLUDE_ALL_GCS
 229 
 230 
 231 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 232   return x * y;
 233 JRT_END
 234 
 235 
 236 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 237   if (x == min_jlong && y == CONST64(-1)) {
 238     return x;
 239   } else {
 240     return x / y;
 241   }
 242 JRT_END
 243 
 244 
 245 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 246   if (x == min_jlong && y == CONST64(-1)) {
 247     return 0;
 248   } else {
 249     return x % y;
 250   }
 251 JRT_END
 252 
 253 
 254 const juint  float_sign_mask  = 0x7FFFFFFF;
 255 const juint  float_infinity   = 0x7F800000;
 256 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 257 const julong double_infinity  = CONST64(0x7FF0000000000000);
 258 
 259 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 260 #ifdef _WIN64
 261   // 64-bit Windows on amd64 returns the wrong values for
 262   // infinity operands.
 263   union { jfloat f; juint i; } xbits, ybits;
 264   xbits.f = x;
 265   ybits.f = y;
 266   // x Mod Infinity == x unless x is infinity
 267   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 268        ((ybits.i & float_sign_mask) == float_infinity) ) {
 269     return x;
 270   }
 271 #endif
 272   return ((jfloat)fmod((double)x,(double)y));
 273 JRT_END
 274 
 275 
 276 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 277 #ifdef _WIN64
 278   union { jdouble d; julong l; } xbits, ybits;
 279   xbits.d = x;
 280   ybits.d = y;
 281   // x Mod Infinity == x unless x is infinity
 282   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 283        ((ybits.l & double_sign_mask) == double_infinity) ) {
 284     return x;
 285   }
 286 #endif
 287   return ((jdouble)fmod((double)x,(double)y));
 288 JRT_END
 289 
 290 #ifdef __SOFTFP__
 291 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 292   return x + y;
 293 JRT_END
 294 
 295 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 296   return x - y;
 297 JRT_END
 298 
 299 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 300   return x * y;
 301 JRT_END
 302 
 303 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 304   return x / y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 308   return x + y;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 312   return x - y;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 316   return x * y;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 320   return x / y;
 321 JRT_END
 322 
 323 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 324   return (jfloat)x;
 325 JRT_END
 326 
 327 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 328   return (jdouble)x;
 329 JRT_END
 330 
 331 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 332   return (jdouble)x;
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 336   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 337 JRT_END
 338 
 339 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 340   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 341 JRT_END
 342 
 343 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 344   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 345 JRT_END
 346 
 347 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 348   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 349 JRT_END
 350 
 351 // Functions to return the opposite of the aeabi functions for nan.
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 353   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 357   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 361   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 365   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 369   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 373   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 377   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 378 JRT_END
 379 
 380 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 381   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 382 JRT_END
 383 
 384 // Intrinsics make gcc generate code for these.
 385 float  SharedRuntime::fneg(float f)   {
 386   return -f;
 387 }
 388 
 389 double SharedRuntime::dneg(double f)  {
 390   return -f;
 391 }
 392 
 393 #endif // __SOFTFP__
 394 
 395 #if defined(__SOFTFP__) || defined(E500V2)
 396 // Intrinsics make gcc generate code for these.
 397 double SharedRuntime::dabs(double f)  {
 398   return (f <= (double)0.0) ? (double)0.0 - f : f;
 399 }
 400 
 401 #endif
 402 
 403 #if defined(__SOFTFP__) || defined(PPC32)
 404 double SharedRuntime::dsqrt(double f) {
 405   return sqrt(f);
 406 }
 407 #endif
 408 
 409 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 410   if (g_isnan(x))
 411     return 0;
 412   if (x >= (jfloat) max_jint)
 413     return max_jint;
 414   if (x <= (jfloat) min_jint)
 415     return min_jint;
 416   return (jint) x;
 417 JRT_END
 418 
 419 
 420 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 421   if (g_isnan(x))
 422     return 0;
 423   if (x >= (jfloat) max_jlong)
 424     return max_jlong;
 425   if (x <= (jfloat) min_jlong)
 426     return min_jlong;
 427   return (jlong) x;
 428 JRT_END
 429 
 430 
 431 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 432   if (g_isnan(x))
 433     return 0;
 434   if (x >= (jdouble) max_jint)
 435     return max_jint;
 436   if (x <= (jdouble) min_jint)
 437     return min_jint;
 438   return (jint) x;
 439 JRT_END
 440 
 441 
 442 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 443   if (g_isnan(x))
 444     return 0;
 445   if (x >= (jdouble) max_jlong)
 446     return max_jlong;
 447   if (x <= (jdouble) min_jlong)
 448     return min_jlong;
 449   return (jlong) x;
 450 JRT_END
 451 
 452 
 453 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 454   return (jfloat)x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 459   return (jfloat)x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 464   return (jdouble)x;
 465 JRT_END
 466 
 467 // Exception handling across interpreter/compiler boundaries
 468 //
 469 // exception_handler_for_return_address(...) returns the continuation address.
 470 // The continuation address is the entry point of the exception handler of the
 471 // previous frame depending on the return address.
 472 
 473 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 474   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 475 
 476   // Reset method handle flag.
 477   thread->set_is_method_handle_return(false);
 478 
 479   // The fastest case first
 480   CodeBlob* blob = CodeCache::find_blob(return_address);
 481   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 482   if (nm != NULL) {
 483     // Set flag if return address is a method handle call site.
 484     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 485     // native nmethods don't have exception handlers
 486     assert(!nm->is_native_method(), "no exception handler");
 487     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 488     if (nm->is_deopt_pc(return_address)) {
 489       // If we come here because of a stack overflow, the stack may be
 490       // unguarded. Reguard the stack otherwise if we return to the
 491       // deopt blob and the stack bang causes a stack overflow we
 492       // crash.
 493       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 494       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 495       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 496       return SharedRuntime::deopt_blob()->unpack_with_exception();
 497     } else {
 498       return nm->exception_begin();
 499     }
 500   }
 501 
 502   // Entry code
 503   if (StubRoutines::returns_to_call_stub(return_address)) {
 504     return StubRoutines::catch_exception_entry();
 505   }
 506   // Interpreted code
 507   if (Interpreter::contains(return_address)) {
 508     return Interpreter::rethrow_exception_entry();
 509   }
 510 
 511   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 512   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 513 
 514 #ifndef PRODUCT
 515   { ResourceMark rm;
 516     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 517     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 518     tty->print_cr("b) other problem");
 519   }
 520 #endif // PRODUCT
 521 
 522   ShouldNotReachHere();
 523   return NULL;
 524 }
 525 
 526 
 527 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 528   return raw_exception_handler_for_return_address(thread, return_address);
 529 JRT_END
 530 
 531 
 532 address SharedRuntime::get_poll_stub(address pc) {
 533   address stub;
 534   // Look up the code blob
 535   CodeBlob *cb = CodeCache::find_blob(pc);
 536 
 537   // Should be an nmethod
 538   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 539 
 540   // Look up the relocation information
 541   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 542     "safepoint polling: type must be poll" );
 543 
 544   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 545     "Only polling locations are used for safepoint");
 546 
 547   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 548   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 549   if (at_poll_return) {
 550     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 551            "polling page return stub not created yet");
 552     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 553   } else if (has_wide_vectors) {
 554     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 555            "polling page vectors safepoint stub not created yet");
 556     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 557   } else {
 558     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 559            "polling page safepoint stub not created yet");
 560     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 561   }
 562 #ifndef PRODUCT
 563   if( TraceSafepoint ) {
 564     char buf[256];
 565     jio_snprintf(buf, sizeof(buf),
 566                  "... found polling page %s exception at pc = "
 567                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 568                  at_poll_return ? "return" : "loop",
 569                  (intptr_t)pc, (intptr_t)stub);
 570     tty->print_raw_cr(buf);
 571   }
 572 #endif // PRODUCT
 573   return stub;
 574 }
 575 
 576 
 577 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 578   assert(caller.is_interpreted_frame(), "");
 579   int args_size = ArgumentSizeComputer(sig).size() + 1;
 580   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 581   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 582   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 583   return result;
 584 }
 585 
 586 
 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 588   if (JvmtiExport::can_post_on_exceptions()) {
 589     vframeStream vfst(thread, true);
 590     methodHandle method = methodHandle(thread, vfst.method());
 591     address bcp = method()->bcp_from(vfst.bci());
 592     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 593   }
 594   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 595 }
 596 
 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 598   Handle h_exception = Exceptions::new_exception(thread, name, message);
 599   throw_and_post_jvmti_exception(thread, h_exception);
 600 }
 601 
 602 // The interpreter code to call this tracing function is only
 603 // called/generated when TraceRedefineClasses has the right bits
 604 // set. Since obsolete methods are never compiled, we don't have
 605 // to modify the compilers to generate calls to this function.
 606 //
 607 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 608     JavaThread* thread, Method* method))
 609   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 610 
 611   if (method->is_obsolete()) {
 612     // We are calling an obsolete method, but this is not necessarily
 613     // an error. Our method could have been redefined just after we
 614     // fetched the Method* from the constant pool.
 615 
 616     // RC_TRACE macro has an embedded ResourceMark
 617     RC_TRACE_WITH_THREAD(0x00001000, thread,
 618                          ("calling obsolete method '%s'",
 619                           method->name_and_sig_as_C_string()));
 620     if (RC_TRACE_ENABLED(0x00002000)) {
 621       // this option is provided to debug calls to obsolete methods
 622       guarantee(false, "faulting at call to an obsolete method.");
 623     }
 624   }
 625   return 0;
 626 JRT_END
 627 
 628 // ret_pc points into caller; we are returning caller's exception handler
 629 // for given exception
 630 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 631                                                     bool force_unwind, bool top_frame_only) {
 632   assert(nm != NULL, "must exist");
 633   ResourceMark rm;
 634 
 635   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 636   // determine handler bci, if any
 637   EXCEPTION_MARK;
 638 
 639   int handler_bci = -1;
 640   int scope_depth = 0;
 641   if (!force_unwind) {
 642     int bci = sd->bci();
 643     bool recursive_exception = false;
 644     do {
 645       bool skip_scope_increment = false;
 646       // exception handler lookup
 647       KlassHandle ek (THREAD, exception->klass());
 648       methodHandle mh(THREAD, sd->method());
 649       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 650       if (HAS_PENDING_EXCEPTION) {
 651         recursive_exception = true;
 652         // We threw an exception while trying to find the exception handler.
