1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 protected:
  43 #ifdef ASSERT
  44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  45 #endif
  46   virtual uint size_of() const; // Size is bigger (ASSERT only)
  47 public:
  48   enum { Control,               // When is it safe to do this load?
  49          Memory,                // Chunk of memory is being loaded from
  50          Address,               // Actually address, derived from base
  51          ValueIn,               // Value to store
  52          OopStore               // Preceeding oop store, only in StoreCM
  53   };
  54   typedef enum { unordered = 0,
  55                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  56                  release        // Store has to release or be preceded by MemBarRelease.
  57   } MemOrd;
  58 protected:
  59   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  60     : Node(c0,c1,c2   ) {
  61     init_class_id(Class_Mem);
  62     debug_only(_adr_type=at; adr_type();)
  63   }
  64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  65     : Node(c0,c1,c2,c3) {
  66     init_class_id(Class_Mem);
  67     debug_only(_adr_type=at; adr_type();)
  68   }
  69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  70     : Node(c0,c1,c2,c3,c4) {
  71     init_class_id(Class_Mem);
  72     debug_only(_adr_type=at; adr_type();)
  73   }
  74 
  75 public:
  76   // Helpers for the optimizer.  Documented in memnode.cpp.
  77   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  78                                       Node* p2, AllocateNode* a2,
  79                                       PhaseTransform* phase);
  80   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  81 
  82   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  83   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  84   // This one should probably be a phase-specific function:
  85   static bool all_controls_dominate(Node* dom, Node* sub);
  86 
  87   // Find any cast-away of null-ness and keep its control.
  88   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  89   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  90 
  91   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  92 
  93   // Shared code for Ideal methods:
  94   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  95 
  96   // Helper function for adr_type() implementations.
  97   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  98 
  99   // Raw access function, to allow copying of adr_type efficiently in
 100   // product builds and retain the debug info for debug builds.
 101   const TypePtr *raw_adr_type() const {
 102 #ifdef ASSERT
 103     return _adr_type;
 104 #else
 105     return 0;
 106 #endif
 107   }
 108 
 109   // Map a load or store opcode to its corresponding store opcode.
 110   // (Return -1 if unknown.)
 111   virtual int store_Opcode() const { return -1; }
 112 
 113   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 114   virtual BasicType memory_type() const = 0;
 115   virtual int memory_size() const {
 116 #ifdef ASSERT
 117     return type2aelembytes(memory_type(), true);
 118 #else
 119     return type2aelembytes(memory_type());
 120 #endif
 121   }
 122 
 123   // Search through memory states which precede this node (load or store).
 124   // Look for an exact match for the address, with no intervening
 125   // aliased stores.
 126   Node* find_previous_store(PhaseTransform* phase);
 127 
 128   // Can this node (load or store) accurately see a stored value in
 129   // the given memory state?  (The state may or may not be in(Memory).)
 130   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 131 
 132 #ifndef PRODUCT
 133   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 134   virtual void dump_spec(outputStream *st) const;
 135 #endif
 136 };
 137 
 138 //------------------------------LoadNode---------------------------------------
 139 // Load value; requires Memory and Address
 140 class LoadNode : public MemNode {
 141 private:
 142   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 143   // loads that can be reordered, and such requiring acquire semantics to
 144   // adhere to the Java specification.  The required behaviour is stored in
 145   // this field.
 146   const MemOrd _mo;
 147 
 148 protected:
 149   virtual uint cmp(const Node &n) const;
 150   virtual uint size_of() const; // Size is bigger
 151   // Should LoadNode::Ideal() attempt to remove control edges?
 152   virtual bool can_remove_control() const;
 153   const Type* const _type;      // What kind of value is loaded?
 154 public:
 155 
 156   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo)
 157     : MemNode(c,mem,adr,at), _type(rt), _mo(mo) {
 158     init_class_id(Class_Load);
 159   }
 160   inline bool is_unordered() const { return !is_acquire(); }
 161   inline bool is_acquire() const {
 162     assert(_mo == unordered || _mo == acquire, "unexpected");
 163     return _mo == acquire;
 164   }
 165 
 166   // Polymorphic factory method:
 167    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 168                      const TypePtr* at, const Type *rt, BasicType bt, MemOrd mo);
 169 
 170   virtual uint hash()   const;  // Check the type
 171 
 172   // Handle algebraic identities here.  If we have an identity, return the Node
 173   // we are equivalent to.  We look for Load of a Store.
 174   virtual Node *Identity( PhaseTransform *phase );
 175 
 176   // If the load is from Field memory and the pointer is non-null, it might be possible to
 177   // zero out the control input.
 178   // If the offset is constant and the base is an object allocation,
 179   // try to hook me up to the exact initializing store.
 180   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 181 
 182   // Split instance field load through Phi.
 183   Node* split_through_phi(PhaseGVN *phase);
 184 
 185   // Recover original value from boxed values
 186   Node *eliminate_autobox(PhaseGVN *phase);
 187 
 188   // Compute a new Type for this node.  Basically we just do the pre-check,
 189   // then call the virtual add() to set the type.
 190   virtual const Type *Value( PhaseTransform *phase ) const;
 191 
 192   // Common methods for LoadKlass and LoadNKlass nodes.
 193   const Type *klass_value_common( PhaseTransform *phase ) const;
 194   Node *klass_identity_common( PhaseTransform *phase );
 195 
 196   virtual uint ideal_reg() const;
 197   virtual const Type *bottom_type() const;
 198   // Following method is copied from TypeNode:
 199   void set_type(const Type* t) {
 200     assert(t != NULL, "sanity");
 201     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 202     *(const Type**)&_type = t;   // cast away const-ness
 203     // If this node is in the hash table, make sure it doesn't need a rehash.
 204     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 205   }
 206   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 207 
 208   // Do not match memory edge
 209   virtual uint match_edge(uint idx) const;
 210 
 211   // Map a load opcode to its corresponding store opcode.
 212   virtual int store_Opcode() const = 0;
 213 
 214   // Check if the load's memory input is a Phi node with the same control.
