1 /*
   2  * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/cppInterpreter.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterGenerator.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 #ifdef SHARK
  50 #include "shark/shark_globals.hpp"
  51 #endif
  52 
  53 #ifdef CC_INTERP
  54 
  55 // Routine exists to make tracebacks look decent in debugger
  56 // while we are recursed in the frame manager/c++ interpreter.
  57 // We could use an address in the frame manager but having
  58 // frames look natural in the debugger is a plus.
  59 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
  60 {
  61   //
  62   ShouldNotReachHere();
  63 }
  64 
  65 
  66 #define __ _masm->
  67 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
  68 
  69 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  70                                       // c++ interpreter entry point this holds that entry point label.
  71 
  72 // default registers for state and sender_sp
  73 // state and sender_sp are the same on 32bit because we have no choice.
  74 // state could be rsi on 64bit but it is an arg reg and not callee save
  75 // so r13 is better choice.
  76 
  77 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
  78 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
  79 
  80 // NEEDED for JVMTI?
  81 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
  82 
  83 static address unctrap_frame_manager_entry  = NULL;
  84 
  85 static address deopt_frame_manager_return_atos  = NULL;
  86 static address deopt_frame_manager_return_btos  = NULL;
  87 static address deopt_frame_manager_return_itos  = NULL;
  88 static address deopt_frame_manager_return_ltos  = NULL;
  89 static address deopt_frame_manager_return_ftos  = NULL;
  90 static address deopt_frame_manager_return_dtos  = NULL;
  91 static address deopt_frame_manager_return_vtos  = NULL;
  92 
  93 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  94   int i = 0;
  95   switch (type) {
  96     case T_BOOLEAN: i = 0; break;
  97     case T_CHAR   : i = 1; break;
  98     case T_BYTE   : i = 2; break;
  99     case T_SHORT  : i = 3; break;
 100     case T_INT    : i = 4; break;
 101     case T_VOID   : i = 5; break;
 102     case T_FLOAT  : i = 8; break;
 103     case T_LONG   : i = 9; break;
 104     case T_DOUBLE : i = 6; break;
 105     case T_OBJECT : // fall through
 106     case T_ARRAY  : i = 7; break;
 107     default       : ShouldNotReachHere();
 108   }
 109   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
 110   return i;
 111 }
 112 
 113 // Is this pc anywhere within code owned by the interpreter?
 114 // This only works for pc that might possibly be exposed to frame
 115 // walkers. It clearly misses all of the actual c++ interpreter
 116 // implementation
 117 bool CppInterpreter::contains(address pc)            {
 118     return (_code->contains(pc) ||
 119             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
 120 }
 121 
 122 
 123 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
 124   address entry = __ pc();
 125   switch (type) {
 126     case T_BOOLEAN: __ c2bool(rax);            break;
 127     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
 128     case T_BYTE   : __ sign_extend_byte (rax); break;
 129     case T_SHORT  : __ sign_extend_short(rax); break;
 130     case T_VOID   : // fall thru
 131     case T_LONG   : // fall thru
 132     case T_INT    : /* nothing to do */        break;
 133 
 134     case T_DOUBLE :
 135     case T_FLOAT  :
 136       {
 137         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 138         __ pop(t);                            // remove return address first
 139         // Must return a result for interpreter or compiler. In SSE
 140         // mode, results are returned in xmm0 and the FPU stack must
 141         // be empty.
 142         if (type == T_FLOAT && UseSSE >= 1) {
 143 #ifndef _LP64
 144           // Load ST0
 145           __ fld_d(Address(rsp, 0));
 146           // Store as float and empty fpu stack
 147           __ fstp_s(Address(rsp, 0));
 148 #endif // !_LP64
 149           // and reload
 150           __ movflt(xmm0, Address(rsp, 0));
 151         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 152           __ movdbl(xmm0, Address(rsp, 0));
 153         } else {
 154           // restore ST0
 155           __ fld_d(Address(rsp, 0));
 156         }
 157         // and pop the temp
 158         __ addptr(rsp, 2 * wordSize);
 159         __ push(t);                            // restore return address
 160       }
 161       break;
 162     case T_OBJECT :
 163       // retrieve result from frame
 164       __ movptr(rax, STATE(_oop_temp));
 165       // and verify it
 166       __ verify_oop(rax);
 167       break;
 168     default       : ShouldNotReachHere();
 169   }
 170   __ ret(0);                                   // return from result handler
 171   return entry;
 172 }
 173 
 174 // tosca based result to c++ interpreter stack based result.
 175 // Result goes to top of native stack.
 176 
 177 #undef EXTEND  // SHOULD NOT BE NEEDED
 178 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 179   // A result is in the tosca (abi result) from either a native method call or compiled
 180   // code. Place this result on the java expression stack so C++ interpreter can use it.
 181   address entry = __ pc();
 182 
 183   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 184   __ pop(t);                            // remove return address first
 185   switch (type) {
 186     case T_VOID:
 187        break;
 188     case T_BOOLEAN:
 189 #ifdef EXTEND
 190       __ c2bool(rax);
 191 #endif
 192       __ push(rax);
 193       break;
 194     case T_CHAR   :
 195 #ifdef EXTEND
 196       __ andl(rax, 0xFFFF);
 197 #endif
 198       __ push(rax);
 199       break;
 200     case T_BYTE   :
 201 #ifdef EXTEND
 202       __ sign_extend_byte (rax);
 203 #endif
 204       __ push(rax);
 205       break;
 206     case T_SHORT  :
 207 #ifdef EXTEND
 208       __ sign_extend_short(rax);
 209 #endif
 210       __ push(rax);
 211       break;
 212     case T_LONG    :
 213       __ push(rdx);                             // pushes useless junk on 64bit
 214       __ push(rax);
 215       break;
 216     case T_INT    :
 217       __ push(rax);
 218       break;
 219     case T_FLOAT  :
 220       // Result is in ST(0)/xmm0
 221       __ subptr(rsp, wordSize);
 222       if ( UseSSE < 1) {
 223         __ fstp_s(Address(rsp, 0));
 224       } else {
 225         __ movflt(Address(rsp, 0), xmm0);
 226       }
 227       break;
 228     case T_DOUBLE  :
 229       __ subptr(rsp, 2*wordSize);
 230       if ( UseSSE < 2 ) {
 231         __ fstp_d(Address(rsp, 0));
 232       } else {
 233         __ movdbl(Address(rsp, 0), xmm0);
 234       }
 235       break;
 236     case T_OBJECT :
 237       __ verify_oop(rax);                      // verify it
 238       __ push(rax);
 239       break;
 240     default       : ShouldNotReachHere();
 241   }
 242   __ jmp(t);                                   // return from result handler
 243   return entry;
 244 }
 245 
 246 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 247   // A result is in the java expression stack of the interpreted method that has just
 248   // returned. Place this result on the java expression stack of the caller.
 249   //
 250   // The current interpreter activation in rsi/r13 is for the method just returning its
 251   // result. So we know that the result of this method is on the top of the current
 252   // execution stack (which is pre-pushed) and will be return to the top of the caller
 253   // stack. The top of the callers stack is the bottom of the locals of the current
 254   // activation.
 255   // Because of the way activation are managed by the frame manager the value of rsp is
 256   // below both the stack top of the current activation and naturally the stack top
 257   // of the calling activation. This enable this routine to leave the return address
 258   // to the frame manager on the stack and do a vanilla return.
 259   //
 260   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 261   // On Return: rsi/r13 - unchanged
 262   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
 263   //
 264   // Can destroy rdx, rcx.
 265   //
 266 
 267   address entry = __ pc();
 268   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 269   switch (type) {
 270     case T_VOID:
 271       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
 272       __ addptr(rax, wordSize);                                         // account for prepush before we return
 273       break;
 274     case T_FLOAT  :
 275     case T_BOOLEAN:
 276     case T_CHAR   :
 277     case T_BYTE   :
 278     case T_SHORT  :
 279     case T_INT    :
 280       // 1 word result
 281       __ movptr(rdx, STATE(_stack));
 282       __ movptr(rax, STATE(_locals));                                   // address for result
 283       __ movl(rdx, Address(rdx, wordSize));                             // get result
 284       __ movptr(Address(rax, 0), rdx);                                  // and store it
 285       break;
 286     case T_LONG    :
 287     case T_DOUBLE  :
 288       // return top two words on current expression stack to caller's expression stack
 289       // The caller's expression stack is adjacent to the current frame manager's intepretState
 290       // except we allocated one extra word for this intepretState so we won't overwrite it
 291       // when we return a two word result.
 292 
 293       __ movptr(rax, STATE(_locals));                                   // address for result
 294       __ movptr(rcx, STATE(_stack));
 295       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
 296       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
 297       __ movptr(Address(rax, wordSize), rdx);                           // and store it
 298       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
 299       __ movptr(Address(rax, 0), rdx);                                  // and store it
 300       break;
 301     case T_OBJECT :
 302       __ movptr(rdx, STATE(_stack));
 303       __ movptr(rax, STATE(_locals));                                   // address for result
 304       __ movptr(rdx, Address(rdx, wordSize));                           // get result
 305       __ verify_oop(rdx);                                               // verify it
 306       __ movptr(Address(rax, 0), rdx);                                  // and store it
 307       break;
 308     default       : ShouldNotReachHere();
 309   }
 310   __ ret(0);
 311   return entry;
 312 }
 313 
 314 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 315   // A result is in the java expression stack of the interpreted method that has just
 316   // returned. Place this result in the native abi that the caller expects.
 317   //
 318   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 319   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 320   // and so rather than return result onto caller's java expression stack we return the
 321   // result in the expected location based on the native abi.
