1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/phaseX.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "runtime/deoptimization.hpp"
  38 
  39 // Portions of code courtesy of Clifford Click
  40 
  41 // Optimization - Graph Style
  42 
  43 // To avoid float value underflow
  44 #define MIN_BLOCK_FREQUENCY 1.e-35f
  45 
  46 //----------------------------schedule_node_into_block-------------------------
  47 // Insert node n into block b. Look for projections of n and make sure they
  48 // are in b also.
  49 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  50   // Set basic block of n, Add n to b,
  51   map_node_to_block(n, b);
  52   b->add_inst(n);
  53 
  54   // After Matching, nearly any old Node may have projections trailing it.
  55   // These are usually machine-dependent flags.  In any case, they might
  56   // float to another block below this one.  Move them up.
  57   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  58     Node*  use  = n->fast_out(i);
  59     if (use->is_Proj()) {
  60       Block* buse = get_block_for_node(use);
  61       if (buse != b) {              // In wrong block?
  62         if (buse != NULL) {
  63           buse->find_remove(use);   // Remove from wrong block
  64         }
  65         map_node_to_block(use, b);
  66         b->add_inst(use);
  67       }
  68     }
  69   }
  70 }
  71 
  72 //----------------------------replace_block_proj_ctrl-------------------------
  73 // Nodes that have is_block_proj() nodes as their control need to use
  74 // the appropriate Region for their actual block as their control since
  75 // the projection will be in a predecessor block.
  76 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  77   const Node *in0 = n->in(0);
  78   assert(in0 != NULL, "Only control-dependent");
  79   const Node *p = in0->is_block_proj();
  80   if (p != NULL && p != n) {    // Control from a block projection?
  81     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
  82     // Find trailing Region
  83     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
  84     uint j = 0;
  85     if (pb->_num_succs != 1) {  // More then 1 successor?
  86       // Search for successor
  87       uint max = pb->number_of_nodes();
  88       assert( max > 1, "" );
  89       uint start = max - pb->_num_succs;
  90       // Find which output path belongs to projection
  91       for (j = start; j < max; j++) {
  92         if( pb->get_node(j) == in0 )
  93           break;
  94       }
  95       assert( j < max, "must find" );
  96       // Change control to match head of successor basic block
  97       j -= start;
  98     }
  99     n->set_req(0, pb->_succs[j]->head());
 100   }
 101 }
 102 
 103 static bool is_dominator(Block* d, Block* n) {
 104   return d->dom_lca(n) == d;
 105 }
 106 
 107 //------------------------------schedule_pinned_nodes--------------------------
 108 // Set the basic block for Nodes pinned into blocks
 109 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
 110   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
 111   GrowableArray <Node *> spstack(C->unique() + 8);
 112   spstack.push(_root);
 113   while (spstack.is_nonempty()) {
 114     Node* node = spstack.pop();
 115     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
 116       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
 117         assert(node->in(0), "pinned Node must have Control");
 118         // Before setting block replace block_proj control edge
 119         replace_block_proj_ctrl(node);
 120         Node* input = node->in(0);
 121         while (!input->is_block_start()) {
 122           input = input->in(0);
 123         }
 124         Block* block = get_block_for_node(input); // Basic block of controlling input
 125         schedule_node_into_block(node, block);
 126       }
 127 
 128       // If the node has precedence edges (added when CastPP nodes are
 129       // removed in final_graph_reshaping), fix the control of the
 130       // node to cover the precedence edges and remove the
 131       // dependencies.
 132       Node* n = NULL;
 133       for (uint i = node->len()-1; i >= node->req(); i--) {
 134         Node* m = node->in(i);
 135         if (m == NULL) continue;
 136         // See Compile::final_graph_reshaping_impl(): we expect a test
 137         // or a Region here.
 138         if (m->is_block_proj() || m->is_block_start()) {
 139           node->rm_prec(i);
 140           if (n == NULL) {
 141             n = m;
 142           } else {
 143             Block* bn = get_block_for_node(n);
 144             Block* bm = get_block_for_node(m);
 145             n = is_dominator(bn, bm) ? m : n;
 146           }
 147         }
 148       }
 149       if (n != NULL) {
 150         assert(node->in(0), "control should have been set");
 151         Block* bn = get_block_for_node(n);
 152         Block* bnode = get_block_for_node(node->in(0));
 153         if (!is_dominator(bn, bnode)) {
 154           node->set_req(0, n);
 155         }
 156       }
 157 
 158       // process all inputs that are non NULL
 159       for (int i = node->req() - 1; i >= 0; --i) {
 160         if (node->in(i) != NULL) {
 161           spstack.push(node->in(i));
 162         }
 163       }
 164     }
 165   }
 166 }
 167 
 168 #ifdef ASSERT
 169 // Assert that new input b2 is dominated by all previous inputs.
 170 // Check this by by seeing that it is dominated by b1, the deepest
 171 // input observed until b2.
 172 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
 173   if (b1 == NULL)  return;
 174   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 175   Block* tmp = b2;
 176   while (tmp != b1 && tmp != NULL) {
 177     tmp = tmp->_idom;
 178   }
 179   if (tmp != b1) {
 180     // Detected an unschedulable graph.  Print some nice stuff and die.
 181     tty->print_cr("!!! Unschedulable graph !!!");
 182     for (uint j=0; j<n->len(); j++) { // For all inputs
 183       Node* inn = n->in(j); // Get input
 184       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 185       Block* inb = cfg->get_block_for_node(inn);
 186       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 187                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 188       inn->dump();
 189     }
 190     tty->print("Failing node: ");
 191     n->dump();
 192     assert(false, "unscheduable graph");
 193   }
 194 }
 195 #endif
 196 
 197 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
 198   // Find the last input dominated by all other inputs.
 199   Block* deepb           = NULL;        // Deepest block so far
 200   int    deepb_dom_depth = 0;
 201   for (uint k = 0; k < n->len(); k++) { // For all inputs
 202     Node* inn = n->in(k);               // Get input
 203     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 204     Block* inb = cfg->get_block_for_node(inn);
 205     assert(inb != NULL, "must already have scheduled this input");
 206     if (deepb_dom_depth < (int) inb->_dom_depth) {
 207       // The new inb must be dominated by the previous deepb.
