1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_SUBNODE_HPP
  26 #define SHARE_VM_OPTO_SUBNODE_HPP
  27 
  28 #include "opto/node.hpp"
  29 #include "opto/opcodes.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 //------------------------------SUBNode----------------------------------------
  35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
  36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
  37 // -float, and -double are all inherited from this class.  The compare
  38 // functions behave like subtract functions, except that all negative answers
  39 // are compressed into -1, and all positive answers compressed to 1.
  40 class SubNode : public Node {
  41 public:
  42   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
  43     init_class_id(Class_Sub);
  44   }
  45 
  46   // Handle algebraic identities here.  If we have an identity, return the Node
  47   // we are equivalent to.  We look for "add of zero" as an identity.
  48   virtual Node *Identity( PhaseTransform *phase );
  49 
  50   // Compute a new Type for this node.  Basically we just do the pre-check,
  51   // then call the virtual add() to set the type.
  52   virtual const Type *Value( PhaseTransform *phase ) const;
  53   const Type* Value_common( PhaseTransform *phase ) const;
  54 
  55   // Supplied function returns the subtractend of the inputs.
  56   // This also type-checks the inputs for sanity.  Guaranteed never to
  57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
  58   virtual const Type *sub( const Type *, const Type * ) const = 0;
  59 
  60   // Supplied function to return the additive identity type.
  61   // This is returned whenever the subtracts inputs are the same.
  62   virtual const Type *add_id() const = 0;
  63 
  64 };
  65 
  66 
  67 // NOTE: SubINode should be taken away and replaced by add and negate
  68 //------------------------------SubINode---------------------------------------
  69 // Subtract 2 integers
  70 class SubINode : public SubNode {
  71 public:
  72   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  73   virtual int Opcode() const;
  74   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  75   virtual const Type *sub( const Type *, const Type * ) const;
  76   const Type *add_id() const { return TypeInt::ZERO; }
  77   const Type *bottom_type() const { return TypeInt::INT; }
  78   virtual uint ideal_reg() const { return Op_RegI; }
  79 };
  80 
  81 //------------------------------SubLNode---------------------------------------
  82 // Subtract 2 integers
  83 class SubLNode : public SubNode {
  84 public:
  85   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  86   virtual int Opcode() const;
  87   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  88   virtual const Type *sub( const Type *, const Type * ) const;
  89   const Type *add_id() const { return TypeLong::ZERO; }
  90   const Type *bottom_type() const { return TypeLong::LONG; }
  91   virtual uint ideal_reg() const { return Op_RegL; }
  92 };
  93 
  94 // NOTE: SubFPNode should be taken away and replaced by add and negate
  95 //------------------------------SubFPNode--------------------------------------
  96 // Subtract 2 floats or doubles
  97 class SubFPNode : public SubNode {
  98 protected:
  99   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 100 public:
 101   const Type *Value( PhaseTransform *phase ) const;
 102 };
 103 
 104 // NOTE: SubFNode should be taken away and replaced by add and negate
 105 //------------------------------SubFNode---------------------------------------
 106 // Subtract 2 doubles
 107 class SubFNode : public SubFPNode {
 108 public:
 109   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 110   virtual int Opcode() const;
 111   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 112   virtual const Type *sub( const Type *, const Type * ) const;
 113   const Type   *add_id() const { return TypeF::ZERO; }
 114   const Type   *bottom_type() const { return Type::FLOAT; }
 115   virtual uint  ideal_reg() const { return Op_RegF; }
 116 };
 117 
 118 // NOTE: SubDNode should be taken away and replaced by add and negate
 119 //------------------------------SubDNode---------------------------------------
 120 // Subtract 2 doubles
 121 class SubDNode : public SubFPNode {
 122 public:
 123   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 124   virtual int Opcode() const;
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type *sub( const Type *, const Type * ) const;
 127   const Type   *add_id() const { return TypeD::ZERO; }
 128   const Type   *bottom_type() const { return Type::DOUBLE; }
 129   virtual uint  ideal_reg() const { return Op_RegD; }
 130 };
 131 
 132 //------------------------------CmpNode---------------------------------------
 133 // Compare 2 values, returning condition codes (-1, 0 or 1).