 322   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 323   // On Return: rsi/r13 - unchanged
 324   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
 325 
 326   address entry = __ pc();
 327   switch (type) {
 328     case T_VOID:
 329        break;
 330     case T_BOOLEAN:
 331     case T_CHAR   :
 332     case T_BYTE   :
 333     case T_SHORT  :
 334     case T_INT    :
 335       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 336       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
 337       break;
 338     case T_LONG    :
 339       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 340       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
 341       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
 342       break;
 343     case T_FLOAT  :
 344       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 345       if ( UseSSE >= 1) {
 346         __ movflt(xmm0, Address(rdx, wordSize));
 347       } else {
 348         __ fld_s(Address(rdx, wordSize));                               // pushd float result
 349       }
 350       break;
 351     case T_DOUBLE  :
 352       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 353       if ( UseSSE > 1) {
 354         __ movdbl(xmm0, Address(rdx, wordSize));
 355       } else {
 356         __ fld_d(Address(rdx, wordSize));                               // push double result
 357       }
 358       break;
 359     case T_OBJECT :
 360       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 361       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
 362       __ verify_oop(rax);                                               // verify it
 363       break;
 364     default       : ShouldNotReachHere();
 365   }
 366   __ ret(0);
 367   return entry;
 368 }
 369 
 370 address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
 371   // make it look good in the debugger
 372   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
 373 }
 374 
 375 address CppInterpreter::deopt_entry(TosState state, int length) {
 376   address ret = NULL;
 377   if (length != 0) {
 378     switch (state) {
 379       case atos: ret = deopt_frame_manager_return_atos; break;
 380       case btos: ret = deopt_frame_manager_return_btos; break;
 381       case ctos:
 382       case stos:
 383       case itos: ret = deopt_frame_manager_return_itos; break;
 384       case ltos: ret = deopt_frame_manager_return_ltos; break;
 385       case ftos: ret = deopt_frame_manager_return_ftos; break;
 386       case dtos: ret = deopt_frame_manager_return_dtos; break;
 387       case vtos: ret = deopt_frame_manager_return_vtos; break;
 388     }
 389   } else {
 390     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 391   }
 392   assert(ret != NULL, "Not initialized");
 393   return ret;
 394 }
 395 
 396 // C++ Interpreter
 397 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
 398                                                                  const Register locals,
 399                                                                  const Register sender_sp,
 400                                                                  bool native) {
 401 
 402   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
 403   // a static method). "state" contains any previous frame manager state which we must save a link
 404   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
 405   // state object. We must allocate and initialize a new interpretState object and the method
 406   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
 407   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
 408   // be sure to leave space on the caller's stack so that this result will not overwrite values when
 409   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
 410   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
 411   // non-product builds and initialize this last local with the previous interpreterState as
 412   // this makes things look real nice in the debugger.
 413 
 414   // State on entry
 415   // Assumes locals == &locals[0]
 416   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
 417   // Assumes rax = return address
 418   // rcx == senders_sp
 419   // rbx == method
 420   // Modifies rcx, rdx, rax
 421   // Returns:
 422   // state == address of new interpreterState
 423   // rsp == bottom of method's expression stack.
 424 
 425   const Address const_offset      (rbx, Method::const_offset());
 426 
 427 
 428   // On entry sp is the sender's sp. This includes the space for the arguments
 429   // that the sender pushed. If the sender pushed no args (a static) and the
 430   // caller returns a long then we need two words on the sender's stack which
 431   // are not present (although when we return a restore full size stack the
 432   // space will be present). If we didn't allocate two words here then when
 433   // we "push" the result of the caller's stack we would overwrite the return
 434   // address and the saved rbp. Not good. So simply allocate 2 words now
 435   // just to be safe. This is the "static long no_params() method" issue.
 436   // See Lo.java for a testcase.
 437   // We don't need this for native calls because they return result in
 438   // register and the stack is expanded in the caller before we store
 439   // the results on the stack.
 440 
 441   if (!native) {
 442 #ifdef PRODUCT
 443     __ subptr(rsp, 2*wordSize);
 444 #else /* PRODUCT */
 445     __ push((int32_t)NULL_WORD);
 446     __ push(state);                         // make it look like a real argument
 447 #endif /* PRODUCT */
 448   }
 449 
 450   // Now that we are assure of space for stack result, setup typical linkage
 451 
 452   __ push(rax);
 453   __ enter();
 454 
 455   __ mov(rax, state);                                  // save current state
 456 
 457   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
 458   __ mov(state, rsp);
 459 
 460   // rsi/r13 == state/locals rax == prevstate
 461 
 462   // initialize the "shadow" frame so that use since C++ interpreter not directly
 463   // recursive. Simpler to recurse but we can't trim expression stack as we call
 464   // new methods.
 465   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
 466   __ movptr(STATE(_self_link), state);                  // point to self
 467   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
 468   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
 469 #ifdef _LP64
 470   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
 471 #else
 472   __ get_thread(rax);                                   // get vm's javathread*
 473   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
 474 #endif // _LP64
 475   __ movptr(rdx, Address(rbx, Method::const_offset())); // get constantMethodOop
 476   __ lea(rdx, Address(rdx, ConstMethod::codes_offset())); // get code base
 477   if (native) {
 478     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
 479   } else {
 480     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
 481   }
 482   __ xorptr(rdx, rdx);
 483   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
 484   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
 485   __ movptr(rdx, Address(rbx, Method::const_offset()));
 486   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
 487   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
 488   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
 489 
 490   __ movptr(STATE(_method), rbx);                       // state->_method = method()
 491   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
 492   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
 493 
 494 
 495   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
 496                                                         // entries run from -1..x where &monitor[x] ==
 497 
 498   {
 499     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
 500     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
 501     // immediately.
 502 
 503     // synchronize method
 504     const Address access_flags      (rbx, Method::access_flags_offset());
 505     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 506     Label not_synced;
 507 
 508     __ movl(rax, access_flags);
 509     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 510     __ jcc(Assembler::zero, not_synced);
 511 
 512     // Allocate initial monitor and pre initialize it
 513     // get synchronization object
 514 
 515     Label done;
 516     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 517     __ movl(rax, access_flags);
 518     __ testl(rax, JVM_ACC_STATIC);
 519     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
 520     __ jcc(Assembler::zero, done);
 521     __ movptr(rax, Address(rbx, Method::const_offset()));
 522     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
 523     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
 524     __ movptr(rax, Address(rax, mirror_offset));
 525     __ bind(done);
 526     // add space for monitor & lock
 527     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 528     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 529     __ bind(not_synced);
 530   }
 531 
 532   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
 533   if (native) {
 534     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 535     __ movptr(STATE(_stack_limit), rsp);
 536   } else {
 537     __ subptr(rsp, wordSize);                                             // pre-push stack
 538     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 539 
 540     // compute full expression stack limit
 541 
 542     __ movptr(rdx, Address(rbx, Method::const_offset()));
 543     __ load_unsigned_short(rdx, Address(rdx, ConstMethod::max_stack_offset())); // get size of expression stack in words
 544     __ negptr(rdx);                                                       // so we can subtract in next step
 545     // Allocate expression stack
 546     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -Method::extra_stack_words()));
 547     __ movptr(STATE(_stack_limit), rsp);
 548   }
 549 
 550 #ifdef _LP64
 551   // Make sure stack is properly aligned and sized for the abi
 552   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 553   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
 554 #endif // _LP64
 555 
 556 
 557 
 558 }
 559 
 560 // Helpers for commoning out cases in the various type of method entries.
 561 //
 562 
 563 // increment invocation count & check for overflow
 564 //
 565 // Note: checking for negative value instead of overflow
 566 //       so we have a 'sticky' overflow test
 567 //
 568 // rbx,: method
 569 // rcx: invocation counter
 570 //
 571 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 572   Label done;
 573   const Address invocation_counter(rax,
 574                 MethodCounters::invocation_counter_offset() +
 575                 InvocationCounter::counter_offset());
 576   const Address backedge_counter  (rax,
 577                 MethodCounters::backedge_counter_offset() +
 578                 InvocationCounter::counter_offset());
 579 
 580   __ get_method_counters(rbx, rax, done);
 581 
 582   if (ProfileInterpreter) {
 583     __ incrementl(Address(rax,
 584             MethodCounters::interpreter_invocation_counter_offset()));
 585   }
 586   // Update standard invocation counters
 587   __ movl(rcx, invocation_counter);
 588   __ increment(rcx, InvocationCounter::count_increment);
 589   __ movl(invocation_counter, rcx);             // save invocation count
 590 
 591   __ movl(rax, backedge_counter);               // load backedge counter
 592   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 593 
 594   __ addl(rcx, rax);                            // add both counters
 595 
 596   // profile_method is non-null only for interpreted method so
 597   // profile_method != NULL == !native_call
 598   // BytecodeInterpreter only calls for native so code is elided.
 599 
 600   __ cmp32(rcx,
 601            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 602   __ jcc(Assembler::aboveEqual, *overflow);
 603   __ bind(done);
 604 }
 605 
 606 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 607 
 608   // C++ interpreter on entry
 609   // rsi/r13 - new interpreter state pointer
 610   // rbp - interpreter frame pointer
 611   // rbx - method
 612 
 613   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 614   // rbx, - method
 615   // rcx - rcvr (assuming there is one)
 616   // top of stack return address of interpreter caller
 617   // rsp - sender_sp
 618 
 619   // C++ interpreter only
 620   // rsi/r13 - previous interpreter state pointer
 621 
 622   // InterpreterRuntime::frequency_counter_overflow takes one argument
 623   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 624   // The call returns the address of the verified entry point for the method or NULL
 625   // if the compilation did not complete (either went background or bailed out).
 626   __ movptr(rax, (int32_t)false);
 627   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 628 
 629   // for c++ interpreter can rsi really be munged?
 630   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
 631   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
 632   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
 633 
 634   __ jmp(*do_continue, relocInfo::none);
 635 
 636 }
 637 
 638 void InterpreterGenerator::generate_stack_overflow_check(void) {
 639   // see if we've got enough room on the stack for locals plus overhead.
 640   // the expression stack grows down incrementally, so the normal guard
 641   // page mechanism will work for that.
