1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/convertnode.hpp"
  32 #include "opto/divnode.hpp"
  33 #include "opto/loopnode.hpp"
  34 #include "opto/mulnode.hpp"
  35 #include "opto/movenode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 
  41 //------------------------------is_loop_exit-----------------------------------
  42 // Given an IfNode, return the loop-exiting projection or NULL if both
  43 // arms remain in the loop.
  44 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  45   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  46   PhaseIdealLoop *phase = _phase;
  47   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  48   // we need loop unswitching instead of peeling.
  49   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  50     return iff->raw_out(0);
  51   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  52     return iff->raw_out(1);
  53   return NULL;
  54 }
  55 
  56 
  57 //=============================================================================
  58 
  59 
  60 //------------------------------record_for_igvn----------------------------
  61 // Put loop body on igvn work list
  62 void IdealLoopTree::record_for_igvn() {
  63   for( uint i = 0; i < _body.size(); i++ ) {
  64     Node *n = _body.at(i);
  65     _phase->_igvn._worklist.push(n);
  66   }
  67 }
  68 
  69 //------------------------------compute_exact_trip_count-----------------------
  70 // Compute loop exact trip count if possible. Do not recalculate trip count for
  71 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  72 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  73   if (!_head->as_Loop()->is_valid_counted_loop()) {
  74     return;
  75   }
  76   CountedLoopNode* cl = _head->as_CountedLoop();
  77   // Trip count may become nonexact for iteration split loops since
  78   // RCE modifies limits. Note, _trip_count value is not reset since
  79   // it is used to limit unrolling of main loop.
  80   cl->set_nonexact_trip_count();
  81 
  82   // Loop's test should be part of loop.
  83   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  84     return; // Infinite loop
  85 
  86 #ifdef ASSERT
  87   BoolTest::mask bt = cl->loopexit()->test_trip();
  88   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  89          bt == BoolTest::ne, "canonical test is expected");
  90 #endif
  91 
  92   Node* init_n = cl->init_trip();
  93   Node* limit_n = cl->limit();
  94   if (init_n  != NULL &&  init_n->is_Con() &&
  95       limit_n != NULL && limit_n->is_Con()) {
  96     // Use longs to avoid integer overflow.
  97     int stride_con  = cl->stride_con();
  98     jlong init_con   = cl->init_trip()->get_int();
  99     jlong limit_con  = cl->limit()->get_int();
 100     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
 101     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 102     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 103       // Set exact trip count.
 104       cl->set_exact_trip_count((uint)trip_count);
 105     }
 106   }
 107 }
 108 
 109 //------------------------------compute_profile_trip_cnt----------------------------
 110 // Compute loop trip count from profile data as
 111 //    (backedge_count + loop_exit_count) / loop_exit_count
 112 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 113   if (!_head->is_CountedLoop()) {
 114     return;
 115   }
 116   CountedLoopNode* head = _head->as_CountedLoop();
 117   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 118     return; // Already computed
 119   }
 120   float trip_cnt = (float)max_jint; // default is big
 121 
 122   Node* back = head->in(LoopNode::LoopBackControl);
 123   while (back != head) {
 124     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 125         back->in(0) &&
 126         back->in(0)->is_If() &&
 127         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 128         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 129       break;
 130     }
 131     back = phase->idom(back);
 132   }
 133   if (back != head) {
 134     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 135            back->in(0), "if-projection exists");
 136     IfNode* back_if = back->in(0)->as_If();
 137     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 138 
 139     // Now compute a loop exit count
 140     float loop_exit_cnt = 0.0f;
 141     for( uint i = 0; i < _body.size(); i++ ) {
 142       Node *n = _body[i];
 143       if( n->is_If() ) {
 144         IfNode *iff = n->as_If();
 145         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 146           Node *exit = is_loop_exit(iff);
 147           if( exit ) {
 148             float exit_prob = iff->_prob;
 149             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 150             if (exit_prob > PROB_MIN) {
 151               float exit_cnt = iff->_fcnt * exit_prob;
 152               loop_exit_cnt += exit_cnt;
 153             }
 154           }
 155         }
 156       }
 157     }
 158     if (loop_exit_cnt > 0.0f) {
 159       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 160     } else {
 161       // No exit count so use
 162       trip_cnt = loop_back_cnt;
 163     }
 164   }
 165 #ifndef PRODUCT
 166   if (TraceProfileTripCount) {
 167     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 168   }
 169 #endif
 170   head->set_profile_trip_cnt(trip_cnt);
 171 }
 172 
 173 //---------------------is_invariant_addition-----------------------------
 174 // Return nonzero index of invariant operand for an Add or Sub
 175 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 176 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 177   int op = n->Opcode();
 178   if (op == Op_AddI || op == Op_SubI) {
 179     bool in1_invar = this->is_invariant(n->in(1));
 180     bool in2_invar = this->is_invariant(n->in(2));
 181     if (in1_invar && !in2_invar) return 1;
 182     if (!in1_invar && in2_invar) return 2;
 183   }
 184   return 0;
 185 }
 186 
 187 //---------------------reassociate_add_sub-----------------------------
 188 // Reassociate invariant add and subtract expressions:
 189 //
 190 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 191 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 192 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 193 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 194 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 195 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 196 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 197 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 198 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 199 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 200 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 201 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 202 //
 203 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 204   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 205   if (is_invariant(n1)) return NULL;
 206   int inv1_idx = is_invariant_addition(n1, phase);
 207   if (!inv1_idx) return NULL;
 208   // Don't mess with add of constant (igvn moves them to expression tree root.)
 209   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 210   Node* inv1 = n1->in(inv1_idx);
 211   Node* n2 = n1->in(3 - inv1_idx);
 212   int inv2_idx = is_invariant_addition(n2, phase);
 213   if (!inv2_idx) return NULL;
 214   Node* x    = n2->in(3 - inv2_idx);
 215   Node* inv2 = n2->in(inv2_idx);
 216 
 217   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 218   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 219   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 220   if (n1->is_Sub() && inv1_idx == 1) {
 221     neg_x    = !neg_x;
 222     neg_inv2 = !neg_inv2;
 223   }
 224   Node* inv1_c = phase->get_ctrl(inv1);
 225   Node* inv2_c = phase->get_ctrl(inv2);
 226   Node* n_inv1;
 227   if (neg_inv1) {
 228     Node *zero = phase->_igvn.intcon(0);
 229     phase->set_ctrl(zero, phase->C->root());
 230     n_inv1 = new SubINode(zero, inv1);
 231     phase->register_new_node(n_inv1, inv1_c);
 232   } else {
 233     n_inv1 = inv1;
 234   }
 235   Node* inv;
 236   if (neg_inv2) {
 237     inv = new SubINode(n_inv1, inv2);
 238   } else {
 239     inv = new AddINode(n_inv1, inv2);
 240   }
 241   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 242 
 243   Node* addx;
 244   if (neg_x) {
 245     addx = new SubINode(inv, x);
 246   } else {
 247     addx = new AddINode(x, inv);
 248   }
 249   phase->register_new_node(addx, phase->get_ctrl(x));
 250   phase->_igvn.replace_node(n1, addx);
 251   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 252   _body.yank(n1);
 253   return addx;
 254 }
 255 
 256 //---------------------reassociate_invariants-----------------------------
 257 // Reassociate invariant expressions:
 258 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 259   for (int i = _body.size() - 1; i >= 0; i--) {
 260     Node *n = _body.at(i);
 261     for (int j = 0; j < 5; j++) {
 262       Node* nn = reassociate_add_sub(n, phase);
 263       if (nn == NULL) break;
 264       n = nn; // again
 265     };
 266   }
 267 }
 268 
 269 //------------------------------policy_peeling---------------------------------
 270 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 271 // make some loop-invariant test (usually a null-check) happen before the loop.
 272 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 273   Node *test = ((IdealLoopTree*)this)->tail();
 274   int  body_size = ((IdealLoopTree*)this)->_body.size();
 275   int  live_node_count = phase->C->live_nodes();
 276   // Peeling does loop cloning which can result in O(N^2) node construction
 277   if( body_size > 255 /* Prevent overflow for large body_size */
 278       || (body_size * body_size + live_node_count > MaxNodeLimit) ) {
 279     return false;           // too large to safely clone
 280   }
 281   while( test != _head ) {      // Scan till run off top of loop
 282     if( test->is_If() ) {       // Test?
 283       Node *ctrl = phase->get_ctrl(test->in(1));
 284       if (ctrl->is_top())
 285         return false;           // Found dead test on live IF?  No peeling!
 286       // Standard IF only has one input value to check for loop invariance
 287       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
 288       // Condition is not a member of this loop?
 289       if( !is_member(phase->get_loop(ctrl)) &&
 290           is_loop_exit(test) )
 291         return true;            // Found reason to peel!
 292     }
 293     // Walk up dominators to loop _head looking for test which is
 294     // executed on every path thru loop.
 295     test = phase->idom(test);
 296   }
 297   return false;
 298 }
 299 
 300 //------------------------------peeled_dom_test_elim---------------------------
 301 // If we got the effect of peeling, either by actually peeling or by making
 302 // a pre-loop which must execute at least once, we can remove all
 303 // loop-invariant dominated tests in the main body.
 304 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 305   bool progress = true;
 306   while( progress ) {
 307     progress = false;           // Reset for next iteration
 308     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 309     Node *test = prev->in(0);
 310     while( test != loop->_head ) { // Scan till run off top of loop
 311 
 312       int p_op = prev->Opcode();
 313       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 314           test->is_If() &&      // Test?
 315           !test->in(1)->is_Con() && // And not already obvious?
 316           // Condition is not a member of this loop?
 317           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 318         // Walk loop body looking for instances of this test
 319         for( uint i = 0; i < loop->_body.size(); i++ ) {
 320           Node *n = loop->_body.at(i);
 321           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 322             // IfNode was dominated by version in peeled loop body
 323             progress = true;
 324             dominated_by( old_new[prev->_idx], n );
 325           }
 326         }
 327       }
 328       prev = test;
 329       test = idom(test);
 330     } // End of scan tests in loop
 331 
 332   } // End of while( progress )
 333 }
 334 
 335 //------------------------------do_peeling-------------------------------------
 336 // Peel the first iteration of the given loop.
 337 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 338 //         The pre-loop illegally has 2 control users (old & new loops).
 339 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 340 //         Do this by making the old-loop fall-in edges act as if they came
 341 //         around the loopback from the prior iteration (follow the old-loop
 342 //         backedges) and then map to the new peeled iteration.  This leaves
 343 //         the pre-loop with only 1 user (the new peeled iteration), but the
 344 //         peeled-loop backedge has 2 users.
 345 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 346 //         extra backedge user.