 215   bool is_instance_field_load_with_local_phi(Node* ctrl);
 216 
 217 #ifndef PRODUCT
 218   virtual void dump_spec(outputStream *st) const;
 219 #endif
 220 #ifdef ASSERT
 221   // Helper function to allow a raw load without control edge for some cases
 222   static bool is_immutable_value(Node* adr);
 223 #endif
 224 protected:
 225   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 226                                      ciKlass* klass) const;
 227   // depends_only_on_test is almost always true, and needs to be almost always
 228   // true to enable key hoisting & commoning optimizations.  However, for the
 229   // special case of RawPtr loads from TLS top & end, and other loads performed by
 230   // GC barriers, the control edge carries the dependence preventing hoisting past
 231   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 232   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 233   // which produce results (new raw memory state) inside of loops preventing all
 234   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 235   // See comment in macro.cpp, around line 125 expand_allocate_common().
 236   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 237 
 238 };
 239 
 240 //------------------------------LoadBNode--------------------------------------
 241 // Load a byte (8bits signed) from memory
 242 class LoadBNode : public LoadNode {
 243 public:
 244   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 245     : LoadNode(c, mem, adr, at, ti, mo) {}
 246   virtual int Opcode() const;
 247   virtual uint ideal_reg() const { return Op_RegI; }
 248   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 249   virtual const Type *Value(PhaseTransform *phase) const;
 250   virtual int store_Opcode() const { return Op_StoreB; }
 251   virtual BasicType memory_type() const { return T_BYTE; }
 252 };
 253 
 254 //------------------------------LoadUBNode-------------------------------------
 255 // Load a unsigned byte (8bits unsigned) from memory
 256 class LoadUBNode : public LoadNode {
 257 public:
 258   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo)
 259     : LoadNode(c, mem, adr, at, ti, mo) {}
 260   virtual int Opcode() const;
 261   virtual uint ideal_reg() const { return Op_RegI; }
 262   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 263   virtual const Type *Value(PhaseTransform *phase) const;
 264   virtual int store_Opcode() const { return Op_StoreB; }
 265   virtual BasicType memory_type() const { return T_BYTE; }
 266 };
 267 
 268 //------------------------------LoadUSNode-------------------------------------
 269 // Load an unsigned short/char (16bits unsigned) from memory
 270 class LoadUSNode : public LoadNode {
 271 public:
 272   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 273     : LoadNode(c, mem, adr, at, ti, mo) {}
 274   virtual int Opcode() const;
 275   virtual uint ideal_reg() const { return Op_RegI; }
 276   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 277   virtual const Type *Value(PhaseTransform *phase) const;
 278   virtual int store_Opcode() const { return Op_StoreC; }
 279   virtual BasicType memory_type() const { return T_CHAR; }
 280 };
 281 
 282 //------------------------------LoadSNode--------------------------------------
 283 // Load a short (16bits signed) from memory
 284 class LoadSNode : public LoadNode {
 285 public:
 286   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 287     : LoadNode(c, mem, adr, at, ti, mo) {}
 288   virtual int Opcode() const;
 289   virtual uint ideal_reg() const { return Op_RegI; }
 290   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 291   virtual const Type *Value(PhaseTransform *phase) const;
 292   virtual int store_Opcode() const { return Op_StoreC; }
 293   virtual BasicType memory_type() const { return T_SHORT; }
 294 };
 295 
 296 //------------------------------LoadINode--------------------------------------
 297 // Load an integer from memory
 298 class LoadINode : public LoadNode {
 299 public:
 300   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 301     : LoadNode(c, mem, adr, at, ti, mo) {}
 302   virtual int Opcode() const;
 303   virtual uint ideal_reg() const { return Op_RegI; }
 304   virtual int store_Opcode() const { return Op_StoreI; }
 305   virtual BasicType memory_type() const { return T_INT; }
 306 };
 307 
 308 //------------------------------LoadRangeNode----------------------------------
 309 // Load an array length from the array
 310 class LoadRangeNode : public LoadINode {
 311 public:
 312   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 313     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 314   virtual int Opcode() const;
 315   virtual const Type *Value( PhaseTransform *phase ) const;
 316   virtual Node *Identity( PhaseTransform *phase );
 317   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 318 };
 319 
 320 //------------------------------LoadLNode--------------------------------------
 321 // Load a long from memory
 322 class LoadLNode : public LoadNode {
 323   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 324   virtual uint cmp( const Node &n ) const {
 325     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 326       && LoadNode::cmp(n);
 327   }
 328   virtual uint size_of() const { return sizeof(*this); }
 329   const bool _require_atomic_access;  // is piecewise load forbidden?
 330 
 331 public:
 332   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 333             MemOrd mo, bool require_atomic_access = false)
 334     : LoadNode(c, mem, adr, at, tl, mo), _require_atomic_access(require_atomic_access) {}
 335   virtual int Opcode() const;
 336   virtual uint ideal_reg() const { return Op_RegL; }
 337   virtual int store_Opcode() const { return Op_StoreL; }
 338   virtual BasicType memory_type() const { return T_LONG; }
 339   bool require_atomic_access() const { return _require_atomic_access; }
 340   static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 341                                 const Type* rt, MemOrd mo);
 342 #ifndef PRODUCT
 343   virtual void dump_spec(outputStream *st) const {
 344     LoadNode::dump_spec(st);
 345     if (_require_atomic_access)  st->print(" Atomic!");
 346   }
 347 #endif
 348 };
 349 
 350 //------------------------------LoadL_unalignedNode----------------------------
 351 // Load a long from unaligned memory
 352 class LoadL_unalignedNode : public LoadLNode {
 353 public:
 354   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo)
 355     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo) {}
 356   virtual int Opcode() const;
 357 };
 358 
 359 //------------------------------LoadFNode--------------------------------------
 360 // Load a float (64 bits) from memory
 361 class LoadFNode : public LoadNode {
 362 public:
 363   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo)
 364     : LoadNode(c, mem, adr, at, t, mo) {}
 365   virtual int Opcode() const;
 366   virtual uint ideal_reg() const { return Op_RegF; }
 367   virtual int store_Opcode() const { return Op_StoreF; }
 368   virtual BasicType memory_type() const { return T_FLOAT; }
 369 };
 370 
 371 //------------------------------LoadDNode--------------------------------------
 372 // Load a double (64 bits) from memory
 373 class LoadDNode : public LoadNode {
 374   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 375   virtual uint cmp( const Node &n ) const {
 376     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 377       && LoadNode::cmp(n);
 378   }
 379   virtual uint size_of() const { return sizeof(*this); }
 380   const bool _require_atomic_access;  // is piecewise load forbidden?
