1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/biasedLocking.hpp"
  42 #include "runtime/compilationPolicy.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/signature.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "runtime/vframe.hpp"
  50 #include "runtime/vframeArray.hpp"
  51 #include "runtime/vframe_hp.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/xmlstream.hpp"
  54 
  55 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  56 
  57 bool DeoptimizationMarker::_is_active = false;
  58 
  59 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  60                                          int  caller_adjustment,
  61                                          int  caller_actual_parameters,
  62                                          int  number_of_frames,
  63                                          intptr_t* frame_sizes,
  64                                          address* frame_pcs,
  65                                          BasicType return_type) {
  66   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  67   _caller_adjustment         = caller_adjustment;
  68   _caller_actual_parameters  = caller_actual_parameters;
  69   _number_of_frames          = number_of_frames;
  70   _frame_sizes               = frame_sizes;
  71   _frame_pcs                 = frame_pcs;
  72   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  73   _return_type               = return_type;
  74   _initial_info              = 0;
  75   // PD (x86 only)
  76   _counter_temp              = 0;
  77   _unpack_kind               = 0;
  78   _sender_sp_temp            = 0;
  79 
  80   _total_frame_sizes         = size_of_frames();
  81 }
  82 
  83 
  84 Deoptimization::UnrollBlock::~UnrollBlock() {
  85   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
  86   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
  87   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
  88 }
  89 
  90 
  91 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  92   assert(register_number < RegisterMap::reg_count, "checking register number");
  93   return &_register_block[register_number * 2];
  94 }
  95 
  96 
  97 
  98 int Deoptimization::UnrollBlock::size_of_frames() const {
  99   // Acount first for the adjustment of the initial frame
 100   int result = _caller_adjustment;
 101   for (int index = 0; index < number_of_frames(); index++) {
 102     result += frame_sizes()[index];
 103   }
 104   return result;
 105 }
 106 
 107 
 108 void Deoptimization::UnrollBlock::print() {
 109   ttyLocker ttyl;
 110   tty->print_cr("UnrollBlock");
 111   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 112   tty->print(   "  frame_sizes: ");
 113   for (int index = 0; index < number_of_frames(); index++) {
 114     tty->print("%d ", frame_sizes()[index]);
 115   }
 116   tty->cr();
 117 }
 118 
 119 
 120 // In order to make fetch_unroll_info work properly with escape
 121 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 122 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 123 // of previously eliminated objects occurs in realloc_objects, which is
 124 // called from the method fetch_unroll_info_helper below.
 125 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 126   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 127   // but makes the entry a little slower. There is however a little dance we have to
 128   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 129 
 130   // fetch_unroll_info() is called at the beginning of the deoptimization
 131   // handler. Note this fact before we start generating temporary frames
 132   // that can confuse an asynchronous stack walker. This counter is
 133   // decremented at the end of unpack_frames().
 134   thread->inc_in_deopt_handler();
 135 
 136   return fetch_unroll_info_helper(thread);
 137 JRT_END
 138 
 139 
 140 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 141 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 142 
 143   // Note: there is a safepoint safety issue here. No matter whether we enter
 144   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 145   // the vframeArray is created.
 146   //
 147 
 148   // Allocate our special deoptimization ResourceMark
 149   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 150   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 151   thread->set_deopt_mark(dmark);
 152 
 153   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 154   RegisterMap map(thread, true);
 155   RegisterMap dummy_map(thread, false);
 156   // Now get the deoptee with a valid map
 157   frame deoptee = stub_frame.sender(&map);
 158   // Set the deoptee nmethod
 159   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 160   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 161 
 162   if (VerifyStack) {
 163     thread->validate_frame_layout();
 164   }
 165 
 166   // Create a growable array of VFrames where each VFrame represents an inlined
 167   // Java frame.  This storage is allocated with the usual system arena.
 168   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 169   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 170   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 171   while (!vf->is_top()) {
 172     assert(vf->is_compiled_frame(), "Wrong frame type");
 173     chunk->push(compiledVFrame::cast(vf));
 174     vf = vf->sender();
 175   }
 176   assert(vf->is_compiled_frame(), "Wrong frame type");
 177   chunk->push(compiledVFrame::cast(vf));
 178 
 179 #ifdef COMPILER2
 180   // Reallocate the non-escaping objects and restore their fields. Then
 181   // relock objects if synchronization on them was eliminated.
 182   if (DoEscapeAnalysis || EliminateNestedLocks) {
 183     if (EliminateAllocations) {
 184       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 185       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 186 
 187       // The flag return_oop() indicates call sites which return oop
 188       // in compiled code. Such sites include java method calls,
 189       // runtime calls (for example, used to allocate new objects/arrays
 190       // on slow code path) and any other calls generated in compiled code.
 191       // It is not guaranteed that we can get such information here only
 192       // by analyzing bytecode in deoptimized frames. This is why this flag
 193       // is set during method compilation (see Compile::Process_OopMap_Node()).
 194       // If we the previous was popped, we don't have a result
 195       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 196       Handle return_value;
 197       if (save_oop_result) {
 198         // Reallocation may trigger GC. If deoptimization happened on return from
 199         // call which returns oop we need to save it since it is not in oopmap.
 200         oop result = deoptee.saved_oop_result(&map);
 201         assert(result == NULL || result->is_oop(), "must be oop");
 202         return_value = Handle(thread, result);
 203         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 204         if (TraceDeoptimization) {
 205           ttyLocker ttyl;
 206           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
 207         }
 208       }
 209       bool reallocated = false;
 210       if (objects != NULL) {
 211         JRT_BLOCK
 212           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 213         JRT_END
 214       }
 215       if (reallocated) {
 216         reassign_fields(&deoptee, &map, objects);
 217 #ifndef PRODUCT
 218         if (TraceDeoptimization) {
 219           ttyLocker ttyl;
 220           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 221           print_objects(objects);
 222         }
 223 #endif
 224       }
 225       if (save_oop_result) {
 226         // Restore result.
 227         deoptee.set_saved_oop_result(&map, return_value());
 228       }
 229     }
 230     if (EliminateLocks) {
 231 #ifndef PRODUCT
 232       bool first = true;
 233 #endif
 234       for (int i = 0; i < chunk->length(); i++) {
 235         compiledVFrame* cvf = chunk->at(i);
 236         assert (cvf->scope() != NULL,"expect only compiled java frames");
 237         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 238         if (monitors->is_nonempty()) {
 239           relock_objects(monitors, thread);
 240 #ifndef PRODUCT
 241           if (TraceDeoptimization) {
 242             ttyLocker ttyl;
 243             for (int j = 0; j < monitors->length(); j++) {
 244               MonitorInfo* mi = monitors->at(j);
 245               if (mi->eliminated()) {
 246                 if (first) {
 247                   first = false;
 248                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 249                 }
 250                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
 251               }
 252             }
 253           }
 254 #endif
 255         }
 256       }
 257     }
 258   }
 259 #endif // COMPILER2
 260   // Ensure that no safepoint is taken after pointers have been stored
 261   // in fields of rematerialized objects.  If a safepoint occurs from here on
 262   // out the java state residing in the vframeArray will be missed.
 263   No_Safepoint_Verifier no_safepoint;
 264 
 265   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 266 
 267   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 268   thread->set_vframe_array_head(array);
 269 
 270   // Now that the vframeArray has been created if we have any deferred local writes
 271   // added by jvmti then we can free up that structure as the data is now in the
 272   // vframeArray
 273 
 274   if (thread->deferred_locals() != NULL) {
 275     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 276     int i = 0;
 277     do {
 278       // Because of inlining we could have multiple vframes for a single frame
 279       // and several of the vframes could have deferred writes. Find them all.
 280       if (list->at(i)->id() == array->original().id()) {
 281         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 282         list->remove_at(i);
 283         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 284         delete dlv;
 285       } else {
 286         i++;
 287       }
 288     } while ( i < list->length() );
 289     if (list->length() == 0) {
 290       thread->set_deferred_locals(NULL);
 291       // free the list and elements back to C heap.