 208       // The various inputs must be linearly ordered in the dom
 209       // tree, or else there will not be a unique deepest block.
 210       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
 211       deepb = inb;                      // Save deepest block
 212       deepb_dom_depth = deepb->_dom_depth;
 213     }
 214   }
 215   assert(deepb != NULL, "must be at least one input to n");
 216   return deepb;
 217 }
 218 
 219 
 220 //------------------------------schedule_early---------------------------------
 221 // Find the earliest Block any instruction can be placed in.  Some instructions
 222 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 223 // which all their inputs occur.
 224 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 225   // Allocate stack with enough space to avoid frequent realloc
 226   Node_Stack nstack(roots.Size() + 8);
 227   // _root will be processed among C->top() inputs
 228   roots.push(C->top());
 229   visited.set(C->top()->_idx);
 230 
 231   while (roots.size() != 0) {
 232     // Use local variables nstack_top_n & nstack_top_i to cache values
 233     // on stack's top.
 234     Node* parent_node = roots.pop();
 235     uint  input_index = 0;
 236 
 237     while (true) {
 238       if (input_index == 0) {
 239         // Fixup some control.  Constants without control get attached
 240         // to root and nodes that use is_block_proj() nodes should be attached
 241         // to the region that starts their block.
 242         const Node* control_input = parent_node->in(0);
 243         if (control_input != NULL) {
 244           replace_block_proj_ctrl(parent_node);
 245         } else {
 246           // Is a constant with NO inputs?
 247           if (parent_node->req() == 1) {
 248             parent_node->set_req(0, _root);
 249           }
 250         }
 251       }
 252 
 253       // First, visit all inputs and force them to get a block.  If an
 254       // input is already in a block we quit following inputs (to avoid
 255       // cycles). Instead we put that Node on a worklist to be handled
 256       // later (since IT'S inputs may not have a block yet).
 257 
 258       // Assume all n's inputs will be processed
 259       bool done = true;
 260 
 261       while (input_index < parent_node->len()) {
 262         Node* in = parent_node->in(input_index++);
 263         if (in == NULL) {
 264           continue;
 265         }
 266 
 267         int is_visited = visited.test_set(in->_idx);
 268         if (!has_block(in)) {
 269           if (is_visited) {
 270             return false;
 271           }
 272           // Save parent node and next input's index.
 273           nstack.push(parent_node, input_index);
 274           // Process current input now.
 275           parent_node = in;
 276           input_index = 0;
 277           // Not all n's inputs processed.
 278           done = false;
 279           break;
 280         } else if (!is_visited) {
 281           // Visit this guy later, using worklist
 282           roots.push(in);
 283         }
 284       }
 285 
 286       if (done) {
 287         // All of n's inputs have been processed, complete post-processing.
 288 
 289         // Some instructions are pinned into a block.  These include Region,
 290         // Phi, Start, Return, and other control-dependent instructions and
 291         // any projections which depend on them.
 292         if (!parent_node->pinned()) {
 293           // Set earliest legal block.
 294           Block* earliest_block = find_deepest_input(parent_node, this);
 295           map_node_to_block(parent_node, earliest_block);
 296         } else {
 297           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
 298         }
 299 
 300         if (nstack.is_empty()) {
 301           // Finished all nodes on stack.
 302           // Process next node on the worklist 'roots'.
 303           break;
 304         }
 305         // Get saved parent node and next input's index.
 306         parent_node = nstack.node();
 307         input_index = nstack.index();
 308         nstack.pop();
 309       }
 310     }
 311   }
 312   return true;
 313 }
 314 
 315 //------------------------------dom_lca----------------------------------------
 316 // Find least common ancestor in dominator tree
 317 // LCA is a current notion of LCA, to be raised above 'this'.
 318 // As a convenient boundary condition, return 'this' if LCA is NULL.
 319 // Find the LCA of those two nodes.
 320 Block* Block::dom_lca(Block* LCA) {
 321   if (LCA == NULL || LCA == this)  return this;
 322 
 323   Block* anc = this;
 324   while (anc->_dom_depth > LCA->_dom_depth)
 325     anc = anc->_idom;           // Walk up till anc is as high as LCA
 326 
 327   while (LCA->_dom_depth > anc->_dom_depth)
 328     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 329 
 330   while (LCA != anc) {          // Walk both up till they are the same
 331     LCA = LCA->_idom;
 332     anc = anc->_idom;
 333   }
 334 
 335   return LCA;
 336 }
 337 
 338 //--------------------------raise_LCA_above_use--------------------------------
 339 // We are placing a definition, and have been given a def->use edge.
 340 // The definition must dominate the use, so move the LCA upward in the
 341 // dominator tree to dominate the use.  If the use is a phi, adjust
 342 // the LCA only with the phi input paths which actually use this def.
 343 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
 344   Block* buse = cfg->get_block_for_node(use);
 345   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 346   if (!use->is_Phi())  return buse->dom_lca(LCA);
 347   uint pmax = use->req();       // Number of Phi inputs
 348   // Why does not this loop just break after finding the matching input to
 349   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 350   // chains.  Means I cannot distinguish, from the def-use direction, which
 351   // of many use-defs lead from the same use to the same def.  That is, this
 352   // Phi might have several uses of the same def.  Each use appears in a
 353   // different predecessor block.  But when I enter here, I cannot distinguish
 354   // which use-def edge I should find the predecessor block for.  So I find
 355   // them all.  Means I do a little extra work if a Phi uses the same value
 356   // more than once.
 357   for (uint j=1; j<pmax; j++) { // For all inputs
 358     if (use->in(j) == def) {    // Found matching input?
 359       Block* pred = cfg->get_block_for_node(buse->pred(j));
 360       LCA = pred->dom_lca(LCA);
 361     }
 362   }
 363   return LCA;
 364 }
 365 
 366 //----------------------------raise_LCA_above_marks----------------------------
 367 // Return a new LCA that dominates LCA and any of its marked predecessors.
 368 // Search all my parents up to 'early' (exclusive), looking for predecessors
 369 // which are marked with the given index.  Return the LCA (in the dom tree)
 370 // of all marked blocks.  If there are none marked, return the original
 371 // LCA.