 653         // Transfer the new exception to the exception handle which will
 654         // be set into thread local storage, and do another lookup for an
 655         // exception handler for this exception, this time starting at the
 656         // BCI of the exception handler which caused the exception to be
 657         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 658         // argument to ensure that the correct exception is thrown (4870175).
 659         exception = Handle(THREAD, PENDING_EXCEPTION);
 660         CLEAR_PENDING_EXCEPTION;
 661         if (handler_bci >= 0) {
 662           bci = handler_bci;
 663           handler_bci = -1;
 664           skip_scope_increment = true;
 665         }
 666       }
 667       else {
 668         recursive_exception = false;
 669       }
 670       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 671         sd = sd->sender();
 672         if (sd != NULL) {
 673           bci = sd->bci();
 674         }
 675         ++scope_depth;
 676       }
 677     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 678   }
 679 
 680   // found handling method => lookup exception handler
 681   int catch_pco = ret_pc - nm->code_begin();
 682 
 683   ExceptionHandlerTable table(nm);
 684   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 685   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 686     // Allow abbreviated catch tables.  The idea is to allow a method
 687     // to materialize its exceptions without committing to the exact
 688     // routing of exceptions.  In particular this is needed for adding
 689     // a synthetic handler to unlock monitors when inlining
 690     // synchronized methods since the unlock path isn't represented in
 691     // the bytecodes.
 692     t = table.entry_for(catch_pco, -1, 0);
 693   }
 694 
 695 #ifdef COMPILER1
 696   if (t == NULL && nm->is_compiled_by_c1()) {
 697     assert(nm->unwind_handler_begin() != NULL, "");
 698     return nm->unwind_handler_begin();
 699   }
 700 #endif
 701 
 702   if (t == NULL) {
 703     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 704     tty->print_cr("   Exception:");
 705     exception->print();
 706     tty->cr();
 707     tty->print_cr(" Compiled exception table :");
 708     table.print();
 709     nm->print_code();
 710     guarantee(false, "missing exception handler");
 711     return NULL;
 712   }
 713 
 714   return nm->code_begin() + t->pco();
 715 }
 716 
 717 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 718   // These errors occur only at call sites
 719   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 720 JRT_END
 721 
 722 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 723   // These errors occur only at call sites
 724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 725 JRT_END
 726 
 727 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 736   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 737   // cache sites (when the callee activation is not yet set up) so we are at a call site
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 742   // We avoid using the normal exception construction in this case because
 743   // it performs an upcall to Java, and we're already out of stack space.
 744   Klass* k = SystemDictionary::StackOverflowError_klass();
 745   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 746   Handle exception (thread, exception_oop);
 747   if (StackTraceInThrowable) {
 748     java_lang_Throwable::fill_in_stack_trace(exception);
 749   }
 750   throw_and_post_jvmti_exception(thread, exception);
 751 JRT_END
 752 
 753 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 754                                                            address pc,
 755                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 756 {
 757   address target_pc = NULL;
 758 
 759   if (Interpreter::contains(pc)) {
 760 #ifdef CC_INTERP
 761     // C++ interpreter doesn't throw implicit exceptions
 762     ShouldNotReachHere();
 763 #else
 764     switch (exception_kind) {
 765       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 766       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 767       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 768       default:                      ShouldNotReachHere();
 769     }
 770 #endif // !CC_INTERP
 771   } else {
 772     switch (exception_kind) {
 773       case STACK_OVERFLOW: {
 774         // Stack overflow only occurs upon frame setup; the callee is
 775         // going to be unwound. Dispatch to a shared runtime stub
 776         // which will cause the StackOverflowError to be fabricated
 777         // and processed.
 778         // Stack overflow should never occur during deoptimization:
 779         // the compiled method bang the stack by as much as the
 780         // interpreter would need in case of a deoptimization. The
 781         // deoptimization blob and uncommon trap blob bang the stack
 782         // in a debug VM to verify the correctness of the compiled
 783         // method stack banging.
 784         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 785         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 786         return StubRoutines::throw_StackOverflowError_entry();
 787       }
 788 
 789       case IMPLICIT_NULL: {
 790         if (VtableStubs::contains(pc)) {
 791           // We haven't yet entered the callee frame. Fabricate an
 792           // exception and begin dispatching it in the caller. Since
 793           // the caller was at a call site, it's safe to destroy all
 794           // caller-saved registers, as these entry points do.
 795           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 796 
 797           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 798           if (vt_stub == NULL) return NULL;
 799 
 800           if (vt_stub->is_abstract_method_error(pc)) {
 801             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 802             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 803             return StubRoutines::throw_AbstractMethodError_entry();
 804           } else {
 805             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 806             return StubRoutines::throw_NullPointerException_at_call_entry();
 807           }
 808         } else {
 809           CodeBlob* cb = CodeCache::find_blob(pc);
 810 
 811           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 812           if (cb == NULL) return NULL;
 813 
 814           // Exception happened in CodeCache. Must be either:
 815           // 1. Inline-cache check in C2I handler blob,
 816           // 2. Inline-cache check in nmethod, or
 817           // 3. Implicit null exception in nmethod
 818 
 819           if (!cb->is_nmethod()) {
 820             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 821             if (!is_in_blob) {
 822               cb->print();
 823               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 824             }
 825             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 826             // There is no handler here, so we will simply unwind.
 827             return StubRoutines::throw_NullPointerException_at_call_entry();
 828           }
 829 
 830           // Otherwise, it's an nmethod.  Consult its exception handlers.
 831           nmethod* nm = (nmethod*)cb;
 832           if (nm->inlinecache_check_contains(pc)) {
 833             // exception happened inside inline-cache check code
 834             // => the nmethod is not yet active (i.e., the frame
 835             // is not set up yet) => use return address pushed by
 836             // caller => don't push another return address
 837             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 838             return StubRoutines::throw_NullPointerException_at_call_entry();
 839           }
 840 
 841           if (nm->method()->is_method_handle_intrinsic()) {
 842             // exception happened inside MH dispatch code, similar to a vtable stub
 843             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 844             return StubRoutines::throw_NullPointerException_at_call_entry();
 845           }
 846 
 847 #ifndef PRODUCT
 848           _implicit_null_throws++;
 849 #endif
 850           target_pc = nm->continuation_for_implicit_exception(pc);
 851           // If there's an unexpected fault, target_pc might be NULL,
 852           // in which case we want to fall through into the normal
 853           // error handling code.
 854         }
 855 
 856         break; // fall through
 857       }
 858 
 859 
 860       case IMPLICIT_DIVIDE_BY_ZERO: {
 861         nmethod* nm = CodeCache::find_nmethod(pc);
 862         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 863 #ifndef PRODUCT
 864         _implicit_div0_throws++;
 865 #endif
 866         target_pc = nm->continuation_for_implicit_exception(pc);
 867         // If there's an unexpected fault, target_pc might be NULL,
 868         // in which case we want to fall through into the normal
 869         // error handling code.
 870         break; // fall through
 871       }
 872 
 873       default: ShouldNotReachHere();
 874     }
 875 
 876     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 877 
 878     // for AbortVMOnException flag
 879     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 880     if (exception_kind == IMPLICIT_NULL) {
 881       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 882     } else {
 883       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 884     }
 885     return target_pc;
 886   }
 887 
 888   ShouldNotReachHere();
 889   return NULL;
 890 }
 891 
 892 
 893 /**
 894  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 895  * installed in the native function entry of all native Java methods before
 896  * they get linked to their actual native methods.
 897  *
 898  * \note
 899  * This method actually never gets called!  The reason is because
 900  * the interpreter's native entries call NativeLookup::lookup() which
 901  * throws the exception when the lookup fails.  The exception is then
 902  * caught and forwarded on the return from NativeLookup::lookup() call
 903  * before the call to the native function.  This might change in the future.
 904  */
 905 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 906 {
 907   // We return a bad value here to make sure that the exception is
 908   // forwarded before we look at the return value.
 909   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 910 }
 911 JNI_END
 912 
 913 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 914   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 915 }
 916 
 917 
 918 #ifndef PRODUCT
 919 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 920   const frame f = thread->last_frame();
 921   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 922 #ifndef PRODUCT
 923   methodHandle mh(THREAD, f.interpreter_frame_method());
 924   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 925 #endif // !PRODUCT
 926   return preserve_this_value;
 927 JRT_END
 928 #endif // !PRODUCT
 929 
 930 
 931 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 932   os::yield_all(attempts);
 933 JRT_END
 934 
 935 
 936 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 937   assert(obj->is_oop(), "must be a valid oop");
 938   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 939   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 940 JRT_END
 941 
 942 
 943 jlong SharedRuntime::get_java_tid(Thread* thread) {
 944   if (thread != NULL) {
 945     if (thread->is_Java_thread()) {
 946       oop obj = ((JavaThread*)thread)->threadObj();
 947       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 948     }
 949   }
 950   return 0;
 951 }
 952 
 953 /**
 954  * This function ought to be a void function, but cannot be because
 955  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 956  * 6254741.  Once that is fixed we can remove the dummy return value.
 957  */
 958 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 959   return dtrace_object_alloc_base(Thread::current(), o);
 960 }
 961 
 962 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 963   assert(DTraceAllocProbes, "wrong call");
 964   Klass* klass = o->klass();
 965   int size = o->size();
 966   Symbol* name = klass->name();
 967   HOTSPOT_OBJECT_ALLOC(
 968                    get_java_tid(thread),
 969                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 970   return 0;
 971 }
 972 
 973 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 974     JavaThread* thread, Method* method))
 975   assert(DTraceMethodProbes, "wrong call");
 976   Symbol* kname = method->klass_name();
 977   Symbol* name = method->name();
 978   Symbol* sig = method->signature();
 979   HOTSPOT_METHOD_ENTRY(
 980       get_java_tid(thread),
 981       (char *) kname->bytes(), kname->utf8_length(),
 982       (char *) name->bytes(), name->utf8_length(),
 983       (char *) sig->bytes(), sig->utf8_length());
 984   return 0;
 985 JRT_END
 986 
 987 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 988     JavaThread* thread, Method* method))
 989   assert(DTraceMethodProbes, "wrong call");
 990   Symbol* kname = method->klass_name();
 991   Symbol* name = method->name();
 992   Symbol* sig = method->signature();
 993   HOTSPOT_METHOD_RETURN(
 994       get_java_tid(thread),
 995       (char *) kname->bytes(), kname->utf8_length(),
 996       (char *) name->bytes(), name->utf8_length(),
 997       (char *) sig->bytes(), sig->utf8_length());
 998   return 0;
 999 JRT_END
1000 
1001 
1002 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1003 // for a call current in progress, i.e., arguments has been pushed on stack
1004 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1005 // vtable updates, etc.  Caller frame must be compiled.
