1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 
  41 
  42 // Implementation of InterpreterMacroAssembler
  43 
  44 #ifdef CC_INTERP
  45 void InterpreterMacroAssembler::get_method(Register reg) {
  46   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
  47   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  48 }
  49 #endif // CC_INTERP
  50 
  51 #ifndef CC_INTERP
  52 
  53 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
  54                                                   int number_of_arguments) {
  55   // interpreter specific
  56   //
  57   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
  58   //       since these are callee saved registers and no blocking/
  59   //       GC can happen in leaf calls.
  60   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  61   // already saved them so that it can use esi/edi as temporaries
  62   // then a save/restore here will DESTROY the copy the caller
  63   // saved! There used to be a save_bcp() that only happened in
  64   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  65   // when jvm built with ASSERTs.
  66 #ifdef ASSERT
  67   {
  68     Label L;
  69     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  70     jcc(Assembler::equal, L);
  71     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
  72          " last_sp != NULL");
  73     bind(L);
  74   }
  75 #endif
  76   // super call
  77   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  78   // interpreter specific
  79   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
  80   // but since they may not have been saved (and we don't want to
  81   // save thme here (see note above) the assert is invalid.
  82 }
  83 
  84 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
  85                                              Register java_thread,
  86                                              Register last_java_sp,
  87                                              address  entry_point,
  88                                              int      number_of_arguments,
  89                                              bool     check_exceptions) {
  90   // interpreter specific
  91   //
  92   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
  93   //       really make a difference for these runtime calls, since they are
  94   //       slow anyway. Btw., bcp must be saved/restored since it may change
  95   //       due to GC.
  96   // assert(java_thread == noreg , "not expecting a precomputed java thread");
  97   save_bcp();
  98 #ifdef ASSERT
  99   {
 100     Label L;
 101     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 102     jcc(Assembler::equal, L);
 103     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 104          " last_sp != NULL");
 105     bind(L);
 106   }
 107 #endif /* ASSERT */
 108   // super call
 109   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 110                                entry_point, number_of_arguments,
 111                                check_exceptions);
 112   // interpreter specific
 113   restore_bcp();
 114   restore_locals();
 115 }
 116 
 117 
 118 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 119   if (JvmtiExport::can_pop_frame()) {
 120     Label L;
 121     // Initiate popframe handling only if it is not already being
 122     // processed.  If the flag has the popframe_processing bit set, it
 123     // means that this code is called *during* popframe handling - we
 124     // don't want to reenter.
 125     // This method is only called just after the call into the vm in
 126     // call_VM_base, so the arg registers are available.
 127     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
 128     testl(c_rarg0, JavaThread::popframe_pending_bit);
 129     jcc(Assembler::zero, L);
 130     testl(c_rarg0, JavaThread::popframe_processing_bit);
 131     jcc(Assembler::notZero, L);
 132     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 133     // address of the same-named entrypoint in the generated interpreter code.
 134     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 135     jmp(rax);
 136     bind(L);
 137   }
 138 }
 139 
 140 
 141 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 142   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 143   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 144   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 145   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 146   switch (state) {
 147     case atos: movptr(rax, oop_addr);
 148                movptr(oop_addr, (int32_t)NULL_WORD);
 149                verify_oop(rax, state);              break;
 150     case ltos: movptr(rax, val_addr);                 break;
 151     case btos:                                   // fall through
 152     case ctos:                                   // fall through
 153     case stos:                                   // fall through
 154     case itos: movl(rax, val_addr);                 break;
 155     case ftos: movflt(xmm0, val_addr);              break;
 156     case dtos: movdbl(xmm0, val_addr);              break;
 157     case vtos: /* nothing to do */                  break;
 158     default  : ShouldNotReachHere();
 159   }
 160   // Clean up tos value in the thread object
 161   movl(tos_addr,  (int) ilgl);
 162   movl(val_addr,  (int32_t) NULL_WORD);
 163 }
 164 
 165 
 166 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 167   if (JvmtiExport::can_force_early_return()) {
 168     Label L;
 169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 170     testptr(c_rarg0, c_rarg0);
 171     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 172 
 173     // Initiate earlyret handling only if it is not already being processed.
 174     // If the flag has the earlyret_processing bit set, it means that this code
 175     // is called *during* earlyret handling - we don't want to reenter.
 176     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
 177     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
 178     jcc(Assembler::notEqual, L);
 179 
 180     // Call Interpreter::remove_activation_early_entry() to get the address of the
 181     // same-named entrypoint in the generated interpreter code.
 182     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 183     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
 184     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
 185     jmp(rax);
 186     bind(L);
 187   }
 188 }
 189 
 190 
 191 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 192   Register reg,
 193   int bcp_offset) {
 194   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 195   load_unsigned_short(reg, Address(r13, bcp_offset));
 196   bswapl(reg);
 197   shrl(reg, 16);
 198 }
 199 
 200 
 201 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 202                                                        int bcp_offset,
 203                                                        size_t index_size) {
 204   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 205   if (index_size == sizeof(u2)) {
 206     load_unsigned_short(index, Address(r13, bcp_offset));
 207   } else if (index_size == sizeof(u4)) {
 208     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 209     movl(index, Address(r13, bcp_offset));
 210     // Check if the secondary index definition is still ~x, otherwise
 211     // we have to change the following assembler code to calculate the
 212     // plain index.
