1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/castnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/matcher.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 //=============================================================================
  35 // If input is already higher or equal to cast type, then this is an identity.
  36 Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
  37   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
  38 }
  39 
  40 //------------------------------Value------------------------------------------
  41 // Take 'join' of input and cast-up type
  42 const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
  43   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
  44   const Type* ft = phase->type(in(1))->filter_speculative(_type);
  45 
  46 #ifdef ASSERT
  47   // Previous versions of this function had some special case logic,
  48   // which is no longer necessary.  Make sure of the required effects.
  49   switch (Opcode()) {
  50     case Op_CastII:
  51     {
  52       const Type* t1 = phase->type(in(1));
  53       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
  54       const Type* rt = t1->join_speculative(_type);
  55       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
  56       break;
  57     }
  58     case Op_CastPP:
  59     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
  60         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
  61     assert(ft == Type::TOP, "special case #3");
  62     break;
  63   }
  64 #endif //ASSERT
  65 
  66   return ft;
  67 }
  68 
  69 //------------------------------Ideal------------------------------------------
  70 // Return a node which is more "ideal" than the current node.  Strip out
  71 // control copies
  72 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
  73   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
  74 }
  75 
  76 //------------------------------Ideal_DU_postCCP-------------------------------
  77 // Throw away cast after constant propagation
  78 Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
  79   const Type *t = ccp->type(in(1));
  80   ccp->hash_delete(this);
  81   set_type(t);                   // Turn into ID function
  82   ccp->hash_insert(this);
  83   return this;
  84 }
  85 
  86 uint CastIINode::size_of() const {
  87   return sizeof(*this);
  88 }
  89 
  90 uint CastIINode::cmp(const Node &n) const {
  91   return TypeNode::cmp(n) && ((CastIINode&)n)._carry_dependency == _carry_dependency;
  92 }
  93 
  94 Node *CastIINode::Identity(PhaseTransform *phase) {
  95   if (_carry_dependency) {
  96     return this;
  97   }
  98   return ConstraintCastNode::Identity(phase);
  99 }
 100 
 101 const Type *CastIINode::Value(PhaseTransform *phase) const {
 102   const Type *res = ConstraintCastNode::Value(phase);
 103 
 104   // Try to improve the type of the CastII if we recognize a CmpI/If
 105   // pattern.
 106   if (_carry_dependency) {
 107     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
 108       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
 109       Node* proj = in(0);
 110       if (proj->in(0)->in(1)->is_Bool()) {
 111         Node* b = proj->in(0)->in(1);
 112         if (b->in(1)->Opcode() == Op_CmpI) {
 113           Node* cmp = b->in(1);
 114           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
 115             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
 116             const Type* t = TypeInt::INT;
 117             BoolTest test = b->as_Bool()->_test;
 118             if (proj->is_IfFalse()) {
 119               test = test.negate();
 120             }
 121             BoolTest::mask m = test._test;
 122             jlong lo_long = min_jint;
 123             jlong hi_long = max_jint;
 124             if (m == BoolTest::le || m == BoolTest::lt) {
 125               hi_long = in2_t->_hi;
 126               if (m == BoolTest::lt) {
 127                 hi_long -= 1;
 128               }
 129             } else if (m == BoolTest::ge || m == BoolTest::gt) {
 130               lo_long = in2_t->_lo;
 131               if (m == BoolTest::gt) {
 132                 lo_long += 1;
 133               }
 134             } else if (m == BoolTest::eq) {