1006 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1007   ResourceMark rm(THREAD);
1008 
1009   // last java frame on stack (which includes native call frames)
1010   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1011 
1012   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1013 }
1014 
1015 
1016 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1017 // for a call current in progress, i.e., arguments has been pushed on stack
1018 // but callee has not been invoked yet.  Caller frame must be compiled.
1019 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1020                                               vframeStream& vfst,
1021                                               Bytecodes::Code& bc,
1022                                               CallInfo& callinfo, TRAPS) {
1023   Handle receiver;
1024   Handle nullHandle;  //create a handy null handle for exception returns
1025 
1026   assert(!vfst.at_end(), "Java frame must exist");
1027 
1028   // Find caller and bci from vframe
1029   methodHandle caller(THREAD, vfst.method());
1030   int          bci   = vfst.bci();
1031 
1032   // Find bytecode
1033   Bytecode_invoke bytecode(caller, bci);
1034   bc = bytecode.invoke_code();
1035   int bytecode_index = bytecode.index();
1036 
1037   // Find receiver for non-static call
1038   if (bc != Bytecodes::_invokestatic &&
1039       bc != Bytecodes::_invokedynamic &&
1040       bc != Bytecodes::_invokehandle) {
1041     // This register map must be update since we need to find the receiver for
1042     // compiled frames. The receiver might be in a register.
1043     RegisterMap reg_map2(thread);
1044     frame stubFrame   = thread->last_frame();
1045     // Caller-frame is a compiled frame
1046     frame callerFrame = stubFrame.sender(&reg_map2);
1047 
1048     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1049     if (callee.is_null()) {
1050       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1051     }
1052     // Retrieve from a compiled argument list
1053     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1054 
1055     if (receiver.is_null()) {
1056       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1057     }
1058   }
1059 
1060   // Resolve method. This is parameterized by bytecode.
1061   constantPoolHandle constants(THREAD, caller->constants());
1062   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1063   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1064 
1065 #ifdef ASSERT
1066   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1067   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1068     assert(receiver.not_null(), "should have thrown exception");
1069     KlassHandle receiver_klass(THREAD, receiver->klass());
1070     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1071                             // klass is already loaded
1072     KlassHandle static_receiver_klass(THREAD, rk);
1073     // Method handle invokes might have been optimized to a direct call
1074     // so don't check for the receiver class.
1075     // FIXME this weakens the assert too much
1076     methodHandle callee = callinfo.selected_method();
1077     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1078            callee->is_method_handle_intrinsic() ||
1079            callee->is_compiled_lambda_form(),
1080            "actual receiver must be subclass of static receiver klass");
1081     if (receiver_klass->oop_is_instance()) {
1082       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1083         tty->print_cr("ERROR: Klass not yet initialized!!");
1084         receiver_klass()->print();
1085       }
1086       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1087     }
1088   }
1089 #endif
1090 
1091   return receiver;
1092 }
1093 
1094 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1095   ResourceMark rm(THREAD);
1096   // We need first to check if any Java activations (compiled, interpreted)
1097   // exist on the stack since last JavaCall.  If not, we need
1098   // to get the target method from the JavaCall wrapper.
1099   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1100   methodHandle callee_method;
1101   if (vfst.at_end()) {
1102     // No Java frames were found on stack since we did the JavaCall.
1103     // Hence the stack can only contain an entry_frame.  We need to
1104     // find the target method from the stub frame.
1105     RegisterMap reg_map(thread, false);
1106     frame fr = thread->last_frame();
1107     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1108     fr = fr.sender(&reg_map);
1109     assert(fr.is_entry_frame(), "must be");
1110     // fr is now pointing to the entry frame.
1111     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1112     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1113   } else {
1114     Bytecodes::Code bc;
1115     CallInfo callinfo;
1116     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1117     callee_method = callinfo.selected_method();
1118   }
1119   assert(callee_method()->is_method(), "must be");
1120   return callee_method;
1121 }
1122 
1123 // Resolves a call.
1124 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1125                                            bool is_virtual,
1126                                            bool is_optimized, TRAPS) {
1127   methodHandle callee_method;
1128   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1129   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1130     int retry_count = 0;
1131     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1132            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1133       // If has a pending exception then there is no need to re-try to
1134       // resolve this method.
1135       // If the method has been redefined, we need to try again.
1136       // Hack: we have no way to update the vtables of arrays, so don't
1137       // require that java.lang.Object has been updated.
1138 
1139       // It is very unlikely that method is redefined more than 100 times
1140       // in the middle of resolve. If it is looping here more than 100 times
1141       // means then there could be a bug here.
1142       guarantee((retry_count++ < 100),
1143                 "Could not resolve to latest version of redefined method");
1144       // method is redefined in the middle of resolve so re-try.
1145       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1146     }
1147   }
1148   return callee_method;
1149 }
1150 
1151 // Resolves a call.  The compilers generate code for calls that go here
1152 // and are patched with the real destination of the call.
1153 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1154                                            bool is_virtual,
1155                                            bool is_optimized, TRAPS) {
1156 
1157   ResourceMark rm(thread);
1158   RegisterMap cbl_map(thread, false);
1159   frame caller_frame = thread->last_frame().sender(&cbl_map);
1160 
1161   CodeBlob* caller_cb = caller_frame.cb();
1162   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1163   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1164 
1165   // make sure caller is not getting deoptimized
1166   // and removed before we are done with it.
1167   // CLEANUP - with lazy deopt shouldn't need this lock
1168   nmethodLocker caller_lock(caller_nm);
1169 
1170   // determine call info & receiver
1171   // note: a) receiver is NULL for static calls
1172   //       b) an exception is thrown if receiver is NULL for non-static calls
1173   CallInfo call_info;
1174   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1175   Handle receiver = find_callee_info(thread, invoke_code,
1176                                      call_info, CHECK_(methodHandle()));
1177   methodHandle callee_method = call_info.selected_method();
1178 
1179   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1180          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1181          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1182          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1183 
1184   // We do not patch the call site if the caller nmethod has been made non-entrant.
1185   if (!caller_nm->is_in_use()) {
1186     return callee_method;
1187   }
1188 
1189 #ifndef PRODUCT
1190   // tracing/debugging/statistics
1191   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1192                 (is_virtual) ? (&_resolve_virtual_ctr) :
1193                                (&_resolve_static_ctr);
1194   Atomic::inc(addr);
1195 
1196   if (TraceCallFixup) {
1197     ResourceMark rm(thread);
1198     tty->print("resolving %s%s (%s) call to",
1199       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1200       Bytecodes::name(invoke_code));
1201     callee_method->print_short_name(tty);
1202     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1203   }
1204 #endif
1205 
1206   // JSR 292 key invariant:
1207   // If the resolved method is a MethodHandle invoke target the call
1208   // site must be a MethodHandle call site, because the lambda form might tail-call
1209   // leaving the stack in a state unknown to either caller or callee
1210   // TODO detune for now but we might need it again
1211 //  assert(!callee_method->is_compiled_lambda_form() ||
1212 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1213 
1214   // Compute entry points. This might require generation of C2I converter
1215   // frames, so we cannot be holding any locks here. Furthermore, the
1216   // computation of the entry points is independent of patching the call.  We
1217   // always return the entry-point, but we only patch the stub if the call has
1218   // not been deoptimized.  Return values: For a virtual call this is an
1219   // (cached_oop, destination address) pair. For a static call/optimized
1220   // virtual this is just a destination address.
1221 
1222   StaticCallInfo static_call_info;
1223   CompiledICInfo virtual_call_info;
1224 
1225   // Make sure the callee nmethod does not get deoptimized and removed before
1226   // we are done patching the code.
1227   nmethod* callee_nm = callee_method->code();
1228   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1229     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1230     callee_nm = NULL;
1231   }
1232   nmethodLocker nl_callee(callee_nm);
1233 #ifdef ASSERT
1234   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1235 #endif
1236 
1237   if (is_virtual) {
1238     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1239     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1240     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1241     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1242                      is_optimized, static_bound, virtual_call_info,
1243                      CHECK_(methodHandle()));
1244   } else {
1245     // static call
1246     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1247   }
1248 
1249   // grab lock, check for deoptimization and potentially patch caller
1250   {
1251     MutexLocker ml_patch(CompiledIC_lock);
1252 
1253     // Lock blocks for safepoint during which both nmethods can change state.
1254 
1255     // Now that we are ready to patch if the Method* was redefined then
1256     // don't update call site and let the caller retry.
1257     // Don't update call site if caller nmethod has been made non-entrant
1258     // as it is a waste of time.
1259     // Don't update call site if callee nmethod was unloaded or deoptimized.
1260     // Don't update call site if callee nmethod was replaced by an other nmethod
1261     // which may happen when multiply alive nmethod (tiered compilation)
1262     // will be supported.
1263     if (!callee_method->is_old() && caller_nm->is_in_use() &&
1264         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1265 #ifdef ASSERT
1266       // We must not try to patch to jump to an already unloaded method.
1267       if (dest_entry_point != 0) {
1268         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1269         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1270                "should not call unloaded nmethod");
1271       }
1272 #endif
1273       if (is_virtual) {
1274         nmethod* nm = callee_nm;
1275         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1276         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1277         if (inline_cache->is_clean()) {
1278           inline_cache->set_to_monomorphic(virtual_call_info);
1279         }
1280       } else {
1281         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1282         if (ssc->is_clean()) ssc->set(static_call_info);
1283       }
1284     }
1285 
1286   } // unlock CompiledIC_lock
1287 
1288   return callee_method;
1289 }
1290 
1291 
1292 // Inline caches exist only in compiled code
1293 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1294 #ifdef ASSERT
1295   RegisterMap reg_map(thread, false);
1296   frame stub_frame = thread->last_frame();
1297   assert(stub_frame.is_runtime_frame(), "sanity check");
1298   frame caller_frame = stub_frame.sender(&reg_map);
1299   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1300 #endif /* ASSERT */
1301 
1302   methodHandle callee_method;
1303   JRT_BLOCK
1304     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1305     // Return Method* through TLS
1306     thread->set_vm_result_2(callee_method());
1307   JRT_BLOCK_END
1308   // return compiled code entry point after potential safepoints
1309   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1310   return callee_method->verified_code_entry();
1311 JRT_END
1312 
1313 
1314 // Handle call site that has been made non-entrant
1315 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1316   // 6243940 We might end up in here if the callee is deoptimized
1317   // as we race to call it.  We don't want to take a safepoint if
1318   // the caller was interpreted because the caller frame will look
1319   // interpreted to the stack walkers and arguments are now
1320   // "compiled" so it is much better to make this transition
1321   // invisible to the stack walking code. The i2c path will
1322   // place the callee method in the callee_target. It is stashed
1323   // there because if we try and find the callee by normal means a
1324   // safepoint is possible and have trouble gc'ing the compiled args.