 213     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 214     notl(index);  // convert to plain index
 215   } else if (index_size == sizeof(u1)) {
 216     load_unsigned_byte(index, Address(r13, bcp_offset));
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 
 223 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 224                                                            Register index,
 225                                                            int bcp_offset,
 226                                                            size_t index_size) {
 227   assert_different_registers(cache, index);
 228   get_cache_index_at_bcp(index, bcp_offset, index_size);
 229   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 230   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 231   // convert from field index to ConstantPoolCacheEntry index
 232   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 233   shll(index, 2);
 234 }
 235 
 236 
 237 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 238                                                                         Register index,
 239                                                                         Register bytecode,
 240                                                                         int byte_no,
 241                                                                         int bcp_offset,
 242                                                                         size_t index_size) {
 243   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 244   // We use a 32-bit load here since the layout of 64-bit words on
 245   // little-endian machines allow us that.
 246   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 247   const int shift_count = (1 + byte_no) * BitsPerByte;
 248   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 249          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 250          "correct shift count");
 251   shrl(bytecode, shift_count);
 252   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 253   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 254 }
 255 
 256 
 257 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 258                                                                Register tmp,
 259                                                                int bcp_offset,
 260                                                                size_t index_size) {
 261   assert(cache != tmp, "must use different register");
 262   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 263   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 264   // convert from field index to ConstantPoolCacheEntry index
 265   // and from word offset to byte offset
 266   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 267   shll(tmp, 2 + LogBytesPerWord);
 268   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 269   // skip past the header
 270   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 271   addptr(cache, tmp);  // construct pointer to cache entry
 272 }
 273 
 274 // Load object from cpool->resolved_references(index)
 275 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 276                                            Register result, Register index) {
 277   assert_different_registers(result, index);
 278   // convert from field index to resolved_references() index and from
 279   // word index to byte offset. Since this is a java object, it can be compressed
 280   Register tmp = index;  // reuse
 281   shll(tmp, LogBytesPerHeapOop);
 282 
 283   get_constant_pool(result);
 284   // load pointer for resolved_references[] objArray
 285   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 286   // JNIHandles::resolve(obj);
 287   movptr(result, Address(result, 0));
 288   // Add in the index
 289   addptr(result, tmp);
 290   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 291 }
 292 
 293 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 294 // subtype of super_klass.
 295 //
 296 // Args:
 297 //      rax: superklass
 298 //      Rsub_klass: subklass
 299 //
 300 // Kills:
 301 //      rcx, rdi
 302 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 303                                                   Label& ok_is_subtype) {
 304   assert(Rsub_klass != rax, "rax holds superklass");
 305   assert(Rsub_klass != r14, "r14 holds locals");
 306   assert(Rsub_klass != r13, "r13 holds bcp");
 307   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 308   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 309 
 310   // Profile the not-null value's klass.
 311   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 312 
 313   // Do the check.
 314   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 315 
 316   // Profile the failure of the check.
 317   profile_typecheck_failed(rcx); // blows rcx
 318 }
 319 
 320 
 321 
 322 // Java Expression Stack
 323 
 324 void InterpreterMacroAssembler::pop_ptr(Register r) {
 325   pop(r);
 326 }
 327 
 328 void InterpreterMacroAssembler::pop_i(Register r) {
 329   // XXX can't use pop currently, upper half non clean
 330   movl(r, Address(rsp, 0));
 331   addptr(rsp, wordSize);
 332 }
 333 
 334 void InterpreterMacroAssembler::pop_l(Register r) {
 335   movq(r, Address(rsp, 0));
 336   addptr(rsp, 2 * Interpreter::stackElementSize);
 337 }
 338 
 339 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 340   movflt(r, Address(rsp, 0));
 341   addptr(rsp, wordSize);
 342 }
 343 
 344 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 345   movdbl(r, Address(rsp, 0));
 346   addptr(rsp, 2 * Interpreter::stackElementSize);
 347 }
 348 
 349 void InterpreterMacroAssembler::push_ptr(Register r) {
 350   push(r);
 351 }
 352 
 353 void InterpreterMacroAssembler::push_i(Register r) {
 354   push(r);
 355 }
 356 
 357 void InterpreterMacroAssembler::push_l(Register r) {
 358   subptr(rsp, 2 * wordSize);
 359   movq(Address(rsp, 0), r);
 360 }
 361 
 362 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 363   subptr(rsp, wordSize);
 364   movflt(Address(rsp, 0), r);
 365 }
 366 
 367 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 368   subptr(rsp, 2 * wordSize);
 369   movdbl(Address(rsp, 0), r);
 370 }
 371 
 372 void InterpreterMacroAssembler::pop(TosState state) {
 373   switch (state) {
 374   case atos: pop_ptr();                 break;
 375   case btos:
 376   case ctos:
 377   case stos:
 378   case itos: pop_i();                   break;
 379   case ltos: pop_l();                   break;
 380   case ftos: pop_f();                   break;
 381   case dtos: pop_d();                   break;
 382   case vtos: /* nothing to do */        break;
 383   default:   ShouldNotReachHere();
 384   }
 385   verify_oop(rax, state);
 386 }
 387 
 388 void InterpreterMacroAssembler::push(TosState state) {
 389   verify_oop(rax, state);
 390   switch (state) {
 391   case atos: push_ptr();                break;
 392   case btos:
 393   case ctos:
 394   case stos:
 395   case itos: push_i();                  break;
 396   case ltos: push_l();                  break;
 397   case ftos: push_f();                  break;
 398   case dtos: push_d();                  break;
 399   case vtos: /* nothing to do */        break;
 400   default  : ShouldNotReachHere();
 401   }
 402 }
 403 
 404 
 405 // Helpers for swap and dup
 406 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 407   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 408 }
 409 
 410 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 411   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 412 }
 413 
 414 
 415 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 416   // set sender sp
 417   lea(r13, Address(rsp, wordSize));
 418   // record last_sp
 419   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
 420 }
 421 
 422 
 423 // Jump to from_interpreted entry of a call unless single stepping is possible
 424 // in this thread in which case we must call the i2i entry
 425 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 426   prepare_to_jump_from_interpreted();
 427 
 428   if (JvmtiExport::can_post_interpreter_events()) {
 429     Label run_compiled_code;
 430     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 431     // compiled code in threads for which the event is enabled.  Check here for
 432     // interp_only_mode if these events CAN be enabled.