 292       delete list;
 293     }
 294 
 295   }
 296 
 297 #ifndef SHARK
 298   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 299   CodeBlob* cb = stub_frame.cb();
 300   // Verify we have the right vframeArray
 301   assert(cb->frame_size() >= 0, "Unexpected frame size");
 302   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 303 
 304   // If the deopt call site is a MethodHandle invoke call site we have
 305   // to adjust the unpack_sp.
 306   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 307   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 308     unpack_sp = deoptee.unextended_sp();
 309 
 310 #ifdef ASSERT
 311   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 312 #endif
 313 #else
 314   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 315 #endif // !SHARK
 316 
 317   // This is a guarantee instead of an assert because if vframe doesn't match
 318   // we will unpack the wrong deoptimized frame and wind up in strange places
 319   // where it will be very difficult to figure out what went wrong. Better
 320   // to die an early death here than some very obscure death later when the
 321   // trail is cold.
 322   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 323   // in that it will fail to detect a problem when there is one. This needs
 324   // more work in tiger timeframe.
 325   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 326 
 327   int number_of_frames = array->frames();
 328 
 329   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 330   // virtual activation, which is the reverse of the elements in the vframes array.
 331   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 332   // +1 because we always have an interpreter return address for the final slot.
 333   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 334   int popframe_extra_args = 0;
 335   // Create an interpreter return address for the stub to use as its return
 336   // address so the skeletal frames are perfectly walkable
 337   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 338 
 339   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 340   // activation be put back on the expression stack of the caller for reexecution
 341   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 342     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 343   }
 344 
 345   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 346   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 347   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 348   //
 349   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 350   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 351 
 352   // It's possible that the number of parameters at the call site is
 353   // different than number of arguments in the callee when method
 354   // handles are used.  If the caller is interpreted get the real
 355   // value so that the proper amount of space can be added to it's
 356   // frame.
 357   bool caller_was_method_handle = false;
 358   if (deopt_sender.is_interpreted_frame()) {
 359     methodHandle method = deopt_sender.interpreter_frame_method();
 360     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 361     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 362       // Method handle invokes may involve fairly arbitrary chains of
 363       // calls so it's impossible to know how much actual space the
 364       // caller has for locals.
 365       caller_was_method_handle = true;
 366     }
 367   }
 368 
 369   //
 370   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 371   // frame_sizes/frame_pcs[1] next oldest frame (int)
 372   // frame_sizes/frame_pcs[n] youngest frame (int)
 373   //
 374   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 375   // owns the space for the return address to it's caller).  Confusing ain't it.
 376   //
 377   // The vframe array can address vframes with indices running from
 378   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 379   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 380   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 381   // so things look a little strange in this loop.
 382   //
 383   int callee_parameters = 0;
 384   int callee_locals = 0;
 385   for (int index = 0; index < array->frames(); index++ ) {
 386     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 387     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 388     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 389     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 390                                                                                                     callee_locals,
 391                                                                                                     index == 0,
 392                                                                                                     popframe_extra_args);
 393     // This pc doesn't have to be perfect just good enough to identify the frame
 394     // as interpreted so the skeleton frame will be walkable
 395     // The correct pc will be set when the skeleton frame is completely filled out
 396     // The final pc we store in the loop is wrong and will be overwritten below
 397     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 398 
 399     callee_parameters = array->element(index)->method()->size_of_parameters();
 400     callee_locals = array->element(index)->method()->max_locals();
 401     popframe_extra_args = 0;
 402   }
 403 
 404   // Compute whether the root vframe returns a float or double value.
 405   BasicType return_type;
 406   {
 407     HandleMark hm;
 408     methodHandle method(thread, array->element(0)->method());
 409     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 410     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 411   }
 412 
 413   // Compute information for handling adapters and adjusting the frame size of the caller.
 414   int caller_adjustment = 0;
 415 
 416   // Compute the amount the oldest interpreter frame will have to adjust
 417   // its caller's stack by. If the caller is a compiled frame then
 418   // we pretend that the callee has no parameters so that the
 419   // extension counts for the full amount of locals and not just
 420   // locals-parms. This is because without a c2i adapter the parm
 421   // area as created by the compiled frame will not be usable by
 422   // the interpreter. (Depending on the calling convention there
 423   // may not even be enough space).
 424 
 425   // QQQ I'd rather see this pushed down into last_frame_adjust
 426   // and have it take the sender (aka caller).
 427 
 428   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 429     caller_adjustment = last_frame_adjust(0, callee_locals);
 430   } else if (callee_locals > callee_parameters) {
 431     // The caller frame may need extending to accommodate
 432     // non-parameter locals of the first unpacked interpreted frame.
 433     // Compute that adjustment.
 434     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 435   }
 436 
 437   // If the sender is deoptimized the we must retrieve the address of the handler
 438   // since the frame will "magically" show the original pc before the deopt
 439   // and we'd undo the deopt.
 440 
 441   frame_pcs[0] = deopt_sender.raw_pc();
 442 
 443 #ifndef SHARK
 444   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 445 #endif // SHARK
 446 
 447   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 448                                       caller_adjustment * BytesPerWord,
 449                                       caller_was_method_handle ? 0 : callee_parameters,
 450                                       number_of_frames,
 451                                       frame_sizes,
 452                                       frame_pcs,
 453                                       return_type);
 454   // On some platforms, we need a way to pass some platform dependent
 455   // information to the unpacking code so the skeletal frames come out
 456   // correct (initial fp value, unextended sp, ...)
 457   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 458 
 459   if (array->frames() > 1) {
 460     if (VerifyStack && TraceDeoptimization) {
 461       ttyLocker ttyl;
 462       tty->print_cr("Deoptimizing method containing inlining");
 463     }
 464   }
 465 
 466   array->set_unroll_block(info);
 467   return info;
 468 }
 469 
 470 // Called to cleanup deoptimization data structures in normal case
 471 // after unpacking to stack and when stack overflow error occurs
 472 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 473                                         vframeArray *array) {
 474 
 475   // Get array if coming from exception
 476   if (array == NULL) {
 477     array = thread->vframe_array_head();
 478   }
 479   thread->set_vframe_array_head(NULL);
 480 
 481   // Free the previous UnrollBlock
 482   vframeArray* old_array = thread->vframe_array_last();
 483   thread->set_vframe_array_last(array);
 484 
 485   if (old_array != NULL) {
 486     UnrollBlock* old_info = old_array->unroll_block();
 487     old_array->set_unroll_block(NULL);
 488     delete old_info;
 489     delete old_array;
 490   }
 491 
 492   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 493   // inside the vframeArray (StackValueCollections)
 494 
 495   delete thread->deopt_mark();
 496   thread->set_deopt_mark(NULL);
 497   thread->set_deopt_nmethod(NULL);
 498 
 499 
 500   if (JvmtiExport::can_pop_frame()) {
 501 #ifndef CC_INTERP
 502     // Regardless of whether we entered this routine with the pending
 503     // popframe condition bit set, we should always clear it now
 504     thread->clear_popframe_condition();
 505 #else
 506     // C++ interpreter will clear has_pending_popframe when it enters
 507     // with method_resume. For deopt_resume2 we clear it now.
 508     if (thread->popframe_forcing_deopt_reexecution())
 509         thread->clear_popframe_condition();
 510 #endif /* CC_INTERP */
 511   }
 512 
 513   // unpack_frames() is called at the end of the deoptimization handler
 514   // and (in C2) at the end of the uncommon trap handler. Note this fact
 515   // so that an asynchronous stack walker can work again. This counter is
 516   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 517   // the beginning of uncommon_trap().
 518   thread->dec_in_deopt_handler();
 519 }
 520 
 521 
 522 // Return BasicType of value being returned
 523 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 524 
 525   // We are already active int he special DeoptResourceMark any ResourceObj's we
 526   // allocate will be freed at the end of the routine.
 527 
 528   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 529   // but makes the entry a little slower. There is however a little dance we have to
 530   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 531   ResetNoHandleMark rnhm; // No-op in release/product versions
 532   HandleMark hm;
 533 
 534   frame stub_frame = thread->last_frame();
 535 
 536   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 537   // must point to the vframeArray for the unpack frame.
