1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc_implementation/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) /* nothing */
  50 #define STOP(error) stop(error)
  51 #else
  52 #define BLOCK_COMMENT(str) block_comment(str)
  53 #define STOP(error) block_comment(error); stop(error)
  54 #endif
  55 
  56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 #ifdef ASSERT
  61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  62 #endif
  63 
  64 static Assembler::Condition reverse[] = {
  65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  71     Assembler::above          /* belowEqual    = 0x6 */ ,
  72     Assembler::belowEqual     /* above         = 0x7 */ ,
  73     Assembler::positive       /* negative      = 0x8 */ ,
  74     Assembler::negative       /* positive      = 0x9 */ ,
  75     Assembler::noParity       /* parity        = 0xa */ ,
  76     Assembler::parity         /* noParity      = 0xb */ ,
  77     Assembler::greaterEqual   /* less          = 0xc */ ,
  78     Assembler::less           /* greaterEqual  = 0xd */ ,
  79     Assembler::greater        /* lessEqual     = 0xe */ ,
  80     Assembler::lessEqual      /* greater       = 0xf, */
  81 
  82 };
  83 
  84 
  85 // Implementation of MacroAssembler
  86 
  87 // First all the versions that have distinct versions depending on 32/64 bit
  88 // Unless the difference is trivial (1 line or so).
  89 
  90 #ifndef _LP64
  91 
  92 // 32bit versions
  93 
  94 Address MacroAssembler::as_Address(AddressLiteral adr) {
  95   return Address(adr.target(), adr.rspec());
  96 }
  97 
  98 Address MacroAssembler::as_Address(ArrayAddress adr) {
  99   return Address::make_array(adr);
 100 }
 101 
 102 void MacroAssembler::call_VM_leaf_base(address entry_point,
 103                                        int number_of_arguments) {
 104   call(RuntimeAddress(entry_point));
 105   increment(rsp, number_of_arguments * wordSize);
 106 }
 107 
 108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 110 }
 111 
 112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::extend_sign(Register hi, Register lo) {
 125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 127     cdql();
 128   } else {
 129     movl(hi, lo);
 130     sarl(hi, 31);
 131   }
 132 }
 133 
 134 void MacroAssembler::jC2(Register tmp, Label& L) {
 135   // set parity bit if FPU flag C2 is set (via rax)
 136   save_rax(tmp);
 137   fwait(); fnstsw_ax();
 138   sahf();
 139   restore_rax(tmp);
 140   // branch
 141   jcc(Assembler::parity, L);
 142 }
 143 
 144 void MacroAssembler::jnC2(Register tmp, Label& L) {
 145   // set parity bit if FPU flag C2 is set (via rax)
 146   save_rax(tmp);
 147   fwait(); fnstsw_ax();
 148   sahf();
 149   restore_rax(tmp);
 150   // branch
 151   jcc(Assembler::noParity, L);
 152 }
 153 
 154 // 32bit can do a case table jump in one instruction but we no longer allow the base
 155 // to be installed in the Address class
 156 void MacroAssembler::jump(ArrayAddress entry) {
 157   jmp(as_Address(entry));
 158 }
 159 
 160 // Note: y_lo will be destroyed
 161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 162   // Long compare for Java (semantics as described in JVM spec.)
 163   Label high, low, done;
 164 
 165   cmpl(x_hi, y_hi);
 166   jcc(Assembler::less, low);
 167   jcc(Assembler::greater, high);
 168   // x_hi is the return register
 169   xorl(x_hi, x_hi);
 170   cmpl(x_lo, y_lo);
 171   jcc(Assembler::below, low);
 172   jcc(Assembler::equal, done);
 173 
 174   bind(high);
 175   xorl(x_hi, x_hi);
 176   increment(x_hi);
 177   jmp(done);
 178 
 179   bind(low);
 180   xorl(x_hi, x_hi);
 181   decrementl(x_hi);
 182 
 183   bind(done);
 184 }
 185 
 186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 188 }
 189 
 190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 191   // leal(dst, as_Address(adr));
 192   // see note in movl as to why we must use a move
 193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 194 }
 195 
 196 void MacroAssembler::leave() {
 197   mov(rsp, rbp);
 198   pop(rbp);
 199 }
 200 
 201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 202   // Multiplication of two Java long values stored on the stack
 203   // as illustrated below. Result is in rdx:rax.
 204   //
 205   // rsp ---> [  ??  ] \               \
 206   //            ....    | y_rsp_offset  |
 207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 208   //          [ y_hi ]                  | (in bytes)
 209   //            ....                    |
 210   //          [ x_lo ]                 /
 211   //          [ x_hi ]
 212   //            ....
 213   //
 214   // Basic idea: lo(result) = lo(x_lo * y_lo)
 215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 218   Label quick;
 219   // load x_hi, y_hi and check if quick
 220   // multiplication is possible
 221   movl(rbx, x_hi);
 222   movl(rcx, y_hi);
 223   movl(rax, rbx);
 224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 226   // do full multiplication
 227   // 1st step
 228   mull(y_lo);                                    // x_hi * y_lo
 229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 230   // 2nd step
 231   movl(rax, x_lo);
 232   mull(rcx);                                     // x_lo * y_hi
 233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 234   // 3rd step
 235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 236   movl(rax, x_lo);
 237   mull(y_lo);                                    // x_lo * y_lo
 238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 239 }
 240 
 241 void MacroAssembler::lneg(Register hi, Register lo) {
 242   negl(lo);
 243   adcl(hi, 0);
 244   negl(hi);
 245 }
 246 
 247 void MacroAssembler::lshl(Register hi, Register lo) {
 248   // Java shift left long support (semantics as described in JVM spec., p.305)
 249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 250   // shift value is in rcx !
 251   assert(hi != rcx, "must not use rcx");
 252   assert(lo != rcx, "must not use rcx");
 253   const Register s = rcx;                        // shift count
 254   const int      n = BitsPerWord;
 255   Label L;
 256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 257   cmpl(s, n);                                    // if (s < n)
 258   jcc(Assembler::less, L);                       // else (s >= n)
 259   movl(hi, lo);                                  // x := x << n
 260   xorl(lo, lo);
 261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 262   bind(L);                                       // s (mod n) < n
 263   shldl(hi, lo);                                 // x := x << s
 264   shll(lo);
 265 }
 266 
 267 
 268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 271   assert(hi != rcx, "must not use rcx");
 272   assert(lo != rcx, "must not use rcx");
 273   const Register s = rcx;                        // shift count
 274   const int      n = BitsPerWord;
 275   Label L;
 276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 277   cmpl(s, n);                                    // if (s < n)
 278   jcc(Assembler::less, L);                       // else (s >= n)
 279   movl(lo, hi);                                  // x := x >> n
 280   if (sign_extension) sarl(hi, 31);
 281   else                xorl(hi, hi);
 282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 283   bind(L);                                       // s (mod n) < n
 284   shrdl(lo, hi);                                 // x := x >> s
 285   if (sign_extension) sarl(hi);
 286   else                shrl(hi);
 287 }
 288 
 289 void MacroAssembler::movoop(Register dst, jobject obj) {
 290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 291 }
 292 
 293 void MacroAssembler::movoop(Address dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 306   // scratch register is not used,
 307   // it is defined to match parameters of 64-bit version of this method.
 308   if (src.is_lval()) {
 309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 310   } else {
 311     movl(dst, as_Address(src));
 312   }
 313 }
 314 
 315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 316   movl(as_Address(dst), src);
 317 }
 318 
 319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 320   movl(dst, as_Address(src));
 321 }
 322 
 323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 324 void MacroAssembler::movptr(Address dst, intptr_t src) {
 325   movl(dst, src);
 326 }
 327 
 328 
 329 void MacroAssembler::pop_callee_saved_registers() {
 330   pop(rcx);
 331   pop(rdx);
 332   pop(rdi);
 333   pop(rsi);
 334 }
 335 
 336 void MacroAssembler::pop_fTOS() {
 337   fld_d(Address(rsp, 0));
 338   addl(rsp, 2 * wordSize);
 339 }
 340 
 341 void MacroAssembler::push_callee_saved_registers() {
 342   push(rsi);
 343   push(rdi);
 344   push(rdx);
 345   push(rcx);
 346 }
 347 
 348 void MacroAssembler::push_fTOS() {
 349   subl(rsp, 2 * wordSize);
 350   fstp_d(Address(rsp, 0));
 351 }
 352 
 353 
 354 void MacroAssembler::pushoop(jobject obj) {
 355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 356 }
 357 
 358 void MacroAssembler::pushklass(Metadata* obj) {
 359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushptr(AddressLiteral src) {
 363   if (src.is_lval()) {
 364     push_literal32((int32_t)src.target(), src.rspec());
 365   } else {
 366     pushl(as_Address(src));
 367   }
 368 }
 369 
 370 void MacroAssembler::set_word_if_not_zero(Register dst) {
 371   xorl(dst, dst);
 372   set_byte_if_not_zero(dst);
 373 }
 374 
 375 static void pass_arg0(MacroAssembler* masm, Register arg) {
 376   masm->push(arg);
 377 }
 378 
 379 static void pass_arg1(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg2(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg3(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 #ifndef PRODUCT
 392 extern "C" void findpc(intptr_t x);
 393 #endif
 394 
 395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 396   // In order to get locks to work, we need to fake a in_VM state
 397   JavaThread* thread = JavaThread::current();
 398   JavaThreadState saved_state = thread->thread_state();
 399   thread->set_thread_state(_thread_in_vm);
 400   if (ShowMessageBoxOnError) {
 401     JavaThread* thread = JavaThread::current();
 402     JavaThreadState saved_state = thread->thread_state();
 403     thread->set_thread_state(_thread_in_vm);
 404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 405       ttyLocker ttyl;
 406       BytecodeCounter::print();
 407     }
 408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 409     // This is the value of eip which points to where verify_oop will return.
 410     if (os::message_box(msg, "Execution stopped, print registers?")) {
 411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 412       BREAKPOINT;
 413     }
 414   } else {
 415     ttyLocker ttyl;
 416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 417   }
 418   // Don't assert holding the ttyLock
 419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 421 }
 422 
 423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 424   ttyLocker ttyl;
 425   FlagSetting fs(Debugging, true);
 426   tty->print_cr("eip = 0x%08x", eip);
 427 #ifndef PRODUCT
 428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 429     tty->cr();
 430     findpc(eip);
 431     tty->cr();
 432   }
 433 #endif
 434 #define PRINT_REG(rax) \
 435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 436   PRINT_REG(rax);
 437   PRINT_REG(rbx);
 438   PRINT_REG(rcx);
 439   PRINT_REG(rdx);
 440   PRINT_REG(rdi);
 441   PRINT_REG(rsi);
 442   PRINT_REG(rbp);
 443   PRINT_REG(rsp);
 444 #undef PRINT_REG
 445   // Print some words near top of staack.
 446   int* dump_sp = (int*) rsp;
 447   for (int col1 = 0; col1 < 8; col1++) {
 448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 449     os::print_location(tty, *dump_sp++);
 450   }
 451   for (int row = 0; row < 16; row++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     for (int col = 0; col < 8; col++) {
 454       tty->print(" 0x%08x", *dump_sp++);
 455     }
 456     tty->cr();
 457   }
 458   // Print some instructions around pc:
 459   Disassembler::decode((address)eip-64, (address)eip);
 460   tty->print_cr("--------");
 461   Disassembler::decode((address)eip, (address)eip+32);
 462 }
 463 
 464 void MacroAssembler::stop(const char* msg) {
 465   ExternalAddress message((address)msg);
 466   // push address of message
 467   pushptr(message.addr());
 468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 469   pusha();                                            // push registers
 470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 471   hlt();
 472 }
 473 
 474 void MacroAssembler::warn(const char* msg) {
 475   push_CPU_state();
 476 
 477   ExternalAddress message((address) msg);
 478   // push address of message
 479   pushptr(message.addr());
 480 
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 482   addl(rsp, wordSize);       // discard argument
 483   pop_CPU_state();
 484 }
 485 
 486 void MacroAssembler::print_state() {
 487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 488   pusha();                                            // push registers
 489 
 490   push_CPU_state();
 491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 492   pop_CPU_state();
 493 
 494   popa();
 495   addl(rsp, wordSize);
 496 }
 497 
 498 #else // _LP64
 499 
 500 // 64 bit versions
 501 
 502 Address MacroAssembler::as_Address(AddressLiteral adr) {
 503   // amd64 always does this as a pc-rel
 504   // we can be absolute or disp based on the instruction type
 505   // jmp/call are displacements others are absolute
 506   assert(!adr.is_lval(), "must be rval");
 507   assert(reachable(adr), "must be");
 508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 509 
 510 }
 511 
 512 Address MacroAssembler::as_Address(ArrayAddress adr) {
 513   AddressLiteral base = adr.base();
 514   lea(rscratch1, base);
 515   Address index = adr.index();
 516   assert(index._disp == 0, "must not have disp"); // maybe it can?
 517   Address array(rscratch1, index._index, index._scale, index._disp);
 518   return array;
 519 }
 520 
 521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 522   Label L, E;
 523 
 524 #ifdef _WIN64
 525   // Windows always allocates space for it's register args
 526   assert(num_args <= 4, "only register arguments supported");
 527   subq(rsp,  frame::arg_reg_save_area_bytes);
 528 #endif
 529 
 530   // Align stack if necessary
 531   testl(rsp, 15);
 532   jcc(Assembler::zero, L);
 533 
 534   subq(rsp, 8);
 535   {
 536     call(RuntimeAddress(entry_point));
 537   }
 538   addq(rsp, 8);
 539   jmp(E);
 540 
 541   bind(L);
 542   {
 543     call(RuntimeAddress(entry_point));
 544   }
 545 
 546   bind(E);
 547 
 548 #ifdef _WIN64
 549   // restore stack pointer
 550   addq(rsp, frame::arg_reg_save_area_bytes);
 551 #endif
 552 
 553 }
 554 
 555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 556   assert(!src2.is_lval(), "should use cmpptr");
 557 
 558   if (reachable(src2)) {
 559     cmpq(src1, as_Address(src2));
 560   } else {
 561     lea(rscratch1, src2);
 562     Assembler::cmpq(src1, Address(rscratch1, 0));
 563   }
 564 }
 565 
 566 int MacroAssembler::corrected_idivq(Register reg) {
 567   // Full implementation of Java ldiv and lrem; checks for special
 568   // case as described in JVM spec., p.243 & p.271.  The function
 569   // returns the (pc) offset of the idivl instruction - may be needed
 570   // for implicit exceptions.
 571   //
 572   //         normal case                           special case
 573   //
 574   // input : rax: dividend                         min_long
 575   //         reg: divisor   (may not be eax/edx)   -1
 576   //
 577   // output: rax: quotient  (= rax idiv reg)       min_long
 578   //         rdx: remainder (= rax irem reg)       0
 579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 580   static const int64_t min_long = 0x8000000000000000;
 581   Label normal_case, special_case;
 582 
 583   // check for special case
 584   cmp64(rax, ExternalAddress((address) &min_long));
 585   jcc(Assembler::notEqual, normal_case);
 586   xorl(rdx, rdx); // prepare rdx for possible special case (where
 587                   // remainder = 0)
 588   cmpq(reg, -1);
 589   jcc(Assembler::equal, special_case);
 590 
 591   // handle normal case
 592   bind(normal_case);
 593   cdqq();
 594   int idivq_offset = offset();
 595   idivq(reg);
 596 
 597   // normal and special case exit
 598   bind(special_case);
 599 
 600   return idivq_offset;
 601 }
 602 
 603 void MacroAssembler::decrementq(Register reg, int value) {
 604   if (value == min_jint) { subq(reg, value); return; }
 605   if (value <  0) { incrementq(reg, -value); return; }
 606   if (value == 0) {                        ; return; }
 607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 608   /* else */      { subq(reg, value)       ; return; }
 609 }
 610 
 611 void MacroAssembler::decrementq(Address dst, int value) {
 612   if (value == min_jint) { subq(dst, value); return; }
 613   if (value <  0) { incrementq(dst, -value); return; }
 614   if (value == 0) {                        ; return; }
 615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 616   /* else */      { subq(dst, value)       ; return; }
 617 }
 618 
 619 void MacroAssembler::incrementq(AddressLiteral dst) {
 620   if (reachable(dst)) {
 621     incrementq(as_Address(dst));
 622   } else {
 623     lea(rscratch1, dst);
 624     incrementq(Address(rscratch1, 0));
 625   }
 626 }
 627 
 628 void MacroAssembler::incrementq(Register reg, int value) {
 629   if (value == min_jint) { addq(reg, value); return; }
 630   if (value <  0) { decrementq(reg, -value); return; }
 631   if (value == 0) {                        ; return; }
 632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 633   /* else */      { addq(reg, value)       ; return; }
 634 }
 635 
 636 void MacroAssembler::incrementq(Address dst, int value) {
 637   if (value == min_jint) { addq(dst, value); return; }
 638   if (value <  0) { decrementq(dst, -value); return; }
 639   if (value == 0) {                        ; return; }
 640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 641   /* else */      { addq(dst, value)       ; return; }
 642 }
 643 
 644 // 32bit can do a case table jump in one instruction but we no longer allow the base
 645 // to be installed in the Address class
 646 void MacroAssembler::jump(ArrayAddress entry) {
 647   lea(rscratch1, entry.base());
 648   Address dispatch = entry.index();
 649   assert(dispatch._base == noreg, "must be");
 650   dispatch._base = rscratch1;
 651   jmp(dispatch);
 652 }
 653 
 654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 655   ShouldNotReachHere(); // 64bit doesn't use two regs
 656   cmpq(x_lo, y_lo);
 657 }
 658 
 659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 661 }
 662 
 663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 665   movptr(dst, rscratch1);
 666 }
 667 
 668 void MacroAssembler::leave() {
 669   // %%% is this really better? Why not on 32bit too?
 670   emit_int8((unsigned char)0xC9); // LEAVE
 671 }
 672 
 673 void MacroAssembler::lneg(Register hi, Register lo) {
 674   ShouldNotReachHere(); // 64bit doesn't use two regs
 675   negq(lo);
 676 }
 677 
 678 void MacroAssembler::movoop(Register dst, jobject obj) {
 679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 680 }
 681 
 682 void MacroAssembler::movoop(Address dst, jobject obj) {
 683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684   movq(dst, rscratch1);
 685 }
 686 
 687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 697   if (src.is_lval()) {
 698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 699   } else {
 700     if (reachable(src)) {
 701       movq(dst, as_Address(src));
 702     } else {
 703       lea(scratch, src);
 704       movq(dst, Address(scratch, 0));
 705     }
 706   }
 707 }
 708 
 709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 710   movq(as_Address(dst), src);
 711 }
 712 
 713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 714   movq(dst, as_Address(src));
 715 }
 716 
 717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 718 void MacroAssembler::movptr(Address dst, intptr_t src) {
 719   mov64(rscratch1, src);
 720   movq(dst, rscratch1);
 721 }
 722 
 723 // These are mostly for initializing NULL
 724 void MacroAssembler::movptr(Address dst, int32_t src) {
 725   movslq(dst, src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, int32_t src) {
 729   mov64(dst, (intptr_t)src);
 730 }
 731 
 732 void MacroAssembler::pushoop(jobject obj) {
 733   movoop(rscratch1, obj);
 734   push(rscratch1);
 735 }
 736 
 737 void MacroAssembler::pushklass(Metadata* obj) {
 738   mov_metadata(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushptr(AddressLiteral src) {
 743   lea(rscratch1, src);
 744   if (src.is_lval()) {
 745     push(rscratch1);
 746   } else {
 747     pushq(Address(rscratch1, 0));
 748   }
 749 }
 750 
 751 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 752                                            bool clear_pc) {
 753   // we must set sp to zero to clear frame
 754   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 755   // must clear fp, so that compiled frames are not confused; it is
 756   // possible that we need it only for debugging
 757   if (clear_fp) {
 758     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 759   }
 760 
 761   if (clear_pc) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 763   }
 764 }
 765 
 766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 767                                          Register last_java_fp,
 768                                          address  last_java_pc) {
 769   // determine last_java_sp register
 770   if (!last_java_sp->is_valid()) {
 771     last_java_sp = rsp;
 772   }
 773 
 774   // last_java_fp is optional
 775   if (last_java_fp->is_valid()) {
 776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 777            last_java_fp);
 778   }
 779 
 780   // last_java_pc is optional
 781   if (last_java_pc != NULL) {
 782     Address java_pc(r15_thread,
 783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 784     lea(rscratch1, InternalAddress(last_java_pc));
 785     movptr(java_pc, rscratch1);
 786   }
 787 
 788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 789 }
 790 
 791 static void pass_arg0(MacroAssembler* masm, Register arg) {
 792   if (c_rarg0 != arg ) {
 793     masm->mov(c_rarg0, arg);
 794   }
 795 }
 796 
 797 static void pass_arg1(MacroAssembler* masm, Register arg) {
 798   if (c_rarg1 != arg ) {
 799     masm->mov(c_rarg1, arg);
 800   }
 801 }
 802 
 803 static void pass_arg2(MacroAssembler* masm, Register arg) {
 804   if (c_rarg2 != arg ) {
 805     masm->mov(c_rarg2, arg);
 806   }
 807 }
 808 
 809 static void pass_arg3(MacroAssembler* masm, Register arg) {
 810   if (c_rarg3 != arg ) {
 811     masm->mov(c_rarg3, arg);
 812   }
 813 }
 814 
 815 void MacroAssembler::stop(const char* msg) {
 816   address rip = pc();
 817   pusha(); // get regs on stack
 818   lea(c_rarg0, ExternalAddress((address) msg));
 819   lea(c_rarg1, InternalAddress(rip));
 820   movq(c_rarg2, rsp); // pass pointer to regs array
 821   andq(rsp, -16); // align stack as required by ABI
 822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 823   hlt();
 824 }
 825 
 826 void MacroAssembler::warn(const char* msg) {
 827   push(rbp);
 828   movq(rbp, rsp);
 829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 830   push_CPU_state();   // keeps alignment at 16 bytes
 831   lea(c_rarg0, ExternalAddress((address) msg));
 832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 833   pop_CPU_state();
 834   mov(rsp, rbp);
 835   pop(rbp);
 836 }
 837 
 838 void MacroAssembler::print_state() {
 839   address rip = pc();
 840   pusha();            // get regs on stack
 841   push(rbp);
 842   movq(rbp, rsp);
 843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 844   push_CPU_state();   // keeps alignment at 16 bytes
 845 
 846   lea(c_rarg0, InternalAddress(rip));
 847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 849 
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853   popa();
 854 }
 855 
 856 #ifndef PRODUCT
 857 extern "C" void findpc(intptr_t x);
 858 #endif
 859 
 860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 861   // In order to get locks to work, we need to fake a in_VM state
 862   if (ShowMessageBoxOnError) {
 863     JavaThread* thread = JavaThread::current();
 864     JavaThreadState saved_state = thread->thread_state();
 865     thread->set_thread_state(_thread_in_vm);
 866 #ifndef PRODUCT
 867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 868       ttyLocker ttyl;
 869       BytecodeCounter::print();
 870     }
 871 #endif
 872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 873     // XXX correct this offset for amd64
 874     // This is the value of eip which points to where verify_oop will return.
 875     if (os::message_box(msg, "Execution stopped, print registers?")) {
 876       print_state64(pc, regs);
 877       BREAKPOINT;
 878       assert(false, "start up GDB");
 879     }
 880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 881   } else {
 882     ttyLocker ttyl;
 883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 884                     msg);
 885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 886   }
 887 }
 888 
 889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 890   ttyLocker ttyl;
 891   FlagSetting fs(Debugging, true);
 892   tty->print_cr("rip = 0x%016lx", pc);
 893 #ifndef PRODUCT
 894   tty->cr();
 895   findpc(pc);
 896   tty->cr();
 897 #endif
 898 #define PRINT_REG(rax, value) \
 899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 900   PRINT_REG(rax, regs[15]);
 901   PRINT_REG(rbx, regs[12]);
 902   PRINT_REG(rcx, regs[14]);
 903   PRINT_REG(rdx, regs[13]);
 904   PRINT_REG(rdi, regs[8]);
 905   PRINT_REG(rsi, regs[9]);
 906   PRINT_REG(rbp, regs[10]);
 907   PRINT_REG(rsp, regs[11]);
 908   PRINT_REG(r8 , regs[7]);
 909   PRINT_REG(r9 , regs[6]);
 910   PRINT_REG(r10, regs[5]);
 911   PRINT_REG(r11, regs[4]);
 912   PRINT_REG(r12, regs[3]);
 913   PRINT_REG(r13, regs[2]);
 914   PRINT_REG(r14, regs[1]);
 915   PRINT_REG(r15, regs[0]);
 916 #undef PRINT_REG
 917   // Print some words near top of staack.
 918   int64_t* rsp = (int64_t*) regs[11];
 919   int64_t* dump_sp = rsp;
 920   for (int col1 = 0; col1 < 8; col1++) {
 921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 922     os::print_location(tty, *dump_sp++);
 923   }
 924   for (int row = 0; row < 25; row++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     for (int col = 0; col < 4; col++) {
 927       tty->print(" 0x%016lx", *dump_sp++);
 928     }
 929     tty->cr();
 930   }
 931   // Print some instructions around pc:
 932   Disassembler::decode((address)pc-64, (address)pc);
 933   tty->print_cr("--------");
 934   Disassembler::decode((address)pc, (address)pc+32);
 935 }
 936 
 937 #endif // _LP64
 938 
 939 // Now versions that are common to 32/64 bit
 940 
 941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 943 }
 944 
 945 void MacroAssembler::addptr(Register dst, Register src) {
 946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 947 }
 948 
 949 void MacroAssembler::addptr(Address dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 954   if (reachable(src)) {
 955     Assembler::addsd(dst, as_Address(src));
 956   } else {
 957     lea(rscratch1, src);
 958     Assembler::addsd(dst, Address(rscratch1, 0));
 959   }
 960 }
 961 
 962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 963   if (reachable(src)) {
 964     addss(dst, as_Address(src));
 965   } else {
 966     lea(rscratch1, src);
 967     addss(dst, Address(rscratch1, 0));
 968   }
 969 }
 970 
 971 void MacroAssembler::align(int modulus) {
 972   if (offset() % modulus != 0) {
 973     nop(modulus - (offset() % modulus));
 974   }
 975 }
 976 
 977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 978   // Used in sign-masking with aligned address.
 979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 980   if (reachable(src)) {
 981     Assembler::andpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::andpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 989   // Used in sign-masking with aligned address.
 990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 991   if (reachable(src)) {
 992     Assembler::andps(dst, as_Address(src));
 993   } else {
 994     lea(rscratch1, src);
 995     Assembler::andps(dst, Address(rscratch1, 0));
 996   }
 997 }
 998 
 999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1001 }
1002 
1003 void MacroAssembler::atomic_incl(Address counter_addr) {
1004   if (os::is_MP())
1005     lock();
1006   incrementl(counter_addr);
1007 }
1008 
1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010   if (reachable(counter_addr)) {
1011     atomic_incl(as_Address(counter_addr));
1012   } else {
1013     lea(scr, counter_addr);
1014     atomic_incl(Address(scr, 0));
1015   }
1016 }
1017 
1018 #ifdef _LP64
1019 void MacroAssembler::atomic_incq(Address counter_addr) {
1020   if (os::is_MP())
1021     lock();
1022   incrementq(counter_addr);
1023 }
1024 
1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1026   if (reachable(counter_addr)) {
1027     atomic_incq(as_Address(counter_addr));
1028   } else {
1029     lea(scr, counter_addr);
1030     atomic_incq(Address(scr, 0));
1031   }
1032 }
1033 #endif
1034 
1035 // Writes to stack successive pages until offset reached to check for
1036 // stack overflow + shadow pages.  This clobbers tmp.
1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1038   movptr(tmp, rsp);
1039   // Bang stack for total size given plus shadow page size.
1040   // Bang one page at a time because large size can bang beyond yellow and
1041   // red zones.
1042   Label loop;
1043   bind(loop);
1044   movl(Address(tmp, (-os::vm_page_size())), size );
1045   subptr(tmp, os::vm_page_size());
1046   subl(size, os::vm_page_size());
1047   jcc(Assembler::greater, loop);
1048 
1049   // Bang down shadow pages too.
1050   // At this point, (tmp-0) is the last address touched, so don't
1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1052   // was post-decremented.)  Skip this address by starting at i=1, and
1053   // touch a few more pages below.  N.B.  It is important to touch all
1054   // the way down to and including i=StackShadowPages.
1055   for (int i = 1; i < StackShadowPages; i++) {
1056     // this could be any sized move but this is can be a debugging crumb
1057     // so the bigger the better.
1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1059   }
1060 }
1061 
1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
1063                                          Register obj_reg,
1064                                          Register swap_reg,
1065                                          Register tmp_reg,
1066                                          bool swap_reg_contains_mark,
1067                                          Label& done,
1068                                          Label* slow_case,
1069                                          BiasedLockingCounters* counters) {
1070   assert(UseBiasedLocking, "why call this otherwise?");
1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1072   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
1073   bool need_tmp_reg = false;
1074   if (tmp_reg == noreg) {
1075     need_tmp_reg = true;
1076     tmp_reg = lock_reg;
1077     assert_different_registers(lock_reg, obj_reg, swap_reg);
1078   } else {
1079     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1080   }
1081   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1082   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1083   Address saved_mark_addr(lock_reg, 0);
1084 
1085   if (PrintBiasedLockingStatistics && counters == NULL) {
1086     counters = BiasedLocking::counters();
1087   }
1088   // Biased locking
1089   // See whether the lock is currently biased toward our thread and
1090   // whether the epoch is still valid
1091   // Note that the runtime guarantees sufficient alignment of JavaThread
1092   // pointers to allow age to be placed into low bits
1093   // First check to see whether biasing is even enabled for this object
1094   Label cas_label;
1095   int null_check_offset = -1;
1096   if (!swap_reg_contains_mark) {
1097     null_check_offset = offset();
1098     movptr(swap_reg, mark_addr);
1099   }
1100   if (need_tmp_reg) {
1101     push(tmp_reg);
1102   }
1103   movptr(tmp_reg, swap_reg);
1104   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1105   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1106   if (need_tmp_reg) {
1107     pop(tmp_reg);
1108   }
1109   jcc(Assembler::notEqual, cas_label);
1110   // The bias pattern is present in the object's header. Need to check
1111   // whether the bias owner and the epoch are both still current.