 135               lo_long = in2_t->_lo;
 136               hi_long = in2_t->_hi;
 137             } else if (m == BoolTest::ne) {
 138               // can't do any better
 139             } else {
 140               stringStream ss;
 141               test.dump_on(&ss);
 142               fatal(err_msg_res("unexpected comparison %s", ss.as_string()));
 143             }
 144             int lo_int = (int)lo_long;
 145             int hi_int = (int)hi_long;
 146 
 147             if (lo_long != (jlong)lo_int) {
 148               lo_int = min_jint;
 149             }
 150             if (hi_long != (jlong)hi_int) {
 151               hi_int = max_jint;
 152             }
 153 
 154             t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
 155 
 156             res = res->filter_speculative(t);
 157 
 158             return res;
 159           }
 160         }
 161       }
 162     }
 163   }
 164   return res;
 165 }
 166 
 167 Node *CastIINode::Ideal_DU_postCCP(PhaseCCP *ccp) {
 168   if (_carry_dependency) {
 169     return NULL;
 170   }
 171   return ConstraintCastNode::Ideal_DU_postCCP(ccp);
 172 }
 173 
 174 #ifndef PRODUCT
 175 void CastIINode::dump_spec(outputStream *st) const {
 176   TypeNode::dump_spec(st);
 177   if (_carry_dependency) {
 178     st->print(" carry dependency");
 179   }
 180 }
 181 #endif
 182 
 183 //=============================================================================
 184 
 185 //------------------------------Ideal_DU_postCCP-------------------------------
 186 // If not converting int->oop, throw away cast after constant propagation
 187 Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 188   const Type *t = ccp->type(in(1));
 189   if (!t->isa_oop_ptr() || ((in(1)->is_DecodeN()) && Matcher::gen_narrow_oop_implicit_null_checks())) {
 190     return NULL; // do not transform raw pointers or narrow oops
 191   }
 192   return ConstraintCastNode::Ideal_DU_postCCP(ccp);
 193 }
 194 
 195 
 196 
 197 //=============================================================================
 198 //------------------------------Identity---------------------------------------
 199 // If input is already higher or equal to cast type, then this is an identity.
 200 Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
 201   // Toned down to rescue meeting at a Phi 3 different oops all implementing
 202   // the same interface.  CompileTheWorld starting at 502, kd12rc1.zip.
 203   return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
 204 }
 205 
 206 //------------------------------Value------------------------------------------
 207 // Take 'join' of input and cast-up type, unless working with an Interface
 208 const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
 209   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
 210 
 211   const Type *inn = phase->type(in(1));
 212   if( inn == Type::TOP ) return Type::TOP;  // No information yet
 213 
 214   const TypePtr *in_type   = inn->isa_ptr();
 215   const TypePtr *my_type   = _type->isa_ptr();
 216   const Type *result = _type;
 217   if( in_type != NULL && my_type != NULL ) {
 218     TypePtr::PTR   in_ptr    = in_type->ptr();
 219     if( in_ptr == TypePtr::Null ) {
 220       result = in_type;
 221     } else if( in_ptr == TypePtr::Constant ) {
 222       // Casting a constant oop to an interface?
 223       // (i.e., a String to a Comparable?)
 224       // Then return the interface.
 225       const TypeOopPtr *jptr = my_type->isa_oopptr();
 226       assert( jptr, "" );
 227       result =  (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
 228       ? my_type->cast_to_ptr_type( TypePtr::NotNull )
 229       : in_type;
 230     } else {
 231       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
 232     }
 233   }
 234 
 235   // This is the code from TypePtr::xmeet() that prevents us from
 236   // having 2 ways to represent the same type. We have to replicate it
 237   // here because we don't go through meet/join.
 238   if (result->remove_speculative() == result->speculative()) {
 239     result = result->remove_speculative();
 240   }
 241 
 242   // Same as above: because we don't go through meet/join, remove the
 243   // speculative type if we know we won't use it.