 372 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
 373   Block_List worklist;
 374   worklist.push(LCA);
 375   while (worklist.size() > 0) {
 376     Block* mid = worklist.pop();
 377     if (mid == early)  continue;  // stop searching here
 378 
 379     // Test and set the visited bit.
 380     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 381 
 382     // Don't process the current LCA, otherwise the search may terminate early
 383     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 384       // Raise the LCA.
 385       LCA = mid->dom_lca(LCA);
 386       if (LCA == early)  break;   // stop searching everywhere
 387       assert(early->dominates(LCA), "early is high enough");
 388       // Resume searching at that point, skipping intermediate levels.
 389       worklist.push(LCA);
 390       if (LCA == mid)
 391         continue; // Don't mark as visited to avoid early termination.
 392     } else {
 393       // Keep searching through this block's predecessors.
 394       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 395         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
 396         worklist.push(mid_parent);
 397       }
 398     }
 399     mid->set_raise_LCA_visited(mark);
 400   }
 401   return LCA;
 402 }
 403 
 404 //--------------------------memory_early_block--------------------------------
 405 // This is a variation of find_deepest_input, the heart of schedule_early.
 406 // Find the "early" block for a load, if we considered only memory and
 407 // address inputs, that is, if other data inputs were ignored.
 408 //
 409 // Because a subset of edges are considered, the resulting block will
 410 // be earlier (at a shallower dom_depth) than the true schedule_early
 411 // point of the node. We compute this earlier block as a more permissive
 412 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 413 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
 414   Node* base;
 415   Node* index;
 416   Node* store = load->in(MemNode::Memory);
 417   load->as_Mach()->memory_inputs(base, index);
 418 
 419   assert(base != NodeSentinel && index != NodeSentinel,
 420          "unexpected base/index inputs");
 421 
 422   Node* mem_inputs[4];
 423   int mem_inputs_length = 0;
 424   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 425   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 426   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 427 
 428   // In the comparision below, add one to account for the control input,
 429   // which may be null, but always takes up a spot in the in array.
 430   if (mem_inputs_length + 1 < (int) load->req()) {
 431     // This "load" has more inputs than just the memory, base and index inputs.
 432     // For purposes of checking anti-dependences, we need to start
 433     // from the early block of only the address portion of the instruction,
 434     // and ignore other blocks that may have factored into the wider
 435     // schedule_early calculation.
 436     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 437 
 438     Block* deepb           = NULL;        // Deepest block so far
 439     int    deepb_dom_depth = 0;
 440     for (int i = 0; i < mem_inputs_length; i++) {
 441       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
 442       if (deepb_dom_depth < (int) inb->_dom_depth) {
 443         // The new inb must be dominated by the previous deepb.
 444         // The various inputs must be linearly ordered in the dom
 445         // tree, or else there will not be a unique deepest block.
 446         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
 447         deepb = inb;                      // Save deepest block
 448         deepb_dom_depth = deepb->_dom_depth;
 449       }
 450     }
 451     early = deepb;
 452   }
 453 
 454   return early;
 455 }
 456 
 457 //--------------------------insert_anti_dependences---------------------------
 458 // A load may need to witness memory that nearby stores can overwrite.
 459 // For each nearby store, either insert an "anti-dependence" edge
 460 // from the load to the store, or else move LCA upward to force the
 461 // load to (eventually) be scheduled in a block above the store.
 462 //
 463 // Do not add edges to stores on distinct control-flow paths;
 464 // only add edges to stores which might interfere.
 465 //
 466 // Return the (updated) LCA.  There will not be any possibly interfering
 467 // store between the load's "early block" and the updated LCA.
 468 // Any stores in the updated LCA will have new precedence edges
 469 // back to the load.  The caller is expected to schedule the load
 470 // in the LCA, in which case the precedence edges will make LCM
 471 // preserve anti-dependences.  The caller may also hoist the load
 472 // above the LCA, if it is not the early block.
 473 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 474   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 475   assert(LCA != NULL, "");
 476   DEBUG_ONLY(Block* LCA_orig = LCA);
 477 
 478   // Compute the alias index.  Loads and stores with different alias indices
 479   // do not need anti-dependence edges.
 480   uint load_alias_idx = C->get_alias_index(load->adr_type());
 481 #ifdef ASSERT
 482   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 483       (PrintOpto || VerifyAliases ||
 484        PrintMiscellaneous && (WizardMode || Verbose))) {
 485     // Load nodes should not consume all of memory.
 486     // Reporting a bottom type indicates a bug in adlc.
 487     // If some particular type of node validly consumes all of memory,
 488     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 489     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 490     load->dump(2);
 491     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 492   }
 493 #endif
 494   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 495          "String compare is only known 'load' that does not conflict with any stores");
 496   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 497          "String equals is a 'load' that does not conflict with any stores");
 498   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 499          "String indexOf is a 'load' that does not conflict with any stores");
 500   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 501          "Arrays equals is a 'load' that do not conflict with any stores");
 502 
 503   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 504     // It is impossible to spoil this load by putting stores before it,
 505     // because we know that the stores will never update the value
 506     // which 'load' must witness.
 507     return LCA;
 508   }
 509 
 510   node_idx_t load_index = load->_idx;
 511 
 512   // Note the earliest legal placement of 'load', as determined by
 513   // by the unique point in the dom tree where all memory effects
 514   // and other inputs are first available.  (Computed by schedule_early.)
 515   // For normal loads, 'early' is the shallowest place (dom graph wise)
 516   // to look for anti-deps between this load and any store.
 517   Block* early = get_block_for_node(load);
 518 
 519   // If we are subsuming loads, compute an "early" block that only considers
 520   // memory or address inputs. This block may be different than the
 521   // schedule_early block in that it could be at an even shallower depth in the
 522   // dominator tree, and allow for a broader discovery of anti-dependences.
 523   if (C->subsume_loads()) {
 524     early = memory_early_block(load, early, this);
 525   }
 526 
 527   ResourceArea *area = Thread::current()->resource_area();
 528   Node_List worklist_mem(area);     // prior memory state to store
 529   Node_List worklist_store(area);   // possible-def to explore
 530   Node_List worklist_visited(area); // visited mergemem nodes
 531   Node_List non_early_stores(area); // all relevant stores outside of early
 532   bool must_raise_LCA = false;
 533 
 534 #ifdef TRACK_PHI_INPUTS
 535   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 536   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 537   // original memory state.  This indicates a PhiNode for which should not
 538   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 539   // may be overly conservative.