1112 #ifndef _LP64
1113   // Note that because there is no current thread register on x86_32 we
1114   // need to store off the mark word we read out of the object to
1115   // avoid reloading it and needing to recheck invariants below. This
1116   // store is unfortunate but it makes the overall code shorter and
1117   // simpler.
1118   movptr(saved_mark_addr, swap_reg);
1119 #endif
1120   if (need_tmp_reg) {
1121     push(tmp_reg);
1122   }
1123   if (swap_reg_contains_mark) {
1124     null_check_offset = offset();
1125   }
1126   load_prototype_header(tmp_reg, obj_reg);
1127 #ifdef _LP64
1128   orptr(tmp_reg, r15_thread);
1129   xorptr(tmp_reg, swap_reg);
1130   Register header_reg = tmp_reg;
1131 #else
1132   xorptr(tmp_reg, swap_reg);
1133   get_thread(swap_reg);
1134   xorptr(swap_reg, tmp_reg);
1135   Register header_reg = swap_reg;
1136 #endif
1137   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1138   if (need_tmp_reg) {
1139     pop(tmp_reg);
1140   }
1141   if (counters != NULL) {
1142     cond_inc32(Assembler::zero,
1143                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1144   }
1145   jcc(Assembler::equal, done);
1146 
1147   Label try_revoke_bias;
1148   Label try_rebias;
1149 
1150   // At this point we know that the header has the bias pattern and
1151   // that we are not the bias owner in the current epoch. We need to
1152   // figure out more details about the state of the header in order to
1153   // know what operations can be legally performed on the object's
1154   // header.
1155 
1156   // If the low three bits in the xor result aren't clear, that means
1157   // the prototype header is no longer biased and we have to revoke
1158   // the bias on this object.
1159   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1160   jccb(Assembler::notZero, try_revoke_bias);
1161 
1162   // Biasing is still enabled for this data type. See whether the
1163   // epoch of the current bias is still valid, meaning that the epoch
1164   // bits of the mark word are equal to the epoch bits of the
1165   // prototype header. (Note that the prototype header's epoch bits
1166   // only change at a safepoint.) If not, attempt to rebias the object
1167   // toward the current thread. Note that we must be absolutely sure
1168   // that the current epoch is invalid in order to do this because
1169   // otherwise the manipulations it performs on the mark word are
1170   // illegal.
1171   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1172   jccb(Assembler::notZero, try_rebias);
1173 
1174   // The epoch of the current bias is still valid but we know nothing
1175   // about the owner; it might be set or it might be clear. Try to
1176   // acquire the bias of the object using an atomic operation. If this
1177   // fails we will go in to the runtime to revoke the object's bias.
1178   // Note that we first construct the presumed unbiased header so we
1179   // don't accidentally blow away another thread's valid bias.
1180   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1181   andptr(swap_reg,
1182          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1183   if (need_tmp_reg) {
1184     push(tmp_reg);
1185   }
1186 #ifdef _LP64
1187   movptr(tmp_reg, swap_reg);
1188   orptr(tmp_reg, r15_thread);
1189 #else
1190   get_thread(tmp_reg);
1191   orptr(tmp_reg, swap_reg);
1192 #endif
1193   if (os::is_MP()) {
1194     lock();
1195   }
1196   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1197   if (need_tmp_reg) {
1198     pop(tmp_reg);
1199   }
1200   // If the biasing toward our thread failed, this means that
1201   // another thread succeeded in biasing it toward itself and we
1202   // need to revoke that bias. The revocation will occur in the
1203   // interpreter runtime in the slow case.
1204   if (counters != NULL) {
1205     cond_inc32(Assembler::zero,
1206                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1207   }
1208   if (slow_case != NULL) {
1209     jcc(Assembler::notZero, *slow_case);
1210   }
1211   jmp(done);
1212 
1213   bind(try_rebias);
1214   // At this point we know the epoch has expired, meaning that the
1215   // current "bias owner", if any, is actually invalid. Under these
1216   // circumstances _only_, we are allowed to use the current header's
1217   // value as the comparison value when doing the cas to acquire the
1218   // bias in the current epoch. In other words, we allow transfer of
1219   // the bias from one thread to another directly in this situation.
1220   //
1221   // FIXME: due to a lack of registers we currently blow away the age
1222   // bits in this situation. Should attempt to preserve them.
1223   if (need_tmp_reg) {
1224     push(tmp_reg);
1225   }
1226   load_prototype_header(tmp_reg, obj_reg);
1227 #ifdef _LP64
1228   orptr(tmp_reg, r15_thread);
1229 #else
1230   get_thread(swap_reg);
1231   orptr(tmp_reg, swap_reg);
1232   movptr(swap_reg, saved_mark_addr);
1233 #endif
1234   if (os::is_MP()) {
1235     lock();
1236   }
1237   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1238   if (need_tmp_reg) {
1239     pop(tmp_reg);
1240   }
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   if (need_tmp_reg) {
1267     push(tmp_reg);
1268   }
1269   load_prototype_header(tmp_reg, obj_reg);
1270   if (os::is_MP()) {
1271     lock();
1272   }
1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1274   if (need_tmp_reg) {
1275     pop(tmp_reg);
1276   }
1277   // Fall through to the normal CAS-based lock, because no matter what
1278   // the result of the above CAS, some thread must have succeeded in
1279   // removing the bias bit from the object's header.
1280   if (counters != NULL) {
1281     cond_inc32(Assembler::zero,
1282                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1283   }
1284 
1285   bind(cas_label);
1286 
1287   return null_check_offset;
1288 }
1289 
1290 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1291   assert(UseBiasedLocking, "why call this otherwise?");
1292 
1293   // Check for biased locking unlock case, which is a no-op
1294   // Note: we do not have to check the thread ID for two reasons.
1295   // First, the interpreter checks for IllegalMonitorStateException at
1296   // a higher level. Second, if the bias was revoked while we held the
1297   // lock, the object could not be rebiased toward another thread, so
1298   // the bias bit would be clear.
1299   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1300   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1301   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1302   jcc(Assembler::equal, done);
1303 }
1304 
1305 #ifdef COMPILER2
1306 
1307 #if INCLUDE_RTM_OPT
1308 
1309 // Update rtm_counters based on abort status
1310 // input: abort_status
1311 //        rtm_counters (RTMLockingCounters*)
1312 // flags are killed
1313 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1314 
1315   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1316   if (PrintPreciseRTMLockingStatistics) {
1317     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1318       Label check_abort;
1319       testl(abort_status, (1<<i));
1320       jccb(Assembler::equal, check_abort);
1321       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1322       bind(check_abort);
1323     }
1324   }
1325 }
1326 
1327 // Branch if (random & (count-1) != 0), count is 2^n
1328 // tmp, scr and flags are killed
1329 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1330   assert(tmp == rax, "");
1331   assert(scr == rdx, "");
1332   rdtsc(); // modifies EDX:EAX
1333   andptr(tmp, count-1);
1334   jccb(Assembler::notZero, brLabel);
1335 }
1336 
1337 // Perform abort ratio calculation, set no_rtm bit if high ratio
1338 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1339 // tmpReg, rtm_counters_Reg and flags are killed
1340 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1341                                                  Register rtm_counters_Reg,
1342                                                  RTMLockingCounters* rtm_counters,
1343                                                  Metadata* method_data) {
1344   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1345 
1346   if (RTMLockingCalculationDelay > 0) {
1347     // Delay calculation
1348     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1349     testptr(tmpReg, tmpReg);
1350     jccb(Assembler::equal, L_done);
1351   }
1352   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1353   //   Aborted transactions = abort_count * 100
1354   //   All transactions = total_count *  RTMTotalCountIncrRate
1355   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1356 
1357   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1358   cmpptr(tmpReg, RTMAbortThreshold);
1359   jccb(Assembler::below, L_check_always_rtm2);
1360   imulptr(tmpReg, tmpReg, 100);
1361 
1362   Register scrReg = rtm_counters_Reg;
1363   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1364   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1365   imulptr(scrReg, scrReg, RTMAbortRatio);
1366   cmpptr(tmpReg, scrReg);
1367   jccb(Assembler::below, L_check_always_rtm1);
1368   if (method_data != NULL) {
1369     // set rtm_state to "no rtm" in MDO
1370     mov_metadata(tmpReg, method_data);
1371     if (os::is_MP()) {
1372       lock();
1373     }
1374     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1375   }
1376   jmpb(L_done);
1377   bind(L_check_always_rtm1);
1378   // Reload RTMLockingCounters* address
1379   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1380   bind(L_check_always_rtm2);
1381   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1382   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1383   jccb(Assembler::below, L_done);
1384   if (method_data != NULL) {
1385     // set rtm_state to "always rtm" in MDO
1386     mov_metadata(tmpReg, method_data);
1387     if (os::is_MP()) {
1388       lock();
1389     }
1390     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1391   }
1392   bind(L_done);
1393 }
1394 
1395 // Update counters and perform abort ratio calculation
1396 // input:  abort_status_Reg
1397 // rtm_counters_Reg, flags are killed
1398 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1399                                    Register rtm_counters_Reg,
1400                                    RTMLockingCounters* rtm_counters,
1401                                    Metadata* method_data,
1402                                    bool profile_rtm) {
1403 
1404   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1405   // update rtm counters based on rax value at abort
1406   // reads abort_status_Reg, updates flags
1407   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1408   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1409   if (profile_rtm) {
1410     // Save abort status because abort_status_Reg is used by following code.
1411     if (RTMRetryCount > 0) {
1412       push(abort_status_Reg);
1413     }
1414     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1415     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1416     // restore abort status
1417     if (RTMRetryCount > 0) {
1418       pop(abort_status_Reg);
1419     }
1420   }
1421 }
1422 
1423 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1424 // inputs: retry_count_Reg
1425 //       : abort_status_Reg
1426 // output: retry_count_Reg decremented by 1
1427 // flags are killed
1428 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1429   Label doneRetry;
1430   assert(abort_status_Reg == rax, "");
1431   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1432   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1433   // if reason is in 0x6 and retry count != 0 then retry
1434   andptr(abort_status_Reg, 0x6);
1435   jccb(Assembler::zero, doneRetry);
1436   testl(retry_count_Reg, retry_count_Reg);
1437   jccb(Assembler::zero, doneRetry);
1438   pause();
1439   decrementl(retry_count_Reg);
1440   jmp(retryLabel);
1441   bind(doneRetry);
1442 }
1443 
1444 // Spin and retry if lock is busy,
1445 // inputs: box_Reg (monitor address)
1446 //       : retry_count_Reg
1447 // output: retry_count_Reg decremented by 1
1448 //       : clear z flag if retry count exceeded
1449 // tmp_Reg, scr_Reg, flags are killed
1450 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1451                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1452   Label SpinLoop, SpinExit, doneRetry;
1453   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1454 
1455   testl(retry_count_Reg, retry_count_Reg);
1456   jccb(Assembler::zero, doneRetry);
1457   decrementl(retry_count_Reg);
1458   movptr(scr_Reg, RTMSpinLoopCount);
1459 
1460   bind(SpinLoop);
1461   pause();
1462   decrementl(scr_Reg);
1463   jccb(Assembler::lessEqual, SpinExit);
1464   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1465   testptr(tmp_Reg, tmp_Reg);
1466   jccb(Assembler::notZero, SpinLoop);
1467 
1468   bind(SpinExit);
1469   jmp(retryLabel);
1470   bind(doneRetry);
1471   incrementl(retry_count_Reg); // clear z flag
1472 }
1473 
1474 // Use RTM for normal stack locks
1475 // Input: objReg (object to lock)
1476 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1477                                        Register retry_on_abort_count_Reg,
1478                                        RTMLockingCounters* stack_rtm_counters,
1479                                        Metadata* method_data, bool profile_rtm,
1480                                        Label& DONE_LABEL, Label& IsInflated) {
1481   assert(UseRTMForStackLocks, "why call this otherwise?");
1482   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1483   assert(tmpReg == rax, "");
1484   assert(scrReg == rdx, "");
1485   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1486 
1487   if (RTMRetryCount > 0) {
1488     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1489     bind(L_rtm_retry);
1490   }
1491   movptr(tmpReg, Address(objReg, 0));
1492   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1493   jcc(Assembler::notZero, IsInflated);
1494 
1495   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1496     Label L_noincrement;
1497     if (RTMTotalCountIncrRate > 1) {
1498       // tmpReg, scrReg and flags are killed
1499       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1500     }
1501     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1502     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1503     bind(L_noincrement);
1504   }
1505   xbegin(L_on_abort);
1506   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1507   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1508   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1509   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1510 
1511   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1512   if (UseRTMXendForLockBusy) {
1513     xend();
1514     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1515     jmp(L_decrement_retry);
1516   }
1517   else {
1518     xabort(0);
1519   }
1520   bind(L_on_abort);
1521   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1522     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1523   }
1524   bind(L_decrement_retry);
1525   if (RTMRetryCount > 0) {
1526     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1527     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1528   }
1529 }
1530 
1531 // Use RTM for inflating locks
1532 // inputs: objReg (object to lock)
1533 //         boxReg (on-stack box address (displaced header location) - KILLED)
1534 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1535 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1536                                           Register scrReg, Register retry_on_busy_count_Reg,
1537                                           Register retry_on_abort_count_Reg,
1538                                           RTMLockingCounters* rtm_counters,
1539                                           Metadata* method_data, bool profile_rtm,
1540                                           Label& DONE_LABEL) {
1541   assert(UseRTMLocking, "why call this otherwise?");
1542   assert(tmpReg == rax, "");
1543   assert(scrReg == rdx, "");
1544   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1545   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1546 
1547   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1548   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1549   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1550 
1551   if (RTMRetryCount > 0) {
1552     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1553     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1554     bind(L_rtm_retry);
1555   }
1556   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1557     Label L_noincrement;
1558     if (RTMTotalCountIncrRate > 1) {
1559       // tmpReg, scrReg and flags are killed
1560       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1561     }
1562     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1563     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1564     bind(L_noincrement);
1565   }
1566   xbegin(L_on_abort);
1567   movptr(tmpReg, Address(objReg, 0));
1568   movptr(tmpReg, Address(tmpReg, owner_offset));
1569   testptr(tmpReg, tmpReg);
1570   jcc(Assembler::zero, DONE_LABEL);
1571   if (UseRTMXendForLockBusy) {
1572     xend();
1573     jmp(L_decrement_retry);
1574   }
1575   else {
1576     xabort(0);
1577   }
1578   bind(L_on_abort);
1579   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1580   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1581     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1582   }
1583   if (RTMRetryCount > 0) {
1584     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1585     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1586   }
1587 
1588   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1589   testptr(tmpReg, tmpReg) ;
1590   jccb(Assembler::notZero, L_decrement_retry) ;
1591 
1592   // Appears unlocked - try to swing _owner from null to non-null.
1593   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1594 #ifdef _LP64
1595   Register threadReg = r15_thread;
1596 #else
1597   get_thread(scrReg);
1598   Register threadReg = scrReg;
1599 #endif
1600   if (os::is_MP()) {
1601     lock();
1602   }
1603   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1604 
1605   if (RTMRetryCount > 0) {
1606     // success done else retry
1607     jccb(Assembler::equal, DONE_LABEL) ;
1608     bind(L_decrement_retry);
1609     // Spin and retry if lock is busy.
1610     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1611   }
1612   else {
1613     bind(L_decrement_retry);
1614   }
1615 }
1616 
1617 #endif //  INCLUDE_RTM_OPT
1618 
1619 // Fast_Lock and Fast_Unlock used by C2
1620 
1621 // Because the transitions from emitted code to the runtime
1622 // monitorenter/exit helper stubs are so slow it's critical that
1623 // we inline both the stack-locking fast-path and the inflated fast path.
1624 //
1625 // See also: cmpFastLock and cmpFastUnlock.
1626 //
1627 // What follows is a specialized inline transliteration of the code
1628 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1629 // another option would be to emit TrySlowEnter and TrySlowExit methods
1630 // at startup-time.  These methods would accept arguments as
1631 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1632 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1633 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1634 // In practice, however, the # of lock sites is bounded and is usually small.
1635 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1636 // if the processor uses simple bimodal branch predictors keyed by EIP
1637 // Since the helper routines would be called from multiple synchronization
1638 // sites.
1639 //
1640 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1641 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1642 // to those specialized methods.  That'd give us a mostly platform-independent
1643 // implementation that the JITs could optimize and inline at their pleasure.
1644 // Done correctly, the only time we'd need to cross to native could would be
1645 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1646 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1647 // (b) explicit barriers or fence operations.
1648 //
1649 // TODO:
1650 //
1651 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1652 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1653 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1654 //    the lock operators would typically be faster than reifying Self.
1655 //
1656 // *  Ideally I'd define the primitives as:
1657 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1658 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1659 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1660 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1661 //    Furthermore the register assignments are overconstrained, possibly resulting in
1662 //    sub-optimal code near the synchronization site.
1663 //
1664 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1665 //    Alternately, use a better sp-proximity test.
1666 //
1667 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1668 //    Either one is sufficient to uniquely identify a thread.
1669 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1670 //
1671 // *  Intrinsify notify() and notifyAll() for the common cases where the
1672 //    object is locked by the calling thread but the waitlist is empty.
1673 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1674 //
1675 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1676 //    But beware of excessive branch density on AMD Opterons.
1677 //
1678 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1679 //    or failure of the fast-path.  If the fast-path fails then we pass
1680 //    control to the slow-path, typically in C.  In Fast_Lock and
1681 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1682 //    will emit a conditional branch immediately after the node.
1683 //    So we have branches to branches and lots of ICC.ZF games.
1684 //    Instead, it might be better to have C2 pass a "FailureLabel"
1685 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1686 //    will drop through the node.  ICC.ZF is undefined at exit.
1687 //    In the case of failure, the node will branch directly to the
1688 //    FailureLabel
1689 
1690 
1691 // obj: object to lock
1692 // box: on-stack box address (displaced header location) - KILLED
1693 // rax,: tmp -- KILLED
1694 // scr: tmp -- KILLED
1695 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1696                                Register scrReg, Register cx1Reg, Register cx2Reg,
1697                                BiasedLockingCounters* counters,
1698                                RTMLockingCounters* rtm_counters,
1699                                RTMLockingCounters* stack_rtm_counters,
1700                                Metadata* method_data,
1701                                bool use_rtm, bool profile_rtm) {
1702   // Ensure the register assignents are disjoint
1703   assert(tmpReg == rax, "");
1704 
1705   if (use_rtm) {
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1707   } else {
1708     assert(cx1Reg == noreg, "");
1709     assert(cx2Reg == noreg, "");
1710     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1711   }
1712 
1713   if (counters != NULL) {
1714     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1715   }
1716   if (EmitSync & 1) {
1717       // set box->dhw = markOopDesc::unused_mark()
1718       // Force all sync thru slow-path: slow_enter() and slow_exit()
1719       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1720       cmpptr (rsp, (int32_t)NULL_WORD);
1721   } else
1722   if (EmitSync & 2) {
1723       Label DONE_LABEL ;
1724       if (UseBiasedLocking) {
1725          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
1726          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1727       }
1728 
1729       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1730       orptr (tmpReg, 0x1);
1731       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
1732       if (os::is_MP()) {
1733         lock();
1734       }
1735       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
1736       jccb(Assembler::equal, DONE_LABEL);
1737       // Recursive locking
1738       subptr(tmpReg, rsp);
1739       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1740       movptr(Address(boxReg, 0), tmpReg);
1741       bind(DONE_LABEL);
1742   } else {
1743     // Possible cases that we'll encounter in fast_lock
1744     // ------------------------------------------------
1745     // * Inflated
1746     //    -- unlocked
1747     //    -- Locked
1748     //       = by self
1749     //       = by other
1750     // * biased
1751     //    -- by Self
1752     //    -- by other
1753     // * neutral
1754     // * stack-locked
1755     //    -- by self
1756     //       = sp-proximity test hits
1757     //       = sp-proximity test generates false-negative
1758     //    -- by other
1759     //
1760 
1761     Label IsInflated, DONE_LABEL;
1762 
1763     // it's stack-locked, biased or neutral
1764     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1765     // order to reduce the number of conditional branches in the most common cases.
1766     // Beware -- there's a subtle invariant that fetch of the markword
1767     // at [FETCH], below, will never observe a biased encoding (*101b).
1768     // If this invariant is not held we risk exclusion (safety) failure.
1769     if (UseBiasedLocking && !UseOptoBiasInlining) {
1770       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1771     }
1772 
1773 #if INCLUDE_RTM_OPT
1774     if (UseRTMForStackLocks && use_rtm) {
1775       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1776                         stack_rtm_counters, method_data, profile_rtm,
1777                         DONE_LABEL, IsInflated);
1778     }
1779 #endif // INCLUDE_RTM_OPT
1780 
1781     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1782     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1783     jccb(Assembler::notZero, IsInflated);
1784 
1785     // Attempt stack-locking ...
1786     orptr (tmpReg, markOopDesc::unlocked_value);
1787     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1788     if (os::is_MP()) {
1789       lock();
1790     }
1791     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1792     if (counters != NULL) {
1793       cond_inc32(Assembler::equal,
1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1795     }
1796     jcc(Assembler::equal, DONE_LABEL);           // Success
1797 
1798     // Recursive locking.
1799     // The object is stack-locked: markword contains stack pointer to BasicLock.
1800     // Locked by current thread if difference with current SP is less than one page.
1801     subptr(tmpReg, rsp);
1802     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1803     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1804     movptr(Address(boxReg, 0), tmpReg);
1805     if (counters != NULL) {
1806       cond_inc32(Assembler::equal,
1807                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1808     }
1809     jmp(DONE_LABEL);
1810 
1811     bind(IsInflated);
1812     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1813 
1814 #if INCLUDE_RTM_OPT
1815     // Use the same RTM locking code in 32- and 64-bit VM.
1816     if (use_rtm) {
1817       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1818                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1819     } else {
1820 #endif // INCLUDE_RTM_OPT
1821 
1822 #ifndef _LP64
1823     // The object is inflated.
1824 
1825     // boxReg refers to the on-stack BasicLock in the current frame.
1826     // We'd like to write:
1827     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1828     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1829     // additional latency as we have another ST in the store buffer that must drain.
1830 
1831     if (EmitSync & 8192) {
1832        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1833        get_thread (scrReg);
1834        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1835        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1836        if (os::is_MP()) {
1837          lock();
1838        }
1839        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1840     } else
1841     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1842        movptr(scrReg, boxReg);
1843        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1844 
1845        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1846        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1847           // prefetchw [eax + Offset(_owner)-2]
1848           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1849        }
1850 
1851        if ((EmitSync & 64) == 0) {
1852          // Optimistic form: consider XORL tmpReg,tmpReg
1853          movptr(tmpReg, NULL_WORD);
1854        } else {
1855          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1856          // Test-And-CAS instead of CAS
1857          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1858          testptr(tmpReg, tmpReg);                   // Locked ?
1859          jccb  (Assembler::notZero, DONE_LABEL);
1860        }
1861 
1862        // Appears unlocked - try to swing _owner from null to non-null.
1863        // Ideally, I'd manifest "Self" with get_thread and then attempt
1864        // to CAS the register containing Self into m->Owner.
1865        // But we don't have enough registers, so instead we can either try to CAS
1866        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1867        // we later store "Self" into m->Owner.  Transiently storing a stack address
1868        // (rsp or the address of the box) into  m->owner is harmless.
1869        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1870        if (os::is_MP()) {
1871          lock();
1872        }
1873        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1875        jccb  (Assembler::notZero, DONE_LABEL);
1876        get_thread (scrReg);                    // beware: clobbers ICCs
1877        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1878        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1879 
1880        // If the CAS fails we can either retry or pass control to the slow-path.
1881        // We use the latter tactic.
1882        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1883        // If the CAS was successful ...
1884        //   Self has acquired the lock
1885        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1886        // Intentional fall-through into DONE_LABEL ...
1887     } else {
1888        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1889        movptr(boxReg, tmpReg);
1890 
1891        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1892        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1893           // prefetchw [eax + Offset(_owner)-2]
1894           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1895        }
1896 
1897        if ((EmitSync & 64) == 0) {
1898          // Optimistic form
1899          xorptr  (tmpReg, tmpReg);
1900        } else {
1901          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1902          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1903          testptr(tmpReg, tmpReg);                   // Locked ?
1904          jccb  (Assembler::notZero, DONE_LABEL);
1905        }
1906 
1907        // Appears unlocked - try to swing _owner from null to non-null.
1908        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1909        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1910        get_thread (scrReg);
1911        if (os::is_MP()) {
1912          lock();
1913        }
1914        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1915 
1916        // If the CAS fails we can either retry or pass control to the slow-path.
1917        // We use the latter tactic.
1918        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1919        // If the CAS was successful ...
1920        //   Self has acquired the lock
1921        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1922        // Intentional fall-through into DONE_LABEL ...
1923     }
1924 #else // _LP64
1925     // It's inflated
1926 
1927     // TODO: someday avoid the ST-before-CAS penalty by
1928     // relocating (deferring) the following ST.
1929     // We should also think about trying a CAS without having
1930     // fetched _owner.  If the CAS is successful we may
1931     // avoid an RTO->RTS upgrade on the $line.
1932 
1933     // Without cast to int32_t a movptr will destroy r10 which is typically obj
1934     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1935 
1936     movptr (boxReg, tmpReg);
1937     movptr(tmpReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1938     testptr(tmpReg, tmpReg);
1939     jccb   (Assembler::notZero, DONE_LABEL);
1940 
1941     // It's inflated and appears unlocked
1942     if (os::is_MP()) {
1943       lock();
1944     }
1945     cmpxchgptr(r15_thread, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1946     // Intentional fall-through into DONE_LABEL ...
1947 #endif // _LP64
1948 
1949 #if INCLUDE_RTM_OPT
1950     } // use_rtm()
1951 #endif
1952     // DONE_LABEL is a hot target - we'd really like to place it at the
1953     // start of cache line by padding with NOPs.
1954     // See the AMD and Intel software optimization manuals for the
1955     // most efficient "long" NOP encodings.
1956     // Unfortunately none of our alignment mechanisms suffice.
1957     bind(DONE_LABEL);
1958 
1959     // At DONE_LABEL the icc ZFlag is set as follows ...
1960     // Fast_Unlock uses the same protocol.
1961     // ZFlag == 1 -> Success
1962     // ZFlag == 0 -> Failure - force control through the slow-path
1963   }
1964 }
1965 
1966 // obj: object to unlock
1967 // box: box address (displaced header location), killed.  Must be EAX.
1968 // tmp: killed, cannot be obj nor box.
1969 //
1970 // Some commentary on balanced locking:
1971 //
1972 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1973 // Methods that don't have provably balanced locking are forced to run in the
1974 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1975 // The interpreter provides two properties:
1976 // I1:  At return-time the interpreter automatically and quietly unlocks any
1977 //      objects acquired the current activation (frame).  Recall that the
1978 //      interpreter maintains an on-stack list of locks currently held by
1979 //      a frame.
1980 // I2:  If a method attempts to unlock an object that is not held by the
1981 //      the frame the interpreter throws IMSX.
1982 //
1983 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1984 // B() doesn't have provably balanced locking so it runs in the interpreter.
1985 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1986 // is still locked by A().
1987 //
1988 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1989 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1990 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1991 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1992 
1993 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1994   assert(boxReg == rax, "");
1995   assert_different_registers(objReg, boxReg, tmpReg);
1996 
1997   if (EmitSync & 4) {
1998     // Disable - inhibit all inlining.  Force control through the slow-path
1999     cmpptr (rsp, 0);
2000   } else
2001   if (EmitSync & 8) {
2002     Label DONE_LABEL;
2003     if (UseBiasedLocking) {
2004        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2005     }
2006     // Classic stack-locking code ...
2007     // Check whether the displaced header is 0
2008     //(=> recursive unlock)
2009     movptr(tmpReg, Address(boxReg, 0));
2010     testptr(tmpReg, tmpReg);
2011     jccb(Assembler::zero, DONE_LABEL);
2012     // If not recursive lock, reset the header to displaced header
2013     if (os::is_MP()) {
2014       lock();
2015     }
2016     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
2017     bind(DONE_LABEL);
2018   } else {
2019     Label DONE_LABEL, Stacked, CheckSucc;
2020 
2021     // Critically, the biased locking test must have precedence over
2022     // and appear before the (box->dhw == 0) recursive stack-lock test.
2023     if (UseBiasedLocking && !UseOptoBiasInlining) {
2024        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2025     }
2026 
2027 #if INCLUDE_RTM_OPT
2028     if (UseRTMForStackLocks && use_rtm) {
2029       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2030       Label L_regular_unlock;
2031       movptr(tmpReg, Address(objReg, 0));           // fetch markword
2032       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2033       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2034       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2035       xend();                                       // otherwise end...
2036       jmp(DONE_LABEL);                              // ... and we're done
2037       bind(L_regular_unlock);
2038     }
2039 #endif
2040 
2041     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2042     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2043     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2044     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2045     jccb  (Assembler::zero, Stacked);
2046 
2047     // It's inflated.
2048 #if INCLUDE_RTM_OPT
2049     if (use_rtm) {
2050       Label L_regular_inflated_unlock;
2051       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2052       movptr(boxReg, Address(tmpReg, owner_offset));
2053       testptr(boxReg, boxReg);
2054       jccb(Assembler::notZero, L_regular_inflated_unlock);
2055       xend();
2056       jmpb(DONE_LABEL);
2057       bind(L_regular_inflated_unlock);
2058     }
2059 #endif
2060 
2061     // Despite our balanced locking property we still check that m->_owner == Self
2062     // as java routines or native JNI code called by this thread might
2063     // have released the lock.
2064     // Refer to the comments in synchronizer.cpp for how we might encode extra
2065     // state in _succ so we can avoid fetching EntryList|cxq.
2066     //
2067     // I'd like to add more cases in fast_lock() and fast_unlock() --
2068     // such as recursive enter and exit -- but we have to be wary of
2069     // I$ bloat, T$ effects and BP$ effects.
2070     //
2071     // If there's no contention try a 1-0 exit.  That is, exit without
2072     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2073     // we detect and recover from the race that the 1-0 exit admits.
2074     //
2075     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2076     // before it STs null into _owner, releasing the lock.  Updates
2077     // to data protected by the critical section must be visible before
2078     // we drop the lock (and thus before any other thread could acquire
2079     // the lock and observe the fields protected by the lock).
2080     // IA32's memory-model is SPO, so STs are ordered with respect to
2081     // each other and there's no need for an explicit barrier (fence).
2082     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2083 #ifndef _LP64
2084     get_thread (boxReg);
2085     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2086       // prefetchw [ebx + Offset(_owner)-2]
2087       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2088     }
2089 
2090     // Note that we could employ various encoding schemes to reduce
2091     // the number of loads below (currently 4) to just 2 or 3.