 244   return result->cleanup_speculative();
 245 
 246   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
 247   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
 248 
 249   //
 250   // Remove this code after overnight run indicates no performance
 251   // loss from not performing JOIN at CheckCastPPNode
 252   //
 253   // const TypeInstPtr *in_oop = in->isa_instptr();
 254   // const TypeInstPtr *my_oop = _type->isa_instptr();
 255   // // If either input is an 'interface', return destination type
 256   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
 257   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
 258   // if( (in_oop && in_oop->klass()->is_interface())
 259   //   ||(my_oop && my_oop->klass()->is_interface()) ) {
 260   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
 261   //   // Preserve cast away nullness for interfaces
 262   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
 263   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
 264   //   }
 265   //   return _type;
 266   // }
 267   //
 268   // // Neither the input nor the destination type is an interface,
 269   //
 270   // // history: JOIN used to cause weird corner case bugs
 271   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
 272   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
 273   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
 274   // const Type *join = in->join(_type);
 275   // // Check if join preserved NotNull'ness for pointers
 276   // if( join->isa_ptr() && _type->isa_ptr() ) {
 277   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
 278   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
 279   //   // If there isn't any NotNull'ness to preserve
 280   //   // OR if join preserved NotNull'ness then return it
 281   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
 282   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
 283   //     return join;
 284   //   }
 285   //   // ELSE return same old type as before
 286   //   return _type;
 287   // }
 288   // // Not joining two pointers
 289   // return join;
 290 }
 291 
 292 //------------------------------Ideal------------------------------------------
 293 // Return a node which is more "ideal" than the current node.  Strip out
 294 // control copies
 295 Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
 296   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
 297 }
 298 
 299 //=============================================================================
 300 //------------------------------Value------------------------------------------
 301 const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
 302   const Type* t = phase->type(in(1));
 303   if (t == Type::TOP) return Type::TOP;
 304   if (t->base() == Type_X && t->singleton()) {
 305     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
 306     if (bits == 0)   return TypePtr::NULL_PTR;
 307     return TypeRawPtr::make((address) bits);
 308   }
 309   return CastX2PNode::bottom_type();
 310 }
 311 
 312 //------------------------------Idealize---------------------------------------
 313 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
 314   if (t == Type::TOP)  return false;
 315   const TypeX* tl = t->is_intptr_t();
 316   jint lo = min_jint;
 317   jint hi = max_jint;
 318   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
 319   return (tl->_lo >= lo) && (tl->_hi <= hi);
 320 }
 321 
 322 static inline Node* addP_of_X2P(PhaseGVN *phase,
 323                                 Node* base,
 324                                 Node* dispX,
 325                                 bool negate = false) {
 326   if (negate) {
 327     dispX = new SubXNode(phase->MakeConX(0), phase->transform(dispX));
 328   }
 329   return new AddPNode(phase->C->top(),
 330                       phase->transform(new CastX2PNode(base)),
 331                       phase->transform(dispX));
 332 }
 333 
 334 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 335   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
 336   int op = in(1)->Opcode();
 337   Node* x;
 338   Node* y;
 339   switch (op) {
 340     case Op_SubX:
 341     x = in(1)->in(1);
 342     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
 343     if (phase->find_intptr_t_con(x, -1) == 0)
 344     break;
 345     y = in(1)->in(2);
 346     if (fits_in_int(phase->type(y), true)) {
 347       return addP_of_X2P(phase, x, y, true);
 348     }
 349     break;
 350     case Op_AddX:
 351     x = in(1)->in(1);
 352     y = in(1)->in(2);
 353     if (fits_in_int(phase->type(y))) {
 354       return addP_of_X2P(phase, x, y);
 355     }
 356     if (fits_in_int(phase->type(x))) {
 357       return addP_of_X2P(phase, y, x);
 358     }
 359     break;
 360   }
 361   return NULL;
 362 }
 363 
 364 //------------------------------Identity---------------------------------------
 365 Node *CastX2PNode::Identity( PhaseTransform *phase ) {
 366   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
 367   return this;
 368 }
 369 
 370 //=============================================================================
 371 //------------------------------Value------------------------------------------
 372 const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
 373   const Type* t = phase->type(in(1));
 374   if (t == Type::TOP) return Type::TOP;
 375   if (t->base() == Type::RawPtr && t->singleton()) {
 376     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
 377     return TypeX::make(bits);
 378   }
 379   return CastP2XNode::bottom_type();
 380 }
 381 
 382 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 383   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
 384 }
 385 
 386 //------------------------------Identity---------------------------------------
 387 Node *CastP2XNode::Identity( PhaseTransform *phase ) {
 388   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
 389   return this;
 390 }