 540   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 541   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 542 #endif
 543 
 544   // 'load' uses some memory state; look for users of the same state.
 545   // Recurse through MergeMem nodes to the stores that use them.
 546 
 547   // Each of these stores is a possible definition of memory
 548   // that 'load' needs to use.  We need to force 'load'
 549   // to occur before each such store.  When the store is in
 550   // the same block as 'load', we insert an anti-dependence
 551   // edge load->store.
 552 
 553   // The relevant stores "nearby" the load consist of a tree rooted
 554   // at initial_mem, with internal nodes of type MergeMem.
 555   // Therefore, the branches visited by the worklist are of this form:
 556   //    initial_mem -> (MergeMem ->)* store
 557   // The anti-dependence constraints apply only to the fringe of this tree.
 558 
 559   Node* initial_mem = load->in(MemNode::Memory);
 560   worklist_store.push(initial_mem);
 561   worklist_visited.push(initial_mem);
 562   worklist_mem.push(NULL);
 563   while (worklist_store.size() > 0) {
 564     // Examine a nearby store to see if it might interfere with our load.
 565     Node* mem   = worklist_mem.pop();
 566     Node* store = worklist_store.pop();
 567     uint op = store->Opcode();
 568 
 569     // MergeMems do not directly have anti-deps.
 570     // Treat them as internal nodes in a forward tree of memory states,
 571     // the leaves of which are each a 'possible-def'.
 572     if (store == initial_mem    // root (exclusive) of tree we are searching
 573         || op == Op_MergeMem    // internal node of tree we are searching
 574         ) {
 575       mem = store;   // It's not a possibly interfering store.
 576       if (store == initial_mem)
 577         initial_mem = NULL;  // only process initial memory once
 578 
 579       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 580         store = mem->fast_out(i);
 581         if (store->is_MergeMem()) {
 582           // Be sure we don't get into combinatorial problems.
 583           // (Allow phis to be repeated; they can merge two relevant states.)
 584           uint j = worklist_visited.size();
 585           for (; j > 0; j--) {
 586             if (worklist_visited.at(j-1) == store)  break;
 587           }
 588           if (j > 0)  continue; // already on work list; do not repeat
 589           worklist_visited.push(store);
 590         }
 591         worklist_mem.push(mem);
 592         worklist_store.push(store);
 593       }
 594       continue;
 595     }
 596 
 597     if (op == Op_MachProj || op == Op_Catch)   continue;
 598     if (store->needs_anti_dependence_check())  continue;  // not really a store
 599 
 600     // Compute the alias index.  Loads and stores with different alias
 601     // indices do not need anti-dependence edges.  Wide MemBar's are
 602     // anti-dependent on everything (except immutable memories).
 603     const TypePtr* adr_type = store->adr_type();
 604     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 605 
 606     // Most slow-path runtime calls do NOT modify Java memory, but
 607     // they can block and so write Raw memory.
 608     if (store->is_Mach()) {
 609       MachNode* mstore = store->as_Mach();
 610       if (load_alias_idx != Compile::AliasIdxRaw) {
 611         // Check for call into the runtime using the Java calling
 612         // convention (and from there into a wrapper); it has no
 613         // _method.  Can't do this optimization for Native calls because
 614         // they CAN write to Java memory.
 615         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 616           assert(mstore->is_MachSafePoint(), "");
 617           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 618           assert(ms->is_MachCallJava(), "");
 619           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 620           if (mcj->_method == NULL) {
 621             // These runtime calls do not write to Java visible memory
 622             // (other than Raw) and so do not require anti-dependence edges.
 623             continue;
 624           }
 625         }
 626         // Same for SafePoints: they read/write Raw but only read otherwise.
 627         // This is basically a workaround for SafePoints only defining control
 628         // instead of control + memory.
 629         if (mstore->ideal_Opcode() == Op_SafePoint)
 630           continue;
 631       } else {
 632         // Some raw memory, such as the load of "top" at an allocation,
 633         // can be control dependent on the previous safepoint. See
 634         // comments in GraphKit::allocate_heap() about control input.
 635         // Inserting an anti-dep between such a safepoint and a use
 636         // creates a cycle, and will cause a subsequent failure in
 637         // local scheduling.  (BugId 4919904)
 638         // (%%% How can a control input be a safepoint and not a projection??)
 639         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 640           continue;
 641       }
 642     }
 643 
 644     // Identify a block that the current load must be above,
 645     // or else observe that 'store' is all the way up in the
 646     // earliest legal block for 'load'.  In the latter case,
 647     // immediately insert an anti-dependence edge.
 648     Block* store_block = get_block_for_node(store);
 649     assert(store_block != NULL, "unused killing projections skipped above");
 650 
 651     if (store->is_Phi()) {
 652       // 'load' uses memory which is one (or more) of the Phi's inputs.
 653       // It must be scheduled not before the Phi, but rather before
 654       // each of the relevant Phi inputs.
 655       //
 656       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 657       // we mark each corresponding predecessor block and do a combined
 658       // hoisting operation later (raise_LCA_above_marks).
 659       //
 660       // Do not assert(store_block != early, "Phi merging memory after access")
 661       // PhiNode may be at start of block 'early' with backedge to 'early'
 662       DEBUG_ONLY(bool found_match = false);
 663       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 664         if (store->in(j) == mem) {   // Found matching input?
 665           DEBUG_ONLY(found_match = true);
 666           Block* pred_block = get_block_for_node(store_block->pred(j));
 667           if (pred_block != early) {
 668             // If any predecessor of the Phi matches the load's "early block",
 669             // we do not need a precedence edge between the Phi and 'load'
 670             // since the load will be forced into a block preceding the Phi.