 381 
 382 public:
 383   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 384             MemOrd mo, bool require_atomic_access = false)
 385     : LoadNode(c, mem, adr, at, t, mo), _require_atomic_access(require_atomic_access) {}
 386   virtual int Opcode() const;
 387   virtual uint ideal_reg() const { return Op_RegD; }
 388   virtual int store_Opcode() const { return Op_StoreD; }
 389   virtual BasicType memory_type() const { return T_DOUBLE; }
 390   bool require_atomic_access() const { return _require_atomic_access; }
 391   static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 392                                 const Type* rt, MemOrd mo);
 393 #ifndef PRODUCT
 394   virtual void dump_spec(outputStream *st) const {
 395     LoadNode::dump_spec(st);
 396     if (_require_atomic_access)  st->print(" Atomic!");
 397   }
 398 #endif
 399 };
 400 
 401 //------------------------------LoadD_unalignedNode----------------------------
 402 // Load a double from unaligned memory
 403 class LoadD_unalignedNode : public LoadDNode {
 404 public:
 405   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo)
 406     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo) {}
 407   virtual int Opcode() const;
 408 };
 409 
 410 //------------------------------LoadPNode--------------------------------------
 411 // Load a pointer from memory (either object or array)
 412 class LoadPNode : public LoadNode {
 413 public:
 414   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo)
 415     : LoadNode(c, mem, adr, at, t, mo) {}
 416   virtual int Opcode() const;
 417   virtual uint ideal_reg() const { return Op_RegP; }
 418   virtual int store_Opcode() const { return Op_StoreP; }
 419   virtual BasicType memory_type() const { return T_ADDRESS; }
 420 };
 421 
 422 
 423 //------------------------------LoadNNode--------------------------------------
 424 // Load a narrow oop from memory (either object or array)
 425 class LoadNNode : public LoadNode {
 426 public:
 427   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo)
 428     : LoadNode(c, mem, adr, at, t, mo) {}
 429   virtual int Opcode() const;
 430   virtual uint ideal_reg() const { return Op_RegN; }
 431   virtual int store_Opcode() const { return Op_StoreN; }
 432   virtual BasicType memory_type() const { return T_NARROWOOP; }
 433 };
 434 
 435 //------------------------------LoadKlassNode----------------------------------
 436 // Load a Klass from an object
 437 class LoadKlassNode : public LoadPNode {
 438 protected:
 439   // In most cases, LoadKlassNode does not have the control input set. If the control
 440   // input is set, it must not be removed (by LoadNode::Ideal()).
 441   virtual bool can_remove_control() const;
 442 public:
 443   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 444     : LoadPNode(c, mem, adr, at, tk, mo) {}
 445   virtual int Opcode() const;
 446   virtual const Type *Value( PhaseTransform *phase ) const;
 447   virtual Node *Identity( PhaseTransform *phase );
 448   virtual bool depends_only_on_test() const { return true; }
 449 
 450   // Polymorphic factory method:
 451   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 452                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 453 };
 454 
 455 //------------------------------LoadNKlassNode---------------------------------
 456 // Load a narrow Klass from an object.
 457 class LoadNKlassNode : public LoadNNode {
 458 public:
 459   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 460     : LoadNNode(c, mem, adr, at, tk, mo) {}
 461   virtual int Opcode() const;
 462   virtual uint ideal_reg() const { return Op_RegN; }
 463   virtual int store_Opcode() const { return Op_StoreNKlass; }
 464   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 465 
 466   virtual const Type *Value( PhaseTransform *phase ) const;
 467   virtual Node *Identity( PhaseTransform *phase );
 468   virtual bool depends_only_on_test() const { return true; }
 469 };
 470 
 471 
 472 //------------------------------StoreNode--------------------------------------
 473 // Store value; requires Store, Address and Value
 474 class StoreNode : public MemNode {
 475 private:
 476   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 477   // stores that can be reordered, and such requiring release semantics to
 478   // adhere to the Java specification.  The required behaviour is stored in
 479   // this field.
 480   const MemOrd _mo;
 481   // Needed for proper cloning.
 482   virtual uint size_of() const { return sizeof(*this); }
 483 protected:
 484   virtual uint cmp( const Node &n ) const;
 485   virtual bool depends_only_on_test() const { return false; }
 486 
 487   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 488   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 489 
 490 public:
 491   // We must ensure that stores of object references will be visible
 492   // only after the object's initialization. So the callers of this
 493   // procedure must indicate that the store requires `release'
 494   // semantics, if the stored value is an object reference that might
 495   // point to a new object and may become externally visible.
 496   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 497     : MemNode(c, mem, adr, at, val), _mo(mo) {
 498     init_class_id(Class_Store);
 499   }
 500   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 501     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 502     init_class_id(Class_Store);
 503   }
 504 
 505   inline bool is_unordered() const { return !is_release(); }
 506   inline bool is_release() const {
 507     assert((_mo == unordered || _mo == release), "unexpected");
 508     return _mo == release;
 509   }
 510 
 511   // Conservatively release stores of object references in order to
 512   // ensure visibility of object initialization.
 513   static inline MemOrd release_if_reference(const BasicType t) {
 514 #ifdef AARCH64
 515     // AArch64 doesn't need a release store here because object
 516     // initialization contains the necessary barriers.