 538   vframeArray* array = thread->vframe_array_head();
 539 
 540 #ifndef PRODUCT
 541   if (TraceDeoptimization) {
 542     ttyLocker ttyl;
 543     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 544   }
 545 #endif
 546   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 547               stub_frame.pc(), stub_frame.sp(), exec_mode);
 548 
 549   UnrollBlock* info = array->unroll_block();
 550 
 551   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 552   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 553 
 554   BasicType bt = info->return_type();
 555 
 556   // If we have an exception pending, claim that the return type is an oop
 557   // so the deopt_blob does not overwrite the exception_oop.
 558 
 559   if (exec_mode == Unpack_exception)
 560     bt = T_OBJECT;
 561 
 562   // Cleanup thread deopt data
 563   cleanup_deopt_info(thread, array);
 564 
 565 #ifndef PRODUCT
 566   if (VerifyStack) {
 567     ResourceMark res_mark;
 568 
 569     thread->validate_frame_layout();
 570 
 571     // Verify that the just-unpacked frames match the interpreter's
 572     // notions of expression stack and locals
 573     vframeArray* cur_array = thread->vframe_array_last();
 574     RegisterMap rm(thread, false);
 575     rm.set_include_argument_oops(false);
 576     bool is_top_frame = true;
 577     int callee_size_of_parameters = 0;
 578     int callee_max_locals = 0;
 579     for (int i = 0; i < cur_array->frames(); i++) {
 580       vframeArrayElement* el = cur_array->element(i);
 581       frame* iframe = el->iframe();
 582       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 583 
 584       // Get the oop map for this bci
 585       InterpreterOopMap mask;
 586       int cur_invoke_parameter_size = 0;
 587       bool try_next_mask = false;
 588       int next_mask_expression_stack_size = -1;
 589       int top_frame_expression_stack_adjustment = 0;
 590       methodHandle mh(thread, iframe->interpreter_frame_method());
 591       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 592       BytecodeStream str(mh);
 593       str.set_start(iframe->interpreter_frame_bci());
 594       int max_bci = mh->code_size();
 595       // Get to the next bytecode if possible
 596       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 597       // Check to see if we can grab the number of outgoing arguments
 598       // at an uncommon trap for an invoke (where the compiler
 599       // generates debug info before the invoke has executed)
 600       Bytecodes::Code cur_code = str.next();
 601       if (cur_code == Bytecodes::_invokevirtual   ||
 602           cur_code == Bytecodes::_invokespecial   ||
 603           cur_code == Bytecodes::_invokestatic    ||
 604           cur_code == Bytecodes::_invokeinterface ||
 605           cur_code == Bytecodes::_invokedynamic) {
 606         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 607         Symbol* signature = invoke.signature();
 608         ArgumentSizeComputer asc(signature);
 609         cur_invoke_parameter_size = asc.size();
 610         if (invoke.has_receiver()) {
 611           // Add in receiver
 612           ++cur_invoke_parameter_size;
 613         }
 614         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 615           callee_size_of_parameters++;
 616         }
 617       }
 618       if (str.bci() < max_bci) {
 619         Bytecodes::Code bc = str.next();
 620         if (bc >= 0) {
 621           // The interpreter oop map generator reports results before
 622           // the current bytecode has executed except in the case of
 623           // calls. It seems to be hard to tell whether the compiler
 624           // has emitted debug information matching the "state before"
 625           // a given bytecode or the state after, so we try both
 626           switch (cur_code) {
 627             case Bytecodes::_invokevirtual:
 628             case Bytecodes::_invokespecial:
 629             case Bytecodes::_invokestatic:
 630             case Bytecodes::_invokeinterface:
 631             case Bytecodes::_invokedynamic:
 632             case Bytecodes::_athrow:
 633               break;
 634             default: {
 635               InterpreterOopMap next_mask;
 636               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 637               next_mask_expression_stack_size = next_mask.expression_stack_size();
 638               // Need to subtract off the size of the result type of
 639               // the bytecode because this is not described in the
 640               // debug info but returned to the interpreter in the TOS
 641               // caching register
 642               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 643               if (bytecode_result_type != T_ILLEGAL) {
 644                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 645               }
 646               assert(top_frame_expression_stack_adjustment >= 0, "");
 647               try_next_mask = true;
 648               break;
 649             }
 650           }
 651         }
 652       }
 653 
 654       // Verify stack depth and oops in frame
 655       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 656       if (!(
 657             /* SPARC */
 658             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 659             /* x86 */
 660             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 661             (try_next_mask &&
 662              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 663                                                                     top_frame_expression_stack_adjustment))) ||
 664             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 665             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 666              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 667             )) {
 668         ttyLocker ttyl;
 669 
 670         // Print out some information that will help us debug the problem
 671         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 672         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 673         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 674                       iframe->interpreter_frame_expression_stack_size());
 675         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 676         tty->print_cr("  try_next_mask = %d", try_next_mask);
 677         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 678         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 679         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 680         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 681         tty->print_cr("  exec_mode = %d", exec_mode);
 682         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 683         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 684         tty->print_cr("  Interpreted frames:");
 685         for (int k = 0; k < cur_array->frames(); k++) {
 686           vframeArrayElement* el = cur_array->element(k);
 687           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 688         }
 689         cur_array->print_on_2(tty);
 690         guarantee(false, "wrong number of expression stack elements during deopt");
 691       }
 692       VerifyOopClosure verify;
 693       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 694       callee_size_of_parameters = mh->size_of_parameters();
 695       callee_max_locals = mh->max_locals();
 696       is_top_frame = false;
 697     }
 698   }
 699 #endif /* !PRODUCT */
 700 
 701 
 702   return bt;
 703 JRT_END
 704 
 705 
 706 int Deoptimization::deoptimize_dependents() {
 707   Threads::deoptimized_wrt_marked_nmethods();
 708   return 0;
 709 }
 710 
 711 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 712   = Deoptimization::Action_reinterpret;
 713 
 714 #ifdef COMPILER2
 715 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 716   Handle pending_exception(thread->pending_exception());
 717   const char* exception_file = thread->exception_file();
 718   int exception_line = thread->exception_line();
 719   thread->clear_pending_exception();
 720 
 721   for (int i = 0; i < objects->length(); i++) {
 722     assert(objects->at(i)->is_object(), "invalid debug information");
 723     ObjectValue* sv = (ObjectValue*) objects->at(i);
 724 
 725     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 726     oop obj = NULL;
 727 
 728     if (k->oop_is_instance()) {
 729       InstanceKlass* ik = InstanceKlass::cast(k());
 730       obj = ik->allocate_instance(CHECK_(false));
 731     } else if (k->oop_is_typeArray()) {
 732       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 733       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 734       int len = sv->field_size() / type2size[ak->element_type()];
 735       obj = ak->allocate(len, CHECK_(false));
 736     } else if (k->oop_is_objArray()) {
 737       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 738       obj = ak->allocate(sv->field_size(), CHECK_(false));
 739     }
 740 
 741     assert(obj != NULL, "allocation failed");
 742     assert(sv->value().is_null(), "redundant reallocation");
 743     sv->set_value(obj);
 744   }
 745 
 746   if (pending_exception.not_null()) {
 747     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 748   }
 749 
 750   return true;
 751 }
 752 
 753 // This assumes that the fields are stored in ObjectValue in the same order
 754 // they are yielded by do_nonstatic_fields.
 755 class FieldReassigner: public FieldClosure {
 756   frame* _fr;
 757   RegisterMap* _reg_map;
 758   ObjectValue* _sv;
 759   InstanceKlass* _ik;
 760   oop _obj;
 761 
 762   int _i;
 763 public:
 764   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 765     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 766 
 767   int i() const { return _i; }
 768 
 769 
 770   void do_field(fieldDescriptor* fd) {
 771     intptr_t val;
 772     StackValue* value =
 773       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 774     int offset = fd->offset();
 775     switch (fd->field_type()) {
 776     case T_OBJECT: case T_ARRAY:
 777       assert(value->type() == T_OBJECT, "Agreement.");
 778       _obj->obj_field_put(offset, value->get_obj()());
 779       break;
 780 
 781     case T_LONG: case T_DOUBLE: {
 782       assert(value->type() == T_INT, "Agreement.");
 783       StackValue* low =
 784         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 785 #ifdef _LP64
 786       jlong res = (jlong)low->get_int();
 787 #else
 788 #ifdef SPARC
 789       // For SPARC we have to swap high and low words.