 347 //
 348 //                   orig
 349 //
 350 //                  stmt1
 351 //                    |
 352 //                    v
 353 //              loop predicate
 354 //                    |
 355 //                    v
 356 //                   loop<----+
 357 //                     |      |
 358 //                   stmt2    |
 359 //                     |      |
 360 //                     v      |
 361 //                    if      ^
 362 //                   / \      |
 363 //                  /   \     |
 364 //                 v     v    |
 365 //               false true   |
 366 //               /       \    |
 367 //              /         ----+
 368 //             |
 369 //             v
 370 //           exit
 371 //
 372 //
 373 //            after clone loop
 374 //
 375 //                   stmt1
 376 //                     |
 377 //                     v
 378 //               loop predicate
 379 //                 /       \
 380 //        clone   /         \   orig
 381 //               /           \
 382 //              /             \
 383 //             v               v
 384 //   +---->loop clone          loop<----+
 385 //   |      |                    |      |
 386 //   |    stmt2 clone          stmt2    |
 387 //   |      |                    |      |
 388 //   |      v                    v      |
 389 //   ^      if clone            If      ^
 390 //   |      / \                / \      |
 391 //   |     /   \              /   \     |
 392 //   |    v     v            v     v    |
 393 //   |    true  false      false true   |
 394 //   |    /         \      /       \    |
 395 //   +----           \    /         ----+
 396 //                    \  /
 397 //                    1v v2
 398 //                  region
 399 //                     |
 400 //                     v
 401 //                   exit
 402 //
 403 //
 404 //         after peel and predicate move
 405 //
 406 //                   stmt1
 407 //                    /
 408 //                   /
 409 //        clone     /            orig
 410 //                 /
 411 //                /              +----------+
 412 //               /               |          |
 413 //              /          loop predicate   |
 414 //             /                 |          |
 415 //            v                  v          |
 416 //   TOP-->loop clone          loop<----+   |
 417 //          |                    |      |   |
 418 //        stmt2 clone          stmt2    |   |
 419 //          |                    |      |   ^
 420 //          v                    v      |   |
 421 //          if clone            If      ^   |
 422 //          / \                / \      |   |
 423 //         /   \              /   \     |   |
 424 //        v     v            v     v    |   |
 425 //      true   false      false  true   |   |
 426 //        |         \      /       \    |   |
 427 //        |          \    /         ----+   ^
 428 //        |           \  /                  |
 429 //        |           1v v2                 |
 430 //        v         region                  |
 431 //        |            |                    |
 432 //        |            v                    |
 433 //        |          exit                   |
 434 //        |                                 |
 435 //        +--------------->-----------------+
 436 //
 437 //
 438 //              final graph
 439 //
 440 //                  stmt1
 441 //                    |
 442 //                    v
 443 //                  stmt2 clone
 444 //                    |
 445 //                    v
 446 //                   if clone
 447 //                  / |
 448 //                 /  |
 449 //                v   v
 450 //            false  true
 451 //             |      |
 452 //             |      v
 453 //             | loop predicate
 454 //             |      |
 455 //             |      v
 456 //             |     loop<----+
 457 //             |      |       |
 458 //             |    stmt2     |
 459 //             |      |       |
 460 //             |      v       |
 461 //             v      if      ^
 462 //             |     /  \     |
 463 //             |    /    \    |
 464 //             |   v     v    |
 465 //             | false  true  |
 466 //             |  |        \  |
 467 //             v  v         --+
 468 //            region
 469 //              |
 470 //              v
 471 //             exit
 472 //
 473 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 474 
 475   C->set_major_progress();
 476   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 477   // 'pre' loop from the main and the 'pre' can no longer have it's
 478   // iterations adjusted.  Therefore, we need to declare this loop as
 479   // no longer a 'main' loop; it will need new pre and post loops before
 480   // we can do further RCE.
 481 #ifndef PRODUCT
 482   if (TraceLoopOpts) {
 483     tty->print("Peel         ");
 484     loop->dump_head();
 485   }
 486 #endif
 487   Node* head = loop->_head;
 488   bool counted_loop = head->is_CountedLoop();
 489   if (counted_loop) {
 490     CountedLoopNode *cl = head->as_CountedLoop();
 491     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 492     cl->set_trip_count(cl->trip_count() - 1);
 493     if (cl->is_main_loop()) {
 494       cl->set_normal_loop();
 495 #ifndef PRODUCT
 496       if (PrintOpto && VerifyLoopOptimizations) {
 497         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 498         loop->dump_head();
 499       }
 500 #endif
 501     }
 502   }
 503   Node* entry = head->in(LoopNode::EntryControl);
 504 
 505   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 506   //         The pre-loop illegally has 2 control users (old & new loops).
 507   clone_loop( loop, old_new, dom_depth(head) );
 508 
 509   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 510   //         Do this by making the old-loop fall-in edges act as if they came
 511   //         around the loopback from the prior iteration (follow the old-loop
 512   //         backedges) and then map to the new peeled iteration.  This leaves
 513   //         the pre-loop with only 1 user (the new peeled iteration), but the
 514   //         peeled-loop backedge has 2 users.
 515   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 516   _igvn.hash_delete(head);
 517   head->set_req(LoopNode::EntryControl, new_entry);
 518   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 519     Node* old = head->fast_out(j);
 520     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 521       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 522       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 523         // Then loop body backedge value remains the same.
 524         new_exit_value = old->in(LoopNode::LoopBackControl);
 525       _igvn.hash_delete(old);
 526       old->set_req(LoopNode::EntryControl, new_exit_value);
 527     }
 528   }
 529 
 530 
 531   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 532   //         extra backedge user.
 533   Node* new_head = old_new[head->_idx];
 534   _igvn.hash_delete(new_head);
 535   new_head->set_req(LoopNode::LoopBackControl, C->top());
 536   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 537     Node* use = new_head->fast_out(j2);
 538     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 539       _igvn.hash_delete(use);
 540       use->set_req(LoopNode::LoopBackControl, C->top());
 541     }
 542   }
 543 
 544 
 545   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 546   int dd = dom_depth(head);
 547   set_idom(head, head->in(1), dd);
 548   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 549     Node *old = loop->_body.at(j3);
 550     Node *nnn = old_new[old->_idx];
 551     if (!has_ctrl(nnn))
 552       set_idom(nnn, idom(nnn), dd-1);
 553   }
 554 
 555   // Now force out all loop-invariant dominating tests.  The optimizer
 556   // finds some, but we _know_ they are all useless.
 557   peeled_dom_test_elim(loop,old_new);
 558 
 559   loop->record_for_igvn();
 560 }
 561 
 562 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 563 
 564 //------------------------------policy_maximally_unroll------------------------
 565 // Calculate exact loop trip count and return true if loop can be maximally
 566 // unrolled.
 567 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 568   CountedLoopNode *cl = _head->as_CountedLoop();
 569   assert(cl->is_normal_loop(), "");
 570   if (!cl->is_valid_counted_loop())
 571     return false; // Malformed counted loop
 572 
 573   if (!cl->has_exact_trip_count()) {
 574     // Trip count is not exact.
 575     return false;
 576   }
 577 
 578   uint trip_count = cl->trip_count();
 579   // Note, max_juint is used to indicate unknown trip count.
 580   assert(trip_count > 1, "one iteration loop should be optimized out already");
 581   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 582 
 583   // Real policy: if we maximally unroll, does it get too big?
 584   // Allow the unrolled mess to get larger than standard loop
 585   // size.  After all, it will no longer be a loop.
 586   uint body_size    = _body.size();
 587   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 588   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 589   if (trip_count > unroll_limit || body_size > unroll_limit) {
 590     return false;
 591   }
 592 
 593   // Fully unroll a loop with few iterations regardless next
 594   // conditions since following loop optimizations will split
 595   // such loop anyway (pre-main-post).
 596   if (trip_count <= 3)
 597     return true;
 598 
 599   // Take into account that after unroll conjoined heads and tails will fold,
 600   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 601   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 602   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 603   if (body_size != tst_body_size) // Check for int overflow
 604     return false;
 605   if (new_body_size > unroll_limit ||
 606       // Unrolling can result in a large amount of node construction
 607       new_body_size >= MaxNodeLimit - (uint) phase->C->live_nodes()) {
 608     return false;
 609   }
 610 
 611   // Do not unroll a loop with String intrinsics code.
 612   // String intrinsics are large and have loops.
 613   for (uint k = 0; k < _body.size(); k++) {
 614     Node* n = _body.at(k);
 615     switch (n->Opcode()) {
 616       case Op_StrComp:
 617       case Op_StrEquals:
 618       case Op_StrIndexOf:
 619       case Op_EncodeISOArray:
 620       case Op_AryEq: {
 621         return false;
 622       }
 623 #if INCLUDE_RTM_OPT
 624       case Op_FastLock:
 625       case Op_FastUnlock: {
 626         // Don't unroll RTM locking code because it is large.
 627         if (UseRTMLocking) {
 628           return false;
 629         }
 630       }
 631 #endif
 632     } // switch
 633   }
 634 
 635   return true; // Do maximally unroll
 636 }
 637 
 638 
 639 //------------------------------policy_unroll----------------------------------
 640 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 641 // the loop is a CountedLoop and the body is small enough.
 642 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
 643 
 644   CountedLoopNode *cl = _head->as_CountedLoop();
 645   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 646 
 647   if (!cl->is_valid_counted_loop())
 648     return false; // Malformed counted loop
 649 
 650   // Protect against over-unrolling.
 651   // After split at least one iteration will be executed in pre-loop.
 652   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 653 
 654   int future_unroll_ct = cl->unrolled_count() * 2;
 655   if (future_unroll_ct > LoopMaxUnroll) return false;
 656 
 657   // Check for initial stride being a small enough constant
 658   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 659 
 660   // Don't unroll if the next round of unrolling would push us
 661   // over the expected trip count of the loop.  One is subtracted
 662   // from the expected trip count because the pre-loop normally
 663   // executes 1 iteration.
 664   if (UnrollLimitForProfileCheck > 0 &&
 665       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 666       future_unroll_ct        > UnrollLimitForProfileCheck &&
 667       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 668     return false;
 669   }
 670 
 671   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 672   //   the residual iterations are more than 10% of the trip count
 673   //   and rounds of "unroll,optimize" are not making significant progress
 674   //   Progress defined as current size less than 20% larger than previous size.
 675   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 676       future_unroll_ct > LoopUnrollMin &&
 677       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
 678       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 679     return false;
 680   }
 681 
 682   Node *init_n = cl->init_trip();
 683   Node *limit_n = cl->limit();
 684   int stride_con = cl->stride_con();
 685   // Non-constant bounds.
 686   // Protect against over-unrolling when init or/and limit are not constant
 687   // (so that trip_count's init value is maxint) but iv range is known.
 688   if (init_n   == NULL || !init_n->is_Con()  ||
 689       limit_n  == NULL || !limit_n->is_Con()) {
 690     Node* phi = cl->phi();
 691     if (phi != NULL) {
 692       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 693       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 694       int next_stride = stride_con * 2; // stride after this unroll
 695       if (next_stride > 0) {
 696         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 697             iv_type->_lo + next_stride >  iv_type->_hi) {
 698           return false;  // over-unrolling
 699         }
 700       } else if (next_stride < 0) {
 701         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 702             iv_type->_hi + next_stride <  iv_type->_lo) {
 703           return false;  // over-unrolling
 704         }
 705       }
 706     }
 707   }
 708 
 709   // After unroll limit will be adjusted: new_limit = limit-stride.
 710   // Bailout if adjustment overflow.
 711   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 712   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 713       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 714     return false;  // overflow
 715 
 716   // Adjust body_size to determine if we unroll or not
 717   uint body_size = _body.size();
 718   // Key test to unroll loop in CRC32 java code
 719   int xors_in_loop = 0;
 720   // Also count ModL, DivL and MulL which expand mightly
 721   for (uint k = 0; k < _body.size(); k++) {
 722     Node* n = _body.at(k);
 723     switch (n->Opcode()) {
 724       case Op_XorI: xors_in_loop++; break; // CRC32 java code
 725       case Op_ModL: body_size += 30; break;
 726       case Op_DivL: body_size += 30; break;
 727       case Op_MulL: body_size += 10; break;
 728       case Op_StrComp:
 729       case Op_StrEquals:
 730       case Op_StrIndexOf:
 731       case Op_EncodeISOArray:
 732       case Op_AryEq: {
 733         // Do not unroll a loop with String intrinsics code.
 734         // String intrinsics are large and have loops.
 735         return false;
 736       }
 737 #if INCLUDE_RTM_OPT
 738       case Op_FastLock:
 739       case Op_FastUnlock: {
 740         // Don't unroll RTM locking code because it is large.
 741         if (UseRTMLocking) {
 742           return false;
 743         }
 744       }
 745 #endif
 746     } // switch
 747   }
 748 
 749   // Check for being too big
 750   if (body_size > (uint)LoopUnrollLimit) {
 751     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 752     // Normal case: loop too big
 753     return false;
 754   }
 755 
 756   // Unroll once!  (Each trip will soon do double iterations)
 757   return true;
 758 }
 759 
 760 //------------------------------policy_align-----------------------------------
 761 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 762 // expression that does the alignment.  Note that only one array base can be
 763 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 764 // if we vectorize short memory ops into longer memory ops, we may want to
 765 // increase alignment.