 642   //
 643   // Registers live on entry:
 644   //
 645   // Asm interpreter
 646   // rdx: number of additional locals this frame needs (what we must check)
 647   // rbx,: Method*
 648 
 649   // C++ Interpreter
 650   // rsi/r13: previous interpreter frame state object
 651   // rdi: &locals[0]
 652   // rcx: # of locals
 653   // rdx: number of additional locals this frame needs (what we must check)
 654   // rbx: Method*
 655 
 656   // destroyed on exit
 657   // rax,
 658 
 659   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 660   // generate_method_entry) so the guard should work for them too.
 661   //
 662 
 663   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
 664   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 665 
 666   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 667   // be sure to change this if you add/subtract anything to/from the overhead area
 668   const int overhead_size = (int)sizeof(BytecodeInterpreter);
 669 
 670   const int page_size = os::vm_page_size();
 671 
 672   Label after_frame_check;
 673 
 674   // compute rsp as if this were going to be the last frame on
 675   // the stack before the red zone
 676 
 677   Label after_frame_check_pop;
 678 
 679   // save rsi == caller's bytecode ptr (c++ previous interp. state)
 680   // QQQ problem here?? rsi overload????
 681   __ push(state);
 682 
 683   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
 684 
 685   NOT_LP64(__ get_thread(thread));
 686 
 687   const Address stack_base(thread, Thread::stack_base_offset());
 688   const Address stack_size(thread, Thread::stack_size_offset());
 689 
 690   // locals + overhead, in bytes
 691   // Always give one monitor to allow us to start interp if sync method.
 692   // Any additional monitors need a check when moving the expression stack
 693   const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
 694   __ movptr(rax, Address(rbx, Method::const_offset()));
 695   __ load_unsigned_short(rax, Address(rax, ConstMethod::max_stack_offset())); // get size of expression stack in words
 696   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor+Method::extra_stack_words()));
 697   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
 698 
 699 #ifdef ASSERT
 700   Label stack_base_okay, stack_size_okay;
 701   // verify that thread stack base is non-zero
 702   __ cmpptr(stack_base, (int32_t)0);
 703   __ jcc(Assembler::notEqual, stack_base_okay);
 704   __ stop("stack base is zero");
 705   __ bind(stack_base_okay);
 706   // verify that thread stack size is non-zero
 707   __ cmpptr(stack_size, (int32_t)0);
 708   __ jcc(Assembler::notEqual, stack_size_okay);
 709   __ stop("stack size is zero");
 710   __ bind(stack_size_okay);
 711 #endif
 712 
 713   // Add stack base to locals and subtract stack size
 714   __ addptr(rax, stack_base);
 715   __ subptr(rax, stack_size);
 716 
 717   // We should have a magic number here for the size of the c++ interpreter frame.
 718   // We can't actually tell this ahead of time. The debug version size is around 3k
 719   // product is 1k and fastdebug is 4k
 720   const int slop = 6 * K;
 721 
 722   // Use the maximum number of pages we might bang.
 723   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 724                                                                               (StackRedPages+StackYellowPages);
 725   // Only need this if we are stack banging which is temporary while
 726   // we're debugging.
 727   __ addptr(rax, slop + 2*max_pages * page_size);
 728 
 729   // check against the current stack bottom
 730   __ cmpptr(rsp, rax);
 731   __ jcc(Assembler::above, after_frame_check_pop);
 732 
 733   __ pop(state);  //  get c++ prev state.
 734 
 735      // throw exception return address becomes throwing pc
 736   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 737 
 738   // all done with frame size check
 739   __ bind(after_frame_check_pop);
 740   __ pop(state);
 741 
 742   __ bind(after_frame_check);
 743 }
 744 
 745 // Find preallocated  monitor and lock method (C++ interpreter)
 746 // rbx - Method*
 747 //
 748 void InterpreterGenerator::lock_method(void) {
 749   // assumes state == rsi/r13 == pointer to current interpreterState
 750   // minimally destroys rax, rdx|c_rarg1, rdi
 751   //
 752   // synchronize method
 753   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 754   const Address access_flags      (rbx, Method::access_flags_offset());
 755 
 756   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
 757 
 758   // find initial monitor i.e. monitors[-1]
 759   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
 760   __ subptr(monitor, entry_size);                                             // point to initial monitor
 761 
 762 #ifdef ASSERT
 763   { Label L;
 764     __ movl(rax, access_flags);
 765     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 766     __ jcc(Assembler::notZero, L);
 767     __ stop("method doesn't need synchronization");
 768     __ bind(L);
 769   }
 770 #endif // ASSERT
 771   // get synchronization object
 772   { Label done;
 773     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 774     __ movl(rax, access_flags);
 775     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
 776     __ testl(rax, JVM_ACC_STATIC);
 777     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
 778     __ jcc(Assembler::zero, done);
 779     __ movptr(rax, Address(rbx, Method::const_offset()));
 780     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
 781     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
 782     __ movptr(rax, Address(rax, mirror_offset));
 783     __ bind(done);
 784   }
 785 #ifdef ASSERT
 786   { Label L;
 787     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
 788     __ jcc(Assembler::equal, L);
 789     __ stop("wrong synchronization lobject");
 790     __ bind(L);
 791   }
 792 #endif // ASSERT
 793   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
 794   __ lock_object(monitor);
 795 }
 796 
 797 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
 798 
 799 address InterpreterGenerator::generate_accessor_entry(void) {
 800 
 801   // rbx: Method*
 802 
 803   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
 804 
 805   Label xreturn_path;
 806 
 807   // do fastpath for resolved accessor methods
 808   if (UseFastAccessorMethods) {
 809 
 810     address entry_point = __ pc();
 811 
 812     Label slow_path;
 813     // If we need a safepoint check, generate full interpreter entry.
 814     ExternalAddress state(SafepointSynchronize::address_of_state());
 815     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 816              SafepointSynchronize::_not_synchronized);
 817 
 818     __ jcc(Assembler::notEqual, slow_path);
 819     // ASM/C++ Interpreter
 820     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
 821     // Note: We can only use this code if the getfield has been resolved
 822     //       and if we don't have a null-pointer exception => check for
 823     //       these conditions first and use slow path if necessary.
 824     // rbx,: method
 825     // rcx: receiver
 826     __ movptr(rax, Address(rsp, wordSize));
 827 
 828     // check if local 0 != NULL and read field
 829     __ testptr(rax, rax);
 830     __ jcc(Assembler::zero, slow_path);
 831 
 832     // read first instruction word and extract bytecode @ 1 and index @ 2
 833     __ movptr(rdx, Address(rbx, Method::const_offset()));
 834     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
 835     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
 836     // Shift codes right to get the index on the right.
 837     // The bytecode fetched looks like <index><0xb4><0x2a>
 838     __ shrl(rdx, 2*BitsPerByte);
 839     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 840     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
 841 
 842     // rax,: local 0
 843     // rbx,: method
 844     // rcx: receiver - do not destroy since it is needed for slow path!
 845     // rcx: scratch
 846     // rdx: constant pool cache index
 847     // rdi: constant pool cache
 848     // rsi/r13: sender sp
 849 
 850     // check if getfield has been resolved and read constant pool cache entry
 851     // check the validity of the cache entry by testing whether _indices field
 852     // contains Bytecode::_getfield in b1 byte.
 853     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
 854     __ movl(rcx,
 855             Address(rdi,
 856                     rdx,
 857                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 858     __ shrl(rcx, 2*BitsPerByte);
 859     __ andl(rcx, 0xFF);
 860     __ cmpl(rcx, Bytecodes::_getfield);
 861     __ jcc(Assembler::notEqual, slow_path);
 862 
 863     // Note: constant pool entry is not valid before bytecode is resolved
 864     __ movptr(rcx,
 865             Address(rdi,
 866                     rdx,
 867                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
 868     __ movl(rdx,
 869             Address(rdi,
 870                     rdx,
 871                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 872 
 873     Label notByte, notShort, notChar;
 874     const Address field_address (rax, rcx, Address::times_1);
 875 
 876     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 877     // because they are different sizes.
 878     // Use the type from the constant pool cache
 879     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
 880     // Make sure we don't need to mask rdx after the above shift
 881     ConstantPoolCacheEntry::verify_tos_state_shift();
 882 #ifdef _LP64
 883     Label notObj;
 884     __ cmpl(rdx, atos);
 885     __ jcc(Assembler::notEqual, notObj);
 886     // atos
 887     __ movptr(rax, field_address);
 888     __ jmp(xreturn_path);
 889 
 890     __ bind(notObj);
 891 #endif // _LP64
 892     __ cmpl(rdx, btos);
 893     __ jcc(Assembler::notEqual, notByte);
 894     __ load_signed_byte(rax, field_address);
 895     __ jmp(xreturn_path);
 896 
 897     __ bind(notByte);
 898     __ cmpl(rdx, stos);
 899     __ jcc(Assembler::notEqual, notShort);
 900     __ load_signed_short(rax, field_address);
 901     __ jmp(xreturn_path);
 902 
 903     __ bind(notShort);
 904     __ cmpl(rdx, ctos);
 905     __ jcc(Assembler::notEqual, notChar);
 906     __ load_unsigned_short(rax, field_address);
 907     __ jmp(xreturn_path);
 908 
 909     __ bind(notChar);
 910 #ifdef ASSERT
 911     Label okay;
 912 #ifndef _LP64
 913     __ cmpl(rdx, atos);
 914     __ jcc(Assembler::equal, okay);
 915 #endif // _LP64
 916     __ cmpl(rdx, itos);
 917     __ jcc(Assembler::equal, okay);
 918     __ stop("what type is this?");
 919     __ bind(okay);
 920 #endif // ASSERT
 921     // All the rest are a 32 bit wordsize
 922     __ movl(rax, field_address);
 923 
 924     __ bind(xreturn_path);
 925 
 926     // _ireturn/_areturn
 927     __ pop(rdi);                               // get return address
 928     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
 929     __ jmp(rdi);
 930 
 931     // generate a vanilla interpreter entry as the slow path
 932     __ bind(slow_path);
 933     // We will enter c++ interpreter looking like it was
 934     // called by the call_stub this will cause it to return
 935     // a tosca result to the invoker which might have been
 936     // the c++ interpreter itself.