 790       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 791 #else
 792       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 793 #endif //SPARC
 794 #endif
 795       _obj->long_field_put(offset, res);
 796       break;
 797     }
 798     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 799     case T_INT: case T_FLOAT: // 4 bytes.
 800       assert(value->type() == T_INT, "Agreement.");
 801       val = value->get_int();
 802       _obj->int_field_put(offset, (jint)*((jint*)&val));
 803       break;
 804 
 805     case T_SHORT: case T_CHAR: // 2 bytes
 806       assert(value->type() == T_INT, "Agreement.");
 807       val = value->get_int();
 808       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 809       break;
 810 
 811     case T_BOOLEAN: case T_BYTE: // 1 byte
 812       assert(value->type() == T_INT, "Agreement.");
 813       val = value->get_int();
 814       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 815       break;
 816 
 817     default:
 818       ShouldNotReachHere();
 819     }
 820     _i++;
 821   }
 822 };
 823 
 824 // restore elements of an eliminated type array
 825 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 826   int index = 0;
 827   intptr_t val;
 828 
 829   for (int i = 0; i < sv->field_size(); i++) {
 830     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 831     switch(type) {
 832     case T_LONG: case T_DOUBLE: {
 833       assert(value->type() == T_INT, "Agreement.");
 834       StackValue* low =
 835         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 836 #ifdef _LP64
 837       jlong res = (jlong)low->get_int();
 838 #else
 839 #ifdef SPARC
 840       // For SPARC we have to swap high and low words.
 841       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 842 #else
 843       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 844 #endif //SPARC
 845 #endif
 846       obj->long_at_put(index, res);
 847       break;
 848     }
 849 
 850     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 851     case T_INT: case T_FLOAT: // 4 bytes.
 852       assert(value->type() == T_INT, "Agreement.");
 853       val = value->get_int();
 854       obj->int_at_put(index, (jint)*((jint*)&val));
 855       break;
 856 
 857     case T_SHORT: case T_CHAR: // 2 bytes
 858       assert(value->type() == T_INT, "Agreement.");
 859       val = value->get_int();
 860       obj->short_at_put(index, (jshort)*((jint*)&val));
 861       break;
 862 
 863     case T_BOOLEAN: case T_BYTE: // 1 byte
 864       assert(value->type() == T_INT, "Agreement.");
 865       val = value->get_int();
 866       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 867       break;
 868 
 869       default:
 870         ShouldNotReachHere();
 871     }
 872     index++;
 873   }
 874 }
 875 
 876 
 877 // restore fields of an eliminated object array
 878 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 879   for (int i = 0; i < sv->field_size(); i++) {
 880     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 881     assert(value->type() == T_OBJECT, "object element expected");
 882     obj->obj_at_put(i, value->get_obj()());
 883   }
 884 }
 885 
 886 
 887 // restore fields of all eliminated objects and arrays
 888 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 889   for (int i = 0; i < objects->length(); i++) {
 890     ObjectValue* sv = (ObjectValue*) objects->at(i);
 891     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 892     Handle obj = sv->value();
 893     assert(obj.not_null(), "reallocation was missed");
 894 
 895     if (k->oop_is_instance()) {
 896       InstanceKlass* ik = InstanceKlass::cast(k());
 897       FieldReassigner reassign(fr, reg_map, sv, obj());
 898       ik->do_nonstatic_fields(&reassign);
 899     } else if (k->oop_is_typeArray()) {
 900       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 901       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 902     } else if (k->oop_is_objArray()) {
 903       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 904     }
 905   }
 906 }
 907 
 908 
 909 // relock objects for which synchronization was eliminated
 910 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 911   for (int i = 0; i < monitors->length(); i++) {
 912     MonitorInfo* mon_info = monitors->at(i);
 913     if (mon_info->eliminated()) {
 914       assert(mon_info->owner() != NULL, "reallocation was missed");
 915       Handle obj = Handle(mon_info->owner());
 916       markOop mark = obj->mark();
 917       if (UseBiasedLocking && mark->has_bias_pattern()) {
 918         // New allocated objects may have the mark set to anonymously biased.
 919         // Also the deoptimized method may called methods with synchronization
 920         // where the thread-local object is bias locked to the current thread.
 921         assert(mark->is_biased_anonymously() ||
 922                mark->biased_locker() == thread, "should be locked to current thread");
 923         // Reset mark word to unbiased prototype.
 924         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 925         obj->set_mark(unbiased_prototype);
 926       }
 927       BasicLock* lock = mon_info->lock();
 928       ObjectSynchronizer::slow_enter(obj, lock, thread);
 929     }
 930     assert(mon_info->owner()->is_locked(), "object must be locked now");
 931   }
 932 }
 933 
 934 
 935 #ifndef PRODUCT
 936 // print information about reallocated objects
 937 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 938   fieldDescriptor fd;
 939 
 940   for (int i = 0; i < objects->length(); i++) {
 941     ObjectValue* sv = (ObjectValue*) objects->at(i);
 942     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 943     Handle obj = sv->value();
 944 
 945     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
 946     k->print_value();
 947     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 948     tty->cr();
 949 
 950     if (Verbose) {
 951       k->oop_print_on(obj(), tty);
 952     }
 953   }
 954 }
 955 #endif
 956 #endif // COMPILER2
 957 
 958 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 959   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
 960 
 961 #ifndef PRODUCT
 962   if (TraceDeoptimization) {
 963     ttyLocker ttyl;
 964     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 965     fr.print_on(tty);
 966     tty->print_cr("     Virtual frames (innermost first):");
 967     for (int index = 0; index < chunk->length(); index++) {
 968       compiledVFrame* vf = chunk->at(index);
 969       tty->print("       %2d - ", index);
 970       vf->print_value();
 971       int bci = chunk->at(index)->raw_bci();
 972       const char* code_name;
 973       if (bci == SynchronizationEntryBCI) {
 974         code_name = "sync entry";
 975       } else {
 976         Bytecodes::Code code = vf->method()->code_at(bci);
 977         code_name = Bytecodes::name(code);
 978       }
 979       tty->print(" - %s", code_name);
 980       tty->print_cr(" @ bci %d ", bci);
 981       if (Verbose) {
 982         vf->print();
 983         tty->cr();
 984       }
 985     }
 986   }
 987 #endif
 988 
 989   // Register map for next frame (used for stack crawl).  We capture
 990   // the state of the deopt'ing frame's caller.  Thus if we need to
 991   // stuff a C2I adapter we can properly fill in the callee-save
 992   // register locations.
 993   frame caller = fr.sender(reg_map);
 994   int frame_size = caller.sp() - fr.sp();
 995 
 996   frame sender = caller;
 997 
 998   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 999   // the vframeArray containing the unpacking information is allocated in the C heap.
1000   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1001   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
1002 
1003   // Compare the vframeArray to the collected vframes
1004   assert(array->structural_compare(thread, chunk), "just checking");
1005 
1006 #ifndef PRODUCT
1007   if (TraceDeoptimization) {
1008     ttyLocker ttyl;
1009     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1010   }
1011 #endif // PRODUCT
1012 
1013   return array;
1014 }
1015 
1016 
1017 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1018   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1019   for (int i = 0; i < monitors->length(); i++) {
1020     MonitorInfo* mon_info = monitors->at(i);
1021     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1022       objects_to_revoke->append(Handle(mon_info->owner()));
1023     }
1024   }
1025 }
1026 
1027 
1028 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1029   if (!UseBiasedLocking) {
1030     return;
1031   }
1032 
1033   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1034 
1035   // Unfortunately we don't have a RegisterMap available in most of
1036   // the places we want to call this routine so we need to walk the
1037   // stack again to update the register map.
