1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "runtime/deoptimization.hpp"
  38 
  39 // Portions of code courtesy of Clifford Click
  40 
  41 // Optimization - Graph Style
  42 
  43 // To avoid float value underflow
  44 #define MIN_BLOCK_FREQUENCY 1.e-35f
  45 
  46 //----------------------------schedule_node_into_block-------------------------
  47 // Insert node n into block b. Look for projections of n and make sure they
  48 // are in b also.
  49 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  50   // Set basic block of n, Add n to b,
  51   map_node_to_block(n, b);
  52   b->add_inst(n);
  53 
  54   // After Matching, nearly any old Node may have projections trailing it.
  55   // These are usually machine-dependent flags.  In any case, they might
  56   // float to another block below this one.  Move them up.
  57   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  58     Node*  use  = n->fast_out(i);
  59     if (use->is_Proj()) {
  60       Block* buse = get_block_for_node(use);
  61       if (buse != b) {              // In wrong block?
  62         if (buse != NULL) {
  63           buse->find_remove(use);   // Remove from wrong block
  64         }
  65         map_node_to_block(use, b);
  66         b->add_inst(use);
  67       }
  68     }
  69   }
  70 }
  71 
  72 //----------------------------replace_block_proj_ctrl-------------------------
  73 // Nodes that have is_block_proj() nodes as their control need to use
  74 // the appropriate Region for their actual block as their control since
  75 // the projection will be in a predecessor block.
  76 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  77   const Node *in0 = n->in(0);
  78   assert(in0 != NULL, "Only control-dependent");
  79   const Node *p = in0->is_block_proj();
  80   if (p != NULL && p != n) {    // Control from a block projection?
  81     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
  82     // Find trailing Region
  83     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
  84     uint j = 0;
  85     if (pb->_num_succs != 1) {  // More then 1 successor?
  86       // Search for successor
  87       uint max = pb->number_of_nodes();
  88       assert( max > 1, "" );
  89       uint start = max - pb->_num_succs;
  90       // Find which output path belongs to projection
  91       for (j = start; j < max; j++) {
  92         if( pb->get_node(j) == in0 )
  93           break;
  94       }
  95       assert( j < max, "must find" );
  96       // Change control to match head of successor basic block
  97       j -= start;
  98     }
  99     n->set_req(0, pb->_succs[j]->head());
 100   }
 101 }
 102 
 103 static bool is_dominator(Block* d, Block* n) {
 104   return d->dom_lca(n) == d;
 105 }
 106 
 107 //------------------------------schedule_pinned_nodes--------------------------
 108 // Set the basic block for Nodes pinned into blocks
 109 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
 110   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
 111   GrowableArray <Node *> spstack(C->unique() + 8);
 112   spstack.push(_root);
 113   while (spstack.is_nonempty()) {
 114     Node* node = spstack.pop();
 115     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
 116       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
 117         assert(node->in(0), "pinned Node must have Control");
 118         // Before setting block replace block_proj control edge
 119         replace_block_proj_ctrl(node);
 120         Node* input = node->in(0);
 121         while (!input->is_block_start()) {
 122           input = input->in(0);
 123         }
 124         Block* block = get_block_for_node(input); // Basic block of controlling input
 125         schedule_node_into_block(node, block);
 126       }
 127 
 128       // If the node has precedence edges (added when CastPP nodes are
 129       // removed in final_graph_reshaping), fix the control of the
 130       // node to cover the precedence edges and remove the
 131       // dependencies.
 132       Node* n = NULL;
 133       for (uint i = node->len()-1; i >= node->req(); i--) {
 134         Node* m = node->in(i);
 135         if (m == NULL) continue;
 136         if (m->is_block_proj()) {
 137           node->rm_prec(i);
 138           if (n == NULL) {
 139             n = m;
 140           } else {
 141             Block* bn = get_block_for_node(n);
 142             Block* bm = get_block_for_node(m);
 143             n = is_dominator(bn, bm) ? m : n;
 144           }
 145         }
 146       }
 147       if (n != NULL) {
 148         assert(node->in(0), "control should have been set");
 149         Block* bn = get_block_for_node(n);
 150         Block* bnode = get_block_for_node(node->in(0));
 151         if (!is_dominator(bn, bnode)) {
 152           node->set_req(0, n);
 153         }
 154       }
 155 
 156       // process all inputs that are non NULL
 157       for (int i = node->req() - 1; i >= 0; --i) {
 158         if (node->in(i) != NULL) {
 159           spstack.push(node->in(i));
 160         }
 161       }
 162     }
 163   }
 164 }
 165 
 166 #ifdef ASSERT
 167 // Assert that new input b2 is dominated by all previous inputs.
 168 // Check this by by seeing that it is dominated by b1, the deepest
 169 // input observed until b2.
 170 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
 171   if (b1 == NULL)  return;
 172   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 173   Block* tmp = b2;
 174   while (tmp != b1 && tmp != NULL) {
 175     tmp = tmp->_idom;
 176   }
 177   if (tmp != b1) {
 178     // Detected an unschedulable graph.  Print some nice stuff and die.
 179     tty->print_cr("!!! Unschedulable graph !!!");
 180     for (uint j=0; j<n->len(); j++) { // For all inputs
 181       Node* inn = n->in(j); // Get input
 182       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 183       Block* inb = cfg->get_block_for_node(inn);
 184       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 185                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 186       inn->dump();
 187     }
 188     tty->print("Failing node: ");
 189     n->dump();
 190     assert(false, "unscheduable graph");
 191   }
 192 }
 193 #endif
 194 
 195 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
 196   // Find the last input dominated by all other inputs.
 197   Block* deepb           = NULL;        // Deepest block so far
 198   int    deepb_dom_depth = 0;
 199   for (uint k = 0; k < n->len(); k++) { // For all inputs
 200     Node* inn = n->in(k);               // Get input
 201     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 202     Block* inb = cfg->get_block_for_node(inn);
 203     assert(inb != NULL, "must already have scheduled this input");
 204     if (deepb_dom_depth < (int) inb->_dom_depth) {
 205       // The new inb must be dominated by the previous deepb.
 206       // The various inputs must be linearly ordered in the dom
 207       // tree, or else there will not be a unique deepest block.
 208       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
 209       deepb = inb;                      // Save deepest block
 210       deepb_dom_depth = deepb->_dom_depth;
 211     }
 212   }
 213   assert(deepb != NULL, "must be at least one input to n");
 214   return deepb;
 215 }
 216 
 217 
 218 //------------------------------schedule_early---------------------------------
 219 // Find the earliest Block any instruction can be placed in.  Some instructions
 220 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 221 // which all their inputs occur.
 222 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 223   // Allocate stack with enough space to avoid frequent realloc
 224   Node_Stack nstack(roots.Size() + 8);
 225   // _root will be processed among C->top() inputs
 226   roots.push(C->top());
 227   visited.set(C->top()->_idx);
 228 
 229   while (roots.size() != 0) {
 230     // Use local variables nstack_top_n & nstack_top_i to cache values
 231     // on stack's top.
 232     Node* parent_node = roots.pop();
 233     uint  input_index = 0;
 234 
 235     while (true) {
 236       if (input_index == 0) {
 237         // Fixup some control.  Constants without control get attached
 238         // to root and nodes that use is_block_proj() nodes should be attached
 239         // to the region that starts their block.
 240         const Node* control_input = parent_node->in(0);
 241         if (control_input != NULL) {
 242           replace_block_proj_ctrl(parent_node);
 243         } else {
 244           // Is a constant with NO inputs?
 245           if (parent_node->req() == 1) {
 246             parent_node->set_req(0, _root);
 247           }
 248         }
 249       }
 250 
 251       // First, visit all inputs and force them to get a block.  If an
 252       // input is already in a block we quit following inputs (to avoid
 253       // cycles). Instead we put that Node on a worklist to be handled
 254       // later (since IT'S inputs may not have a block yet).
 255 
 256       // Assume all n's inputs will be processed
 257       bool done = true;
 258 
 259       while (input_index < parent_node->len()) {
 260         Node* in = parent_node->in(input_index++);
 261         if (in == NULL) {
 262           continue;
 263         }
 264 
 265         int is_visited = visited.test_set(in->_idx);
 266         if (!has_block(in)) {
 267           if (is_visited) {
 268             return false;
 269           }
 270           // Save parent node and next input's index.
 271           nstack.push(parent_node, input_index);
 272           // Process current input now.
 273           parent_node = in;
 274           input_index = 0;
 275           // Not all n's inputs processed.
 276           done = false;
 277           break;
 278         } else if (!is_visited) {
 279           // Visit this guy later, using worklist
 280           roots.push(in);
 281         }
 282       }
 283 
 284       if (done) {
 285         // All of n's inputs have been processed, complete post-processing.
 286 
 287         // Some instructions are pinned into a block.  These include Region,
 288         // Phi, Start, Return, and other control-dependent instructions and
 289         // any projections which depend on them.