1325   RegisterMap reg_map(thread, false);
1326   frame stub_frame = thread->last_frame();
1327   assert(stub_frame.is_runtime_frame(), "sanity check");
1328   frame caller_frame = stub_frame.sender(&reg_map);
1329 
1330   if (caller_frame.is_interpreted_frame() ||
1331       caller_frame.is_entry_frame()) {
1332     Method* callee = thread->callee_target();
1333     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1334     thread->set_vm_result_2(callee);
1335     thread->set_callee_target(NULL);
1336     return callee->get_c2i_entry();
1337   }
1338 
1339   // Must be compiled to compiled path which is safe to stackwalk
1340   methodHandle callee_method;
1341   JRT_BLOCK
1342     // Force resolving of caller (if we called from compiled frame)
1343     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1344     thread->set_vm_result_2(callee_method());
1345   JRT_BLOCK_END
1346   // return compiled code entry point after potential safepoints
1347   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1348   return callee_method->verified_code_entry();
1349 JRT_END
1350 
1351 // Handle abstract method call
1352 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1353   return StubRoutines::throw_AbstractMethodError_entry();
1354 JRT_END
1355 
1356 
1357 // resolve a static call and patch code
1358 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1359   methodHandle callee_method;
1360   JRT_BLOCK
1361     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1362     thread->set_vm_result_2(callee_method());
1363   JRT_BLOCK_END
1364   // return compiled code entry point after potential safepoints
1365   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1366   return callee_method->verified_code_entry();
1367 JRT_END
1368 
1369 
1370 // resolve virtual call and update inline cache to monomorphic
1371 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1372   methodHandle callee_method;
1373   JRT_BLOCK
1374     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1375     thread->set_vm_result_2(callee_method());
1376   JRT_BLOCK_END
1377   // return compiled code entry point after potential safepoints
1378   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1379   return callee_method->verified_code_entry();
1380 JRT_END
1381 
1382 
1383 // Resolve a virtual call that can be statically bound (e.g., always
1384 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1385 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1386   methodHandle callee_method;
1387   JRT_BLOCK
1388     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1389     thread->set_vm_result_2(callee_method());
1390   JRT_BLOCK_END
1391   // return compiled code entry point after potential safepoints
1392   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1393   return callee_method->verified_code_entry();
1394 JRT_END
1395 
1396 
1397 
1398 
1399 
1400 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1401   ResourceMark rm(thread);
1402   CallInfo call_info;
1403   Bytecodes::Code bc;
1404 
1405   // receiver is NULL for static calls. An exception is thrown for NULL
1406   // receivers for non-static calls
1407   Handle receiver = find_callee_info(thread, bc, call_info,
1408                                      CHECK_(methodHandle()));
1409   // Compiler1 can produce virtual call sites that can actually be statically bound
1410   // If we fell thru to below we would think that the site was going megamorphic
1411   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1412   // we'd try and do a vtable dispatch however methods that can be statically bound
1413   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1414   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1415   // plain ic_miss) and the site will be converted to an optimized virtual call site
1416   // never to miss again. I don't believe C2 will produce code like this but if it
1417   // did this would still be the correct thing to do for it too, hence no ifdef.
1418   //
1419   if (call_info.resolved_method()->can_be_statically_bound()) {
1420     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1421     if (TraceCallFixup) {
1422       RegisterMap reg_map(thread, false);
1423       frame caller_frame = thread->last_frame().sender(&reg_map);
1424       ResourceMark rm(thread);
1425       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1426       callee_method->print_short_name(tty);
1427       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1428       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1429     }
1430     return callee_method;
1431   }
1432 
1433   methodHandle callee_method = call_info.selected_method();
1434 
1435   bool should_be_mono = false;
1436 
1437 #ifndef PRODUCT
1438   Atomic::inc(&_ic_miss_ctr);
1439 
1440   // Statistics & Tracing
1441   if (TraceCallFixup) {
1442     ResourceMark rm(thread);
1443     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1444     callee_method->print_short_name(tty);
1445     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1446   }
1447 
1448   if (ICMissHistogram) {
1449     MutexLocker m(VMStatistic_lock);
1450     RegisterMap reg_map(thread, false);
1451     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1452     // produce statistics under the lock
1453     trace_ic_miss(f.pc());
1454   }
1455 #endif
1456 
1457   // install an event collector so that when a vtable stub is created the
1458   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1459   // event can't be posted when the stub is created as locks are held
1460   // - instead the event will be deferred until the event collector goes
1461   // out of scope.
1462   JvmtiDynamicCodeEventCollector event_collector;
1463 
1464   // Update inline cache to megamorphic. Skip update if caller has been
1465   // made non-entrant or we are called from interpreted.
1466   { MutexLocker ml_patch (CompiledIC_lock);
1467     RegisterMap reg_map(thread, false);
1468     frame caller_frame = thread->last_frame().sender(&reg_map);
1469     CodeBlob* cb = caller_frame.cb();
1470     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1471       // Not a non-entrant nmethod, so find inline_cache
1472       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1473       bool should_be_mono = false;
1474       if (inline_cache->is_optimized()) {
1475         if (TraceCallFixup) {
1476           ResourceMark rm(thread);
1477           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1478           callee_method->print_short_name(tty);
1479           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1480         }
1481         should_be_mono = true;
1482       } else if (inline_cache->is_icholder_call()) {
1483         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1484         if ( ic_oop != NULL) {
1485 
1486           if (receiver()->klass() == ic_oop->holder_klass()) {
1487             // This isn't a real miss. We must have seen that compiled code
1488             // is now available and we want the call site converted to a
1489             // monomorphic compiled call site.
1490             // We can't assert for callee_method->code() != NULL because it
1491             // could have been deoptimized in the meantime
1492             if (TraceCallFixup) {
1493               ResourceMark rm(thread);
1494               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1495               callee_method->print_short_name(tty);
1496               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1497             }
1498             should_be_mono = true;
1499           }
1500         }
1501       }
1502 
1503       if (should_be_mono) {
1504 
1505         // We have a path that was monomorphic but was going interpreted
1506         // and now we have (or had) a compiled entry. We correct the IC
1507         // by using a new icBuffer.
1508         CompiledICInfo info;
1509         KlassHandle receiver_klass(THREAD, receiver()->klass());
1510         inline_cache->compute_monomorphic_entry(callee_method,
1511                                                 receiver_klass,
1512                                                 inline_cache->is_optimized(),
1513                                                 false,
1514                                                 info, CHECK_(methodHandle()));
1515         inline_cache->set_to_monomorphic(info);
1516       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1517         // Potential change to megamorphic
1518         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1519         if (!successful) {
1520           inline_cache->set_to_clean();
1521         }
1522       } else {
1523         // Either clean or megamorphic
1524       }
1525     }
1526   } // Release CompiledIC_lock
1527 
1528   return callee_method;
1529 }
1530 
1531 //
1532 // Resets a call-site in compiled code so it will get resolved again.
1533 // This routines handles both virtual call sites, optimized virtual call
1534 // sites, and static call sites. Typically used to change a call sites
1535 // destination from compiled to interpreted.
1536 //
1537 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1538   ResourceMark rm(thread);
1539   RegisterMap reg_map(thread, false);
1540   frame stub_frame = thread->last_frame();
1541   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1542   frame caller = stub_frame.sender(&reg_map);
1543 
1544   // Do nothing if the frame isn't a live compiled frame.
1545   // nmethod could be deoptimized by the time we get here
1546   // so no update to the caller is needed.
1547 
1548   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1549 
1550     address pc = caller.pc();
1551 
1552     // Default call_addr is the location of the "basic" call.
1553     // Determine the address of the call we a reresolving. With
1554     // Inline Caches we will always find a recognizable call.
1555     // With Inline Caches disabled we may or may not find a
1556     // recognizable call. We will always find a call for static
1557     // calls and for optimized virtual calls. For vanilla virtual
1558     // calls it depends on the state of the UseInlineCaches switch.
1559     //
1560     // With Inline Caches disabled we can get here for a virtual call
1561     // for two reasons:
1562     //   1 - calling an abstract method. The vtable for abstract methods
1563     //       will run us thru handle_wrong_method and we will eventually
1564     //       end up in the interpreter to throw the ame.
1565     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1566     //       call and between the time we fetch the entry address and
1567     //       we jump to it the target gets deoptimized. Similar to 1
1568     //       we will wind up in the interprter (thru a c2i with c2).
1569     //
1570     address call_addr = NULL;
1571     {
1572       // Get call instruction under lock because another thread may be
1573       // busy patching it.
1574       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1575       // Location of call instruction
1576       if (NativeCall::is_call_before(pc)) {
1577         NativeCall *ncall = nativeCall_before(pc);
1578         call_addr = ncall->instruction_address();
1579       }
1580     }
1581 
1582     // Check for static or virtual call
1583     bool is_static_call = false;
1584     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1585     // Make sure nmethod doesn't get deoptimized and removed until
1586     // this is done with it.
1587     // CLEANUP - with lazy deopt shouldn't need this lock
1588     nmethodLocker nmlock(caller_nm);
1589 
1590     if (call_addr != NULL) {
1591       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1592       int ret = iter.next(); // Get item
1593       if (ret) {
1594         assert(iter.addr() == call_addr, "must find call");
1595         if (iter.type() == relocInfo::static_call_type) {
1596           is_static_call = true;
1597         } else {
1598           assert(iter.type() == relocInfo::virtual_call_type ||
1599                  iter.type() == relocInfo::opt_virtual_call_type
1600                 , "unexpected relocInfo. type");
1601         }
1602       } else {
1603         assert(!UseInlineCaches, "relocation info. must exist for this address");
1604       }
1605 
1606       // Cleaning the inline cache will force a new resolve. This is more robust
1607       // than directly setting it to the new destination, since resolving of calls
1608       // is always done through the same code path. (experience shows that it
1609       // leads to very hard to track down bugs, if an inline cache gets updated
1610       // to a wrong method). It should not be performance critical, since the
1611       // resolve is only done once.