 937 
 938     __ jmp(fast_accessor_slow_entry_path);
 939     return entry_point;
 940 
 941   } else {
 942     return NULL;
 943   }
 944 
 945 }
 946 
 947 address InterpreterGenerator::generate_Reference_get_entry(void) {
 948 #if INCLUDE_ALL_GCS
 949   if (UseG1GC) {
 950     // We need to generate have a routine that generates code to:
 951     //   * load the value in the referent field
 952     //   * passes that value to the pre-barrier.
 953     //
 954     // In the case of G1 this will record the value of the
 955     // referent in an SATB buffer if marking is active.
 956     // This will cause concurrent marking to mark the referent
 957     // field as live.
 958     Unimplemented();
 959   }
 960 #endif // INCLUDE_ALL_GCS
 961 
 962   // If G1 is not enabled then attempt to go through the accessor entry point
 963   // Reference.get is an accessor
 964   return generate_accessor_entry();
 965 }
 966 
 967 //
 968 // C++ Interpreter stub for calling a native method.
 969 // This sets up a somewhat different looking stack for calling the native method
 970 // than the typical interpreter frame setup but still has the pointer to
 971 // an interpreter state.
 972 //
 973 
 974 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 975   // determine code generation flags
 976   bool inc_counter  = UseCompiler || CountCompiledCalls;
 977 
 978   // rbx: Method*
 979   // rcx: receiver (unused)
 980   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
 981   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
 982   //      to save/restore.
 983   address entry_point = __ pc();
 984 
 985   const Address access_flags      (rbx, Method::access_flags_offset());
 986 
 987   // rsi/r13 == state/locals rdi == prevstate
 988   const Register locals = rdi;
 989 
 990   // get parameter size (always needed)
 991   {
 992     const Address constMethod       (rbx, Method::const_offset());
 993     const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
 994     __ movptr(rcx, constMethod);
 995     __ load_unsigned_short(rcx, size_of_parameters);
 996   }
 997 
 998   // rbx: Method*
 999   // rcx: size of parameters
1000   __ pop(rax);                                       // get return address
1001   // for natives the size of locals is zero
1002 
1003   // compute beginning of parameters /locals
1004 
1005   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
1006 
1007   // initialize fixed part of activation frame
1008 
1009   // Assumes rax = return address
1010 
1011   // allocate and initialize new interpreterState and method expression stack
1012   // IN(locals) ->  locals
1013   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
1014   // destroys rax, rcx, rdx
1015   // OUT (state) -> new interpreterState
1016   // OUT(rsp) -> bottom of methods expression stack
1017 
1018   // save sender_sp
1019   __ mov(rcx, sender_sp_on_entry);
1020   // start with NULL previous state
1021   __ movptr(state, (int32_t)NULL_WORD);
1022   generate_compute_interpreter_state(state, locals, rcx, true);
1023 
1024 #ifdef ASSERT
1025   { Label L;
1026     __ movptr(rax, STATE(_stack_base));
1027 #ifdef _LP64
1028     // duplicate the alignment rsp got after setting stack_base
1029     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
1030     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1031 #endif // _LP64
1032     __ cmpptr(rax, rsp);
1033     __ jcc(Assembler::equal, L);
1034     __ stop("broken stack frame setup in interpreter");
1035     __ bind(L);
1036   }
1037 #endif
1038 
1039   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
1040   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
1041   // Since at this point in the method invocation the exception handler
1042   // would try to exit the monitor of synchronized methods which hasn't
1043   // been entered yet, we set the thread local variable
1044   // _do_not_unlock_if_synchronized to true. The remove_activation will
1045   // check this flag.
1046 
1047   const Address do_not_unlock_if_synchronized(unlock_thread,
1048         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1049   __ movbool(do_not_unlock_if_synchronized, true);
1050 
1051   // make sure method is native & not abstract
1052 #ifdef ASSERT
1053   __ movl(rax, access_flags);
1054   {
1055     Label L;
1056     __ testl(rax, JVM_ACC_NATIVE);
1057     __ jcc(Assembler::notZero, L);
1058     __ stop("tried to execute non-native method as native");
1059     __ bind(L);
1060   }
1061   { Label L;
1062     __ testl(rax, JVM_ACC_ABSTRACT);
1063     __ jcc(Assembler::zero, L);
1064     __ stop("tried to execute abstract method in interpreter");
1065     __ bind(L);
1066   }
1067 #endif
1068 
1069 
1070   // increment invocation count & check for overflow
1071   Label invocation_counter_overflow;
1072   if (inc_counter) {
1073     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1074   }
1075 
1076   Label continue_after_compile;
1077 
1078   __ bind(continue_after_compile);
1079 
1080   bang_stack_shadow_pages(true);
1081 
1082   // reset the _do_not_unlock_if_synchronized flag
1083   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
1084   __ movbool(do_not_unlock_if_synchronized, false);
1085 
1086 
1087   // check for synchronized native methods
1088   //
1089   // Note: This must happen *after* invocation counter check, since
1090   //       when overflow happens, the method should not be locked.
1091   if (synchronized) {
1092     // potentially kills rax, rcx, rdx, rdi
1093     lock_method();
1094   } else {
1095     // no synchronization necessary
1096 #ifdef ASSERT
1097       { Label L;
1098         __ movl(rax, access_flags);
1099         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1100         __ jcc(Assembler::zero, L);
1101         __ stop("method needs synchronization");
1102         __ bind(L);
1103       }
1104 #endif
1105   }
1106 
1107   // start execution
1108 
1109   // jvmti support
1110   __ notify_method_entry();
1111 
1112   // work registers
1113   const Register method = rbx;
1114   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
1115   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
1116   
1117  // allocate space for parameters
1118   __ movptr(method, STATE(_method));
1119   __ verify_method_ptr(method);
1120   {
1121     const Address constMethod       (method, Method::const_offset());
1122     const Address size_of_parameters(t, ConstMethod::size_of_parameters_offset());
1123     __ movptr(t, constMethod);
1124     __ load_unsigned_short(t, size_of_parameters);
1125   }
1126   __ shll(t, 2);
1127 #ifdef _LP64
1128   __ subptr(rsp, t);
1129   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1130   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1131 #else
1132   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
1133   __ subptr(rsp, t);
1134   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1135 #endif // _LP64
1136 
1137   // get signature handler
1138     Label pending_exception_present;
1139 
1140   { Label L;
1141     __ movptr(t, Address(method, Method::signature_handler_offset()));
1142     __ testptr(t, t);
1143     __ jcc(Assembler::notZero, L);
1144     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
1145     __ movptr(method, STATE(_method));
1146     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1147     __ jcc(Assembler::notEqual, pending_exception_present);
1148     __ verify_method_ptr(method);
1149     __ movptr(t, Address(method, Method::signature_handler_offset()));
1150     __ bind(L);
1151   }
1152 #ifdef ASSERT
1153   {
1154     Label L;
1155     __ push(t);
1156     __ get_thread(t);                                   // get vm's javathread*
1157     __ cmpptr(t, STATE(_thread));
1158     __ jcc(Assembler::equal, L);
1159     __ int3();
1160     __ bind(L);
1161     __ pop(t);
1162   }
1163 #endif //
1164 
1165   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
1166   // call signature handler
1167   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1168 
1169   // The generated handlers do not touch RBX (the method oop).
1170   // However, large signatures cannot be cached and are generated
1171   // each time here.  The slow-path generator will blow RBX
1172   // sometime, so we must reload it after the call.
1173   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
1174   __ call(t);
1175   __ movptr(method, STATE(_method));
1176   __ verify_method_ptr(method);
1177 
1178   // result handler is in rax
1179   // set result handler
1180   __ movptr(STATE(_result_handler), rax);
1181 
1182 
1183   // get native function entry point
1184   { Label L;
1185     __ movptr(rax, Address(method, Method::native_function_offset()));
1186     __ testptr(rax, rax);
1187     __ jcc(Assembler::notZero, L);
1188     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1189     __ movptr(method, STATE(_method));
1190     __ verify_method_ptr(method);
1191     __ movptr(rax, Address(method, Method::native_function_offset()));
1192     __ bind(L);
1193   }
1194 
1195   // pass mirror handle if static call
1196   { Label L;
1197     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1198     __ movl(t, Address(method, Method::access_flags_offset()));
1199     __ testl(t, JVM_ACC_STATIC);
1200     __ jcc(Assembler::zero, L);
1201     // get mirror
1202     __ movptr(t, Address(method, Method:: const_offset()));
1203     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1204     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1205     __ movptr(t, Address(t, mirror_offset));
1206     // copy mirror into activation object
1207     __ movptr(STATE(_oop_temp), t);
1208     // pass handle to mirror
1209 #ifdef _LP64
1210     __ lea(c_rarg1, STATE(_oop_temp));
1211 #else
1212     __ lea(t, STATE(_oop_temp));
1213     __ movptr(Address(rsp, wordSize), t);
1214 #endif // _LP64
1215     __ bind(L);
1216   }
1217 #ifdef ASSERT
1218   {
1219     Label L;
1220     __ push(t);
1221     __ get_thread(t);                                   // get vm's javathread*
1222     __ cmpptr(t, STATE(_thread));
1223     __ jcc(Assembler::equal, L);
1224     __ int3();
1225     __ bind(L);
1226     __ pop(t);
1227   }
1228 #endif //
1229 
1230   // pass JNIEnv
1231 #ifdef _LP64
1232   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
1233 #else
1234   __ movptr(thread, STATE(_thread));          // get thread
1235   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1236 
1237   __ movptr(Address(rsp, 0), t);
1238 #endif // _LP64
1239 
1240 #ifdef ASSERT
1241   {
1242     Label L;
1243     __ push(t);
1244     __ get_thread(t);                                   // get vm's javathread*
1245     __ cmpptr(t, STATE(_thread));
1246     __ jcc(Assembler::equal, L);
1247     __ int3();
1248     __ bind(L);
1249     __ pop(t);
1250   }
1251 #endif //
1252 
1253 #ifdef ASSERT
1254   { Label L;
1255     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1256     __ cmpl(t, _thread_in_Java);
1257     __ jcc(Assembler::equal, L);
1258     __ stop("Wrong thread state in native stub");
1259     __ bind(L);
1260   }
1261 #endif
1262 
1263   // Change state to native (we save the return address in the thread, since it might not
1264   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1265   // points into the right code segment. It does not have to be the correct return pc.