1038   if (map == NULL || !map->update_map()) {
1039     StackFrameStream sfs(thread, true);
1040     bool found = false;
1041     while (!found && !sfs.is_done()) {
1042       frame* cur = sfs.current();
1043       sfs.next();
1044       found = cur->id() == fr.id();
1045     }
1046     assert(found, "frame to be deoptimized not found on target thread's stack");
1047     map = sfs.register_map();
1048   }
1049 
1050   vframe* vf = vframe::new_vframe(&fr, map, thread);
1051   compiledVFrame* cvf = compiledVFrame::cast(vf);
1052   // Revoke monitors' biases in all scopes
1053   while (!cvf->is_top()) {
1054     collect_monitors(cvf, objects_to_revoke);
1055     cvf = compiledVFrame::cast(cvf->sender());
1056   }
1057   collect_monitors(cvf, objects_to_revoke);
1058 
1059   if (SafepointSynchronize::is_at_safepoint()) {
1060     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1061   } else {
1062     BiasedLocking::revoke(objects_to_revoke);
1063   }
1064 }
1065 
1066 
1067 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1068   if (!UseBiasedLocking) {
1069     return;
1070   }
1071 
1072   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1073   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1074   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1075     if (jt->has_last_Java_frame()) {
1076       StackFrameStream sfs(jt, true);
1077       while (!sfs.is_done()) {
1078         frame* cur = sfs.current();
1079         if (cb->contains(cur->pc())) {
1080           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1081           compiledVFrame* cvf = compiledVFrame::cast(vf);
1082           // Revoke monitors' biases in all scopes
1083           while (!cvf->is_top()) {
1084             collect_monitors(cvf, objects_to_revoke);
1085             cvf = compiledVFrame::cast(cvf->sender());
1086           }
1087           collect_monitors(cvf, objects_to_revoke);
1088         }
1089         sfs.next();
1090       }
1091     }
1092   }
1093   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1094 }
1095 
1096 
1097 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1098   assert(fr.can_be_deoptimized(), "checking frame type");
1099 
1100   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1101 
1102   // Patch the nmethod so that when execution returns to it we will
1103   // deopt the execution state and return to the interpreter.
1104   fr.deoptimize(thread);
1105 }
1106 
1107 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1108   // Deoptimize only if the frame comes from compile code.
1109   // Do not deoptimize the frame which is already patched
1110   // during the execution of the loops below.
1111   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1112     return;
1113   }
1114   ResourceMark rm;
1115   DeoptimizationMarker dm;
1116   if (UseBiasedLocking) {
1117     revoke_biases_of_monitors(thread, fr, map);
1118   }
1119   deoptimize_single_frame(thread, fr);
1120 
1121 }
1122 
1123 
1124 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1125   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1126          "can only deoptimize other thread at a safepoint");
1127   // Compute frame and register map based on thread and sp.
1128   RegisterMap reg_map(thread, UseBiasedLocking);
1129   frame fr = thread->last_frame();
1130   while (fr.id() != id) {
1131     fr = fr.sender(&reg_map);
1132   }
1133   deoptimize(thread, fr, &reg_map);
1134 }
1135 
1136 
1137 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1138   if (thread == Thread::current()) {
1139     Deoptimization::deoptimize_frame_internal(thread, id);
1140   } else {
1141     VM_DeoptimizeFrame deopt(thread, id);
1142     VMThread::execute(&deopt);
1143   }
1144 }
1145 
1146 
1147 // JVMTI PopFrame support
1148 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1149 {
1150   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1151 }
1152 JRT_END
1153 
1154 MethodData*
1155 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1156                                 bool create_if_missing) {
1157   Thread* THREAD = thread;
1158   MethodData* mdo = m()->method_data();
1159   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1160     // Build an MDO.  Ignore errors like OutOfMemory;
1161     // that simply means we won't have an MDO to update.
1162     Method::build_interpreter_method_data(m, THREAD);
1163     if (HAS_PENDING_EXCEPTION) {
1164       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1165       CLEAR_PENDING_EXCEPTION;
1166     }
1167     mdo = m()->method_data();
1168   }
1169   return mdo;
1170 }
1171 
1172 #if defined(COMPILER2) || defined(SHARK)
1173 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1174   // in case of an unresolved klass entry, load the class.
1175   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1176     Klass* tk = constant_pool->klass_at(index, CHECK);
1177     return;
1178   }
1179 
1180   if (!constant_pool->tag_at(index).is_symbol()) return;
1181 
1182   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1183   Symbol*  symbol  = constant_pool->symbol_at(index);
1184 
1185   // class name?
1186   if (symbol->byte_at(0) != '(') {
1187     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1188     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1189     return;
1190   }
1191 
1192   // then it must be a signature!
1193   ResourceMark rm(THREAD);
1194   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1195     if (ss.is_object()) {
1196       Symbol* class_name = ss.as_symbol(CHECK);
1197       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1198       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1199     }
1200   }
1201 }
1202 
1203 
1204 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1205   EXCEPTION_MARK;
1206   load_class_by_index(constant_pool, index, THREAD);
1207   if (HAS_PENDING_EXCEPTION) {
1208     // Exception happened during classloading. We ignore the exception here, since it
1209     // is going to be rethrown since the current activation is going to be deoptimized and
1210     // the interpreter will re-execute the bytecode.
1211     CLEAR_PENDING_EXCEPTION;
1212     // Class loading called java code which may have caused a stack
1213     // overflow. If the exception was thrown right before the return
1214     // to the runtime the stack is no longer guarded. Reguard the
1215     // stack otherwise if we return to the uncommon trap blob and the
1216     // stack bang causes a stack overflow we crash.
1217     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1218     JavaThread* thread = (JavaThread*)THREAD;
1219     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1220     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1221     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1222   }
1223 }
1224 
1225 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1226   HandleMark hm;
1227 
1228   // uncommon_trap() is called at the beginning of the uncommon trap
1229   // handler. Note this fact before we start generating temporary frames
1230   // that can confuse an asynchronous stack walker. This counter is
1231   // decremented at the end of unpack_frames().
1232   thread->inc_in_deopt_handler();
1233 
1234   // We need to update the map if we have biased locking.
1235   RegisterMap reg_map(thread, UseBiasedLocking);
1236   frame stub_frame = thread->last_frame();
1237   frame fr = stub_frame.sender(&reg_map);
1238   // Make sure the calling nmethod is not getting deoptimized and removed
1239   // before we are done with it.
1240   nmethodLocker nl(fr.pc());
1241 
1242   // Log a message
1243   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1244               trap_request, fr.pc());
1245 
1246   {
1247     ResourceMark rm;
1248 
1249     // Revoke biases of any monitors in the frame to ensure we can migrate them
1250     revoke_biases_of_monitors(thread, fr, &reg_map);
1251 
1252     DeoptReason reason = trap_request_reason(trap_request);
1253     DeoptAction action = trap_request_action(trap_request);
1254     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1255 
1256     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1257     compiledVFrame* cvf = compiledVFrame::cast(vf);
1258 
1259     nmethod* nm = cvf->code();
1260 
1261     ScopeDesc*      trap_scope  = cvf->scope();
1262     methodHandle    trap_method = trap_scope->method();
1263     int             trap_bci    = trap_scope->bci();
1264     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1265 
1266     // Record this event in the histogram.
1267     gather_statistics(reason, action, trap_bc);
1268 
1269     // Ensure that we can record deopt. history:
1270     // Need MDO to record RTM code generation state.
1271     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1272 
1273     MethodData* trap_mdo =
1274       get_method_data(thread, trap_method, create_if_missing);
1275 
1276     // Log a message
1277     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1278                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
1279                               trap_method->name_and_sig_as_C_string(), trap_bci);
1280 
1281     // Print a bunch of diagnostics, if requested.