 433     // interp_only is an int, on little endian it is sufficient to test the byte only
 434     // Is a cmpl faster?
 435     cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
 436     jccb(Assembler::zero, run_compiled_code);
 437     jmp(Address(method, Method::interpreter_entry_offset()));
 438     bind(run_compiled_code);
 439   }
 440 
 441   jmp(Address(method, Method::from_interpreted_offset()));
 442 
 443 }
 444 
 445 
 446 // The following two routines provide a hook so that an implementation
 447 // can schedule the dispatch in two parts.  amd64 does not do this.
 448 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 449   // Nothing amd64 specific to be done here
 450 }
 451 
 452 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 453   dispatch_next(state, step);
 454 }
 455 
 456 void InterpreterMacroAssembler::dispatch_base(TosState state,
 457                                               address* table,
 458                                               bool verifyoop) {
 459   verify_FPU(1, state);
 460   if (VerifyActivationFrameSize) {
 461     Label L;
 462     mov(rcx, rbp);
 463     subptr(rcx, rsp);
 464     int32_t min_frame_size =
 465       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 466       wordSize;
 467     cmpptr(rcx, (int32_t)min_frame_size);
 468     jcc(Assembler::greaterEqual, L);
 469     stop("broken stack frame");
 470     bind(L);
 471   }
 472   if (verifyoop) {
 473     verify_oop(rax, state);
 474   }
 475   lea(rscratch1, ExternalAddress((address)table));
 476   jmp(Address(rscratch1, rbx, Address::times_8));
 477 }
 478 
 479 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 480   dispatch_base(state, Interpreter::dispatch_table(state));
 481 }
 482 
 483 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 484   dispatch_base(state, Interpreter::normal_table(state));
 485 }
 486 
 487 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 488   dispatch_base(state, Interpreter::normal_table(state), false);
 489 }
 490 
 491 
 492 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 493   // load next bytecode (load before advancing r13 to prevent AGI)
 494   load_unsigned_byte(rbx, Address(r13, step));
 495   // advance r13
 496   increment(r13, step);
 497   dispatch_base(state, Interpreter::dispatch_table(state));
 498 }
 499 
 500 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 501   // load current bytecode
 502   load_unsigned_byte(rbx, Address(r13, 0));
 503   dispatch_base(state, table);
 504 }
 505 
 506 // remove activation
 507 //
 508 // Unlock the receiver if this is a synchronized method.
 509 // Unlock any Java monitors from syncronized blocks.
 510 // Remove the activation from the stack.
 511 //
 512 // If there are locked Java monitors
 513 //    If throw_monitor_exception
 514 //       throws IllegalMonitorStateException
 515 //    Else if install_monitor_exception
 516 //       installs IllegalMonitorStateException
 517 //    Else
 518 //       no error processing
 519 void InterpreterMacroAssembler::remove_activation(
 520         TosState state,
 521         Register ret_addr,
 522         bool throw_monitor_exception,
 523         bool install_monitor_exception,
 524         bool notify_jvmdi) {
 525   // Note: Registers rdx xmm0 may be in use for the
 526   // result check if synchronized method
 527   Label unlocked, unlock, no_unlock;
 528 
 529   // get the value of _do_not_unlock_if_synchronized into rdx
 530   const Address do_not_unlock_if_synchronized(r15_thread,
 531     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 532   movbool(rdx, do_not_unlock_if_synchronized);
 533   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 534 
 535  // get method access flags
 536   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 537   movl(rcx, Address(rbx, Method::access_flags_offset()));
 538   testl(rcx, JVM_ACC_SYNCHRONIZED);
 539   jcc(Assembler::zero, unlocked);
 540 
 541   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 542   // is set.
 543   testbool(rdx);
 544   jcc(Assembler::notZero, no_unlock);
 545 
 546   // unlock monitor
 547   push(state); // save result
 548 
 549   // BasicObjectLock will be first in list, since this is a
 550   // synchronized method. However, need to check that the object has
 551   // not been unlocked by an explicit monitorexit bytecode.
 552   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 553                         wordSize - (int) sizeof(BasicObjectLock));
 554   // We use c_rarg1 so that if we go slow path it will be the correct
 555   // register for unlock_object to pass to VM directly
 556   lea(c_rarg1, monitor); // address of first monitor
 557 
 558   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 559   testptr(rax, rax);
 560   jcc(Assembler::notZero, unlock);
 561 
 562   pop(state);
 563   if (throw_monitor_exception) {
 564     // Entry already unlocked, need to throw exception
 565     call_VM(noreg, CAST_FROM_FN_PTR(address,
 566                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 567     should_not_reach_here();
 568   } else {
 569     // Monitor already unlocked during a stack unroll. If requested,
 570     // install an illegal_monitor_state_exception.  Continue with
 571     // stack unrolling.