 671             pred_block->set_raise_LCA_mark(load_index);
 672             assert(!LCA_orig->dominates(pred_block) ||
 673                    early->dominates(pred_block), "early is high enough");
 674             must_raise_LCA = true;
 675           } else {
 676             // anti-dependent upon PHI pinned below 'early', no edge needed
 677             LCA = early;             // but can not schedule below 'early'
 678           }
 679         }
 680       }
 681       assert(found_match, "no worklist bug");
 682 #ifdef TRACK_PHI_INPUTS
 683 #ifdef ASSERT
 684       // This assert asks about correct handling of PhiNodes, which may not
 685       // have all input edges directly from 'mem'. See BugId 4621264
 686       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 687       // Increment by exactly one even if there are multiple copies of 'mem'
 688       // coming into the phi, because we will run this block several times
 689       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 690       phi_inputs.at_put(store->_idx, num_mem_inputs);
 691       assert(PhiNode::Input + num_mem_inputs < store->req(),
 692              "Expect at least one phi input will not be from original memory state");
 693 #endif //ASSERT
 694 #endif //TRACK_PHI_INPUTS
 695     } else if (store_block != early) {
 696       // 'store' is between the current LCA and earliest possible block.
 697       // Label its block, and decide later on how to raise the LCA
 698       // to include the effect on LCA of this store.
 699       // If this store's block gets chosen as the raised LCA, we
 700       // will find him on the non_early_stores list and stick him
 701       // with a precedence edge.
 702       // (But, don't bother if LCA is already raised all the way.)
 703       if (LCA != early) {
 704         store_block->set_raise_LCA_mark(load_index);
 705         must_raise_LCA = true;
 706         non_early_stores.push(store);
 707       }
 708     } else {
 709       // Found a possibly-interfering store in the load's 'early' block.
 710       // This means 'load' cannot sink at all in the dominator tree.
 711       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 712       assert(store != load->in(0), "dependence cycle found");
 713       if (verify) {
 714         assert(store->find_edge(load) != -1, "missing precedence edge");
 715       } else {
 716         store->add_prec(load);
 717       }
 718       LCA = early;
 719       // This turns off the process of gathering non_early_stores.
 720     }
 721   }
 722   // (Worklist is now empty; all nearby stores have been visited.)
 723 
 724   // Finished if 'load' must be scheduled in its 'early' block.
 725   // If we found any stores there, they have already been given
 726   // precedence edges.
 727   if (LCA == early)  return LCA;
 728 
 729   // We get here only if there are no possibly-interfering stores
 730   // in the load's 'early' block.  Move LCA up above all predecessors
 731   // which contain stores we have noted.
 732   //
 733   // The raised LCA block can be a home to such interfering stores,
 734   // but its predecessors must not contain any such stores.
 735   //
 736   // The raised LCA will be a lower bound for placing the load,
 737   // preventing the load from sinking past any block containing
 738   // a store that may invalidate the memory state required by 'load'.
 739   if (must_raise_LCA)
 740     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
 741   if (LCA == early)  return LCA;
 742 
 743   // Insert anti-dependence edges from 'load' to each store
 744   // in the non-early LCA block.
 745   // Mine the non_early_stores list for such stores.
 746   if (LCA->raise_LCA_mark() == load_index) {
 747     while (non_early_stores.size() > 0) {
 748       Node* store = non_early_stores.pop();
 749       Block* store_block = get_block_for_node(store);
 750       if (store_block == LCA) {
 751         // add anti_dependence from store to load in its own block
 752         assert(store != load->in(0), "dependence cycle found");
 753         if (verify) {
 754           assert(store->find_edge(load) != -1, "missing precedence edge");
 755         } else {
 756           store->add_prec(load);
 757         }
 758       } else {
 759         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 760         // Any other stores we found must be either inside the new LCA
 761         // or else outside the original LCA.  In the latter case, they
 762         // did not interfere with any use of 'load'.
 763         assert(LCA->dominates(store_block)
 764                || !LCA_orig->dominates(store_block), "no stray stores");
 765       }
 766     }
 767   }
 768 
 769   // Return the highest block containing stores; any stores
 770   // within that block have been given anti-dependence edges.
 771   return LCA;
 772 }
 773 
 774 // This class is used to iterate backwards over the nodes in the graph.
 775 
 776 class Node_Backward_Iterator {
 777 
 778 private:
 779   Node_Backward_Iterator();
 780 
 781 public:
 782   // Constructor for the iterator
 783   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
 784 
 785   // Postincrement operator to iterate over the nodes
 786   Node *next();
 787 
 788 private:
 789   VectorSet   &_visited;
 790   Node_List   &_stack;
 791   PhaseCFG &_cfg;
 792 };
 793 
 794 // Constructor for the Node_Backward_Iterator
 795 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
 796   : _visited(visited), _stack(stack), _cfg(cfg) {
 797   // The stack should contain exactly the root
 798   stack.clear();
 799   stack.push(root);
 800 
 801   // Clear the visited bits
 802   visited.Clear();
 803 }
 804 
 805 // Iterator for the Node_Backward_Iterator
 806 Node *Node_Backward_Iterator::next() {
 807 
 808   // If the _stack is empty, then just return NULL: finished.
 809   if ( !_stack.size() )
 810     return NULL;
 811 
 812   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 813   // made stateless, so I do not need to record the index 'i' on my _stack.
 814   // Instead I visit all users each time, scanning for unvisited users.
 815   // I visit unvisited not-anti-dependence users first, then anti-dependent
 816   // children next.
 817   Node *self = _stack.pop();
 818 
 819   // I cycle here when I am entering a deeper level of recursion.
 820   // The key variable 'self' was set prior to jumping here.
 821   while( 1 ) {
 822 
 823     _visited.set(self->_idx);
 824 
 825     // Now schedule all uses as late as possible.
 826     const Node* src = self->is_Proj() ? self->in(0) : self;
 827     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
 828 
 829     // Schedule all nodes in a post-order visit
 830     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 831 
 832     // Scan for unvisited nodes
 833     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 834       // For all uses, schedule late
 835       Node* n = self->fast_out(i); // Use
 836 
 837       // Skip already visited children
 838       if ( _visited.test(n->_idx) )
 839         continue;
 840 
 841       // do not traverse backward control edges
 842       Node *use = n->is_Proj() ? n->in(0) : n;
 843       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
 844 
 845       if ( use_rpo < src_rpo )
 846         continue;
 847 
 848       // Phi nodes always precede uses in a basic block
 849       if ( use_rpo == src_rpo && use->is_Phi() )
 850         continue;
 851 
 852       unvisited = n;      // Found unvisited
 853 
 854       // Check for possible-anti-dependent
 855       if( !n->needs_anti_dependence_check() )
 856         break;            // Not visited, not anti-dep; schedule it NOW
 857     }
 858 
 859     // Did I find an unvisited not-anti-dependent Node?