 290         if (!parent_node->pinned()) {
 291           // Set earliest legal block.
 292           Block* earliest_block = find_deepest_input(parent_node, this);
 293           map_node_to_block(parent_node, earliest_block);
 294         } else {
 295           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
 296         }
 297 
 298         if (nstack.is_empty()) {
 299           // Finished all nodes on stack.
 300           // Process next node on the worklist 'roots'.
 301           break;
 302         }
 303         // Get saved parent node and next input's index.
 304         parent_node = nstack.node();
 305         input_index = nstack.index();
 306         nstack.pop();
 307       }
 308     }
 309   }
 310   return true;
 311 }
 312 
 313 //------------------------------dom_lca----------------------------------------
 314 // Find least common ancestor in dominator tree
 315 // LCA is a current notion of LCA, to be raised above 'this'.
 316 // As a convenient boundary condition, return 'this' if LCA is NULL.
 317 // Find the LCA of those two nodes.
 318 Block* Block::dom_lca(Block* LCA) {
 319   if (LCA == NULL || LCA == this)  return this;
 320 
 321   Block* anc = this;
 322   while (anc->_dom_depth > LCA->_dom_depth)
 323     anc = anc->_idom;           // Walk up till anc is as high as LCA
 324 
 325   while (LCA->_dom_depth > anc->_dom_depth)
 326     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 327 
 328   while (LCA != anc) {          // Walk both up till they are the same
 329     LCA = LCA->_idom;
 330     anc = anc->_idom;
 331   }
 332 
 333   return LCA;
 334 }
 335 
 336 //--------------------------raise_LCA_above_use--------------------------------
 337 // We are placing a definition, and have been given a def->use edge.
 338 // The definition must dominate the use, so move the LCA upward in the
 339 // dominator tree to dominate the use.  If the use is a phi, adjust
 340 // the LCA only with the phi input paths which actually use this def.
 341 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
 342   Block* buse = cfg->get_block_for_node(use);
 343   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 344   if (!use->is_Phi())  return buse->dom_lca(LCA);
 345   uint pmax = use->req();       // Number of Phi inputs
 346   // Why does not this loop just break after finding the matching input to
 347   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 348   // chains.  Means I cannot distinguish, from the def-use direction, which
 349   // of many use-defs lead from the same use to the same def.  That is, this
 350   // Phi might have several uses of the same def.  Each use appears in a
 351   // different predecessor block.  But when I enter here, I cannot distinguish
 352   // which use-def edge I should find the predecessor block for.  So I find
 353   // them all.  Means I do a little extra work if a Phi uses the same value
 354   // more than once.
 355   for (uint j=1; j<pmax; j++) { // For all inputs
 356     if (use->in(j) == def) {    // Found matching input?
 357       Block* pred = cfg->get_block_for_node(buse->pred(j));
 358       LCA = pred->dom_lca(LCA);
 359     }
 360   }
 361   return LCA;
 362 }
 363 
 364 //----------------------------raise_LCA_above_marks----------------------------
 365 // Return a new LCA that dominates LCA and any of its marked predecessors.
 366 // Search all my parents up to 'early' (exclusive), looking for predecessors
 367 // which are marked with the given index.  Return the LCA (in the dom tree)
 368 // of all marked blocks.  If there are none marked, return the original
 369 // LCA.
 370 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
 371   Block_List worklist;
 372   worklist.push(LCA);
 373   while (worklist.size() > 0) {
 374     Block* mid = worklist.pop();
 375     if (mid == early)  continue;  // stop searching here
 376 
 377     // Test and set the visited bit.
 378     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 379 
 380     // Don't process the current LCA, otherwise the search may terminate early
 381     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 382       // Raise the LCA.
 383       LCA = mid->dom_lca(LCA);
 384       if (LCA == early)  break;   // stop searching everywhere
 385       assert(early->dominates(LCA), "early is high enough");
 386       // Resume searching at that point, skipping intermediate levels.
 387       worklist.push(LCA);
 388       if (LCA == mid)
 389         continue; // Don't mark as visited to avoid early termination.
 390     } else {
 391       // Keep searching through this block's predecessors.
 392       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 393         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
 394         worklist.push(mid_parent);
 395       }
 396     }
 397     mid->set_raise_LCA_visited(mark);
 398   }
 399   return LCA;
 400 }
 401 
 402 //--------------------------memory_early_block--------------------------------
 403 // This is a variation of find_deepest_input, the heart of schedule_early.
 404 // Find the "early" block for a load, if we considered only memory and
 405 // address inputs, that is, if other data inputs were ignored.
 406 //
 407 // Because a subset of edges are considered, the resulting block will
 408 // be earlier (at a shallower dom_depth) than the true schedule_early
 409 // point of the node. We compute this earlier block as a more permissive
 410 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 411 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
 412   Node* base;
 413   Node* index;
 414   Node* store = load->in(MemNode::Memory);
 415   load->as_Mach()->memory_inputs(base, index);
 416 
 417   assert(base != NodeSentinel && index != NodeSentinel,
 418          "unexpected base/index inputs");
 419 
 420   Node* mem_inputs[4];
 421   int mem_inputs_length = 0;
 422   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 423   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 424   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 425 
 426   // In the comparision below, add one to account for the control input,
 427   // which may be null, but always takes up a spot in the in array.
 428   if (mem_inputs_length + 1 < (int) load->req()) {
 429     // This "load" has more inputs than just the memory, base and index inputs.
 430     // For purposes of checking anti-dependences, we need to start
 431     // from the early block of only the address portion of the instruction,
 432     // and ignore other blocks that may have factored into the wider
 433     // schedule_early calculation.
 434     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 435 
 436     Block* deepb           = NULL;        // Deepest block so far
 437     int    deepb_dom_depth = 0;
 438     for (int i = 0; i < mem_inputs_length; i++) {
 439       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
 440       if (deepb_dom_depth < (int) inb->_dom_depth) {
 441         // The new inb must be dominated by the previous deepb.
 442         // The various inputs must be linearly ordered in the dom
 443         // tree, or else there will not be a unique deepest block.
 444         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
 445         deepb = inb;                      // Save deepest block
 446         deepb_dom_depth = deepb->_dom_depth;
 447       }
 448     }
 449     early = deepb;
 450   }
 451 
 452   return early;
 453 }
 454 
 455 //--------------------------insert_anti_dependences---------------------------
 456 // A load may need to witness memory that nearby stores can overwrite.
 457 // For each nearby store, either insert an "anti-dependence" edge
 458 // from the load to the store, or else move LCA upward to force the
 459 // load to (eventually) be scheduled in a block above the store.
 460 //
 461 // Do not add edges to stores on distinct control-flow paths;
 462 // only add edges to stores which might interfere.
 463 //
 464 // Return the (updated) LCA.  There will not be any possibly interfering
 465 // store between the load's "early block" and the updated LCA.
 466 // Any stores in the updated LCA will have new precedence edges
 467 // back to the load.  The caller is expected to schedule the load
 468 // in the LCA, in which case the precedence edges will make LCM
 469 // preserve anti-dependences.  The caller may also hoist the load
 470 // above the LCA, if it is not the early block.
 471 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 472   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 473   assert(LCA != NULL, "");
 474   DEBUG_ONLY(Block* LCA_orig = LCA);
 475 
 476   // Compute the alias index.  Loads and stores with different alias indices
 477   // do not need anti-dependence edges.
 478   uint load_alias_idx = C->get_alias_index(load->adr_type());
 479 #ifdef ASSERT
 480   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 481       (PrintOpto || VerifyAliases ||
 482        PrintMiscellaneous && (WizardMode || Verbose))) {
 483     // Load nodes should not consume all of memory.
 484     // Reporting a bottom type indicates a bug in adlc.
 485     // If some particular type of node validly consumes all of memory,
 486     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 487     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 488     load->dump(2);
 489     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 490   }
 491 #endif
 492   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 493          "String compare is only known 'load' that does not conflict with any stores");
 494   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 495          "String equals is a 'load' that does not conflict with any stores");
 496   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 497          "String indexOf is a 'load' that does not conflict with any stores");
 498   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 499          "Arrays equals is a 'load' that do not conflict with any stores");
 500 
 501   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 502     // It is impossible to spoil this load by putting stores before it,
 503     // because we know that the stores will never update the value
 504     // which 'load' must witness.
 505     return LCA;
 506   }
 507 
 508   node_idx_t load_index = load->_idx;
 509 
 510   // Note the earliest legal placement of 'load', as determined by
 511   // by the unique point in the dom tree where all memory effects
 512   // and other inputs are first available.  (Computed by schedule_early.)
 513   // For normal loads, 'early' is the shallowest place (dom graph wise)
 514   // to look for anti-deps between this load and any store.
 515   Block* early = get_block_for_node(load);
 516 
 517   // If we are subsuming loads, compute an "early" block that only considers
 518   // memory or address inputs. This block may be different than the
 519   // schedule_early block in that it could be at an even shallower depth in the
 520   // dominator tree, and allow for a broader discovery of anti-dependences.