 134 class CmpNode : public SubNode {
 135 public:
 136   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
 137     init_class_id(Class_Cmp);
 138   }
 139   virtual Node *Identity( PhaseTransform *phase );
 140   const Type *add_id() const { return TypeInt::ZERO; }
 141   const Type *bottom_type() const { return TypeInt::CC; }
 142   virtual uint ideal_reg() const { return Op_RegFlags; }
 143 };
 144 
 145 //------------------------------CmpINode---------------------------------------
 146 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
 147 class CmpINode : public CmpNode {
 148 public:
 149   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 150   virtual int Opcode() const;
 151   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 152   virtual const Type *sub( const Type *, const Type * ) const;
 153 };
 154 
 155 //------------------------------CmpUNode---------------------------------------
 156 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
 157 class CmpUNode : public CmpNode {
 158 public:
 159   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 160   virtual int Opcode() const;
 161   virtual const Type *sub( const Type *, const Type * ) const;
 162   const Type *Value( PhaseTransform *phase ) const;
 163   bool is_index_range_check() const;
 164 };
 165 
 166 //------------------------------CmpPNode---------------------------------------
 167 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
 168 class CmpPNode : public CmpNode {
 169 public:
 170   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 171   virtual int Opcode() const;
 172   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 173   virtual const Type *sub( const Type *, const Type * ) const;
 174 };
 175 
 176 //------------------------------CmpNNode--------------------------------------
 177 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
 178 class CmpNNode : public CmpNode {
 179 public:
 180   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 181   virtual int Opcode() const;
 182   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 183   virtual const Type *sub( const Type *, const Type * ) const;
 184 };
 185 
 186 //------------------------------CmpLNode---------------------------------------
 187 // Compare 2 long values, returning condition codes (-1, 0 or 1).
 188 class CmpLNode : public CmpNode {
 189 public:
 190   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 191   virtual int    Opcode() const;
 192   virtual const Type *sub( const Type *, const Type * ) const;
 193 };
 194 
 195 //------------------------------CmpL3Node--------------------------------------
 196 // Compare 2 long values, returning integer value (-1, 0 or 1).
 197 class CmpL3Node : public CmpLNode {
 198 public:
 199   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
 200     // Since it is not consumed by Bools, it is not really a Cmp.
 201     init_class_id(Class_Sub);
 202   }
 203   virtual int    Opcode() const;
 204   virtual uint ideal_reg() const { return Op_RegI; }
 205 };
 206 
 207 //------------------------------CmpFNode---------------------------------------
 208 // Compare 2 float values, returning condition codes (-1, 0 or 1).
 209 // This implements the Java bytecode fcmpl, so unordered returns -1.
 210 // Operands may not commute.
 211 class CmpFNode : public CmpNode {
 212 public:
 213   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 214   virtual int Opcode() const;
 215   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 216   const Type *Value( PhaseTransform *phase ) const;
 217 };
 218 
 219 //------------------------------CmpF3Node--------------------------------------
 220 // Compare 2 float values, returning integer value (-1, 0 or 1).
 221 // This implements the Java bytecode fcmpl, so unordered returns -1.
 222 // Operands may not commute.
 223 class CmpF3Node : public CmpFNode {
 224 public:
 225   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
 226     // Since it is not consumed by Bools, it is not really a Cmp.
 227     init_class_id(Class_Sub);
 228   }
 229   virtual int Opcode() const;
 230   // Since it is not consumed by Bools, it is not really a Cmp.
 231   virtual uint ideal_reg() const { return Op_RegI; }
 232 };
 233 
 234 
 235 //------------------------------CmpDNode---------------------------------------
 236 // Compare 2 double values, returning condition codes (-1, 0 or 1).
 237 // This implements the Java bytecode dcmpl, so unordered returns -1.
 238 // Operands may not commute.
 239 class CmpDNode : public CmpNode {
 240 public:
 241   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 242   virtual int Opcode() const;
 243   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 244   const Type *Value( PhaseTransform *phase ) const;
 245   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
 246 };
 247 
 248 //------------------------------CmpD3Node--------------------------------------
 249 // Compare 2 double values, returning integer value (-1, 0 or 1).
 250 // This implements the Java bytecode dcmpl, so unordered returns -1.