 517     return unordered;
 518 #else
 519     const MemOrd mo = (t == T_ARRAY ||
 520                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 521                        t == T_OBJECT) ? release : unordered;
 522     return mo;
 523 #endif
 524   }
 525 
 526   // Polymorphic factory method
 527   //
 528   // We must ensure that stores of object references will be visible
 529   // only after the object's initialization. So the callers of this
 530   // procedure must indicate that the store requires `release'
 531   // semantics, if the stored value is an object reference that might
 532   // point to a new object and may become externally visible.
 533   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 534                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 535 
 536   virtual uint hash() const;    // Check the type
 537 
 538   // If the store is to Field memory and the pointer is non-null, we can
 539   // zero out the control input.
 540   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 541 
 542   // Compute a new Type for this node.  Basically we just do the pre-check,
 543   // then call the virtual add() to set the type.
 544   virtual const Type *Value( PhaseTransform *phase ) const;
 545 
 546   // Check for identity function on memory (Load then Store at same address)
 547   virtual Node *Identity( PhaseTransform *phase );
 548 
 549   // Do not match memory edge
 550   virtual uint match_edge(uint idx) const;
 551 
 552   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 553 
 554   // Map a store opcode to its corresponding own opcode, trivially.
 555   virtual int store_Opcode() const { return Opcode(); }
 556 
 557   // have all possible loads of the value stored been optimized away?
 558   bool value_never_loaded(PhaseTransform *phase) const;
 559 };
 560 
 561 //------------------------------StoreBNode-------------------------------------
 562 // Store byte to memory
 563 class StoreBNode : public StoreNode {
 564 public:
 565   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 566     : StoreNode(c, mem, adr, at, val, mo) {}
 567   virtual int Opcode() const;
 568   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 569   virtual BasicType memory_type() const { return T_BYTE; }
 570 };
 571 
 572 //------------------------------StoreCNode-------------------------------------
 573 // Store char/short to memory
 574 class StoreCNode : public StoreNode {
 575 public:
 576   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 577     : StoreNode(c, mem, adr, at, val, mo) {}
 578   virtual int Opcode() const;
 579   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 580   virtual BasicType memory_type() const { return T_CHAR; }
 581 };
 582 
 583 //------------------------------StoreINode-------------------------------------
 584 // Store int to memory
 585 class StoreINode : public StoreNode {
 586 public:
 587   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 588     : StoreNode(c, mem, adr, at, val, mo) {}
 589   virtual int Opcode() const;
 590   virtual BasicType memory_type() const { return T_INT; }
 591 };
 592 
 593 //------------------------------StoreLNode-------------------------------------
 594 // Store long to memory
 595 class StoreLNode : public StoreNode {
 596   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 597   virtual uint cmp( const Node &n ) const {
 598     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 599       && StoreNode::cmp(n);
 600   }
 601   virtual uint size_of() const { return sizeof(*this); }
 602   const bool _require_atomic_access;  // is piecewise store forbidden?
 603 
 604 public:
 605   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 606     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 607   virtual int Opcode() const;
 608   virtual BasicType memory_type() const { return T_LONG; }
 609   bool require_atomic_access() const { return _require_atomic_access; }
 610   static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 611 #ifndef PRODUCT
 612   virtual void dump_spec(outputStream *st) const {
 613     StoreNode::dump_spec(st);
 614     if (_require_atomic_access)  st->print(" Atomic!");
 615   }
 616 #endif
 617 };
 618 
 619 //------------------------------StoreFNode-------------------------------------
 620 // Store float to memory
 621 class StoreFNode : public StoreNode {
 622 public:
 623   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 624     : StoreNode(c, mem, adr, at, val, mo) {}
 625   virtual int Opcode() const;
 626   virtual BasicType memory_type() const { return T_FLOAT; }
 627 };
 628 
 629 //------------------------------StoreDNode-------------------------------------
 630 // Store double to memory
 631 class StoreDNode : public StoreNode {
 632   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 633   virtual uint cmp( const Node &n ) const {
 634     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 635       && StoreNode::cmp(n);
 636   }
 637   virtual uint size_of() const { return sizeof(*this); }
 638   const bool _require_atomic_access;  // is piecewise store forbidden?
 639 public:
 640   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 641              MemOrd mo, bool require_atomic_access = false)
 642     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 643   virtual int Opcode() const;
 644   virtual BasicType memory_type() const { return T_DOUBLE; }
 645   bool require_atomic_access() const { return _require_atomic_access; }
 646   static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 647 #ifndef PRODUCT
 648   virtual void dump_spec(outputStream *st) const {
 649     StoreNode::dump_spec(st);
 650     if (_require_atomic_access)  st->print(" Atomic!");
 651   }
 652 #endif
 653 
 654 };
 655 
 656 //------------------------------StorePNode-------------------------------------
 657 // Store pointer to memory
 658 class StorePNode : public StoreNode {
 659 public:
 660   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 661     : StoreNode(c, mem, adr, at, val, mo) {}
 662   virtual int Opcode() const;
 663   virtual BasicType memory_type() const { return T_ADDRESS; }
 664 };
 665 
 666 //------------------------------StoreNNode-------------------------------------
 667 // Store narrow oop to memory
 668 class StoreNNode : public StoreNode {
 669 public:
 670   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 671     : StoreNode(c, mem, adr, at, val, mo) {}
 672   virtual int Opcode() const;
 673   virtual BasicType memory_type() const { return T_NARROWOOP; }
 674 };
 675 
 676 //------------------------------StoreNKlassNode--------------------------------------
 677 // Store narrow klass to memory
 678 class StoreNKlassNode : public StoreNNode {
 679 public:
 680   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 681     : StoreNNode(c, mem, adr, at, val, mo) {}
 682   virtual int Opcode() const;
 683   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 684 };
 685 
 686 //------------------------------StoreCMNode-----------------------------------
 687 // Store card-mark byte to memory for CM
 688 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 689 // Preceeding equivalent StoreCMs may be eliminated.