 860     if ( !unvisited )
 861       break;                  // All done with children; post-visit 'self'
 862 
 863     // Visit the unvisited Node.  Contains the obvious push to
 864     // indicate I'm entering a deeper level of recursion.  I push the
 865     // old state onto the _stack and set a new state and loop (recurse).
 866     _stack.push(self);
 867     self = unvisited;
 868   } // End recursion loop
 869 
 870   return self;
 871 }
 872 
 873 //------------------------------ComputeLatenciesBackwards----------------------
 874 // Compute the latency of all the instructions.
 875 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
 876 #ifndef PRODUCT
 877   if (trace_opto_pipelining())
 878     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 879 #endif
 880 
 881   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
 882   Node *n;
 883 
 884   // Walk over all the nodes from last to first
 885   while (n = iter.next()) {
 886     // Set the latency for the definitions of this instruction
 887     partial_latency_of_defs(n);
 888   }
 889 } // end ComputeLatenciesBackwards
 890 
 891 //------------------------------partial_latency_of_defs------------------------
 892 // Compute the latency impact of this node on all defs.  This computes
 893 // a number that increases as we approach the beginning of the routine.
 894 void PhaseCFG::partial_latency_of_defs(Node *n) {
 895   // Set the latency for this instruction
 896 #ifndef PRODUCT
 897   if (trace_opto_pipelining()) {
 898     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
 899     dump();
 900   }
 901 #endif
 902 
 903   if (n->is_Proj()) {
 904     n = n->in(0);
 905   }
 906 
 907   if (n->is_Root()) {
 908     return;
 909   }
 910 
 911   uint nlen = n->len();
 912   uint use_latency = get_latency_for_node(n);
 913   uint use_pre_order = get_block_for_node(n)->_pre_order;
 914 
 915   for (uint j = 0; j < nlen; j++) {
 916     Node *def = n->in(j);
 917 
 918     if (!def || def == n) {
 919       continue;
 920     }
 921 
 922     // Walk backwards thru projections
 923     if (def->is_Proj()) {
 924       def = def->in(0);
 925     }
 926 
 927 #ifndef PRODUCT
 928     if (trace_opto_pipelining()) {
 929       tty->print("#    in(%2d): ", j);
 930       def->dump();
 931     }
 932 #endif
 933 
 934     // If the defining block is not known, assume it is ok
 935     Block *def_block = get_block_for_node(def);
 936     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 937 
 938     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
 939       continue;
 940     }
 941 
 942     uint delta_latency = n->latency(j);
 943     uint current_latency = delta_latency + use_latency;
 944 
 945     if (get_latency_for_node(def) < current_latency) {
 946       set_latency_for_node(def, current_latency);
 947     }
 948 
 949 #ifndef PRODUCT
 950     if (trace_opto_pipelining()) {
 951       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
 952     }
 953 #endif
 954   }
 955 }
 956 
 957 //------------------------------latency_from_use-------------------------------
 958 // Compute the latency of a specific use
 959 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 960   // If self-reference, return no latency
 961   if (use == n || use->is_Root()) {
 962     return 0;
 963   }
 964 
 965   uint def_pre_order = get_block_for_node(def)->_pre_order;
 966   uint latency = 0;
 967 
 968   // If the use is not a projection, then it is simple...
 969   if (!use->is_Proj()) {
 970 #ifndef PRODUCT
 971     if (trace_opto_pipelining()) {
 972       tty->print("#    out(): ");
 973       use->dump();
 974     }
 975 #endif
 976 
 977     uint use_pre_order = get_block_for_node(use)->_pre_order;
 978 
 979     if (use_pre_order < def_pre_order)
 980       return 0;
 981 
 982     if (use_pre_order == def_pre_order && use->is_Phi())
 983       return 0;
 984 
 985     uint nlen = use->len();
 986     uint nl = get_latency_for_node(use);
 987 
 988     for ( uint j=0; j<nlen; j++ ) {
 989       if (use->in(j) == n) {
 990         // Change this if we want local latencies
 991         uint ul = use->latency(j);
 992         uint  l = ul + nl;
 993         if (latency < l) latency = l;
 994 #ifndef PRODUCT
 995         if (trace_opto_pipelining()) {
 996           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 997                         nl, j, ul, l, latency);
 998         }
 999 #endif
1000       }
1001     }
1002   } else {
1003     // This is a projection, just grab the latency of the use(s)
1004     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1005       uint l = latency_from_use(use, def, use->fast_out(j));
1006       if (latency < l) latency = l;
1007     }
1008   }
1009 
1010   return latency;
1011 }
1012 
1013 //------------------------------latency_from_uses------------------------------
1014 // Compute the latency of this instruction relative to all of it's uses.
1015 // This computes a number that increases as we approach the beginning of the
1016 // routine.
1017 void PhaseCFG::latency_from_uses(Node *n) {
1018   // Set the latency for this instruction
1019 #ifndef PRODUCT
1020   if (trace_opto_pipelining()) {
1021     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1022     dump();
1023   }
1024 #endif
1025   uint latency=0;
1026   const Node *def = n->is_Proj() ? n->in(0): n;
1027 
1028   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1029     uint l = latency_from_use(n, def, n->fast_out(i));
1030 
1031     if (latency < l) latency = l;
1032   }
1033 
1034   set_latency_for_node(n, latency);
1035 }
1036 
1037 //------------------------------hoist_to_cheaper_block-------------------------
1038 // Pick a block for node self, between early and LCA, that is a cheaper
1039 // alternative to LCA.
1040 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1041   const double delta = 1+PROB_UNLIKELY_MAG(4);
1042   Block* least       = LCA;
1043   double least_freq  = least->_freq;
1044   uint target        = get_latency_for_node(self);
1045   uint start_latency = get_latency_for_node(LCA->head());
1046   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1047   bool in_latency    = (target <= start_latency);
1048   const Block* root_block = get_block_for_node(_root);
1049 
1050   // Turn off latency scheduling if scheduling is just plain off
1051   if (!C->do_scheduling())
1052     in_latency = true;
1053 
1054   // Do not hoist (to cover latency) instructions which target a
1055   // single register.  Hoisting stretches the live range of the
1056   // single register and may force spilling.