1266 
1267   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1268 
1269   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1270 
1271   __ call(rax);
1272 
1273   // result potentially in rdx:rax or ST0
1274   __ movptr(method, STATE(_method));
1275   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
1276 
1277   // The potential result is in ST(0) & rdx:rax
1278   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1279   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1280   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1281   // be destroyed.
1282   // It is safe to do these pushes because state is _thread_in_native and return address will be found
1283   // via _last_native_pc and not via _last_jave_sp
1284 
1285     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
1286     { Label Lpush, Lskip;
1287       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1288       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1289       __ cmpptr(STATE(_result_handler), float_handler.addr());
1290       __ jcc(Assembler::equal, Lpush);
1291       __ cmpptr(STATE(_result_handler), double_handler.addr());
1292       __ jcc(Assembler::notEqual, Lskip);
1293       __ bind(Lpush);
1294       __ subptr(rsp, 2*wordSize);
1295       if ( UseSSE < 2 ) {
1296         __ fstp_d(Address(rsp, 0));
1297       } else {
1298         __ movdbl(Address(rsp, 0), xmm0);
1299       }
1300       __ bind(Lskip);
1301     }
1302 
1303   // save rax:rdx for potential use by result handler.
1304   __ push(rax);
1305 #ifndef _LP64
1306   __ push(rdx);
1307 #endif // _LP64
1308 
1309   // Verify or restore cpu control state after JNI call
1310   __ restore_cpu_control_state_after_jni();
1311 
1312   // change thread state
1313   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1314   if(os::is_MP()) {
1315     // Write serialization page so VM thread can do a pseudo remote membar.
1316     // We use the current thread pointer to calculate a thread specific
1317     // offset to write to within the page. This minimizes bus traffic
1318     // due to cache line collision.
1319     __ serialize_memory(thread, rcx);
1320   }
1321 
1322   // check for safepoint operation in progress and/or pending suspend requests
1323   { Label Continue;
1324 
1325     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1326              SafepointSynchronize::_not_synchronized);
1327 
1328     // threads running native code and they are expected to self-suspend
1329     // when leaving the _thread_in_native state. We need to check for
1330     // pending suspend requests here.
1331     Label L;
1332     __ jcc(Assembler::notEqual, L);
1333     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1334     __ jcc(Assembler::equal, Continue);
1335     __ bind(L);
1336 
1337     // Don't use call_VM as it will see a possible pending exception and forward it
1338     // and never return here preventing us from clearing _last_native_pc down below.
1339     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1340     // preserved and correspond to the bcp/locals pointers.
1341     //
1342 
1343     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1344                           thread);
1345     __ increment(rsp, wordSize);
1346 
1347     __ movptr(method, STATE(_method));
1348     __ verify_method_ptr(method);
1349     __ movptr(thread, STATE(_thread));                       // get thread
1350 
1351     __ bind(Continue);
1352   }
1353 
1354   // change thread state
1355   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1356 
1357   __ reset_last_Java_frame(thread, true, true);
1358 
1359   // reset handle block
1360   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1361   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1362 
1363   // If result was an oop then unbox and save it in the frame
1364   { Label L;
1365     Label no_oop, store_result;
1366       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1367     __ cmpptr(STATE(_result_handler), oop_handler.addr());
1368     __ jcc(Assembler::notEqual, no_oop);
1369 #ifndef _LP64
1370     __ pop(rdx);
1371 #endif // _LP64
1372     __ pop(rax);
1373     __ testptr(rax, rax);
1374     __ jcc(Assembler::zero, store_result);
1375     // unbox
1376     __ movptr(rax, Address(rax, 0));
1377     __ bind(store_result);
1378     __ movptr(STATE(_oop_temp), rax);
1379     // keep stack depth as expected by pushing oop which will eventually be discarded
1380     __ push(rax);
1381 #ifndef _LP64
1382     __ push(rdx);
1383 #endif // _LP64
1384     __ bind(no_oop);
1385   }
1386 
1387   {
1388      Label no_reguard;
1389      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1390      __ jcc(Assembler::notEqual, no_reguard);
1391 
1392      __ pusha();
1393      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1394      __ popa();
1395 
1396      __ bind(no_reguard);
1397    }
1398 
1399 
1400   // QQQ Seems like for native methods we simply return and the caller will see the pending
1401   // exception and do the right thing. Certainly the interpreter will, don't know about
1402   // compiled methods.
1403   // Seems that the answer to above is no this is wrong. The old code would see the exception
1404   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
1405   // This seems wrong need to investigate the spec.
1406 
1407   // handle exceptions (exception handling will handle unlocking!)
1408   { Label L;
1409     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1410     __ jcc(Assembler::zero, L);
1411     __ bind(pending_exception_present);
1412 
1413     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1414     // return and let caller deal with exception. This skips the unlocking here which
1415     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1416     // Note: must preverve method in rbx
1417     //
1418 
1419     // remove activation
1420 
1421     __ movptr(t, STATE(_sender_sp));
1422     __ leave();                                  // remove frame anchor
1423     __ pop(rdi);                                 // get return address
1424     __ movptr(state, STATE(_prev_link));         // get previous state for return
1425     __ mov(rsp, t);                              // set sp to sender sp
1426     __ push(rdi);                                // push throwing pc
1427     // The skips unlocking!! This seems to be what asm interpreter does but seems
1428     // very wrong. Not clear if this violates the spec.
1429     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1430     __ bind(L);
1431   }
1432 
1433   // do unlocking if necessary
1434   { Label L;
1435     __ movl(t, Address(method, Method::access_flags_offset()));
1436     __ testl(t, JVM_ACC_SYNCHRONIZED);
1437     __ jcc(Assembler::zero, L);
1438     // the code below should be shared with interpreter macro assembler implementation
1439     { Label unlock;
1440     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1441       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1442       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1443       __ movptr(monitor, STATE(_monitor_base));
1444       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
1445 
1446       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
1447       __ testptr(t, t);
1448       __ jcc(Assembler::notZero, unlock);
1449 
1450       // Entry already unlocked, need to throw exception
1451       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1452       __ should_not_reach_here();
1453 
1454       __ bind(unlock);
1455       __ unlock_object(monitor);
1456       // unlock can blow rbx so restore it for path that needs it below
1457       __ movptr(method, STATE(_method));
1458     }
1459     __ bind(L);
1460   }
1461 
1462   // jvmti support
1463   // Note: This must happen _after_ handling/throwing any exceptions since
1464   //       the exception handler code notifies the runtime of method exits
1465   //       too. If this happens before, method entry/exit notifications are
1466   //       not properly paired (was bug - gri 11/22/99).
1467   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1468 
1469   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1470 #ifndef _LP64
1471   __ pop(rdx);
1472 #endif // _LP64
1473   __ pop(rax);
1474   __ movptr(t, STATE(_result_handler));       // get result handler
1475   __ call(t);                                 // call result handler to convert to tosca form
1476 
1477   // remove activation
1478 
1479   __ movptr(t, STATE(_sender_sp));
1480 
1481   __ leave();                                  // remove frame anchor
1482   __ pop(rdi);                                 // get return address
1483   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
1484   __ mov(rsp, t);                              // set sp to sender sp
1485   __ jmp(rdi);
1486 
1487   // invocation counter overflow
1488   if (inc_counter) {
1489     // Handle overflow of counter and compile method
1490     __ bind(invocation_counter_overflow);
1491     generate_counter_overflow(&continue_after_compile);
1492   }
1493 
1494   return entry_point;
1495 }
1496 
1497 // Generate entries that will put a result type index into rcx
1498 void CppInterpreterGenerator::generate_deopt_handling() {
1499 
1500   Label return_from_deopt_common;
1501 
1502   // Generate entries that will put a result type index into rcx
1503   // deopt needs to jump to here to enter the interpreter (return a result)
1504   deopt_frame_manager_return_atos  = __ pc();
1505 
1506   // rax is live here
1507   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
1508   __ jmp(return_from_deopt_common);
1509 
1510 
1511   // deopt needs to jump to here to enter the interpreter (return a result)
1512   deopt_frame_manager_return_btos  = __ pc();
1513 
1514   // rax is live here
1515   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
1516   __ jmp(return_from_deopt_common);
1517 
1518   // deopt needs to jump to here to enter the interpreter (return a result)
1519   deopt_frame_manager_return_itos  = __ pc();
1520 
1521   // rax is live here
1522   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
1523   __ jmp(return_from_deopt_common);
1524 
1525   // deopt needs to jump to here to enter the interpreter (return a result)
1526 
1527   deopt_frame_manager_return_ltos  = __ pc();
1528   // rax,rdx are live here
1529   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
1530   __ jmp(return_from_deopt_common);
1531 
1532   // deopt needs to jump to here to enter the interpreter (return a result)
1533 
1534   deopt_frame_manager_return_ftos  = __ pc();
1535   // st(0) is live here
1536   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1537   __ jmp(return_from_deopt_common);
1538 
1539   // deopt needs to jump to here to enter the interpreter (return a result)
1540   deopt_frame_manager_return_dtos  = __ pc();
1541 
1542   // st(0) is live here
1543   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1544   __ jmp(return_from_deopt_common);
1545 
1546   // deopt needs to jump to here to enter the interpreter (return a result)
1547   deopt_frame_manager_return_vtos  = __ pc();
1548 
1549   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1550 
1551   // Deopt return common
1552   // an index is present in rcx that lets us move any possible result being
1553   // return to the interpreter's stack
1554   //
1555   // Because we have a full sized interpreter frame on the youngest
1556   // activation the stack is pushed too deep to share the tosca to
1557   // stack converters directly. We shrink the stack to the desired
1558   // amount and then push result and then re-extend the stack.