 690 class StoreCMNode : public StoreNode {
 691  private:
 692   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 693   virtual uint cmp( const Node &n ) const {
 694     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 695       && StoreNode::cmp(n);
 696   }
 697   virtual uint size_of() const { return sizeof(*this); }
 698   int _oop_alias_idx;   // The alias_idx of OopStore
 699 
 700 public:
 701   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 702     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 703     _oop_alias_idx(oop_alias_idx) {
 704     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 705            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 706            "bad oop alias idx");
 707   }
 708   virtual int Opcode() const;
 709   virtual Node *Identity( PhaseTransform *phase );
 710   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 711   virtual const Type *Value( PhaseTransform *phase ) const;
 712   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 713   int oop_alias_idx() const { return _oop_alias_idx; }
 714 };
 715 
 716 //------------------------------LoadPLockedNode---------------------------------
 717 // Load-locked a pointer from memory (either object or array).
 718 // On Sparc & Intel this is implemented as a normal pointer load.
 719 // On PowerPC and friends it's a real load-locked.
 720 class LoadPLockedNode : public LoadPNode {
 721 public:
 722   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 723     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 724   virtual int Opcode() const;
 725   virtual int store_Opcode() const { return Op_StorePConditional; }
 726   virtual bool depends_only_on_test() const { return true; }
 727 };
 728 
 729 //------------------------------SCMemProjNode---------------------------------------
 730 // This class defines a projection of the memory  state of a store conditional node.
 731 // These nodes return a value, but also update memory.
 732 class SCMemProjNode : public ProjNode {
 733 public:
 734   enum {SCMEMPROJCON = (uint)-2};
 735   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 736   virtual int Opcode() const;
 737   virtual bool      is_CFG() const  { return false; }
 738   virtual const Type *bottom_type() const {return Type::MEMORY;}
 739   virtual const TypePtr *adr_type() const {
 740     Node* ctrl = in(0);
 741     if (ctrl == NULL)  return NULL; // node is dead
 742     return ctrl->in(MemNode::Memory)->adr_type();
 743   }
 744   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 745   virtual const Type *Value( PhaseTransform *phase ) const;
 746 #ifndef PRODUCT
 747   virtual void dump_spec(outputStream *st) const {};
 748 #endif
 749 };
 750 
 751 //------------------------------LoadStoreNode---------------------------
 752 // Note: is_Mem() method returns 'true' for this class.
 753 class LoadStoreNode : public Node {
 754 private:
 755   const Type* const _type;      // What kind of value is loaded?
 756   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 757   virtual uint size_of() const; // Size is bigger
 758 public:
 759   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 760   virtual bool depends_only_on_test() const { return false; }
 761   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 762 
 763   virtual const Type *bottom_type() const { return _type; }
 764   virtual uint ideal_reg() const;
 765   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 766 
 767   bool result_not_used() const;
 768 };
 769 
 770 class LoadStoreConditionalNode : public LoadStoreNode {
 771 public:
 772   enum {
 773     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 774   };
 775   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 776 };
 777 
 778 //------------------------------StorePConditionalNode---------------------------
 779 // Conditionally store pointer to memory, if no change since prior
 780 // load-locked.  Sets flags for success or failure of the store.
 781 class StorePConditionalNode : public LoadStoreConditionalNode {
 782 public:
 783   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 784   virtual int Opcode() const;
 785   // Produces flags
 786   virtual uint ideal_reg() const { return Op_RegFlags; }
 787 };
 788 
 789 //------------------------------StoreIConditionalNode---------------------------
 790 // Conditionally store int to memory, if no change since prior
 791 // load-locked.  Sets flags for success or failure of the store.
 792 class StoreIConditionalNode : public LoadStoreConditionalNode {
 793 public:
 794   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 795   virtual int Opcode() const;
 796   // Produces flags
 797   virtual uint ideal_reg() const { return Op_RegFlags; }
 798 };
 799 
 800 //------------------------------StoreLConditionalNode---------------------------
 801 // Conditionally store long to memory, if no change since prior
 802 // load-locked.  Sets flags for success or failure of the store.
 803 class StoreLConditionalNode : public LoadStoreConditionalNode {
 804 public:
 805   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 806   virtual int Opcode() const;
 807   // Produces flags
 808   virtual uint ideal_reg() const { return Op_RegFlags; }
 809 };
 810 
 811 
 812 //------------------------------CompareAndSwapLNode---------------------------
 813 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 814 public:
 815   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 816   virtual int Opcode() const;
 817 };
 818 
 819 
 820 //------------------------------CompareAndSwapINode---------------------------
 821 class CompareAndSwapINode : public LoadStoreConditionalNode {
 822 public:
 823   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 824   virtual int Opcode() const;
 825 };
 826 
 827 
 828 //------------------------------CompareAndSwapPNode---------------------------
 829 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 830 public:
 831   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 832   virtual int Opcode() const;
 833 };
 834 
 835 //------------------------------CompareAndSwapNNode---------------------------
 836 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 837 public:
 838   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 839   virtual int Opcode() const;
 840 };
 841 
 842 //------------------------------GetAndAddINode---------------------------
 843 class GetAndAddINode : public LoadStoreNode {
 844 public:
 845   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 846   virtual int Opcode() const;
 847 };
 848 
 849 //------------------------------GetAndAddLNode---------------------------
 850 class GetAndAddLNode : public LoadStoreNode {
 851 public:
 852   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 853   virtual int Opcode() const;
 854 };
 855 
 856 
 857 //------------------------------GetAndSetINode---------------------------
 858 class GetAndSetINode : public LoadStoreNode {
 859 public:
 860   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 861   virtual int Opcode() const;
 862 };
 863 
 864 //------------------------------GetAndSetINode---------------------------
 865 class GetAndSetLNode : public LoadStoreNode {
 866 public:
 867   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 868   virtual int Opcode() const;
 869 };
 870 
 871 //------------------------------GetAndSetPNode---------------------------
 872 class GetAndSetPNode : public LoadStoreNode {
 873 public:
 874   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 875   virtual int Opcode() const;
 876 };
 877 
 878 //------------------------------GetAndSetNNode---------------------------
 879 class GetAndSetNNode : public LoadStoreNode {
 880 public:
 881   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 882   virtual int Opcode() const;
 883 };
 884 
 885 //------------------------------ClearArray-------------------------------------
 886 class ClearArrayNode: public Node {
 887 public:
 888   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 889     : Node(ctrl,arymem,word_cnt,base) {
 890     init_class_id(Class_ClearArray);
 891   }
 892   virtual int         Opcode() const;
 893   virtual const Type *bottom_type() const { return Type::MEMORY; }
 894   // ClearArray modifies array elements, and so affects only the
 895   // array memory addressed by the bottom_type of its base address.