2092     // Refer to the comments in synchronizer.cpp.
2093     // In practice the chain of fetches doesn't seem to impact performance, however.
2094     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2095        // Attempt to reduce branch density - AMD's branch predictor.
2096        xorptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2097        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2098        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2099        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2100        jccb  (Assembler::notZero, DONE_LABEL);
2101        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2102        jmpb  (DONE_LABEL);
2103     } else {
2104        xorptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2105        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2106        jccb  (Assembler::notZero, DONE_LABEL);
2107        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2108        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2109        jccb  (Assembler::notZero, CheckSucc);
2110        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2111        jmpb  (DONE_LABEL);
2112     }
2113 
2114     // The Following code fragment (EmitSync & 65536) improves the performance of
2115     // contended applications and contended synchronization microbenchmarks.
2116     // Unfortunately the emission of the code - even though not executed - causes regressions
2117     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2118     // with an equal number of never-executed NOPs results in the same regression.
2119     // We leave it off by default.
2120 
2121     if ((EmitSync & 65536) != 0) {
2122        Label LSuccess, LGoSlowPath ;
2123 
2124        bind  (CheckSucc);
2125 
2126        // Optional pre-test ... it's safe to elide this
2127        if ((EmitSync & 16) == 0) {
2128           cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2129           jccb  (Assembler::zero, LGoSlowPath);
2130        }
2131 
2132        // We have a classic Dekker-style idiom:
2133        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2134        // There are a number of ways to implement the barrier:
2135        // (1) lock:andl &m->_owner, 0
2136        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2137        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2138        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2139        // (2) If supported, an explicit MFENCE is appealing.
2140        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2141        //     particularly if the write-buffer is full as might be the case if
2142        //     if stores closely precede the fence or fence-equivalent instruction.
2143        //     In more modern implementations MFENCE appears faster, however.
2144        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2145        //     The $lines underlying the top-of-stack should be in M-state.
2146        //     The locked add instruction is serializing, of course.
2147        // (4) Use xchg, which is serializing
2148        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2149        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2150        //     The integer condition codes will tell us if succ was 0.
2151        //     Since _succ and _owner should reside in the same $line and
2152        //     we just stored into _owner, it's likely that the $line
2153        //     remains in M-state for the lock:orl.
2154        //
2155        // We currently use (3), although it's likely that switching to (2)
2156        // is correct for the future.
2157 
2158        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2159        if (os::is_MP()) {
2160           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
2161             mfence();
2162           } else {
2163             lock (); addptr(Address(rsp, 0), 0);
2164           }
2165        }
2166        // Ratify _succ remains non-null
2167        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2168        jccb  (Assembler::notZero, LSuccess);
2169 
2170        xorptr(boxReg, boxReg);                  // box is really EAX
2171        if (os::is_MP()) { lock(); }
2172        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173        jccb  (Assembler::notEqual, LSuccess);
2174        // Since we're low on registers we installed rsp as a placeholding in _owner.
2175        // Now install Self over rsp.  This is safe as we're transitioning from
2176        // non-null to non=null
2177        get_thread (boxReg);
2178        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2179        // Intentional fall-through into LGoSlowPath ...
2180 
2181        bind  (LGoSlowPath);
2182        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2183        jmpb  (DONE_LABEL);
2184 
2185        bind  (LSuccess);
2186        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2187        jmpb  (DONE_LABEL);
2188     }
2189 
2190     bind (Stacked);
2191     // It's not inflated and it's not recursively stack-locked and it's not biased.
2192     // It must be stack-locked.
2193     // Try to reset the header to displaced header.
2194     // The "box" value on the stack is stable, so we can reload
2195     // and be assured we observe the same value as above.
2196     movptr(tmpReg, Address(boxReg, 0));
2197     if (os::is_MP()) {
2198       lock();
2199     }
2200     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2201     // Intention fall-thru into DONE_LABEL
2202 
2203     // DONE_LABEL is a hot target - we'd really like to place it at the
2204     // start of cache line by padding with NOPs.
2205     // See the AMD and Intel software optimization manuals for the
2206     // most efficient "long" NOP encodings.
2207     // Unfortunately none of our alignment mechanisms suffice.
2208     if ((EmitSync & 65536) == 0) {
2209        bind (CheckSucc);
2210     }
2211 #else // _LP64
2212     // It's inflated
2213     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2214     xorptr(boxReg, r15_thread);
2215     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2216     jccb  (Assembler::notZero, DONE_LABEL);
2217     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2218     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2219     jccb  (Assembler::notZero, CheckSucc);
2220     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2221     jmpb  (DONE_LABEL);
2222 
2223     if ((EmitSync & 65536) == 0) {
2224       Label LSuccess, LGoSlowPath ;
2225       bind  (CheckSucc);
2226       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2227       jccb  (Assembler::zero, LGoSlowPath);
2228 
2229       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
2230       // the explicit ST;MEMBAR combination, but masm doesn't currently support
2231       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
2232       // are all faster when the write buffer is populated.
2233       movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2234       if (os::is_MP()) {
2235          lock (); addl (Address(rsp, 0), 0);
2236       }
2237       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2238       jccb  (Assembler::notZero, LSuccess);
2239 
2240       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
2241       if (os::is_MP()) { lock(); }
2242       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2243       jccb  (Assembler::notEqual, LSuccess);
2244       // Intentional fall-through into slow-path
2245 
2246       bind  (LGoSlowPath);
2247       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2248       jmpb  (DONE_LABEL);
2249 
2250       bind  (LSuccess);
2251       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2252       jmpb  (DONE_LABEL);
2253     }
2254 
2255     bind  (Stacked);
2256     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2257     if (os::is_MP()) { lock(); }
2258     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2259 
2260     if (EmitSync & 65536) {
2261        bind (CheckSucc);
2262     }
2263 #endif
2264     bind(DONE_LABEL);
2265     // Avoid branch to branch on AMD processors
2266     if (EmitSync & 32768) {
2267        nop();
2268     }
2269   }
2270 }
2271 #endif // COMPILER2
2272 
2273 void MacroAssembler::c2bool(Register x) {
2274   // implements x == 0 ? 0 : 1
2275   // note: must only look at least-significant byte of x
2276   //       since C-style booleans are stored in one byte
2277   //       only! (was bug)
2278   andl(x, 0xFF);
2279   setb(Assembler::notZero, x);
2280 }
2281 
2282 // Wouldn't need if AddressLiteral version had new name
2283 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2284   Assembler::call(L, rtype);
2285 }
2286 
2287 void MacroAssembler::call(Register entry) {
2288   Assembler::call(entry);
2289 }
2290 
2291 void MacroAssembler::call(AddressLiteral entry) {
2292   if (reachable(entry)) {
2293     Assembler::call_literal(entry.target(), entry.rspec());
2294   } else {
2295     lea(rscratch1, entry);
2296     Assembler::call(rscratch1);
2297   }
2298 }
2299 
2300 void MacroAssembler::ic_call(address entry) {
2301   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2302   movptr(rax, (intptr_t)Universe::non_oop_word());
2303   call(AddressLiteral(entry, rh));
2304 }
2305 
2306 // Implementation of call_VM versions
2307 
2308 void MacroAssembler::call_VM(Register oop_result,
2309                              address entry_point,
2310                              bool check_exceptions) {
2311   Label C, E;
2312   call(C, relocInfo::none);
2313   jmp(E);
2314 
2315   bind(C);
2316   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2317   ret(0);
2318 
2319   bind(E);
2320 }
2321 
2322 void MacroAssembler::call_VM(Register oop_result,
2323                              address entry_point,
2324                              Register arg_1,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331   pass_arg1(this, arg_1);
2332   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2333   ret(0);
2334 
2335   bind(E);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result,
2339                              address entry_point,
2340                              Register arg_1,
2341                              Register arg_2,
2342                              bool check_exceptions) {
2343   Label C, E;
2344   call(C, relocInfo::none);
2345   jmp(E);
2346 
2347   bind(C);
2348 
2349   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2350 
2351   pass_arg2(this, arg_2);
2352   pass_arg1(this, arg_1);
2353   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2354   ret(0);
2355 
2356   bind(E);
2357 }
2358 
2359 void MacroAssembler::call_VM(Register oop_result,
2360                              address entry_point,
2361                              Register arg_1,
2362                              Register arg_2,
2363                              Register arg_3,
2364                              bool check_exceptions) {
2365   Label C, E;
2366   call(C, relocInfo::none);
2367   jmp(E);
2368 
2369   bind(C);
2370 
2371   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2372   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2373   pass_arg3(this, arg_3);
2374 
2375   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2376   pass_arg2(this, arg_2);
2377 
2378   pass_arg1(this, arg_1);
2379   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2380   ret(0);
2381 
2382   bind(E);
2383 }
2384 
2385 void MacroAssembler::call_VM(Register oop_result,
2386                              Register last_java_sp,
2387                              address entry_point,
2388                              int number_of_arguments,
2389                              bool check_exceptions) {
2390   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2391   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::call_VM(Register oop_result,
2395                              Register last_java_sp,
2396                              address entry_point,
2397                              Register arg_1,
2398                              bool check_exceptions) {
2399   pass_arg1(this, arg_1);
2400   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              Register arg_1,
2407                              Register arg_2,
2408                              bool check_exceptions) {
2409 
2410   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2411   pass_arg2(this, arg_2);
2412   pass_arg1(this, arg_1);
2413   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2414 }
2415 
2416 void MacroAssembler::call_VM(Register oop_result,
2417                              Register last_java_sp,
2418                              address entry_point,
2419                              Register arg_1,
2420                              Register arg_2,
2421                              Register arg_3,
2422                              bool check_exceptions) {
2423   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2424   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2425   pass_arg3(this, arg_3);
2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2427   pass_arg2(this, arg_2);
2428   pass_arg1(this, arg_1);
2429   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2430 }
2431 
2432 void MacroAssembler::super_call_VM(Register oop_result,
2433                                    Register last_java_sp,
2434                                    address entry_point,
2435                                    int number_of_arguments,
2436                                    bool check_exceptions) {
2437   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2438   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::super_call_VM(Register oop_result,
2442                                    Register last_java_sp,
2443                                    address entry_point,
2444                                    Register arg_1,
2445                                    bool check_exceptions) {
2446   pass_arg1(this, arg_1);
2447   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    Register arg_1,
2454                                    Register arg_2,
2455                                    bool check_exceptions) {
2456 
2457   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2458   pass_arg2(this, arg_2);
2459   pass_arg1(this, arg_1);
2460   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2461 }
2462 
2463 void MacroAssembler::super_call_VM(Register oop_result,
2464                                    Register last_java_sp,
2465                                    address entry_point,
2466                                    Register arg_1,
2467                                    Register arg_2,
2468                                    Register arg_3,
2469                                    bool check_exceptions) {
2470   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2471   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2472   pass_arg3(this, arg_3);
2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2474   pass_arg2(this, arg_2);
2475   pass_arg1(this, arg_1);
2476   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2477 }
2478 
2479 void MacroAssembler::call_VM_base(Register oop_result,
2480                                   Register java_thread,
2481                                   Register last_java_sp,
2482                                   address  entry_point,
2483                                   int      number_of_arguments,
2484                                   bool     check_exceptions) {
2485   // determine java_thread register
2486   if (!java_thread->is_valid()) {
2487 #ifdef _LP64
2488     java_thread = r15_thread;
2489 #else
2490     java_thread = rdi;
2491     get_thread(java_thread);
2492 #endif // LP64
2493   }
2494   // determine last_java_sp register
2495   if (!last_java_sp->is_valid()) {
2496     last_java_sp = rsp;
2497   }
2498   // debugging support
2499   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2500   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2501 #ifdef ASSERT
2502   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2503   // r12 is the heapbase.
2504   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2505 #endif // ASSERT
2506 
2507   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2508   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2509 
2510   // push java thread (becomes first argument of C function)
2511 
2512   NOT_LP64(push(java_thread); number_of_arguments++);
2513   LP64_ONLY(mov(c_rarg0, r15_thread));
2514 
2515   // set last Java frame before call
2516   assert(last_java_sp != rbp, "can't use ebp/rbp");
2517 
2518   // Only interpreter should have to set fp
2519   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2520 
2521   // do the call, remove parameters
2522   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2523 
2524   // restore the thread (cannot use the pushed argument since arguments
2525   // may be overwritten by C code generated by an optimizing compiler);
2526   // however can use the register value directly if it is callee saved.
2527   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2528     // rdi & rsi (also r15) are callee saved -> nothing to do
2529 #ifdef ASSERT
2530     guarantee(java_thread != rax, "change this code");
2531     push(rax);
2532     { Label L;
2533       get_thread(rax);
2534       cmpptr(java_thread, rax);
2535       jcc(Assembler::equal, L);
2536       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2537       bind(L);
2538     }
2539     pop(rax);
2540 #endif
2541   } else {
2542     get_thread(java_thread);
2543   }
2544   // reset last Java frame
2545   // Only interpreter should have to clear fp
2546   reset_last_Java_frame(java_thread, true, false);
2547 
2548 #ifndef CC_INTERP
2549    // C++ interp handles this in the interpreter
2550   check_and_handle_popframe(java_thread);
2551   check_and_handle_earlyret(java_thread);
2552 #endif /* CC_INTERP */
2553 
2554   if (check_exceptions) {
2555     // check for pending exceptions (java_thread is set upon return)
2556     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2557 #ifndef _LP64
2558     jump_cc(Assembler::notEqual,
2559             RuntimeAddress(StubRoutines::forward_exception_entry()));
2560 #else
2561     // This used to conditionally jump to forward_exception however it is
2562     // possible if we relocate that the branch will not reach. So we must jump
2563     // around so we can always reach
2564 
2565     Label ok;
2566     jcc(Assembler::equal, ok);
2567     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2568     bind(ok);
2569 #endif // LP64
2570   }
2571 
2572   // get oop result if there is one and reset the value in the thread
2573   if (oop_result->is_valid()) {
2574     get_vm_result(oop_result, java_thread);
2575   }
2576 }
2577 
2578 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2579 
2580   // Calculate the value for last_Java_sp
2581   // somewhat subtle. call_VM does an intermediate call
2582   // which places a return address on the stack just under the
2583   // stack pointer as the user finsihed with it. This allows
2584   // use to retrieve last_Java_pc from last_Java_sp[-1].
2585   // On 32bit we then have to push additional args on the stack to accomplish
2586   // the actual requested call. On 64bit call_VM only can use register args
2587   // so the only extra space is the return address that call_VM created.
2588   // This hopefully explains the calculations here.
2589 
2590 #ifdef _LP64
2591   // We've pushed one address, correct last_Java_sp
2592   lea(rax, Address(rsp, wordSize));
2593 #else
2594   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2595 #endif // LP64
2596 
2597   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2598 
2599 }
2600 
2601 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2602   call_VM_leaf_base(entry_point, number_of_arguments);
2603 }
2604 
2605 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2606   pass_arg0(this, arg_0);
2607   call_VM_leaf(entry_point, 1);
2608 }
2609 
2610 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2611 
2612   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2613   pass_arg1(this, arg_1);
2614   pass_arg0(this, arg_0);
2615   call_VM_leaf(entry_point, 2);
2616 }
2617 
2618 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2619   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2620   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2621   pass_arg2(this, arg_2);
2622   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2623   pass_arg1(this, arg_1);
2624   pass_arg0(this, arg_0);
2625   call_VM_leaf(entry_point, 3);
2626 }
2627 
2628 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2629   pass_arg0(this, arg_0);
2630   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2631 }
2632 
2633 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2634 
2635   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2636   pass_arg1(this, arg_1);
2637   pass_arg0(this, arg_0);
2638   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2639 }
2640 
2641 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2642   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2643   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2644   pass_arg2(this, arg_2);
2645   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2646   pass_arg1(this, arg_1);
2647   pass_arg0(this, arg_0);
2648   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2649 }
2650 
2651 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2652   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2653   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2654   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2655   pass_arg3(this, arg_3);
2656   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2657   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2658   pass_arg2(this, arg_2);
2659   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2660   pass_arg1(this, arg_1);
2661   pass_arg0(this, arg_0);
2662   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2663 }
2664 
2665 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2666   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2667   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2668   verify_oop(oop_result, "broken oop in call_VM_base");
2669 }
2670 
2671 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2672   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2673   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2674 }
2675 
2676 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2677 }
2678 
2679 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2680 }
2681 
2682 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2683   if (reachable(src1)) {
2684     cmpl(as_Address(src1), imm);
2685   } else {
2686     lea(rscratch1, src1);
2687     cmpl(Address(rscratch1, 0), imm);
2688   }
2689 }
2690 
2691 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2692   assert(!src2.is_lval(), "use cmpptr");
2693   if (reachable(src2)) {
2694     cmpl(src1, as_Address(src2));
2695   } else {
2696     lea(rscratch1, src2);
2697     cmpl(src1, Address(rscratch1, 0));
2698   }
2699 }
2700 
2701 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2702   Assembler::cmpl(src1, imm);
2703 }
2704 
2705 void MacroAssembler::cmp32(Register src1, Address src2) {
2706   Assembler::cmpl(src1, src2);
2707 }
2708 
2709 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2710   ucomisd(opr1, opr2);
2711 
2712   Label L;
2713   if (unordered_is_less) {
2714     movl(dst, -1);
2715     jcc(Assembler::parity, L);
2716     jcc(Assembler::below , L);
2717     movl(dst, 0);
2718     jcc(Assembler::equal , L);
2719     increment(dst);
2720   } else { // unordered is greater
2721     movl(dst, 1);
2722     jcc(Assembler::parity, L);
2723     jcc(Assembler::above , L);
2724     movl(dst, 0);
2725     jcc(Assembler::equal , L);
2726     decrementl(dst);
2727   }
2728   bind(L);
2729 }
2730 
2731 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2732   ucomiss(opr1, opr2);
2733 
2734   Label L;
2735   if (unordered_is_less) {
2736     movl(dst, -1);
2737     jcc(Assembler::parity, L);
2738     jcc(Assembler::below , L);
2739     movl(dst, 0);
2740     jcc(Assembler::equal , L);
2741     increment(dst);
2742   } else { // unordered is greater
2743     movl(dst, 1);
2744     jcc(Assembler::parity, L);
2745     jcc(Assembler::above , L);
2746     movl(dst, 0);
2747     jcc(Assembler::equal , L);
2748     decrementl(dst);
2749   }
2750   bind(L);
2751 }
2752 
2753 
2754 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2755   if (reachable(src1)) {
2756     cmpb(as_Address(src1), imm);
2757   } else {
2758     lea(rscratch1, src1);
2759     cmpb(Address(rscratch1, 0), imm);
2760   }
2761 }
2762 
2763 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2764 #ifdef _LP64
2765   if (src2.is_lval()) {
2766     movptr(rscratch1, src2);
2767     Assembler::cmpq(src1, rscratch1);
2768   } else if (reachable(src2)) {
2769     cmpq(src1, as_Address(src2));
2770   } else {
2771     lea(rscratch1, src2);
2772     Assembler::cmpq(src1, Address(rscratch1, 0));
2773   }
2774 #else
2775   if (src2.is_lval()) {
2776     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2777   } else {
2778     cmpl(src1, as_Address(src2));
2779   }
2780 #endif // _LP64
2781 }
2782 
2783 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2784   assert(src2.is_lval(), "not a mem-mem compare");
2785 #ifdef _LP64
2786   // moves src2's literal address
2787   movptr(rscratch1, src2);
2788   Assembler::cmpq(src1, rscratch1);
2789 #else
2790   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2791 #endif // _LP64
2792 }
2793 
2794 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2795   if (reachable(adr)) {
2796     if (os::is_MP())
2797       lock();
2798     cmpxchgptr(reg, as_Address(adr));
2799   } else {
2800     lea(rscratch1, adr);
2801     if (os::is_MP())
2802       lock();
2803     cmpxchgptr(reg, Address(rscratch1, 0));
2804   }
2805 }
2806 
2807 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2808   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2809 }
2810 
2811 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2812   if (reachable(src)) {
2813     Assembler::comisd(dst, as_Address(src));
2814   } else {
2815     lea(rscratch1, src);
2816     Assembler::comisd(dst, Address(rscratch1, 0));
2817   }
2818 }
2819 
2820 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2821   if (reachable(src)) {
2822     Assembler::comiss(dst, as_Address(src));
2823   } else {
2824     lea(rscratch1, src);
2825     Assembler::comiss(dst, Address(rscratch1, 0));
2826   }
2827 }
2828 
2829 
2830 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2831   Condition negated_cond = negate_condition(cond);
2832   Label L;
2833   jcc(negated_cond, L);
2834   pushf(); // Preserve flags
2835   atomic_incl(counter_addr);
2836   popf();
2837   bind(L);
2838 }
2839 
2840 int MacroAssembler::corrected_idivl(Register reg) {
2841   // Full implementation of Java idiv and irem; checks for
2842   // special case as described in JVM spec., p.243 & p.271.
2843   // The function returns the (pc) offset of the idivl
2844   // instruction - may be needed for implicit exceptions.
2845   //
2846   //         normal case                           special case
2847   //
2848   // input : rax,: dividend                         min_int
2849   //         reg: divisor   (may not be rax,/rdx)   -1
2850   //
2851   // output: rax,: quotient  (= rax, idiv reg)       min_int
2852   //         rdx: remainder (= rax, irem reg)       0
2853   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2854   const int min_int = 0x80000000;
2855   Label normal_case, special_case;
2856 
2857   // check for special case
2858   cmpl(rax, min_int);
2859   jcc(Assembler::notEqual, normal_case);
2860   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2861   cmpl(reg, -1);
2862   jcc(Assembler::equal, special_case);
2863 
2864   // handle normal case
2865   bind(normal_case);
2866   cdql();
2867   int idivl_offset = offset();
2868   idivl(reg);
2869 
2870   // normal and special case exit
2871   bind(special_case);
2872 
2873   return idivl_offset;
2874 }
2875 
2876 
2877 
2878 void MacroAssembler::decrementl(Register reg, int value) {
2879   if (value == min_jint) {subl(reg, value) ; return; }
2880   if (value <  0) { incrementl(reg, -value); return; }
2881   if (value == 0) {                        ; return; }
2882   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2883   /* else */      { subl(reg, value)       ; return; }
2884 }
2885 
2886 void MacroAssembler::decrementl(Address dst, int value) {
2887   if (value == min_jint) {subl(dst, value) ; return; }
2888   if (value <  0) { incrementl(dst, -value); return; }
2889   if (value == 0) {                        ; return; }
2890   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2891   /* else */      { subl(dst, value)       ; return; }
2892 }
2893 
2894 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2895   assert (shift_value > 0, "illegal shift value");
2896   Label _is_positive;
2897   testl (reg, reg);
2898   jcc (Assembler::positive, _is_positive);
2899   int offset = (1 << shift_value) - 1 ;
2900 
2901   if (offset == 1) {
2902     incrementl(reg);
2903   } else {
2904     addl(reg, offset);
2905   }
2906 
2907   bind (_is_positive);
2908   sarl(reg, shift_value);
2909 }
2910 
2911 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2912   if (reachable(src)) {
2913     Assembler::divsd(dst, as_Address(src));
2914   } else {
2915     lea(rscratch1, src);
2916     Assembler::divsd(dst, Address(rscratch1, 0));
2917   }
2918 }
2919 
2920 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2921   if (reachable(src)) {
2922     Assembler::divss(dst, as_Address(src));
2923   } else {
2924     lea(rscratch1, src);
2925     Assembler::divss(dst, Address(rscratch1, 0));
2926   }
2927 }
2928 
2929 // !defined(COMPILER2) is because of stupid core builds
2930 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2931 void MacroAssembler::empty_FPU_stack() {
2932   if (VM_Version::supports_mmx()) {
2933     emms();
2934   } else {
2935     for (int i = 8; i-- > 0; ) ffree(i);
2936   }
2937 }
2938 #endif // !LP64 || C1 || !C2
2939 
2940 
2941 // Defines obj, preserves var_size_in_bytes
2942 void MacroAssembler::eden_allocate(Register obj,
2943                                    Register var_size_in_bytes,
2944                                    int con_size_in_bytes,
2945                                    Register t1,
2946                                    Label& slow_case) {
2947   assert(obj == rax, "obj must be in rax, for cmpxchg");
2948   assert_different_registers(obj, var_size_in_bytes, t1);
2949   if (!Universe::heap()->supports_inline_contig_alloc()) {
2950     jmp(slow_case);
2951   } else {
2952     Register end = t1;
2953     Label retry;
2954     bind(retry);
2955     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2956     movptr(obj, heap_top);
2957     if (var_size_in_bytes == noreg) {
2958       lea(end, Address(obj, con_size_in_bytes));
2959     } else {
2960       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2961     }
2962     // if end < obj then we wrapped around => object too long => slow case
2963     cmpptr(end, obj);
2964     jcc(Assembler::below, slow_case);
2965     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2966     jcc(Assembler::above, slow_case);
2967     // Compare obj with the top addr, and if still equal, store the new top addr in
2968     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2969     // it otherwise. Use lock prefix for atomicity on MPs.
2970     locked_cmpxchgptr(end, heap_top);
2971     jcc(Assembler::notEqual, retry);
2972   }
2973 }
2974 
2975 void MacroAssembler::enter() {
2976   push(rbp);
2977   mov(rbp, rsp);
2978 }
2979 
2980 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2981 void MacroAssembler::fat_nop() {
2982   if (UseAddressNop) {
2983     addr_nop_5();
2984   } else {
2985     emit_int8(0x26); // es:
2986     emit_int8(0x2e); // cs:
2987     emit_int8(0x64); // fs:
2988     emit_int8(0x65); // gs:
2989     emit_int8((unsigned char)0x90);
2990   }
2991 }
2992 
2993 void MacroAssembler::fcmp(Register tmp) {
2994   fcmp(tmp, 1, true, true);
2995 }
2996 
2997 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2998   assert(!pop_right || pop_left, "usage error");
2999   if (VM_Version::supports_cmov()) {
3000     assert(tmp == noreg, "unneeded temp");
3001     if (pop_left) {
3002       fucomip(index);
3003     } else {
3004       fucomi(index);
3005     }
3006     if (pop_right) {
3007       fpop();
3008     }
3009   } else {
3010     assert(tmp != noreg, "need temp");
3011     if (pop_left) {
3012       if (pop_right) {
3013         fcompp();
3014       } else {
3015         fcomp(index);
3016       }
3017     } else {
3018       fcom(index);
3019     }
3020     // convert FPU condition into eflags condition via rax,
3021     save_rax(tmp);
3022     fwait(); fnstsw_ax();
3023     sahf();
3024     restore_rax(tmp);
3025   }
3026   // condition codes set as follows:
3027   //
3028   // CF (corresponds to C0) if x < y
3029   // PF (corresponds to C2) if unordered
3030   // ZF (corresponds to C3) if x = y
3031 }
3032 
3033 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3034   fcmp2int(dst, unordered_is_less, 1, true, true);
3035 }
3036 
3037 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3038   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3039   Label L;
3040   if (unordered_is_less) {
3041     movl(dst, -1);
3042     jcc(Assembler::parity, L);
3043     jcc(Assembler::below , L);
3044     movl(dst, 0);
3045     jcc(Assembler::equal , L);
3046     increment(dst);
3047   } else { // unordered is greater
3048     movl(dst, 1);
3049     jcc(Assembler::parity, L);
3050     jcc(Assembler::above , L);
3051     movl(dst, 0);
3052     jcc(Assembler::equal , L);
3053     decrementl(dst);
3054   }
3055   bind(L);
3056 }
3057 
3058 void MacroAssembler::fld_d(AddressLiteral src) {
3059   fld_d(as_Address(src));
3060 }
3061 
3062 void MacroAssembler::fld_s(AddressLiteral src) {
3063   fld_s(as_Address(src));
3064 }
3065 
3066 void MacroAssembler::fld_x(AddressLiteral src) {
3067   Assembler::fld_x(as_Address(src));
3068 }
3069 
3070 void MacroAssembler::fldcw(AddressLiteral src) {
3071   Assembler::fldcw(as_Address(src));
3072 }
3073 
3074 void MacroAssembler::pow_exp_core_encoding() {
3075   // kills rax, rcx, rdx
3076   subptr(rsp,sizeof(jdouble));
3077   // computes 2^X. Stack: X ...
3078   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3079   // keep it on the thread's stack to compute 2^int(X) later
3080   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3081   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3082   fld_s(0);                 // Stack: X X ...
3083   frndint();                // Stack: int(X) X ...
3084   fsuba(1);                 // Stack: int(X) X-int(X) ...
3085   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3086   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3087   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3088   faddp(1);                 // Stack: 2^(X-int(X))
3089   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3090   // shift int(X)+1023 to exponent position.
3091   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3092   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3093   // values so detect them and set result to NaN.
3094   movl(rax,Address(rsp,0));
3095   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3096   addl(rax, 1023);
3097   movl(rdx,rax);
3098   shll(rax,20);
3099   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3100   addl(rdx,1);
3101   // Check that 1 < int(X)+1023+1 < 2048
3102   // in 3 steps:
3103   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3104   // 2- (int(X)+1023+1)&-2048 != 0
3105   // 3- (int(X)+1023+1)&-2048 != 1
3106   // Do 2- first because addl just updated the flags.
3107   cmov32(Assembler::equal,rax,rcx);
3108   cmpl(rdx,1);
3109   cmov32(Assembler::equal,rax,rcx);
3110   testl(rdx,rcx);
3111   cmov32(Assembler::notEqual,rax,rcx);
3112   movl(Address(rsp,4),rax);
3113   movl(Address(rsp,0),0);
3114   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3115   addptr(rsp,sizeof(jdouble));
3116 }
3117 
3118 void MacroAssembler::increase_precision() {
3119   subptr(rsp, BytesPerWord);
3120   fnstcw(Address(rsp, 0));
3121   movl(rax, Address(rsp, 0));
3122   orl(rax, 0x300);
3123   push(rax);
3124   fldcw(Address(rsp, 0));
3125   pop(rax);
3126 }
3127 
3128 void MacroAssembler::restore_precision() {
3129   fldcw(Address(rsp, 0));
3130   addptr(rsp, BytesPerWord);
3131 }
3132 
3133 void MacroAssembler::fast_pow() {
3134   // computes X^Y = 2^(Y * log2(X))
3135   // if fast computation is not possible, result is NaN. Requires
3136   // fallback from user of this macro.
3137   // increase precision for intermediate steps of the computation
3138   BLOCK_COMMENT("fast_pow {");
3139   increase_precision();
3140   fyl2x();                 // Stack: (Y*log2(X)) ...