1612 
1613       MutexLocker ml(CompiledIC_lock);
1614       //
1615       // We do not patch the call site if the nmethod has been made non-entrant
1616       // as it is a waste of time
1617       //
1618       if (caller_nm->is_in_use()) {
1619         if (is_static_call) {
1620           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1621           ssc->set_to_clean();
1622         } else {
1623           // compiled, dispatched call (which used to call an interpreted method)
1624           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1625           inline_cache->set_to_clean();
1626         }
1627       }
1628     }
1629 
1630   }
1631 
1632   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1633 
1634 
1635 #ifndef PRODUCT
1636   Atomic::inc(&_wrong_method_ctr);
1637 
1638   if (TraceCallFixup) {
1639     ResourceMark rm(thread);
1640     tty->print("handle_wrong_method reresolving call to");
1641     callee_method->print_short_name(tty);
1642     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1643   }
1644 #endif
1645 
1646   return callee_method;
1647 }
1648 
1649 #ifdef ASSERT
1650 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1651                                                                 const BasicType* sig_bt,
1652                                                                 const VMRegPair* regs) {
1653   ResourceMark rm;
1654   const int total_args_passed = method->size_of_parameters();
1655   const VMRegPair*    regs_with_member_name = regs;
1656         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1657 
1658   const int member_arg_pos = total_args_passed - 1;
1659   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1660   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1661 
1662   const bool is_outgoing = method->is_method_handle_intrinsic();
1663   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1664 
1665   for (int i = 0; i < member_arg_pos; i++) {
1666     VMReg a =    regs_with_member_name[i].first();
1667     VMReg b = regs_without_member_name[i].first();
1668     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1669   }
1670   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1671 }
1672 #endif
1673 
1674 // ---------------------------------------------------------------------------
1675 // We are calling the interpreter via a c2i. Normally this would mean that
1676 // we were called by a compiled method. However we could have lost a race
1677 // where we went int -> i2c -> c2i and so the caller could in fact be
1678 // interpreted. If the caller is compiled we attempt to patch the caller
1679 // so he no longer calls into the interpreter.
1680 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1681   Method* moop(method);
1682 
1683   address entry_point = moop->from_compiled_entry();
1684 
1685   // It's possible that deoptimization can occur at a call site which hasn't
1686   // been resolved yet, in which case this function will be called from
1687   // an nmethod that has been patched for deopt and we can ignore the
1688   // request for a fixup.
1689   // Also it is possible that we lost a race in that from_compiled_entry
1690   // is now back to the i2c in that case we don't need to patch and if
1691   // we did we'd leap into space because the callsite needs to use
1692   // "to interpreter" stub in order to load up the Method*. Don't
1693   // ask me how I know this...
1694 
1695   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1696   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1697     return;
1698   }
1699 
1700   // The check above makes sure this is a nmethod.
1701   nmethod* nm = cb->as_nmethod_or_null();
1702   assert(nm, "must be");
1703 
1704   // Get the return PC for the passed caller PC.
1705   address return_pc = caller_pc + frame::pc_return_offset;
1706 
1707   // There is a benign race here. We could be attempting to patch to a compiled
1708   // entry point at the same time the callee is being deoptimized. If that is
1709   // the case then entry_point may in fact point to a c2i and we'd patch the
1710   // call site with the same old data. clear_code will set code() to NULL
1711   // at the end of it. If we happen to see that NULL then we can skip trying
1712   // to patch. If we hit the window where the callee has a c2i in the
1713   // from_compiled_entry and the NULL isn't present yet then we lose the race
1714   // and patch the code with the same old data. Asi es la vida.
1715 
1716   if (moop->code() == NULL) return;
1717 
1718   if (nm->is_in_use()) {
1719 
1720     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1721     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1722     if (NativeCall::is_call_before(return_pc)) {
1723       NativeCall *call = nativeCall_before(return_pc);
1724       //
1725       // bug 6281185. We might get here after resolving a call site to a vanilla
1726       // virtual call. Because the resolvee uses the verified entry it may then
1727       // see compiled code and attempt to patch the site by calling us. This would
1728       // then incorrectly convert the call site to optimized and its downhill from
1729       // there. If you're lucky you'll get the assert in the bugid, if not you've
1730       // just made a call site that could be megamorphic into a monomorphic site
1731       // for the rest of its life! Just another racing bug in the life of
1732       // fixup_callers_callsite ...
1733       //
1734       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1735       iter.next();
1736       assert(iter.has_current(), "must have a reloc at java call site");
1737       relocInfo::relocType typ = iter.reloc()->type();
1738       if ( typ != relocInfo::static_call_type &&
1739            typ != relocInfo::opt_virtual_call_type &&
1740            typ != relocInfo::static_stub_type) {
1741         return;
1742       }
1743       address destination = call->destination();
1744       if (destination != entry_point) {
1745         CodeBlob* callee = CodeCache::find_blob(destination);
1746         // callee == cb seems weird. It means calling interpreter thru stub.
1747         if (callee == cb || callee->is_adapter_blob()) {
1748           // static call or optimized virtual
1749           if (TraceCallFixup) {
1750             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1751             moop->print_short_name(tty);
1752             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1753           }
1754           call->set_destination_mt_safe(entry_point);
1755         } else {
1756           if (TraceCallFixup) {
1757             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1758             moop->print_short_name(tty);
1759             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1760           }
1761           // assert is too strong could also be resolve destinations.
1762           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1763         }
1764       } else {
1765           if (TraceCallFixup) {
1766             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1767             moop->print_short_name(tty);
1768             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1769           }
1770       }
1771     }
1772   }
1773 IRT_END
1774 
1775 
1776 // same as JVM_Arraycopy, but called directly from compiled code
1777 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1778                                                 oopDesc* dest, jint dest_pos,
1779                                                 jint length,
1780                                                 JavaThread* thread)) {
1781 #ifndef PRODUCT
1782   _slow_array_copy_ctr++;
1783 #endif
1784   // Check if we have null pointers
1785   if (src == NULL || dest == NULL) {
1786     THROW(vmSymbols::java_lang_NullPointerException());
1787   }
1788   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1789   // even though the copy_array API also performs dynamic checks to ensure
1790   // that src and dest are truly arrays (and are conformable).
1791   // The copy_array mechanism is awkward and could be removed, but
1792   // the compilers don't call this function except as a last resort,
1793   // so it probably doesn't matter.
1794   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1795                                         (arrayOopDesc*)dest, dest_pos,
1796                                         length, thread);
1797 }
1798 JRT_END
1799 
1800 char* SharedRuntime::generate_class_cast_message(
1801     JavaThread* thread, const char* objName) {
1802 
1803   // Get target class name from the checkcast instruction
1804   vframeStream vfst(thread, true);
1805   assert(!vfst.at_end(), "Java frame must exist");
1806   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1807   Klass* targetKlass = vfst.method()->constants()->klass_at(
1808     cc.index(), thread);
1809   return generate_class_cast_message(objName, targetKlass->external_name());
1810 }
1811 
1812 char* SharedRuntime::generate_class_cast_message(
1813     const char* objName, const char* targetKlassName, const char* desc) {
1814   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1815 
1816   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1817   if (NULL == message) {
1818     // Shouldn't happen, but don't cause even more problems if it does
1819     message = const_cast<char*>(objName);
1820   } else {
1821     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1822   }
1823   return message;
1824 }
1825 
1826 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1827   (void) JavaThread::current()->reguard_stack();
1828 JRT_END
1829 
1830 
1831 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1832 #ifndef PRODUCT
1833 int SharedRuntime::_monitor_enter_ctr=0;
1834 #endif
1835 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1836   oop obj(_obj);
1837 #ifndef PRODUCT
1838   _monitor_enter_ctr++;             // monitor enter slow
1839 #endif
1840   if (PrintBiasedLockingStatistics) {
1841     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1842   }
1843   Handle h_obj(THREAD, obj);
1844   if (UseBiasedLocking) {
1845     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1846     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1847   } else {
1848     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1849   }
1850   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1851 JRT_END
1852 
1853 #ifndef PRODUCT
1854 int SharedRuntime::_monitor_exit_ctr=0;
1855 #endif
1856 // Handles the uncommon cases of monitor unlocking in compiled code
1857 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1858    oop obj(_obj);
1859 #ifndef PRODUCT
1860   _monitor_exit_ctr++;              // monitor exit slow
1861 #endif
1862   Thread* THREAD = JavaThread::current();
1863   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1864   // testing was unable to ever fire the assert that guarded it so I have removed it.
1865   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1866 #undef MIGHT_HAVE_PENDING
1867 #ifdef MIGHT_HAVE_PENDING
1868   // Save and restore any pending_exception around the exception mark.
1869   // While the slow_exit must not throw an exception, we could come into
1870   // this routine with one set.