 896   virtual const class TypePtr *adr_type() const;
 897   virtual Node *Identity( PhaseTransform *phase );
 898   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 899   virtual uint match_edge(uint idx) const;
 900 
 901   // Clear the given area of an object or array.
 902   // The start offset must always be aligned mod BytesPerInt.
 903   // The end offset must always be aligned mod BytesPerLong.
 904   // Return the new memory.
 905   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 906                             intptr_t start_offset,
 907                             intptr_t end_offset,
 908                             PhaseGVN* phase);
 909   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 910                             intptr_t start_offset,
 911                             Node* end_offset,
 912                             PhaseGVN* phase);
 913   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 914                             Node* start_offset,
 915                             Node* end_offset,
 916                             PhaseGVN* phase);
 917   // Return allocation input memory edge if it is different instance
 918   // or itself if it is the one we are looking for.
 919   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 920 };
 921 
 922 //------------------------------MemBar-----------------------------------------
 923 // There are different flavors of Memory Barriers to match the Java Memory
 924 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
 925 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
 926 // volatile-load.  Monitor-exit and volatile-store act as Release: no
 927 // preceding ref can be moved to after them.  We insert a MemBar-Release
 928 // before a FastUnlock or volatile-store.  All volatiles need to be
 929 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
 930 // separate it from any following volatile-load.
 931 class MemBarNode: public MultiNode {
 932   virtual uint hash() const ;                  // { return NO_HASH; }
 933   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 934 
 935   virtual uint size_of() const { return sizeof(*this); }
 936   // Memory type this node is serializing.  Usually either rawptr or bottom.
 937   const TypePtr* _adr_type;
 938 
 939 public:
 940   enum {
 941     Precedent = TypeFunc::Parms  // optional edge to force precedence
 942   };
 943   MemBarNode(Compile* C, int alias_idx, Node* precedent);
 944   virtual int Opcode() const = 0;
 945   virtual const class TypePtr *adr_type() const { return _adr_type; }
 946   virtual const Type *Value( PhaseTransform *phase ) const;
 947   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 948   virtual uint match_edge(uint idx) const { return 0; }
 949   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
 950   virtual Node *match( const ProjNode *proj, const Matcher *m );
 951   // Factory method.  Builds a wide or narrow membar.
 952   // Optional 'precedent' becomes an extra edge if not null.
 953   static MemBarNode* make(Compile* C, int opcode,
 954                           int alias_idx = Compile::AliasIdxBot,
 955                           Node* precedent = NULL);
 956 };
 957 
 958 // "Acquire" - no following ref can move before (but earlier refs can
 959 // follow, like an early Load stalled in cache).  Requires multi-cpu
 960 // visibility.  Inserted after a volatile load.
 961 class MemBarAcquireNode: public MemBarNode {
 962 public:
 963   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
 964     : MemBarNode(C, alias_idx, precedent) {}
 965   virtual int Opcode() const;
 966 };
 967 
 968 // "Acquire" - no following ref can move before (but earlier refs can
 969 // follow, like an early Load stalled in cache).  Requires multi-cpu
 970 // visibility.  Inserted independ of any load, as required
 971 // for intrinsic sun.misc.Unsafe.loadFence().
 972 class LoadFenceNode: public MemBarNode {
 973 public:
 974   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
 975     : MemBarNode(C, alias_idx, precedent) {}
 976   virtual int Opcode() const;
 977 };
 978 
 979 // "Release" - no earlier ref can move after (but later refs can move
 980 // up, like a speculative pipelined cache-hitting Load).  Requires
 981 // multi-cpu visibility.  Inserted before a volatile store.
 982 class MemBarReleaseNode: public MemBarNode {
 983 public:
 984   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
 985     : MemBarNode(C, alias_idx, precedent) {}
 986   virtual int Opcode() const;
 987 };
 988 
 989 // "Release" - no earlier ref can move after (but later refs can move
 990 // up, like a speculative pipelined cache-hitting Load).  Requires
 991 // multi-cpu visibility.  Inserted independent of any store, as required
 992 // for intrinsic sun.misc.Unsafe.storeFence().
 993 class StoreFenceNode: public MemBarNode {
 994 public:
 995   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
 996     : MemBarNode(C, alias_idx, precedent) {}
 997   virtual int Opcode() const;
 998 };
 999 
1000 // "Acquire" - no following ref can move before (but earlier refs can
1001 // follow, like an early Load stalled in cache).  Requires multi-cpu
1002 // visibility.  Inserted after a FastLock.
1003 class MemBarAcquireLockNode: public MemBarNode {
1004 public:
1005   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1006     : MemBarNode(C, alias_idx, precedent) {}
1007   virtual int Opcode() const;
1008 };
1009 
1010 // "Release" - no earlier ref can move after (but later refs can move
1011 // up, like a speculative pipelined cache-hitting Load).  Requires
1012 // multi-cpu visibility.  Inserted before a FastUnLock.
1013 class MemBarReleaseLockNode: public MemBarNode {
1014 public:
1015   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1016     : MemBarNode(C, alias_idx, precedent) {}
1017   virtual int Opcode() const;
1018 };
1019 
1020 class MemBarStoreStoreNode: public MemBarNode {
1021 public:
1022   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1023     : MemBarNode(C, alias_idx, precedent) {
1024     init_class_id(Class_MemBarStoreStore);
1025   }
1026   virtual int Opcode() const;
1027 };
1028 
1029 // Ordering between a volatile store and a following volatile load.