 766 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 767   return false;
 768 }
 769 
 770 //------------------------------policy_range_check-----------------------------
 771 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 772 // Actually we do iteration-splitting, a more powerful form of RCE.
 773 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 774   if (!RangeCheckElimination) return false;
 775 
 776   CountedLoopNode *cl = _head->as_CountedLoop();
 777   // If we unrolled with no intention of doing RCE and we later
 778   // changed our minds, we got no pre-loop.  Either we need to
 779   // make a new pre-loop, or we gotta disallow RCE.
 780   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 781   Node *trip_counter = cl->phi();
 782 
 783   // Check loop body for tests of trip-counter plus loop-invariant vs
 784   // loop-invariant.
 785   for (uint i = 0; i < _body.size(); i++) {
 786     Node *iff = _body[i];
 787     if (iff->Opcode() == Op_If) { // Test?
 788 
 789       // Comparing trip+off vs limit
 790       Node *bol = iff->in(1);
 791       if (bol->req() != 2) continue; // dead constant test
 792       if (!bol->is_Bool()) {
 793         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 794         continue;
 795       }
 796       if (bol->as_Bool()->_test._test == BoolTest::ne)
 797         continue; // not RC
 798 
 799       Node *cmp = bol->in(1);
 800       Node *rc_exp = cmp->in(1);
 801       Node *limit = cmp->in(2);
 802 
 803       Node *limit_c = phase->get_ctrl(limit);
 804       if( limit_c == phase->C->top() )
 805         return false;           // Found dead test on live IF?  No RCE!
 806       if( is_member(phase->get_loop(limit_c) ) ) {
 807         // Compare might have operands swapped; commute them
 808         rc_exp = cmp->in(2);
 809         limit  = cmp->in(1);
 810         limit_c = phase->get_ctrl(limit);
 811         if( is_member(phase->get_loop(limit_c) ) )
 812           continue;             // Both inputs are loop varying; cannot RCE
 813       }
 814 
 815       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 816         continue;
 817       }
 818       // Yeah!  Found a test like 'trip+off vs limit'
 819       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 820       // we need loop unswitching instead of iteration splitting.
 821       if( is_loop_exit(iff) )
 822         return true;            // Found reason to split iterations
 823     } // End of is IF
 824   }
 825 
 826   return false;
 827 }
 828 
 829 //------------------------------policy_peel_only-------------------------------
 830 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 831 // for unrolling loops with NO array accesses.
 832 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 833 
 834   for( uint i = 0; i < _body.size(); i++ )
 835     if( _body[i]->is_Mem() )
 836       return false;
 837 
 838   // No memory accesses at all!
 839   return true;
 840 }
 841 
 842 //------------------------------clone_up_backedge_goo--------------------------
 843 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 844 // version of n in preheader_ctrl block and return that, otherwise return n.
 845 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
 846   if( get_ctrl(n) != back_ctrl ) return n;
 847 
 848   // Only visit once
 849   if (visited.test_set(n->_idx)) {
 850     Node *x = clones.find(n->_idx);
 851     if (x != NULL)
 852       return x;
 853     return n;
 854   }
 855 
 856   Node *x = NULL;               // If required, a clone of 'n'
 857   // Check for 'n' being pinned in the backedge.
 858   if( n->in(0) && n->in(0) == back_ctrl ) {
 859     assert(clones.find(n->_idx) == NULL, "dead loop");
 860     x = n->clone();             // Clone a copy of 'n' to preheader
 861     clones.push(x, n->_idx);
 862     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 863   }
 864 
 865   // Recursive fixup any other input edges into x.
 866   // If there are no changes we can just return 'n', otherwise
 867   // we need to clone a private copy and change it.
 868   for( uint i = 1; i < n->req(); i++ ) {
 869     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
 870     if( g != n->in(i) ) {
 871       if( !x ) {
 872         assert(clones.find(n->_idx) == NULL, "dead loop");
 873         x = n->clone();
 874         clones.push(x, n->_idx);
 875       }
 876       x->set_req(i, g);
 877     }
 878   }
 879   if( x ) {                     // x can legally float to pre-header location
 880     register_new_node( x, preheader_ctrl );
 881     return x;
 882   } else {                      // raise n to cover LCA of uses
 883     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 884   }
 885   return n;
 886 }
 887 
 888 //------------------------------insert_pre_post_loops--------------------------
 889 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 890 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 891 // alignment.  Useful to unroll loops that do no array accesses.
 892 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 893 
 894 #ifndef PRODUCT
 895   if (TraceLoopOpts) {
 896     if (peel_only)
 897       tty->print("PeelMainPost ");
 898     else
 899       tty->print("PreMainPost  ");
 900     loop->dump_head();
 901   }
 902 #endif
 903   C->set_major_progress();
 904 
 905   // Find common pieces of the loop being guarded with pre & post loops
 906   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
 907   assert( main_head->is_normal_loop(), "" );
 908   CountedLoopEndNode *main_end = main_head->loopexit();
 909   guarantee(main_end != NULL, "no loop exit node");
 910   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
 911   uint dd_main_head = dom_depth(main_head);
 912   uint max = main_head->outcnt();
 913 
 914   Node *pre_header= main_head->in(LoopNode::EntryControl);
 915   Node *init      = main_head->init_trip();
 916   Node *incr      = main_end ->incr();
 917   Node *limit     = main_end ->limit();
 918   Node *stride    = main_end ->stride();
 919   Node *cmp       = main_end ->cmp_node();
 920   BoolTest::mask b_test = main_end->test_trip();
 921 
 922   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
 923   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
 924   if( bol->outcnt() != 1 ) {
 925     bol = bol->clone();
 926     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
 927     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
 928   }
 929   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
 930   if( cmp->outcnt() != 1 ) {
 931     cmp = cmp->clone();
 932     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
 933     _igvn.replace_input_of(bol, 1, cmp);
 934   }
 935 
 936   //------------------------------
 937   // Step A: Create Post-Loop.
 938   Node* main_exit = main_end->proj_out(false);
 939   assert( main_exit->Opcode() == Op_IfFalse, "" );
 940   int dd_main_exit = dom_depth(main_exit);
 941 
 942   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
 943   // loop pre-header illegally has 2 control users (old & new loops).
 944   clone_loop( loop, old_new, dd_main_exit );
 945   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
 946   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
 947   post_head->set_post_loop(main_head);
 948 
 949   // Reduce the post-loop trip count.
 950   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
 951   post_end->_prob = PROB_FAIR;
 952 
 953   // Build the main-loop normal exit.
 954   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
 955   _igvn.register_new_node_with_optimizer( new_main_exit );
 956   set_idom(new_main_exit, main_end, dd_main_exit );
 957   set_loop(new_main_exit, loop->_parent);
 958 
 959   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
 960   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
 961   // (the main-loop trip-counter exit value) because we will be changing
 962   // the exit value (via unrolling) so we cannot constant-fold away the zero
 963   // trip guard until all unrolling is done.
 964   Node *zer_opaq = new Opaque1Node(C, incr);
 965   Node *zer_cmp  = new CmpINode( zer_opaq, limit );
 966   Node *zer_bol  = new BoolNode( zer_cmp, b_test );
 967   register_new_node( zer_opaq, new_main_exit );
 968   register_new_node( zer_cmp , new_main_exit );
 969   register_new_node( zer_bol , new_main_exit );
 970 
 971   // Build the IfNode
 972   IfNode *zer_iff = new IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
 973   _igvn.register_new_node_with_optimizer( zer_iff );
 974   set_idom(zer_iff, new_main_exit, dd_main_exit);
 975   set_loop(zer_iff, loop->_parent);
 976 
 977   // Plug in the false-path, taken if we need to skip post-loop
 978   _igvn.replace_input_of(main_exit, 0, zer_iff);
 979   set_idom(main_exit, zer_iff, dd_main_exit);
 980   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
 981   // Make the true-path, must enter the post loop
 982   Node *zer_taken = new IfTrueNode( zer_iff );
 983   _igvn.register_new_node_with_optimizer( zer_taken );
 984   set_idom(zer_taken, zer_iff, dd_main_exit);
 985   set_loop(zer_taken, loop->_parent);
 986   // Plug in the true path
 987   _igvn.hash_delete( post_head );
 988   post_head->set_req(LoopNode::EntryControl, zer_taken);
 989   set_idom(post_head, zer_taken, dd_main_exit);
 990 
 991   Arena *a = Thread::current()->resource_area();
 992   VectorSet visited(a);
 993   Node_Stack clones(a, main_head->back_control()->outcnt());
 994   // Step A3: Make the fall-in values to the post-loop come from the
 995   // fall-out values of the main-loop.
 996   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
 997     Node* main_phi = main_head->fast_out(i);
 998     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
 999       Node *post_phi = old_new[main_phi->_idx];
1000       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
1001                                               post_head->init_control(),
1002                                               main_phi->in(LoopNode::LoopBackControl),
1003                                               visited, clones);
1004       _igvn.hash_delete(post_phi);
1005       post_phi->set_req( LoopNode::EntryControl, fallmain );
1006     }
1007   }
1008 
1009   // Update local caches for next stanza
1010   main_exit = new_main_exit;
1011 
1012 
1013   //------------------------------
1014   // Step B: Create Pre-Loop.
1015 
1016   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1017   // loop pre-header illegally has 2 control users (old & new loops).
1018   clone_loop( loop, old_new, dd_main_head );
1019   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1020   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1021   pre_head->set_pre_loop(main_head);
1022   Node *pre_incr = old_new[incr->_idx];
1023 
1024   // Reduce the pre-loop trip count.
1025   pre_end->_prob = PROB_FAIR;
1026 
1027   // Find the pre-loop normal exit.
1028   Node* pre_exit = pre_end->proj_out(false);
1029   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1030   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1031   _igvn.register_new_node_with_optimizer( new_pre_exit );
1032   set_idom(new_pre_exit, pre_end, dd_main_head);
1033   set_loop(new_pre_exit, loop->_parent);
1034 
1035   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1036   // pre-loop, the main-loop may not execute at all.  Later in life this
1037   // zero-trip guard will become the minimum-trip guard when we unroll
1038   // the main-loop.
1039   Node *min_opaq = new Opaque1Node(C, limit);
1040   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1041   Node *min_bol  = new BoolNode( min_cmp, b_test );
1042   register_new_node( min_opaq, new_pre_exit );
1043   register_new_node( min_cmp , new_pre_exit );
1044   register_new_node( min_bol , new_pre_exit );
1045 
1046   // Build the IfNode (assume the main-loop is executed always).
1047   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1048   _igvn.register_new_node_with_optimizer( min_iff );
1049   set_idom(min_iff, new_pre_exit, dd_main_head);
1050   set_loop(min_iff, loop->_parent);
1051 
1052   // Plug in the false-path, taken if we need to skip main-loop
1053   _igvn.hash_delete( pre_exit );
1054   pre_exit->set_req(0, min_iff);
1055   set_idom(pre_exit, min_iff, dd_main_head);
1056   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1057   // Make the true-path, must enter the main loop
1058   Node *min_taken = new IfTrueNode( min_iff );
1059   _igvn.register_new_node_with_optimizer( min_taken );
1060   set_idom(min_taken, min_iff, dd_main_head);
1061   set_loop(min_taken, loop->_parent);
1062   // Plug in the true path
1063   _igvn.hash_delete( main_head );
1064   main_head->set_req(LoopNode::EntryControl, min_taken);
1065   set_idom(main_head, min_taken, dd_main_head);
1066 
1067   visited.Clear();
1068   clones.clear();
1069   // Step B3: Make the fall-in values to the main-loop come from the
1070   // fall-out values of the pre-loop.
1071   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1072     Node* main_phi = main_head->fast_out(i2);
1073     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1074       Node *pre_phi = old_new[main_phi->_idx];
1075       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1076                                              main_head->init_control(),
1077                                              pre_phi->in(LoopNode::LoopBackControl),
1078                                              visited, clones);
1079       _igvn.hash_delete(main_phi);
1080       main_phi->set_req( LoopNode::EntryControl, fallpre );
1081     }
1082   }
1083 
1084   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1085   // RCE and alignment may change this later.