 521   if (C->subsume_loads()) {
 522     early = memory_early_block(load, early, this);
 523   }
 524 
 525   ResourceArea *area = Thread::current()->resource_area();
 526   Node_List worklist_mem(area);     // prior memory state to store
 527   Node_List worklist_store(area);   // possible-def to explore
 528   Node_List worklist_visited(area); // visited mergemem nodes
 529   Node_List non_early_stores(area); // all relevant stores outside of early
 530   bool must_raise_LCA = false;
 531 
 532 #ifdef TRACK_PHI_INPUTS
 533   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 534   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 535   // original memory state.  This indicates a PhiNode for which should not
 536   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 537   // may be overly conservative.
 538   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 539   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 540 #endif
 541 
 542   // 'load' uses some memory state; look for users of the same state.
 543   // Recurse through MergeMem nodes to the stores that use them.
 544 
 545   // Each of these stores is a possible definition of memory
 546   // that 'load' needs to use.  We need to force 'load'
 547   // to occur before each such store.  When the store is in
 548   // the same block as 'load', we insert an anti-dependence
 549   // edge load->store.
 550 
 551   // The relevant stores "nearby" the load consist of a tree rooted
 552   // at initial_mem, with internal nodes of type MergeMem.
 553   // Therefore, the branches visited by the worklist are of this form:
 554   //    initial_mem -> (MergeMem ->)* store
 555   // The anti-dependence constraints apply only to the fringe of this tree.
 556 
 557   Node* initial_mem = load->in(MemNode::Memory);
 558   worklist_store.push(initial_mem);
 559   worklist_visited.push(initial_mem);
 560   worklist_mem.push(NULL);
 561   while (worklist_store.size() > 0) {
 562     // Examine a nearby store to see if it might interfere with our load.
 563     Node* mem   = worklist_mem.pop();
 564     Node* store = worklist_store.pop();
 565     uint op = store->Opcode();
 566 
 567     // MergeMems do not directly have anti-deps.
 568     // Treat them as internal nodes in a forward tree of memory states,
 569     // the leaves of which are each a 'possible-def'.
 570     if (store == initial_mem    // root (exclusive) of tree we are searching
 571         || op == Op_MergeMem    // internal node of tree we are searching
 572         ) {
 573       mem = store;   // It's not a possibly interfering store.
 574       if (store == initial_mem)
 575         initial_mem = NULL;  // only process initial memory once
 576 
 577       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 578         store = mem->fast_out(i);
 579         if (store->is_MergeMem()) {
 580           // Be sure we don't get into combinatorial problems.
 581           // (Allow phis to be repeated; they can merge two relevant states.)
 582           uint j = worklist_visited.size();
 583           for (; j > 0; j--) {
 584             if (worklist_visited.at(j-1) == store)  break;
 585           }
 586           if (j > 0)  continue; // already on work list; do not repeat
 587           worklist_visited.push(store);
 588         }
 589         worklist_mem.push(mem);
 590         worklist_store.push(store);
 591       }
 592       continue;
 593     }
 594 
 595     if (op == Op_MachProj || op == Op_Catch)   continue;
 596     if (store->needs_anti_dependence_check())  continue;  // not really a store
 597 
 598     // Compute the alias index.  Loads and stores with different alias
 599     // indices do not need anti-dependence edges.  Wide MemBar's are
 600     // anti-dependent on everything (except immutable memories).
 601     const TypePtr* adr_type = store->adr_type();
 602     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 603 
 604     // Most slow-path runtime calls do NOT modify Java memory, but
 605     // they can block and so write Raw memory.
 606     if (store->is_Mach()) {
 607       MachNode* mstore = store->as_Mach();
 608       if (load_alias_idx != Compile::AliasIdxRaw) {
 609         // Check for call into the runtime using the Java calling
 610         // convention (and from there into a wrapper); it has no
 611         // _method.  Can't do this optimization for Native calls because
 612         // they CAN write to Java memory.
 613         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 614           assert(mstore->is_MachSafePoint(), "");
 615           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 616           assert(ms->is_MachCallJava(), "");
 617           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 618           if (mcj->_method == NULL) {
 619             // These runtime calls do not write to Java visible memory
 620             // (other than Raw) and so do not require anti-dependence edges.
 621             continue;
 622           }
 623         }
 624         // Same for SafePoints: they read/write Raw but only read otherwise.
 625         // This is basically a workaround for SafePoints only defining control
 626         // instead of control + memory.
 627         if (mstore->ideal_Opcode() == Op_SafePoint)
 628           continue;
 629       } else {
 630         // Some raw memory, such as the load of "top" at an allocation,
 631         // can be control dependent on the previous safepoint. See
 632         // comments in GraphKit::allocate_heap() about control input.
 633         // Inserting an anti-dep between such a safepoint and a use
 634         // creates a cycle, and will cause a subsequent failure in
 635         // local scheduling.  (BugId 4919904)
 636         // (%%% How can a control input be a safepoint and not a projection??)
 637         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 638           continue;
 639       }
 640     }
 641 
 642     // Identify a block that the current load must be above,
 643     // or else observe that 'store' is all the way up in the
 644     // earliest legal block for 'load'.  In the latter case,
 645     // immediately insert an anti-dependence edge.
 646     Block* store_block = get_block_for_node(store);
 647     assert(store_block != NULL, "unused killing projections skipped above");
 648 
 649     if (store->is_Phi()) {
 650       // 'load' uses memory which is one (or more) of the Phi's inputs.
 651       // It must be scheduled not before the Phi, but rather before
 652       // each of the relevant Phi inputs.
 653       //
 654       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 655       // we mark each corresponding predecessor block and do a combined
 656       // hoisting operation later (raise_LCA_above_marks).
 657       //
 658       // Do not assert(store_block != early, "Phi merging memory after access")
 659       // PhiNode may be at start of block 'early' with backedge to 'early'
 660       DEBUG_ONLY(bool found_match = false);
 661       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 662         if (store->in(j) == mem) {   // Found matching input?
 663           DEBUG_ONLY(found_match = true);
 664           Block* pred_block = get_block_for_node(store_block->pred(j));
 665           if (pred_block != early) {
 666             // If any predecessor of the Phi matches the load's "early block",
 667             // we do not need a precedence edge between the Phi and 'load'
 668             // since the load will be forced into a block preceding the Phi.
 669             pred_block->set_raise_LCA_mark(load_index);
 670             assert(!LCA_orig->dominates(pred_block) ||
 671                    early->dominates(pred_block), "early is high enough");
 672             must_raise_LCA = true;
 673           } else {
 674             // anti-dependent upon PHI pinned below 'early', no edge needed
 675             LCA = early;             // but can not schedule below 'early'
 676           }
 677         }
 678       }
 679       assert(found_match, "no worklist bug");
 680 #ifdef TRACK_PHI_INPUTS
 681 #ifdef ASSERT
 682       // This assert asks about correct handling of PhiNodes, which may not
 683       // have all input edges directly from 'mem'. See BugId 4621264
 684       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 685       // Increment by exactly one even if there are multiple copies of 'mem'
 686       // coming into the phi, because we will run this block several times
 687       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 688       phi_inputs.at_put(store->_idx, num_mem_inputs);
 689       assert(PhiNode::Input + num_mem_inputs < store->req(),
 690              "Expect at least one phi input will not be from original memory state");
 691 #endif //ASSERT
 692 #endif //TRACK_PHI_INPUTS
 693     } else if (store_block != early) {
 694       // 'store' is between the current LCA and earliest possible block.
 695       // Label its block, and decide later on how to raise the LCA
 696       // to include the effect on LCA of this store.
 697       // If this store's block gets chosen as the raised LCA, we
 698       // will find him on the non_early_stores list and stick him
 699       // with a precedence edge.
 700       // (But, don't bother if LCA is already raised all the way.)
 701       if (LCA != early) {
 702         store_block->set_raise_LCA_mark(load_index);
 703         must_raise_LCA = true;
 704         non_early_stores.push(store);
 705       }
 706     } else {
 707       // Found a possibly-interfering store in the load's 'early' block.
 708       // This means 'load' cannot sink at all in the dominator tree.
 709       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 710       assert(store != load->in(0), "dependence cycle found");
 711       if (verify) {
 712         assert(store->find_edge(load) != -1, "missing precedence edge");
 713       } else {
 714         store->add_prec(load);
 715       }
 716       LCA = early;
 717       // This turns off the process of gathering non_early_stores.
 718     }
 719   }
 720   // (Worklist is now empty; all nearby stores have been visited.)
 721 
 722   // Finished if 'load' must be scheduled in its 'early' block.
 723   // If we found any stores there, they have already been given
 724   // precedence edges.
 725   if (LCA == early)  return LCA;
 726 
 727   // We get here only if there are no possibly-interfering stores
 728   // in the load's 'early' block.  Move LCA up above all predecessors
 729   // which contain stores we have noted.