3141   pow_exp_core_encoding(); // Stack: exp(X) ...
3142   restore_precision();
3143   BLOCK_COMMENT("} fast_pow");
3144 }
3145 
3146 void MacroAssembler::fast_exp() {
3147   // computes exp(X) = 2^(X * log2(e))
3148   // if fast computation is not possible, result is NaN. Requires
3149   // fallback from user of this macro.
3150   // increase precision for intermediate steps of the computation
3151   increase_precision();
3152   fldl2e();                // Stack: log2(e) X ...
3153   fmulp(1);                // Stack: (X*log2(e)) ...
3154   pow_exp_core_encoding(); // Stack: exp(X) ...
3155   restore_precision();
3156 }
3157 
3158 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3159   // kills rax, rcx, rdx
3160   // pow and exp needs 2 extra registers on the fpu stack.
3161   Label slow_case, done;
3162   Register tmp = noreg;
3163   if (!VM_Version::supports_cmov()) {
3164     // fcmp needs a temporary so preserve rdx,
3165     tmp = rdx;
3166   }
3167   Register tmp2 = rax;
3168   Register tmp3 = rcx;
3169 
3170   if (is_exp) {
3171     // Stack: X
3172     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3173     fast_exp();                 // Stack: exp(X) X
3174     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3175     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3176     jcc(Assembler::parity, slow_case);
3177     // get rid of duplicate argument. Stack: exp(X)
3178     if (num_fpu_regs_in_use > 0) {
3179       fxch();
3180       fpop();
3181     } else {
3182       ffree(1);
3183     }
3184     jmp(done);
3185   } else {
3186     // Stack: X Y
3187     Label x_negative, y_not_2;
3188 
3189     static double two = 2.0;
3190     ExternalAddress two_addr((address)&two);
3191 
3192     fld_d(two_addr);            // Stack: 2 X Y
3193     fcmp(tmp, 2, true, false);  // Stack: X Y
3194     jcc(Assembler::parity, y_not_2);
3195     jcc(Assembler::notEqual, y_not_2);
3196 
3197     fxch(); fpop();             // Stack: X
3198     fmul(0);                    // Stack: X*X
3199     
3200     jmp(done);
3201 
3202     bind(y_not_2);
3203 
3204     fldz();                     // Stack: 0 X Y
3205     fcmp(tmp, 1, true, false);  // Stack: X Y
3206     jcc(Assembler::above, x_negative);
3207 
3208     // X >= 0
3209 
3210     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3211     fld_s(1);                   // Stack: X Y X Y
3212     fast_pow();                 // Stack: X^Y X Y
3213     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3214     // X^Y not equal to itself: X^Y is NaN go to slow case.
3215     jcc(Assembler::parity, slow_case);
3216     // get rid of duplicate arguments. Stack: X^Y
3217     if (num_fpu_regs_in_use > 0) {
3218       fxch(); fpop();
3219       fxch(); fpop();
3220     } else {
3221       ffree(2);
3222       ffree(1);
3223     }
3224     jmp(done);
3225 
3226     // X <= 0
3227     bind(x_negative);
3228 
3229     fld_s(1);                   // Stack: Y X Y
3230     frndint();                  // Stack: int(Y) X Y
3231     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3232     jcc(Assembler::notEqual, slow_case);
3233 
3234     subptr(rsp, 8);
3235 
3236     // For X^Y, when X < 0, Y has to be an integer and the final
3237     // result depends on whether it's odd or even. We just checked
3238     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3239     // integer to test its parity. If int(Y) is huge and doesn't fit
3240     // in the 64 bit integer range, the integer indefinite value will
3241     // end up in the gp registers. Huge numbers are all even, the
3242     // integer indefinite number is even so it's fine.
3243 
3244 #ifdef ASSERT
3245     // Let's check we don't end up with an integer indefinite number
3246     // when not expected. First test for huge numbers: check whether
3247     // int(Y)+1 == int(Y) which is true for very large numbers and
3248     // those are all even. A 64 bit integer is guaranteed to not
3249     // overflow for numbers where y+1 != y (when precision is set to
3250     // double precision).
3251     Label y_not_huge;
3252 
3253     fld1();                     // Stack: 1 int(Y) X Y
3254     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3255 
3256 #ifdef _LP64
3257     // trip to memory to force the precision down from double extended
3258     // precision
3259     fstp_d(Address(rsp, 0));
3260     fld_d(Address(rsp, 0));
3261 #endif
3262 
3263     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3264 #endif
3265 
3266     // move int(Y) as 64 bit integer to thread's stack
3267     fistp_d(Address(rsp,0));    // Stack: X Y
3268 
3269 #ifdef ASSERT
3270     jcc(Assembler::notEqual, y_not_huge);
3271 
3272     // Y is huge so we know it's even. It may not fit in a 64 bit
3273     // integer and we don't want the debug code below to see the
3274     // integer indefinite value so overwrite int(Y) on the thread's
3275     // stack with 0.
3276     movl(Address(rsp, 0), 0);
3277     movl(Address(rsp, 4), 0);
3278 
3279     bind(y_not_huge);
3280 #endif
3281 
3282     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3283     fld_s(1);                   // Stack: X Y X Y
3284     fabs();                     // Stack: abs(X) Y X Y
3285     fast_pow();                 // Stack: abs(X)^Y X Y
3286     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3287     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3288 
3289     pop(tmp2);
3290     NOT_LP64(pop(tmp3));
3291     jcc(Assembler::parity, slow_case);
3292 
3293 #ifdef ASSERT
3294     // Check that int(Y) is not integer indefinite value (int
3295     // overflow). Shouldn't happen because for values that would
3296     // overflow, 1+int(Y)==Y which was tested earlier.
3297 #ifndef _LP64
3298     {
3299       Label integer;
3300       testl(tmp2, tmp2);
3301       jcc(Assembler::notZero, integer);
3302       cmpl(tmp3, 0x80000000);
3303       jcc(Assembler::notZero, integer);
3304       STOP("integer indefinite value shouldn't be seen here");
3305       bind(integer);
3306     }
3307 #else
3308     {
3309       Label integer;
3310       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3311       shlq(tmp3, 1);
3312       jcc(Assembler::carryClear, integer);
3313       jcc(Assembler::notZero, integer);
3314       STOP("integer indefinite value shouldn't be seen here");
3315       bind(integer);
3316     }
3317 #endif
3318 #endif
3319 
3320     // get rid of duplicate arguments. Stack: X^Y
3321     if (num_fpu_regs_in_use > 0) {
3322       fxch(); fpop();
3323       fxch(); fpop();
3324     } else {
3325       ffree(2);
3326       ffree(1);
3327     }
3328 
3329     testl(tmp2, 1);
3330     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3331     // X <= 0, Y even: X^Y = -abs(X)^Y
3332 
3333     fchs();                     // Stack: -abs(X)^Y Y
3334     jmp(done);
3335   }
3336 
3337   // slow case: runtime call
3338   bind(slow_case);
3339 
3340   fpop();                       // pop incorrect result or int(Y)
3341 
3342   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3343                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3344 
3345   // Come here with result in F-TOS
3346   bind(done);
3347 }
3348 
3349 void MacroAssembler::fpop() {
3350   ffree();
3351   fincstp();
3352 }
3353 
3354 void MacroAssembler::fremr(Register tmp) {
3355   save_rax(tmp);
3356   { Label L;
3357     bind(L);
3358     fprem();
3359     fwait(); fnstsw_ax();
3360 #ifdef _LP64
3361     testl(rax, 0x400);
3362     jcc(Assembler::notEqual, L);
3363 #else
3364     sahf();
3365     jcc(Assembler::parity, L);
3366 #endif // _LP64
3367   }
3368   restore_rax(tmp);
3369   // Result is in ST0.
3370   // Note: fxch & fpop to get rid of ST1
3371   // (otherwise FPU stack could overflow eventually)
3372   fxch(1);
3373   fpop();
3374 }
3375 
3376 
3377 void MacroAssembler::incrementl(AddressLiteral dst) {
3378   if (reachable(dst)) {
3379     incrementl(as_Address(dst));
3380   } else {
3381     lea(rscratch1, dst);
3382     incrementl(Address(rscratch1, 0));
3383   }
3384 }
3385 
3386 void MacroAssembler::incrementl(ArrayAddress dst) {
3387   incrementl(as_Address(dst));
3388 }
3389 
3390 void MacroAssembler::incrementl(Register reg, int value) {
3391   if (value == min_jint) {addl(reg, value) ; return; }
3392   if (value <  0) { decrementl(reg, -value); return; }
3393   if (value == 0) {                        ; return; }
3394   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3395   /* else */      { addl(reg, value)       ; return; }
3396 }
3397 
3398 void MacroAssembler::incrementl(Address dst, int value) {
3399   if (value == min_jint) {addl(dst, value) ; return; }
3400   if (value <  0) { decrementl(dst, -value); return; }
3401   if (value == 0) {                        ; return; }
3402   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3403   /* else */      { addl(dst, value)       ; return; }
3404 }
3405 
3406 void MacroAssembler::jump(AddressLiteral dst) {
3407   if (reachable(dst)) {
3408     jmp_literal(dst.target(), dst.rspec());
3409   } else {
3410     lea(rscratch1, dst);
3411     jmp(rscratch1);
3412   }
3413 }
3414 
3415 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3416   if (reachable(dst)) {
3417     InstructionMark im(this);
3418     relocate(dst.reloc());
3419     const int short_size = 2;
3420     const int long_size = 6;
3421     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3422     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3423       // 0111 tttn #8-bit disp
3424       emit_int8(0x70 | cc);
3425       emit_int8((offs - short_size) & 0xFF);
3426     } else {
3427       // 0000 1111 1000 tttn #32-bit disp
3428       emit_int8(0x0F);
3429       emit_int8((unsigned char)(0x80 | cc));
3430       emit_int32(offs - long_size);
3431     }
3432   } else {
3433 #ifdef ASSERT
3434     warning("reversing conditional branch");
3435 #endif /* ASSERT */
3436     Label skip;
3437     jccb(reverse[cc], skip);
3438     lea(rscratch1, dst);
3439     Assembler::jmp(rscratch1);
3440     bind(skip);
3441   }
3442 }
3443 
3444 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3445   if (reachable(src)) {
3446     Assembler::ldmxcsr(as_Address(src));
3447   } else {
3448     lea(rscratch1, src);
3449     Assembler::ldmxcsr(Address(rscratch1, 0));
3450   }
3451 }
3452 
3453 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3454   int off;
3455   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3456     off = offset();
3457     movsbl(dst, src); // movsxb
3458   } else {
3459     off = load_unsigned_byte(dst, src);
3460     shll(dst, 24);
3461     sarl(dst, 24);
3462   }
3463   return off;
3464 }
3465 
3466 // Note: load_signed_short used to be called load_signed_word.
3467 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3468 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3469 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3470 int MacroAssembler::load_signed_short(Register dst, Address src) {
3471   int off;
3472   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3473     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3474     // version but this is what 64bit has always done. This seems to imply
3475     // that users are only using 32bits worth.
3476     off = offset();
3477     movswl(dst, src); // movsxw
3478   } else {
3479     off = load_unsigned_short(dst, src);
3480     shll(dst, 16);
3481     sarl(dst, 16);
3482   }
3483   return off;
3484 }
3485 
3486 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3487   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3488   // and "3.9 Partial Register Penalties", p. 22).
3489   int off;
3490   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3491     off = offset();
3492     movzbl(dst, src); // movzxb
3493   } else {
3494     xorl(dst, dst);
3495     off = offset();
3496     movb(dst, src);
3497   }
3498   return off;
3499 }
3500 
3501 // Note: load_unsigned_short used to be called load_unsigned_word.
3502 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3503   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3504   // and "3.9 Partial Register Penalties", p. 22).
3505   int off;
3506   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3507     off = offset();
3508     movzwl(dst, src); // movzxw
3509   } else {
3510     xorl(dst, dst);
3511     off = offset();
3512     movw(dst, src);
3513   }
3514   return off;
3515 }
3516 
3517 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3518   switch (size_in_bytes) {
3519 #ifndef _LP64
3520   case  8:
3521     assert(dst2 != noreg, "second dest register required");
3522     movl(dst,  src);
3523     movl(dst2, src.plus_disp(BytesPerInt));
3524     break;
3525 #else
3526   case  8:  movq(dst, src); break;
3527 #endif
3528   case  4:  movl(dst, src); break;
3529   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3530   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3531   default:  ShouldNotReachHere();
3532   }
3533 }
3534 
3535 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3536   switch (size_in_bytes) {
3537 #ifndef _LP64
3538   case  8:
3539     assert(src2 != noreg, "second source register required");
3540     movl(dst,                        src);
3541     movl(dst.plus_disp(BytesPerInt), src2);
3542     break;
3543 #else
3544   case  8:  movq(dst, src); break;
3545 #endif
3546   case  4:  movl(dst, src); break;
3547   case  2:  movw(dst, src); break;
3548   case  1:  movb(dst, src); break;
3549   default:  ShouldNotReachHere();
3550   }
3551 }
3552 
3553 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3554   if (reachable(dst)) {
3555     movl(as_Address(dst), src);
3556   } else {
3557     lea(rscratch1, dst);
3558     movl(Address(rscratch1, 0), src);
3559   }
3560 }
3561 
3562 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3563   if (reachable(src)) {
3564     movl(dst, as_Address(src));
3565   } else {
3566     lea(rscratch1, src);
3567     movl(dst, Address(rscratch1, 0));
3568   }
3569 }
3570 
3571 // C++ bool manipulation
3572 
3573 void MacroAssembler::movbool(Register dst, Address src) {
3574   if(sizeof(bool) == 1)
3575     movb(dst, src);
3576   else if(sizeof(bool) == 2)
3577     movw(dst, src);
3578   else if(sizeof(bool) == 4)
3579     movl(dst, src);
3580   else
3581     // unsupported
3582     ShouldNotReachHere();
3583 }
3584 
3585 void MacroAssembler::movbool(Address dst, bool boolconst) {
3586   if(sizeof(bool) == 1)
3587     movb(dst, (int) boolconst);
3588   else if(sizeof(bool) == 2)
3589     movw(dst, (int) boolconst);
3590   else if(sizeof(bool) == 4)
3591     movl(dst, (int) boolconst);
3592   else
3593     // unsupported
3594     ShouldNotReachHere();
3595 }
3596 
3597 void MacroAssembler::movbool(Address dst, Register src) {
3598   if(sizeof(bool) == 1)
3599     movb(dst, src);
3600   else if(sizeof(bool) == 2)
3601     movw(dst, src);
3602   else if(sizeof(bool) == 4)
3603     movl(dst, src);
3604   else
3605     // unsupported
3606     ShouldNotReachHere();
3607 }
3608 
3609 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3610   movb(as_Address(dst), src);
3611 }
3612 
3613 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3614   if (reachable(src)) {
3615     movdl(dst, as_Address(src));
3616   } else {
3617     lea(rscratch1, src);
3618     movdl(dst, Address(rscratch1, 0));
3619   }
3620 }
3621 
3622 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3623   if (reachable(src)) {
3624     movq(dst, as_Address(src));
3625   } else {
3626     lea(rscratch1, src);
3627     movq(dst, Address(rscratch1, 0));
3628   }
3629 }
3630 
3631 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3632   if (reachable(src)) {
3633     if (UseXmmLoadAndClearUpper) {
3634       movsd (dst, as_Address(src));
3635     } else {
3636       movlpd(dst, as_Address(src));
3637     }
3638   } else {
3639     lea(rscratch1, src);
3640     if (UseXmmLoadAndClearUpper) {
3641       movsd (dst, Address(rscratch1, 0));
3642     } else {
3643       movlpd(dst, Address(rscratch1, 0));
3644     }
3645   }
3646 }
3647 
3648 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3649   if (reachable(src)) {
3650     movss(dst, as_Address(src));
3651   } else {
3652     lea(rscratch1, src);
3653     movss(dst, Address(rscratch1, 0));
3654   }
3655 }
3656 
3657 void MacroAssembler::movptr(Register dst, Register src) {
3658   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3659 }
3660 
3661 void MacroAssembler::movptr(Register dst, Address src) {
3662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3663 }
3664 
3665 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3666 void MacroAssembler::movptr(Register dst, intptr_t src) {
3667   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3668 }
3669 
3670 void MacroAssembler::movptr(Address dst, Register src) {
3671   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3672 }
3673 
3674 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3675   if (reachable(src)) {
3676     Assembler::movdqu(dst, as_Address(src));
3677   } else {
3678     lea(rscratch1, src);
3679     Assembler::movdqu(dst, Address(rscratch1, 0));
3680   }
3681 }
3682 
3683 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3684   if (reachable(src)) {
3685     Assembler::movdqa(dst, as_Address(src));
3686   } else {
3687     lea(rscratch1, src);
3688     Assembler::movdqa(dst, Address(rscratch1, 0));
3689   }
3690 }
3691 
3692 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3693   if (reachable(src)) {
3694     Assembler::movsd(dst, as_Address(src));
3695   } else {
3696     lea(rscratch1, src);
3697     Assembler::movsd(dst, Address(rscratch1, 0));
3698   }
3699 }
3700 
3701 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3702   if (reachable(src)) {
3703     Assembler::movss(dst, as_Address(src));
3704   } else {
3705     lea(rscratch1, src);
3706     Assembler::movss(dst, Address(rscratch1, 0));
3707   }
3708 }
3709 
3710 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3711   if (reachable(src)) {
3712     Assembler::mulsd(dst, as_Address(src));
3713   } else {
3714     lea(rscratch1, src);
3715     Assembler::mulsd(dst, Address(rscratch1, 0));
3716   }
3717 }
3718 
3719 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3720   if (reachable(src)) {
3721     Assembler::mulss(dst, as_Address(src));
3722   } else {
3723     lea(rscratch1, src);
3724     Assembler::mulss(dst, Address(rscratch1, 0));
3725   }
3726 }
3727 
3728 void MacroAssembler::null_check(Register reg, int offset) {
3729   if (needs_explicit_null_check(offset)) {
3730     // provoke OS NULL exception if reg = NULL by
3731     // accessing M[reg] w/o changing any (non-CC) registers
3732     // NOTE: cmpl is plenty here to provoke a segv
3733     cmpptr(rax, Address(reg, 0));
3734     // Note: should probably use testl(rax, Address(reg, 0));
3735     //       may be shorter code (however, this version of
3736     //       testl needs to be implemented first)
3737   } else {
3738     // nothing to do, (later) access of M[reg + offset]
3739     // will provoke OS NULL exception if reg = NULL
3740   }
3741 }
3742 
3743 void MacroAssembler::os_breakpoint() {
3744   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3745   // (e.g., MSVC can't call ps() otherwise)
3746   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3747 }
3748 
3749 void MacroAssembler::pop_CPU_state() {
3750   pop_FPU_state();
3751   pop_IU_state();
3752 }
3753 
3754 void MacroAssembler::pop_FPU_state() {
3755   NOT_LP64(frstor(Address(rsp, 0));)
3756   LP64_ONLY(fxrstor(Address(rsp, 0));)
3757   addptr(rsp, FPUStateSizeInWords * wordSize);
3758 }
3759 
3760 void MacroAssembler::pop_IU_state() {
3761   popa();
3762   LP64_ONLY(addq(rsp, 8));
3763   popf();
3764 }
3765 
3766 // Save Integer and Float state
3767 // Warning: Stack must be 16 byte aligned (64bit)
3768 void MacroAssembler::push_CPU_state() {
3769   push_IU_state();
3770   push_FPU_state();
3771 }
3772 
3773 void MacroAssembler::push_FPU_state() {
3774   subptr(rsp, FPUStateSizeInWords * wordSize);
3775 #ifndef _LP64
3776   fnsave(Address(rsp, 0));
3777   fwait();
3778 #else
3779   fxsave(Address(rsp, 0));
3780 #endif // LP64
3781 }
3782 
3783 void MacroAssembler::push_IU_state() {
3784   // Push flags first because pusha kills them
3785   pushf();
3786   // Make sure rsp stays 16-byte aligned
3787   LP64_ONLY(subq(rsp, 8));
3788   pusha();
3789 }
3790 
3791 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3792   // determine java_thread register
3793   if (!java_thread->is_valid()) {
3794     java_thread = rdi;
3795     get_thread(java_thread);
3796   }
3797   // we must set sp to zero to clear frame
3798   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3799   if (clear_fp) {
3800     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3801   }
3802 
3803   if (clear_pc)
3804     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3805 
3806 }
3807 
3808 void MacroAssembler::restore_rax(Register tmp) {
3809   if (tmp == noreg) pop(rax);
3810   else if (tmp != rax) mov(rax, tmp);
3811 }
3812 
3813 void MacroAssembler::round_to(Register reg, int modulus) {
3814   addptr(reg, modulus - 1);
3815   andptr(reg, -modulus);
3816 }
3817 
3818 void MacroAssembler::save_rax(Register tmp) {
3819   if (tmp == noreg) push(rax);
3820   else if (tmp != rax) mov(tmp, rax);
3821 }
3822 
3823 // Write serialization page so VM thread can do a pseudo remote membar.
3824 // We use the current thread pointer to calculate a thread specific
3825 // offset to write to within the page. This minimizes bus traffic
3826 // due to cache line collision.
3827 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3828   movl(tmp, thread);
3829   shrl(tmp, os::get_serialize_page_shift_count());
3830   andl(tmp, (os::vm_page_size() - sizeof(int)));
3831 
3832   Address index(noreg, tmp, Address::times_1);
3833   ExternalAddress page(os::get_memory_serialize_page());
3834 
3835   // Size of store must match masking code above
3836   movl(as_Address(ArrayAddress(page, index)), tmp);
3837 }
3838 
3839 // Calls to C land
3840 //
3841 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3842 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3843 // has to be reset to 0. This is required to allow proper stack traversal.
3844 void MacroAssembler::set_last_Java_frame(Register java_thread,
3845                                          Register last_java_sp,
3846                                          Register last_java_fp,
3847                                          address  last_java_pc) {
3848   // determine java_thread register
3849   if (!java_thread->is_valid()) {
3850     java_thread = rdi;
3851     get_thread(java_thread);
3852   }
3853   // determine last_java_sp register
3854   if (!last_java_sp->is_valid()) {
3855     last_java_sp = rsp;
3856   }
3857 
3858   // last_java_fp is optional
3859 
3860   if (last_java_fp->is_valid()) {
3861     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3862   }
3863 
3864   // last_java_pc is optional
3865 
3866   if (last_java_pc != NULL) {
3867     lea(Address(java_thread,
3868                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3869         InternalAddress(last_java_pc));
3870 
3871   }
3872   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3873 }
3874 
3875 void MacroAssembler::shlptr(Register dst, int imm8) {
3876   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3877 }
3878 
3879 void MacroAssembler::shrptr(Register dst, int imm8) {
3880   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3881 }
3882 
3883 void MacroAssembler::sign_extend_byte(Register reg) {
3884   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3885     movsbl(reg, reg); // movsxb
3886   } else {
3887     shll(reg, 24);
3888     sarl(reg, 24);
3889   }
3890 }
3891 
3892 void MacroAssembler::sign_extend_short(Register reg) {
3893   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3894     movswl(reg, reg); // movsxw
3895   } else {
3896     shll(reg, 16);
3897     sarl(reg, 16);
3898   }
3899 }
3900 
3901 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3902   assert(reachable(src), "Address should be reachable");
3903   testl(dst, as_Address(src));
3904 }
3905 
3906 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3907   if (reachable(src)) {
3908     Assembler::sqrtsd(dst, as_Address(src));
3909   } else {
3910     lea(rscratch1, src);
3911     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3912   }
3913 }
3914 
3915 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3916   if (reachable(src)) {
3917     Assembler::sqrtss(dst, as_Address(src));
3918   } else {
3919     lea(rscratch1, src);
3920     Assembler::sqrtss(dst, Address(rscratch1, 0));
3921   }
3922 }
3923 
3924 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3925   if (reachable(src)) {
3926     Assembler::subsd(dst, as_Address(src));
3927   } else {
3928     lea(rscratch1, src);
3929     Assembler::subsd(dst, Address(rscratch1, 0));
3930   }
3931 }
3932 
3933 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3934   if (reachable(src)) {
3935     Assembler::subss(dst, as_Address(src));
3936   } else {
3937     lea(rscratch1, src);
3938     Assembler::subss(dst, Address(rscratch1, 0));
3939   }
3940 }
3941 
3942 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3943   if (reachable(src)) {
3944     Assembler::ucomisd(dst, as_Address(src));
3945   } else {
3946     lea(rscratch1, src);
3947     Assembler::ucomisd(dst, Address(rscratch1, 0));
3948   }
3949 }
3950 
3951 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3952   if (reachable(src)) {
3953     Assembler::ucomiss(dst, as_Address(src));
3954   } else {
3955     lea(rscratch1, src);
3956     Assembler::ucomiss(dst, Address(rscratch1, 0));
3957   }
3958 }
3959 
3960 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3961   // Used in sign-bit flipping with aligned address.
3962   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3963   if (reachable(src)) {
3964     Assembler::xorpd(dst, as_Address(src));
3965   } else {
3966     lea(rscratch1, src);
3967     Assembler::xorpd(dst, Address(rscratch1, 0));
3968   }
3969 }
3970 
3971 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3972   // Used in sign-bit flipping with aligned address.
3973   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3974   if (reachable(src)) {
3975     Assembler::xorps(dst, as_Address(src));
3976   } else {
3977     lea(rscratch1, src);
3978     Assembler::xorps(dst, Address(rscratch1, 0));
3979   }
3980 }
3981 
3982 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3983   // Used in sign-bit flipping with aligned address.
3984   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3985   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3986   if (reachable(src)) {
3987     Assembler::pshufb(dst, as_Address(src));
3988   } else {
3989     lea(rscratch1, src);
3990     Assembler::pshufb(dst, Address(rscratch1, 0));
3991   }
3992 }
3993 
3994 // AVX 3-operands instructions
3995 
3996 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3997   if (reachable(src)) {
3998     vaddsd(dst, nds, as_Address(src));
3999   } else {
4000     lea(rscratch1, src);
4001     vaddsd(dst, nds, Address(rscratch1, 0));
4002   }
4003 }
4004 
4005 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4006   if (reachable(src)) {
4007     vaddss(dst, nds, as_Address(src));
4008   } else {
4009     lea(rscratch1, src);
4010     vaddss(dst, nds, Address(rscratch1, 0));
4011   }
4012 }
4013 
4014 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4015   if (reachable(src)) {
4016     vandpd(dst, nds, as_Address(src), vector256);
4017   } else {
4018     lea(rscratch1, src);
4019     vandpd(dst, nds, Address(rscratch1, 0), vector256);
4020   }
4021 }
4022 
4023 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4024   if (reachable(src)) {
4025     vandps(dst, nds, as_Address(src), vector256);
4026   } else {
4027     lea(rscratch1, src);
4028     vandps(dst, nds, Address(rscratch1, 0), vector256);
4029   }
4030 }
4031 
4032 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4033   if (reachable(src)) {
4034     vdivsd(dst, nds, as_Address(src));
4035   } else {
4036     lea(rscratch1, src);
4037     vdivsd(dst, nds, Address(rscratch1, 0));
4038   }
4039 }
4040 
4041 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4042   if (reachable(src)) {
4043     vdivss(dst, nds, as_Address(src));
4044   } else {
4045     lea(rscratch1, src);
4046     vdivss(dst, nds, Address(rscratch1, 0));
4047   }
4048 }
4049 
4050 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4051   if (reachable(src)) {
4052     vmulsd(dst, nds, as_Address(src));
4053   } else {
4054     lea(rscratch1, src);
4055     vmulsd(dst, nds, Address(rscratch1, 0));
4056   }
4057 }
4058 
4059 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4060   if (reachable(src)) {
4061     vmulss(dst, nds, as_Address(src));
4062   } else {
4063     lea(rscratch1, src);
4064     vmulss(dst, nds, Address(rscratch1, 0));
4065   }
4066 }
4067 
4068 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4069   if (reachable(src)) {
4070     vsubsd(dst, nds, as_Address(src));
4071   } else {
4072     lea(rscratch1, src);
4073     vsubsd(dst, nds, Address(rscratch1, 0));
4074   }
4075 }
4076 
4077 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4078   if (reachable(src)) {
4079     vsubss(dst, nds, as_Address(src));
4080   } else {
4081     lea(rscratch1, src);
4082     vsubss(dst, nds, Address(rscratch1, 0));
4083   }
4084 }
4085 
4086 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4087   if (reachable(src)) {
4088     vxorpd(dst, nds, as_Address(src), vector256);
4089   } else {
4090     lea(rscratch1, src);
4091     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
4092   }
4093 }
4094 
4095 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4096   if (reachable(src)) {
4097     vxorps(dst, nds, as_Address(src), vector256);
4098   } else {
4099     lea(rscratch1, src);
4100     vxorps(dst, nds, Address(rscratch1, 0), vector256);
4101   }
4102 }
4103 
4104 
4105 //////////////////////////////////////////////////////////////////////////////////
4106 #if INCLUDE_ALL_GCS
4107 
4108 void MacroAssembler::g1_write_barrier_pre(Register obj,
4109                                           Register pre_val,
4110                                           Register thread,
4111                                           Register tmp,
4112                                           bool tosca_live,
4113                                           bool expand_call) {
4114 
4115   // If expand_call is true then we expand the call_VM_leaf macro
4116   // directly to skip generating the check by
4117   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4118 
4119 #ifdef _LP64
4120   assert(thread == r15_thread, "must be");
4121 #endif // _LP64
4122 
4123   Label done;
4124   Label runtime;
4125 
4126   assert(pre_val != noreg, "check this code");
4127 
4128   if (obj != noreg) {
4129     assert_different_registers(obj, pre_val, tmp);
4130     assert(pre_val != rax, "check this code");
4131   }
4132 
4133   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4134                                        PtrQueue::byte_offset_of_active()));
4135   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4136                                        PtrQueue::byte_offset_of_index()));
4137   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4138                                        PtrQueue::byte_offset_of_buf()));
4139 
4140 
4141   // Is marking active?
4142   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4143     cmpl(in_progress, 0);
4144   } else {
4145     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4146     cmpb(in_progress, 0);
4147   }
4148   jcc(Assembler::equal, done);
4149 
4150   // Do we need to load the previous value?
4151   if (obj != noreg) {
4152     load_heap_oop(pre_val, Address(obj, 0));
4153   }
4154 
4155   // Is the previous value null?
4156   cmpptr(pre_val, (int32_t) NULL_WORD);
4157   jcc(Assembler::equal, done);
4158 
4159   // Can we store original value in the thread's buffer?