1871   oop pending_excep = NULL;
1872   const char* pending_file;
1873   int pending_line;
1874   if (HAS_PENDING_EXCEPTION) {
1875     pending_excep = PENDING_EXCEPTION;
1876     pending_file  = THREAD->exception_file();
1877     pending_line  = THREAD->exception_line();
1878     CLEAR_PENDING_EXCEPTION;
1879   }
1880 #endif /* MIGHT_HAVE_PENDING */
1881 
1882   {
1883     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1884     EXCEPTION_MARK;
1885     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1886   }
1887 
1888 #ifdef MIGHT_HAVE_PENDING
1889   if (pending_excep != NULL) {
1890     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1891   }
1892 #endif /* MIGHT_HAVE_PENDING */
1893 JRT_END
1894 
1895 #ifndef PRODUCT
1896 
1897 void SharedRuntime::print_statistics() {
1898   ttyLocker ttyl;
1899   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1900 
1901   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1902   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1903   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1904 
1905   SharedRuntime::print_ic_miss_histogram();
1906 
1907   if (CountRemovableExceptions) {
1908     if (_nof_removable_exceptions > 0) {
1909       Unimplemented(); // this counter is not yet incremented
1910       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1911     }
1912   }
1913 
1914   // Dump the JRT_ENTRY counters
1915   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1916   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1917   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1918   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1919   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1920   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1921   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1922 
1923   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1924   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1925   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1926   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1927   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1928 
1929   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1930   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1931   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1932   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1933   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1934   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1935   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1936   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1937   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1938   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1939   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1940   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1941   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1942   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1943   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1944   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1945 
1946   AdapterHandlerLibrary::print_statistics();
1947 
1948   if (xtty != NULL)  xtty->tail("statistics");
1949 }
1950 
1951 inline double percent(int x, int y) {
1952   return 100.0 * x / MAX2(y, 1);
1953 }
1954 
1955 class MethodArityHistogram {
1956  public:
1957   enum { MAX_ARITY = 256 };
1958  private:
1959   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1960   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1961   static int _max_arity;                      // max. arity seen
1962   static int _max_size;                       // max. arg size seen
1963 
1964   static void add_method_to_histogram(nmethod* nm) {
1965     Method* m = nm->method();
1966     ArgumentCount args(m->signature());
1967     int arity   = args.size() + (m->is_static() ? 0 : 1);
1968     int argsize = m->size_of_parameters();
1969     arity   = MIN2(arity, MAX_ARITY-1);
1970     argsize = MIN2(argsize, MAX_ARITY-1);
1971     int count = nm->method()->compiled_invocation_count();
1972     _arity_histogram[arity]  += count;
1973     _size_histogram[argsize] += count;
1974     _max_arity = MAX2(_max_arity, arity);
1975     _max_size  = MAX2(_max_size, argsize);
1976   }
1977 
1978   void print_histogram_helper(int n, int* histo, const char* name) {
1979     const int N = MIN2(5, n);
1980     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1981     double sum = 0;
1982     double weighted_sum = 0;
1983     int i;
1984     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1985     double rest = sum;
1986     double percent = sum / 100;
1987     for (i = 0; i <= N; i++) {
1988       rest -= histo[i];
1989       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1990     }
1991     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1992     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1993   }
1994 
1995   void print_histogram() {
1996     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1997     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1998     tty->print_cr("\nSame for parameter size (in words):");
1999     print_histogram_helper(_max_size, _size_histogram, "size");
2000     tty->cr();
2001   }
2002 
2003  public:
2004   MethodArityHistogram() {
2005     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2006     _max_arity = _max_size = 0;
2007     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2008     CodeCache::nmethods_do(add_method_to_histogram);
2009     print_histogram();
2010   }
2011 };
2012 
2013 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2014 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2015 int MethodArityHistogram::_max_arity;
2016 int MethodArityHistogram::_max_size;
2017 
2018 void SharedRuntime::print_call_statistics(int comp_total) {
2019   tty->print_cr("Calls from compiled code:");
2020   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2021   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2022   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2023   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2024   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2025   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2026   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2027   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2028   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2029   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2030   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2031   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2032   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2033   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2034   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2035   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2036   tty->cr();
2037   tty->print_cr("Note 1: counter updates are not MT-safe.");
2038   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2039   tty->print_cr("        %% in nested categories are relative to their category");
2040   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2041   tty->cr();
2042 
2043   MethodArityHistogram h;
2044 }
2045 #endif
2046 
2047 
2048 // A simple wrapper class around the calling convention information
2049 // that allows sharing of adapters for the same calling convention.
2050 class AdapterFingerPrint : public CHeapObj<mtCode> {
2051  private:
2052   enum {
2053     _basic_type_bits = 4,
2054     _basic_type_mask = right_n_bits(_basic_type_bits),
2055     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2056     _compact_int_count = 3
2057   };
2058   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2059   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2060 
2061   union {
2062     int  _compact[_compact_int_count];
2063     int* _fingerprint;
2064   } _value;
2065   int _length; // A negative length indicates the fingerprint is in the compact form,
2066                // Otherwise _value._fingerprint is the array.
2067 
2068   // Remap BasicTypes that are handled equivalently by the adapters.
2069   // These are correct for the current system but someday it might be
2070   // necessary to make this mapping platform dependent.
2071   static int adapter_encoding(BasicType in) {
2072     switch(in) {
2073       case T_BOOLEAN:
2074       case T_BYTE:
2075       case T_SHORT:
2076       case T_CHAR:
2077         // There are all promoted to T_INT in the calling convention
2078         return T_INT;
2079 
2080       case T_OBJECT:
2081       case T_ARRAY:
2082         // In other words, we assume that any register good enough for
2083         // an int or long is good enough for a managed pointer.
2084 #ifdef _LP64
2085         return T_LONG;
2086 #else
2087         return T_INT;
2088 #endif
2089 
2090       case T_INT:
2091       case T_LONG:
2092       case T_FLOAT:
2093       case T_DOUBLE:
2094       case T_VOID:
2095         return in;
2096 
2097       default:
2098         ShouldNotReachHere();
2099         return T_CONFLICT;
2100     }
2101   }
2102 
2103  public:
2104   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2105     // The fingerprint is based on the BasicType signature encoded
2106     // into an array of ints with eight entries per int.
2107     int* ptr;
2108     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2109     if (len <= _compact_int_count) {
2110       assert(_compact_int_count == 3, "else change next line");
2111       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2112       // Storing the signature encoded as signed chars hits about 98%
2113       // of the time.
2114       _length = -len;
2115       ptr = _value._compact;
2116     } else {
2117       _length = len;
2118       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2119       ptr = _value._fingerprint;
2120     }
2121 
2122     // Now pack the BasicTypes with 8 per int
2123     int sig_index = 0;
2124     for (int index = 0; index < len; index++) {
2125       int value = 0;
2126       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2127         int bt = ((sig_index < total_args_passed)
2128                   ? adapter_encoding(sig_bt[sig_index++])
2129                   : 0);
2130         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2131         value = (value << _basic_type_bits) | bt;
2132       }
2133       ptr[index] = value;
2134     }
2135   }
2136 
2137   ~AdapterFingerPrint() {
2138     if (_length > 0) {
2139       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2140     }
2141   }
2142 
2143   int value(int index) {
2144     if (_length < 0) {
2145       return _value._compact[index];
2146     }
2147     return _value._fingerprint[index];
2148   }
2149   int length() {
2150     if (_length < 0) return -_length;
2151     return _length;
2152   }
2153 
2154   bool is_compact() {
2155     return _length <= 0;
2156   }
2157 
2158   unsigned int compute_hash() {
2159     int hash = 0;
2160     for (int i = 0; i < length(); i++) {
2161       int v = value(i);
2162       hash = (hash << 8) ^ v ^ (hash >> 5);
2163     }
2164     return (unsigned int)hash;
2165   }
2166 
2167   const char* as_string() {
2168     stringStream st;
2169     st.print("0x");
2170     for (int i = 0; i < length(); i++) {
2171       st.print("%08x", value(i));
2172     }
2173     return st.as_string();
2174   }
2175 
2176   bool equals(AdapterFingerPrint* other) {
2177     if (other->_length != _length) {
2178       return false;
2179     }
2180     if (_length < 0) {
2181       assert(_compact_int_count == 3, "else change next line");
2182       return _value._compact[0] == other->_value._compact[0] &&
2183              _value._compact[1] == other->_value._compact[1] &&
2184              _value._compact[2] == other->_value._compact[2];
2185     } else {
2186       for (int i = 0; i < _length; i++) {
2187         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2188           return false;
2189         }
2190       }
2191     }
2192     return true;
2193   }
2194 };
2195 
2196 
2197 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2198 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2199   friend class AdapterHandlerTableIterator;
2200 
2201  private:
2202 
2203 #ifndef PRODUCT
2204   static int _lookups; // number of calls to lookup
2205   static int _buckets; // number of buckets checked
2206   static int _equals;  // number of buckets checked with matching hash
2207   static int _hits;    // number of successful lookups
2208   static int _compact; // number of equals calls with compact signature
2209 #endif
2210 
2211   AdapterHandlerEntry* bucket(int i) {
2212     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2213   }
2214 
2215  public:
2216   AdapterHandlerTable()
2217     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2218 
2219   // Create a new entry suitable for insertion in the table
2220   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2221     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2222     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2223     return entry;
2224   }
2225 
2226   // Insert an entry into the table
2227   void add(AdapterHandlerEntry* entry) {
2228     int index = hash_to_index(entry->hash());
2229     add_entry(index, entry);
2230   }
2231 
2232   void free_entry(AdapterHandlerEntry* entry) {
2233     entry->deallocate();
2234     BasicHashtable<mtCode>::free_entry(entry);
2235   }
2236 
2237   // Find a entry with the same fingerprint if it exists
2238   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2239     NOT_PRODUCT(_lookups++);
2240     AdapterFingerPrint fp(total_args_passed, sig_bt);
2241     unsigned int hash = fp.compute_hash();
2242     int index = hash_to_index(hash);
2243     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2244       NOT_PRODUCT(_buckets++);
2245       if (e->hash() == hash) {
2246         NOT_PRODUCT(_equals++);
2247         if (fp.equals(e->fingerprint())) {
2248 #ifndef PRODUCT
2249           if (fp.is_compact()) _compact++;
2250           _hits++;
2251 #endif
2252           return e;
2253         }
2254       }
2255     }
2256     return NULL;
2257   }
2258 
2259 #ifndef PRODUCT
2260   void print_statistics() {
2261     ResourceMark rm;
2262     int longest = 0;
2263     int empty = 0;
2264     int total = 0;
2265     int nonempty = 0;
2266     for (int index = 0; index < table_size(); index++) {
2267       int count = 0;
2268       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2269         count++;
2270       }
2271       if (count != 0) nonempty++;
2272       if (count == 0) empty++;
2273       if (count > longest) longest = count;
2274       total += count;
2275     }
2276     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2277                   empty, longest, total, total / (double)nonempty);
2278     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2279                   _lookups, _buckets, _equals, _hits, _compact);
2280   }
2281 #endif
2282 };
2283 
2284 
2285 #ifndef PRODUCT
2286 
2287 int AdapterHandlerTable::_lookups;
2288 int AdapterHandlerTable::_buckets;
2289 int AdapterHandlerTable::_equals;
2290 int AdapterHandlerTable::_hits;
2291 int AdapterHandlerTable::_compact;
2292 
2293 #endif
2294 
2295 class AdapterHandlerTableIterator : public StackObj {
2296  private:
2297   AdapterHandlerTable* _table;
2298   int _index;
2299   AdapterHandlerEntry* _current;
2300 
2301   void scan() {
2302     while (_index < _table->table_size()) {
2303       AdapterHandlerEntry* a = _table->bucket(_index);
2304       _index++;
2305       if (a != NULL) {
2306         _current = a;
2307         return;
2308       }
2309     }
2310   }
2311 
2312  public:
2313   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2314     scan();
2315   }
2316   bool has_next() {
2317     return _current != NULL;
2318   }
2319   AdapterHandlerEntry* next() {
2320     if (_current != NULL) {
2321       AdapterHandlerEntry* result = _current;
2322       _current = _current->next();
2323       if (_current == NULL) scan();
2324       return result;
2325     } else {
2326       return NULL;
2327     }
2328   }
2329 };
2330 
2331 
2332 // ---------------------------------------------------------------------------
2333 // Implementation of AdapterHandlerLibrary
2334 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2335 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2336 const int AdapterHandlerLibrary_size = 16*K;
2337 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2338 
2339 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2340   // Should be called only when AdapterHandlerLibrary_lock is active.