 730   //
 731   // The raised LCA block can be a home to such interfering stores,
 732   // but its predecessors must not contain any such stores.
 733   //
 734   // The raised LCA will be a lower bound for placing the load,
 735   // preventing the load from sinking past any block containing
 736   // a store that may invalidate the memory state required by 'load'.
 737   if (must_raise_LCA)
 738     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
 739   if (LCA == early)  return LCA;
 740 
 741   // Insert anti-dependence edges from 'load' to each store
 742   // in the non-early LCA block.
 743   // Mine the non_early_stores list for such stores.
 744   if (LCA->raise_LCA_mark() == load_index) {
 745     while (non_early_stores.size() > 0) {
 746       Node* store = non_early_stores.pop();
 747       Block* store_block = get_block_for_node(store);
 748       if (store_block == LCA) {
 749         // add anti_dependence from store to load in its own block
 750         assert(store != load->in(0), "dependence cycle found");
 751         if (verify) {
 752           assert(store->find_edge(load) != -1, "missing precedence edge");
 753         } else {
 754           store->add_prec(load);
 755         }
 756       } else {
 757         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 758         // Any other stores we found must be either inside the new LCA
 759         // or else outside the original LCA.  In the latter case, they
 760         // did not interfere with any use of 'load'.
 761         assert(LCA->dominates(store_block)
 762                || !LCA_orig->dominates(store_block), "no stray stores");
 763       }
 764     }
 765   }
 766 
 767   // Return the highest block containing stores; any stores
 768   // within that block have been given anti-dependence edges.
 769   return LCA;
 770 }
 771 
 772 // This class is used to iterate backwards over the nodes in the graph.
 773 
 774 class Node_Backward_Iterator {
 775 
 776 private:
 777   Node_Backward_Iterator();
 778 
 779 public:
 780   // Constructor for the iterator
 781   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
 782 
 783   // Postincrement operator to iterate over the nodes
 784   Node *next();
 785 
 786 private:
 787   VectorSet   &_visited;
 788   Node_List   &_stack;
 789   PhaseCFG &_cfg;
 790 };
 791 
 792 // Constructor for the Node_Backward_Iterator
 793 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
 794   : _visited(visited), _stack(stack), _cfg(cfg) {
 795   // The stack should contain exactly the root
 796   stack.clear();
 797   stack.push(root);
 798 
 799   // Clear the visited bits
 800   visited.Clear();
 801 }
 802 
 803 // Iterator for the Node_Backward_Iterator
 804 Node *Node_Backward_Iterator::next() {
 805 
 806   // If the _stack is empty, then just return NULL: finished.
 807   if ( !_stack.size() )
 808     return NULL;
 809 
 810   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 811   // made stateless, so I do not need to record the index 'i' on my _stack.
 812   // Instead I visit all users each time, scanning for unvisited users.
 813   // I visit unvisited not-anti-dependence users first, then anti-dependent
 814   // children next.
 815   Node *self = _stack.pop();
 816 
 817   // I cycle here when I am entering a deeper level of recursion.
 818   // The key variable 'self' was set prior to jumping here.
 819   while( 1 ) {
 820 
 821     _visited.set(self->_idx);
 822 
 823     // Now schedule all uses as late as possible.
 824     const Node* src = self->is_Proj() ? self->in(0) : self;
 825     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
 826 
 827     // Schedule all nodes in a post-order visit
 828     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 829 
 830     // Scan for unvisited nodes
 831     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 832       // For all uses, schedule late
 833       Node* n = self->fast_out(i); // Use
 834 
 835       // Skip already visited children
 836       if ( _visited.test(n->_idx) )
 837         continue;
 838 
 839       // do not traverse backward control edges
 840       Node *use = n->is_Proj() ? n->in(0) : n;
 841       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
 842 
 843       if ( use_rpo < src_rpo )
 844         continue;
 845 
 846       // Phi nodes always precede uses in a basic block
 847       if ( use_rpo == src_rpo && use->is_Phi() )
 848         continue;
 849 
 850       unvisited = n;      // Found unvisited
 851 
 852       // Check for possible-anti-dependent
 853       if( !n->needs_anti_dependence_check() )
 854         break;            // Not visited, not anti-dep; schedule it NOW
 855     }
 856 
 857     // Did I find an unvisited not-anti-dependent Node?
 858     if ( !unvisited )
 859       break;                  // All done with children; post-visit 'self'
 860 
 861     // Visit the unvisited Node.  Contains the obvious push to
 862     // indicate I'm entering a deeper level of recursion.  I push the
 863     // old state onto the _stack and set a new state and loop (recurse).
 864     _stack.push(self);
 865     self = unvisited;
 866   } // End recursion loop
 867 
 868   return self;
 869 }
 870 
 871 //------------------------------ComputeLatenciesBackwards----------------------
 872 // Compute the latency of all the instructions.
 873 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
 874 #ifndef PRODUCT
 875   if (trace_opto_pipelining())
 876     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 877 #endif
 878 
 879   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
 880   Node *n;
 881 
 882   // Walk over all the nodes from last to first
 883   while (n = iter.next()) {
 884     // Set the latency for the definitions of this instruction
 885     partial_latency_of_defs(n);
 886   }
 887 } // end ComputeLatenciesBackwards
 888 
 889 //------------------------------partial_latency_of_defs------------------------
 890 // Compute the latency impact of this node on all defs.  This computes
 891 // a number that increases as we approach the beginning of the routine.
 892 void PhaseCFG::partial_latency_of_defs(Node *n) {
 893   // Set the latency for this instruction
 894 #ifndef PRODUCT
 895   if (trace_opto_pipelining()) {
 896     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
 897     dump();
 898   }
 899 #endif
 900 
 901   if (n->is_Proj()) {
 902     n = n->in(0);
 903   }
 904 
 905   if (n->is_Root()) {
 906     return;
 907   }
 908 
 909   uint nlen = n->len();
 910   uint use_latency = get_latency_for_node(n);
 911   uint use_pre_order = get_block_for_node(n)->_pre_order;
 912 
 913   for (uint j = 0; j < nlen; j++) {
 914     Node *def = n->in(j);
 915 
 916     if (!def || def == n) {
 917       continue;
 918     }
 919 
 920     // Walk backwards thru projections
 921     if (def->is_Proj()) {
 922       def = def->in(0);
 923     }
 924 
 925 #ifndef PRODUCT
 926     if (trace_opto_pipelining()) {
 927       tty->print("#    in(%2d): ", j);
 928       def->dump();
 929     }
 930 #endif
 931 
 932     // If the defining block is not known, assume it is ok
 933     Block *def_block = get_block_for_node(def);
 934     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 935 
 936     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
 937       continue;
 938     }
 939 
 940     uint delta_latency = n->latency(j);
 941     uint current_latency = delta_latency + use_latency;
 942 
 943     if (get_latency_for_node(def) < current_latency) {
 944       set_latency_for_node(def, current_latency);
 945     }
 946 
 947 #ifndef PRODUCT
 948     if (trace_opto_pipelining()) {
 949       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
 950     }
 951 #endif
 952   }
 953 }
 954 
 955 //------------------------------latency_from_use-------------------------------
 956 // Compute the latency of a specific use
 957 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 958   // If self-reference, return no latency
 959   if (use == n || use->is_Root()) {
 960     return 0;
 961   }
 962 
 963   uint def_pre_order = get_block_for_node(def)->_pre_order;
 964   uint latency = 0;
 965 
 966   // If the use is not a projection, then it is simple...
 967   if (!use->is_Proj()) {
 968 #ifndef PRODUCT
 969     if (trace_opto_pipelining()) {
 970       tty->print("#    out(): ");
 971       use->dump();
 972     }
 973 #endif
 974 
 975     uint use_pre_order = get_block_for_node(use)->_pre_order;
 976 
 977     if (use_pre_order < def_pre_order)
 978       return 0;
 979 
 980     if (use_pre_order == def_pre_order && use->is_Phi())
 981       return 0;
 982 
 983     uint nlen = use->len();
 984     uint nl = get_latency_for_node(use);
 985 
 986     for ( uint j=0; j<nlen; j++ ) {
 987       if (use->in(j) == n) {
 988         // Change this if we want local latencies
 989         uint ul = use->latency(j);
 990         uint  l = ul + nl;
 991         if (latency < l) latency = l;
 992 #ifndef PRODUCT
 993         if (trace_opto_pipelining()) {
 994           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 995                         nl, j, ul, l, latency);
 996         }
 997 #endif
 998       }
 999     }
1000   } else {
1001     // This is a projection, just grab the latency of the use(s)
1002     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1003       uint l = latency_from_use(use, def, use->fast_out(j));
1004       if (latency < l) latency = l;
1005     }
1006   }
1007 
1008   return latency;
1009 }
1010 
1011 //------------------------------latency_from_uses------------------------------
1012 // Compute the latency of this instruction relative to all of it's uses.
1013 // This computes a number that increases as we approach the beginning of the
1014 // routine.