4160   // Is index == 0?
4161   // (The index field is typed as size_t.)
4162 
4163   movptr(tmp, index);                   // tmp := *index_adr
4164   cmpptr(tmp, 0);                       // tmp == 0?
4165   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4166 
4167   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4168   movptr(index, tmp);                   // *index_adr := tmp
4169   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4170 
4171   // Record the previous value
4172   movptr(Address(tmp, 0), pre_val);
4173   jmp(done);
4174 
4175   bind(runtime);
4176   // save the live input values
4177   if(tosca_live) push(rax);
4178 
4179   if (obj != noreg && obj != rax)
4180     push(obj);
4181 
4182   if (pre_val != rax)
4183     push(pre_val);
4184 
4185   // Calling the runtime using the regular call_VM_leaf mechanism generates
4186   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4187   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4188   //
4189   // If we care generating the pre-barrier without a frame (e.g. in the
4190   // intrinsified Reference.get() routine) then ebp might be pointing to
4191   // the caller frame and so this check will most likely fail at runtime.
4192   //
4193   // Expanding the call directly bypasses the generation of the check.
4194   // So when we do not have have a full interpreter frame on the stack
4195   // expand_call should be passed true.
4196 
4197   NOT_LP64( push(thread); )
4198 
4199   if (expand_call) {
4200     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4201     pass_arg1(this, thread);
4202     pass_arg0(this, pre_val);
4203     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4204   } else {
4205     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4206   }
4207 
4208   NOT_LP64( pop(thread); )
4209 
4210   // save the live input values
4211   if (pre_val != rax)
4212     pop(pre_val);
4213 
4214   if (obj != noreg && obj != rax)
4215     pop(obj);
4216 
4217   if(tosca_live) pop(rax);
4218 
4219   bind(done);
4220 }
4221 
4222 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4223                                            Register new_val,
4224                                            Register thread,
4225                                            Register tmp,
4226                                            Register tmp2) {
4227 #ifdef _LP64
4228   assert(thread == r15_thread, "must be");
4229 #endif // _LP64
4230 
4231   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4232                                        PtrQueue::byte_offset_of_index()));
4233   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4234                                        PtrQueue::byte_offset_of_buf()));
4235 
4236   BarrierSet* bs = Universe::heap()->barrier_set();
4237   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4238   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4239 
4240   Label done;
4241   Label runtime;
4242 
4243   // Does store cross heap regions?
4244 
4245   movptr(tmp, store_addr);
4246   xorptr(tmp, new_val);
4247   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4248   jcc(Assembler::equal, done);
4249 
4250   // crosses regions, storing NULL?
4251 
4252   cmpptr(new_val, (int32_t) NULL_WORD);
4253   jcc(Assembler::equal, done);
4254 
4255   // storing region crossing non-NULL, is card already dirty?
4256 
4257   const Register card_addr = tmp;
4258   const Register cardtable = tmp2;
4259 
4260   movptr(card_addr, store_addr);
4261   shrptr(card_addr, CardTableModRefBS::card_shift);
4262   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4263   // a valid address and therefore is not properly handled by the relocation code.
4264   movptr(cardtable, (intptr_t)ct->byte_map_base);
4265   addptr(card_addr, cardtable);
4266 
4267   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4268   jcc(Assembler::equal, done);
4269 
4270   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4271   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4272   jcc(Assembler::equal, done);
4273 
4274 
4275   // storing a region crossing, non-NULL oop, card is clean.
4276   // dirty card and log.
4277 
4278   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4279 
4280   cmpl(queue_index, 0);
4281   jcc(Assembler::equal, runtime);
4282   subl(queue_index, wordSize);
4283   movptr(tmp2, buffer);
4284 #ifdef _LP64
4285   movslq(rscratch1, queue_index);
4286   addq(tmp2, rscratch1);
4287   movq(Address(tmp2, 0), card_addr);
4288 #else
4289   addl(tmp2, queue_index);
4290   movl(Address(tmp2, 0), card_addr);
4291 #endif
4292   jmp(done);
4293 
4294   bind(runtime);
4295   // save the live input values
4296   push(store_addr);
4297   push(new_val);
4298 #ifdef _LP64
4299   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4300 #else
4301   push(thread);
4302   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4303   pop(thread);
4304 #endif
4305   pop(new_val);
4306   pop(store_addr);
4307 
4308   bind(done);
4309 }
4310 
4311 #endif // INCLUDE_ALL_GCS
4312 //////////////////////////////////////////////////////////////////////////////////
4313 
4314 
4315 void MacroAssembler::store_check(Register obj) {
4316   // Does a store check for the oop in register obj. The content of
4317   // register obj is destroyed afterwards.
4318   store_check_part_1(obj);
4319   store_check_part_2(obj);
4320 }
4321 
4322 void MacroAssembler::store_check(Register obj, Address dst) {
4323   store_check(obj);
4324 }
4325 
4326 
4327 // split the store check operation so that other instructions can be scheduled inbetween
4328 void MacroAssembler::store_check_part_1(Register obj) {
4329   BarrierSet* bs = Universe::heap()->barrier_set();
4330   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4331   shrptr(obj, CardTableModRefBS::card_shift);
4332 }
4333 
4334 void MacroAssembler::store_check_part_2(Register obj) {
4335   BarrierSet* bs = Universe::heap()->barrier_set();
4336   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4337   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4338   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4339 
4340   // The calculation for byte_map_base is as follows:
4341   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4342   // So this essentially converts an address to a displacement and it will
4343   // never need to be relocated. On 64bit however the value may be too
4344   // large for a 32bit displacement.
4345   intptr_t disp = (intptr_t) ct->byte_map_base;
4346   if (is_simm32(disp)) {
4347     Address cardtable(noreg, obj, Address::times_1, disp);
4348     movb(cardtable, 0);
4349   } else {
4350     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4351     // displacement and done in a single instruction given favorable mapping and a
4352     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4353     // entry and that entry is not properly handled by the relocation code.
4354     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4355     Address index(noreg, obj, Address::times_1);
4356     movb(as_Address(ArrayAddress(cardtable, index)), 0);
4357   }
4358 }
4359 
4360 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4361   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4362 }
4363 
4364 // Force generation of a 4 byte immediate value even if it fits into 8bit
4365 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4366   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4367 }
4368 
4369 void MacroAssembler::subptr(Register dst, Register src) {
4370   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4371 }
4372 
4373 // C++ bool manipulation
4374 void MacroAssembler::testbool(Register dst) {
4375   if(sizeof(bool) == 1)
4376     testb(dst, 0xff);
4377   else if(sizeof(bool) == 2) {
4378     // testw implementation needed for two byte bools
4379     ShouldNotReachHere();
4380   } else if(sizeof(bool) == 4)
4381     testl(dst, dst);
4382   else
4383     // unsupported
4384     ShouldNotReachHere();
4385 }
4386 
4387 void MacroAssembler::testptr(Register dst, Register src) {
4388   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4389 }
4390 
4391 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4392 void MacroAssembler::tlab_allocate(Register obj,
4393                                    Register var_size_in_bytes,
4394                                    int con_size_in_bytes,
4395                                    Register t1,
4396                                    Register t2,
4397                                    Label& slow_case) {
4398   assert_different_registers(obj, t1, t2);
4399   assert_different_registers(obj, var_size_in_bytes, t1);
4400   Register end = t2;
4401   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4402 
4403   verify_tlab();
4404 
4405   NOT_LP64(get_thread(thread));
4406 
4407   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4408   if (var_size_in_bytes == noreg) {
4409     lea(end, Address(obj, con_size_in_bytes));
4410   } else {
4411     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4412   }
4413   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4414   jcc(Assembler::above, slow_case);
4415 
4416   // update the tlab top pointer
4417   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4418 
4419   // recover var_size_in_bytes if necessary
4420   if (var_size_in_bytes == end) {
4421     subptr(var_size_in_bytes, obj);
4422   }
4423   verify_tlab();
4424 }
4425 
4426 // Preserves rbx, and rdx.
4427 Register MacroAssembler::tlab_refill(Label& retry,
4428                                      Label& try_eden,
4429                                      Label& slow_case) {
4430   Register top = rax;
4431   Register t1  = rcx;
4432   Register t2  = rsi;
4433   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4434   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4435   Label do_refill, discard_tlab;
4436 
4437   if (!Universe::heap()->supports_inline_contig_alloc()) {
4438     // No allocation in the shared eden.
4439     jmp(slow_case);
4440   }
4441 
4442   NOT_LP64(get_thread(thread_reg));
4443 
4444   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4445   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4446 
4447   // calculate amount of free space
4448   subptr(t1, top);
4449   shrptr(t1, LogHeapWordSize);
4450 
4451   // Retain tlab and allocate object in shared space if
4452   // the amount free in the tlab is too large to discard.
4453   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4454   jcc(Assembler::lessEqual, discard_tlab);
4455 
4456   // Retain
4457   // %%% yuck as movptr...
4458   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4459   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4460   if (TLABStats) {
4461     // increment number of slow_allocations
4462     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4463   }
4464   jmp(try_eden);
4465 
4466   bind(discard_tlab);
4467   if (TLABStats) {
4468     // increment number of refills
4469     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4470     // accumulate wastage -- t1 is amount free in tlab
4471     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4472   }
4473 
4474   // if tlab is currently allocated (top or end != null) then
4475   // fill [top, end + alignment_reserve) with array object
4476   testptr(top, top);
4477   jcc(Assembler::zero, do_refill);
4478 
4479   // set up the mark word
4480   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4481   // set the length to the remaining space
4482   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4483   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4484   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4485   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4486   // set klass to intArrayKlass
4487   // dubious reloc why not an oop reloc?
4488   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4489   // store klass last.  concurrent gcs assumes klass length is valid if
4490   // klass field is not null.
4491   store_klass(top, t1);
4492 
4493   movptr(t1, top);
4494   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4495   incr_allocated_bytes(thread_reg, t1, 0);
4496 
4497   // refill the tlab with an eden allocation
4498   bind(do_refill);
4499   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4500   shlptr(t1, LogHeapWordSize);
4501   // allocate new tlab, address returned in top
4502   eden_allocate(top, t1, 0, t2, slow_case);
4503 
4504   // Check that t1 was preserved in eden_allocate.
4505 #ifdef ASSERT
4506   if (UseTLAB) {
4507     Label ok;
4508     Register tsize = rsi;
4509     assert_different_registers(tsize, thread_reg, t1);
4510     push(tsize);
4511     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4512     shlptr(tsize, LogHeapWordSize);
4513     cmpptr(t1, tsize);
4514     jcc(Assembler::equal, ok);
4515     STOP("assert(t1 != tlab size)");
4516     should_not_reach_here();
4517 
4518     bind(ok);
4519     pop(tsize);
4520   }
4521 #endif
4522   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4523   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4524   addptr(top, t1);
4525   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4526   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4527   verify_tlab();
4528   jmp(retry);
4529 
4530   return thread_reg; // for use by caller
4531 }
4532 
4533 void MacroAssembler::incr_allocated_bytes(Register thread,
4534                                           Register var_size_in_bytes,
4535                                           int con_size_in_bytes,
4536                                           Register t1) {
4537   if (!thread->is_valid()) {
4538 #ifdef _LP64
4539     thread = r15_thread;
4540 #else
4541     assert(t1->is_valid(), "need temp reg");
4542     thread = t1;
4543     get_thread(thread);
4544 #endif
4545   }
4546 
4547 #ifdef _LP64
4548   if (var_size_in_bytes->is_valid()) {
4549     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4550   } else {
4551     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4552   }
4553 #else
4554   if (var_size_in_bytes->is_valid()) {
4555     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4556   } else {
4557     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4558   }
4559   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4560 #endif
4561 }
4562 
4563 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4564   pusha();
4565 
4566   // if we are coming from c1, xmm registers may be live
4567   int off = 0;
4568   if (UseSSE == 1)  {
4569     subptr(rsp, sizeof(jdouble)*8);
4570     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4571     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4572     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4573     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4574     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4575     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4576     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4577     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4578   } else if (UseSSE >= 2)  {
4579 #ifdef COMPILER2
4580     if (MaxVectorSize > 16) {
4581       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4582       // Save upper half of YMM registes
4583       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4584       vextractf128h(Address(rsp,  0),xmm0);
4585       vextractf128h(Address(rsp, 16),xmm1);
4586       vextractf128h(Address(rsp, 32),xmm2);
4587       vextractf128h(Address(rsp, 48),xmm3);
4588       vextractf128h(Address(rsp, 64),xmm4);
4589       vextractf128h(Address(rsp, 80),xmm5);
4590       vextractf128h(Address(rsp, 96),xmm6);
4591       vextractf128h(Address(rsp,112),xmm7);
4592 #ifdef _LP64
4593       vextractf128h(Address(rsp,128),xmm8);
4594       vextractf128h(Address(rsp,144),xmm9);
4595       vextractf128h(Address(rsp,160),xmm10);
4596       vextractf128h(Address(rsp,176),xmm11);
4597       vextractf128h(Address(rsp,192),xmm12);
4598       vextractf128h(Address(rsp,208),xmm13);
4599       vextractf128h(Address(rsp,224),xmm14);
4600       vextractf128h(Address(rsp,240),xmm15);
4601 #endif
4602     }
4603 #endif
4604     // Save whole 128bit (16 bytes) XMM regiters
4605     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4606     movdqu(Address(rsp,off++*16),xmm0);
4607     movdqu(Address(rsp,off++*16),xmm1);
4608     movdqu(Address(rsp,off++*16),xmm2);
4609     movdqu(Address(rsp,off++*16),xmm3);
4610     movdqu(Address(rsp,off++*16),xmm4);
4611     movdqu(Address(rsp,off++*16),xmm5);
4612     movdqu(Address(rsp,off++*16),xmm6);
4613     movdqu(Address(rsp,off++*16),xmm7);
4614 #ifdef _LP64
4615     movdqu(Address(rsp,off++*16),xmm8);
4616     movdqu(Address(rsp,off++*16),xmm9);
4617     movdqu(Address(rsp,off++*16),xmm10);
4618     movdqu(Address(rsp,off++*16),xmm11);
4619     movdqu(Address(rsp,off++*16),xmm12);
4620     movdqu(Address(rsp,off++*16),xmm13);
4621     movdqu(Address(rsp,off++*16),xmm14);
4622     movdqu(Address(rsp,off++*16),xmm15);
4623 #endif
4624   }
4625 
4626   // Preserve registers across runtime call
4627   int incoming_argument_and_return_value_offset = -1;
4628   if (num_fpu_regs_in_use > 1) {
4629     // Must preserve all other FPU regs (could alternatively convert
4630     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4631     // FPU state, but can not trust C compiler)
4632     NEEDS_CLEANUP;
4633     // NOTE that in this case we also push the incoming argument(s) to
4634     // the stack and restore it later; we also use this stack slot to
4635     // hold the return value from dsin, dcos etc.
4636     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4637       subptr(rsp, sizeof(jdouble));
4638       fstp_d(Address(rsp, 0));
4639     }
4640     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4641     for (int i = nb_args-1; i >= 0; i--) {
4642       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4643     }
4644   }
4645 
4646   subptr(rsp, nb_args*sizeof(jdouble));
4647   for (int i = 0; i < nb_args; i++) {
4648     fstp_d(Address(rsp, i*sizeof(jdouble)));
4649   }
4650 
4651 #ifdef _LP64
4652   if (nb_args > 0) {
4653     movdbl(xmm0, Address(rsp, 0));
4654   }
4655   if (nb_args > 1) {
4656     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4657   }
4658   assert(nb_args <= 2, "unsupported number of args");
4659 #endif // _LP64
4660 
4661   // NOTE: we must not use call_VM_leaf here because that requires a
4662   // complete interpreter frame in debug mode -- same bug as 4387334
4663   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4664   // do proper 64bit abi
4665 
4666   NEEDS_CLEANUP;
4667   // Need to add stack banging before this runtime call if it needs to
4668   // be taken; however, there is no generic stack banging routine at
4669   // the MacroAssembler level
4670 
4671   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4672 
4673 #ifdef _LP64
4674   movsd(Address(rsp, 0), xmm0);
4675   fld_d(Address(rsp, 0));
4676 #endif // _LP64
4677   addptr(rsp, sizeof(jdouble) * nb_args);
4678   if (num_fpu_regs_in_use > 1) {
4679     // Must save return value to stack and then restore entire FPU
4680     // stack except incoming arguments
4681     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4682     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4683       fld_d(Address(rsp, 0));
4684       addptr(rsp, sizeof(jdouble));
4685     }
4686     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4687     addptr(rsp, sizeof(jdouble) * nb_args);
4688   }
4689 
4690   off = 0;
4691   if (UseSSE == 1)  {
4692     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4693     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4694     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4695     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4696     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4697     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4698     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4699     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4700     addptr(rsp, sizeof(jdouble)*8);
4701   } else if (UseSSE >= 2)  {
4702     // Restore whole 128bit (16 bytes) XMM regiters
4703     movdqu(xmm0, Address(rsp,off++*16));
4704     movdqu(xmm1, Address(rsp,off++*16));
4705     movdqu(xmm2, Address(rsp,off++*16));
4706     movdqu(xmm3, Address(rsp,off++*16));
4707     movdqu(xmm4, Address(rsp,off++*16));
4708     movdqu(xmm5, Address(rsp,off++*16));
4709     movdqu(xmm6, Address(rsp,off++*16));
4710     movdqu(xmm7, Address(rsp,off++*16));
4711 #ifdef _LP64
4712     movdqu(xmm8, Address(rsp,off++*16));
4713     movdqu(xmm9, Address(rsp,off++*16));
4714     movdqu(xmm10, Address(rsp,off++*16));
4715     movdqu(xmm11, Address(rsp,off++*16));
4716     movdqu(xmm12, Address(rsp,off++*16));
4717     movdqu(xmm13, Address(rsp,off++*16));
4718     movdqu(xmm14, Address(rsp,off++*16));
4719     movdqu(xmm15, Address(rsp,off++*16));
4720 #endif
4721     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4722 #ifdef COMPILER2
4723     if (MaxVectorSize > 16) {
4724       // Restore upper half of YMM registes.
4725       vinsertf128h(xmm0, Address(rsp,  0));
4726       vinsertf128h(xmm1, Address(rsp, 16));
4727       vinsertf128h(xmm2, Address(rsp, 32));
4728       vinsertf128h(xmm3, Address(rsp, 48));
4729       vinsertf128h(xmm4, Address(rsp, 64));
4730       vinsertf128h(xmm5, Address(rsp, 80));
4731       vinsertf128h(xmm6, Address(rsp, 96));
4732       vinsertf128h(xmm7, Address(rsp,112));
4733 #ifdef _LP64
4734       vinsertf128h(xmm8, Address(rsp,128));
4735       vinsertf128h(xmm9, Address(rsp,144));
4736       vinsertf128h(xmm10, Address(rsp,160));
4737       vinsertf128h(xmm11, Address(rsp,176));
4738       vinsertf128h(xmm12, Address(rsp,192));
4739       vinsertf128h(xmm13, Address(rsp,208));
4740       vinsertf128h(xmm14, Address(rsp,224));
4741       vinsertf128h(xmm15, Address(rsp,240));
4742 #endif
4743       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4744     }
4745 #endif
4746   }
4747   popa();
4748 }
4749 
4750 static const double     pi_4 =  0.7853981633974483;
4751 
4752 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4753   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4754   // was attempted in this code; unfortunately it appears that the
4755   // switch to 80-bit precision and back causes this to be
4756   // unprofitable compared with simply performing a runtime call if
4757   // the argument is out of the (-pi/4, pi/4) range.
4758 
4759   Register tmp = noreg;
4760   if (!VM_Version::supports_cmov()) {
4761     // fcmp needs a temporary so preserve rbx,
4762     tmp = rbx;
4763     push(tmp);
4764   }
4765 
4766   Label slow_case, done;
4767 
4768   ExternalAddress pi4_adr = (address)&pi_4;
4769   if (reachable(pi4_adr)) {
4770     // x ?<= pi/4
4771     fld_d(pi4_adr);
4772     fld_s(1);                // Stack:  X  PI/4  X
4773     fabs();                  // Stack: |X| PI/4  X
4774     fcmp(tmp);
4775     jcc(Assembler::above, slow_case);
4776 
4777     // fastest case: -pi/4 <= x <= pi/4
4778     switch(trig) {
4779     case 's':
4780       fsin();
4781       break;
4782     case 'c':
4783       fcos();
4784       break;
4785     case 't':
4786       ftan();
4787       break;
4788     default:
4789       assert(false, "bad intrinsic");
4790       break;
4791     }
4792     jmp(done);
4793   }
4794 
4795   // slow case: runtime call
4796   bind(slow_case);
4797 
4798   switch(trig) {
4799   case 's':
4800     {
4801       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4802     }
4803     break;
4804   case 'c':
4805     {
4806       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4807     }
4808     break;
4809   case 't':
4810     {
4811       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4812     }
4813     break;
4814   default:
4815     assert(false, "bad intrinsic");
4816     break;
4817   }
4818 
4819   // Come here with result in F-TOS
4820   bind(done);
4821 
4822   if (tmp != noreg) {
4823     pop(tmp);
4824   }
4825 }
4826 
4827 
4828 // Look up the method for a megamorphic invokeinterface call.
4829 // The target method is determined by <intf_klass, itable_index>.
4830 // The receiver klass is in recv_klass.
4831 // On success, the result will be in method_result, and execution falls through.
4832 // On failure, execution transfers to the given label.
4833 void MacroAssembler::lookup_interface_method(Register recv_klass,
4834                                              Register intf_klass,
4835                                              RegisterOrConstant itable_index,
4836                                              Register method_result,
4837                                              Register scan_temp,
4838                                              Label& L_no_such_interface) {
4839   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4840   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4841          "caller must use same register for non-constant itable index as for method");
4842 
4843   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4844   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4845   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4846   int scan_step   = itableOffsetEntry::size() * wordSize;
4847   int vte_size    = vtableEntry::size() * wordSize;
4848   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4849   assert(vte_size == wordSize, "else adjust times_vte_scale");
4850 
4851   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4852 
4853   // %%% Could store the aligned, prescaled offset in the klassoop.
4854   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4855   if (HeapWordsPerLong > 1) {
4856     // Round up to align_object_offset boundary
4857     // see code for InstanceKlass::start_of_itable!
4858     round_to(scan_temp, BytesPerLong);
4859   }
4860 
4861   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4862   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4863   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4864 
4865   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4866   //   if (scan->interface() == intf) {
4867   //     result = (klass + scan->offset() + itable_index);
4868   //   }
4869   // }
4870   Label search, found_method;
4871 
4872   for (int peel = 1; peel >= 0; peel--) {
4873     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4874     cmpptr(intf_klass, method_result);
4875 
4876     if (peel) {
4877       jccb(Assembler::equal, found_method);
4878     } else {
4879       jccb(Assembler::notEqual, search);
4880       // (invert the test to fall through to found_method...)
4881     }
4882 
4883     if (!peel)  break;
4884 
4885     bind(search);
4886 
4887     // Check that the previous entry is non-null.  A null entry means that
4888     // the receiver class doesn't implement the interface, and wasn't the
4889     // same as when the caller was compiled.
4890     testptr(method_result, method_result);
4891     jcc(Assembler::zero, L_no_such_interface);
4892     addptr(scan_temp, scan_step);
4893   }
4894 
4895   bind(found_method);
4896 
4897   // Got a hit.
4898   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4899   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4900 }
4901 
4902 
4903 // virtual method calling
4904 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4905                                            RegisterOrConstant vtable_index,
4906                                            Register method_result) {
4907   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4908   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4909   Address vtable_entry_addr(recv_klass,
4910                             vtable_index, Address::times_ptr,
4911                             base + vtableEntry::method_offset_in_bytes());
4912   movptr(method_result, vtable_entry_addr);
4913 }
4914 
4915 
4916 void MacroAssembler::check_klass_subtype(Register sub_klass,
4917                            Register super_klass,
4918                            Register temp_reg,
4919                            Label& L_success) {
4920   Label L_failure;
4921   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4922   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4923   bind(L_failure);
4924 }
4925 
4926 
4927 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4928                                                    Register super_klass,
4929                                                    Register temp_reg,
4930                                                    Label* L_success,
4931                                                    Label* L_failure,
4932                                                    Label* L_slow_path,
4933                                         RegisterOrConstant super_check_offset) {
4934   assert_different_registers(sub_klass, super_klass, temp_reg);
4935   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4936   if (super_check_offset.is_register()) {
4937     assert_different_registers(sub_klass, super_klass,
4938                                super_check_offset.as_register());
4939   } else if (must_load_sco) {
4940     assert(temp_reg != noreg, "supply either a temp or a register offset");
4941   }
4942 
4943   Label L_fallthrough;
4944   int label_nulls = 0;
4945   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4946   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4947   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4948   assert(label_nulls <= 1, "at most one NULL in the batch");
4949 
4950   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4951   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4952   Address super_check_offset_addr(super_klass, sco_offset);
4953 
4954   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4955   // range of a jccb.  If this routine grows larger, reconsider at
4956   // least some of these.
4957 #define local_jcc(assembler_cond, label)                                \
4958   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4959   else                             jcc( assembler_cond, label) /*omit semi*/
4960 
4961   // Hacked jmp, which may only be used just before L_fallthrough.
4962 #define final_jmp(label)                                                \
4963   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4964   else                            jmp(label)                /*omit semi*/
4965 
4966   // If the pointers are equal, we are done (e.g., String[] elements).
4967   // This self-check enables sharing of secondary supertype arrays among
4968   // non-primary types such as array-of-interface.  Otherwise, each such
4969   // type would need its own customized SSA.
4970   // We move this check to the front of the fast path because many
4971   // type checks are in fact trivially successful in this manner,
4972   // so we get a nicely predicted branch right at the start of the check.
4973   cmpptr(sub_klass, super_klass);
4974   local_jcc(Assembler::equal, *L_success);
4975 
4976   // Check the supertype display:
4977   if (must_load_sco) {
4978     // Positive movl does right thing on LP64.
4979     movl(temp_reg, super_check_offset_addr);
4980     super_check_offset = RegisterOrConstant(temp_reg);
4981   }
4982   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4983   cmpptr(super_klass, super_check_addr); // load displayed supertype
4984 
4985   // This check has worked decisively for primary supers.
4986   // Secondary supers are sought in the super_cache ('super_cache_addr').
4987   // (Secondary supers are interfaces and very deeply nested subtypes.)
4988   // This works in the same check above because of a tricky aliasing
4989   // between the super_cache and the primary super display elements.
4990   // (The 'super_check_addr' can address either, as the case requires.)
4991   // Note that the cache is updated below if it does not help us find
4992   // what we need immediately.
4993   // So if it was a primary super, we can just fail immediately.
4994   // Otherwise, it's the slow path for us (no success at this point).
4995 
4996   if (super_check_offset.is_register()) {
4997     local_jcc(Assembler::equal, *L_success);
4998     cmpl(super_check_offset.as_register(), sc_offset);
4999     if (L_failure == &L_fallthrough) {
5000       local_jcc(Assembler::equal, *L_slow_path);
5001     } else {
5002       local_jcc(Assembler::notEqual, *L_failure);
5003       final_jmp(*L_slow_path);
5004     }
5005   } else if (super_check_offset.as_constant() == sc_offset) {
5006     // Need a slow path; fast failure is impossible.
5007     if (L_slow_path == &L_fallthrough) {
5008       local_jcc(Assembler::equal, *L_success);
5009     } else {
5010       local_jcc(Assembler::notEqual, *L_slow_path);
5011       final_jmp(*L_success);
5012     }
5013   } else {
5014     // No slow path; it's a fast decision.
5015     if (L_failure == &L_fallthrough) {
5016       local_jcc(Assembler::equal, *L_success);
5017     } else {
5018       local_jcc(Assembler::notEqual, *L_failure);
5019       final_jmp(*L_success);
5020     }
5021   }
5022 
5023   bind(L_fallthrough);
5024 
5025 #undef local_jcc
5026 #undef final_jmp
5027 }
5028 
5029 
5030 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5031                                                    Register super_klass,
5032                                                    Register temp_reg,
5033                                                    Register temp2_reg,
5034                                                    Label* L_success,
5035                                                    Label* L_failure,
5036                                                    bool set_cond_codes) {
5037   assert_different_registers(sub_klass, super_klass, temp_reg);
5038   if (temp2_reg != noreg)
5039     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5040 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5041 
5042   Label L_fallthrough;
5043   int label_nulls = 0;
5044   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5045   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5046   assert(label_nulls <= 1, "at most one NULL in the batch");
5047 
5048   // a couple of useful fields in sub_klass:
5049   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5050   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5051   Address secondary_supers_addr(sub_klass, ss_offset);
5052   Address super_cache_addr(     sub_klass, sc_offset);
5053 
5054   // Do a linear scan of the secondary super-klass chain.
5055   // This code is rarely used, so simplicity is a virtue here.
5056   // The repne_scan instruction uses fixed registers, which we must spill.
5057   // Don't worry too much about pre-existing connections with the input regs.
5058 
5059   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5060   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5061 
5062   // Get super_klass value into rax (even if it was in rdi or rcx).
5063   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5064   if (super_klass != rax || UseCompressedOops) {
5065     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5066     mov(rax, super_klass);
5067   }
5068   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5069   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5070 
5071 #ifndef PRODUCT
5072   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5073   ExternalAddress pst_counter_addr((address) pst_counter);
5074   NOT_LP64(  incrementl(pst_counter_addr) );
5075   LP64_ONLY( lea(rcx, pst_counter_addr) );
5076   LP64_ONLY( incrementl(Address(rcx, 0)) );
5077 #endif //PRODUCT
5078 
5079   // We will consult the secondary-super array.
5080   movptr(rdi, secondary_supers_addr);
5081   // Load the array length.  (Positive movl does right thing on LP64.)
5082   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5083   // Skip to start of data.
5084   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5085 
5086   // Scan RCX words at [RDI] for an occurrence of RAX.
5087   // Set NZ/Z based on last compare.
5088   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5089   // not change flags (only scas instruction which is repeated sets flags).
5090   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5091 
5092     testptr(rax,rax); // Set Z = 0
5093     repne_scan();
5094 
5095   // Unspill the temp. registers:
5096   if (pushed_rdi)  pop(rdi);
5097   if (pushed_rcx)  pop(rcx);
5098   if (pushed_rax)  pop(rax);
5099 
5100   if (set_cond_codes) {
5101     // Special hack for the AD files:  rdi is guaranteed non-zero.