 572     if (install_monitor_exception) {
 573       call_VM(noreg, CAST_FROM_FN_PTR(address,
 574                      InterpreterRuntime::new_illegal_monitor_state_exception));
 575     }
 576     jmp(unlocked);
 577   }
 578 
 579   bind(unlock);
 580   unlock_object(c_rarg1);
 581   pop(state);
 582 
 583   // Check that for block-structured locking (i.e., that all locked
 584   // objects has been unlocked)
 585   bind(unlocked);
 586 
 587   // rax: Might contain return value
 588 
 589   // Check that all monitors are unlocked
 590   {
 591     Label loop, exception, entry, restart;
 592     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 593     const Address monitor_block_top(
 594         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 595     const Address monitor_block_bot(
 596         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
 597 
 598     bind(restart);
 599     // We use c_rarg1 so that if we go slow path it will be the correct
 600     // register for unlock_object to pass to VM directly
 601     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
 602                                   // with top-most entry
 603     lea(rbx, monitor_block_bot);  // points to word before bottom of
 604                                   // monitor block
 605     jmp(entry);
 606 
 607     // Entry already locked, need to throw exception
 608     bind(exception);
 609 
 610     if (throw_monitor_exception) {
 611       // Throw exception
 612       MacroAssembler::call_VM(noreg,
 613                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 614                                    throw_illegal_monitor_state_exception));
 615       should_not_reach_here();
 616     } else {
 617       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 618       // Unlock does not block, so don't have to worry about the frame.
 619       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 620 
 621       push(state);
 622       unlock_object(c_rarg1);
 623       pop(state);
 624 
 625       if (install_monitor_exception) {
 626         call_VM(noreg, CAST_FROM_FN_PTR(address,
 627                                         InterpreterRuntime::
 628                                         new_illegal_monitor_state_exception));
 629       }
 630 
 631       jmp(restart);
 632     }
 633 
 634     bind(loop);
 635     // check if current entry is used
 636     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
 637     jcc(Assembler::notEqual, exception);
 638 
 639     addptr(c_rarg1, entry_size); // otherwise advance to next entry
 640     bind(entry);
 641     cmpptr(c_rarg1, rbx); // check if bottom reached
 642     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
 643   }
 644 
 645   bind(no_unlock);
 646 
 647   // jvmti support
 648   if (notify_jvmdi) {
 649     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 650   } else {
 651     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 652   }
 653 
 654   // remove activation
 655   // get sender sp
 656   movptr(rbx,
 657          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
 658   leave();                           // remove frame anchor
 659   pop(ret_addr);                     // get return address
 660   mov(rsp, rbx);                     // set sp to sender sp
 661 }
 662 
 663 #endif // C_INTERP
 664 
 665 void InterpreterMacroAssembler::get_method_counters(Register method,
 666                                                     Register mcs, Label& skip) {
 667   Label has_counters;
 668   movptr(mcs, Address(method, Method::method_counters_offset()));
 669   testptr(mcs, mcs);
 670   jcc(Assembler::notZero, has_counters);
 671   call_VM(noreg, CAST_FROM_FN_PTR(address,
 672           InterpreterRuntime::build_method_counters), method);
 673   movptr(mcs, Address(method,Method::method_counters_offset()));
 674   testptr(mcs, mcs);
 675   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
 676   bind(has_counters);
 677 }
 678 
 679 
 680 // Lock object
 681 //
 682 // Args:
 683 //      c_rarg1: BasicObjectLock to be used for locking
 684 //
 685 // Kills:
 686 //      rax
 687 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 688 //      rscratch1, rscratch2 (scratch regs)
 689 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 690   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 691 
 692   if (UseHeavyMonitors) {
 693     call_VM(noreg,
 694             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 695             lock_reg);
 696   } else {
 697     Label done;
 698 
 699     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
 700     const Register obj_reg = c_rarg3; // Will contain the oop
 701 
 702     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 703     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 704     const int mark_offset = lock_offset +
 705                             BasicLock::displaced_header_offset_in_bytes();
 706 
 707     Label slow_case;
 708 
 709     // Load object pointer into obj_reg %c_rarg3
 710     movptr(obj_reg, Address(lock_reg, obj_offset));
 711 
 712     if (UseBiasedLocking) {
 713       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
 714     }
 715 
 716     // Load immediate 1 into swap_reg %rax
 717     movl(swap_reg, 1);
 718 
 719     // Load (object->mark() | 1) into swap_reg %rax
 720     orptr(swap_reg, Address(obj_reg, 0));
 721 
 722     // Save (object->mark() | 1) into BasicLock's displaced header
 723     movptr(Address(lock_reg, mark_offset), swap_reg);
 724 
 725     assert(lock_offset == 0,
 726            "displached header must be first word in BasicObjectLock");
 727 
 728     if (os::is_MP()) lock();
 729     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 730     if (PrintBiasedLockingStatistics) {
 731       cond_inc32(Assembler::zero,
 732                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 733     }
 734     jcc(Assembler::zero, done);
 735 
 736     // Test if the oopMark is an obvious stack pointer, i.e.,
 737     //  1) (mark & 7) == 0, and
 738     //  2) rsp <= mark < mark + os::pagesize()
 739     //
 740     // These 3 tests can be done by evaluating the following
 741     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 742     // assuming both stack pointer and pagesize have their
 743     // least significant 3 bits clear.
 744     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
 745     subptr(swap_reg, rsp);
 746     andptr(swap_reg, 7 - os::vm_page_size());
 747 
 748     // Save the test result, for recursive case, the result is zero
 749     movptr(Address(lock_reg, mark_offset), swap_reg);
 750 
 751     if (PrintBiasedLockingStatistics) {
 752       cond_inc32(Assembler::zero,
 753                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 754     }
 755     jcc(Assembler::zero, done);
 756 
 757     bind(slow_case);
 758 
 759     // Call the runtime routine for slow case
 760     call_VM(noreg,
 761             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 762             lock_reg);
 763 
 764     bind(done);
 765   }
 766 }
 767 
 768 
 769 // Unlocks an object. Used in monitorexit bytecode and
 770 // remove_activation.  Throws an IllegalMonitorException if object is
 771 // not locked by current thread.