1015 void PhaseCFG::latency_from_uses(Node *n) {
1016   // Set the latency for this instruction
1017 #ifndef PRODUCT
1018   if (trace_opto_pipelining()) {
1019     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1020     dump();
1021   }
1022 #endif
1023   uint latency=0;
1024   const Node *def = n->is_Proj() ? n->in(0): n;
1025 
1026   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1027     uint l = latency_from_use(n, def, n->fast_out(i));
1028 
1029     if (latency < l) latency = l;
1030   }
1031 
1032   set_latency_for_node(n, latency);
1033 }
1034 
1035 //------------------------------hoist_to_cheaper_block-------------------------
1036 // Pick a block for node self, between early and LCA, that is a cheaper
1037 // alternative to LCA.
1038 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1039   const double delta = 1+PROB_UNLIKELY_MAG(4);
1040   Block* least       = LCA;
1041   double least_freq  = least->_freq;
1042   uint target        = get_latency_for_node(self);
1043   uint start_latency = get_latency_for_node(LCA->head());
1044   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1045   bool in_latency    = (target <= start_latency);
1046   const Block* root_block = get_block_for_node(_root);
1047 
1048   // Turn off latency scheduling if scheduling is just plain off
1049   if (!C->do_scheduling())
1050     in_latency = true;
1051 
1052   // Do not hoist (to cover latency) instructions which target a
1053   // single register.  Hoisting stretches the live range of the
1054   // single register and may force spilling.
1055   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1056   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1057     in_latency = true;
1058 
1059 #ifndef PRODUCT
1060   if (trace_opto_pipelining()) {
1061     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1062     self->dump();
1063     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1064       LCA->_pre_order,
1065       LCA->head()->_idx,
1066       start_latency,
1067       LCA->get_node(LCA->end_idx())->_idx,
1068       end_latency,
1069       least_freq);
1070   }
1071 #endif
1072 
1073   int cand_cnt = 0;  // number of candidates tried
1074 
1075   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1076   // the earliest legal location.  Capture the least execution frequency.
1077   while (LCA != early) {
1078     LCA = LCA->_idom;         // Follow up the dominator tree
1079 
1080     if (LCA == NULL) {
1081       // Bailout without retry
1082       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1083       return least;
1084     }
1085 
1086     // Don't hoist machine instructions to the root basic block
1087     if (mach && LCA == root_block)
1088       break;
1089 
1090     uint start_lat = get_latency_for_node(LCA->head());
1091     uint end_idx   = LCA->end_idx();
1092     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1093     double LCA_freq = LCA->_freq;
1094 #ifndef PRODUCT
1095     if (trace_opto_pipelining()) {
1096       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1097         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1098     }
1099 #endif
1100     cand_cnt++;
1101     if (LCA_freq < least_freq              || // Better Frequency
1102         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1103          (!StressGCM                    &&    // Otherwise, choose with latency
1104           !in_latency                   &&    // No block containing latency
1105           LCA_freq < least_freq * delta &&    // No worse frequency
1106           target >= end_lat             &&    // within latency range
1107           !self->is_iteratively_computed() )  // But don't hoist IV increments
1108              // because they may end up above other uses of their phi forcing
1109              // their result register to be different from their input.
1110        ) {
1111       least = LCA;            // Found cheaper block
1112       least_freq = LCA_freq;
1113       start_latency = start_lat;
1114       end_latency = end_lat;
1115       if (target <= start_lat)
1116         in_latency = true;
1117     }
1118   }
1119 
1120 #ifndef PRODUCT
1121   if (trace_opto_pipelining()) {
1122     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1123       least->_pre_order, start_latency, least_freq);
1124   }
1125 #endif
1126 
1127   // See if the latency needs to be updated
1128   if (target < end_latency) {
1129 #ifndef PRODUCT
1130     if (trace_opto_pipelining()) {
1131       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1132     }
1133 #endif
1134     set_latency_for_node(self, end_latency);
1135     partial_latency_of_defs(self);
1136   }
1137 
1138   return least;
1139 }
1140 
1141 
1142 //------------------------------schedule_late-----------------------------------
1143 // Now schedule all codes as LATE as possible.  This is the LCA in the
1144 // dominator tree of all USES of a value.  Pick the block with the least
1145 // loop nesting depth that is lowest in the dominator tree.
1146 extern const char must_clone[];
1147 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1148 #ifndef PRODUCT
1149   if (trace_opto_pipelining())
1150     tty->print("\n#---- schedule_late ----\n");
1151 #endif
1152 
1153   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1154   Node *self;
1155 
1156   // Walk over all the nodes from last to first
1157   while (self = iter.next()) {
1158     Block* early = get_block_for_node(self); // Earliest legal placement
1159 
1160     if (self->is_top()) {
1161       // Top node goes in bb #2 with other constants.
1162       // It must be special-cased, because it has no out edges.
1163       early->add_inst(self);
1164       continue;
1165     }
1166 
1167     // No uses, just terminate
1168     if (self->outcnt() == 0) {
1169       assert(self->is_MachProj(), "sanity");
1170       continue;                   // Must be a dead machine projection
1171     }
1172 
1173     // If node is pinned in the block, then no scheduling can be done.
1174     if( self->pinned() )          // Pinned in block?
1175       continue;
1176 
1177     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1178     if (mach) {
1179       switch (mach->ideal_Opcode()) {
1180       case Op_CreateEx:
1181         // Don't move exception creation
1182         early->add_inst(self);
1183         continue;
1184         break;
1185       case Op_CheckCastPP:
1186         // Don't move CheckCastPP nodes away from their input, if the input
1187         // is a rawptr (5071820).
1188         Node *def = self->in(1);
1189         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1190           early->add_inst(self);
1191 #ifdef ASSERT
1192           _raw_oops.push(def);
1193 #endif
1194           continue;
1195         }
1196         break;
1197       }
1198     }
1199 
1200     // Gather LCA of all uses
1201     Block *LCA = NULL;
1202     {
1203       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1204         // For all uses, find LCA
1205         Node* use = self->fast_out(i);
1206         LCA = raise_LCA_above_use(LCA, use, self, this);
1207       }
1208     }  // (Hide defs of imax, i from rest of block.)
1209 
1210     // Place temps in the block of their use.  This isn't a
1211     // requirement for correctness but it reduces useless
1212     // interference between temps and other nodes.
1213     if (mach != NULL && mach->is_MachTemp()) {
1214       map_node_to_block(self, LCA);
1215       LCA->add_inst(self);
1216       continue;
1217     }
1218 
1219     // Check if 'self' could be anti-dependent on memory
1220     if (self->needs_anti_dependence_check()) {
1221       // Hoist LCA above possible-defs and insert anti-dependences to
1222       // defs in new LCA block.
1223       LCA = insert_anti_dependences(LCA, self);
1224     }
1225 
1226     if (early->_dom_depth > LCA->_dom_depth) {
1227       // Somehow the LCA has moved above the earliest legal point.
1228       // (One way this can happen is via memory_early_block.)
1229       if (C->subsume_loads() == true && !C->failing()) {
1230         // Retry with subsume_loads == false
1231         // If this is the first failure, the sentinel string will "stick"
1232         // to the Compile object, and the C2Compiler will see it and retry.
1233         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1234       } else {
1235         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1236         C->record_method_not_compilable("late schedule failed: incorrect graph");
1237       }
1238       return;
1239     }
1240 
1241     // If there is no opportunity to hoist, then we're done.
1242     // In stress mode, try to hoist even the single operations.
1243     bool try_to_hoist = StressGCM || (LCA != early);
1244 
1245     // Must clone guys stay next to use; no hoisting allowed.
1246     // Also cannot hoist guys that alter memory or are otherwise not
1247     // allocatable (hoisting can make a value live longer, leading to
1248     // anti and output dependency problems which are normally resolved
1249     // by the register allocator giving everyone a different register).
1250     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1251       try_to_hoist = false;
1252 
1253     Block* late = NULL;
1254     if (try_to_hoist) {
1255       // Now find the block with the least execution frequency.
1256       // Start at the latest schedule and work up to the earliest schedule
1257       // in the dominator tree.  Thus the Node will dominate all its uses.
1258       late = hoist_to_cheaper_block(LCA, early, self);
1259     } else {
1260       // Just use the LCA of the uses.
1261       late = LCA;
1262     }
1263 
1264     // Put the node into target block
1265     schedule_node_into_block(self, late);
1266 
1267 #ifdef ASSERT
1268     if (self->needs_anti_dependence_check()) {
1269       // since precedence edges are only inserted when we're sure they
1270       // are needed make sure that after placement in a block we don't
1271       // need any new precedence edges.