 251 // Operands may not commute.
 252 class CmpD3Node : public CmpDNode {
 253 public:
 254   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
 255     // Since it is not consumed by Bools, it is not really a Cmp.
 256     init_class_id(Class_Sub);
 257   }
 258   virtual int Opcode() const;
 259   virtual uint ideal_reg() const { return Op_RegI; }
 260 };
 261 
 262 
 263 //------------------------------BoolTest---------------------------------------
 264 // Convert condition codes to a boolean test value (0 or -1).
 265 // We pick the values as 3 bits; the low order 2 bits we compare against the
 266 // condition codes, the high bit flips the sense of the result.
 267 struct BoolTest VALUE_OBJ_CLASS_SPEC {
 268   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, illegal = 8 };
 269   mask _test;
 270   BoolTest( mask btm ) : _test(btm) {}
 271   const Type *cc2logical( const Type *CC ) const;
 272   // Commute the test.  I use a small table lookup.  The table is created as
 273   // a simple char array where each element is the ASCII version of a 'mask'
 274   // enum from above.
 275   mask commute( ) const { return mask("032147658"[_test]-'0'); }
 276   mask negate( ) const { return mask(_test^4); }
 277   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
 278   void dump_on(outputStream *st) const;
 279 };
 280 
 281 //------------------------------BoolNode---------------------------------------
 282 // A Node to convert a Condition Codes to a Logical result.
 283 class BoolNode : public Node {
 284   virtual uint hash() const;
 285   virtual uint cmp( const Node &n ) const;
 286   virtual uint size_of() const;
 287 
 288   // Try to optimize signed integer comparison
 289   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
 290                   int cmp1_op, const TypeInt* cmp2_type);
 291 public:
 292   const BoolTest _test;
 293   BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
 294     init_class_id(Class_Bool);
 295   }
 296   // Convert an arbitrary int value to a Bool or other suitable predicate.
 297   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
 298   // Convert self back to an integer value.
 299   Node* as_int_value(PhaseGVN* phase);
 300   // Invert sense of self, returning new Bool.
 301   BoolNode* negate(PhaseGVN* phase);
 302   virtual int Opcode() const;
 303   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 304   virtual const Type *Value( PhaseTransform *phase ) const;
 305   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
 306   uint match_edge(uint idx) const { return 0; }
 307   virtual uint ideal_reg() const { return Op_RegI; }
 308 
 309   bool is_counted_loop_exit_test();
 310 #ifndef PRODUCT
 311   virtual void dump_spec(outputStream *st) const;
 312 #endif
 313 };
 314 
 315 //------------------------------AbsNode----------------------------------------
 316 // Abstract class for absolute value.  Mostly used to get a handy wrapper
 317 // for finding this pattern in the graph.
 318 class AbsNode : public Node {
 319 public:
 320   AbsNode( Node *value ) : Node(0,value) {}
 321 };
 322 
 323 //------------------------------AbsINode---------------------------------------
 324 // Absolute value an integer.  Since a naive graph involves control flow, we
 325 // "match" it in the ideal world (so the control flow can be removed).
 326 class AbsINode : public AbsNode {
 327 public:
 328   AbsINode( Node *in1 ) : AbsNode(in1) {}
 329   virtual int Opcode() const;
 330   const Type *bottom_type() const { return TypeInt::INT; }
 331   virtual uint ideal_reg() const { return Op_RegI; }
 332 };
 333 
 334 //------------------------------AbsFNode---------------------------------------
 335 // Absolute value a float, a common float-point idiom with a cheap hardware
 336 // implemention on most chips.  Since a naive graph involves control flow, we
 337 // "match" it in the ideal world (so the control flow can be removed).
 338 class AbsFNode : public AbsNode {
 339 public:
 340   AbsFNode( Node *in1 ) : AbsNode(in1) {}
 341   virtual int Opcode() const;
 342   const Type *bottom_type() const { return Type::FLOAT; }
 343   virtual uint ideal_reg() const { return Op_RegF; }
 344 };
 345 
 346 //------------------------------AbsDNode---------------------------------------
 347 // Absolute value a double, a common float-point idiom with a cheap hardware
 348 // implemention on most chips.  Since a naive graph involves control flow, we
 349 // "match" it in the ideal world (so the control flow can be removed).