 772 //
 773 // Args:
 774 //      c_rarg1: BasicObjectLock for lock
 775 //
 776 // Kills:
 777 //      rax
 778 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 779 //      rscratch1, rscratch2 (scratch regs)
 780 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 781   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 782 
 783   if (UseHeavyMonitors) {
 784     call_VM(noreg,
 785             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 786             lock_reg);
 787   } else {
 788     Label done;
 789 
 790     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
 791     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 792     const Register obj_reg    = c_rarg3;  // Will contain the oop
 793 
 794     save_bcp(); // Save in case of exception
 795 
 796     // Convert from BasicObjectLock structure to object and BasicLock
 797     // structure Store the BasicLock address into %rax
 798     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 799 
 800     // Load oop into obj_reg(%c_rarg3)
 801     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 802 
 803     // Free entry
 804     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
 805 
 806     if (UseBiasedLocking) {
 807       biased_locking_exit(obj_reg, header_reg, done);
 808     }
 809 
 810     // Load the old header from BasicLock structure
 811     movptr(header_reg, Address(swap_reg,
 812                                BasicLock::displaced_header_offset_in_bytes()));
 813 
 814     // Test for recursion
 815     testptr(header_reg, header_reg);
 816 
 817     // zero for recursive case
 818     jcc(Assembler::zero, done);
 819 
 820     // Atomic swap back the old header
 821     if (os::is_MP()) lock();
 822     cmpxchgptr(header_reg, Address(obj_reg, 0));
 823 
 824     // zero for recursive case
 825     jcc(Assembler::zero, done);
 826 
 827     // Call the runtime routine for slow case.
 828     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
 829          obj_reg); // restore obj
 830     call_VM(noreg,
 831             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 832             lock_reg);
 833 
 834     bind(done);
 835 
 836     restore_bcp();
 837   }
 838 }
 839 
 840 #ifndef CC_INTERP
 841 
 842 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 843                                                          Label& zero_continue) {
 844   assert(ProfileInterpreter, "must be profiling interpreter");
 845   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 846   testptr(mdp, mdp);
 847   jcc(Assembler::zero, zero_continue);
 848 }
 849 
 850 
 851 // Set the method data pointer for the current bcp.
 852 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 853   assert(ProfileInterpreter, "must be profiling interpreter");
 854   Label set_mdp;
 855   push(rax);
 856   push(rbx);
 857 
 858   get_method(rbx);
 859   // Test MDO to avoid the call if it is NULL.
 860   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
 861   testptr(rax, rax);
 862   jcc(Assembler::zero, set_mdp);
 863   // rbx: method
 864   // r13: bcp
 865   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
 866   // rax: mdi
 867   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 868   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
 869   addptr(rbx, in_bytes(MethodData::data_offset()));
 870   addptr(rax, rbx);
 871   bind(set_mdp);
 872   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
 873   pop(rbx);
 874   pop(rax);
 875 }
 876 
 877 void InterpreterMacroAssembler::verify_method_data_pointer() {
 878   assert(ProfileInterpreter, "must be profiling interpreter");
 879 #ifdef ASSERT
 880   Label verify_continue;
 881   push(rax);
 882   push(rbx);
 883   push(c_rarg3);
 884   push(c_rarg2);
 885   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
 886   get_method(rbx);
 887 
 888   // If the mdp is valid, it will point to a DataLayout header which is
 889   // consistent with the bcp.  The converse is highly probable also.
 890   load_unsigned_short(c_rarg2,
 891                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
 892   addptr(c_rarg2, Address(rbx, Method::const_offset()));
 893   lea(c_rarg2, Address(c_rarg2, ConstMethod::codes_offset()));
 894   cmpptr(c_rarg2, r13);
 895   jcc(Assembler::equal, verify_continue);
 896   // rbx: method
 897   // r13: bcp
 898   // c_rarg3: mdp
 899   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 900                rbx, r13, c_rarg3);
 901   bind(verify_continue);
 902   pop(c_rarg2);
 903   pop(c_rarg3);
 904   pop(rbx);
 905   pop(rax);
 906 #endif // ASSERT
 907 }
 908 
 909 
 910 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 911                                                 int constant,
 912                                                 Register value) {
 913   assert(ProfileInterpreter, "must be profiling interpreter");
 914   Address data(mdp_in, constant);
 915   movptr(data, value);
 916 }
 917 
 918 
 919 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 920                                                       int constant,
 921                                                       bool decrement) {
 922   // Counter address
 923   Address data(mdp_in, constant);
 924 
 925   increment_mdp_data_at(data, decrement);
 926 }
 927 
 928 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
 929                                                       bool decrement) {
 930   assert(ProfileInterpreter, "must be profiling interpreter");
 931   // %%% this does 64bit counters at best it is wasting space
 932   // at worst it is a rare bug when counters overflow
 933 
 934   if (decrement) {
 935     // Decrement the register.  Set condition codes.
 936     addptr(data, (int32_t) -DataLayout::counter_increment);
 937     // If the decrement causes the counter to overflow, stay negative
 938     Label L;
 939     jcc(Assembler::negative, L);
 940     addptr(data, (int32_t) DataLayout::counter_increment);
 941     bind(L);
 942   } else {
 943     assert(DataLayout::counter_increment == 1,
 944            "flow-free idiom only works with 1");
 945     // Increment the register.  Set carry flag.
 946     addptr(data, DataLayout::counter_increment);
 947     // If the increment causes the counter to overflow, pull back by 1.