5102     assert(!pushed_rdi, "rdi must be left non-NULL");
5103     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5104   }
5105 
5106   if (L_failure == &L_fallthrough)
5107         jccb(Assembler::notEqual, *L_failure);
5108   else  jcc(Assembler::notEqual, *L_failure);
5109 
5110   // Success.  Cache the super we found and proceed in triumph.
5111   movptr(super_cache_addr, super_klass);
5112 
5113   if (L_success != &L_fallthrough) {
5114     jmp(*L_success);
5115   }
5116 
5117 #undef IS_A_TEMP
5118 
5119   bind(L_fallthrough);
5120 }
5121 
5122 
5123 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5124   if (VM_Version::supports_cmov()) {
5125     cmovl(cc, dst, src);
5126   } else {
5127     Label L;
5128     jccb(negate_condition(cc), L);
5129     movl(dst, src);
5130     bind(L);
5131   }
5132 }
5133 
5134 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5135   if (VM_Version::supports_cmov()) {
5136     cmovl(cc, dst, src);
5137   } else {
5138     Label L;
5139     jccb(negate_condition(cc), L);
5140     movl(dst, src);
5141     bind(L);
5142   }
5143 }
5144 
5145 void MacroAssembler::verify_oop(Register reg, const char* s) {
5146   if (!VerifyOops) return;
5147 
5148   // Pass register number to verify_oop_subroutine
5149   const char* b = NULL;
5150   {
5151     ResourceMark rm;
5152     stringStream ss;
5153     ss.print("verify_oop: %s: %s", reg->name(), s);
5154     b = code_string(ss.as_string());
5155   }
5156   BLOCK_COMMENT("verify_oop {");
5157 #ifdef _LP64
5158   push(rscratch1);                    // save r10, trashed by movptr()
5159 #endif
5160   push(rax);                          // save rax,
5161   push(reg);                          // pass register argument
5162   ExternalAddress buffer((address) b);
5163   // avoid using pushptr, as it modifies scratch registers
5164   // and our contract is not to modify anything
5165   movptr(rax, buffer.addr());
5166   push(rax);
5167   // call indirectly to solve generation ordering problem
5168   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5169   call(rax);
5170   // Caller pops the arguments (oop, message) and restores rax, r10
5171   BLOCK_COMMENT("} verify_oop");
5172 }
5173 
5174 
5175 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5176                                                       Register tmp,
5177                                                       int offset) {
5178   intptr_t value = *delayed_value_addr;
5179   if (value != 0)
5180     return RegisterOrConstant(value + offset);
5181 
5182   // load indirectly to solve generation ordering problem
5183   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5184 
5185 #ifdef ASSERT
5186   { Label L;
5187     testptr(tmp, tmp);
5188     if (WizardMode) {
5189       const char* buf = NULL;
5190       {
5191         ResourceMark rm;
5192         stringStream ss;
5193         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
5194         buf = code_string(ss.as_string());
5195       }
5196       jcc(Assembler::notZero, L);
5197       STOP(buf);
5198     } else {
5199       jccb(Assembler::notZero, L);
5200       hlt();
5201     }
5202     bind(L);
5203   }
5204 #endif
5205 
5206   if (offset != 0)
5207     addptr(tmp, offset);
5208 
5209   return RegisterOrConstant(tmp);
5210 }
5211 
5212 
5213 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5214                                          int extra_slot_offset) {
5215   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5216   int stackElementSize = Interpreter::stackElementSize;
5217   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5218 #ifdef ASSERT
5219   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5220   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5221 #endif
5222   Register             scale_reg    = noreg;
5223   Address::ScaleFactor scale_factor = Address::no_scale;
5224   if (arg_slot.is_constant()) {
5225     offset += arg_slot.as_constant() * stackElementSize;
5226   } else {
5227     scale_reg    = arg_slot.as_register();
5228     scale_factor = Address::times(stackElementSize);
5229   }
5230   offset += wordSize;           // return PC is on stack
5231   return Address(rsp, scale_reg, scale_factor, offset);
5232 }
5233 
5234 
5235 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5236   if (!VerifyOops) return;
5237 
5238   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5239   // Pass register number to verify_oop_subroutine
5240   const char* b = NULL;
5241   {
5242     ResourceMark rm;
5243     stringStream ss;
5244     ss.print("verify_oop_addr: %s", s);
5245     b = code_string(ss.as_string());
5246   }
5247 #ifdef _LP64
5248   push(rscratch1);                    // save r10, trashed by movptr()
5249 #endif
5250   push(rax);                          // save rax,
5251   // addr may contain rsp so we will have to adjust it based on the push
5252   // we just did (and on 64 bit we do two pushes)
5253   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5254   // stores rax into addr which is backwards of what was intended.
5255   if (addr.uses(rsp)) {
5256     lea(rax, addr);
5257     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5258   } else {
5259     pushptr(addr);
5260   }
5261 
5262   ExternalAddress buffer((address) b);
5263   // pass msg argument
5264   // avoid using pushptr, as it modifies scratch registers
5265   // and our contract is not to modify anything
5266   movptr(rax, buffer.addr());
5267   push(rax);
5268 
5269   // call indirectly to solve generation ordering problem
5270   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5271   call(rax);
5272   // Caller pops the arguments (addr, message) and restores rax, r10.
5273 }
5274 
5275 void MacroAssembler::verify_tlab() {
5276 #ifdef ASSERT
5277   if (UseTLAB && VerifyOops) {
5278     Label next, ok;
5279     Register t1 = rsi;
5280     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5281 
5282     push(t1);
5283     NOT_LP64(push(thread_reg));
5284     NOT_LP64(get_thread(thread_reg));
5285 
5286     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5287     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5288     jcc(Assembler::aboveEqual, next);
5289     STOP("assert(top >= start)");
5290     should_not_reach_here();
5291 
5292     bind(next);
5293     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5294     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5295     jcc(Assembler::aboveEqual, ok);
5296     STOP("assert(top <= end)");
5297     should_not_reach_here();
5298 
5299     bind(ok);
5300     NOT_LP64(pop(thread_reg));
5301     pop(t1);
5302   }
5303 #endif
5304 }
5305 
5306 class ControlWord {
5307  public:
5308   int32_t _value;
5309 
5310   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5311   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5312   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5313   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5314   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5315   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5316   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5317   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5318 
5319   void print() const {
5320     // rounding control
5321     const char* rc;
5322     switch (rounding_control()) {
5323       case 0: rc = "round near"; break;
5324       case 1: rc = "round down"; break;
5325       case 2: rc = "round up  "; break;
5326       case 3: rc = "chop      "; break;
5327     };
5328     // precision control
5329     const char* pc;
5330     switch (precision_control()) {
5331       case 0: pc = "24 bits "; break;
5332       case 1: pc = "reserved"; break;
5333       case 2: pc = "53 bits "; break;
5334       case 3: pc = "64 bits "; break;
5335     };
5336     // flags
5337     char f[9];
5338     f[0] = ' ';
5339     f[1] = ' ';
5340     f[2] = (precision   ()) ? 'P' : 'p';
5341     f[3] = (underflow   ()) ? 'U' : 'u';
5342     f[4] = (overflow    ()) ? 'O' : 'o';
5343     f[5] = (zero_divide ()) ? 'Z' : 'z';
5344     f[6] = (denormalized()) ? 'D' : 'd';
5345     f[7] = (invalid     ()) ? 'I' : 'i';
5346     f[8] = '\x0';
5347     // output
5348     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5349   }
5350 
5351 };
5352 
5353 class StatusWord {
5354  public:
5355   int32_t _value;
5356 
5357   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5358   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5359   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5360   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5361   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5362   int  top() const                     { return  (_value >> 11) & 7      ; }
5363   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5364   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5365   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5366   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5367   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5368   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5369   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5370   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5371 
5372   void print() const {
5373     // condition codes
5374     char c[5];
5375     c[0] = (C3()) ? '3' : '-';
5376     c[1] = (C2()) ? '2' : '-';
5377     c[2] = (C1()) ? '1' : '-';
5378     c[3] = (C0()) ? '0' : '-';
5379     c[4] = '\x0';
5380     // flags
5381     char f[9];
5382     f[0] = (error_status()) ? 'E' : '-';
5383     f[1] = (stack_fault ()) ? 'S' : '-';
5384     f[2] = (precision   ()) ? 'P' : '-';
5385     f[3] = (underflow   ()) ? 'U' : '-';
5386     f[4] = (overflow    ()) ? 'O' : '-';
5387     f[5] = (zero_divide ()) ? 'Z' : '-';
5388     f[6] = (denormalized()) ? 'D' : '-';
5389     f[7] = (invalid     ()) ? 'I' : '-';
5390     f[8] = '\x0';
5391     // output
5392     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5393   }
5394 
5395 };
5396 
5397 class TagWord {
5398  public:
5399   int32_t _value;
5400 
5401   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5402 
5403   void print() const {
5404     printf("%04x", _value & 0xFFFF);
5405   }
5406 
5407 };
5408 
5409 class FPU_Register {
5410  public:
5411   int32_t _m0;
5412   int32_t _m1;
5413   int16_t _ex;
5414 
5415   bool is_indefinite() const           {
5416     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5417   }
5418 
5419   void print() const {
5420     char  sign = (_ex < 0) ? '-' : '+';
5421     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5422     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5423   };
5424 
5425 };
5426 
5427 class FPU_State {
5428  public:
5429   enum {
5430     register_size       = 10,
5431     number_of_registers =  8,
5432     register_mask       =  7
5433   };
5434 
5435   ControlWord  _control_word;
5436   StatusWord   _status_word;
5437   TagWord      _tag_word;
5438   int32_t      _error_offset;
5439   int32_t      _error_selector;
5440   int32_t      _data_offset;
5441   int32_t      _data_selector;
5442   int8_t       _register[register_size * number_of_registers];
5443 
5444   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5445   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5446 
5447   const char* tag_as_string(int tag) const {
5448     switch (tag) {
5449       case 0: return "valid";
5450       case 1: return "zero";
5451       case 2: return "special";
5452       case 3: return "empty";
5453     }
5454     ShouldNotReachHere();
5455     return NULL;
5456   }
5457 
5458   void print() const {
5459     // print computation registers
5460     { int t = _status_word.top();
5461       for (int i = 0; i < number_of_registers; i++) {
5462         int j = (i - t) & register_mask;
5463         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5464         st(j)->print();
5465         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5466       }
5467     }
5468     printf("\n");
5469     // print control registers
5470     printf("ctrl = "); _control_word.print(); printf("\n");
5471     printf("stat = "); _status_word .print(); printf("\n");
5472     printf("tags = "); _tag_word    .print(); printf("\n");
5473   }
5474 
5475 };
5476 
5477 class Flag_Register {
5478  public:
5479   int32_t _value;
5480 
5481   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5482   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5483   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5484   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5485   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5486   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5487   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5488 
5489   void print() const {
5490     // flags
5491     char f[8];
5492     f[0] = (overflow       ()) ? 'O' : '-';
5493     f[1] = (direction      ()) ? 'D' : '-';
5494     f[2] = (sign           ()) ? 'S' : '-';
5495     f[3] = (zero           ()) ? 'Z' : '-';
5496     f[4] = (auxiliary_carry()) ? 'A' : '-';
5497     f[5] = (parity         ()) ? 'P' : '-';
5498     f[6] = (carry          ()) ? 'C' : '-';
5499     f[7] = '\x0';
5500     // output
5501     printf("%08x  flags = %s", _value, f);
5502   }
5503 
5504 };
5505 
5506 class IU_Register {
5507  public:
5508   int32_t _value;
5509 
5510   void print() const {
5511     printf("%08x  %11d", _value, _value);
5512   }
5513 
5514 };
5515 
5516 class IU_State {
5517  public:
5518   Flag_Register _eflags;
5519   IU_Register   _rdi;
5520   IU_Register   _rsi;
5521   IU_Register   _rbp;
5522   IU_Register   _rsp;
5523   IU_Register   _rbx;
5524   IU_Register   _rdx;
5525   IU_Register   _rcx;
5526   IU_Register   _rax;
5527 
5528   void print() const {
5529     // computation registers
5530     printf("rax,  = "); _rax.print(); printf("\n");
5531     printf("rbx,  = "); _rbx.print(); printf("\n");
5532     printf("rcx  = "); _rcx.print(); printf("\n");
5533     printf("rdx  = "); _rdx.print(); printf("\n");
5534     printf("rdi  = "); _rdi.print(); printf("\n");
5535     printf("rsi  = "); _rsi.print(); printf("\n");
5536     printf("rbp,  = "); _rbp.print(); printf("\n");
5537     printf("rsp  = "); _rsp.print(); printf("\n");
5538     printf("\n");
5539     // control registers
5540     printf("flgs = "); _eflags.print(); printf("\n");
5541   }
5542 };
5543 
5544 
5545 class CPU_State {
5546  public:
5547   FPU_State _fpu_state;
5548   IU_State  _iu_state;
5549 
5550   void print() const {
5551     printf("--------------------------------------------------\n");
5552     _iu_state .print();
5553     printf("\n");
5554     _fpu_state.print();
5555     printf("--------------------------------------------------\n");
5556   }
5557 
5558 };
5559 
5560 
5561 static void _print_CPU_state(CPU_State* state) {
5562   state->print();
5563 };
5564 
5565 
5566 void MacroAssembler::print_CPU_state() {
5567   push_CPU_state();
5568   push(rsp);                // pass CPU state
5569   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5570   addptr(rsp, wordSize);       // discard argument
5571   pop_CPU_state();
5572 }
5573 
5574 
5575 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5576   static int counter = 0;
5577   FPU_State* fs = &state->_fpu_state;
5578   counter++;
5579   // For leaf calls, only verify that the top few elements remain empty.
5580   // We only need 1 empty at the top for C2 code.
5581   if( stack_depth < 0 ) {
5582     if( fs->tag_for_st(7) != 3 ) {
5583       printf("FPR7 not empty\n");
5584       state->print();
5585       assert(false, "error");
5586       return false;
5587     }
5588     return true;                // All other stack states do not matter
5589   }
5590 
5591   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5592          "bad FPU control word");
5593 
5594   // compute stack depth
5595   int i = 0;
5596   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5597   int d = i;
5598   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5599   // verify findings
5600   if (i != FPU_State::number_of_registers) {
5601     // stack not contiguous
5602     printf("%s: stack not contiguous at ST%d\n", s, i);
5603     state->print();
5604     assert(false, "error");
5605     return false;
5606   }
5607   // check if computed stack depth corresponds to expected stack depth
5608   if (stack_depth < 0) {
5609     // expected stack depth is -stack_depth or less
5610     if (d > -stack_depth) {
5611       // too many elements on the stack
5612       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5613       state->print();
5614       assert(false, "error");
5615       return false;
5616     }
5617   } else {
5618     // expected stack depth is stack_depth
5619     if (d != stack_depth) {
5620       // wrong stack depth
5621       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5622       state->print();
5623       assert(false, "error");
5624       return false;
5625     }
5626   }
5627   // everything is cool
5628   return true;
5629 }
5630 
5631 
5632 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5633   if (!VerifyFPU) return;
5634   push_CPU_state();
5635   push(rsp);                // pass CPU state
5636   ExternalAddress msg((address) s);
5637   // pass message string s
5638   pushptr(msg.addr());
5639   push(stack_depth);        // pass stack depth
5640   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5641   addptr(rsp, 3 * wordSize);   // discard arguments
5642   // check for error
5643   { Label L;
5644     testl(rax, rax);
5645     jcc(Assembler::notZero, L);
5646     int3();                  // break if error condition
5647     bind(L);
5648   }
5649   pop_CPU_state();
5650 }
5651 
5652 void MacroAssembler::restore_cpu_control_state_after_jni() {
5653   // Either restore the MXCSR register after returning from the JNI Call
5654   // or verify that it wasn't changed (with -Xcheck:jni flag).
5655   if (VM_Version::supports_sse()) {
5656     if (RestoreMXCSROnJNICalls) {
5657       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5658     } else if (CheckJNICalls) {
5659       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5660     }
5661   }
5662   if (VM_Version::supports_avx()) {
5663     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5664     vzeroupper();
5665   }
5666 
5667 #ifndef _LP64
5668   // Either restore the x87 floating pointer control word after returning
5669   // from the JNI call or verify that it wasn't changed.
5670   if (CheckJNICalls) {
5671     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5672   }
5673 #endif // _LP64
5674 }
5675 
5676 
5677 void MacroAssembler::load_klass(Register dst, Register src) {
5678 #ifdef _LP64
5679   if (UseCompressedClassPointers) {
5680     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5681     decode_klass_not_null(dst);
5682   } else
5683 #endif
5684     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5685 }
5686 
5687 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5688   load_klass(dst, src);
5689   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5690 }
5691 
5692 void MacroAssembler::store_klass(Register dst, Register src) {
5693 #ifdef _LP64
5694   if (UseCompressedClassPointers) {
5695     encode_klass_not_null(src);
5696     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5697   } else
5698 #endif
5699     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5700 }
5701 
5702 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5703 #ifdef _LP64
5704   // FIXME: Must change all places where we try to load the klass.
5705   if (UseCompressedOops) {
5706     movl(dst, src);
5707     decode_heap_oop(dst);
5708   } else
5709 #endif
5710     movptr(dst, src);
5711 }
5712 
5713 // Doesn't do verfication, generates fixed size code
5714 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5715 #ifdef _LP64
5716   if (UseCompressedOops) {
5717     movl(dst, src);
5718     decode_heap_oop_not_null(dst);
5719   } else
5720 #endif
5721     movptr(dst, src);
5722 }
5723 
5724 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5725 #ifdef _LP64
5726   if (UseCompressedOops) {
5727     assert(!dst.uses(src), "not enough registers");
5728     encode_heap_oop(src);
5729     movl(dst, src);
5730   } else
5731 #endif
5732     movptr(dst, src);
5733 }
5734 
5735 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5736   assert_different_registers(src1, tmp);
5737 #ifdef _LP64
5738   if (UseCompressedOops) {
5739     bool did_push = false;
5740     if (tmp == noreg) {
5741       tmp = rax;
5742       push(tmp);
5743       did_push = true;
5744       assert(!src2.uses(rsp), "can't push");
5745     }
5746     load_heap_oop(tmp, src2);
5747     cmpptr(src1, tmp);
5748     if (did_push)  pop(tmp);
5749   } else
5750 #endif
5751     cmpptr(src1, src2);
5752 }
5753 
5754 // Used for storing NULLs.
5755 void MacroAssembler::store_heap_oop_null(Address dst) {
5756 #ifdef _LP64
5757   if (UseCompressedOops) {
5758     movl(dst, (int32_t)NULL_WORD);
5759   } else {
5760     movslq(dst, (int32_t)NULL_WORD);
5761   }
5762 #else
5763   movl(dst, (int32_t)NULL_WORD);
5764 #endif
5765 }
5766 
5767 #ifdef _LP64
5768 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5769   if (UseCompressedClassPointers) {
5770     // Store to klass gap in destination
5771     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5772   }
5773 }
5774 
5775 #ifdef ASSERT
5776 void MacroAssembler::verify_heapbase(const char* msg) {
5777   assert (UseCompressedOops, "should be compressed");
5778   assert (Universe::heap() != NULL, "java heap should be initialized");
5779   if (CheckCompressedOops) {
5780     Label ok;
5781     push(rscratch1); // cmpptr trashes rscratch1
5782     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5783     jcc(Assembler::equal, ok);
5784     STOP(msg);
5785     bind(ok);
5786     pop(rscratch1);
5787   }
5788 }
5789 #endif
5790 
5791 // Algorithm must match oop.inline.hpp encode_heap_oop.
5792 void MacroAssembler::encode_heap_oop(Register r) {
5793 #ifdef ASSERT
5794   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5795 #endif
5796   verify_oop(r, "broken oop in encode_heap_oop");
5797   if (Universe::narrow_oop_base() == NULL) {
5798     if (Universe::narrow_oop_shift() != 0) {
5799       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5800       shrq(r, LogMinObjAlignmentInBytes);
5801     }
5802     return;
5803   }
5804   testq(r, r);
5805   cmovq(Assembler::equal, r, r12_heapbase);
5806   subq(r, r12_heapbase);
5807   shrq(r, LogMinObjAlignmentInBytes);
5808 }
5809 
5810 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5811 #ifdef ASSERT
5812   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5813   if (CheckCompressedOops) {
5814     Label ok;
5815     testq(r, r);
5816     jcc(Assembler::notEqual, ok);
5817     STOP("null oop passed to encode_heap_oop_not_null");
5818     bind(ok);
5819   }
5820 #endif
5821   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5822   if (Universe::narrow_oop_base() != NULL) {
5823     subq(r, r12_heapbase);
5824   }
5825   if (Universe::narrow_oop_shift() != 0) {
5826     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5827     shrq(r, LogMinObjAlignmentInBytes);
5828   }
5829 }
5830 
5831 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5832 #ifdef ASSERT
5833   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5834   if (CheckCompressedOops) {
5835     Label ok;
5836     testq(src, src);
5837     jcc(Assembler::notEqual, ok);
5838     STOP("null oop passed to encode_heap_oop_not_null2");
5839     bind(ok);
5840   }
5841 #endif
5842   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5843   if (dst != src) {
5844     movq(dst, src);
5845   }
5846   if (Universe::narrow_oop_base() != NULL) {
5847     subq(dst, r12_heapbase);
5848   }
5849   if (Universe::narrow_oop_shift() != 0) {
5850     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5851     shrq(dst, LogMinObjAlignmentInBytes);
5852   }
5853 }
5854 
5855 void  MacroAssembler::decode_heap_oop(Register r) {
5856 #ifdef ASSERT
5857   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5858 #endif
5859   if (Universe::narrow_oop_base() == NULL) {
5860     if (Universe::narrow_oop_shift() != 0) {
5861       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5862       shlq(r, LogMinObjAlignmentInBytes);
5863     }
5864   } else {
5865     Label done;
5866     shlq(r, LogMinObjAlignmentInBytes);
5867     jccb(Assembler::equal, done);
5868     addq(r, r12_heapbase);
5869     bind(done);
5870   }
5871   verify_oop(r, "broken oop in decode_heap_oop");
5872 }
5873 
5874 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5875   // Note: it will change flags
5876   assert (UseCompressedOops, "should only be used for compressed headers");
5877   assert (Universe::heap() != NULL, "java heap should be initialized");
5878   // Cannot assert, unverified entry point counts instructions (see .ad file)
5879   // vtableStubs also counts instructions in pd_code_size_limit.
5880   // Also do not verify_oop as this is called by verify_oop.
5881   if (Universe::narrow_oop_shift() != 0) {
5882     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5883     shlq(r, LogMinObjAlignmentInBytes);
5884     if (Universe::narrow_oop_base() != NULL) {
5885       addq(r, r12_heapbase);
5886     }
5887   } else {
5888     assert (Universe::narrow_oop_base() == NULL, "sanity");
5889   }
5890 }
5891 
5892 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5893   // Note: it will change flags
5894   assert (UseCompressedOops, "should only be used for compressed headers");
5895   assert (Universe::heap() != NULL, "java heap should be initialized");
5896   // Cannot assert, unverified entry point counts instructions (see .ad file)
5897   // vtableStubs also counts instructions in pd_code_size_limit.
5898   // Also do not verify_oop as this is called by verify_oop.
5899   if (Universe::narrow_oop_shift() != 0) {
5900     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5901     if (LogMinObjAlignmentInBytes == Address::times_8) {
5902       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5903     } else {
5904       if (dst != src) {
5905         movq(dst, src);
5906       }
5907       shlq(dst, LogMinObjAlignmentInBytes);
5908       if (Universe::narrow_oop_base() != NULL) {
5909         addq(dst, r12_heapbase);
5910       }
5911     }
5912   } else {
5913     assert (Universe::narrow_oop_base() == NULL, "sanity");
5914     if (dst != src) {
5915       movq(dst, src);
5916     }
5917   }
5918 }
5919 
5920 void MacroAssembler::encode_klass_not_null(Register r) {
5921   if (Universe::narrow_klass_base() != NULL) {
5922     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5923     assert(r != r12_heapbase, "Encoding a klass in r12");
5924     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5925     subq(r, r12_heapbase);
5926   }
5927   if (Universe::narrow_klass_shift() != 0) {
5928     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5929     shrq(r, LogKlassAlignmentInBytes);
5930   }
5931   if (Universe::narrow_klass_base() != NULL) {
5932     reinit_heapbase();
5933   }
5934 }
5935 
5936 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5937   if (dst == src) {
5938     encode_klass_not_null(src);
5939   } else {
5940     if (Universe::narrow_klass_base() != NULL) {
5941       mov64(dst, (int64_t)Universe::narrow_klass_base());
5942       negq(dst);
5943       addq(dst, src);
5944     } else {
5945       movptr(dst, src);
5946     }
5947     if (Universe::narrow_klass_shift() != 0) {
5948       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5949       shrq(dst, LogKlassAlignmentInBytes);
5950     }
5951   }
5952 }
5953 
5954 // Function instr_size_for_decode_klass_not_null() counts the instructions
5955 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5956 // when (Universe::heap() != NULL).  Hence, if the instructions they
5957 // generate change, then this method needs to be updated.
5958 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5959   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5960   if (Universe::narrow_klass_base() != NULL) {
5961     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5962     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5963   } else {
5964     // longest load decode klass function, mov64, leaq
5965     return 16;
5966   }
5967 }
5968 
5969 // !!! If the instructions that get generated here change then function
5970 // instr_size_for_decode_klass_not_null() needs to get updated.
5971 void  MacroAssembler::decode_klass_not_null(Register r) {
5972   // Note: it will change flags
5973   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5974   assert(r != r12_heapbase, "Decoding a klass in r12");
5975   // Cannot assert, unverified entry point counts instructions (see .ad file)
5976   // vtableStubs also counts instructions in pd_code_size_limit.
5977   // Also do not verify_oop as this is called by verify_oop.
5978   if (Universe::narrow_klass_shift() != 0) {
5979     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5980     shlq(r, LogKlassAlignmentInBytes);
5981   }
5982   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5983   if (Universe::narrow_klass_base() != NULL) {
5984     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5985     addq(r, r12_heapbase);
5986     reinit_heapbase();
5987   }
5988 }
5989 
5990 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5991   // Note: it will change flags
5992   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5993   if (dst == src) {
5994     decode_klass_not_null(dst);
5995   } else {
5996     // Cannot assert, unverified entry point counts instructions (see .ad file)
5997     // vtableStubs also counts instructions in pd_code_size_limit.
5998     // Also do not verify_oop as this is called by verify_oop.
5999     mov64(dst, (int64_t)Universe::narrow_klass_base());
6000     if (Universe::narrow_klass_shift() != 0) {
6001       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6002       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6003       leaq(dst, Address(dst, src, Address::times_8, 0));
6004     } else {
6005       addq(dst, src);
6006     }
6007   }
6008 }
6009 
6010 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6011   assert (UseCompressedOops, "should only be used for compressed headers");
6012   assert (Universe::heap() != NULL, "java heap should be initialized");
6013   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6014   int oop_index = oop_recorder()->find_index(obj);
6015   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6016   mov_narrow_oop(dst, oop_index, rspec);
6017 }
6018 
6019 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6020   assert (UseCompressedOops, "should only be used for compressed headers");
6021   assert (Universe::heap() != NULL, "java heap should be initialized");
6022   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6023   int oop_index = oop_recorder()->find_index(obj);
6024   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6025   mov_narrow_oop(dst, oop_index, rspec);
6026 }
6027 
6028 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6029   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6030   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6031   int klass_index = oop_recorder()->find_index(k);
6032   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6033   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6034 }
6035 
6036 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6037   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6038   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6039   int klass_index = oop_recorder()->find_index(k);
6040   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6041   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6042 }
6043 
6044 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6045   assert (UseCompressedOops, "should only be used for compressed headers");
6046   assert (Universe::heap() != NULL, "java heap should be initialized");
6047   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6048   int oop_index = oop_recorder()->find_index(obj);
6049   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6050   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6051 }
6052 
6053 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6054   assert (UseCompressedOops, "should only be used for compressed headers");
6055   assert (Universe::heap() != NULL, "java heap should be initialized");
6056   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6057   int oop_index = oop_recorder()->find_index(obj);
6058   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6059   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6060 }
6061 
6062 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6063   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6064   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6065   int klass_index = oop_recorder()->find_index(k);
6066   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6067   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6068 }
6069 
6070 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6071   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6072   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6073   int klass_index = oop_recorder()->find_index(k);
6074   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6075   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6076 }
6077 
6078 void MacroAssembler::reinit_heapbase() {
6079   if (UseCompressedOops || UseCompressedClassPointers) {
6080     if (Universe::heap() != NULL) {
6081       if (Universe::narrow_oop_base() == NULL) {
6082         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6083       } else {
6084         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6085       }
6086     } else {
6087       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6088     }
6089   }
6090 }
6091 
6092 #endif // _LP64
6093 
6094 
6095 // C2 compiled method's prolog code.
6096 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6097 
6098   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6099   // NativeJump::patch_verified_entry will be able to patch out the entry
6100   // code safely. The push to verify stack depth is ok at 5 bytes,
6101   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6102   // stack bang then we must use the 6 byte frame allocation even if
6103   // we have no frame. :-(
6104   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6105 
6106   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6107   // Remove word for return addr
6108   framesize -= wordSize;
6109   stack_bang_size -= wordSize;
6110 
6111   // Calls to C2R adapters often do not accept exceptional returns.
6112   // We require that their callers must bang for them.  But be careful, because
6113   // some VM calls (such as call site linkage) can use several kilobytes of
6114   // stack.  But the stack safety zone should account for that.
6115   // See bugs 4446381, 4468289, 4497237.
6116   if (stack_bang_size > 0) {
6117     generate_stack_overflow_check(stack_bang_size);
6118 
6119     // We always push rbp, so that on return to interpreter rbp, will be
6120     // restored correctly and we can correct the stack.
6121     push(rbp);
6122     // Remove word for ebp
6123     framesize -= wordSize;
6124 
6125     // Create frame
6126     if (framesize) {
6127       subptr(rsp, framesize);
6128     }
6129   } else {
6130     // Create frame (force generation of a 4 byte immediate value)
6131     subptr_imm32(rsp, framesize);
6132 
6133     // Save RBP register now.