1559   // We could have the code in size_activation layout a short
1560   // frame for the top activation but that would look different
1561   // than say sparc (which needs a full size activation because
1562   // the windows are in the way. Really it could be short? QQQ
1563   //
1564   __ bind(return_from_deopt_common);
1565 
1566   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1567 
1568   // setup rsp so we can push the "result" as needed.
1569   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
1570   __ addptr(rsp, wordSize);                                        // undo prepush
1571 
1572   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1573   // Address index(noreg, rcx, Address::times_ptr);
1574   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1575   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1576   __ call(rcx);                                                   // call result converter
1577 
1578   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1579   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
1580   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
1581                                                                    // result if any on stack already )
1582   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1583 }
1584 
1585 // Generate the code to handle a more_monitors message from the c++ interpreter
1586 void CppInterpreterGenerator::generate_more_monitors() {
1587 
1588 
1589   Label entry, loop;
1590   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1591   // 1. compute new pointers                     // rsp: old expression stack top
1592   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
1593   __ subptr(rsp, entry_size);                    // move expression stack top limit
1594   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
1595   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
1596   __ subptr(rdx, entry_size);                    // move expression stack bottom
1597   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
1598   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
1599   __ jmp(entry);
1600   // 2. move expression stack contents
1601   __ bind(loop);
1602   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
1603   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
1604   __ addptr(rcx, wordSize);                      // advance to next word
1605   __ bind(entry);
1606   __ cmpptr(rcx, rdx);                           // check if bottom reached
1607   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
1608   // now zero the slot so we can find it.
1609   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
1610   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1611 }
1612 
1613 
1614 // Initial entry to C++ interpreter from the call_stub.
1615 // This entry point is called the frame manager since it handles the generation
1616 // of interpreter activation frames via requests directly from the vm (via call_stub)
1617 // and via requests from the interpreter. The requests from the call_stub happen
1618 // directly thru the entry point. Requests from the interpreter happen via returning
1619 // from the interpreter and examining the message the interpreter has returned to
1620 // the frame manager. The frame manager can take the following requests:
1621 
1622 // NO_REQUEST - error, should never happen.
1623 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1624 //                 allocate a new monitor.
1625 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1626 //               happens during entry during the entry via the call stub.
1627 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1628 //
1629 // Arguments:
1630 //
1631 // rbx: Method*
1632 // rcx: receiver - unused (retrieved from stack as needed)
1633 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
1634 //
1635 //
1636 // Stack layout at entry
1637 //
1638 // [ return address     ] <--- rsp
1639 // [ parameter n        ]
1640 //   ...
1641 // [ parameter 1        ]
1642 // [ expression stack   ]
1643 //
1644 //
1645 // We are free to blow any registers we like because the call_stub which brought us here
1646 // initially has preserved the callee save registers already.
1647 //
1648 //
1649 
1650 static address interpreter_frame_manager = NULL;
1651 
1652 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1653 
1654   // rbx: Method*
1655   // rsi/r13: sender sp
1656 
1657   // Because we redispatch "recursive" interpreter entries thru this same entry point
1658   // the "input" register usage is a little strange and not what you expect coming
1659   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1660   // state are NULL but on "recursive" dispatches they are what you'd expect.
1661   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1662 
1663 
1664   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1665   // the code is pretty much ready. Would need to change the test below and for good measure
1666   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1667   // routines. Not clear this is worth it yet.
1668 
1669   if (interpreter_frame_manager) return interpreter_frame_manager;
1670 
1671   address entry_point = __ pc();
1672 
1673   // Fast accessor methods share this entry point.
1674   // This works because frame manager is in the same codelet
1675   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
1676 
1677   Label dispatch_entry_2;
1678   __ movptr(rcx, sender_sp_on_entry);
1679   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
1680 
1681   __ jmp(dispatch_entry_2);
1682 
1683   const Register locals  = rdi;
1684 
1685   Label re_dispatch;
1686 
1687   __ bind(re_dispatch);
1688 
1689   // save sender sp (doesn't include return address
1690   __ lea(rcx, Address(rsp, wordSize));
1691 
1692   __ bind(dispatch_entry_2);
1693 
1694   // save sender sp
1695   __ push(rcx);
1696 
1697   const Address constMethod       (rbx, Method::const_offset());
1698   const Address access_flags      (rbx, Method::access_flags_offset());
1699   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
1700   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
1701 
1702   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1703   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
1704   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1705 
1706   // get parameter size (always needed)
1707   __ movptr(rdx, constMethod);
1708   __ load_unsigned_short(rcx, size_of_parameters);
1709 
1710   // rbx: Method*
1711   // rcx: size of parameters
1712   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
1713 
1714   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
1715 
1716   // see if we've got enough room on the stack for locals plus overhead.
1717   generate_stack_overflow_check();                                 // C++
1718 
1719   // c++ interpreter does not use stack banging or any implicit exceptions
1720   // leave for now to verify that check is proper.
1721   bang_stack_shadow_pages(false);
1722 
1723 
1724 
1725   // compute beginning of parameters (rdi)
1726   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
1727 
1728   // save sender's sp
1729   // __ movl(rcx, rsp);
1730 
1731   // get sender's sp
1732   __ pop(rcx);
1733 
1734   // get return address
1735   __ pop(rax);
1736 
1737   // rdx - # of additional locals
1738   // allocate space for locals
1739   // explicitly initialize locals
1740   {
1741     Label exit, loop;
1742     __ testl(rdx, rdx);                               // (32bit ok)
1743     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1744     __ bind(loop);
1745     __ push((int32_t)NULL_WORD);                      // initialize local variables
1746     __ decrement(rdx);                                // until everything initialized
1747     __ jcc(Assembler::greater, loop);
1748     __ bind(exit);
1749   }
1750 
1751 
1752   // Assumes rax = return address
1753 
1754   // allocate and initialize new interpreterState and method expression stack
1755   // IN(locals) ->  locals
1756   // IN(state) -> any current interpreter activation
1757   // destroys rax, rcx, rdx, rdi
1758   // OUT (state) -> new interpreterState
1759   // OUT(rsp) -> bottom of methods expression stack
1760 
1761   generate_compute_interpreter_state(state, locals, rcx, false);
1762 
1763   // Call interpreter
1764 
1765   Label call_interpreter;
1766   __ bind(call_interpreter);
1767 
1768   // c++ interpreter does not use stack banging or any implicit exceptions
1769   // leave for now to verify that check is proper.
1770   bang_stack_shadow_pages(false);
1771 
1772 
1773   // Call interpreter enter here if message is
1774   // set and we know stack size is valid
1775 
1776   Label call_interpreter_2;
1777 
1778   __ bind(call_interpreter_2);
1779 
1780   {
1781     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1782 
1783 #ifdef _LP64
1784     __ mov(c_rarg0, state);
1785 #else
1786     __ push(state);                                                 // push arg to interpreter
1787     __ movptr(thread, STATE(_thread));
1788 #endif // _LP64
1789 
1790     // We can setup the frame anchor with everything we want at this point
1791     // as we are thread_in_Java and no safepoints can occur until we go to
1792     // vm mode. We do have to clear flags on return from vm but that is it
1793     //
1794     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1795     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1796 
1797     // Call the interpreter
1798 
1799     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1800     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1801 
1802     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1803     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
1804     //
1805     // state is preserved since it is callee saved
1806     //
1807 
1808     // reset_last_Java_frame
1809 
1810     NOT_LP64(__ movl(thread, STATE(_thread));)
1811     __ reset_last_Java_frame(thread, true, true);
1812   }
1813 
1814   // examine msg from interpreter to determine next action
1815 
1816   __ movl(rdx, STATE(_msg));                                       // Get new message
1817 
1818   Label call_method;
1819   Label return_from_interpreted_method;
1820   Label throw_exception;
1821   Label bad_msg;
1822   Label do_OSR;
1823 
1824   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
1825   __ jcc(Assembler::equal, call_method);
1826   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
1827   __ jcc(Assembler::equal, return_from_interpreted_method);
1828   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
1829   __ jcc(Assembler::equal, do_OSR);
1830   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
1831   __ jcc(Assembler::equal, throw_exception);
1832   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
1833   __ jcc(Assembler::notEqual, bad_msg);
1834 
1835   // Allocate more monitor space, shuffle expression stack....
1836 
1837   generate_more_monitors();
1838 
1839   __ jmp(call_interpreter);
1840 
1841   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1842   unctrap_frame_manager_entry  = __ pc();
1843   //
1844   // Load the registers we need.
1845   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1846   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1847   __ jmp(call_interpreter_2);
1848 
1849 
1850 
1851   //=============================================================================
1852   // Returning from a compiled method into a deopted method. The bytecode at the
1853   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1854   // for the template based interpreter). Any stack space that was used by the
1855   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1856   // so all that we have to do is place any pending result on the expression stack
1857   // and resume execution on the next bytecode.
1858 
1859 
1860   generate_deopt_handling();
1861   __ jmp(call_interpreter);
1862 
1863 
1864   // Current frame has caught an exception we need to dispatch to the
1865   // handler. We can get here because a native interpreter frame caught
1866   // an exception in which case there is no handler and we must rethrow
1867   // If it is a vanilla interpreted frame the we simply drop into the
1868   // interpreter and let it do the lookup.