 948     sbbptr(data, (int32_t)0);
 949   }
 950 }
 951 
 952 
 953 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 954                                                       Register reg,
 955                                                       int constant,
 956                                                       bool decrement) {
 957   Address data(mdp_in, reg, Address::times_1, constant);
 958 
 959   increment_mdp_data_at(data, decrement);
 960 }
 961 
 962 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 963                                                 int flag_byte_constant) {
 964   assert(ProfileInterpreter, "must be profiling interpreter");
 965   int header_offset = in_bytes(DataLayout::header_offset());
 966   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 967   // Set the flag
 968   orl(Address(mdp_in, header_offset), header_bits);
 969 }
 970 
 971 
 972 
 973 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 974                                                  int offset,
 975                                                  Register value,
 976                                                  Register test_value_out,
 977                                                  Label& not_equal_continue) {
 978   assert(ProfileInterpreter, "must be profiling interpreter");
 979   if (test_value_out == noreg) {
 980     cmpptr(value, Address(mdp_in, offset));
 981   } else {
 982     // Put the test value into a register, so caller can use it:
 983     movptr(test_value_out, Address(mdp_in, offset));
 984     cmpptr(test_value_out, value);
 985   }
 986   jcc(Assembler::notEqual, not_equal_continue);
 987 }
 988 
 989 
 990 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 991                                                      int offset_of_disp) {
 992   assert(ProfileInterpreter, "must be profiling interpreter");
 993   Address disp_address(mdp_in, offset_of_disp);
 994   addptr(mdp_in, disp_address);
 995   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 996 }
 997 
 998 
 999 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1000                                                      Register reg,
1001                                                      int offset_of_disp) {
1002   assert(ProfileInterpreter, "must be profiling interpreter");
1003   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1004   addptr(mdp_in, disp_address);
1005   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1006 }
1007 
1008 
1009 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1010                                                        int constant) {
1011   assert(ProfileInterpreter, "must be profiling interpreter");
1012   addptr(mdp_in, constant);
1013   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1014 }
1015 
1016 
1017 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1018   assert(ProfileInterpreter, "must be profiling interpreter");
1019   push(return_bci); // save/restore across call_VM
1020   call_VM(noreg,
1021           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1022           return_bci);
1023   pop(return_bci);
1024 }
1025 
1026 
1027 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1028                                                      Register bumped_count) {
1029   if (ProfileInterpreter) {
1030     Label profile_continue;
1031 
1032     // If no method data exists, go to profile_continue.
1033     // Otherwise, assign to mdp
1034     test_method_data_pointer(mdp, profile_continue);
1035 
1036     // We are taking a branch.  Increment the taken count.
1037     // We inline increment_mdp_data_at to return bumped_count in a register
1038     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1039     Address data(mdp, in_bytes(JumpData::taken_offset()));
1040     movptr(bumped_count, data);
1041     assert(DataLayout::counter_increment == 1,
1042             "flow-free idiom only works with 1");
1043     addptr(bumped_count, DataLayout::counter_increment);
1044     sbbptr(bumped_count, 0);
1045     movptr(data, bumped_count); // Store back out
1046 
1047     // The method data pointer needs to be updated to reflect the new target.
1048     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1049     bind(profile_continue);
1050   }
1051 }
1052 
1053 
1054 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1055   if (ProfileInterpreter) {
1056     Label profile_continue;
1057 
1058     // If no method data exists, go to profile_continue.
1059     test_method_data_pointer(mdp, profile_continue);
1060 
1061     // We are taking a branch.  Increment the not taken count.
1062     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1063 
1064     // The method data pointer needs to be updated to correspond to
1065     // the next bytecode
1066     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1067     bind(profile_continue);
1068   }
1069 }
1070 
1071 void InterpreterMacroAssembler::profile_call(Register mdp) {
1072   if (ProfileInterpreter) {
1073     Label profile_continue;
1074 
1075     // If no method data exists, go to profile_continue.
1076     test_method_data_pointer(mdp, profile_continue);
1077 
1078     // We are making a call.  Increment the count.
1079     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1080 
1081     // The method data pointer needs to be updated to reflect the new target.
1082     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1083     bind(profile_continue);
1084   }
1085 }
1086 
1087 
1088 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1089   if (ProfileInterpreter) {
1090     Label profile_continue;
1091 
1092     // If no method data exists, go to profile_continue.
1093     test_method_data_pointer(mdp, profile_continue);
1094 
1095     // We are making a call.  Increment the count.
1096     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1097 
1098     // The method data pointer needs to be updated to reflect the new target.
1099     update_mdp_by_constant(mdp,
1100                            in_bytes(VirtualCallData::
1101                                     virtual_call_data_size()));
1102     bind(profile_continue);
1103   }
1104 }
1105 
1106 
1107 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1108                                                      Register mdp,
1109                                                      Register reg2,
1110                                                      bool receiver_can_be_null) {
1111   if (ProfileInterpreter) {
1112     Label profile_continue;
1113 
1114     // If no method data exists, go to profile_continue.
1115     test_method_data_pointer(mdp, profile_continue);
1116 
1117     Label skip_receiver_profile;
1118     if (receiver_can_be_null) {
1119       Label not_null;
1120       testptr(receiver, receiver);
1121       jccb(Assembler::notZero, not_null);
1122       // We are making a call.  Increment the count for null receiver.
1123       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1124       jmp(skip_receiver_profile);
1125       bind(not_null);
1126     }
1127 
1128     // Record the receiver type.
1129     record_klass_in_profile(receiver, mdp, reg2, true);
1130     bind(skip_receiver_profile);
1131 
1132     // The method data pointer needs to be updated to reflect the new target.
1133     update_mdp_by_constant(mdp,
1134                            in_bytes(VirtualCallData::
1135                                     virtual_call_data_size()));
1136     bind(profile_continue);
1137   }
1138 }
1139 
1140 // This routine creates a state machine for updating the multi-row
1141 // type profile at a virtual call site (or other type-sensitive bytecode).
1142 // The machine visits each row (of receiver/count) until the receiver type
1143 // is found, or until it runs out of rows.  At the same time, it remembers
1144 // the location of the first empty row.  (An empty row records null for its
1145 // receiver, and can be allocated for a newly-observed receiver type.)