 350 class AbsDNode : public AbsNode {
 351 public:
 352   AbsDNode( Node *in1 ) : AbsNode(in1) {}
 353   virtual int Opcode() const;
 354   const Type *bottom_type() const { return Type::DOUBLE; }
 355   virtual uint ideal_reg() const { return Op_RegD; }
 356 };
 357 
 358 
 359 //------------------------------CmpLTMaskNode----------------------------------
 360 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
 361 class CmpLTMaskNode : public Node {
 362 public:
 363   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
 364   virtual int Opcode() const;
 365   const Type *bottom_type() const { return TypeInt::INT; }
 366   virtual uint ideal_reg() const { return Op_RegI; }
 367 };
 368 
 369 
 370 //------------------------------NegNode----------------------------------------
 371 class NegNode : public Node {
 372 public:
 373   NegNode( Node *in1 ) : Node(0,in1) {}
 374 };
 375 
 376 //------------------------------NegFNode---------------------------------------
 377 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
 378 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
 379 // cannot be used to replace negation we have to implement negation as ideal
 380 // node; note that negation and addition can replace subtraction.
 381 class NegFNode : public NegNode {
 382 public:
 383   NegFNode( Node *in1 ) : NegNode(in1) {}
 384   virtual int Opcode() const;
 385   const Type *bottom_type() const { return Type::FLOAT; }
 386   virtual uint ideal_reg() const { return Op_RegF; }
 387 };
 388 
 389 //------------------------------NegDNode---------------------------------------
 390 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
 391 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
 392 // cannot be used to replace negation we have to implement negation as ideal
 393 // node; note that negation and addition can replace subtraction.
 394 class NegDNode : public NegNode {
 395 public:
 396   NegDNode( Node *in1 ) : NegNode(in1) {}
 397   virtual int Opcode() const;
 398   const Type *bottom_type() const { return Type::DOUBLE; }
 399   virtual uint ideal_reg() const { return Op_RegD; }
 400 };
 401 
 402 //------------------------------CosDNode---------------------------------------
 403 // Cosinus of a double
 404 class CosDNode : public Node {
 405 public:
 406   CosDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 407     init_flags(Flag_is_expensive);
 408     C->add_expensive_node(this);
 409   }
 410   virtual int Opcode() const;
 411   const Type *bottom_type() const { return Type::DOUBLE; }
 412   virtual uint ideal_reg() const { return Op_RegD; }
 413   virtual const Type *Value( PhaseTransform *phase ) const;
 414 };
 415 
 416 //------------------------------CosDNode---------------------------------------
 417 // Sinus of a double
 418 class SinDNode : public Node {
 419 public:
 420   SinDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 421     init_flags(Flag_is_expensive);
 422     C->add_expensive_node(this);
 423   }
 424   virtual int Opcode() const;
 425   const Type *bottom_type() const { return Type::DOUBLE; }
 426   virtual uint ideal_reg() const { return Op_RegD; }
 427   virtual const Type *Value( PhaseTransform *phase ) const;
 428 };
 429 
 430 
 431 //------------------------------TanDNode---------------------------------------
 432 // tangens of a double
 433 class TanDNode : public Node {
 434 public:
 435   TanDNode(Compile* C, Node *c,Node *in1) : Node(c, in1) {
 436     init_flags(Flag_is_expensive);
 437     C->add_expensive_node(this);
 438   }
 439   virtual int Opcode() const;
 440   const Type *bottom_type() const { return Type::DOUBLE; }
 441   virtual uint ideal_reg() const { return Op_RegD; }
 442   virtual const Type *Value( PhaseTransform *phase ) const;
 443 };
 444 
 445 
 446 //------------------------------AtanDNode--------------------------------------
 447 // arcus tangens of a double
 448 class AtanDNode : public Node {
 449 public:
 450   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
 451   virtual int Opcode() const;
 452   const Type *bottom_type() const { return Type::DOUBLE; }
 453   virtual uint ideal_reg() const { return Op_RegD; }
 454 };
 455 
 456 
 457 //------------------------------SqrtDNode--------------------------------------
 458 // square root a double
 459 class SqrtDNode : public Node {