2341   if (_buffer == NULL) // Initialize lazily
2342       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2343   return _buffer;
2344 }
2345 
2346 void AdapterHandlerLibrary::initialize() {
2347   if (_adapters != NULL) return;
2348   _adapters = new AdapterHandlerTable();
2349 
2350   // Create a special handler for abstract methods.  Abstract methods
2351   // are never compiled so an i2c entry is somewhat meaningless, but
2352   // throw AbstractMethodError just in case.
2353   // Pass wrong_method_abstract for the c2i transitions to return
2354   // AbstractMethodError for invalid invocations.
2355   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2356   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2357                                                               StubRoutines::throw_AbstractMethodError_entry(),
2358                                                               wrong_method_abstract, wrong_method_abstract);
2359 }
2360 
2361 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2362                                                       address i2c_entry,
2363                                                       address c2i_entry,
2364                                                       address c2i_unverified_entry) {
2365   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2366 }
2367 
2368 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2369   // Use customized signature handler.  Need to lock around updates to
2370   // the AdapterHandlerTable (it is not safe for concurrent readers
2371   // and a single writer: this could be fixed if it becomes a
2372   // problem).
2373 
2374   // Get the address of the ic_miss handlers before we grab the
2375   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2376   // was caused by the initialization of the stubs happening
2377   // while we held the lock and then notifying jvmti while
2378   // holding it. This just forces the initialization to be a little
2379   // earlier.
2380   address ic_miss = SharedRuntime::get_ic_miss_stub();
2381   assert(ic_miss != NULL, "must have handler");
2382 
2383   ResourceMark rm;
2384 
2385   NOT_PRODUCT(int insts_size);
2386   AdapterBlob* new_adapter = NULL;
2387   AdapterHandlerEntry* entry = NULL;
2388   AdapterFingerPrint* fingerprint = NULL;
2389   {
2390     MutexLocker mu(AdapterHandlerLibrary_lock);
2391     // make sure data structure is initialized
2392     initialize();
2393 
2394     if (method->is_abstract()) {
2395       return _abstract_method_handler;
2396     }
2397 
2398     // Fill in the signature array, for the calling-convention call.
2399     int total_args_passed = method->size_of_parameters(); // All args on stack
2400 
2401     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2402     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2403     int i = 0;
2404     if (!method->is_static())  // Pass in receiver first
2405       sig_bt[i++] = T_OBJECT;
2406     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2407       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2408       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2409         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2410     }
2411     assert(i == total_args_passed, "");
2412 
2413     // Lookup method signature's fingerprint
2414     entry = _adapters->lookup(total_args_passed, sig_bt);
2415 
2416 #ifdef ASSERT
2417     AdapterHandlerEntry* shared_entry = NULL;
2418     // Start adapter sharing verification only after the VM is booted.
2419     if (VerifyAdapterSharing && (entry != NULL)) {
2420       shared_entry = entry;
2421       entry = NULL;
2422     }
2423 #endif
2424 
2425     if (entry != NULL) {
2426       return entry;
2427     }
2428 
2429     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2430     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2431 
2432     // Make a C heap allocated version of the fingerprint to store in the adapter
2433     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2434 
2435     // StubRoutines::code2() is initialized after this function can be called. As a result,
2436     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2437     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2438     // stub that ensure that an I2C stub is called from an interpreter frame.
2439     bool contains_all_checks = StubRoutines::code2() != NULL;
2440 
2441     // Create I2C & C2I handlers
2442     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2443     if (buf != NULL) {
2444       CodeBuffer buffer(buf);
2445       short buffer_locs[20];
2446       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2447                                              sizeof(buffer_locs)/sizeof(relocInfo));
2448 
2449       MacroAssembler _masm(&buffer);
2450       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2451                                                      total_args_passed,
2452                                                      comp_args_on_stack,
2453                                                      sig_bt,
2454                                                      regs,
2455                                                      fingerprint);
2456 #ifdef ASSERT
2457       if (VerifyAdapterSharing) {
2458         if (shared_entry != NULL) {
2459           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2460           // Release the one just created and return the original
2461           _adapters->free_entry(entry);
2462           return shared_entry;
2463         } else  {
2464           entry->save_code(buf->code_begin(), buffer.insts_size());
2465         }
2466       }
2467 #endif
2468 
2469       new_adapter = AdapterBlob::create(&buffer);
2470       NOT_PRODUCT(insts_size = buffer.insts_size());
2471     }
2472     if (new_adapter == NULL) {
2473       // CodeCache is full, disable compilation
2474       // Ought to log this but compile log is only per compile thread
2475       // and we're some non descript Java thread.
2476       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2477       CompileBroker::handle_full_code_cache();
2478       return NULL; // Out of CodeCache space
2479     }
2480     entry->relocate(new_adapter->content_begin());
2481 #ifndef PRODUCT
2482     // debugging suppport
2483     if (PrintAdapterHandlers || PrintStubCode) {
2484       ttyLocker ttyl;
2485       entry->print_adapter_on(tty);
2486       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2487                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2488                     method->signature()->as_C_string(), insts_size);
2489       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2490       if (Verbose || PrintStubCode) {
2491         address first_pc = entry->base_address();
2492         if (first_pc != NULL) {
2493           Disassembler::decode(first_pc, first_pc + insts_size);
2494           tty->cr();
2495         }
2496       }
2497     }
2498 #endif
2499     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2500     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2501     if (contains_all_checks || !VerifyAdapterCalls) {
2502       _adapters->add(entry);
2503     }
2504   }
2505   // Outside of the lock
2506   if (new_adapter != NULL) {
2507     char blob_id[256];
2508     jio_snprintf(blob_id,
2509                  sizeof(blob_id),
2510                  "%s(%s)@" PTR_FORMAT,
2511                  new_adapter->name(),
2512                  fingerprint->as_string(),
2513                  new_adapter->content_begin());
2514     Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
2515 
2516     if (JvmtiExport::should_post_dynamic_code_generated()) {
2517       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2518     }
2519   }
2520   return entry;
2521 }
2522 
2523 address AdapterHandlerEntry::base_address() {
2524   address base = _i2c_entry;
2525   if (base == NULL)  base = _c2i_entry;
2526   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2527   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2528   return base;
2529 }
2530 
2531 void AdapterHandlerEntry::relocate(address new_base) {
2532   address old_base = base_address();
2533   assert(old_base != NULL, "");
2534   ptrdiff_t delta = new_base - old_base;
2535   if (_i2c_entry != NULL)
2536     _i2c_entry += delta;
2537   if (_c2i_entry != NULL)
2538     _c2i_entry += delta;
2539   if (_c2i_unverified_entry != NULL)
2540     _c2i_unverified_entry += delta;
2541   assert(base_address() == new_base, "");
2542 }
2543 
2544 
2545 void AdapterHandlerEntry::deallocate() {
2546   delete _fingerprint;
2547 #ifdef ASSERT
2548   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2549 #endif
2550 }
2551 
2552 
2553 #ifdef ASSERT
2554 // Capture the code before relocation so that it can be compared
2555 // against other versions.  If the code is captured after relocation
2556 // then relative instructions won't be equivalent.
2557 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2558   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2559   _saved_code_length = length;
2560   memcpy(_saved_code, buffer, length);
2561 }
2562 
2563 
2564 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2565   if (length != _saved_code_length) {
2566     return false;
2567   }
2568 
2569   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2570 }
2571 #endif
2572 
2573 
2574 /**
2575  * Create a native wrapper for this native method.  The wrapper converts the
2576  * Java-compiled calling convention to the native convention, handles
2577  * arguments, and transitions to native.  On return from the native we transition
2578  * back to java blocking if a safepoint is in progress.
2579  */
2580 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2581   ResourceMark rm;
2582   nmethod* nm = NULL;
2583 
2584   assert(method->is_native(), "must be native");
2585   assert(method->is_method_handle_intrinsic() ||
2586          method->has_native_function(), "must have something valid to call!");
2587 
2588   {
2589     // Perform the work while holding the lock, but perform any printing outside the lock
2590     MutexLocker mu(AdapterHandlerLibrary_lock);
2591     // See if somebody beat us to it
2592     nm = method->code();
2593     if (nm != NULL) {
2594       return;
2595     }
2596 
2597     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2598     assert(compile_id > 0, "Must generate native wrapper");
2599 
2600 
2601     ResourceMark rm;
2602     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2603     if (buf != NULL) {
2604       CodeBuffer buffer(buf);
2605       double locs_buf[20];
2606       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2607       MacroAssembler _masm(&buffer);
2608 
2609       // Fill in the signature array, for the calling-convention call.
2610       const int total_args_passed = method->size_of_parameters();
2611 
2612       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2613       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2614       int i=0;
2615       if( !method->is_static() )  // Pass in receiver first
2616         sig_bt[i++] = T_OBJECT;
2617       SignatureStream ss(method->signature());
2618       for( ; !ss.at_return_type(); ss.next()) {
2619         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2620         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2621           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2622       }
2623       assert(i == total_args_passed, "");
2624       BasicType ret_type = ss.type();
2625 
2626       // Now get the compiled-Java layout as input (or output) arguments.
2627       // NOTE: Stubs for compiled entry points of method handle intrinsics
2628       // are just trampolines so the argument registers must be outgoing ones.
2629       const bool is_outgoing = method->is_method_handle_intrinsic();
2630       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2631 
2632       // Generate the compiled-to-native wrapper code
2633       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2634 
2635       if (nm != NULL) {
2636         method->set_code(method, nm);
2637       }
2638     }
2639   } // Unlock AdapterHandlerLibrary_lock
2640 
2641 
2642   // Install the generated code.
2643   if (nm != NULL) {
2644     if (PrintCompilation) {
2645       ttyLocker ttyl;
2646       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2647     }
2648     nm->post_compiled_method_load_event();
2649   } else {
2650     // CodeCache is full, disable compilation
2651     CompileBroker::handle_full_code_cache();
2652   }
2653 }
2654 
2655 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2656   assert(thread == JavaThread::current(), "must be");
2657   // The code is about to enter a JNI lazy critical native method and
2658   // _needs_gc is true, so if this thread is already in a critical
2659   // section then just return, otherwise this thread should block
2660   // until needs_gc has been cleared.