1282     if (TraceDeoptimization || LogCompilation) {
1283       ResourceMark rm;
1284       ttyLocker ttyl;
1285       char buf[100];
1286       if (xtty != NULL) {
1287         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1288                          os::current_thread_id(),
1289                          format_trap_request(buf, sizeof(buf), trap_request));
1290         nm->log_identity(xtty);
1291       }
1292       Symbol* class_name = NULL;
1293       bool unresolved = false;
1294       if (unloaded_class_index >= 0) {
1295         constantPoolHandle constants (THREAD, trap_method->constants());
1296         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1297           class_name = constants->klass_name_at(unloaded_class_index);
1298           unresolved = true;
1299           if (xtty != NULL)
1300             xtty->print(" unresolved='1'");
1301         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1302           class_name = constants->symbol_at(unloaded_class_index);
1303         }
1304         if (xtty != NULL)
1305           xtty->name(class_name);
1306       }
1307       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1308         // Dump the relevant MDO state.
1309         // This is the deopt count for the current reason, any previous
1310         // reasons or recompiles seen at this point.
1311         int dcnt = trap_mdo->trap_count(reason);
1312         if (dcnt != 0)
1313           xtty->print(" count='%d'", dcnt);
1314         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1315         int dos = (pdata == NULL)? 0: pdata->trap_state();
1316         if (dos != 0) {
1317           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1318           if (trap_state_is_recompiled(dos)) {
1319             int recnt2 = trap_mdo->overflow_recompile_count();
1320             if (recnt2 != 0)
1321               xtty->print(" recompiles2='%d'", recnt2);
1322           }
1323         }
1324       }
1325       if (xtty != NULL) {
1326         xtty->stamp();
1327         xtty->end_head();
1328       }
1329       if (TraceDeoptimization) {  // make noise on the tty
1330         tty->print("Uncommon trap occurred in");
1331         nm->method()->print_short_name(tty);
1332         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1333                    fr.pc(),
1334                    os::current_thread_id(),
1335                    trap_reason_name(reason),
1336                    trap_action_name(action),
1337                    unloaded_class_index);
1338         if (class_name != NULL) {
1339           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1340           class_name->print_symbol_on(tty);
1341         }
1342         tty->cr();
1343       }
1344       if (xtty != NULL) {
1345         // Log the precise location of the trap.
1346         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1347           xtty->begin_elem("jvms bci='%d'", sd->bci());
1348           xtty->method(sd->method());
1349           xtty->end_elem();
1350           if (sd->is_top())  break;
1351         }
1352         xtty->tail("uncommon_trap");
1353       }
1354     }
1355     // (End diagnostic printout.)
1356 
1357     // Load class if necessary
1358     if (unloaded_class_index >= 0) {
1359       constantPoolHandle constants(THREAD, trap_method->constants());
1360       load_class_by_index(constants, unloaded_class_index);
1361     }
1362 
1363     // Flush the nmethod if necessary and desirable.
1364     //
1365     // We need to avoid situations where we are re-flushing the nmethod
1366     // because of a hot deoptimization site.  Repeated flushes at the same
1367     // point need to be detected by the compiler and avoided.  If the compiler
1368     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1369     // module must take measures to avoid an infinite cycle of recompilation
1370     // and deoptimization.  There are several such measures:
1371     //
1372     //   1. If a recompilation is ordered a second time at some site X
1373     //   and for the same reason R, the action is adjusted to 'reinterpret',
1374     //   to give the interpreter time to exercise the method more thoroughly.
1375     //   If this happens, the method's overflow_recompile_count is incremented.
1376     //
1377     //   2. If the compiler fails to reduce the deoptimization rate, then
1378     //   the method's overflow_recompile_count will begin to exceed the set
1379     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1380     //   is adjusted to 'make_not_compilable', and the method is abandoned
1381     //   to the interpreter.  This is a performance hit for hot methods,
1382     //   but is better than a disastrous infinite cycle of recompilations.
1383     //   (Actually, only the method containing the site X is abandoned.)
1384     //
1385     //   3. In parallel with the previous measures, if the total number of
1386     //   recompilations of a method exceeds the much larger set limit
1387     //   PerMethodRecompilationCutoff, the method is abandoned.
1388     //   This should only happen if the method is very large and has
1389     //   many "lukewarm" deoptimizations.  The code which enforces this
1390     //   limit is elsewhere (class nmethod, class Method).
1391     //
1392     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1393     // to recompile at each bytecode independently of the per-BCI cutoff.
1394     //
1395     // The decision to update code is up to the compiler, and is encoded
1396     // in the Action_xxx code.  If the compiler requests Action_none
1397     // no trap state is changed, no compiled code is changed, and the
1398     // computation suffers along in the interpreter.
1399     //
1400     // The other action codes specify various tactics for decompilation
1401     // and recompilation.  Action_maybe_recompile is the loosest, and
1402     // allows the compiled code to stay around until enough traps are seen,
1403     // and until the compiler gets around to recompiling the trapping method.
1404     //
1405     // The other actions cause immediate removal of the present code.
1406 
1407     bool update_trap_state = (reason != Reason_tenured);
1408     bool make_not_entrant = false;
1409     bool make_not_compilable = false;
1410     bool reprofile = false;
1411     switch (action) {
1412     case Action_none:
1413       // Keep the old code.
1414       update_trap_state = false;
1415       break;
1416     case Action_maybe_recompile:
1417       // Do not need to invalidate the present code, but we can
1418       // initiate another
1419       // Start compiler without (necessarily) invalidating the nmethod.
1420       // The system will tolerate the old code, but new code should be
1421       // generated when possible.
1422       break;
1423     case Action_reinterpret:
1424       // Go back into the interpreter for a while, and then consider
1425       // recompiling form scratch.
1426       make_not_entrant = true;
1427       // Reset invocation counter for outer most method.
1428       // This will allow the interpreter to exercise the bytecodes
1429       // for a while before recompiling.
1430       // By contrast, Action_make_not_entrant is immediate.
1431       //
1432       // Note that the compiler will track null_check, null_assert,
1433       // range_check, and class_check events and log them as if they
1434       // had been traps taken from compiled code.  This will update
1435       // the MDO trap history so that the next compilation will
1436       // properly detect hot trap sites.
1437       reprofile = true;
1438       break;
1439     case Action_make_not_entrant:
1440       // Request immediate recompilation, and get rid of the old code.
1441       // Make them not entrant, so next time they are called they get
1442       // recompiled.  Unloaded classes are loaded now so recompile before next
1443       // time they are called.  Same for uninitialized.  The interpreter will
1444       // link the missing class, if any.
1445       make_not_entrant = true;
1446       break;
1447     case Action_make_not_compilable:
1448       // Give up on compiling this method at all.
1449       make_not_entrant = true;
1450       make_not_compilable = true;
1451       break;
1452     default:
1453       ShouldNotReachHere();
1454     }
1455 
1456     // Setting +ProfileTraps fixes the following, on all platforms:
1457     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1458     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1459     // recompile relies on a MethodData* to record heroic opt failures.
1460 
1461     // Whether the interpreter is producing MDO data or not, we also need
1462     // to use the MDO to detect hot deoptimization points and control
1463     // aggressive optimization.
1464     bool inc_recompile_count = false;
1465     ProfileData* pdata = NULL;
1466     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1467       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1468       uint this_trap_count = 0;
1469       bool maybe_prior_trap = false;
1470       bool maybe_prior_recompile = false;
1471       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1472                                    nm->method(),
1473                                    //outputs:
1474                                    this_trap_count,
1475                                    maybe_prior_trap,
1476                                    maybe_prior_recompile);
1477       // Because the interpreter also counts null, div0, range, and class
1478       // checks, these traps from compiled code are double-counted.
1479       // This is harmless; it just means that the PerXTrapLimit values
1480       // are in effect a little smaller than they look.
1481 
1482       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1483       if (per_bc_reason != Reason_none) {
1484         // Now take action based on the partially known per-BCI history.
1485         if (maybe_prior_trap
1486             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1487           // If there are too many traps at this BCI, force a recompile.
1488           // This will allow the compiler to see the limit overflow, and
1489           // take corrective action, if possible.  The compiler generally
1490           // does not use the exact PerBytecodeTrapLimit value, but instead
1491           // changes its tactics if it sees any traps at all.  This provides
1492           // a little hysteresis, delaying a recompile until a trap happens
1493           // several times.