1146 // Because there are two degrees of freedom in the state, a simple linear
1147 // search will not work; it must be a decision tree.  Hence this helper
1148 // function is recursive, to generate the required tree structured code.
1149 // It's the interpreter, so we are trading off code space for speed.
1150 // See below for example code.
1151 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1152                                         Register receiver, Register mdp,
1153                                         Register reg2, int start_row,
1154                                         Label& done, bool is_virtual_call) {
1155   if (TypeProfileWidth == 0) {
1156     if (is_virtual_call) {
1157       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1158     }
1159     return;
1160   }
1161 
1162   int last_row = VirtualCallData::row_limit() - 1;
1163   assert(start_row <= last_row, "must be work left to do");
1164   // Test this row for both the receiver and for null.
1165   // Take any of three different outcomes:
1166   //   1. found receiver => increment count and goto done
1167   //   2. found null => keep looking for case 1, maybe allocate this cell
1168   //   3. found something else => keep looking for cases 1 and 2
1169   // Case 3 is handled by a recursive call.
1170   for (int row = start_row; row <= last_row; row++) {
1171     Label next_test;
1172     bool test_for_null_also = (row == start_row);
1173 
1174     // See if the receiver is receiver[n].
1175     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1176     test_mdp_data_at(mdp, recvr_offset, receiver,
1177                      (test_for_null_also ? reg2 : noreg),
1178                      next_test);
1179     // (Reg2 now contains the receiver from the CallData.)
1180 
1181     // The receiver is receiver[n].  Increment count[n].
1182     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1183     increment_mdp_data_at(mdp, count_offset);
1184     jmp(done);
1185     bind(next_test);
1186 
1187     if (test_for_null_also) {
1188       Label found_null;
1189       // Failed the equality check on receiver[n]...  Test for null.
1190       testptr(reg2, reg2);
1191       if (start_row == last_row) {
1192         // The only thing left to do is handle the null case.
1193         if (is_virtual_call) {
1194           jccb(Assembler::zero, found_null);
1195           // Receiver did not match any saved receiver and there is no empty row for it.
1196           // Increment total counter to indicate polymorphic case.
1197           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1198           jmp(done);
1199           bind(found_null);
1200         } else {
1201           jcc(Assembler::notZero, done);
1202         }
1203         break;
1204       }
1205       // Since null is rare, make it be the branch-taken case.
1206       jcc(Assembler::zero, found_null);
1207 
1208       // Put all the "Case 3" tests here.
1209       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1210 
1211       // Found a null.  Keep searching for a matching receiver,
1212       // but remember that this is an empty (unused) slot.
1213       bind(found_null);
1214     }
1215   }
1216 
1217   // In the fall-through case, we found no matching receiver, but we
1218   // observed the receiver[start_row] is NULL.
1219 
1220   // Fill in the receiver field and increment the count.
1221   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1222   set_mdp_data_at(mdp, recvr_offset, receiver);
1223   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1224   movl(reg2, DataLayout::counter_increment);
1225   set_mdp_data_at(mdp, count_offset, reg2);
1226   if (start_row > 0) {
1227     jmp(done);
1228   }
1229 }
1230 
1231 // Example state machine code for three profile rows:
1232 //   // main copy of decision tree, rooted at row[1]
1233 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1234 //   if (row[0].rec != NULL) {
1235 //     // inner copy of decision tree, rooted at row[1]
1236 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1237 //     if (row[1].rec != NULL) {
1238 //       // degenerate decision tree, rooted at row[2]
1239 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1240 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1241 //       row[2].init(rec); goto done;
1242 //     } else {
1243 //       // remember row[1] is empty
1244 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1245 //       row[1].init(rec); goto done;
1246 //     }
1247 //   } else {
1248 //     // remember row[0] is empty
1249 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1250 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1251 //     row[0].init(rec); goto done;
1252 //   }
1253 //   done:
1254 
1255 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1256                                                         Register mdp, Register reg2,
1257                                                         bool is_virtual_call) {
1258   assert(ProfileInterpreter, "must be profiling");
1259   Label done;
1260 
1261   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1262 
1263   bind (done);
1264 }
1265 
1266 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1267                                             Register mdp) {
1268   if (ProfileInterpreter) {
1269     Label profile_continue;
1270     uint row;
1271 
1272     // If no method data exists, go to profile_continue.
1273     test_method_data_pointer(mdp, profile_continue);
1274 
1275     // Update the total ret count.
1276     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1277 
1278     for (row = 0; row < RetData::row_limit(); row++) {
1279       Label next_test;
1280 
1281       // See if return_bci is equal to bci[n]:
1282       test_mdp_data_at(mdp,
1283                        in_bytes(RetData::bci_offset(row)),
1284                        return_bci, noreg,
1285                        next_test);
1286 
1287       // return_bci is equal to bci[n].  Increment the count.
1288       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1289 
1290       // The method data pointer needs to be updated to reflect the new target.
1291       update_mdp_by_offset(mdp,
1292                            in_bytes(RetData::bci_displacement_offset(row)));
1293       jmp(profile_continue);
1294       bind(next_test);
1295     }
1296 
1297     update_mdp_for_ret(return_bci);
1298 
1299     bind(profile_continue);
1300   }
1301 }
1302 
1303 
1304 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1305   if (ProfileInterpreter) {
1306     Label profile_continue;
1307 
1308     // If no method data exists, go to profile_continue.
1309     test_method_data_pointer(mdp, profile_continue);
1310 
1311     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1312 
1313     // The method data pointer needs to be updated.