6134     framesize -= wordSize;
6135     movptr(Address(rsp, framesize), rbp);
6136   }
6137 
6138   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6139     framesize -= wordSize;
6140     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6141   }
6142 
6143 #ifndef _LP64
6144   // If method sets FPU control word do it now
6145   if (fp_mode_24b) {
6146     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6147   }
6148   if (UseSSE >= 2 && VerifyFPU) {
6149     verify_FPU(0, "FPU stack must be clean on entry");
6150   }
6151 #endif
6152 
6153 #ifdef ASSERT
6154   if (VerifyStackAtCalls) {
6155     Label L;
6156     push(rax);
6157     mov(rax, rsp);
6158     andptr(rax, StackAlignmentInBytes-1);
6159     cmpptr(rax, StackAlignmentInBytes-wordSize);
6160     pop(rax);
6161     jcc(Assembler::equal, L);
6162     STOP("Stack is not properly aligned!");
6163     bind(L);
6164   }
6165 #endif
6166 
6167 }
6168 
6169 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6170   // cnt - number of qwords (8-byte words).
6171   // base - start address, qword aligned.
6172   assert(base==rdi, "base register must be edi for rep stos");
6173   assert(tmp==rax,   "tmp register must be eax for rep stos");
6174   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6175 
6176   xorptr(tmp, tmp);
6177   if (UseFastStosb) {
6178     shlptr(cnt,3); // convert to number of bytes
6179     rep_stosb();
6180   } else {
6181     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6182     rep_stos();
6183   }
6184 }
6185 
6186 // IndexOf for constant substrings with size >= 8 chars
6187 // which don't need to be loaded through stack.
6188 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6189                                       Register cnt1, Register cnt2,
6190                                       int int_cnt2,  Register result,
6191                                       XMMRegister vec, Register tmp) {
6192   ShortBranchVerifier sbv(this);
6193   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6194 
6195   // This method uses pcmpestri inxtruction with bound registers
6196   //   inputs:
6197   //     xmm - substring
6198   //     rax - substring length (elements count)
6199   //     mem - scanned string
6200   //     rdx - string length (elements count)
6201   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6202   //   outputs:
6203   //     rcx - matched index in string
6204   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6205 
6206   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6207         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6208         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6209 
6210   // Note, inline_string_indexOf() generates checks:
6211   // if (substr.count > string.count) return -1;
6212   // if (substr.count == 0) return 0;
6213   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6214 
6215   // Load substring.
6216   movdqu(vec, Address(str2, 0));
6217   movl(cnt2, int_cnt2);
6218   movptr(result, str1); // string addr
6219 
6220   if (int_cnt2 > 8) {
6221     jmpb(SCAN_TO_SUBSTR);
6222 
6223     // Reload substr for rescan, this code
6224     // is executed only for large substrings (> 8 chars)
6225     bind(RELOAD_SUBSTR);
6226     movdqu(vec, Address(str2, 0));
6227     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6228 
6229     bind(RELOAD_STR);
6230     // We came here after the beginning of the substring was
6231     // matched but the rest of it was not so we need to search
6232     // again. Start from the next element after the previous match.
6233 
6234     // cnt2 is number of substring reminding elements and
6235     // cnt1 is number of string reminding elements when cmp failed.
6236     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6237     subl(cnt1, cnt2);
6238     addl(cnt1, int_cnt2);
6239     movl(cnt2, int_cnt2); // Now restore cnt2
6240 
6241     decrementl(cnt1);     // Shift to next element
6242     cmpl(cnt1, cnt2);
6243     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6244 
6245     addptr(result, 2);
6246 
6247   } // (int_cnt2 > 8)
6248 
6249   // Scan string for start of substr in 16-byte vectors
6250   bind(SCAN_TO_SUBSTR);
6251   pcmpestri(vec, Address(result, 0), 0x0d);
6252   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6253   subl(cnt1, 8);
6254   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6255   cmpl(cnt1, cnt2);
6256   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6257   addptr(result, 16);
6258   jmpb(SCAN_TO_SUBSTR);
6259 
6260   // Found a potential substr
6261   bind(FOUND_CANDIDATE);
6262   // Matched whole vector if first element matched (tmp(rcx) == 0).
6263   if (int_cnt2 == 8) {
6264     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6265   } else { // int_cnt2 > 8
6266     jccb(Assembler::overflow, FOUND_SUBSTR);
6267   }
6268   // After pcmpestri tmp(rcx) contains matched element index
6269   // Compute start addr of substr
6270   lea(result, Address(result, tmp, Address::times_2));
6271 
6272   // Make sure string is still long enough
6273   subl(cnt1, tmp);
6274   cmpl(cnt1, cnt2);
6275   if (int_cnt2 == 8) {
6276     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6277   } else { // int_cnt2 > 8
6278     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6279   }
6280   // Left less then substring.
6281 
6282   bind(RET_NOT_FOUND);
6283   movl(result, -1);
6284   jmpb(EXIT);
6285 
6286   if (int_cnt2 > 8) {
6287     // This code is optimized for the case when whole substring
6288     // is matched if its head is matched.
6289     bind(MATCH_SUBSTR_HEAD);
6290     pcmpestri(vec, Address(result, 0), 0x0d);
6291     // Reload only string if does not match
6292     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6293 
6294     Label CONT_SCAN_SUBSTR;
6295     // Compare the rest of substring (> 8 chars).
6296     bind(FOUND_SUBSTR);
6297     // First 8 chars are already matched.
6298     negptr(cnt2);
6299     addptr(cnt2, 8);
6300 
6301     bind(SCAN_SUBSTR);
6302     subl(cnt1, 8);
6303     cmpl(cnt2, -8); // Do not read beyond substring
6304     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6305     // Back-up strings to avoid reading beyond substring:
6306     // cnt1 = cnt1 - cnt2 + 8
6307     addl(cnt1, cnt2); // cnt2 is negative
6308     addl(cnt1, 8);
6309     movl(cnt2, 8); negptr(cnt2);
6310     bind(CONT_SCAN_SUBSTR);
6311     if (int_cnt2 < (int)G) {
6312       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6313       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6314     } else {
6315       // calculate index in register to avoid integer overflow (int_cnt2*2)
6316       movl(tmp, int_cnt2);
6317       addptr(tmp, cnt2);
6318       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6319       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6320     }
6321     // Need to reload strings pointers if not matched whole vector
6322     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6323     addptr(cnt2, 8);
6324     jcc(Assembler::negative, SCAN_SUBSTR);
6325     // Fall through if found full substring
6326 
6327   } // (int_cnt2 > 8)
6328 
6329   bind(RET_FOUND);
6330   // Found result if we matched full small substring.
6331   // Compute substr offset
6332   subptr(result, str1);
6333   shrl(result, 1); // index
6334   bind(EXIT);
6335 
6336 } // string_indexofC8
6337 
6338 // Small strings are loaded through stack if they cross page boundary.
6339 void MacroAssembler::string_indexof(Register str1, Register str2,
6340                                     Register cnt1, Register cnt2,
6341                                     int int_cnt2,  Register result,
6342                                     XMMRegister vec, Register tmp) {
6343   ShortBranchVerifier sbv(this);
6344   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6345   //
6346   // int_cnt2 is length of small (< 8 chars) constant substring
6347   // or (-1) for non constant substring in which case its length
6348   // is in cnt2 register.
6349   //
6350   // Note, inline_string_indexOf() generates checks:
6351   // if (substr.count > string.count) return -1;
6352   // if (substr.count == 0) return 0;
6353   //
6354   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6355 
6356   // This method uses pcmpestri inxtruction with bound registers
6357   //   inputs:
6358   //     xmm - substring
6359   //     rax - substring length (elements count)
6360   //     mem - scanned string
6361   //     rdx - string length (elements count)
6362   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6363   //   outputs:
6364   //     rcx - matched index in string
6365   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6366 
6367   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6368         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6369         FOUND_CANDIDATE;
6370 
6371   { //========================================================
6372     // We don't know where these strings are located
6373     // and we can't read beyond them. Load them through stack.
6374     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6375 
6376     movptr(tmp, rsp); // save old SP
6377 
6378     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6379       if (int_cnt2 == 1) {  // One char
6380         load_unsigned_short(result, Address(str2, 0));
6381         movdl(vec, result); // move 32 bits
6382       } else if (int_cnt2 == 2) { // Two chars
6383         movdl(vec, Address(str2, 0)); // move 32 bits
6384       } else if (int_cnt2 == 4) { // Four chars
6385         movq(vec, Address(str2, 0));  // move 64 bits
6386       } else { // cnt2 = { 3, 5, 6, 7 }
6387         // Array header size is 12 bytes in 32-bit VM
6388         // + 6 bytes for 3 chars == 18 bytes,
6389         // enough space to load vec and shift.
6390         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6391         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6392         psrldq(vec, 16-(int_cnt2*2));
6393       }
6394     } else { // not constant substring
6395       cmpl(cnt2, 8);
6396       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6397 
6398       // We can read beyond string if srt+16 does not cross page boundary
6399       // since heaps are aligned and mapped by pages.
6400       assert(os::vm_page_size() < (int)G, "default page should be small");
6401       movl(result, str2); // We need only low 32 bits
6402       andl(result, (os::vm_page_size()-1));
6403       cmpl(result, (os::vm_page_size()-16));
6404       jccb(Assembler::belowEqual, CHECK_STR);
6405 
6406       // Move small strings to stack to allow load 16 bytes into vec.
6407       subptr(rsp, 16);
6408       int stk_offset = wordSize-2;
6409       push(cnt2);
6410 
6411       bind(COPY_SUBSTR);
6412       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6413       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6414       decrement(cnt2);
6415       jccb(Assembler::notZero, COPY_SUBSTR);
6416 
6417       pop(cnt2);
6418       movptr(str2, rsp);  // New substring address
6419     } // non constant
6420 
6421     bind(CHECK_STR);
6422     cmpl(cnt1, 8);
6423     jccb(Assembler::aboveEqual, BIG_STRINGS);
6424 
6425     // Check cross page boundary.
6426     movl(result, str1); // We need only low 32 bits
6427     andl(result, (os::vm_page_size()-1));
6428     cmpl(result, (os::vm_page_size()-16));
6429     jccb(Assembler::belowEqual, BIG_STRINGS);
6430 
6431     subptr(rsp, 16);
6432     int stk_offset = -2;
6433     if (int_cnt2 < 0) { // not constant
6434       push(cnt2);
6435       stk_offset += wordSize;
6436     }
6437     movl(cnt2, cnt1);
6438 
6439     bind(COPY_STR);
6440     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6441     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6442     decrement(cnt2);
6443     jccb(Assembler::notZero, COPY_STR);
6444 
6445     if (int_cnt2 < 0) { // not constant
6446       pop(cnt2);
6447     }
6448     movptr(str1, rsp);  // New string address
6449 
6450     bind(BIG_STRINGS);
6451     // Load substring.
6452     if (int_cnt2 < 0) { // -1
6453       movdqu(vec, Address(str2, 0));
6454       push(cnt2);       // substr count
6455       push(str2);       // substr addr
6456       push(str1);       // string addr
6457     } else {
6458       // Small (< 8 chars) constant substrings are loaded already.
6459       movl(cnt2, int_cnt2);
6460     }
6461     push(tmp);  // original SP
6462 
6463   } // Finished loading
6464 
6465   //========================================================
6466   // Start search
6467   //
6468 
6469   movptr(result, str1); // string addr
6470 
6471   if (int_cnt2  < 0) {  // Only for non constant substring
6472     jmpb(SCAN_TO_SUBSTR);
6473 
6474     // SP saved at sp+0
6475     // String saved at sp+1*wordSize
6476     // Substr saved at sp+2*wordSize
6477     // Substr count saved at sp+3*wordSize
6478 
6479     // Reload substr for rescan, this code
6480     // is executed only for large substrings (> 8 chars)
6481     bind(RELOAD_SUBSTR);
6482     movptr(str2, Address(rsp, 2*wordSize));
6483     movl(cnt2, Address(rsp, 3*wordSize));
6484     movdqu(vec, Address(str2, 0));
6485     // We came here after the beginning of the substring was
6486     // matched but the rest of it was not so we need to search
6487     // again. Start from the next element after the previous match.
6488     subptr(str1, result); // Restore counter
6489     shrl(str1, 1);
6490     addl(cnt1, str1);
6491     decrementl(cnt1);   // Shift to next element
6492     cmpl(cnt1, cnt2);
6493     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6494 
6495     addptr(result, 2);
6496   } // non constant
6497 
6498   // Scan string for start of substr in 16-byte vectors
6499   bind(SCAN_TO_SUBSTR);
6500   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6501   pcmpestri(vec, Address(result, 0), 0x0d);
6502   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6503   subl(cnt1, 8);
6504   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6505   cmpl(cnt1, cnt2);
6506   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6507   addptr(result, 16);
6508 
6509   bind(ADJUST_STR);
6510   cmpl(cnt1, 8); // Do not read beyond string
6511   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6512   // Back-up string to avoid reading beyond string.
6513   lea(result, Address(result, cnt1, Address::times_2, -16));
6514   movl(cnt1, 8);
6515   jmpb(SCAN_TO_SUBSTR);
6516 
6517   // Found a potential substr
6518   bind(FOUND_CANDIDATE);
6519   // After pcmpestri tmp(rcx) contains matched element index
6520 
6521   // Make sure string is still long enough
6522   subl(cnt1, tmp);
6523   cmpl(cnt1, cnt2);
6524   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6525   // Left less then substring.
6526 
6527   bind(RET_NOT_FOUND);
6528   movl(result, -1);
6529   jmpb(CLEANUP);
6530 
6531   bind(FOUND_SUBSTR);
6532   // Compute start addr of substr
6533   lea(result, Address(result, tmp, Address::times_2));
6534 
6535   if (int_cnt2 > 0) { // Constant substring
6536     // Repeat search for small substring (< 8 chars)
6537     // from new point without reloading substring.
6538     // Have to check that we don't read beyond string.
6539     cmpl(tmp, 8-int_cnt2);
6540     jccb(Assembler::greater, ADJUST_STR);
6541     // Fall through if matched whole substring.
6542   } else { // non constant
6543     assert(int_cnt2 == -1, "should be != 0");
6544 
6545     addl(tmp, cnt2);
6546     // Found result if we matched whole substring.
6547     cmpl(tmp, 8);
6548     jccb(Assembler::lessEqual, RET_FOUND);
6549 
6550     // Repeat search for small substring (<= 8 chars)
6551     // from new point 'str1' without reloading substring.
6552     cmpl(cnt2, 8);
6553     // Have to check that we don't read beyond string.
6554     jccb(Assembler::lessEqual, ADJUST_STR);
6555 
6556     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6557     // Compare the rest of substring (> 8 chars).
6558     movptr(str1, result);
6559 
6560     cmpl(tmp, cnt2);
6561     // First 8 chars are already matched.
6562     jccb(Assembler::equal, CHECK_NEXT);
6563 
6564     bind(SCAN_SUBSTR);
6565     pcmpestri(vec, Address(str1, 0), 0x0d);
6566     // Need to reload strings pointers if not matched whole vector
6567     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6568 
6569     bind(CHECK_NEXT);
6570     subl(cnt2, 8);
6571     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6572     addptr(str1, 16);
6573     addptr(str2, 16);
6574     subl(cnt1, 8);
6575     cmpl(cnt2, 8); // Do not read beyond substring
6576     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6577     // Back-up strings to avoid reading beyond substring.
6578     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6579     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6580     subl(cnt1, cnt2);
6581     movl(cnt2, 8);
6582     addl(cnt1, 8);
6583     bind(CONT_SCAN_SUBSTR);
6584     movdqu(vec, Address(str2, 0));
6585     jmpb(SCAN_SUBSTR);
6586 
6587     bind(RET_FOUND_LONG);
6588     movptr(str1, Address(rsp, wordSize));
6589   } // non constant
6590 
6591   bind(RET_FOUND);
6592   // Compute substr offset
6593   subptr(result, str1);
6594   shrl(result, 1); // index
6595 
6596   bind(CLEANUP);
6597   pop(rsp); // restore SP
6598 
6599 } // string_indexof
6600 
6601 // Compare strings.
6602 void MacroAssembler::string_compare(Register str1, Register str2,
6603                                     Register cnt1, Register cnt2, Register result,
6604                                     XMMRegister vec1) {
6605   ShortBranchVerifier sbv(this);
6606   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6607 
6608   // Compute the minimum of the string lengths and the
6609   // difference of the string lengths (stack).
6610   // Do the conditional move stuff
6611   movl(result, cnt1);
6612   subl(cnt1, cnt2);
6613   push(cnt1);
6614   cmov32(Assembler::lessEqual, cnt2, result);
6615 
6616   // Is the minimum length zero?
6617   testl(cnt2, cnt2);
6618   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6619 
6620   // Compare first characters
6621   load_unsigned_short(result, Address(str1, 0));
6622   load_unsigned_short(cnt1, Address(str2, 0));
6623   subl(result, cnt1);
6624   jcc(Assembler::notZero,  POP_LABEL);
6625   cmpl(cnt2, 1);
6626   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6627 
6628   // Check if the strings start at the same location.
6629   cmpptr(str1, str2);
6630   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6631 
6632   Address::ScaleFactor scale = Address::times_2;
6633   int stride = 8;
6634 
6635   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6636     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6637     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6638     Label COMPARE_TAIL_LONG;
6639     int pcmpmask = 0x19;
6640 
6641     // Setup to compare 16-chars (32-bytes) vectors,
6642     // start from first character again because it has aligned address.
6643     int stride2 = 16;
6644     int adr_stride  = stride  << scale;
6645     int adr_stride2 = stride2 << scale;
6646 
6647     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6648     // rax and rdx are used by pcmpestri as elements counters
6649     movl(result, cnt2);
6650     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6651     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6652 
6653     // fast path : compare first 2 8-char vectors.
6654     bind(COMPARE_16_CHARS);
6655     movdqu(vec1, Address(str1, 0));
6656     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6657     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6658 
6659     movdqu(vec1, Address(str1, adr_stride));
6660     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6661     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6662     addl(cnt1, stride);
6663 
6664     // Compare the characters at index in cnt1
6665     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6666     load_unsigned_short(result, Address(str1, cnt1, scale));
6667     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6668     subl(result, cnt2);
6669     jmp(POP_LABEL);
6670 
6671     // Setup the registers to start vector comparison loop
6672     bind(COMPARE_WIDE_VECTORS);
6673     lea(str1, Address(str1, result, scale));
6674     lea(str2, Address(str2, result, scale));
6675     subl(result, stride2);
6676     subl(cnt2, stride2);
6677     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6678     negptr(result);
6679 
6680     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6681     bind(COMPARE_WIDE_VECTORS_LOOP);
6682     vmovdqu(vec1, Address(str1, result, scale));
6683     vpxor(vec1, Address(str2, result, scale));
6684     vptest(vec1, vec1);
6685     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6686     addptr(result, stride2);
6687     subl(cnt2, stride2);
6688     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6689     // clean upper bits of YMM registers
6690     vzeroupper();
6691 
6692     // compare wide vectors tail
6693     bind(COMPARE_WIDE_TAIL);
6694     testptr(result, result);
6695     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6696 
6697     movl(result, stride2);
6698     movl(cnt2, result);
6699     negptr(result);
6700     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6701 
6702     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6703     bind(VECTOR_NOT_EQUAL);
6704     // clean upper bits of YMM registers
6705     vzeroupper();
6706     lea(str1, Address(str1, result, scale));
6707     lea(str2, Address(str2, result, scale));
6708     jmp(COMPARE_16_CHARS);
6709 
6710     // Compare tail chars, length between 1 to 15 chars
6711     bind(COMPARE_TAIL_LONG);
6712     movl(cnt2, result);
6713     cmpl(cnt2, stride);
6714     jccb(Assembler::less, COMPARE_SMALL_STR);
6715 
6716     movdqu(vec1, Address(str1, 0));
6717     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6718     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6719     subptr(cnt2, stride);
6720     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6721     lea(str1, Address(str1, result, scale));
6722     lea(str2, Address(str2, result, scale));
6723     negptr(cnt2);
6724     jmpb(WHILE_HEAD_LABEL);
6725 
6726     bind(COMPARE_SMALL_STR);
6727   } else if (UseSSE42Intrinsics) {
6728     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6729     int pcmpmask = 0x19;
6730     // Setup to compare 8-char (16-byte) vectors,
6731     // start from first character again because it has aligned address.
6732     movl(result, cnt2);
6733     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6734     jccb(Assembler::zero, COMPARE_TAIL);
6735 
6736     lea(str1, Address(str1, result, scale));
6737     lea(str2, Address(str2, result, scale));
6738     negptr(result);
6739 
6740     // pcmpestri
6741     //   inputs:
6742     //     vec1- substring
6743     //     rax - negative string length (elements count)
6744     //     mem - scaned string
6745     //     rdx - string length (elements count)
6746     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6747     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6748     //   outputs:
6749     //     rcx - first mismatched element index
6750     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6751 
6752     bind(COMPARE_WIDE_VECTORS);
6753     movdqu(vec1, Address(str1, result, scale));
6754     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6755     // After pcmpestri cnt1(rcx) contains mismatched element index
6756 
6757     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6758     addptr(result, stride);
6759     subptr(cnt2, stride);
6760     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6761 
6762     // compare wide vectors tail
6763     testptr(result, result);
6764     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6765 
6766     movl(cnt2, stride);
6767     movl(result, stride);
6768     negptr(result);
6769     movdqu(vec1, Address(str1, result, scale));
6770     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6771     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6772 
6773     // Mismatched characters in the vectors
6774     bind(VECTOR_NOT_EQUAL);
6775     addptr(cnt1, result);
6776     load_unsigned_short(result, Address(str1, cnt1, scale));
6777     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6778     subl(result, cnt2);
6779     jmpb(POP_LABEL);
6780 
6781     bind(COMPARE_TAIL); // limit is zero
6782     movl(cnt2, result);
6783     // Fallthru to tail compare
6784   }
6785   // Shift str2 and str1 to the end of the arrays, negate min
6786   lea(str1, Address(str1, cnt2, scale));
6787   lea(str2, Address(str2, cnt2, scale));
6788   decrementl(cnt2);  // first character was compared already
6789   negptr(cnt2);
6790 
6791   // Compare the rest of the elements
6792   bind(WHILE_HEAD_LABEL);
6793   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6794   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6795   subl(result, cnt1);
6796   jccb(Assembler::notZero, POP_LABEL);
6797   increment(cnt2);
6798   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6799 
6800   // Strings are equal up to min length.  Return the length difference.
6801   bind(LENGTH_DIFF_LABEL);
6802   pop(result);
6803   jmpb(DONE_LABEL);
6804 
6805   // Discard the stored length difference
6806   bind(POP_LABEL);
6807   pop(cnt1);
6808 
6809   // That's it
6810   bind(DONE_LABEL);
6811 }
6812 
6813 // Compare char[] arrays aligned to 4 bytes or substrings.
6814 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6815                                         Register limit, Register result, Register chr,
6816                                         XMMRegister vec1, XMMRegister vec2) {
6817   ShortBranchVerifier sbv(this);
6818   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6819 
6820   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6821   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6822 
6823   // Check the input args
6824   cmpptr(ary1, ary2);
6825   jcc(Assembler::equal, TRUE_LABEL);
6826 
6827   if (is_array_equ) {
6828     // Need additional checks for arrays_equals.