1494           //
1495           // Actually, since there is only one bit of counter per BCI,
1496           // the possible per-BCI counts are {0,1,(per-method count)}.
1497           // This produces accurate results if in fact there is only
1498           // one hot trap site, but begins to get fuzzy if there are
1499           // many sites.  For example, if there are ten sites each
1500           // trapping two or more times, they each get the blame for
1501           // all of their traps.
1502           make_not_entrant = true;
1503         }
1504 
1505         // Detect repeated recompilation at the same BCI, and enforce a limit.
1506         if (make_not_entrant && maybe_prior_recompile) {
1507           // More than one recompile at this point.
1508           inc_recompile_count = maybe_prior_trap;
1509         }
1510       } else {
1511         // For reasons which are not recorded per-bytecode, we simply
1512         // force recompiles unconditionally.
1513         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1514         make_not_entrant = true;
1515       }
1516 
1517       // Go back to the compiler if there are too many traps in this method.
1518       if (this_trap_count >= per_method_trap_limit(reason)) {
1519         // If there are too many traps in this method, force a recompile.
1520         // This will allow the compiler to see the limit overflow, and
1521         // take corrective action, if possible.
1522         // (This condition is an unlikely backstop only, because the
1523         // PerBytecodeTrapLimit is more likely to take effect first,
1524         // if it is applicable.)
1525         make_not_entrant = true;
1526       }
1527 
1528       // Here's more hysteresis:  If there has been a recompile at
1529       // this trap point already, run the method in the interpreter
1530       // for a while to exercise it more thoroughly.
1531       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1532         reprofile = true;
1533       }
1534     }
1535 
1536     // Take requested actions on the method:
1537 
1538     // Recompile
1539     if (make_not_entrant) {
1540       if (!nm->make_not_entrant()) {
1541         return; // the call did not change nmethod's state
1542       }
1543 
1544       if (pdata != NULL) {
1545         // Record the recompilation event, if any.
1546         int tstate0 = pdata->trap_state();
1547         int tstate1 = trap_state_set_recompiled(tstate0, true);
1548         if (tstate1 != tstate0)
1549           pdata->set_trap_state(tstate1);
1550       }
1551 
1552 #if INCLUDE_RTM_OPT
1553       // Restart collecting RTM locking abort statistic if the method
1554       // is recompiled for a reason other than RTM state change.
1555       // Assume that in new recompiled code the statistic could be different,
1556       // for example, due to different inlining.
1557       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1558           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1559         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1560       }
1561 #endif
1562       // For code aging we count traps separately here, using make_not_entrant()
1563       // as a guard against simultaneous deopts in multiple threads.
1564       if (reason == Reason_tenured && trap_mdo != NULL) {
1565         trap_mdo->inc_tenure_traps();
1566       }
1567     }
1568 
1569     if (inc_recompile_count) {
1570       trap_mdo->inc_overflow_recompile_count();
1571       if ((uint)trap_mdo->overflow_recompile_count() >
1572           (uint)PerBytecodeRecompilationCutoff) {
1573         // Give up on the method containing the bad BCI.
1574         if (trap_method() == nm->method()) {
1575           make_not_compilable = true;
1576         } else {
1577           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1578           // But give grace to the enclosing nm->method().
1579         }
1580       }
1581     }
1582 
1583     // Reprofile
1584     if (reprofile) {
1585       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1586     }
1587 
1588     // Give up compiling
1589     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1590       assert(make_not_entrant, "consistent");
1591       nm->method()->set_not_compilable(CompLevel_full_optimization);
1592     }
1593 
1594   } // Free marked resources
1595 
1596 }
1597 JRT_END
1598 
1599 ProfileData*
1600 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1601                                          int trap_bci,
1602                                          Deoptimization::DeoptReason reason,
1603                                          Method* compiled_method,
1604                                          //outputs:
1605                                          uint& ret_this_trap_count,
1606                                          bool& ret_maybe_prior_trap,
1607                                          bool& ret_maybe_prior_recompile) {
1608   uint prior_trap_count = trap_mdo->trap_count(reason);
1609   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1610 
1611   // If the runtime cannot find a place to store trap history,
1612   // it is estimated based on the general condition of the method.
1613   // If the method has ever been recompiled, or has ever incurred
1614   // a trap with the present reason , then this BCI is assumed
1615   // (pessimistically) to be the culprit.
1616   bool maybe_prior_trap      = (prior_trap_count != 0);
1617   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1618   ProfileData* pdata = NULL;
1619 
1620 
1621   // For reasons which are recorded per bytecode, we check per-BCI data.
1622   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1623   if (per_bc_reason != Reason_none) {
1624     // Find the profile data for this BCI.  If there isn't one,
1625     // try to allocate one from the MDO's set of spares.
1626     // This will let us detect a repeated trap at this point.
1627     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1628 
1629     if (pdata != NULL) {
1630       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1631         if (LogCompilation && xtty != NULL) {
1632           ttyLocker ttyl;
1633           // no more room for speculative traps in this MDO
1634           xtty->elem("speculative_traps_oom");
1635         }
1636       }
1637       // Query the trap state of this profile datum.
1638       int tstate0 = pdata->trap_state();
1639       if (!trap_state_has_reason(tstate0, per_bc_reason))
1640         maybe_prior_trap = false;
1641       if (!trap_state_is_recompiled(tstate0))
1642         maybe_prior_recompile = false;
1643 
1644       // Update the trap state of this profile datum.
1645       int tstate1 = tstate0;
1646       // Record the reason.
1647       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1648       // Store the updated state on the MDO, for next time.
1649       if (tstate1 != tstate0)
1650         pdata->set_trap_state(tstate1);
1651     } else {
1652       if (LogCompilation && xtty != NULL) {
1653         ttyLocker ttyl;
1654         // Missing MDP?  Leave a small complaint in the log.
1655         xtty->elem("missing_mdp bci='%d'", trap_bci);
1656       }
1657     }
1658   }
1659 
1660   // Return results:
1661   ret_this_trap_count = this_trap_count;
1662   ret_maybe_prior_trap = maybe_prior_trap;
1663   ret_maybe_prior_recompile = maybe_prior_recompile;
1664   return pdata;
1665 }
1666 
1667 void
1668 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1669   ResourceMark rm;
1670   // Ignored outputs:
1671   uint ignore_this_trap_count;
1672   bool ignore_maybe_prior_trap;
1673   bool ignore_maybe_prior_recompile;
1674   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1675   query_update_method_data(trap_mdo, trap_bci,
1676                            (DeoptReason)reason,
1677                            NULL,
1678                            ignore_this_trap_count,
1679                            ignore_maybe_prior_trap,
1680                            ignore_maybe_prior_recompile);
1681 }
1682 
1683 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1684 
1685   // Still in Java no safepoints
1686   {
1687     // This enters VM and may safepoint
1688     uncommon_trap_inner(thread, trap_request);
1689   }
1690   return fetch_unroll_info_helper(thread);
1691 }
1692 
1693 // Local derived constants.
1694 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1695 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1696 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1697 
1698 //---------------------------trap_state_reason---------------------------------
1699 Deoptimization::DeoptReason
1700 Deoptimization::trap_state_reason(int trap_state) {
1701   // This assert provides the link between the width of DataLayout::trap_bits
1702   // and the encoding of "recorded" reasons.  It ensures there are enough
1703   // bits to store all needed reasons in the per-BCI MDO profile.