1086   Node *cmp_end = pre_end->cmp_node();
1087   assert( cmp_end->in(2) == limit, "" );
1088   Node *pre_limit = new AddINode( init, stride );
1089 
1090   // Save the original loop limit in this Opaque1 node for
1091   // use by range check elimination.
1092   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1093 
1094   register_new_node( pre_limit, pre_head->in(0) );
1095   register_new_node( pre_opaq , pre_head->in(0) );
1096 
1097   // Since no other users of pre-loop compare, I can hack limit directly
1098   assert( cmp_end->outcnt() == 1, "no other users" );
1099   _igvn.hash_delete(cmp_end);
1100   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1101 
1102   // Special case for not-equal loop bounds:
1103   // Change pre loop test, main loop test, and the
1104   // main loop guard test to use lt or gt depending on stride
1105   // direction:
1106   // positive stride use <
1107   // negative stride use >
1108   //
1109   // not-equal test is kept for post loop to handle case
1110   // when init > limit when stride > 0 (and reverse).
1111 
1112   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1113 
1114     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1115     // Modify pre loop end condition
1116     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1117     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1118     register_new_node( new_bol0, pre_head->in(0) );
1119     _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
1120     // Modify main loop guard condition
1121     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1122     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1123     register_new_node( new_bol1, new_pre_exit );
1124     _igvn.hash_delete(min_iff);
1125     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1126     // Modify main loop end condition
1127     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1128     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1129     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1130     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
1131   }
1132 
1133   // Flag main loop
1134   main_head->set_main_loop();
1135   if( peel_only ) main_head->set_main_no_pre_loop();
1136 
1137   // Subtract a trip count for the pre-loop.
1138   main_head->set_trip_count(main_head->trip_count() - 1);
1139 
1140   // It's difficult to be precise about the trip-counts
1141   // for the pre/post loops.  They are usually very short,
1142   // so guess that 4 trips is a reasonable value.
1143   post_head->set_profile_trip_cnt(4.0);
1144   pre_head->set_profile_trip_cnt(4.0);
1145 
1146   // Now force out all loop-invariant dominating tests.  The optimizer
1147   // finds some, but we _know_ they are all useless.
1148   peeled_dom_test_elim(loop,old_new);
1149   loop->record_for_igvn();
1150 }
1151 
1152 //------------------------------is_invariant-----------------------------
1153 // Return true if n is invariant
1154 bool IdealLoopTree::is_invariant(Node* n) const {
1155   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1156   if (n_c->is_top()) return false;
1157   return !is_member(_phase->get_loop(n_c));
1158 }
1159 
1160 
1161 //------------------------------do_unroll--------------------------------------
1162 // Unroll the loop body one step - make each trip do 2 iterations.
1163 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1164   assert(LoopUnrollLimit, "");
1165   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1166   CountedLoopEndNode *loop_end = loop_head->loopexit();
1167   assert(loop_end, "");
1168 #ifndef PRODUCT
1169   if (PrintOpto && VerifyLoopOptimizations) {
1170     tty->print("Unrolling ");
1171     loop->dump_head();
1172   } else if (TraceLoopOpts) {
1173     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1174       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1175     } else {
1176       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1177     }
1178     loop->dump_head();
1179   }
1180 #endif
1181 
1182   // Remember loop node count before unrolling to detect
1183   // if rounds of unroll,optimize are making progress
1184   loop_head->set_node_count_before_unroll(loop->_body.size());
1185 
1186   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1187   Node *limit = loop_head->limit();
1188   Node *init  = loop_head->init_trip();
1189   Node *stride = loop_head->stride();
1190 
1191   Node *opaq = NULL;
1192   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1193     // Search for zero-trip guard.
1194     assert( loop_head->is_main_loop(), "" );
1195     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1196     Node *iff = ctrl->in(0);
1197     assert( iff->Opcode() == Op_If, "" );
1198     Node *bol = iff->in(1);
1199     assert( bol->Opcode() == Op_Bool, "" );
1200     Node *cmp = bol->in(1);
1201     assert( cmp->Opcode() == Op_CmpI, "" );
1202     opaq = cmp->in(2);
1203     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1204     // optimized away and then another round of loop opts attempted.
1205     // We can not optimize this particular loop in that case.
1206     if (opaq->Opcode() != Op_Opaque1)
1207       return; // Cannot find zero-trip guard!  Bail out!
1208     // Zero-trip test uses an 'opaque' node which is not shared.
1209     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1210   }
1211 
1212   C->set_major_progress();
1213 
1214   Node* new_limit = NULL;
1215   if (UnrollLimitCheck) {
1216     int stride_con = stride->get_int();
1217     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1218     uint old_trip_count = loop_head->trip_count();
1219     // Verify that unroll policy result is still valid.
1220     assert(old_trip_count > 1 &&
1221            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1222 
1223     // Adjust loop limit to keep valid iterations number after unroll.
1224     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1225     // which may overflow.
1226     if (!adjust_min_trip) {
1227       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1228              "odd trip count for maximally unroll");
1229       // Don't need to adjust limit for maximally unroll since trip count is even.
1230     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1231       // Loop's limit is constant. Loop's init could be constant when pre-loop
1232       // become peeled iteration.
1233       jlong init_con = init->get_int();
1234       // We can keep old loop limit if iterations count stays the same:
1235       //   old_trip_count == new_trip_count * 2
1236       // Note: since old_trip_count >= 2 then new_trip_count >= 1
1237       // so we also don't need to adjust zero trip test.
1238       jlong limit_con  = limit->get_int();
1239       // (stride_con*2) not overflow since stride_con <= 8.
1240       int new_stride_con = stride_con * 2;
1241       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1242       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1243       // New trip count should satisfy next conditions.
1244       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1245       uint new_trip_count = (uint)trip_count;
1246       adjust_min_trip = (old_trip_count != new_trip_count*2);
1247     }
1248 
1249     if (adjust_min_trip) {
1250       // Step 2: Adjust the trip limit if it is called for.
1251       // The adjustment amount is -stride. Need to make sure if the
1252       // adjustment underflows or overflows, then the main loop is skipped.
1253       Node* cmp = loop_end->cmp_node();
1254       assert(cmp->in(2) == limit, "sanity");
1255       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1256 
1257       // Verify that policy_unroll result is still valid.
1258       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1259       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1260              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1261 
1262       if (limit->is_Con()) {
1263         // The check in policy_unroll and the assert above guarantee
1264         // no underflow if limit is constant.
1265         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1266         set_ctrl(new_limit, C->root());
1267       } else {
1268         // Limit is not constant.
1269         if (loop_head->unrolled_count() == 1) { // only for first unroll
1270           // Separate limit by Opaque node in case it is an incremented
1271           // variable from previous loop to avoid using pre-incremented
1272           // value which could increase register pressure.
1273           // Otherwise reorg_offsets() optimization will create a separate
1274           // Opaque node for each use of trip-counter and as result
1275           // zero trip guard limit will be different from loop limit.
1276           assert(has_ctrl(opaq), "should have it");
1277           Node* opaq_ctrl = get_ctrl(opaq);
1278           limit = new Opaque2Node( C, limit );
1279           register_new_node( limit, opaq_ctrl );
1280         }
1281         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1282                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1283           // No underflow.
1284           new_limit = new SubINode(limit, stride);
1285         } else {
1286           // (limit - stride) may underflow.
1287           // Clamp the adjustment value with MININT or MAXINT:
1288           //
1289           //   new_limit = limit-stride
1290           //   if (stride > 0)
1291           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1292           //   else
1293           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1294           //
1295           BoolTest::mask bt = loop_end->test_trip();
1296           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1297           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1298           set_ctrl(adj_max, C->root());
1299           Node* old_limit = NULL;
1300           Node* adj_limit = NULL;
1301           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1302           if (loop_head->unrolled_count() > 1 &&
1303               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1304               limit->in(CMoveNode::IfTrue) == adj_max &&
1305               bol->as_Bool()->_test._test == bt &&
1306               bol->in(1)->Opcode() == Op_CmpI &&
1307               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1308             // Loop was unrolled before.
1309             // Optimize the limit to avoid nested CMove:
1310             // use original limit as old limit.
1311             old_limit = bol->in(1)->in(1);
1312             // Adjust previous adjusted limit.
1313             adj_limit = limit->in(CMoveNode::IfFalse);
1314             adj_limit = new SubINode(adj_limit, stride);
1315           } else {
1316             old_limit = limit;
1317             adj_limit = new SubINode(limit, stride);
1318           }
1319           assert(old_limit != NULL && adj_limit != NULL, "");
1320           register_new_node( adj_limit, ctrl ); // adjust amount
1321           Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1322           register_new_node( adj_cmp, ctrl );
1323           Node* adj_bool = new BoolNode(adj_cmp, bt);
1324           register_new_node( adj_bool, ctrl );
1325           new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1326         }
1327         register_new_node(new_limit, ctrl);
1328       }
1329       assert(new_limit != NULL, "");
1330       // Replace in loop test.
1331       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1332       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1333         // Don't need to create new test since only one user.
1334         _igvn.hash_delete(cmp);
1335         cmp->set_req(2, new_limit);
1336       } else {
1337         // Create new test since it is shared.
1338         Node* ctrl2 = loop_end->in(0);
1339         Node* cmp2  = cmp->clone();
1340         cmp2->set_req(2, new_limit);
1341         register_new_node(cmp2, ctrl2);
1342         Node* bol2 = loop_end->in(1)->clone();
1343         bol2->set_req(1, cmp2);
1344         register_new_node(bol2, ctrl2);
1345         _igvn.replace_input_of(loop_end, 1, bol2);
1346       }
1347       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1348       // Make it a 1-trip test (means at least 2 trips).
1349 
1350       // Guard test uses an 'opaque' node which is not shared.  Hence I
1351       // can edit it's inputs directly.  Hammer in the new limit for the
1352       // minimum-trip guard.
1353       assert(opaq->outcnt() == 1, "");
1354       _igvn.replace_input_of(opaq, 1, new_limit);
1355     }
1356 
1357     // Adjust max trip count. The trip count is intentionally rounded
1358     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1359     // the main, unrolled, part of the loop will never execute as it is protected
1360     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1361     // and later determined that part of the unrolled loop was dead.
1362     loop_head->set_trip_count(old_trip_count / 2);
1363 
1364     // Double the count of original iterations in the unrolled loop body.
1365     loop_head->double_unrolled_count();
1366 
1367   } else { // LoopLimitCheck
1368 
1369     // Adjust max trip count. The trip count is intentionally rounded
1370     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1371     // the main, unrolled, part of the loop will never execute as it is protected
1372     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1373     // and later determined that part of the unrolled loop was dead.
1374     loop_head->set_trip_count(loop_head->trip_count() / 2);
1375 
1376     // Double the count of original iterations in the unrolled loop body.
1377     loop_head->double_unrolled_count();
1378 
1379     // -----------
1380     // Step 2: Cut back the trip counter for an unroll amount of 2.
1381     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1382     // CountedLoop this is exact (stride divides limit-init exactly).
1383     // We are going to double the loop body, so we want to knock off any
1384     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1385     Node *span = new SubINode( limit, init );
1386     register_new_node( span, ctrl );
1387     Node *trip = new DivINode( 0, span, stride );
1388     register_new_node( trip, ctrl );
1389     Node *mtwo = _igvn.intcon(-2);
1390     set_ctrl(mtwo, C->root());
1391     Node *rond = new AndINode( trip, mtwo );
1392     register_new_node( rond, ctrl );
1393     Node *spn2 = new MulINode( rond, stride );
1394     register_new_node( spn2, ctrl );
1395     new_limit = new AddINode( spn2, init );
1396     register_new_node( new_limit, ctrl );
1397 
1398     // Hammer in the new limit
1399     Node *ctrl2 = loop_end->in(0);
1400     Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
1401     register_new_node( cmp2, ctrl2 );
1402     Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
1403     register_new_node( bol2, ctrl2 );
1404     _igvn.replace_input_of(loop_end, CountedLoopEndNode::TestValue, bol2);
1405 
1406     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1407     // Make it a 1-trip test (means at least 2 trips).