1030 // Requires multi-CPU visibility?
1031 class MemBarVolatileNode: public MemBarNode {
1032 public:
1033   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1034     : MemBarNode(C, alias_idx, precedent) {}
1035   virtual int Opcode() const;
1036 };
1037 
1038 // Ordering within the same CPU.  Used to order unsafe memory references
1039 // inside the compiler when we lack alias info.  Not needed "outside" the
1040 // compiler because the CPU does all the ordering for us.
1041 class MemBarCPUOrderNode: public MemBarNode {
1042 public:
1043   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1044     : MemBarNode(C, alias_idx, precedent) {}
1045   virtual int Opcode() const;
1046   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1047 };
1048 
1049 // Isolation of object setup after an AllocateNode and before next safepoint.
1050 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1051 class InitializeNode: public MemBarNode {
1052   friend class AllocateNode;
1053 
1054   enum {
1055     Incomplete    = 0,
1056     Complete      = 1,
1057     WithArraycopy = 2
1058   };
1059   int _is_complete;
1060 
1061   bool _does_not_escape;
1062 
1063 public:
1064   enum {
1065     Control    = TypeFunc::Control,
1066     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1067     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1068     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1069   };
1070 
1071   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1072   virtual int Opcode() const;
1073   virtual uint size_of() const { return sizeof(*this); }
1074   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1075   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1076 
1077   // Manage incoming memory edges via a MergeMem on in(Memory):
1078   Node* memory(uint alias_idx);
1079 
1080   // The raw memory edge coming directly from the Allocation.
1081   // The contents of this memory are *always* all-zero-bits.
1082   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1083 
1084   // Return the corresponding allocation for this initialization (or null if none).
1085   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1086   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1087   AllocateNode* allocation();
1088 
1089   // Anything other than zeroing in this init?
1090   bool is_non_zero();
1091 
1092   // An InitializeNode must completed before macro expansion is done.
1093   // Completion requires that the AllocateNode must be followed by
1094   // initialization of the new memory to zero, then to any initializers.
1095   bool is_complete() { return _is_complete != Incomplete; }
1096   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1097 
1098   // Mark complete.  (Must not yet be complete.)
1099   void set_complete(PhaseGVN* phase);
1100   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1101 
1102   bool does_not_escape() { return _does_not_escape; }
1103   void set_does_not_escape() { _does_not_escape = true; }
1104 
1105 #ifdef ASSERT
1106   // ensure all non-degenerate stores are ordered and non-overlapping
1107   bool stores_are_sane(PhaseTransform* phase);
1108 #endif //ASSERT
1109 
1110   // See if this store can be captured; return offset where it initializes.
1111   // Return 0 if the store cannot be moved (any sort of problem).
1112   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1113 
1114   // Capture another store; reformat it to write my internal raw memory.
1115   // Return the captured copy, else NULL if there is some sort of problem.
1116   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1117 
1118   // Find captured store which corresponds to the range [start..start+size).
1119   // Return my own memory projection (meaning the initial zero bits)
1120   // if there is no such store.  Return NULL if there is a problem.
1121   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1122 
1123   // Called when the associated AllocateNode is expanded into CFG.
1124   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1125                         intptr_t header_size, Node* size_in_bytes,
1126                         PhaseGVN* phase);
1127 
1128  private:
1129   void remove_extra_zeroes();
1130 
1131   // Find out where a captured store should be placed (or already is placed).
1132   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1133                                      PhaseTransform* phase);
1134 
1135   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1136 
1137   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1138 
1139   bool detect_init_independence(Node* n, int& count);
1140 
1141   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1142                                PhaseGVN* phase);
1143 
1144   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1145 };
1146 
1147 //------------------------------MergeMem---------------------------------------
1148 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1149 class MergeMemNode: public Node {
1150   virtual uint hash() const ;                  // { return NO_HASH; }
1151   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1152   friend class MergeMemStream;
1153   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1154 
1155 public:
1156   // If the input is a whole memory state, clone it with all its slices intact.
1157   // Otherwise, make a new memory state with just that base memory input.
1158   // In either case, the result is a newly created MergeMem.
1159   static MergeMemNode* make(Node* base_memory);
1160 
1161   virtual int Opcode() const;
1162   virtual Node *Identity( PhaseTransform *phase );
1163   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1164   virtual uint ideal_reg() const { return NotAMachineReg; }
1165   virtual uint match_edge(uint idx) const { return 0; }
1166   virtual const RegMask &out_RegMask() const;
1167   virtual const Type *bottom_type() const { return Type::MEMORY; }
1168   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1169   // sparse accessors
1170   // Fetch the previously stored "set_memory_at", or else the base memory.
1171   // (Caller should clone it if it is a phi-nest.)
1172   Node* memory_at(uint alias_idx) const;
1173   // set the memory, regardless of its previous value
1174   void set_memory_at(uint alias_idx, Node* n);
1175   // the "base" is the memory that provides the non-finite support
1176   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1177   // warning: setting the base can implicitly set any of the other slices too
1178   void set_base_memory(Node* def);
1179   // sentinel value which denotes a copy of the base memory:
1180   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1181   static Node* make_empty_memory(); // where the sentinel comes from
1182   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1183   // hook for the iterator, to perform any necessary setup
1184   void iteration_setup(const MergeMemNode* other = NULL);
1185   // push sentinels until I am at least as long as the other (semantic no-op)
1186   void grow_to_match(const MergeMemNode* other);
1187   bool verify_sparse() const PRODUCT_RETURN0;
1188 #ifndef PRODUCT
1189   virtual void dump_spec(outputStream *st) const;
1190 #endif
1191 };
1192 
1193 class MergeMemStream : public StackObj {
1194  private:
1195   MergeMemNode*       _mm;
1196   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1197   Node*               _mm_base;  // loop-invariant base memory of _mm
1198   int                 _idx;
1199   int                 _cnt;
1200   Node*               _mem;
1201   Node*               _mem2;
1202   int                 _cnt2;
1203 
1204   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1205     // subsume_node will break sparseness at times, whenever a memory slice
1206     // folds down to a copy of the base ("fat") memory.  In such a case,
1207     // the raw edge will update to base, although it should be top.