1272       verify_anti_dependences(late, self);
1273     }
1274 #endif
1275   } // Loop until all nodes have been visited
1276 
1277 } // end ScheduleLate
1278 
1279 //------------------------------GlobalCodeMotion-------------------------------
1280 void PhaseCFG::global_code_motion() {
1281   ResourceMark rm;
1282 
1283 #ifndef PRODUCT
1284   if (trace_opto_pipelining()) {
1285     tty->print("\n---- Start GlobalCodeMotion ----\n");
1286   }
1287 #endif
1288 
1289   // Initialize the node to block mapping for things on the proj_list
1290   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1291     unmap_node_from_block(_matcher.get_projection(i));
1292   }
1293 
1294   // Set the basic block for Nodes pinned into blocks
1295   Arena* arena = Thread::current()->resource_area();
1296   VectorSet visited(arena);
1297   schedule_pinned_nodes(visited);
1298 
1299   // Find the earliest Block any instruction can be placed in.  Some
1300   // instructions are pinned into Blocks.  Unpinned instructions can
1301   // appear in last block in which all their inputs occur.
1302   visited.Clear();
1303   Node_List stack(arena);
1304   // Pre-grow the list
1305   stack.map((C->unique() >> 1) + 16, NULL);
1306   if (!schedule_early(visited, stack)) {
1307     // Bailout without retry
1308     C->record_method_not_compilable("early schedule failed");
1309     return;
1310   }
1311 
1312   // Build Def-Use edges.
1313   // Compute the latency information (via backwards walk) for all the
1314   // instructions in the graph
1315   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1316 
1317   if (C->do_scheduling()) {
1318     compute_latencies_backwards(visited, stack);
1319   }
1320 
1321   // Now schedule all codes as LATE as possible.  This is the LCA in the
1322   // dominator tree of all USES of a value.  Pick the block with the least
1323   // loop nesting depth that is lowest in the dominator tree.
1324   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1325   schedule_late(visited, stack);
1326   if (C->failing()) {
1327     // schedule_late fails only when graph is incorrect.
1328     assert(!VerifyGraphEdges, "verification should have failed");
1329     return;
1330   }
1331 
1332 #ifndef PRODUCT
1333   if (trace_opto_pipelining()) {
1334     tty->print("\n---- Detect implicit null checks ----\n");
1335   }
1336 #endif
1337 
1338   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1339   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1340   // I can generate a memory op if there is not one nearby.
1341   if (C->is_method_compilation()) {
1342     // By reversing the loop direction we get a very minor gain on mpegaudio.
1343     // Feel free to revert to a forward loop for clarity.
1344     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1345     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1346       Node* proj = _matcher._null_check_tests[i];
1347       Node* val  = _matcher._null_check_tests[i + 1];
1348       Block* block = get_block_for_node(proj);
1349       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1350       // The implicit_null_check will only perform the transformation
1351       // if the null branch is truly uncommon, *and* it leads to an
1352       // uncommon trap.  Combined with the too_many_traps guards
1353       // above, this prevents SEGV storms reported in 6366351,
1354       // by recompiling offending methods without this optimization.
1355     }
1356   }
1357 
1358 #ifndef PRODUCT
1359   if (trace_opto_pipelining()) {
1360     tty->print("\n---- Start Local Scheduling ----\n");
1361   }
1362 #endif
1363 
1364   // Schedule locally.  Right now a simple topological sort.
1365   // Later, do a real latency aware scheduler.
1366   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1367   visited.Clear();
1368   for (uint i = 0; i < number_of_blocks(); i++) {
1369     Block* block = get_block(i);
1370     if (!schedule_local(block, ready_cnt, visited)) {
1371       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1372         C->record_method_not_compilable("local schedule failed");
1373       }
1374       return;
1375     }
1376   }
1377 
1378   // If we inserted any instructions between a Call and his CatchNode,
1379   // clone the instructions on all paths below the Catch.
1380   for (uint i = 0; i < number_of_blocks(); i++) {
1381     Block* block = get_block(i);
1382     call_catch_cleanup(block);
1383   }
1384 
1385 #ifndef PRODUCT
1386   if (trace_opto_pipelining()) {
1387     tty->print("\n---- After GlobalCodeMotion ----\n");
1388     for (uint i = 0; i < number_of_blocks(); i++) {
1389       Block* block = get_block(i);
1390       block->dump();
1391     }
1392   }
1393 #endif
1394   // Dead.
1395   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1396 }
1397 
1398 bool PhaseCFG::do_global_code_motion() {
1399 
1400   build_dominator_tree();
1401   if (C->failing()) {
1402     return false;
1403   }
1404 
1405   NOT_PRODUCT( C->verify_graph_edges(); )
1406 
1407   estimate_block_frequency();
1408 
1409   global_code_motion();
1410 
1411   if (C->failing()) {
1412     return false;
1413   }
1414 
1415   return true;
1416 }
1417 
1418 //------------------------------Estimate_Block_Frequency-----------------------
1419 // Estimate block frequencies based on IfNode probabilities.
1420 void PhaseCFG::estimate_block_frequency() {
1421 
1422   // Force conditional branches leading to uncommon traps to be unlikely,
1423   // not because we get to the uncommon_trap with less relative frequency,
1424   // but because an uncommon_trap typically causes a deopt, so we only get
1425   // there once.
1426   if (C->do_freq_based_layout()) {
1427     Block_List worklist;
1428     Block* root_blk = get_block(0);
1429     for (uint i = 1; i < root_blk->num_preds(); i++) {
1430       Block *pb = get_block_for_node(root_blk->pred(i));
1431       if (pb->has_uncommon_code()) {
1432         worklist.push(pb);
1433       }
1434     }
1435     while (worklist.size() > 0) {
1436       Block* uct = worklist.pop();
1437       if (uct == get_root_block()) {
1438         continue;
1439       }
1440       for (uint i = 1; i < uct->num_preds(); i++) {
1441         Block *pb = get_block_for_node(uct->pred(i));
1442         if (pb->_num_succs == 1) {
1443           worklist.push(pb);
1444         } else if (pb->num_fall_throughs() == 2) {
1445           pb->update_uncommon_branch(uct);
1446         }
1447       }
1448     }
1449   }
1450 
1451   // Create the loop tree and calculate loop depth.
1452   _root_loop = create_loop_tree();
1453   _root_loop->compute_loop_depth(0);
1454 
1455   // Compute block frequency of each block, relative to a single loop entry.
1456   _root_loop->compute_freq();
1457 
1458   // Adjust all frequencies to be relative to a single method entry
1459   _root_loop->_freq = 1.0;
1460   _root_loop->scale_freq();
1461 
1462   // Save outmost loop frequency for LRG frequency threshold
1463   _outer_loop_frequency = _root_loop->outer_loop_freq();
1464 
1465   // force paths ending at uncommon traps to be infrequent
1466   if (!C->do_freq_based_layout()) {
1467     Block_List worklist;
1468     Block* root_blk = get_block(0);
1469     for (uint i = 1; i < root_blk->num_preds(); i++) {
1470       Block *pb = get_block_for_node(root_blk->pred(i));
1471       if (pb->has_uncommon_code()) {
1472         worklist.push(pb);
1473       }
1474     }
1475     while (worklist.size() > 0) {
1476       Block* uct = worklist.pop();
1477       uct->_freq = PROB_MIN;
1478       for (uint i = 1; i < uct->num_preds(); i++) {
1479         Block *pb = get_block_for_node(uct->pred(i));
1480         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1481           worklist.push(pb);
1482         }
1483       }
1484     }
1485   }
1486 
1487 #ifdef ASSERT
1488   for (uint i = 0; i < number_of_blocks(); i++) {
1489     Block* b = get_block(i);
1490     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1491   }
1492 #endif
1493 
1494 #ifndef PRODUCT
1495   if (PrintCFGBlockFreq) {
1496     tty->print_cr("CFG Block Frequencies");
1497     _root_loop->dump_tree();
1498     if (Verbose) {
1499       tty->print_cr("PhaseCFG dump");
1500       dump();
1501       tty->print_cr("Node dump");
1502       _root->dump(99999);
1503     }
1504   }
1505 #endif
1506 }
1507 
1508 //----------------------------create_loop_tree--------------------------------
1509 // Create a loop tree from the CFG
1510 CFGLoop* PhaseCFG::create_loop_tree() {
1511 
1512 #ifdef ASSERT
1513   assert(get_block(0) == get_root_block(), "first block should be root block");
1514   for (uint i = 0; i < number_of_blocks(); i++) {
1515     Block* block = get_block(i);
1516     // Check that _loop field are clear...we could clear them if not.
1517     assert(block->_loop == NULL, "clear _loop expected");
1518     // Sanity check that the RPO numbering is reflected in the _blocks array.
1519     // It doesn't have to be for the loop tree to be built, but if it is not,
1520     // then the blocks have been reordered since dom graph building...which
1521     // may question the RPO numbering
1522     assert(block->_rpo == i, "unexpected reverse post order number");
1523   }
1524 #endif
1525 
1526   int idct = 0;
1527   CFGLoop* root_loop = new CFGLoop(idct++);
1528 
1529   Block_List worklist;
1530 
1531   // Assign blocks to loops
1532   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1533     Block* block = get_block(i);
1534 
1535     if (block->head()->is_Loop()) {
1536       Block* loop_head = block;
1537       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1538       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1539       Block* tail = get_block_for_node(tail_n);
1540 
1541       // Defensively filter out Loop nodes for non-single-entry loops.