1869 
1870   Interpreter::_rethrow_exception_entry = __ pc();
1871   // rax: exception
1872   // rdx: return address/pc that threw exception
1873 
1874   Label return_with_exception;
1875   Label unwind_and_forward;
1876 
1877   // restore state pointer.
1878   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1879 
1880   __ movptr(rbx, STATE(_method));                       // get method
1881 #ifdef _LP64
1882   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
1883 #else
1884   __ movl(rcx, STATE(_thread));                       // get thread
1885 
1886   // Store exception with interpreter will expect it
1887   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
1888 #endif // _LP64
1889 
1890   // is current frame vanilla or native?
1891 
1892   __ movl(rdx, access_flags);
1893   __ testl(rdx, JVM_ACC_NATIVE);
1894   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
1895 
1896   // We drop thru to unwind a native interpreted frame with a pending exception
1897   // We jump here for the initial interpreter frame with exception pending
1898   // We unwind the current acivation and forward it to our caller.
1899 
1900   __ bind(unwind_and_forward);
1901 
1902   // unwind rbp, return stack to unextended value and re-push return address
1903 
1904   __ movptr(rcx, STATE(_sender_sp));
1905   __ leave();
1906   __ pop(rdx);
1907   __ mov(rsp, rcx);
1908   __ push(rdx);
1909   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1910 
1911   // Return point from a call which returns a result in the native abi
1912   // (c1/c2/jni-native). This result must be processed onto the java
1913   // expression stack.
1914   //
1915   // A pending exception may be present in which case there is no result present
1916 
1917   Label resume_interpreter;
1918   Label do_float;
1919   Label do_double;
1920   Label done_conv;
1921 
1922   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1923   if (UseSSE < 2) {
1924     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1925     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
1926     __ movl(rcx, Address(rbx, Method::result_index_offset()));
1927     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1928     __ jcc(Assembler::equal, do_float);
1929     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1930     __ jcc(Assembler::equal, do_double);
1931 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
1932     __ empty_FPU_stack();
1933 #endif // COMPILER2
1934     __ jmp(done_conv);
1935 
1936     __ bind(do_float);
1937 #ifdef COMPILER2
1938     for (int i = 1; i < 8; i++) {
1939       __ ffree(i);
1940     }
1941 #endif // COMPILER2
1942     __ jmp(done_conv);
1943     __ bind(do_double);
1944 #ifdef COMPILER2
1945     for (int i = 1; i < 8; i++) {
1946       __ ffree(i);
1947     }
1948 #endif // COMPILER2
1949     __ jmp(done_conv);
1950   } else {
1951     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1952     __ jmp(done_conv);
1953   }
1954 
1955   // Return point to interpreter from compiled/native method
1956   InternalAddress return_from_native_method(__ pc());
1957 
1958   __ bind(done_conv);
1959 
1960 
1961   // Result if any is in tosca. The java expression stack is in the state that the
1962   // calling convention left it (i.e. params may or may not be present)
1963   // Copy the result from tosca and place it on java expression stack.
1964 
1965   // Restore rsi/r13 as compiled code may not preserve it
1966 
1967   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1968 
1969   // restore stack to what we had when we left (in case i2c extended it)
1970 
1971   __ movptr(rsp, STATE(_stack));
1972   __ lea(rsp, Address(rsp, wordSize));
1973 
1974   // If there is a pending exception then we don't really have a result to process
1975 
1976 #ifdef _LP64
1977   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1978 #else
1979   __ movptr(rcx, STATE(_thread));                       // get thread
1980   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1981 #endif // _LP64
1982   __ jcc(Assembler::notZero, return_with_exception);
1983 
1984   // get method just executed
1985   __ movptr(rbx, STATE(_result._to_call._callee));
1986 
1987   // callee left args on top of expression stack, remove them
1988   __ movptr(rcx, constMethod);
1989   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
1990 
1991   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
1992 
1993   __ movl(rcx, Address(rbx, Method::result_index_offset()));
1994   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1995   // Address index(noreg, rax, Address::times_ptr);
1996   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1997   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1998   __ call(rcx);                                               // call result converter
1999   __ jmp(resume_interpreter);
2000 
2001   // An exception is being caught on return to a vanilla interpreter frame.
2002   // Empty the stack and resume interpreter
2003 
2004   __ bind(return_with_exception);
2005 
2006   // Exception present, empty stack
2007   __ movptr(rsp, STATE(_stack_base));
2008   __ jmp(resume_interpreter);
2009 
2010   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
2011   // interpreter call, or native) and unwind this interpreter activation.
2012   // All monitors should be unlocked.
2013 
2014   __ bind(return_from_interpreted_method);
2015 
2016   Label return_to_initial_caller;
2017 
2018   __ movptr(rbx, STATE(_method));                                   // get method just executed
2019   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
2020   __ movl(rax, Address(rbx, Method::result_index_offset())); // get result type index
2021   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
2022 
2023   // Copy result to callers java stack
2024   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
2025   // Address index(noreg, rax, Address::times_ptr);
2026 
2027   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
2028   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
2029   __ call(rax);                                                     // call result converter
2030 
2031   Label unwind_recursive_activation;
2032   __ bind(unwind_recursive_activation);
2033 
2034   // returning to interpreter method from "recursive" interpreter call
2035   // result converter left rax pointing to top of the java stack for method we are returning
2036   // to. Now all we must do is unwind the state from the completed call
2037 
2038   __ movptr(state, STATE(_prev_link));                              // unwind state
2039   __ leave();                                                       // pop the frame
2040   __ mov(rsp, rax);                                                 // unwind stack to remove args
2041 
2042   // Resume the interpreter. The current frame contains the current interpreter
2043   // state object.
2044   //
2045 
2046   __ bind(resume_interpreter);
2047 
2048   // state == interpreterState object for method we are resuming
2049 
2050   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
2051   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
2052   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
2053                                                                    // result if any on stack already )
2054   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
2055   __ jmp(call_interpreter_2);                                      // No need to bang
2056 
2057   // interpreter returning to native code (call_stub/c1/c2)
2058   // convert result and unwind initial activation
2059   // rax - result index
2060 
2061   __ bind(return_to_initial_caller);
2062   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
2063   // Address index(noreg, rax, Address::times_ptr);
2064 
2065   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
2066   __ call(rax);                                                    // call result converter
2067 
2068   Label unwind_initial_activation;
2069   __ bind(unwind_initial_activation);
2070 
2071   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
2072 
2073   /* Current stack picture
2074 
2075         [ incoming parameters ]
2076         [ extra locals ]
2077         [ return address to CALL_STUB/C1/C2]
2078   fp -> [ CALL_STUB/C1/C2 fp ]
2079         BytecodeInterpreter object
2080         expression stack
2081   sp ->
2082 
2083   */
2084 
2085   // return restoring the stack to the original sender_sp value
2086 
2087   __ movptr(rcx, STATE(_sender_sp));
2088   __ leave();
2089   __ pop(rdi);                                                        // get return address
2090   // set stack to sender's sp
2091   __ mov(rsp, rcx);
2092   __ jmp(rdi);                                                        // return to call_stub
2093 
2094   // OSR request, adjust return address to make current frame into adapter frame
2095   // and enter OSR nmethod
2096 
2097   __ bind(do_OSR);
2098 
2099   Label remove_initial_frame;
2100 
2101   // We are going to pop this frame. Is there another interpreter frame underneath
2102   // it or is it callstub/compiled?
2103 
2104   // Move buffer to the expected parameter location
2105   __ movptr(rcx, STATE(_result._osr._osr_buf));
2106 
2107   __ movptr(rax, STATE(_result._osr._osr_entry));
2108 
2109   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
2110   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
2111 
2112   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
2113   __ leave();                                                  // pop the frame
2114   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
2115 
2116 
2117   // We know we are calling compiled so push specialized return
2118   // method uses specialized entry, push a return so we look like call stub setup
2119   // this path will handle fact that result is returned in registers and not
2120   // on the java stack.
2121 
2122   __ pushptr(return_from_native_method.addr());
2123 
2124   __ jmp(rax);
2125 
2126   __ bind(remove_initial_frame);
2127 
2128   __ movptr(rdx, STATE(_sender_sp));
2129   __ leave();
2130   // get real return
2131   __ pop(rsi);
2132   // set stack to sender's sp
2133   __ mov(rsp, rdx);
2134   // repush real return
2135   __ push(rsi);
2136   // Enter OSR nmethod
2137   __ jmp(rax);
2138 
2139 
2140 
2141 
2142   // Call a new method. All we do is (temporarily) trim the expression stack
2143   // push a return address to bring us back to here and leap to the new entry.
2144 
2145   __ bind(call_method);
2146 
2147   // stack points to next free location and not top element on expression stack
2148   // method expects sp to be pointing to topmost element
2149 
2150   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
2151   __ lea(rsp, Address(rsp, wordSize));
2152 
2153   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
2154 
2155   // don't need a return address if reinvoking interpreter
2156 
2157   // Make it look like call_stub calling conventions
2158 
2159   // Get (potential) receiver
2160   // get size of parameters in words
2161   __ movptr(rcx, constMethod);
2162   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
2163 
2164   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2165   __ pushptr(recursive.addr());                                      // make it look good in the debugger
2166 
2167   InternalAddress entry(entry_point);
2168   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2169   __ jcc(Assembler::equal, re_dispatch);                             // yes
2170 
2171   __ pop(rax);                                                       // pop dummy address
2172 
2173 
2174   // get specialized entry
2175   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
2176   // set sender SP
2177   __ mov(sender_sp_on_entry, rsp);
2178 
2179   // method uses specialized entry, push a return so we look like call stub setup
2180   // this path will handle fact that result is returned in registers and not
2181   // on the java stack.
2182 
2183   __ pushptr(return_from_native_method.addr());
2184 
2185   __ jmp(rax);
2186 
2187   __ bind(bad_msg);
2188   __ stop("Bad message from interpreter");
2189 
2190   // Interpreted method "returned" with an exception pass it on...