1208     // This iterator will recognize either top or base_memory as an
1209     // "empty" slice.  See is_empty, is_empty2, and next below.
1210     //
1211     // The sparseness property is repaired in MergeMemNode::Ideal.
1212     // As long as access to a MergeMem goes through this iterator
1213     // or the memory_at accessor, flaws in the sparseness will
1214     // never be observed.
1215     //
1216     // Also, iteration_setup repairs sparseness.
1217     assert(mm->verify_sparse(), "please, no dups of base");
1218     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1219 
1220     _mm  = mm;
1221     _mm_base = mm->base_memory();
1222     _mm2 = mm2;
1223     _cnt = mm->req();
1224     _idx = Compile::AliasIdxBot-1; // start at the base memory
1225     _mem = NULL;
1226     _mem2 = NULL;
1227   }
1228 
1229 #ifdef ASSERT
1230   Node* check_memory() const {
1231     if (at_base_memory())
1232       return _mm->base_memory();
1233     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1234       return _mm->memory_at(_idx);
1235     else
1236       return _mm_base;
1237   }
1238   Node* check_memory2() const {
1239     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1240   }
1241 #endif
1242 
1243   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1244   void assert_synch() const {
1245     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1246            "no side-effects except through the stream");
1247   }
1248 
1249  public:
1250 
1251   // expected usages:
1252   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1253   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1254 
1255   // iterate over one merge
1256   MergeMemStream(MergeMemNode* mm) {
1257     mm->iteration_setup();
1258     init(mm);
1259     debug_only(_cnt2 = 999);
1260   }
1261   // iterate in parallel over two merges
1262   // only iterates through non-empty elements of mm2
1263   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1264     assert(mm2, "second argument must be a MergeMem also");
1265     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1266     mm->iteration_setup(mm2);
1267     init(mm, mm2);
1268     _cnt2 = mm2->req();
1269   }
1270 #ifdef ASSERT
1271   ~MergeMemStream() {
1272     assert_synch();
1273   }
1274 #endif
1275 
1276   MergeMemNode* all_memory() const {
1277     return _mm;
1278   }
1279   Node* base_memory() const {
1280     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1281     return _mm_base;
1282   }
1283   const MergeMemNode* all_memory2() const {
1284     assert(_mm2 != NULL, "");
1285     return _mm2;
1286   }
1287   bool at_base_memory() const {
1288     return _idx == Compile::AliasIdxBot;
1289   }
1290   int alias_idx() const {
1291     assert(_mem, "must call next 1st");
1292     return _idx;
1293   }
1294 
1295   const TypePtr* adr_type() const {
1296     return Compile::current()->get_adr_type(alias_idx());
1297   }
1298 
1299   const TypePtr* adr_type(Compile* C) const {
1300     return C->get_adr_type(alias_idx());
1301   }
1302   bool is_empty() const {
1303     assert(_mem, "must call next 1st");
1304     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1305     return _mem->is_top();
1306   }
1307   bool is_empty2() const {
1308     assert(_mem2, "must call next 1st");
1309     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1310     return _mem2->is_top();
1311   }
1312   Node* memory() const {
1313     assert(!is_empty(), "must not be empty");
1314     assert_synch();
1315     return _mem;
1316   }
1317   // get the current memory, regardless of empty or non-empty status
1318   Node* force_memory() const {
1319     assert(!is_empty() || !at_base_memory(), "");
1320     // Use _mm_base to defend against updates to _mem->base_memory().
1321     Node *mem = _mem->is_top() ? _mm_base : _mem;
1322     assert(mem == check_memory(), "");
1323     return mem;
1324   }
1325   Node* memory2() const {
1326     assert(_mem2 == check_memory2(), "");
1327     return _mem2;
1328   }
1329   void set_memory(Node* mem) {
1330     if (at_base_memory()) {
1331       // Note that this does not change the invariant _mm_base.
1332       _mm->set_base_memory(mem);
1333     } else {
1334       _mm->set_memory_at(_idx, mem);
1335     }
1336     _mem = mem;
1337     assert_synch();
1338   }
1339 
1340   // Recover from a side effect to the MergeMemNode.
1341   void set_memory() {
1342     _mem = _mm->in(_idx);
1343   }
1344 
1345   bool next()  { return next(false); }
1346   bool next2() { return next(true); }
1347 
1348   bool next_non_empty()  { return next_non_empty(false); }
1349   bool next_non_empty2() { return next_non_empty(true); }
1350   // next_non_empty2 can yield states where is_empty() is true
1351 
1352  private:
1353   // find the next item, which might be empty
1354   bool next(bool have_mm2) {
1355     assert((_mm2 != NULL) == have_mm2, "use other next");
1356     assert_synch();
1357     if (++_idx < _cnt) {
1358       // Note:  This iterator allows _mm to be non-sparse.
1359       // It behaves the same whether _mem is top or base_memory.
1360       _mem = _mm->in(_idx);
1361       if (have_mm2)
1362         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1363       return true;
1364     }
1365     return false;
1366   }
1367 
1368   // find the next non-empty item
1369   bool next_non_empty(bool have_mm2) {
1370     while (next(have_mm2)) {
1371       if (!is_empty()) {
1372         // make sure _mem2 is filled in sensibly
1373         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1374         return true;
1375       } else if (have_mm2 && !is_empty2()) {
1376         return true;   // is_empty() == true
1377       }
1378     }
1379     return false;
1380   }
1381 };
1382 
1383 //------------------------------Prefetch---------------------------------------
1384 
1385 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1386 class PrefetchAllocationNode : public Node {
1387 public:
1388   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1389   virtual int Opcode() const;
1390   virtual uint ideal_reg() const { return NotAMachineReg; }
1391   virtual uint match_edge(uint idx) const { return idx==2; }
1392   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1393 };
1394 
1395 #endif // SHARE_VM_OPTO_MEMNODE_HPP