1542       // For all reasonable loops, the head occurs before the tail in RPO.
1543       if (i <= tail->_rpo) {
1544 
1545         // The tail and (recursive) predecessors of the tail
1546         // are made members of a new loop.
1547 
1548         assert(worklist.size() == 0, "nonempty worklist");
1549         CFGLoop* nloop = new CFGLoop(idct++);
1550         assert(loop_head->_loop == NULL, "just checking");
1551         loop_head->_loop = nloop;
1552         // Add to nloop so push_pred() will skip over inner loops
1553         nloop->add_member(loop_head);
1554         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1555 
1556         while (worklist.size() > 0) {
1557           Block* member = worklist.pop();
1558           if (member != loop_head) {
1559             for (uint j = 1; j < member->num_preds(); j++) {
1560               nloop->push_pred(member, j, worklist, this);
1561             }
1562           }
1563         }
1564       }
1565     }
1566   }
1567 
1568   // Create a member list for each loop consisting
1569   // of both blocks and (immediate child) loops.
1570   for (uint i = 0; i < number_of_blocks(); i++) {
1571     Block* block = get_block(i);
1572     CFGLoop* lp = block->_loop;
1573     if (lp == NULL) {
1574       // Not assigned to a loop. Add it to the method's pseudo loop.
1575       block->_loop = root_loop;
1576       lp = root_loop;
1577     }
1578     if (lp == root_loop || block != lp->head()) { // loop heads are already members
1579       lp->add_member(block);
1580     }
1581     if (lp != root_loop) {
1582       if (lp->parent() == NULL) {
1583         // Not a nested loop. Make it a child of the method's pseudo loop.
1584         root_loop->add_nested_loop(lp);
1585       }
1586       if (block == lp->head()) {
1587         // Add nested loop to member list of parent loop.
1588         lp->parent()->add_member(lp);
1589       }
1590     }
1591   }
1592 
1593   return root_loop;
1594 }
1595 
1596 //------------------------------push_pred--------------------------------------
1597 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1598   Node* pred_n = blk->pred(i);
1599   Block* pred = cfg->get_block_for_node(pred_n);
1600   CFGLoop *pred_loop = pred->_loop;
1601   if (pred_loop == NULL) {
1602     // Filter out blocks for non-single-entry loops.
1603     // For all reasonable loops, the head occurs before the tail in RPO.
1604     if (pred->_rpo > head()->_rpo) {
1605       pred->_loop = this;
1606       worklist.push(pred);
1607     }
1608   } else if (pred_loop != this) {
1609     // Nested loop.
1610     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1611       pred_loop = pred_loop->_parent;
1612     }
1613     // Make pred's loop be a child
1614     if (pred_loop->_parent == NULL) {
1615       add_nested_loop(pred_loop);
1616       // Continue with loop entry predecessor.
1617       Block* pred_head = pred_loop->head();
1618       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1619       assert(pred_head != head(), "loop head in only one loop");
1620       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1621     } else {
1622       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1623     }
1624   }
1625 }
1626 
1627 //------------------------------add_nested_loop--------------------------------
1628 // Make cl a child of the current loop in the loop tree.
1629 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1630   assert(_parent == NULL, "no parent yet");
1631   assert(cl != this, "not my own parent");
1632   cl->_parent = this;
1633   CFGLoop* ch = _child;
1634   if (ch == NULL) {
1635     _child = cl;
1636   } else {
1637     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1638     ch->_sibling = cl;
1639   }
1640 }
1641 
1642 //------------------------------compute_loop_depth-----------------------------
1643 // Store the loop depth in each CFGLoop object.
1644 // Recursively walk the children to do the same for them.
1645 void CFGLoop::compute_loop_depth(int depth) {
1646   _depth = depth;
1647   CFGLoop* ch = _child;
1648   while (ch != NULL) {
1649     ch->compute_loop_depth(depth + 1);
1650     ch = ch->_sibling;
1651   }
1652 }
1653 
1654 //------------------------------compute_freq-----------------------------------
1655 // Compute the frequency of each block and loop, relative to a single entry
1656 // into the dominating loop head.
1657 void CFGLoop::compute_freq() {
1658   // Bottom up traversal of loop tree (visit inner loops first.)
1659   // Set loop head frequency to 1.0, then transitively
1660   // compute frequency for all successors in the loop,
1661   // as well as for each exit edge.  Inner loops are
1662   // treated as single blocks with loop exit targets
1663   // as the successor blocks.
1664 
1665   // Nested loops first
1666   CFGLoop* ch = _child;
1667   while (ch != NULL) {
1668     ch->compute_freq();
1669     ch = ch->_sibling;
1670   }
1671   assert (_members.length() > 0, "no empty loops");
1672   Block* hd = head();
1673   hd->_freq = 1.0;
1674   for (int i = 0; i < _members.length(); i++) {
1675     CFGElement* s = _members.at(i);
1676     double freq = s->_freq;
1677     if (s->is_block()) {
1678       Block* b = s->as_Block();
1679       for (uint j = 0; j < b->_num_succs; j++) {
1680         Block* sb = b->_succs[j];
1681         update_succ_freq(sb, freq * b->succ_prob(j));
1682       }
1683     } else {
1684       CFGLoop* lp = s->as_CFGLoop();
1685       assert(lp->_parent == this, "immediate child");
1686       for (int k = 0; k < lp->_exits.length(); k++) {
1687         Block* eb = lp->_exits.at(k).get_target();
1688         double prob = lp->_exits.at(k).get_prob();
1689         update_succ_freq(eb, freq * prob);
1690       }
1691     }
1692   }
1693 
1694   // For all loops other than the outer, "method" loop,
1695   // sum and normalize the exit probability. The "method" loop
1696   // should keep the initial exit probability of 1, so that
1697   // inner blocks do not get erroneously scaled.
1698   if (_depth != 0) {
1699     // Total the exit probabilities for this loop.
1700     double exits_sum = 0.0f;
1701     for (int i = 0; i < _exits.length(); i++) {
1702       exits_sum += _exits.at(i).get_prob();
1703     }
1704 
1705     // Normalize the exit probabilities. Until now, the
1706     // probabilities estimate the possibility of exit per
1707     // a single loop iteration; afterward, they estimate
1708     // the probability of exit per loop entry.
1709     for (int i = 0; i < _exits.length(); i++) {
1710       Block* et = _exits.at(i).get_target();
1711       float new_prob = 0.0f;
1712       if (_exits.at(i).get_prob() > 0.0f) {
1713         new_prob = _exits.at(i).get_prob() / exits_sum;
1714       }
1715       BlockProbPair bpp(et, new_prob);
1716       _exits.at_put(i, bpp);
1717     }
1718 
1719     // Save the total, but guard against unreasonable probability,
1720     // as the value is used to estimate the loop trip count.
1721     // An infinite trip count would blur relative block
1722     // frequencies.
1723     if (exits_sum > 1.0f) exits_sum = 1.0;
1724     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1725     _exit_prob = exits_sum;
1726   }
1727 }
1728 
1729 //------------------------------succ_prob-------------------------------------
1730 // Determine the probability of reaching successor 'i' from the receiver block.
1731 float Block::succ_prob(uint i) {
1732   int eidx = end_idx();
1733   Node *n = get_node(eidx);  // Get ending Node
1734 
1735   int op = n->Opcode();
1736   if (n->is_Mach()) {
1737     if (n->is_MachNullCheck()) {
1738       // Can only reach here if called after lcm. The original Op_If is gone,
1739       // so we attempt to infer the probability from one or both of the
1740       // successor blocks.
1741       assert(_num_succs == 2, "expecting 2 successors of a null check");
1742       // If either successor has only one predecessor, then the
1743       // probability estimate can be derived using the
1744       // relative frequency of the successor and this block.
1745       if (_succs[i]->num_preds() == 2) {
1746         return _succs[i]->_freq / _freq;
1747       } else if (_succs[1-i]->num_preds() == 2) {
1748         return 1 - (_succs[1-i]->_freq / _freq);
1749       } else {
1750         // Estimate using both successor frequencies
1751         float freq = _succs[i]->_freq;
1752         return freq / (freq + _succs[1-i]->_freq);
1753       }
1754     }
1755     op = n->as_Mach()->ideal_Opcode();
1756   }
1757 
1758 
1759   // Switch on branch type
1760   switch( op ) {
1761   case Op_CountedLoopEnd:
1762   case Op_If: {
1763     assert (i < 2, "just checking");
1764     // Conditionals pass on only part of their frequency
1765     float prob  = n->as_MachIf()->_prob;
1766     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1767     // If succ[i] is the FALSE branch, invert path info
1768     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1769       return 1.0f - prob; // not taken
1770     } else {
1771       return prob; // taken
1772     }
1773   }
1774 
1775   case Op_Jump:
1776     // Divide the frequency between all successors evenly
1777     return 1.0f/_num_succs;
1778 
1779   case Op_Catch: {
1780     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1781     if (ci->_con == CatchProjNode::fall_through_index) {
1782       // Fall-thru path gets the lion's share.