 460 public:
 461   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 462     init_flags(Flag_is_expensive);
 463     C->add_expensive_node(this);
 464   }
 465   virtual int Opcode() const;
 466   const Type *bottom_type() const { return Type::DOUBLE; }
 467   virtual uint ideal_reg() const { return Op_RegD; }
 468   virtual const Type *Value( PhaseTransform *phase ) const;
 469 };
 470 
 471 //------------------------------ExpDNode---------------------------------------
 472 //  Exponentiate a double
 473 class ExpDNode : public Node {
 474 public:
 475   ExpDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 476     init_flags(Flag_is_expensive);
 477     C->add_expensive_node(this);
 478   }
 479   virtual int Opcode() const;
 480   const Type *bottom_type() const { return Type::DOUBLE; }
 481   virtual uint ideal_reg() const { return Op_RegD; }
 482   virtual const Type *Value( PhaseTransform *phase ) const;
 483 };
 484 
 485 //------------------------------LogDNode---------------------------------------
 486 // Log_e of a double
 487 class LogDNode : public Node {
 488 public:
 489   LogDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 490     init_flags(Flag_is_expensive);
 491     C->add_expensive_node(this);
 492   }
 493   virtual int Opcode() const;
 494   const Type *bottom_type() const { return Type::DOUBLE; }
 495   virtual uint ideal_reg() const { return Op_RegD; }
 496   virtual const Type *Value( PhaseTransform *phase ) const;
 497 };
 498 
 499 //------------------------------Log10DNode---------------------------------------
 500 // Log_10 of a double
 501 class Log10DNode : public Node {
 502 public:
 503   Log10DNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 504     init_flags(Flag_is_expensive);
 505     C->add_expensive_node(this);
 506   }
 507   virtual int Opcode() const;
 508   const Type *bottom_type() const { return Type::DOUBLE; }
 509   virtual uint ideal_reg() const { return Op_RegD; }
 510   virtual const Type *Value( PhaseTransform *phase ) const;
 511 };
 512 
 513 //------------------------------PowDNode---------------------------------------
 514 // Raise a double to a double power
 515 class PowDNode : public Node {
 516 public:
 517   PowDNode(Compile* C, Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {
 518     init_flags(Flag_is_expensive);
 519     C->add_expensive_node(this);
 520   }
 521   virtual int Opcode() const;
 522   const Type *bottom_type() const { return Type::DOUBLE; }
 523   virtual uint ideal_reg() const { return Op_RegD; }
 524   virtual const Type *Value( PhaseTransform *phase ) const;
 525 };
 526 
 527 //-------------------------------ReverseBytesINode--------------------------------
 528 // reverse bytes of an integer
 529 class ReverseBytesINode : public Node {
 530 public:
 531   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
 532   virtual int Opcode() const;
 533   const Type *bottom_type() const { return TypeInt::INT; }
 534   virtual uint ideal_reg() const { return Op_RegI; }
 535 };
 536 
 537 //-------------------------------ReverseBytesLNode--------------------------------
 538 // reverse bytes of a long
 539 class ReverseBytesLNode : public Node {
 540 public:
 541   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
 542   virtual int Opcode() const;
 543   const Type *bottom_type() const { return TypeLong::LONG; }
 544   virtual uint ideal_reg() const { return Op_RegL; }
 545 };
 546 
 547 //-------------------------------ReverseBytesUSNode--------------------------------
 548 // reverse bytes of an unsigned short / char
 549 class ReverseBytesUSNode : public Node {
 550 public:
 551   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
 552   virtual int Opcode() const;
 553   const Type *bottom_type() const { return TypeInt::CHAR; }
 554   virtual uint ideal_reg() const { return Op_RegI; }
 555 };
 556 
 557 //-------------------------------ReverseBytesSNode--------------------------------
 558 // reverse bytes of a short
 559 class ReverseBytesSNode : public Node {
 560 public:
 561   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
 562   virtual int Opcode() const;
 563   const Type *bottom_type() const { return TypeInt::SHORT; }
 564   virtual uint ideal_reg() const { return Op_RegI; }
 565 };
 566 
 567 #endif // SHARE_VM_OPTO_SUBNODE_HPP