1408     if( adjust_min_trip ) {
1409       assert( new_limit != NULL, "" );
1410       // Guard test uses an 'opaque' node which is not shared.  Hence I
1411       // can edit it's inputs directly.  Hammer in the new limit for the
1412       // minimum-trip guard.
1413       assert( opaq->outcnt() == 1, "" );
1414       _igvn.hash_delete(opaq);
1415       opaq->set_req(1, new_limit);
1416     }
1417   } // LoopLimitCheck
1418 
1419   // ---------
1420   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1421   // represents the odd iterations; since the loop trips an even number of
1422   // times its backedge is never taken.  Kill the backedge.
1423   uint dd = dom_depth(loop_head);
1424   clone_loop( loop, old_new, dd );
1425 
1426   // Make backedges of the clone equal to backedges of the original.
1427   // Make the fall-in from the original come from the fall-out of the clone.
1428   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1429     Node* phi = loop_head->fast_out(j);
1430     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1431       Node *newphi = old_new[phi->_idx];
1432       _igvn.hash_delete( phi );
1433       _igvn.hash_delete( newphi );
1434 
1435       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1436       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1437       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1438     }
1439   }
1440   Node *clone_head = old_new[loop_head->_idx];
1441   _igvn.hash_delete( clone_head );
1442   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1443   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1444   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1445   loop->_head = clone_head;     // New loop header
1446 
1447   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1448   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1449 
1450   // Kill the clone's backedge
1451   Node *newcle = old_new[loop_end->_idx];
1452   _igvn.hash_delete( newcle );
1453   Node *one = _igvn.intcon(1);
1454   set_ctrl(one, C->root());
1455   newcle->set_req(1, one);
1456   // Force clone into same loop body
1457   uint max = loop->_body.size();
1458   for( uint k = 0; k < max; k++ ) {
1459     Node *old = loop->_body.at(k);
1460     Node *nnn = old_new[old->_idx];
1461     loop->_body.push(nnn);
1462     if (!has_ctrl(old))
1463       set_loop(nnn, loop);
1464   }
1465 
1466   loop->record_for_igvn();
1467 }
1468 
1469 //------------------------------do_maximally_unroll----------------------------
1470 
1471 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1472   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1473   assert(cl->has_exact_trip_count(), "trip count is not exact");
1474   assert(cl->trip_count() > 0, "");
1475 #ifndef PRODUCT
1476   if (TraceLoopOpts) {
1477     tty->print("MaxUnroll  %d ", cl->trip_count());
1478     loop->dump_head();
1479   }
1480 #endif
1481 
1482   // If loop is tripping an odd number of times, peel odd iteration
1483   if ((cl->trip_count() & 1) == 1) {
1484     do_peeling(loop, old_new);
1485   }
1486 
1487   // Now its tripping an even number of times remaining.  Double loop body.
1488   // Do not adjust pre-guards; they are not needed and do not exist.
1489   if (cl->trip_count() > 0) {
1490     assert((cl->trip_count() & 1) == 0, "missed peeling");
1491     do_unroll(loop, old_new, false);
1492   }
1493 }
1494 
1495 //------------------------------dominates_backedge---------------------------------
1496 // Returns true if ctrl is executed on every complete iteration
1497 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1498   assert(ctrl->is_CFG(), "must be control");
1499   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1500   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1501 }
1502 
1503 //------------------------------adjust_limit-----------------------------------
1504 // Helper function for add_constraint().
1505 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1506   // Compute "I :: (limit-offset)/scale"
1507   Node *con = new SubINode(rc_limit, offset);
1508   register_new_node(con, pre_ctrl);
1509   Node *X = new DivINode(0, con, scale);
1510   register_new_node(X, pre_ctrl);
1511 
1512   // Adjust loop limit
1513   loop_limit = (stride_con > 0)
1514                ? (Node*)(new MinINode(loop_limit, X))
1515                : (Node*)(new MaxINode(loop_limit, X));
1516   register_new_node(loop_limit, pre_ctrl);
1517   return loop_limit;
1518 }
1519 
1520 //------------------------------add_constraint---------------------------------
1521 // Constrain the main loop iterations so the conditions:
1522 //    low_limit <= scale_con * I + offset  <  upper_limit
1523 // always holds true.  That is, either increase the number of iterations in
1524 // the pre-loop or the post-loop until the condition holds true in the main
1525 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1526 // stride and scale are constants (offset and limit often are).
1527 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1528   // For positive stride, the pre-loop limit always uses a MAX function
1529   // and the main loop a MIN function.  For negative stride these are
1530   // reversed.
1531 
1532   // Also for positive stride*scale the affine function is increasing, so the
1533   // pre-loop must check for underflow and the post-loop for overflow.
1534   // Negative stride*scale reverses this; pre-loop checks for overflow and
1535   // post-loop for underflow.
1536 
1537   Node *scale = _igvn.intcon(scale_con);
1538   set_ctrl(scale, C->root());
1539 
1540   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1541     // The overflow limit: scale*I+offset < upper_limit
1542     // For main-loop compute
1543     //   ( if (scale > 0) /* and stride > 0 */
1544     //       I < (upper_limit-offset)/scale
1545     //     else /* scale < 0 and stride < 0 */
1546     //       I > (upper_limit-offset)/scale
1547     //   )
1548     //
1549     // (upper_limit-offset) may overflow or underflow.
1550     // But it is fine since main loop will either have
1551     // less iterations or will be skipped in such case.
1552     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1553 
1554     // The underflow limit: low_limit <= scale*I+offset.
1555     // For pre-loop compute
1556     //   NOT(scale*I+offset >= low_limit)
1557     //   scale*I+offset < low_limit
1558     //   ( if (scale > 0) /* and stride > 0 */
1559     //       I < (low_limit-offset)/scale
1560     //     else /* scale < 0 and stride < 0 */
1561     //       I > (low_limit-offset)/scale
1562     //   )
1563 
1564     if (low_limit->get_int() == -max_jint) {
1565       if (!RangeLimitCheck) return;
1566       // We need this guard when scale*pre_limit+offset >= limit
1567       // due to underflow. So we need execute pre-loop until
1568       // scale*I+offset >= min_int. But (min_int-offset) will
1569       // underflow when offset > 0 and X will be > original_limit
1570       // when stride > 0. To avoid it we replace positive offset with 0.
1571       //
1572       // Also (min_int+1 == -max_int) is used instead of min_int here
1573       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1574       Node* shift = _igvn.intcon(31);
1575       set_ctrl(shift, C->root());
1576       Node* sign = new RShiftINode(offset, shift);
1577       register_new_node(sign, pre_ctrl);
1578       offset = new AndINode(offset, sign);
1579       register_new_node(offset, pre_ctrl);
1580     } else {
1581       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1582       // The only problem we have here when offset == min_int
1583       // since (0-min_int) == min_int. It may be fine for stride > 0
1584       // but for stride < 0 X will be < original_limit. To avoid it
1585       // max(pre_limit, original_limit) is used in do_range_check().
1586     }
1587     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1588     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1589 
1590   } else { // stride_con*scale_con < 0
1591     // For negative stride*scale pre-loop checks for overflow and
1592     // post-loop for underflow.
1593     //
1594     // The overflow limit: scale*I+offset < upper_limit
1595     // For pre-loop compute
1596     //   NOT(scale*I+offset < upper_limit)
1597     //   scale*I+offset >= upper_limit
1598     //   scale*I+offset+1 > upper_limit
1599     //   ( if (scale < 0) /* and stride > 0 */
1600     //       I < (upper_limit-(offset+1))/scale
1601     //     else /* scale > 0 and stride < 0 */
1602     //       I > (upper_limit-(offset+1))/scale
1603     //   )
1604     //
1605     // (upper_limit-offset-1) may underflow or overflow.
1606     // To avoid it min(pre_limit, original_limit) is used
1607     // in do_range_check() for stride > 0 and max() for < 0.
1608     Node *one  = _igvn.intcon(1);
1609     set_ctrl(one, C->root());
1610 
1611     Node *plus_one = new AddINode(offset, one);
1612     register_new_node( plus_one, pre_ctrl );
1613     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1614     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1615 
1616     if (low_limit->get_int() == -max_jint) {
1617       if (!RangeLimitCheck) return;
1618       // We need this guard when scale*main_limit+offset >= limit
1619       // due to underflow. So we need execute main-loop while
1620       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1621       // underflow when (offset+1) > 0 and X will be < main_limit
1622       // when scale < 0 (and stride > 0). To avoid it we replace
1623       // positive (offset+1) with 0.
1624       //
1625       // Also (min_int+1 == -max_int) is used instead of min_int here
1626       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1627       Node* shift = _igvn.intcon(31);
1628       set_ctrl(shift, C->root());
1629       Node* sign = new RShiftINode(plus_one, shift);
1630       register_new_node(sign, pre_ctrl);
1631       plus_one = new AndINode(plus_one, sign);
1632       register_new_node(plus_one, pre_ctrl);
1633     } else {
1634       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1635       // The only problem we have here when offset == max_int
1636       // since (max_int+1) == min_int and (0-min_int) == min_int.
1637       // But it is fine since main loop will either have
1638       // less iterations or will be skipped in such case.
1639     }
1640     // The underflow limit: low_limit <= scale*I+offset.
1641     // For main-loop compute
1642     //   scale*I+offset+1 > low_limit
1643     //   ( if (scale < 0) /* and stride > 0 */
1644     //       I < (low_limit-(offset+1))/scale
1645     //     else /* scale > 0 and stride < 0 */
1646     //       I > (low_limit-(offset+1))/scale
1647     //   )
1648 
1649     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1650   }
1651 }
1652 
1653 
1654 //------------------------------is_scaled_iv---------------------------------
1655 // Return true if exp is a constant times an induction var
1656 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1657   if (exp == iv) {
1658     if (p_scale != NULL) {
1659       *p_scale = 1;
1660     }
1661     return true;
1662   }
1663   int opc = exp->Opcode();
1664   if (opc == Op_MulI) {
1665     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1666       if (p_scale != NULL) {
1667         *p_scale = exp->in(2)->get_int();
1668       }
1669       return true;
1670     }
1671     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1672       if (p_scale != NULL) {
1673         *p_scale = exp->in(1)->get_int();
1674       }
1675       return true;
1676     }
1677   } else if (opc == Op_LShiftI) {
1678     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1679       if (p_scale != NULL) {
1680         *p_scale = 1 << exp->in(2)->get_int();
1681       }
1682       return true;
1683     }
1684   }
1685   return false;
1686 }
1687 
1688 //-----------------------------is_scaled_iv_plus_offset------------------------------
1689 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1690 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1691   if (is_scaled_iv(exp, iv, p_scale)) {
1692     if (p_offset != NULL) {
1693       Node *zero = _igvn.intcon(0);
1694       set_ctrl(zero, C->root());
1695       *p_offset = zero;
1696     }
1697     return true;
1698   }
1699   int opc = exp->Opcode();
1700   if (opc == Op_AddI) {
1701     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1702       if (p_offset != NULL) {
1703         *p_offset = exp->in(2);
1704       }
1705       return true;
1706     }
1707     if (exp->in(2)->is_Con()) {
1708       Node* offset2 = NULL;
1709       if (depth < 2 &&
1710           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1711                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1712         if (p_offset != NULL) {
1713           Node *ctrl_off2 = get_ctrl(offset2);
1714           Node* offset = new AddINode(offset2, exp->in(2));
1715           register_new_node(offset, ctrl_off2);
1716           *p_offset = offset;
1717         }
1718         return true;
1719       }
1720     }
1721   } else if (opc == Op_SubI) {
1722     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1723       if (p_offset != NULL) {
1724         Node *zero = _igvn.intcon(0);
1725         set_ctrl(zero, C->root());
1726         Node *ctrl_off = get_ctrl(exp->in(2));
1727         Node* offset = new SubINode(zero, exp->in(2));
1728         register_new_node(offset, ctrl_off);
1729         *p_offset = offset;
1730       }
1731       return true;
1732     }
1733     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1734       if (p_offset != NULL) {
1735         *p_scale *= -1;
1736         *p_offset = exp->in(1);
1737       }
1738       return true;
1739     }
1740   }
1741   return false;
1742 }
1743 
1744 //------------------------------do_range_check---------------------------------
1745 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1746 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1747 #ifndef PRODUCT
1748   if (PrintOpto && VerifyLoopOptimizations) {
1749     tty->print("Range Check Elimination ");
1750     loop->dump_head();
1751   } else if (TraceLoopOpts) {
1752     tty->print("RangeCheck   ");
1753     loop->dump_head();
1754   }
1755 #endif
1756   assert(RangeCheckElimination, "");
1757   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1758   assert(cl->is_main_loop(), "");
1759 
1760   // protect against stride not being a constant
1761   if (!cl->stride_is_con())
1762     return;
1763 
1764   // Find the trip counter; we are iteration splitting based on it
1765   Node *trip_counter = cl->phi();
1766   // Find the main loop limit; we will trim it's iterations
1767   // to not ever trip end tests
1768   Node *main_limit = cl->limit();
1769 
1770   // Need to find the main-loop zero-trip guard
1771   Node *ctrl  = cl->in(LoopNode::EntryControl);
1772   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
1773   Node *iffm = ctrl->in(0);
1774   assert(iffm->Opcode() == Op_If, "");
1775   Node *bolzm = iffm->in(1);
1776   assert(bolzm->Opcode() == Op_Bool, "");
1777   Node *cmpzm = bolzm->in(1);
1778   assert(cmpzm->is_Cmp(), "");
1779   Node *opqzm = cmpzm->in(2);
1780   // Can not optimize a loop if zero-trip Opaque1 node is optimized
1781   // away and then another round of loop opts attempted.