2191   // Pass result, unwind activation and continue/return to interpreter/call_stub
2192   // We handle result (if any) differently based on return to interpreter or call_stub
2193 
2194   Label unwind_initial_with_pending_exception;
2195 
2196   __ bind(throw_exception);
2197   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
2198   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
2199   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
2200   __ addptr(rax, wordSize);                                         // account for prepush before we return
2201   __ jmp(unwind_recursive_activation);
2202 
2203   __ bind(unwind_initial_with_pending_exception);
2204 
2205   // We will unwind the current (initial) interpreter frame and forward
2206   // the exception to the caller. We must put the exception in the
2207   // expected register and clear pending exception and then forward.
2208 
2209   __ jmp(unwind_and_forward);
2210 
2211   interpreter_frame_manager = entry_point;
2212   return entry_point;
2213 }
2214 
2215 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
2216   // determine code generation flags
2217   bool synchronized = false;
2218   address entry_point = NULL;
2219 
2220   switch (kind) {
2221     case Interpreter::zerolocals             :                                                                             break;
2222     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
2223     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
2224     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
2225     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
2226     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
2227     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
2228 
2229     case Interpreter::java_lang_math_sin     : // fall thru
2230     case Interpreter::java_lang_math_cos     : // fall thru
2231     case Interpreter::java_lang_math_tan     : // fall thru
2232     case Interpreter::java_lang_math_abs     : // fall thru
2233     case Interpreter::java_lang_math_log     : // fall thru
2234     case Interpreter::java_lang_math_log10   : // fall thru
2235     case Interpreter::java_lang_math_sqrt    : // fall thru
2236     case Interpreter::java_lang_math_pow     : // fall thru
2237     case Interpreter::java_lang_math_exp     : // fall thru
2238       entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
2239     case Interpreter::java_lang_ref_reference_get
2240                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
2241     default                                  : ShouldNotReachHere();                                                       break;
2242   }
2243 
2244   if (entry_point) return entry_point;
2245 
2246   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
2247 
2248 }
2249 
2250 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2251  : CppInterpreterGenerator(code) {
2252    generate_all(); // down here so it can be "virtual"
2253 }
2254 
2255 // Deoptimization helpers for C++ interpreter
2256 
2257 // How much stack a method activation needs in words.
2258 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2259 
2260   const int stub_code = 4;  // see generate_call_stub
2261   // Save space for one monitor to get into the interpreted method in case
2262   // the method is synchronized
2263   int monitor_size    = method->is_synchronized() ?
2264                                 1*frame::interpreter_frame_monitor_size() : 0;
2265 
2266   // total static overhead size. Account for interpreter state object, return
2267   // address, saved rbp and 2 words for a "static long no_params() method" issue.
2268 
2269   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2270     ( frame::sender_sp_offset - frame::link_offset) + 2;
2271 
2272   const int method_stack = (method->max_locals() + method->max_stack()) *
2273                            Interpreter::stackElementWords;
2274   return overhead_size + method_stack + stub_code;
2275 }
2276 
2277 // returns the activation size.
2278 static int size_activation_helper(int extra_locals_size, int monitor_size) {
2279   return (extra_locals_size +                  // the addition space for locals
2280           2*BytesPerWord +                     // return address and saved rbp
2281           2*BytesPerWord +                     // "static long no_params() method" issue
2282           sizeof(BytecodeInterpreter) +               // interpreterState
2283           monitor_size);                       // monitors
2284 }
2285 
2286 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2287                                            frame* caller,
2288                                            frame* current,
2289                                            Method* method,
2290                                            intptr_t* locals,
2291                                            intptr_t* stack,
2292                                            intptr_t* stack_base,
2293                                            intptr_t* monitor_base,
2294                                            intptr_t* frame_bottom,
2295                                            bool is_top_frame
2296                                            )
2297 {
2298   // What about any vtable?
2299   //
2300   to_fill->_thread = JavaThread::current();
2301   // This gets filled in later but make it something recognizable for now
2302   to_fill->_bcp = method->code_base();
2303   to_fill->_locals = locals;
2304   to_fill->_constants = method->constants()->cache();
2305   to_fill->_method = method;
2306   to_fill->_mdx = NULL;
2307   to_fill->_stack = stack;
2308   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2309     to_fill->_msg = deopt_resume2;
2310   } else {
2311     to_fill->_msg = method_resume;
2312   }
2313   to_fill->_result._to_call._bcp_advance = 0;
2314   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2315   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2316   to_fill->_prev_link = NULL;
2317 
2318   to_fill->_sender_sp = caller->unextended_sp();
2319 
2320   if (caller->is_interpreted_frame()) {
2321     interpreterState prev  = caller->get_interpreterState();
2322     to_fill->_prev_link = prev;
2323     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2324     // Make the prev callee look proper
2325     prev->_result._to_call._callee = method;
2326     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2327       prev->_result._to_call._bcp_advance = 5;
2328     } else {
2329       prev->_result._to_call._bcp_advance = 3;
2330     }
2331   }
2332   to_fill->_oop_temp = NULL;
2333   to_fill->_stack_base = stack_base;
2334   // Need +1 here because stack_base points to the word just above the first expr stack entry
2335   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2336   // See generate_compute_interpreter_state.
2337   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2338   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2339 
2340   to_fill->_self_link = to_fill;
2341   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2342          "Stack top out of range");
2343 }
2344 
2345 int AbstractInterpreter::layout_activation(Method* method,
2346                                            int tempcount,  //
2347                                            int popframe_extra_args,
2348                                            int moncount,
2349                                            int caller_actual_parameters,
2350                                            int callee_param_count,
2351                                            int callee_locals,
2352                                            frame* caller,
2353                                            frame* interpreter_frame,
2354                                            bool is_top_frame,
2355                                            bool is_bottom_frame) {
2356 
2357   assert(popframe_extra_args == 0, "FIX ME");
2358   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2359   // does as far as allocating an interpreter frame.
2360   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2361   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2362   // as determined by a previous call to this method.
2363   // It is also guaranteed to be walkable even though it is in a skeletal state
2364   // NOTE: return size is in words not bytes
2365   // NOTE: tempcount is the current size of the java expression stack. For top most
2366   //       frames we will allocate a full sized expression stack and not the curback
2367   //       version that non-top frames have.
2368 
2369   // Calculate the amount our frame will be adjust by the callee. For top frame
2370   // this is zero.
2371 
2372   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2373   // calculates the extra locals based on itself. Not what the callee does
2374   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2375   // as getting sender_sp correct.
2376 
2377   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2378   int monitor_size = sizeof(BasicObjectLock) * moncount;
2379 
2380   // First calculate the frame size without any java expression stack
2381   int short_frame_size = size_activation_helper(extra_locals_size,
2382                                                 monitor_size);
2383 
2384   // Now with full size expression stack
2385   int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord;
2386 
2387   // and now with only live portion of the expression stack
2388   short_frame_size = short_frame_size + tempcount * BytesPerWord;
2389 
2390   // the size the activation is right now. Only top frame is full size
2391   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2392 
2393   if (interpreter_frame != NULL) {
2394 #ifdef ASSERT
2395     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2396 #endif
2397 
2398     // MUCHO HACK
2399 
2400     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2401 
2402     /* Now fillin the interpreterState object */
2403 
2404     // The state object is the first thing on the frame and easily located
2405 
2406     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2407 
2408 
2409     // Find the locals pointer. This is rather simple on x86 because there is no
2410     // confusing rounding at the callee to account for. We can trivially locate
2411     // our locals based on the current fp().
2412     // Note: the + 2 is for handling the "static long no_params() method" issue.
2413     // (too bad I don't really remember that issue well...)
2414 
2415     intptr_t* locals;
2416     // If the caller is interpreted we need to make sure that locals points to the first
2417     // argument that the caller passed and not in an area where the stack might have been extended.
2418     // because the stack to stack to converter needs a proper locals value in order to remove the
2419     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2420     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2421     // adjust the stack?? HMMM QQQ
2422     //
2423     if (caller->is_interpreted_frame()) {
2424       // locals must agree with the caller because it will be used to set the
2425       // caller's tos when we return.
2426       interpreterState prev  = caller->get_interpreterState();
2427       // stack() is prepushed.
2428       locals = prev->stack() + method->size_of_parameters();
2429       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2430       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2431         // os::breakpoint();
2432       }
2433     } else {
2434       // this is where a c2i would have placed locals (except for the +2)
2435       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2436     }
2437 
2438     intptr_t* monitor_base = (intptr_t*) cur_state;
2439     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2440     /* +1 because stack is always prepushed */
2441     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2442 
2443 
2444     BytecodeInterpreter::layout_interpreterState(cur_state,
2445                                           caller,
2446                                           interpreter_frame,
2447                                           method,
2448                                           locals,
2449                                           stack,
2450                                           stack_base,
2451                                           monitor_base,
2452                                           frame_bottom,
2453                                           is_top_frame);
2454 
2455     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2456   }
2457   return frame_size/BytesPerWord;
2458 }
2459 
2460 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
2461   switch (method_kind(m)) {
2462     case Interpreter::java_lang_math_sin     : // fall thru
2463     case Interpreter::java_lang_math_cos     : // fall thru
2464     case Interpreter::java_lang_math_tan     : // fall thru
2465     case Interpreter::java_lang_math_abs     : // fall thru
2466     case Interpreter::java_lang_math_log     : // fall thru
2467     case Interpreter::java_lang_math_log10   : // fall thru
2468     case Interpreter::java_lang_math_sqrt    : // fall thru
2469     case Interpreter::java_lang_math_pow     : // fall thru
2470     case Interpreter::java_lang_math_exp     :
2471       return false;
2472     default:
2473       return true;
2474   }
2475 }
2476 
2477 
2478 #endif // CC_INTERP (all)