1783       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1784     } else {
1785       // Presume exceptional paths are equally unlikely
1786       return PROB_UNLIKELY_MAG(5);
1787     }
1788   }
1789 
1790   case Op_Root:
1791   case Op_Goto:
1792     // Pass frequency straight thru to target
1793     return 1.0f;
1794 
1795   case Op_NeverBranch:
1796     return 0.0f;
1797 
1798   case Op_TailCall:
1799   case Op_TailJump:
1800   case Op_Return:
1801   case Op_Halt:
1802   case Op_Rethrow:
1803     // Do not push out freq to root block
1804     return 0.0f;
1805 
1806   default:
1807     ShouldNotReachHere();
1808   }
1809 
1810   return 0.0f;
1811 }
1812 
1813 //------------------------------num_fall_throughs-----------------------------
1814 // Return the number of fall-through candidates for a block
1815 int Block::num_fall_throughs() {
1816   int eidx = end_idx();
1817   Node *n = get_node(eidx);  // Get ending Node
1818 
1819   int op = n->Opcode();
1820   if (n->is_Mach()) {
1821     if (n->is_MachNullCheck()) {
1822       // In theory, either side can fall-thru, for simplicity sake,
1823       // let's say only the false branch can now.
1824       return 1;
1825     }
1826     op = n->as_Mach()->ideal_Opcode();
1827   }
1828 
1829   // Switch on branch type
1830   switch( op ) {
1831   case Op_CountedLoopEnd:
1832   case Op_If:
1833     return 2;
1834 
1835   case Op_Root:
1836   case Op_Goto:
1837     return 1;
1838 
1839   case Op_Catch: {
1840     for (uint i = 0; i < _num_succs; i++) {
1841       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1842       if (ci->_con == CatchProjNode::fall_through_index) {
1843         return 1;
1844       }
1845     }
1846     return 0;
1847   }
1848 
1849   case Op_Jump:
1850   case Op_NeverBranch:
1851   case Op_TailCall:
1852   case Op_TailJump:
1853   case Op_Return:
1854   case Op_Halt:
1855   case Op_Rethrow:
1856     return 0;
1857 
1858   default:
1859     ShouldNotReachHere();
1860   }
1861 
1862   return 0;
1863 }
1864 
1865 //------------------------------succ_fall_through-----------------------------
1866 // Return true if a specific successor could be fall-through target.
1867 bool Block::succ_fall_through(uint i) {
1868   int eidx = end_idx();
1869   Node *n = get_node(eidx);  // Get ending Node
1870 
1871   int op = n->Opcode();
1872   if (n->is_Mach()) {
1873     if (n->is_MachNullCheck()) {
1874       // In theory, either side can fall-thru, for simplicity sake,
1875       // let's say only the false branch can now.
1876       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
1877     }
1878     op = n->as_Mach()->ideal_Opcode();
1879   }
1880 
1881   // Switch on branch type
1882   switch( op ) {
1883   case Op_CountedLoopEnd:
1884   case Op_If:
1885   case Op_Root:
1886   case Op_Goto:
1887     return true;
1888 
1889   case Op_Catch: {
1890     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1891     return ci->_con == CatchProjNode::fall_through_index;
1892   }
1893 
1894   case Op_Jump:
1895   case Op_NeverBranch:
1896   case Op_TailCall:
1897   case Op_TailJump:
1898   case Op_Return:
1899   case Op_Halt:
1900   case Op_Rethrow:
1901     return false;
1902 
1903   default:
1904     ShouldNotReachHere();
1905   }
1906 
1907   return false;
1908 }
1909 
1910 //------------------------------update_uncommon_branch------------------------
1911 // Update the probability of a two-branch to be uncommon
1912 void Block::update_uncommon_branch(Block* ub) {
1913   int eidx = end_idx();
1914   Node *n = get_node(eidx);  // Get ending Node
1915 
1916   int op = n->as_Mach()->ideal_Opcode();
1917 
1918   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1919   assert(num_fall_throughs() == 2, "must be a two way branch block");
1920 
1921   // Which successor is ub?
1922   uint s;
1923   for (s = 0; s <_num_succs; s++) {
1924     if (_succs[s] == ub) break;
1925   }
1926   assert(s < 2, "uncommon successor must be found");
1927 
1928   // If ub is the true path, make the proability small, else
1929   // ub is the false path, and make the probability large
1930   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
1931 
1932   // Get existing probability
1933   float p = n->as_MachIf()->_prob;
1934 
1935   if (invert) p = 1.0 - p;
1936   if (p > PROB_MIN) {
1937     p = PROB_MIN;
1938   }
1939   if (invert) p = 1.0 - p;
1940 
1941   n->as_MachIf()->_prob = p;
1942 }
1943 
1944 //------------------------------update_succ_freq-------------------------------
1945 // Update the appropriate frequency associated with block 'b', a successor of
1946 // a block in this loop.
1947 void CFGLoop::update_succ_freq(Block* b, double freq) {
1948   if (b->_loop == this) {
1949     if (b == head()) {
1950       // back branch within the loop
1951       // Do nothing now, the loop carried frequency will be
1952       // adjust later in scale_freq().
1953     } else {
1954       // simple branch within the loop
1955       b->_freq += freq;
1956     }
1957   } else if (!in_loop_nest(b)) {
1958     // branch is exit from this loop
1959     BlockProbPair bpp(b, freq);
1960     _exits.append(bpp);
1961   } else {
1962     // branch into nested loop
1963     CFGLoop* ch = b->_loop;
1964     ch->_freq += freq;
1965   }
1966 }
1967 
1968 //------------------------------in_loop_nest-----------------------------------
1969 // Determine if block b is in the receiver's loop nest.
1970 bool CFGLoop::in_loop_nest(Block* b) {
1971   int depth = _depth;
1972   CFGLoop* b_loop = b->_loop;
1973   int b_depth = b_loop->_depth;
1974   if (depth == b_depth) {
1975     return true;
1976   }
1977   while (b_depth > depth) {
1978     b_loop = b_loop->_parent;
1979     b_depth = b_loop->_depth;
1980   }
1981   return b_loop == this;
1982 }
1983 
1984 //------------------------------scale_freq-------------------------------------
1985 // Scale frequency of loops and blocks by trip counts from outer loops
1986 // Do a top down traversal of loop tree (visit outer loops first.)
1987 void CFGLoop::scale_freq() {
1988   double loop_freq = _freq * trip_count();
1989   _freq = loop_freq;
1990   for (int i = 0; i < _members.length(); i++) {
1991     CFGElement* s = _members.at(i);
1992     double block_freq = s->_freq * loop_freq;
1993     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
1994       block_freq = MIN_BLOCK_FREQUENCY;
1995     s->_freq = block_freq;
1996   }
1997   CFGLoop* ch = _child;
1998   while (ch != NULL) {
1999     ch->scale_freq();
2000     ch = ch->_sibling;
2001   }
2002 }
2003 
2004 // Frequency of outer loop
2005 double CFGLoop::outer_loop_freq() const {
2006   if (_child != NULL) {
2007     return _child->_freq;
2008   }
2009   return _freq;
2010 }
2011 
2012 #ifndef PRODUCT
2013 //------------------------------dump_tree--------------------------------------
2014 void CFGLoop::dump_tree() const {
2015   dump();
2016   if (_child != NULL)   _child->dump_tree();
2017   if (_sibling != NULL) _sibling->dump_tree();
2018 }
2019 
2020 //------------------------------dump-------------------------------------------
2021 void CFGLoop::dump() const {
2022   for (int i = 0; i < _depth; i++) tty->print("   ");
2023   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
2024              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2025   for (int i = 0; i < _depth; i++) tty->print("   ");
2026   tty->print("         members:");
2027   int k = 0;
2028   for (int i = 0; i < _members.length(); i++) {
2029     if (k++ >= 6) {
2030       tty->print("\n              ");
2031       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2032       k = 0;
2033     }
2034     CFGElement *s = _members.at(i);
2035     if (s->is_block()) {
2036       Block *b = s->as_Block();
2037       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2038     } else {
2039       CFGLoop* lp = s->as_CFGLoop();
2040       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2041     }
2042   }
2043   tty->print("\n");
2044   for (int i = 0; i < _depth; i++) tty->print("   ");
2045   tty->print("         exits:  ");
2046   k = 0;
2047   for (int i = 0; i < _exits.length(); i++) {
2048     if (k++ >= 7) {
2049       tty->print("\n              ");
2050       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2051       k = 0;
2052     }
2053     Block *blk = _exits.at(i).get_target();
2054     double prob = _exits.at(i).get_prob();
2055     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2056   }
2057   tty->print("\n");
2058 }
2059 #endif