1057   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1058   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1059     in_latency = true;
1060 
1061 #ifndef PRODUCT
1062   if (trace_opto_pipelining()) {
1063     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1064     self->dump();
1065     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1066       LCA->_pre_order,
1067       LCA->head()->_idx,
1068       start_latency,
1069       LCA->get_node(LCA->end_idx())->_idx,
1070       end_latency,
1071       least_freq);
1072   }
1073 #endif
1074 
1075   int cand_cnt = 0;  // number of candidates tried
1076 
1077   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1078   // the earliest legal location.  Capture the least execution frequency.
1079   while (LCA != early) {
1080     LCA = LCA->_idom;         // Follow up the dominator tree
1081 
1082     if (LCA == NULL) {
1083       // Bailout without retry
1084       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1085       return least;
1086     }
1087 
1088     // Don't hoist machine instructions to the root basic block
1089     if (mach && LCA == root_block)
1090       break;
1091 
1092     uint start_lat = get_latency_for_node(LCA->head());
1093     uint end_idx   = LCA->end_idx();
1094     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1095     double LCA_freq = LCA->_freq;
1096 #ifndef PRODUCT
1097     if (trace_opto_pipelining()) {
1098       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1099         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1100     }
1101 #endif
1102     cand_cnt++;
1103     if (LCA_freq < least_freq              || // Better Frequency
1104         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1105          (!StressGCM                    &&    // Otherwise, choose with latency
1106           !in_latency                   &&    // No block containing latency
1107           LCA_freq < least_freq * delta &&    // No worse frequency
1108           target >= end_lat             &&    // within latency range
1109           !self->is_iteratively_computed() )  // But don't hoist IV increments
1110              // because they may end up above other uses of their phi forcing
1111              // their result register to be different from their input.
1112        ) {
1113       least = LCA;            // Found cheaper block
1114       least_freq = LCA_freq;
1115       start_latency = start_lat;
1116       end_latency = end_lat;
1117       if (target <= start_lat)
1118         in_latency = true;
1119     }
1120   }
1121 
1122 #ifndef PRODUCT
1123   if (trace_opto_pipelining()) {
1124     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1125       least->_pre_order, start_latency, least_freq);
1126   }
1127 #endif
1128 
1129   // See if the latency needs to be updated
1130   if (target < end_latency) {
1131 #ifndef PRODUCT
1132     if (trace_opto_pipelining()) {
1133       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1134     }
1135 #endif
1136     set_latency_for_node(self, end_latency);
1137     partial_latency_of_defs(self);
1138   }
1139 
1140   return least;
1141 }
1142 
1143 
1144 //------------------------------schedule_late-----------------------------------
1145 // Now schedule all codes as LATE as possible.  This is the LCA in the
1146 // dominator tree of all USES of a value.  Pick the block with the least
1147 // loop nesting depth that is lowest in the dominator tree.
1148 extern const char must_clone[];
1149 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1150 #ifndef PRODUCT
1151   if (trace_opto_pipelining())
1152     tty->print("\n#---- schedule_late ----\n");
1153 #endif
1154 
1155   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1156   Node *self;
1157 
1158   // Walk over all the nodes from last to first
1159   while (self = iter.next()) {
1160     Block* early = get_block_for_node(self); // Earliest legal placement
1161 
1162     if (self->is_top()) {
1163       // Top node goes in bb #2 with other constants.
1164       // It must be special-cased, because it has no out edges.
1165       early->add_inst(self);
1166       continue;
1167     }
1168 
1169     // No uses, just terminate
1170     if (self->outcnt() == 0) {
1171       assert(self->is_MachProj(), "sanity");
1172       continue;                   // Must be a dead machine projection
1173     }
1174 
1175     // If node is pinned in the block, then no scheduling can be done.
1176     if( self->pinned() )          // Pinned in block?
1177       continue;
1178 
1179     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1180     if (mach) {
1181       switch (mach->ideal_Opcode()) {
1182       case Op_CreateEx:
1183         // Don't move exception creation
1184         early->add_inst(self);
1185         continue;
1186         break;
1187       case Op_CheckCastPP:
1188         // Don't move CheckCastPP nodes away from their input, if the input
1189         // is a rawptr (5071820).
1190         Node *def = self->in(1);
1191         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1192           early->add_inst(self);
1193 #ifdef ASSERT
1194           _raw_oops.push(def);
1195 #endif
1196           continue;
1197         }
1198         break;
1199       }
1200     }
1201 
1202     // Gather LCA of all uses
1203     Block *LCA = NULL;
1204     {
1205       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1206         // For all uses, find LCA
1207         Node* use = self->fast_out(i);
1208         LCA = raise_LCA_above_use(LCA, use, self, this);
1209       }
1210     }  // (Hide defs of imax, i from rest of block.)
1211 
1212     // Place temps in the block of their use.  This isn't a
1213     // requirement for correctness but it reduces useless
1214     // interference between temps and other nodes.
1215     if (mach != NULL && mach->is_MachTemp()) {
1216       map_node_to_block(self, LCA);
1217       LCA->add_inst(self);
1218       continue;
1219     }
1220 
1221     // Check if 'self' could be anti-dependent on memory
1222     if (self->needs_anti_dependence_check()) {
1223       // Hoist LCA above possible-defs and insert anti-dependences to
1224       // defs in new LCA block.
1225       LCA = insert_anti_dependences(LCA, self);
1226     }
1227 
1228     if (early->_dom_depth > LCA->_dom_depth) {
1229       // Somehow the LCA has moved above the earliest legal point.
1230       // (One way this can happen is via memory_early_block.)
1231       if (C->subsume_loads() == true && !C->failing()) {
1232         // Retry with subsume_loads == false
1233         // If this is the first failure, the sentinel string will "stick"
1234         // to the Compile object, and the C2Compiler will see it and retry.
1235         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1236       } else {
1237         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1238         C->record_method_not_compilable("late schedule failed: incorrect graph");
1239       }
1240       return;
1241     }
1242 
1243     // If there is no opportunity to hoist, then we're done.