6829     testptr(ary1, ary1);
6830     jcc(Assembler::zero, FALSE_LABEL);
6831     testptr(ary2, ary2);
6832     jcc(Assembler::zero, FALSE_LABEL);
6833 
6834     // Check the lengths
6835     movl(limit, Address(ary1, length_offset));
6836     cmpl(limit, Address(ary2, length_offset));
6837     jcc(Assembler::notEqual, FALSE_LABEL);
6838   }
6839 
6840   // count == 0
6841   testl(limit, limit);
6842   jcc(Assembler::zero, TRUE_LABEL);
6843 
6844   if (is_array_equ) {
6845     // Load array address
6846     lea(ary1, Address(ary1, base_offset));
6847     lea(ary2, Address(ary2, base_offset));
6848   }
6849 
6850   shll(limit, 1);      // byte count != 0
6851   movl(result, limit); // copy
6852 
6853   if (UseAVX >= 2) {
6854     // With AVX2, use 32-byte vector compare
6855     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6856 
6857     // Compare 32-byte vectors
6858     andl(result, 0x0000001e);  //   tail count (in bytes)
6859     andl(limit, 0xffffffe0);   // vector count (in bytes)
6860     jccb(Assembler::zero, COMPARE_TAIL);
6861 
6862     lea(ary1, Address(ary1, limit, Address::times_1));
6863     lea(ary2, Address(ary2, limit, Address::times_1));
6864     negptr(limit);
6865 
6866     bind(COMPARE_WIDE_VECTORS);
6867     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6868     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6869     vpxor(vec1, vec2);
6870 
6871     vptest(vec1, vec1);
6872     jccb(Assembler::notZero, FALSE_LABEL);
6873     addptr(limit, 32);
6874     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6875 
6876     testl(result, result);
6877     jccb(Assembler::zero, TRUE_LABEL);
6878 
6879     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6880     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6881     vpxor(vec1, vec2);
6882 
6883     vptest(vec1, vec1);
6884     jccb(Assembler::notZero, FALSE_LABEL);
6885     jmpb(TRUE_LABEL);
6886 
6887     bind(COMPARE_TAIL); // limit is zero
6888     movl(limit, result);
6889     // Fallthru to tail compare
6890   } else if (UseSSE42Intrinsics) {
6891     // With SSE4.2, use double quad vector compare
6892     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6893 
6894     // Compare 16-byte vectors
6895     andl(result, 0x0000000e);  //   tail count (in bytes)
6896     andl(limit, 0xfffffff0);   // vector count (in bytes)
6897     jccb(Assembler::zero, COMPARE_TAIL);
6898 
6899     lea(ary1, Address(ary1, limit, Address::times_1));
6900     lea(ary2, Address(ary2, limit, Address::times_1));
6901     negptr(limit);
6902 
6903     bind(COMPARE_WIDE_VECTORS);
6904     movdqu(vec1, Address(ary1, limit, Address::times_1));
6905     movdqu(vec2, Address(ary2, limit, Address::times_1));
6906     pxor(vec1, vec2);
6907 
6908     ptest(vec1, vec1);
6909     jccb(Assembler::notZero, FALSE_LABEL);
6910     addptr(limit, 16);
6911     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6912 
6913     testl(result, result);
6914     jccb(Assembler::zero, TRUE_LABEL);
6915 
6916     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6917     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6918     pxor(vec1, vec2);
6919 
6920     ptest(vec1, vec1);
6921     jccb(Assembler::notZero, FALSE_LABEL);
6922     jmpb(TRUE_LABEL);
6923 
6924     bind(COMPARE_TAIL); // limit is zero
6925     movl(limit, result);
6926     // Fallthru to tail compare
6927   }
6928 
6929   // Compare 4-byte vectors
6930   andl(limit, 0xfffffffc); // vector count (in bytes)
6931   jccb(Assembler::zero, COMPARE_CHAR);
6932 
6933   lea(ary1, Address(ary1, limit, Address::times_1));
6934   lea(ary2, Address(ary2, limit, Address::times_1));
6935   negptr(limit);
6936 
6937   bind(COMPARE_VECTORS);
6938   movl(chr, Address(ary1, limit, Address::times_1));
6939   cmpl(chr, Address(ary2, limit, Address::times_1));
6940   jccb(Assembler::notEqual, FALSE_LABEL);
6941   addptr(limit, 4);
6942   jcc(Assembler::notZero, COMPARE_VECTORS);
6943 
6944   // Compare trailing char (final 2 bytes), if any
6945   bind(COMPARE_CHAR);
6946   testl(result, 0x2);   // tail  char
6947   jccb(Assembler::zero, TRUE_LABEL);
6948   load_unsigned_short(chr, Address(ary1, 0));
6949   load_unsigned_short(limit, Address(ary2, 0));
6950   cmpl(chr, limit);
6951   jccb(Assembler::notEqual, FALSE_LABEL);
6952 
6953   bind(TRUE_LABEL);
6954   movl(result, 1);   // return true
6955   jmpb(DONE);
6956 
6957   bind(FALSE_LABEL);
6958   xorl(result, result); // return false
6959 
6960   // That's it
6961   bind(DONE);
6962   if (UseAVX >= 2) {
6963     // clean upper bits of YMM registers
6964     vzeroupper();
6965   }
6966 }
6967 
6968 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6969                                    Register to, Register value, Register count,
6970                                    Register rtmp, XMMRegister xtmp) {
6971   ShortBranchVerifier sbv(this);
6972   assert_different_registers(to, value, count, rtmp);
6973   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6974   Label L_fill_2_bytes, L_fill_4_bytes;
6975 
6976   int shift = -1;
6977   switch (t) {
6978     case T_BYTE:
6979       shift = 2;
6980       break;
6981     case T_SHORT:
6982       shift = 1;
6983       break;
6984     case T_INT:
6985       shift = 0;
6986       break;
6987     default: ShouldNotReachHere();
6988   }
6989 
6990   if (t == T_BYTE) {
6991     andl(value, 0xff);
6992     movl(rtmp, value);
6993     shll(rtmp, 8);
6994     orl(value, rtmp);
6995   }
6996   if (t == T_SHORT) {
6997     andl(value, 0xffff);
6998   }
6999   if (t == T_BYTE || t == T_SHORT) {
7000     movl(rtmp, value);
7001     shll(rtmp, 16);
7002     orl(value, rtmp);
7003   }
7004 
7005   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7006   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7007   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7008     // align source address at 4 bytes address boundary
7009     if (t == T_BYTE) {
7010       // One byte misalignment happens only for byte arrays
7011       testptr(to, 1);
7012       jccb(Assembler::zero, L_skip_align1);
7013       movb(Address(to, 0), value);
7014       increment(to);
7015       decrement(count);
7016       BIND(L_skip_align1);
7017     }
7018     // Two bytes misalignment happens only for byte and short (char) arrays
7019     testptr(to, 2);
7020     jccb(Assembler::zero, L_skip_align2);
7021     movw(Address(to, 0), value);
7022     addptr(to, 2);
7023     subl(count, 1<<(shift-1));
7024     BIND(L_skip_align2);
7025   }
7026   if (UseSSE < 2) {
7027     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7028     // Fill 32-byte chunks
7029     subl(count, 8 << shift);
7030     jcc(Assembler::less, L_check_fill_8_bytes);
7031     align(16);
7032 
7033     BIND(L_fill_32_bytes_loop);
7034 
7035     for (int i = 0; i < 32; i += 4) {
7036       movl(Address(to, i), value);
7037     }
7038 
7039     addptr(to, 32);
7040     subl(count, 8 << shift);
7041     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7042     BIND(L_check_fill_8_bytes);
7043     addl(count, 8 << shift);
7044     jccb(Assembler::zero, L_exit);
7045     jmpb(L_fill_8_bytes);
7046 
7047     //
7048     // length is too short, just fill qwords
7049     //
7050     BIND(L_fill_8_bytes_loop);
7051     movl(Address(to, 0), value);
7052     movl(Address(to, 4), value);
7053     addptr(to, 8);
7054     BIND(L_fill_8_bytes);
7055     subl(count, 1 << (shift + 1));
7056     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7057     // fall through to fill 4 bytes
7058   } else {
7059     Label L_fill_32_bytes;
7060     if (!UseUnalignedLoadStores) {
7061       // align to 8 bytes, we know we are 4 byte aligned to start
7062       testptr(to, 4);
7063       jccb(Assembler::zero, L_fill_32_bytes);
7064       movl(Address(to, 0), value);
7065       addptr(to, 4);
7066       subl(count, 1<<shift);
7067     }
7068     BIND(L_fill_32_bytes);
7069     {
7070       assert( UseSSE >= 2, "supported cpu only" );
7071       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7072       movdl(xtmp, value);
7073       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7074         // Fill 64-byte chunks
7075         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7076         vpbroadcastd(xtmp, xtmp);
7077 
7078         subl(count, 16 << shift);
7079         jcc(Assembler::less, L_check_fill_32_bytes);
7080         align(16);
7081 
7082         BIND(L_fill_64_bytes_loop);
7083         vmovdqu(Address(to, 0), xtmp);
7084         vmovdqu(Address(to, 32), xtmp);
7085         addptr(to, 64);
7086         subl(count, 16 << shift);
7087         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7088 
7089         BIND(L_check_fill_32_bytes);
7090         addl(count, 8 << shift);
7091         jccb(Assembler::less, L_check_fill_8_bytes);
7092         vmovdqu(Address(to, 0), xtmp);
7093         addptr(to, 32);
7094         subl(count, 8 << shift);
7095 
7096         BIND(L_check_fill_8_bytes);
7097         // clean upper bits of YMM registers
7098         vzeroupper();
7099       } else {
7100         // Fill 32-byte chunks
7101         pshufd(xtmp, xtmp, 0);
7102 
7103         subl(count, 8 << shift);
7104         jcc(Assembler::less, L_check_fill_8_bytes);
7105         align(16);
7106 
7107         BIND(L_fill_32_bytes_loop);
7108 
7109         if (UseUnalignedLoadStores) {
7110           movdqu(Address(to, 0), xtmp);
7111           movdqu(Address(to, 16), xtmp);
7112         } else {
7113           movq(Address(to, 0), xtmp);
7114           movq(Address(to, 8), xtmp);
7115           movq(Address(to, 16), xtmp);
7116           movq(Address(to, 24), xtmp);
7117         }
7118 
7119         addptr(to, 32);
7120         subl(count, 8 << shift);
7121         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7122 
7123         BIND(L_check_fill_8_bytes);
7124       }
7125       addl(count, 8 << shift);
7126       jccb(Assembler::zero, L_exit);
7127       jmpb(L_fill_8_bytes);
7128 
7129       //
7130       // length is too short, just fill qwords
7131       //
7132       BIND(L_fill_8_bytes_loop);
7133       movq(Address(to, 0), xtmp);
7134       addptr(to, 8);
7135       BIND(L_fill_8_bytes);
7136       subl(count, 1 << (shift + 1));
7137       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7138     }
7139   }
7140   // fill trailing 4 bytes
7141   BIND(L_fill_4_bytes);
7142   testl(count, 1<<shift);
7143   jccb(Assembler::zero, L_fill_2_bytes);
7144   movl(Address(to, 0), value);
7145   if (t == T_BYTE || t == T_SHORT) {
7146     addptr(to, 4);
7147     BIND(L_fill_2_bytes);
7148     // fill trailing 2 bytes
7149     testl(count, 1<<(shift-1));
7150     jccb(Assembler::zero, L_fill_byte);
7151     movw(Address(to, 0), value);
7152     if (t == T_BYTE) {
7153       addptr(to, 2);
7154       BIND(L_fill_byte);
7155       // fill trailing byte
7156       testl(count, 1);
7157       jccb(Assembler::zero, L_exit);
7158       movb(Address(to, 0), value);
7159     } else {
7160       BIND(L_fill_byte);
7161     }
7162   } else {
7163     BIND(L_fill_2_bytes);
7164   }
7165   BIND(L_exit);
7166 }
7167 
7168 // encode char[] to byte[] in ISO_8859_1
7169 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7170                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7171                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7172                                       Register tmp5, Register result) {
7173   // rsi: src
7174   // rdi: dst
7175   // rdx: len
7176   // rcx: tmp5
7177   // rax: result
7178   ShortBranchVerifier sbv(this);
7179   assert_different_registers(src, dst, len, tmp5, result);
7180   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7181 
7182   // set result
7183   xorl(result, result);
7184   // check for zero length
7185   testl(len, len);
7186   jcc(Assembler::zero, L_done);
7187   movl(result, len);
7188 
7189   // Setup pointers
7190   lea(src, Address(src, len, Address::times_2)); // char[]
7191   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7192   negptr(len);
7193 
7194   if (UseSSE42Intrinsics || UseAVX >= 2) {
7195     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7196     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7197 
7198     if (UseAVX >= 2) {
7199       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7200       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7201       movdl(tmp1Reg, tmp5);
7202       vpbroadcastd(tmp1Reg, tmp1Reg);
7203       jmpb(L_chars_32_check);
7204 
7205       bind(L_copy_32_chars);
7206       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7207       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7208       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7209       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7210       jccb(Assembler::notZero, L_copy_32_chars_exit);
7211       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7212       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
7213       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7214 
7215       bind(L_chars_32_check);
7216       addptr(len, 32);
7217       jccb(Assembler::lessEqual, L_copy_32_chars);
7218 
7219       bind(L_copy_32_chars_exit);
7220       subptr(len, 16);
7221       jccb(Assembler::greater, L_copy_16_chars_exit);
7222 
7223     } else if (UseSSE42Intrinsics) {
7224       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7225       movdl(tmp1Reg, tmp5);
7226       pshufd(tmp1Reg, tmp1Reg, 0);
7227       jmpb(L_chars_16_check);
7228     }
7229 
7230     bind(L_copy_16_chars);
7231     if (UseAVX >= 2) {
7232       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7233       vptest(tmp2Reg, tmp1Reg);
7234       jccb(Assembler::notZero, L_copy_16_chars_exit);
7235       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
7236       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
7237     } else {
7238       if (UseAVX > 0) {
7239         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7240         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7241         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
7242       } else {
7243         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7244         por(tmp2Reg, tmp3Reg);
7245         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7246         por(tmp2Reg, tmp4Reg);
7247       }
7248       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7249       jccb(Assembler::notZero, L_copy_16_chars_exit);
7250       packuswb(tmp3Reg, tmp4Reg);
7251     }
7252     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7253 
7254     bind(L_chars_16_check);
7255     addptr(len, 16);
7256     jccb(Assembler::lessEqual, L_copy_16_chars);
7257 
7258     bind(L_copy_16_chars_exit);
7259     if (UseAVX >= 2) {
7260       // clean upper bits of YMM registers
7261       vzeroupper();
7262     }
7263     subptr(len, 8);
7264     jccb(Assembler::greater, L_copy_8_chars_exit);
7265 
7266     bind(L_copy_8_chars);
7267     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7268     ptest(tmp3Reg, tmp1Reg);
7269     jccb(Assembler::notZero, L_copy_8_chars_exit);
7270     packuswb(tmp3Reg, tmp1Reg);
7271     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7272     addptr(len, 8);
7273     jccb(Assembler::lessEqual, L_copy_8_chars);
7274 
7275     bind(L_copy_8_chars_exit);
7276     subptr(len, 8);
7277     jccb(Assembler::zero, L_done);
7278   }
7279 
7280   bind(L_copy_1_char);
7281   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7282   testl(tmp5, 0xff00);      // check if Unicode char
7283   jccb(Assembler::notZero, L_copy_1_char_exit);
7284   movb(Address(dst, len, Address::times_1, 0), tmp5);
7285   addptr(len, 1);
7286   jccb(Assembler::less, L_copy_1_char);
7287 
7288   bind(L_copy_1_char_exit);
7289   addptr(result, len); // len is negative count of not processed elements
7290   bind(L_done);
7291 }
7292 
7293 #ifdef _LP64
7294 /**
7295  * Helper for multiply_to_len().
7296  */
7297 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7298   addq(dest_lo, src1);
7299   adcq(dest_hi, 0);
7300   addq(dest_lo, src2);
7301   adcq(dest_hi, 0);
7302 }
7303 
7304 /**
7305  * Multiply 64 bit by 64 bit first loop.
7306  */
7307 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7308                                            Register y, Register y_idx, Register z,
7309                                            Register carry, Register product,
7310                                            Register idx, Register kdx) {
7311   //
7312   //  jlong carry, x[], y[], z[];
7313   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7314   //    huge_128 product = y[idx] * x[xstart] + carry;
7315   //    z[kdx] = (jlong)product;
7316   //    carry  = (jlong)(product >>> 64);
7317   //  }
7318   //  z[xstart] = carry;
7319   //
7320 
7321   Label L_first_loop, L_first_loop_exit;
7322   Label L_one_x, L_one_y, L_multiply;
7323 
7324   decrementl(xstart);
7325   jcc(Assembler::negative, L_one_x);
7326 
7327   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7328   rorq(x_xstart, 32); // convert big-endian to little-endian
7329 
7330   bind(L_first_loop);
7331   decrementl(idx);
7332   jcc(Assembler::negative, L_first_loop_exit);
7333   decrementl(idx);
7334   jcc(Assembler::negative, L_one_y);
7335   movq(y_idx, Address(y, idx, Address::times_4,  0));
7336   rorq(y_idx, 32); // convert big-endian to little-endian
7337   bind(L_multiply);
7338   movq(product, x_xstart);
7339   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7340   addq(product, carry);
7341   adcq(rdx, 0);
7342   subl(kdx, 2);
7343   movl(Address(z, kdx, Address::times_4,  4), product);
7344   shrq(product, 32);
7345   movl(Address(z, kdx, Address::times_4,  0), product);
7346   movq(carry, rdx);
7347   jmp(L_first_loop);
7348 
7349   bind(L_one_y);
7350   movl(y_idx, Address(y,  0));
7351   jmp(L_multiply);
7352 
7353   bind(L_one_x);
7354   movl(x_xstart, Address(x,  0));
7355   jmp(L_first_loop);
7356 
7357   bind(L_first_loop_exit);
7358 }
7359 
7360 /**
7361  * Multiply 64 bit by 64 bit and add 128 bit.
7362  */
7363 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7364                                             Register yz_idx, Register idx,
7365                                             Register carry, Register product, int offset) {
7366   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7367   //     z[kdx] = (jlong)product;
7368 
7369   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7370   rorq(yz_idx, 32); // convert big-endian to little-endian
7371   movq(product, x_xstart);
7372   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7373   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7374   rorq(yz_idx, 32); // convert big-endian to little-endian
7375 
7376   add2_with_carry(rdx, product, carry, yz_idx);
7377 
7378   movl(Address(z, idx, Address::times_4,  offset+4), product);
7379   shrq(product, 32);
7380   movl(Address(z, idx, Address::times_4,  offset), product);
7381 
7382 }
7383 
7384 /**
7385  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7386  */
7387 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7388                                              Register yz_idx, Register idx, Register jdx,
7389                                              Register carry, Register product,
7390                                              Register carry2) {
7391   //   jlong carry, x[], y[], z[];
7392   //   int kdx = ystart+1;
7393   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7394   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7395   //     z[kdx+idx+1] = (jlong)product;
7396   //     jlong carry2  = (jlong)(product >>> 64);
7397   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7398   //     z[kdx+idx] = (jlong)product;
7399   //     carry  = (jlong)(product >>> 64);
7400   //   }
7401   //   idx += 2;
7402   //   if (idx > 0) {
7403   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7404   //     z[kdx+idx] = (jlong)product;
7405   //     carry  = (jlong)(product >>> 64);
7406   //   }
7407   //
7408 
7409   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7410 
7411   movl(jdx, idx);
7412   andl(jdx, 0xFFFFFFFC);
7413   shrl(jdx, 2);
7414 
7415   bind(L_third_loop);
7416   subl(jdx, 1);
7417   jcc(Assembler::negative, L_third_loop_exit);
7418   subl(idx, 4);
7419 
7420   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7421   movq(carry2, rdx);
7422 
7423   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7424   movq(carry, rdx);
7425   jmp(L_third_loop);
7426 
7427   bind (L_third_loop_exit);
7428 
7429   andl (idx, 0x3);
7430   jcc(Assembler::zero, L_post_third_loop_done);
7431 
7432   Label L_check_1;
7433   subl(idx, 2);
7434   jcc(Assembler::negative, L_check_1);
7435 
7436   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7437   movq(carry, rdx);
7438 
7439   bind (L_check_1);
7440   addl (idx, 0x2);
7441   andl (idx, 0x1);
7442   subl(idx, 1);
7443   jcc(Assembler::negative, L_post_third_loop_done);
7444 
7445   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7446   movq(product, x_xstart);
7447   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7448   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7449 
7450   add2_with_carry(rdx, product, yz_idx, carry);
7451 
7452   movl(Address(z, idx, Address::times_4,  0), product);
7453   shrq(product, 32);
7454 
7455   shlq(rdx, 32);
7456   orq(product, rdx);
7457   movq(carry, product);
7458 
7459   bind(L_post_third_loop_done);
7460 }
7461 
7462 /**
7463  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7464  *
7465  */
7466 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7467                                                   Register carry, Register carry2,
7468                                                   Register idx, Register jdx,
7469                                                   Register yz_idx1, Register yz_idx2,
7470                                                   Register tmp, Register tmp3, Register tmp4) {
7471   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7472 
7473   //   jlong carry, x[], y[], z[];
7474   //   int kdx = ystart+1;
7475   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7476   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7477   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7478   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7479   //     carry  = (jlong)(tmp4 >>> 64);
7480   //     z[kdx+idx+1] = (jlong)tmp3;
7481   //     z[kdx+idx] = (jlong)tmp4;
7482   //   }
7483   //   idx += 2;
7484   //   if (idx > 0) {
7485   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7486   //     z[kdx+idx] = (jlong)yz_idx1;
7487   //     carry  = (jlong)(yz_idx1 >>> 64);
7488   //   }
7489   //
7490 
7491   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7492 
7493   movl(jdx, idx);
7494   andl(jdx, 0xFFFFFFFC);
7495   shrl(jdx, 2);
7496 
7497   bind(L_third_loop);
7498   subl(jdx, 1);
7499   jcc(Assembler::negative, L_third_loop_exit);
7500   subl(idx, 4);
7501 
7502   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7503   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7504   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7505   rorxq(yz_idx2, yz_idx2, 32);
7506 
7507   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7508   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7509 
7510   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7511   rorxq(yz_idx1, yz_idx1, 32);
7512   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7513   rorxq(yz_idx2, yz_idx2, 32);
7514 
7515   if (VM_Version::supports_adx()) {
7516     adcxq(tmp3, carry);
7517     adoxq(tmp3, yz_idx1);
7518 
7519     adcxq(tmp4, tmp);
7520     adoxq(tmp4, yz_idx2);
7521 
7522     movl(carry, 0); // does not affect flags
7523     adcxq(carry2, carry);
7524     adoxq(carry2, carry);
7525   } else {
7526     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7527     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7528   }
7529   movq(carry, carry2);
7530 
7531   movl(Address(z, idx, Address::times_4, 12), tmp3);
7532   shrq(tmp3, 32);
7533   movl(Address(z, idx, Address::times_4,  8), tmp3);
7534 
7535   movl(Address(z, idx, Address::times_4,  4), tmp4);
7536   shrq(tmp4, 32);
7537   movl(Address(z, idx, Address::times_4,  0), tmp4);
7538 
7539   jmp(L_third_loop);
7540 
7541   bind (L_third_loop_exit);
7542 
7543   andl (idx, 0x3);
7544   jcc(Assembler::zero, L_post_third_loop_done);
7545 
7546   Label L_check_1;
7547   subl(idx, 2);
7548   jcc(Assembler::negative, L_check_1);
7549 
7550   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7551   rorxq(yz_idx1, yz_idx1, 32);
7552   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7553   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7554   rorxq(yz_idx2, yz_idx2, 32);
7555 
7556   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7557 
7558   movl(Address(z, idx, Address::times_4,  4), tmp3);
7559   shrq(tmp3, 32);
7560   movl(Address(z, idx, Address::times_4,  0), tmp3);
7561   movq(carry, tmp4);
7562 
7563   bind (L_check_1);
7564   addl (idx, 0x2);
7565   andl (idx, 0x1);
7566   subl(idx, 1);
7567   jcc(Assembler::negative, L_post_third_loop_done);
7568   movl(tmp4, Address(y, idx, Address::times_4,  0));
7569   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7570   movl(tmp4, Address(z, idx, Address::times_4,  0));
7571 
7572   add2_with_carry(carry2, tmp3, tmp4, carry);
7573 
7574   movl(Address(z, idx, Address::times_4,  0), tmp3);
7575   shrq(tmp3, 32);
7576 
7577   shlq(carry2, 32);
7578   orq(tmp3, carry2);
7579   movq(carry, tmp3);
7580 
7581   bind(L_post_third_loop_done);
7582 }
7583 
7584 /**
7585  * Code for BigInteger::multiplyToLen() instrinsic.
7586  *
7587  * rdi: x
7588  * rax: xlen
7589  * rsi: y
7590  * rcx: ylen
7591  * r8:  z
7592  * r11: zlen
7593  * r12: tmp1
7594  * r13: tmp2
7595  * r14: tmp3
7596  * r15: tmp4
7597  * rbx: tmp5
7598  *
7599  */
7600 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7601                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7602   ShortBranchVerifier sbv(this);
7603   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7604 
7605   push(tmp1);
7606   push(tmp2);
7607   push(tmp3);
7608   push(tmp4);
7609   push(tmp5);
7610 
7611   push(xlen);
7612   push(zlen);
7613 
7614   const Register idx = tmp1;
7615   const Register kdx = tmp2;
7616   const Register xstart = tmp3;
7617 
7618   const Register y_idx = tmp4;
7619   const Register carry = tmp5;
7620   const Register product  = xlen;
7621   const Register x_xstart = zlen;  // reuse register
7622 
7623   // First Loop.
7624   //
7625   //  final static long LONG_MASK = 0xffffffffL;
7626   //  int xstart = xlen - 1;
7627   //  int ystart = ylen - 1;
7628   //  long carry = 0;
7629   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7630   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7631   //    z[kdx] = (int)product;
7632   //    carry = product >>> 32;
7633   //  }
7634   //  z[xstart] = (int)carry;
7635   //
7636 
7637   movl(idx, ylen);      // idx = ylen;
7638   movl(kdx, zlen);      // kdx = xlen+ylen;
7639   xorq(carry, carry);   // carry = 0;
7640 
7641   Label L_done;
7642 
7643   movl(xstart, xlen);
7644   decrementl(xstart);
7645   jcc(Assembler::negative, L_done);
7646 
7647   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7648 
7649   Label L_second_loop;
7650   testl(kdx, kdx);
7651   jcc(Assembler::zero, L_second_loop);
7652 
7653   Label L_carry;
7654   subl(kdx, 1);
7655   jcc(Assembler::zero, L_carry);
7656 
7657   movl(Address(z, kdx, Address::times_4,  0), carry);
7658   shrq(carry, 32);
7659   subl(kdx, 1);
7660 
7661   bind(L_carry);
7662   movl(Address(z, kdx, Address::times_4,  0), carry);
7663 
7664   // Second and third (nested) loops.
7665   //
7666   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7667   //   carry = 0;
7668   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7669   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7670   //                    (z[k] & LONG_MASK) + carry;
7671   //     z[k] = (int)product;
7672   //     carry = product >>> 32;
7673   //   }
7674   //   z[i] = (int)carry;
7675   // }
7676   //
7677   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7678 
7679   const Register jdx = tmp1;
7680 
7681   bind(L_second_loop);
7682   xorl(carry, carry);    // carry = 0;
7683   movl(jdx, ylen);       // j = ystart+1
7684 
7685   subl(xstart, 1);       // i = xstart-1;
7686   jcc(Assembler::negative, L_done);
7687 
7688   push (z);
7689 
7690   Label L_last_x;
7691   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7692   subl(xstart, 1);       // i = xstart-1;
7693   jcc(Assembler::negative, L_last_x);
7694 
7695   if (UseBMI2Instructions) {
7696     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7697     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7698   } else {
7699     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7700     rorq(x_xstart, 32);  // convert big-endian to little-endian
7701   }
7702 
7703   Label L_third_loop_prologue;
7704   bind(L_third_loop_prologue);
7705 
7706   push (x);
7707   push (xstart);
7708   push (ylen);
7709 
7710 
7711   if (UseBMI2Instructions) {
7712     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7713   } else { // !UseBMI2Instructions
7714     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7715   }
7716 
7717   pop(ylen);
7718   pop(xlen);
7719   pop(x);
7720   pop(z);
7721 
7722   movl(tmp3, xlen);
7723   addl(tmp3, 1);
7724   movl(Address(z, tmp3, Address::times_4,  0), carry);
7725   subl(tmp3, 1);
7726   jccb(Assembler::negative, L_done);
7727 
7728   shrq(carry, 32);
7729   movl(Address(z, tmp3, Address::times_4,  0), carry);
7730   jmp(L_second_loop);
7731 
7732   // Next infrequent code is moved outside loops.
7733   bind(L_last_x);
7734   if (UseBMI2Instructions) {
7735     movl(rdx, Address(x,  0));
7736   } else {
7737     movl(x_xstart, Address(x,  0));
7738   }
7739   jmp(L_third_loop_prologue);
7740 
7741   bind(L_done);
7742 
7743   pop(zlen);
7744   pop(xlen);
7745 
7746   pop(tmp5);
7747   pop(tmp4);
7748   pop(tmp3);
7749   pop(tmp2);
7750   pop(tmp1);
7751 }
7752 #endif
7753 
7754 /**
7755  * Emits code to update CRC-32 with a byte value according to constants in table
7756  *
7757  * @param [in,out]crc   Register containing the crc.
7758  * @param [in]val       Register containing the byte to fold into the CRC.
7759  * @param [in]table     Register containing the table of crc constants.
7760  *
7761  * uint32_t crc;
7762  * val = crc_table[(val ^ crc) & 0xFF];
7763  * crc = val ^ (crc >> 8);
7764  *
7765  */
7766 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
7767   xorl(val, crc);
7768   andl(val, 0xFF);
7769   shrl(crc, 8); // unsigned shift
7770   xorl(crc, Address(table, val, Address::times_4, 0));
7771 }
7772 
7773 /**
7774  * Fold 128-bit data chunk
7775  */
7776 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
7777   if (UseAVX > 0) {
7778     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
7779     vpclmulldq(xcrc, xK, xcrc); // [63:0]
7780     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
7781     pxor(xcrc, xtmp);
7782   } else {
7783     movdqa(xtmp, xcrc);
7784     pclmulhdq(xtmp, xK);   // [123:64]
7785     pclmulldq(xcrc, xK);   // [63:0]
7786     pxor(xcrc, xtmp);
7787     movdqu(xtmp, Address(buf, offset));
7788     pxor(xcrc, xtmp);
7789   }
7790 }
7791 
7792 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
7793   if (UseAVX > 0) {
7794     vpclmulhdq(xtmp, xK, xcrc);
7795     vpclmulldq(xcrc, xK, xcrc);
7796     pxor(xcrc, xbuf);
7797     pxor(xcrc, xtmp);
7798   } else {
7799     movdqa(xtmp, xcrc);
7800     pclmulhdq(xtmp, xK);
7801     pclmulldq(xcrc, xK);
7802     pxor(xcrc, xbuf);
7803     pxor(xcrc, xtmp);
7804   }
7805 }
7806 
7807 /**
7808  * 8-bit folds to compute 32-bit CRC
7809  *
7810  * uint64_t xcrc;
7811  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
7812  */
7813 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
7814   movdl(tmp, xcrc);
7815   andl(tmp, 0xFF);
7816   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
7817   psrldq(xcrc, 1); // unsigned shift one byte
7818   pxor(xcrc, xtmp);
7819 }
7820 
7821 /**
7822  * uint32_t crc;
7823  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
7824  */
7825 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
7826   movl(tmp, crc);
7827   andl(tmp, 0xFF);
7828   shrl(crc, 8);
7829   xorl(crc, Address(table, tmp, Address::times_4, 0));
7830 }
7831 
7832 /**
7833  * @param crc   register containing existing CRC (32-bit)
7834  * @param buf   register pointing to input byte buffer (byte*)
7835  * @param len   register containing number of bytes
7836  * @param table register that will contain address of CRC table
7837  * @param tmp   scratch register
7838  */
7839 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
7840   assert_different_registers(crc, buf, len, table, tmp, rax);
7841 
7842   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7843   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7844 
7845   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
7846   notl(crc); // ~crc
7847   cmpl(len, 16);
7848   jcc(Assembler::less, L_tail);
7849 
7850   // Align buffer to 16 bytes
7851   movl(tmp, buf);
7852   andl(tmp, 0xF);
7853   jccb(Assembler::zero, L_aligned);
7854   subl(tmp,  16);
7855   addl(len, tmp);
7856 
7857   align(4);
7858   BIND(L_align_loop);
7859   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7860   update_byte_crc32(crc, rax, table);
7861   increment(buf);
7862   incrementl(tmp);
7863   jccb(Assembler::less, L_align_loop);
7864 
7865   BIND(L_aligned);
7866   movl(tmp, len); // save
7867   shrl(len, 4);
7868   jcc(Assembler::zero, L_tail_restore);
7869 
7870   // Fold crc into first bytes of vector
7871   movdqa(xmm1, Address(buf, 0));
7872   movdl(rax, xmm1);
7873   xorl(crc, rax);
7874   pinsrd(xmm1, crc, 0);
7875   addptr(buf, 16);
7876   subl(len, 4); // len > 0
7877   jcc(Assembler::less, L_fold_tail);
7878 
7879   movdqa(xmm2, Address(buf,  0));
7880   movdqa(xmm3, Address(buf, 16));
7881   movdqa(xmm4, Address(buf, 32));
7882   addptr(buf, 48);
7883   subl(len, 3);
7884   jcc(Assembler::lessEqual, L_fold_512b);
7885 
7886   // Fold total 512 bits of polynomial on each iteration,
7887   // 128 bits per each of 4 parallel streams.
7888   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
7889 
7890   align(32);
7891   BIND(L_fold_512b_loop);
7892   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7893   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
7894   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
7895   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
7896   addptr(buf, 64);
7897   subl(len, 4);
7898   jcc(Assembler::greater, L_fold_512b_loop);
7899 
7900   // Fold 512 bits to 128 bits.
7901   BIND(L_fold_512b);
7902   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7903   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
7904   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
7905   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
7906 
7907   // Fold the rest of 128 bits data chunks
7908   BIND(L_fold_tail);
7909   addl(len, 3);
7910   jccb(Assembler::lessEqual, L_fold_128b);
7911   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7912 
7913   BIND(L_fold_tail_loop);
7914   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7915   addptr(buf, 16);
7916   decrementl(len);
7917   jccb(Assembler::greater, L_fold_tail_loop);
7918 
7919   // Fold 128 bits in xmm1 down into 32 bits in crc register.
7920   BIND(L_fold_128b);
7921   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
7922   if (UseAVX > 0) {
7923     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
7924     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
7925     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
7926   } else {
7927     movdqa(xmm2, xmm0);
7928     pclmulqdq(xmm2, xmm1, 0x1);
7929     movdqa(xmm3, xmm0);
7930     pand(xmm3, xmm2);
7931     pclmulqdq(xmm0, xmm3, 0x1);
7932   }
7933   psrldq(xmm1, 8);
7934   psrldq(xmm2, 4);
7935   pxor(xmm0, xmm1);
7936   pxor(xmm0, xmm2);
7937 
7938   // 8 8-bit folds to compute 32-bit CRC.
7939   for (int j = 0; j < 4; j++) {
7940     fold_8bit_crc32(xmm0, table, xmm1, rax);
7941   }
7942   movdl(crc, xmm0); // mov 32 bits to general register
7943   for (int j = 0; j < 4; j++) {
7944     fold_8bit_crc32(crc, table, rax);
7945   }
7946 
7947   BIND(L_tail_restore);
7948   movl(len, tmp); // restore
7949   BIND(L_tail);
7950   andl(len, 0xf);
7951   jccb(Assembler::zero, L_exit);
7952 
7953   // Fold the rest of bytes
7954   align(4);
7955   BIND(L_tail_loop);
7956   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7957   update_byte_crc32(crc, rax, table);
7958   increment(buf);
7959   decrementl(len);
7960   jccb(Assembler::greater, L_tail_loop);
7961 
7962   BIND(L_exit);
7963   notl(crc); // ~c
7964 }
7965 
7966 #undef BIND
7967 #undef BLOCK_COMMENT
7968 
7969 
7970 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
7971   switch (cond) {
7972     // Note some conditions are synonyms for others
7973     case Assembler::zero:         return Assembler::notZero;
7974     case Assembler::notZero:      return Assembler::zero;
7975     case Assembler::less:         return Assembler::greaterEqual;
7976     case Assembler::lessEqual:    return Assembler::greater;
7977     case Assembler::greater:      return Assembler::lessEqual;
7978     case Assembler::greaterEqual: return Assembler::less;
7979     case Assembler::below:        return Assembler::aboveEqual;
7980     case Assembler::belowEqual:   return Assembler::above;
7981     case Assembler::above:        return Assembler::belowEqual;
7982     case Assembler::aboveEqual:   return Assembler::below;
7983     case Assembler::overflow:     return Assembler::noOverflow;
7984     case Assembler::noOverflow:   return Assembler::overflow;
7985     case Assembler::negative:     return Assembler::positive;
7986     case Assembler::positive:     return Assembler::negative;
7987     case Assembler::parity:       return Assembler::noParity;
7988     case Assembler::noParity:     return Assembler::parity;
7989   }
7990   ShouldNotReachHere(); return Assembler::overflow;
7991 }
7992 
7993 SkipIfEqual::SkipIfEqual(
7994     MacroAssembler* masm, const bool* flag_addr, bool value) {
7995   _masm = masm;
7996   _masm->cmp8(ExternalAddress((address)flag_addr), value);
7997   _masm->jcc(Assembler::equal, _label);
7998 }
7999 
8000 SkipIfEqual::~SkipIfEqual() {
8001   _masm->bind(_label);
8002 }