1782   if (opqzm->Opcode() != Op_Opaque1)
1783     return;
1784   assert(opqzm->in(1) == main_limit, "do not understand situation");
1785 
1786   // Find the pre-loop limit; we will expand it's iterations to
1787   // not ever trip low tests.
1788   Node *p_f = iffm->in(0);
1789   assert(p_f->Opcode() == Op_IfFalse, "");
1790   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1791   assert(pre_end->loopnode()->is_pre_loop(), "");
1792   Node *pre_opaq1 = pre_end->limit();
1793   // Occasionally it's possible for a pre-loop Opaque1 node to be
1794   // optimized away and then another round of loop opts attempted.
1795   // We can not optimize this particular loop in that case.
1796   if (pre_opaq1->Opcode() != Op_Opaque1)
1797     return;
1798   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1799   Node *pre_limit = pre_opaq->in(1);
1800 
1801   // Where do we put new limit calculations
1802   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1803 
1804   // Ensure the original loop limit is available from the
1805   // pre-loop Opaque1 node.
1806   Node *orig_limit = pre_opaq->original_loop_limit();
1807   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
1808     return;
1809 
1810   // Must know if its a count-up or count-down loop
1811 
1812   int stride_con = cl->stride_con();
1813   Node *zero = _igvn.intcon(0);
1814   Node *one  = _igvn.intcon(1);
1815   // Use symmetrical int range [-max_jint,max_jint]
1816   Node *mini = _igvn.intcon(-max_jint);
1817   set_ctrl(zero, C->root());
1818   set_ctrl(one,  C->root());
1819   set_ctrl(mini, C->root());
1820 
1821   // Range checks that do not dominate the loop backedge (ie.
1822   // conditionally executed) can lengthen the pre loop limit beyond
1823   // the original loop limit. To prevent this, the pre limit is
1824   // (for stride > 0) MINed with the original loop limit (MAXed
1825   // stride < 0) when some range_check (rc) is conditionally
1826   // executed.
1827   bool conditional_rc = false;
1828 
1829   // Check loop body for tests of trip-counter plus loop-invariant vs
1830   // loop-invariant.
1831   for( uint i = 0; i < loop->_body.size(); i++ ) {
1832     Node *iff = loop->_body[i];
1833     if( iff->Opcode() == Op_If ) { // Test?
1834 
1835       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
1836       // we need loop unswitching instead of iteration splitting.
1837       Node *exit = loop->is_loop_exit(iff);
1838       if( !exit ) continue;
1839       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
1840 
1841       // Get boolean condition to test
1842       Node *i1 = iff->in(1);
1843       if( !i1->is_Bool() ) continue;
1844       BoolNode *bol = i1->as_Bool();
1845       BoolTest b_test = bol->_test;
1846       // Flip sense of test if exit condition is flipped
1847       if( flip )
1848         b_test = b_test.negate();
1849 
1850       // Get compare
1851       Node *cmp = bol->in(1);
1852 
1853       // Look for trip_counter + offset vs limit
1854       Node *rc_exp = cmp->in(1);
1855       Node *limit  = cmp->in(2);
1856       jint scale_con= 1;        // Assume trip counter not scaled
1857 
1858       Node *limit_c = get_ctrl(limit);
1859       if( loop->is_member(get_loop(limit_c) ) ) {
1860         // Compare might have operands swapped; commute them
1861         b_test = b_test.commute();
1862         rc_exp = cmp->in(2);
1863         limit  = cmp->in(1);
1864         limit_c = get_ctrl(limit);
1865         if( loop->is_member(get_loop(limit_c) ) )
1866           continue;             // Both inputs are loop varying; cannot RCE
1867       }
1868       // Here we know 'limit' is loop invariant
1869 
1870       // 'limit' maybe pinned below the zero trip test (probably from a
1871       // previous round of rce), in which case, it can't be used in the
1872       // zero trip test expression which must occur before the zero test's if.
1873       if( limit_c == ctrl ) {
1874         continue;  // Don't rce this check but continue looking for other candidates.
1875       }
1876 
1877       // Check for scaled induction variable plus an offset
1878       Node *offset = NULL;
1879 
1880       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
1881         continue;
1882       }
1883 
1884       Node *offset_c = get_ctrl(offset);
1885       if( loop->is_member( get_loop(offset_c) ) )
1886         continue;               // Offset is not really loop invariant
1887       // Here we know 'offset' is loop invariant.
1888 
1889       // As above for the 'limit', the 'offset' maybe pinned below the
1890       // zero trip test.
1891       if( offset_c == ctrl ) {
1892         continue; // Don't rce this check but continue looking for other candidates.
1893       }
1894 #ifdef ASSERT
1895       if (TraceRangeLimitCheck) {
1896         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
1897         bol->dump(2);
1898       }
1899 #endif
1900       // At this point we have the expression as:
1901       //   scale_con * trip_counter + offset :: limit
1902       // where scale_con, offset and limit are loop invariant.  Trip_counter
1903       // monotonically increases by stride_con, a constant.  Both (or either)
1904       // stride_con and scale_con can be negative which will flip about the
1905       // sense of the test.
1906 
1907       // Adjust pre and main loop limits to guard the correct iteration set
1908       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
1909         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
1910           // The underflow and overflow limits: 0 <= scale*I+offset < limit
1911           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
1912           if (!conditional_rc) {
1913             // (0-offset)/scale could be outside of loop iterations range.
1914             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1915           }
1916         } else {
1917 #ifndef PRODUCT
1918           if( PrintOpto )
1919             tty->print_cr("missed RCE opportunity");
1920 #endif
1921           continue;             // In release mode, ignore it
1922         }
1923       } else {                  // Otherwise work on normal compares
1924         switch( b_test._test ) {
1925         case BoolTest::gt:
1926           // Fall into GE case
1927         case BoolTest::ge:
1928           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
1929           scale_con = -scale_con;
1930           offset = new SubINode( zero, offset );
1931           register_new_node( offset, pre_ctrl );
1932           limit  = new SubINode( zero, limit  );
1933           register_new_node( limit, pre_ctrl );
1934           // Fall into LE case
1935         case BoolTest::le:
1936           if (b_test._test != BoolTest::gt) {
1937             // Convert X <= Y to X < Y+1
1938             limit = new AddINode( limit, one );
1939             register_new_node( limit, pre_ctrl );
1940           }
1941           // Fall into LT case
1942         case BoolTest::lt:
1943           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
1944           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
1945           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
1946           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
1947           if (!conditional_rc) {
1948             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
1949             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
1950             // still be outside of loop range.
1951             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1952           }
1953           break;
1954         default:
1955 #ifndef PRODUCT
1956           if( PrintOpto )
1957             tty->print_cr("missed RCE opportunity");
1958 #endif
1959           continue;             // Unhandled case
1960         }
1961       }
1962 
1963       // Kill the eliminated test
1964       C->set_major_progress();
1965       Node *kill_con = _igvn.intcon( 1-flip );
1966       set_ctrl(kill_con, C->root());
1967       _igvn.replace_input_of(iff, 1, kill_con);
1968       // Find surviving projection
1969       assert(iff->is_If(), "");
1970       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1971       // Find loads off the surviving projection; remove their control edge
1972       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1973         Node* cd = dp->fast_out(i); // Control-dependent node
1974         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
1975           // Allow the load to float around in the loop, or before it
1976           // but NOT before the pre-loop.
1977           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
1978           --i;
1979           --imax;
1980         }
1981       }
1982 
1983     } // End of is IF
1984 
1985   }
1986 
1987   // Update loop limits
1988   if (conditional_rc) {
1989     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
1990                                  : (Node*)new MaxINode(pre_limit, orig_limit);
1991     register_new_node(pre_limit, pre_ctrl);
1992   }
1993   _igvn.replace_input_of(pre_opaq, 1, pre_limit);
1994 
1995   // Note:: we are making the main loop limit no longer precise;
1996   // need to round up based on stride.
1997   cl->set_nonexact_trip_count();
1998   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
1999     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
2000     // Hopefully, compiler will optimize for powers of 2.
2001     Node *ctrl = get_ctrl(main_limit);
2002     Node *stride = cl->stride();
2003     Node *init = cl->init_trip();
2004     Node *span = new SubINode(main_limit,init);
2005     register_new_node(span,ctrl);
2006     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2007     Node *add = new AddINode(span,rndup);
2008     register_new_node(add,ctrl);
2009     Node *div = new DivINode(0,add,stride);
2010     register_new_node(div,ctrl);
2011     Node *mul = new MulINode(div,stride);
2012     register_new_node(mul,ctrl);
2013     Node *newlim = new AddINode(mul,init);
2014     register_new_node(newlim,ctrl);
2015     main_limit = newlim;
2016   }
2017 
2018   Node *main_cle = cl->loopexit();
2019   Node *main_bol = main_cle->in(1);
2020   // Hacking loop bounds; need private copies of exit test
2021   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2022     main_bol = main_bol->clone();// Clone a private BoolNode
2023     register_new_node( main_bol, main_cle->in(0) );
2024     _igvn.replace_input_of(main_cle, 1, main_bol);
2025   }
2026   Node *main_cmp = main_bol->in(1);
2027   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2028     _igvn.hash_delete(main_bol);
2029     main_cmp = main_cmp->clone();// Clone a private CmpNode
2030     register_new_node( main_cmp, main_cle->in(0) );
2031     main_bol->set_req(1,main_cmp);
2032   }
2033   // Hack the now-private loop bounds
2034   _igvn.replace_input_of(main_cmp, 2, main_limit);
2035   // The OpaqueNode is unshared by design
2036   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2037   _igvn.replace_input_of(opqzm, 1, main_limit);
2038 }
2039 
2040 //------------------------------DCE_loop_body----------------------------------
2041 // Remove simplistic dead code from loop body
2042 void IdealLoopTree::DCE_loop_body() {
2043   for( uint i = 0; i < _body.size(); i++ )
2044     if( _body.at(i)->outcnt() == 0 )
2045       _body.map( i--, _body.pop() );
2046 }
2047 
2048 
2049 //------------------------------adjust_loop_exit_prob--------------------------
2050 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2051 // Replace with a 1-in-10 exit guess.