1314     int mdp_delta = in_bytes(BitData::bit_data_size());
1315     if (TypeProfileCasts) {
1316       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1317     }
1318     update_mdp_by_constant(mdp, mdp_delta);
1319 
1320     bind(profile_continue);
1321   }
1322 }
1323 
1324 
1325 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1326   if (ProfileInterpreter && TypeProfileCasts) {
1327     Label profile_continue;
1328 
1329     // If no method data exists, go to profile_continue.
1330     test_method_data_pointer(mdp, profile_continue);
1331 
1332     int count_offset = in_bytes(CounterData::count_offset());
1333     // Back up the address, since we have already bumped the mdp.
1334     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1335 
1336     // *Decrement* the counter.  We expect to see zero or small negatives.
1337     increment_mdp_data_at(mdp, count_offset, true);
1338 
1339     bind (profile_continue);
1340   }
1341 }
1342 
1343 
1344 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1345   if (ProfileInterpreter) {
1346     Label profile_continue;
1347 
1348     // If no method data exists, go to profile_continue.
1349     test_method_data_pointer(mdp, profile_continue);
1350 
1351     // The method data pointer needs to be updated.
1352     int mdp_delta = in_bytes(BitData::bit_data_size());
1353     if (TypeProfileCasts) {
1354       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1355 
1356       // Record the object type.
1357       record_klass_in_profile(klass, mdp, reg2, false);
1358     }
1359     update_mdp_by_constant(mdp, mdp_delta);
1360 
1361     bind(profile_continue);
1362   }
1363 }
1364 
1365 
1366 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1367   if (ProfileInterpreter) {
1368     Label profile_continue;
1369 
1370     // If no method data exists, go to profile_continue.
1371     test_method_data_pointer(mdp, profile_continue);
1372 
1373     // Update the default case count
1374     increment_mdp_data_at(mdp,
1375                           in_bytes(MultiBranchData::default_count_offset()));
1376 
1377     // The method data pointer needs to be updated.
1378     update_mdp_by_offset(mdp,
1379                          in_bytes(MultiBranchData::
1380                                   default_displacement_offset()));
1381 
1382     bind(profile_continue);
1383   }
1384 }
1385 
1386 
1387 void InterpreterMacroAssembler::profile_switch_case(Register index,
1388                                                     Register mdp,
1389                                                     Register reg2) {
1390   if (ProfileInterpreter) {
1391     Label profile_continue;
1392 
1393     // If no method data exists, go to profile_continue.
1394     test_method_data_pointer(mdp, profile_continue);
1395 
1396     // Build the base (index * per_case_size_in_bytes()) +
1397     // case_array_offset_in_bytes()
1398     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1399     imulptr(index, reg2); // XXX l ?
1400     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1401 
1402     // Update the case count
1403     increment_mdp_data_at(mdp,
1404                           index,
1405                           in_bytes(MultiBranchData::relative_count_offset()));
1406 
1407     // The method data pointer needs to be updated.
1408     update_mdp_by_offset(mdp,
1409                          index,
1410                          in_bytes(MultiBranchData::
1411                                   relative_displacement_offset()));
1412 
1413     bind(profile_continue);
1414   }
1415 }
1416 
1417 
1418 
1419 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1420   if (state == atos) {
1421     MacroAssembler::verify_oop(reg);
1422   }
1423 }
1424 
1425 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1426 }
1427 
1428 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1429 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1430                                                         int increment, int mask,
1431                                                         Register scratch, bool preloaded,
1432                                                         Condition cond, Label* where) {
1433   if (!preloaded) {
1434     movl(scratch, counter_addr);
1435   }
1436   incrementl(scratch, increment);
1437   movl(counter_addr, scratch);
1438   andl(scratch, mask);
1439   jcc(cond, *where);
1440 }
1441 #endif // !CC_INTERP
1442 
1443 
1444 void InterpreterMacroAssembler::notify_method_entry() {
1445   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1446   // track stack depth.  If it is possible to enter interp_only_mode we add
1447   // the code to check if the event should be sent.
1448   if (JvmtiExport::can_post_interpreter_events()) {
1449     Label L;
1450     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1451     testl(rdx, rdx);
1452     jcc(Assembler::zero, L);
1453     call_VM(noreg, CAST_FROM_FN_PTR(address,
1454                                     InterpreterRuntime::post_method_entry));
1455     bind(L);
1456   }
1457 
1458   {
1459     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1460     get_method(c_rarg1);
1461     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1462                  r15_thread, c_rarg1);
1463   }
1464 
1465   // RedefineClasses() tracing support for obsolete method entry
1466   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1467     get_method(c_rarg1);
1468     call_VM_leaf(
1469       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1470       r15_thread, c_rarg1);
1471   }
1472 }
1473 
1474 
1475 void InterpreterMacroAssembler::notify_method_exit(
1476     TosState state, NotifyMethodExitMode mode) {
1477   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1478   // track stack depth.  If it is possible to enter interp_only_mode we add
1479   // the code to check if the event should be sent.
1480   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1481     Label L;
1482     // Note: frame::interpreter_frame_result has a dependency on how the
1483     // method result is saved across the call to post_method_exit. If this
1484     // is changed then the interpreter_frame_result implementation will
1485     // need to be updated too.
1486 
1487     // For c++ interpreter the result is always stored at a known location in the frame
1488     // template interpreter will leave it on the top of the stack.
1489     NOT_CC_INTERP(push(state);)
1490     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1491     testl(rdx, rdx);
1492     jcc(Assembler::zero, L);
1493     call_VM(noreg,
1494             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1495     bind(L);
1496     NOT_CC_INTERP(pop(state));
1497   }
1498 
1499   {
1500     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1501     NOT_CC_INTERP(push(state));
1502     get_method(c_rarg1);
1503     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1504                  r15_thread, c_rarg1);
1505     NOT_CC_INTERP(pop(state));
1506   }
1507 }
1508