1704   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1705   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1706   trap_state -= recompile_bit;
1707   if (trap_state == DS_REASON_MASK) {
1708     return Reason_many;
1709   } else {
1710     assert((int)Reason_none == 0, "state=0 => Reason_none");
1711     return (DeoptReason)trap_state;
1712   }
1713 }
1714 //-------------------------trap_state_has_reason-------------------------------
1715 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1716   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1717   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1718   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1719   trap_state -= recompile_bit;
1720   if (trap_state == DS_REASON_MASK) {
1721     return -1;  // true, unspecifically (bottom of state lattice)
1722   } else if (trap_state == reason) {
1723     return 1;   // true, definitely
1724   } else if (trap_state == 0) {
1725     return 0;   // false, definitely (top of state lattice)
1726   } else {
1727     return 0;   // false, definitely
1728   }
1729 }
1730 //-------------------------trap_state_add_reason-------------------------------
1731 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1732   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1733   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1734   trap_state -= recompile_bit;
1735   if (trap_state == DS_REASON_MASK) {
1736     return trap_state + recompile_bit;     // already at state lattice bottom
1737   } else if (trap_state == reason) {
1738     return trap_state + recompile_bit;     // the condition is already true
1739   } else if (trap_state == 0) {
1740     return reason + recompile_bit;          // no condition has yet been true
1741   } else {
1742     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1743   }
1744 }
1745 //-----------------------trap_state_is_recompiled------------------------------
1746 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1747   return (trap_state & DS_RECOMPILE_BIT) != 0;
1748 }
1749 //-----------------------trap_state_set_recompiled-----------------------------
1750 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1751   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1752   else    return trap_state & ~DS_RECOMPILE_BIT;
1753 }
1754 //---------------------------format_trap_state---------------------------------
1755 // This is used for debugging and diagnostics, including LogFile output.
1756 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1757                                               int trap_state) {
1758   DeoptReason reason      = trap_state_reason(trap_state);
1759   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1760   // Re-encode the state from its decoded components.
1761   int decoded_state = 0;
1762   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1763     decoded_state = trap_state_add_reason(decoded_state, reason);
1764   if (recomp_flag)
1765     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1766   // If the state re-encodes properly, format it symbolically.
1767   // Because this routine is used for debugging and diagnostics,
1768   // be robust even if the state is a strange value.
1769   size_t len;
1770   if (decoded_state != trap_state) {
1771     // Random buggy state that doesn't decode??
1772     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1773   } else {
1774     len = jio_snprintf(buf, buflen, "%s%s",
1775                        trap_reason_name(reason),
1776                        recomp_flag ? " recompiled" : "");
1777   }
1778   if (len >= buflen)
1779     buf[buflen-1] = '\0';
1780   return buf;
1781 }
1782 
1783 
1784 //--------------------------------statics--------------------------------------
1785 const char* Deoptimization::_trap_reason_name[] = {
1786   // Note:  Keep this in sync. with enum DeoptReason.
1787   "none",
1788   "null_check",
1789   "null_assert",
1790   "range_check",
1791   "class_check",
1792   "array_check",
1793   "intrinsic",
1794   "bimorphic",
1795   "unloaded",
1796   "uninitialized",
1797   "unreached",
1798   "unhandled",
1799   "constraint",
1800   "div0_check",
1801   "age",
1802   "predicate",
1803   "loop_limit_check",
1804   "speculate_class_check",
1805   "speculate_null_check",
1806   "rtm_state_change",
1807   "unstable_if",
1808   "tenured"
1809 };
1810 const char* Deoptimization::_trap_action_name[] = {
1811   // Note:  Keep this in sync. with enum DeoptAction.
1812   "none",
1813   "maybe_recompile",
1814   "reinterpret",
1815   "make_not_entrant",
1816   "make_not_compilable"
1817 };
1818 
1819 const char* Deoptimization::trap_reason_name(int reason) {
1820   // Check that every reason has a name
1821   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
1822 
1823   if (reason == Reason_many)  return "many";
1824   if ((uint)reason < Reason_LIMIT)
1825     return _trap_reason_name[reason];
1826   static char buf[20];
1827   sprintf(buf, "reason%d", reason);
1828   return buf;
1829 }
1830 const char* Deoptimization::trap_action_name(int action) {
1831   // Check that every action has a name
1832   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
1833 
1834   if ((uint)action < Action_LIMIT)
1835     return _trap_action_name[action];
1836   static char buf[20];
1837   sprintf(buf, "action%d", action);
1838   return buf;
1839 }
1840 
1841 // This is used for debugging and diagnostics, including LogFile output.
1842 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1843                                                 int trap_request) {
1844   jint unloaded_class_index = trap_request_index(trap_request);
1845   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1846   const char* action = trap_action_name(trap_request_action(trap_request));
1847   size_t len;
1848   if (unloaded_class_index < 0) {
1849     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1850                        reason, action);
1851   } else {
1852     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1853                        reason, action, unloaded_class_index);
1854   }
1855   if (len >= buflen)
1856     buf[buflen-1] = '\0';
1857   return buf;
1858 }
1859 
1860 juint Deoptimization::_deoptimization_hist
1861         [Deoptimization::Reason_LIMIT]
1862     [1 + Deoptimization::Action_LIMIT]
1863         [Deoptimization::BC_CASE_LIMIT]
1864   = {0};
1865 
1866 enum {
1867   LSB_BITS = 8,
1868   LSB_MASK = right_n_bits(LSB_BITS)
1869 };
1870 
1871 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1872                                        Bytecodes::Code bc) {
1873   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1874   assert(action >= 0 && action < Action_LIMIT, "oob");
1875   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1876   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1877   juint* cases = _deoptimization_hist[reason][1+action];
1878   juint* bc_counter_addr = NULL;
1879   juint  bc_counter      = 0;
1880   // Look for an unused counter, or an exact match to this BC.
1881   if (bc != Bytecodes::_illegal) {
1882     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1883       juint* counter_addr = &cases[bc_case];
1884       juint  counter = *counter_addr;
1885       if ((counter == 0 && bc_counter_addr == NULL)
1886           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1887         // this counter is either free or is already devoted to this BC
1888         bc_counter_addr = counter_addr;
1889         bc_counter = counter | bc;
1890       }
1891     }
1892   }
1893   if (bc_counter_addr == NULL) {
1894     // Overflow, or no given bytecode.
1895     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1896     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1897   }
1898   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1899 }
1900 
1901 jint Deoptimization::total_deoptimization_count() {
1902   return _deoptimization_hist[Reason_none][0][0];
1903 }
1904 
1905 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1906   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1907   return _deoptimization_hist[reason][0][0];
1908 }
1909 
1910 void Deoptimization::print_statistics() {
1911   juint total = total_deoptimization_count();
1912   juint account = total;
1913   if (total != 0) {
1914     ttyLocker ttyl;
1915     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1916     tty->print_cr("Deoptimization traps recorded:");
1917     #define PRINT_STAT_LINE(name, r) \
1918       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1919     PRINT_STAT_LINE("total", total);
1920     // For each non-zero entry in the histogram, print the reason,
1921     // the action, and (if specifically known) the type of bytecode.
1922     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1923       for (int action = 0; action < Action_LIMIT; action++) {
1924         juint* cases = _deoptimization_hist[reason][1+action];
1925         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1926           juint counter = cases[bc_case];
1927           if (counter != 0) {
1928             char name[1*K];
1929             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1930             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1931               bc = Bytecodes::_illegal;
1932             sprintf(name, "%s/%s/%s",
1933                     trap_reason_name(reason),
1934                     trap_action_name(action),
1935                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1936             juint r = counter >> LSB_BITS;
1937             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1938             account -= r;
1939           }
1940         }
1941       }
1942     }
1943     if (account != 0) {
1944       PRINT_STAT_LINE("unaccounted", account);
1945     }
1946     #undef PRINT_STAT_LINE
1947     if (xtty != NULL)  xtty->tail("statistics");
1948   }
1949 }
1950 #else // COMPILER2 || SHARK
1951 
1952 
1953 // Stubs for C1 only system.
1954 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1955   return false;
1956 }
1957 
1958 const char* Deoptimization::trap_reason_name(int reason) {
1959   return "unknown";
1960 }
1961 
1962 void Deoptimization::print_statistics() {
1963   // no output
1964 }
1965 
1966 void
1967 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1968   // no udpate
1969 }
1970 
1971 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1972   return 0;
1973 }
1974 
1975 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1976                                        Bytecodes::Code bc) {
1977   // no update
1978 }
1979 
1980 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1981                                               int trap_state) {
1982   jio_snprintf(buf, buflen, "#%d", trap_state);
1983   return buf;
1984 }
1985 
1986 #endif // COMPILER2 || SHARK