2052 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2053   Node *test = tail();
2054   while( test != _head ) {
2055     uint top = test->Opcode();
2056     if( top == Op_IfTrue || top == Op_IfFalse ) {
2057       int test_con = ((ProjNode*)test)->_con;
2058       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2059       IfNode *iff = test->in(0)->as_If();
2060       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2061         Node *bol = iff->in(1);
2062         if( bol && bol->req() > 1 && bol->in(1) &&
2063             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2064              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2065              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2066              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2067              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2068              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2069              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2070           return;               // Allocation loops RARELY take backedge
2071         // Find the OTHER exit path from the IF
2072         Node* ex = iff->proj_out(1-test_con);
2073         float p = iff->_prob;
2074         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2075           if( top == Op_IfTrue ) {
2076             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2077               iff->_prob = PROB_STATIC_FREQUENT;
2078             }
2079           } else {
2080             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2081               iff->_prob = PROB_STATIC_INFREQUENT;
2082             }
2083           }
2084         }
2085       }
2086     }
2087     test = phase->idom(test);
2088   }
2089 }
2090 
2091 
2092 //------------------------------policy_do_remove_empty_loop--------------------
2093 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2094 // The 'DO' part is to replace the trip counter with the value it will
2095 // have on the last iteration.  This will break the loop.
2096 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2097   // Minimum size must be empty loop
2098   if (_body.size() > EMPTY_LOOP_SIZE)
2099     return false;
2100 
2101   if (!_head->is_CountedLoop())
2102     return false;     // Dead loop
2103   CountedLoopNode *cl = _head->as_CountedLoop();
2104   if (!cl->is_valid_counted_loop())
2105     return false; // Malformed loop
2106   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2107     return false;             // Infinite loop
2108 
2109 #ifdef ASSERT
2110   // Ensure only one phi which is the iv.
2111   Node* iv = NULL;
2112   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2113     Node* n = cl->fast_out(i);
2114     if (n->Opcode() == Op_Phi) {
2115       assert(iv == NULL, "Too many phis" );
2116       iv = n;
2117     }
2118   }
2119   assert(iv == cl->phi(), "Wrong phi" );
2120 #endif
2121 
2122   // main and post loops have explicitly created zero trip guard
2123   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2124   if (needs_guard) {
2125     // Skip guard if values not overlap.
2126     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2127     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2128     int  stride_con = cl->stride_con();
2129     if (stride_con > 0) {
2130       needs_guard = (init_t->_hi >= limit_t->_lo);
2131     } else {
2132       needs_guard = (init_t->_lo <= limit_t->_hi);
2133     }
2134   }
2135   if (needs_guard) {
2136     // Check for an obvious zero trip guard.
2137     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2138     if (inctrl->Opcode() == Op_IfTrue) {
2139       // The test should look like just the backedge of a CountedLoop
2140       Node* iff = inctrl->in(0);
2141       if (iff->is_If()) {
2142         Node* bol = iff->in(1);
2143         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
2144           Node* cmp = bol->in(1);
2145           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
2146             needs_guard = false;
2147           }
2148         }
2149       }
2150     }
2151   }
2152 
2153 #ifndef PRODUCT
2154   if (PrintOpto) {
2155     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2156     this->dump_head();
2157   } else if (TraceLoopOpts) {
2158     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2159     this->dump_head();
2160   }
2161 #endif
2162 
2163   if (needs_guard) {
2164     // Peel the loop to ensure there's a zero trip guard
2165     Node_List old_new;
2166     phase->do_peeling(this, old_new);
2167   }
2168 
2169   // Replace the phi at loop head with the final value of the last
2170   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2171   // taken) and all loop-invariant uses of the exit values will be correct.
2172   Node *phi = cl->phi();
2173   Node *exact_limit = phase->exact_limit(this);
2174   if (exact_limit != cl->limit()) {
2175     // We also need to replace the original limit to collapse loop exit.
2176     Node* cmp = cl->loopexit()->cmp_node();
2177     assert(cl->limit() == cmp->in(2), "sanity");
2178     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2179     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2180   }
2181   // Note: the final value after increment should not overflow since
2182   // counted loop has limit check predicate.
2183   Node *final = new SubINode( exact_limit, cl->stride() );
2184   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2185   phase->_igvn.replace_node(phi,final);
2186   phase->C->set_major_progress();
2187   return true;
2188 }
2189 
2190 //------------------------------policy_do_one_iteration_loop-------------------
2191 // Convert one iteration loop into normal code.
2192 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2193   if (!_head->as_Loop()->is_valid_counted_loop())
2194     return false; // Only for counted loop
2195 
2196   CountedLoopNode *cl = _head->as_CountedLoop();
2197   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2198     return false;
2199   }
2200 
2201 #ifndef PRODUCT
2202   if(TraceLoopOpts) {
2203     tty->print("OneIteration ");
2204     this->dump_head();
2205   }
2206 #endif
2207 
2208   Node *init_n = cl->init_trip();
2209 #ifdef ASSERT
2210   // Loop boundaries should be constant since trip count is exact.
2211   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2212 #endif
2213   // Replace the phi at loop head with the value of the init_trip.
2214   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2215   // and all loop-invariant uses of the exit values will be correct.
2216   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2217   phase->C->set_major_progress();
2218   return true;
2219 }
2220 
2221 //=============================================================================
2222 //------------------------------iteration_split_impl---------------------------
2223 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2224   // Compute exact loop trip count if possible.
2225   compute_exact_trip_count(phase);
2226 
2227   // Convert one iteration loop into normal code.
2228   if (policy_do_one_iteration_loop(phase))
2229     return true;
2230 
2231   // Check and remove empty loops (spam micro-benchmarks)
2232   if (policy_do_remove_empty_loop(phase))
2233     return true;  // Here we removed an empty loop
2234 
2235   bool should_peel = policy_peeling(phase); // Should we peel?
2236 
2237   bool should_unswitch = policy_unswitching(phase);
2238 
2239   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2240   // This removes loop-invariant tests (usually null checks).
2241   if (!_head->is_CountedLoop()) { // Non-counted loop
2242     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2243       // Partial peel succeeded so terminate this round of loop opts
2244       return false;
2245     }
2246     if (should_peel) {            // Should we peel?
2247 #ifndef PRODUCT
2248       if (PrintOpto) tty->print_cr("should_peel");
2249 #endif
2250       phase->do_peeling(this,old_new);
2251     } else if (should_unswitch) {
2252       phase->do_unswitching(this, old_new);
2253     }
2254     return true;
2255   }
2256   CountedLoopNode *cl = _head->as_CountedLoop();
2257 
2258   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2259 
2260   // Do nothing special to pre- and post- loops
2261   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2262 
2263   // Compute loop trip count from profile data
2264   compute_profile_trip_cnt(phase);
2265 
2266   // Before attempting fancy unrolling, RCE or alignment, see if we want
2267   // to completely unroll this loop or do loop unswitching.
2268   if (cl->is_normal_loop()) {
2269     if (should_unswitch) {
2270       phase->do_unswitching(this, old_new);
2271       return true;
2272     }
2273     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2274     if (should_maximally_unroll) {
2275       // Here we did some unrolling and peeling.  Eventually we will
2276       // completely unroll this loop and it will no longer be a loop.
2277       phase->do_maximally_unroll(this,old_new);
2278       return true;
2279     }
2280   }
2281 
2282   // Skip next optimizations if running low on nodes. Note that
2283   // policy_unswitching and policy_maximally_unroll have this check.
2284   uint nodes_left = MaxNodeLimit - (uint) phase->C->live_nodes();
2285   if ((2 * _body.size()) > nodes_left) {
2286     return true;
2287   }
2288 
2289   // Counted loops may be peeled, may need some iterations run up
2290   // front for RCE, and may want to align loop refs to a cache
2291   // line.  Thus we clone a full loop up front whose trip count is
2292   // at least 1 (if peeling), but may be several more.
2293 
2294   // The main loop will start cache-line aligned with at least 1
2295   // iteration of the unrolled body (zero-trip test required) and
2296   // will have some range checks removed.
2297 
2298   // A post-loop will finish any odd iterations (leftover after
2299   // unrolling), plus any needed for RCE purposes.
2300 
2301   bool should_unroll = policy_unroll(phase);
2302 
2303   bool should_rce = policy_range_check(phase);
2304 
2305   bool should_align = policy_align(phase);
2306 
2307   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2308   // need a pre-loop.  We may still need to peel an initial iteration but
2309   // we will not be needing an unknown number of pre-iterations.
2310   //
2311   // Basically, if may_rce_align reports FALSE first time through,
2312   // we will not be able to later do RCE or Aligning on this loop.
2313   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2314 
2315   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2316   // we switch to the pre-/main-/post-loop model.  This model also covers
2317   // peeling.
2318   if (should_rce || should_align || should_unroll) {
2319     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2320       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2321 
2322     // Adjust the pre- and main-loop limits to let the pre and post loops run
2323     // with full checks, but the main-loop with no checks.  Remove said
2324     // checks from the main body.
2325     if (should_rce)
2326       phase->do_range_check(this,old_new);
2327 
2328     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2329     // twice as many iterations as before) and the main body limit (only do
2330     // an even number of trips).  If we are peeling, we might enable some RCE
2331     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2332     // peeling.
2333     if (should_unroll && !should_peel)
2334       phase->do_unroll(this,old_new, true);
2335 
2336     // Adjust the pre-loop limits to align the main body
2337     // iterations.
2338     if (should_align)
2339       Unimplemented();
2340 
2341   } else {                      // Else we have an unchanged counted loop
2342     if (should_peel)           // Might want to peel but do nothing else
2343       phase->do_peeling(this,old_new);
2344   }
2345   return true;
2346 }
2347 
2348 
2349 //=============================================================================
2350 //------------------------------iteration_split--------------------------------
2351 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2352   // Recursively iteration split nested loops
2353   if (_child && !_child->iteration_split(phase, old_new))
2354     return false;
2355 
2356   // Clean out prior deadwood
2357   DCE_loop_body();
2358 
2359 
2360   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2361   // Replace with a 1-in-10 exit guess.
2362   if (_parent /*not the root loop*/ &&
2363       !_irreducible &&
2364       // Also ignore the occasional dead backedge
2365       !tail()->is_top()) {
2366     adjust_loop_exit_prob(phase);
2367   }
2368 
2369   // Gate unrolling, RCE and peeling efforts.
2370   if (!_child &&                // If not an inner loop, do not split
2371       !_irreducible &&
2372       _allow_optimizations &&
2373       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2374     if (!_has_call) {
2375         if (!iteration_split_impl(phase, old_new)) {
2376           return false;
2377         }
2378     } else if (policy_unswitching(phase)) {
2379       phase->do_unswitching(this, old_new);
2380     }
2381   }
2382 
2383   // Minor offset re-organization to remove loop-fallout uses of
2384   // trip counter when there was no major reshaping.
2385   phase->reorg_offsets(this);
2386 
2387   if (_next && !_next->iteration_split(phase, old_new))
2388     return false;
2389   return true;
2390 }
2391 
2392 
2393 //=============================================================================
2394 // Process all the loops in the loop tree and replace any fill
2395 // patterns with an intrisc version.
2396 bool PhaseIdealLoop::do_intrinsify_fill() {
2397   bool changed = false;
2398   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2399     IdealLoopTree* lpt = iter.current();
2400     changed |= intrinsify_fill(lpt);
2401   }
2402   return changed;
2403 }
2404 
2405 
2406 // Examine an inner loop looking for a a single store of an invariant
2407 // value in a unit stride loop,
2408 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2409                                      Node*& shift, Node*& con) {
2410   const char* msg = NULL;
2411   Node* msg_node = NULL;
2412 
2413   store_value = NULL;
2414   con = NULL;
2415   shift = NULL;
2416 
2417   // Process the loop looking for stores.  If there are multiple
2418   // stores or extra control flow give at this point.