2661   if (thread->in_critical()) {
2662     return;
2663   }
2664   // Lock and unlock a critical section to give the system a chance to block
2665   GC_locker::lock_critical(thread);
2666   GC_locker::unlock_critical(thread);
2667 JRT_END
2668 
2669 #ifdef HAVE_DTRACE_H
2670 // Create a dtrace nmethod for this method.  The wrapper converts the
2671 // java compiled calling convention to the native convention, makes a dummy call
2672 // (actually nops for the size of the call instruction, which become a trap if
2673 // probe is enabled). The returns to the caller. Since this all looks like a
2674 // leaf no thread transition is needed.
2675 
2676 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2677   ResourceMark rm;
2678   nmethod* nm = NULL;
2679 
2680   if (PrintCompilation) {
2681     ttyLocker ttyl;
2682     tty->print("---   n%s  ");
2683     method->print_short_name(tty);
2684     if (method->is_static()) {
2685       tty->print(" (static)");
2686     }
2687     tty->cr();
2688   }
2689 
2690   {
2691     // perform the work while holding the lock, but perform any printing
2692     // outside the lock
2693     MutexLocker mu(AdapterHandlerLibrary_lock);
2694     // See if somebody beat us to it
2695     nm = method->code();
2696     if (nm) {
2697       return nm;
2698     }
2699 
2700     ResourceMark rm;
2701 
2702     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2703     if (buf != NULL) {
2704       CodeBuffer buffer(buf);
2705       // Need a few relocation entries
2706       double locs_buf[20];
2707       buffer.insts()->initialize_shared_locs(
2708         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2709       MacroAssembler _masm(&buffer);
2710 
2711       // Generate the compiled-to-native wrapper code
2712       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2713     }
2714   }
2715   return nm;
2716 }
2717 
2718 // the dtrace method needs to convert java lang string to utf8 string.
2719 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2720   typeArrayOop jlsValue  = java_lang_String::value(src);
2721   int          jlsOffset = java_lang_String::offset(src);
2722   int          jlsLen    = java_lang_String::length(src);
2723   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2724                                            jlsValue->char_at_addr(jlsOffset);
2725   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2726   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2727 }
2728 #endif // ndef HAVE_DTRACE_H
2729 
2730 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2731   int argcnt = in_args_count;
2732   if (CCallingConventionRequiresIntsAsLongs) {
2733     for (int in = 0; in < in_args_count; in++) {
2734       BasicType bt = in_sig_bt[in];
2735       switch (bt) {
2736         case T_BOOLEAN:
2737         case T_CHAR:
2738         case T_BYTE:
2739         case T_SHORT:
2740         case T_INT:
2741           argcnt++;
2742           break;
2743         default:
2744           break;
2745       }
2746     }
2747   } else {
2748     assert(0, "This should not be needed on this platform");
2749   }
2750 
2751   return argcnt;
2752 }
2753 
2754 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2755                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2756   if (CCallingConventionRequiresIntsAsLongs) {
2757     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2758     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2759 
2760     int argcnt = 0;
2761     for (int in = 0; in < in_args_count; in++, argcnt++) {
2762       BasicType bt  = in_sig_bt[in];
2763       VMRegPair reg = in_regs[in];
2764       switch (bt) {
2765         case T_BOOLEAN:
2766         case T_CHAR:
2767         case T_BYTE:
2768         case T_SHORT:
2769         case T_INT:
2770           // Convert (bt) to (T_LONG,bt).
2771           new_in_sig_bt[argcnt  ] = T_LONG;
2772           new_in_sig_bt[argcnt+1] = bt;
2773           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2774           new_in_regs[argcnt  ].set2(reg.first());
2775           new_in_regs[argcnt+1].set_bad();
2776           argcnt++;
2777           break;
2778         default:
2779           // No conversion needed.
2780           new_in_sig_bt[argcnt] = bt;
2781           new_in_regs[argcnt]   = reg;
2782           break;
2783       }
2784     }
2785     assert(argcnt == i2l_argcnt, "must match");
2786 
2787     in_regs = new_in_regs;
2788     in_sig_bt = new_in_sig_bt;
2789     in_args_count = i2l_argcnt;
2790   } else {
2791     assert(0, "This should not be needed on this platform");
2792   }
2793 }
2794 
2795 // -------------------------------------------------------------------------
2796 // Java-Java calling convention
2797 // (what you use when Java calls Java)
2798 
2799 //------------------------------name_for_receiver----------------------------------
2800 // For a given signature, return the VMReg for parameter 0.
2801 VMReg SharedRuntime::name_for_receiver() {
2802   VMRegPair regs;
2803   BasicType sig_bt = T_OBJECT;
2804   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2805   // Return argument 0 register.  In the LP64 build pointers
2806   // take 2 registers, but the VM wants only the 'main' name.
2807   return regs.first();
2808 }
2809 
2810 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2811   // This method is returning a data structure allocating as a
2812   // ResourceObject, so do not put any ResourceMarks in here.
2813   char *s = sig->as_C_string();
2814   int len = (int)strlen(s);
2815   s++; len--;                   // Skip opening paren
2816   char *t = s+len;
2817   while( *(--t) != ')' ) ;      // Find close paren
2818 
2819   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2820   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2821   int cnt = 0;
2822   if (has_receiver) {
2823     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2824   }
2825 
2826   while( s < t ) {
2827     switch( *s++ ) {            // Switch on signature character
2828     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2829     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2830     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2831     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2832     case 'I': sig_bt[cnt++] = T_INT;     break;
2833     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2834     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2835     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2836     case 'V': sig_bt[cnt++] = T_VOID;    break;
2837     case 'L':                   // Oop
2838       while( *s++ != ';'  ) ;   // Skip signature
2839       sig_bt[cnt++] = T_OBJECT;
2840       break;
2841     case '[': {                 // Array
2842       do {                      // Skip optional size
2843         while( *s >= '0' && *s <= '9' ) s++;
2844       } while( *s++ == '[' );   // Nested arrays?
2845       // Skip element type
2846       if( s[-1] == 'L' )
2847         while( *s++ != ';'  ) ; // Skip signature
2848       sig_bt[cnt++] = T_ARRAY;
2849       break;
2850     }
2851     default : ShouldNotReachHere();
2852     }
2853   }
2854 
2855   if (has_appendix) {
2856     sig_bt[cnt++] = T_OBJECT;
2857   }
2858 
2859   assert( cnt < 256, "grow table size" );
2860 
2861   int comp_args_on_stack;
2862   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2863 
2864   // the calling convention doesn't count out_preserve_stack_slots so
2865   // we must add that in to get "true" stack offsets.
2866 
2867   if (comp_args_on_stack) {
2868     for (int i = 0; i < cnt; i++) {
2869       VMReg reg1 = regs[i].first();
2870       if( reg1->is_stack()) {
2871         // Yuck
2872         reg1 = reg1->bias(out_preserve_stack_slots());
2873       }
2874       VMReg reg2 = regs[i].second();
2875       if( reg2->is_stack()) {
2876         // Yuck
2877         reg2 = reg2->bias(out_preserve_stack_slots());
2878       }
2879       regs[i].set_pair(reg2, reg1);
2880     }
2881   }
2882 
2883   // results
2884   *arg_size = cnt;
2885   return regs;
2886 }
2887 
2888 // OSR Migration Code
2889 //
2890 // This code is used convert interpreter frames into compiled frames.  It is
2891 // called from very start of a compiled OSR nmethod.  A temp array is
2892 // allocated to hold the interesting bits of the interpreter frame.  All
2893 // active locks are inflated to allow them to move.  The displaced headers and
2894 // active interpreter locals are copied into the temp buffer.  Then we return
2895 // back to the compiled code.  The compiled code then pops the current
2896 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2897 // copies the interpreter locals and displaced headers where it wants.
2898 // Finally it calls back to free the temp buffer.
2899 //
2900 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2901 
2902 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2903 
2904   //
2905   // This code is dependent on the memory layout of the interpreter local
2906   // array and the monitors. On all of our platforms the layout is identical
2907   // so this code is shared. If some platform lays the their arrays out
2908   // differently then this code could move to platform specific code or
2909   // the code here could be modified to copy items one at a time using
2910   // frame accessor methods and be platform independent.
2911 
2912   frame fr = thread->last_frame();
2913   assert( fr.is_interpreted_frame(), "" );
2914   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2915 
2916   // Figure out how many monitors are active.
2917   int active_monitor_count = 0;
2918   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2919        kptr < fr.interpreter_frame_monitor_begin();
2920        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2921     if( kptr->obj() != NULL ) active_monitor_count++;
2922   }
2923 
2924   // QQQ we could place number of active monitors in the array so that compiled code
2925   // could double check it.
2926 
2927   Method* moop = fr.interpreter_frame_method();
2928   int max_locals = moop->max_locals();
2929   // Allocate temp buffer, 1 word per local & 2 per active monitor
2930   int buf_size_words = max_locals + active_monitor_count*2;
2931   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2932 
2933   // Copy the locals.  Order is preserved so that loading of longs works.
2934   // Since there's no GC I can copy the oops blindly.
2935   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2936   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2937                        (HeapWord*)&buf[0],
2938                        max_locals);
2939 
2940   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2941   int i = max_locals;
2942   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2943        kptr2 < fr.interpreter_frame_monitor_begin();
2944        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2945     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2946       BasicLock *lock = kptr2->lock();
2947       // Inflate so the displaced header becomes position-independent
2948       if (lock->displaced_header()->is_unlocked())
2949         ObjectSynchronizer::inflate_helper(kptr2->obj());
2950       // Now the displaced header is free to move
2951       buf[i++] = (intptr_t)lock->displaced_header();
2952       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2953     }
2954   }
2955   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2956 
2957   return buf;
2958 JRT_END
2959 
2960 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2961   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2962 JRT_END
2963 
2964 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2965   AdapterHandlerTableIterator iter(_adapters);
2966   while (iter.has_next()) {
2967     AdapterHandlerEntry* a = iter.next();
2968     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2969   }
2970   return false;
2971 }
2972 
2973 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2974   AdapterHandlerTableIterator iter(_adapters);
2975   while (iter.has_next()) {
2976     AdapterHandlerEntry* a = iter.next();
2977     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2978       st->print("Adapter for signature: ");
2979       a->print_adapter_on(tty);
2980       return;
2981     }
2982   }
2983   assert(false, "Should have found handler");
2984 }
2985 
2986 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2987   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2988                (intptr_t) this, fingerprint()->as_string(),
2989                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2990 
2991 }
2992 
2993 #ifndef PRODUCT
2994 
2995 void AdapterHandlerLibrary::print_statistics() {
2996   _adapters->print_statistics();
2997 }
2998 
2999 #endif /* PRODUCT */