2419   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2420   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2421     Node* n = lpt->_body.at(i);
2422     if (n->outcnt() == 0) continue; // Ignore dead
2423     if (n->is_Store()) {
2424       if (store != NULL) {
2425         msg = "multiple stores";
2426         break;
2427       }
2428       int opc = n->Opcode();
2429       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
2430         msg = "oop fills not handled";
2431         break;
2432       }
2433       Node* value = n->in(MemNode::ValueIn);
2434       if (!lpt->is_invariant(value)) {
2435         msg  = "variant store value";
2436       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2437         msg = "not array address";
2438       }
2439       store = n;
2440       store_value = value;
2441     } else if (n->is_If() && n != head->loopexit()) {
2442       msg = "extra control flow";
2443       msg_node = n;
2444     }
2445   }
2446 
2447   if (store == NULL) {
2448     // No store in loop
2449     return false;
2450   }
2451 
2452   if (msg == NULL && head->stride_con() != 1) {
2453     // could handle negative strides too
2454     if (head->stride_con() < 0) {
2455       msg = "negative stride";
2456     } else {
2457       msg = "non-unit stride";
2458     }
2459   }
2460 
2461   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2462     msg = "can't handle store address";
2463     msg_node = store->in(MemNode::Address);
2464   }
2465 
2466   if (msg == NULL &&
2467       (!store->in(MemNode::Memory)->is_Phi() ||
2468        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2469     msg = "store memory isn't proper phi";
2470     msg_node = store->in(MemNode::Memory);
2471   }
2472 
2473   // Make sure there is an appropriate fill routine
2474   BasicType t = store->as_Mem()->memory_type();
2475   const char* fill_name;
2476   if (msg == NULL &&
2477       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2478     msg = "unsupported store";
2479     msg_node = store;
2480   }
2481 
2482   if (msg != NULL) {
2483 #ifndef PRODUCT
2484     if (TraceOptimizeFill) {
2485       tty->print_cr("not fill intrinsic candidate: %s", msg);
2486       if (msg_node != NULL) msg_node->dump();
2487     }
2488 #endif
2489     return false;
2490   }
2491 
2492   // Make sure the address expression can be handled.  It should be
2493   // head->phi * elsize + con.  head->phi might have a ConvI2L.
2494   Node* elements[4];
2495   Node* conv = NULL;
2496   bool found_index = false;
2497   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2498   for (int e = 0; e < count; e++) {
2499     Node* n = elements[e];
2500     if (n->is_Con() && con == NULL) {
2501       con = n;
2502     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2503       Node* value = n->in(1);
2504 #ifdef _LP64
2505       if (value->Opcode() == Op_ConvI2L) {
2506         conv = value;
2507         value = value->in(1);
2508       }
2509 #endif
2510       if (value != head->phi()) {
2511         msg = "unhandled shift in address";
2512       } else {
2513         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
2514           msg = "scale doesn't match";
2515         } else {
2516           found_index = true;
2517           shift = n;
2518         }
2519       }
2520     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2521       if (n->in(1) == head->phi()) {
2522         found_index = true;
2523         conv = n;
2524       } else {
2525         msg = "unhandled input to ConvI2L";
2526       }
2527     } else if (n == head->phi()) {
2528       // no shift, check below for allowed cases
2529       found_index = true;
2530     } else {
2531       msg = "unhandled node in address";
2532       msg_node = n;
2533     }
2534   }
2535 
2536   if (count == -1) {
2537     msg = "malformed address expression";
2538     msg_node = store;
2539   }
2540 
2541   if (!found_index) {
2542     msg = "missing use of index";
2543   }
2544 
2545   // byte sized items won't have a shift
2546   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2547     msg = "can't find shift";
2548     msg_node = store;
2549   }
2550 
2551   if (msg != NULL) {
2552 #ifndef PRODUCT
2553     if (TraceOptimizeFill) {
2554       tty->print_cr("not fill intrinsic: %s", msg);
2555       if (msg_node != NULL) msg_node->dump();
2556     }
2557 #endif
2558     return false;
2559   }
2560 
2561   // No make sure all the other nodes in the loop can be handled
2562   VectorSet ok(Thread::current()->resource_area());
2563 
2564   // store related values are ok
2565   ok.set(store->_idx);
2566   ok.set(store->in(MemNode::Memory)->_idx);
2567 
2568   CountedLoopEndNode* loop_exit = head->loopexit();
2569   guarantee(loop_exit != NULL, "no loop exit node");
2570 
2571   // Loop structure is ok
2572   ok.set(head->_idx);
2573   ok.set(loop_exit->_idx);
2574   ok.set(head->phi()->_idx);
2575   ok.set(head->incr()->_idx);
2576   ok.set(loop_exit->cmp_node()->_idx);
2577   ok.set(loop_exit->in(1)->_idx);
2578 
2579   // Address elements are ok
2580   if (con)   ok.set(con->_idx);
2581   if (shift) ok.set(shift->_idx);
2582   if (conv)  ok.set(conv->_idx);
2583 
2584   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2585     Node* n = lpt->_body.at(i);
2586     if (n->outcnt() == 0) continue; // Ignore dead
2587     if (ok.test(n->_idx)) continue;
2588     // Backedge projection is ok
2589     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
2590     if (!n->is_AddP()) {
2591       msg = "unhandled node";
2592       msg_node = n;
2593       break;
2594     }
2595   }
2596 
2597   // Make sure no unexpected values are used outside the loop
2598   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2599     Node* n = lpt->_body.at(i);
2600     // These values can be replaced with other nodes if they are used
2601     // outside the loop.
2602     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2603     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2604       Node* use = iter.get();
2605       if (!lpt->_body.contains(use)) {
2606         msg = "node is used outside loop";
2607         // lpt->_body.dump();
2608         msg_node = n;
2609         break;
2610       }
2611     }
2612   }
2613 
2614 #ifdef ASSERT
2615   if (TraceOptimizeFill) {
2616     if (msg != NULL) {
2617       tty->print_cr("no fill intrinsic: %s", msg);
2618       if (msg_node != NULL) msg_node->dump();
2619     } else {
2620       tty->print_cr("fill intrinsic for:");
2621     }
2622     store->dump();
2623     if (Verbose) {
2624       lpt->_body.dump();
2625     }
2626   }
2627 #endif
2628 
2629   return msg == NULL;
2630 }
2631 
2632 
2633 
2634 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2635   // Only for counted inner loops
2636   if (!lpt->is_counted() || !lpt->is_inner()) {
2637     return false;
2638   }
2639 
2640   // Must have constant stride
2641   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2642   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
2643     return false;
2644   }
2645 
2646   // Check that the body only contains a store of a loop invariant
2647   // value that is indexed by the loop phi.
2648   Node* store = NULL;
2649   Node* store_value = NULL;
2650   Node* shift = NULL;
2651   Node* offset = NULL;
2652   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2653     return false;
2654   }
2655 
2656 #ifndef PRODUCT
2657   if (TraceLoopOpts) {
2658     tty->print("ArrayFill    ");
2659     lpt->dump_head();
2660   }
2661 #endif
2662 
2663   // Now replace the whole loop body by a call to a fill routine that
2664   // covers the same region as the loop.
2665   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2666 
2667   // Build an expression for the beginning of the copy region
2668   Node* index = head->init_trip();
2669 #ifdef _LP64
2670   index = new ConvI2LNode(index);
2671   _igvn.register_new_node_with_optimizer(index);
2672 #endif
2673   if (shift != NULL) {
2674     // byte arrays don't require a shift but others do.
2675     index = new LShiftXNode(index, shift->in(2));
2676     _igvn.register_new_node_with_optimizer(index);
2677   }
2678   index = new AddPNode(base, base, index);
2679   _igvn.register_new_node_with_optimizer(index);
2680   Node* from = new AddPNode(base, index, offset);
2681   _igvn.register_new_node_with_optimizer(from);
2682   // Compute the number of elements to copy
2683   Node* len = new SubINode(head->limit(), head->init_trip());
2684   _igvn.register_new_node_with_optimizer(len);
2685 
2686   BasicType t = store->as_Mem()->memory_type();
2687   bool aligned = false;
2688   if (offset != NULL && head->init_trip()->is_Con()) {
2689     int element_size = type2aelembytes(t);
2690     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2691   }
2692 
2693   // Build a call to the fill routine
2694   const char* fill_name;
2695   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2696   assert(fill != NULL, "what?");
2697 
2698   // Convert float/double to int/long for fill routines
2699   if (t == T_FLOAT) {
2700     store_value = new MoveF2INode(store_value);
2701     _igvn.register_new_node_with_optimizer(store_value);
2702   } else if (t == T_DOUBLE) {
2703     store_value = new MoveD2LNode(store_value);
2704     _igvn.register_new_node_with_optimizer(store_value);
2705   }
2706 
2707   if (CCallingConventionRequiresIntsAsLongs &&
2708       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
2709       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
2710     store_value = new ConvI2LNode(store_value);
2711     _igvn.register_new_node_with_optimizer(store_value);
2712   }
2713 
2714   Node* mem_phi = store->in(MemNode::Memory);
2715   Node* result_ctrl;
2716   Node* result_mem;
2717   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2718   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
2719                                             fill_name, TypeAryPtr::get_array_body_type(t));
2720   uint cnt = 0;
2721   call->init_req(TypeFunc::Parms + cnt++, from);
2722   call->init_req(TypeFunc::Parms + cnt++, store_value);
2723   if (CCallingConventionRequiresIntsAsLongs) {
2724     call->init_req(TypeFunc::Parms + cnt++, C->top());
2725   }
2726 #ifdef _LP64
2727   len = new ConvI2LNode(len);
2728   _igvn.register_new_node_with_optimizer(len);
2729 #endif
2730   call->init_req(TypeFunc::Parms + cnt++, len);
2731 #ifdef _LP64
2732   call->init_req(TypeFunc::Parms + cnt++, C->top());
2733 #endif
2734   call->init_req(TypeFunc::Control,   head->init_control());
2735   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
2736   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
2737   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
2738   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
2739   _igvn.register_new_node_with_optimizer(call);
2740   result_ctrl = new ProjNode(call,TypeFunc::Control);
2741   _igvn.register_new_node_with_optimizer(result_ctrl);
2742   result_mem = new ProjNode(call,TypeFunc::Memory);
2743   _igvn.register_new_node_with_optimizer(result_mem);
2744 
2745 /* Disable following optimization until proper fix (add missing checks).
2746 
2747   // If this fill is tightly coupled to an allocation and overwrites
2748   // the whole body, allow it to take over the zeroing.
2749   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2750   if (alloc != NULL && alloc->is_AllocateArray()) {
2751     Node* length = alloc->as_AllocateArray()->Ideal_length();
2752     if (head->limit() == length &&
2753         head->init_trip() == _igvn.intcon(0)) {
2754       if (TraceOptimizeFill) {
2755         tty->print_cr("Eliminated zeroing in allocation");
2756       }
2757       alloc->maybe_set_complete(&_igvn);
2758     } else {
2759 #ifdef ASSERT
2760       if (TraceOptimizeFill) {
2761         tty->print_cr("filling array but bounds don't match");
2762         alloc->dump();
2763         head->init_trip()->dump();
2764         head->limit()->dump();
2765         length->dump();
2766       }
2767 #endif
2768     }
2769   }
2770 */
2771 
2772   // Redirect the old control and memory edges that are outside the loop.
2773   Node* exit = head->loopexit()->proj_out(0);
2774   // Sometimes the memory phi of the head is used as the outgoing
2775   // state of the loop.  It's safe in this case to replace it with the
2776   // result_mem.
2777   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
2778   _igvn.replace_node(exit, result_ctrl);
2779   _igvn.replace_node(store, result_mem);
2780   // Any uses the increment outside of the loop become the loop limit.
2781   _igvn.replace_node(head->incr(), head->limit());
2782 
2783   // Disconnect the head from the loop.
2784   for (uint i = 0; i < lpt->_body.size(); i++) {
2785     Node* n = lpt->_body.at(i);
2786     _igvn.replace_node(n, C->top());
2787   }
2788 
2789   return true;
2790 }