1244     // In stress mode, try to hoist even the single operations.
1245     bool try_to_hoist = StressGCM || (LCA != early);
1246 
1247     // Must clone guys stay next to use; no hoisting allowed.
1248     // Also cannot hoist guys that alter memory or are otherwise not
1249     // allocatable (hoisting can make a value live longer, leading to
1250     // anti and output dependency problems which are normally resolved
1251     // by the register allocator giving everyone a different register).
1252     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1253       try_to_hoist = false;
1254 
1255     Block* late = NULL;
1256     if (try_to_hoist) {
1257       // Now find the block with the least execution frequency.
1258       // Start at the latest schedule and work up to the earliest schedule
1259       // in the dominator tree.  Thus the Node will dominate all its uses.
1260       late = hoist_to_cheaper_block(LCA, early, self);
1261     } else {
1262       // Just use the LCA of the uses.
1263       late = LCA;
1264     }
1265 
1266     // Put the node into target block
1267     schedule_node_into_block(self, late);
1268 
1269 #ifdef ASSERT
1270     if (self->needs_anti_dependence_check()) {
1271       // since precedence edges are only inserted when we're sure they
1272       // are needed make sure that after placement in a block we don't
1273       // need any new precedence edges.
1274       verify_anti_dependences(late, self);
1275     }
1276 #endif
1277   } // Loop until all nodes have been visited
1278 
1279 } // end ScheduleLate
1280 
1281 //------------------------------GlobalCodeMotion-------------------------------
1282 void PhaseCFG::global_code_motion() {
1283   ResourceMark rm;
1284 
1285 #ifndef PRODUCT
1286   if (trace_opto_pipelining()) {
1287     tty->print("\n---- Start GlobalCodeMotion ----\n");
1288   }
1289 #endif
1290 
1291   // Initialize the node to block mapping for things on the proj_list
1292   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1293     unmap_node_from_block(_matcher.get_projection(i));
1294   }
1295 
1296   // Set the basic block for Nodes pinned into blocks
1297   Arena* arena = Thread::current()->resource_area();
1298   VectorSet visited(arena);
1299   schedule_pinned_nodes(visited);
1300 
1301   // Find the earliest Block any instruction can be placed in.  Some
1302   // instructions are pinned into Blocks.  Unpinned instructions can
1303   // appear in last block in which all their inputs occur.
1304   visited.Clear();
1305   Node_List stack(arena);
1306   // Pre-grow the list
1307   stack.map((C->unique() >> 1) + 16, NULL);
1308   if (!schedule_early(visited, stack)) {
1309     // Bailout without retry
1310     C->record_method_not_compilable("early schedule failed");
1311     return;
1312   }
1313 
1314   // Build Def-Use edges.
1315   // Compute the latency information (via backwards walk) for all the
1316   // instructions in the graph
1317   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1318 
1319   if (C->do_scheduling()) {
1320     compute_latencies_backwards(visited, stack);
1321   }
1322 
1323   // Now schedule all codes as LATE as possible.  This is the LCA in the
1324   // dominator tree of all USES of a value.  Pick the block with the least
1325   // loop nesting depth that is lowest in the dominator tree.
1326   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1327   schedule_late(visited, stack);
1328   if (C->failing()) {
1329     // schedule_late fails only when graph is incorrect.
1330     assert(!VerifyGraphEdges, "verification should have failed");
1331     return;
1332   }
1333 
1334 #ifndef PRODUCT
1335   if (trace_opto_pipelining()) {
1336     tty->print("\n---- Detect implicit null checks ----\n");
1337   }
1338 #endif
1339 
1340   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1341   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1342   // I can generate a memory op if there is not one nearby.
1343   if (C->is_method_compilation()) {
1344     // By reversing the loop direction we get a very minor gain on mpegaudio.
1345     // Feel free to revert to a forward loop for clarity.
1346     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1347     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1348       Node* proj = _matcher._null_check_tests[i];
1349       Node* val  = _matcher._null_check_tests[i + 1];
1350       Block* block = get_block_for_node(proj);
1351       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1352       // The implicit_null_check will only perform the transformation
1353       // if the null branch is truly uncommon, *and* it leads to an
1354       // uncommon trap.  Combined with the too_many_traps guards
1355       // above, this prevents SEGV storms reported in 6366351,
1356       // by recompiling offending methods without this optimization.
1357     }
1358   }
1359 
1360 #ifndef PRODUCT
1361   if (trace_opto_pipelining()) {
1362     tty->print("\n---- Start Local Scheduling ----\n");
1363   }
1364 #endif
1365 
1366   // Schedule locally.  Right now a simple topological sort.
1367   // Later, do a real latency aware scheduler.
1368   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1369   visited.Clear();
1370   for (uint i = 0; i < number_of_blocks(); i++) {
1371     Block* block = get_block(i);
1372     if (!schedule_local(block, ready_cnt, visited)) {
1373       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1374         C->record_method_not_compilable("local schedule failed");
1375       }
1376       return;
1377     }
1378   }
1379 
1380   // If we inserted any instructions between a Call and his CatchNode,
1381   // clone the instructions on all paths below the Catch.
1382   for (uint i = 0; i < number_of_blocks(); i++) {
1383     Block* block = get_block(i);
1384     call_catch_cleanup(block);
1385   }
1386 
1387 #ifndef PRODUCT
1388   if (trace_opto_pipelining()) {
1389     tty->print("\n---- After GlobalCodeMotion ----\n");
1390     for (uint i = 0; i < number_of_blocks(); i++) {
1391       Block* block = get_block(i);
1392       block->dump();
1393     }
1394   }
1395 #endif
1396   // Dead.
1397   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1398 }
1399 
1400 bool PhaseCFG::do_global_code_motion() {
1401 
1402   build_dominator_tree();
1403   if (C->failing()) {
1404     return false;
1405   }
1406 
1407   NOT_PRODUCT( C->verify_graph_edges(); )
1408 
1409   estimate_block_frequency();
1410 
1411   global_code_motion();
1412 
1413   if (C->failing()) {
1414     return false;
1415   }
1416 
1417   return true;
1418 }
1419 
1420 //------------------------------Estimate_Block_Frequency-----------------------
1421 // Estimate block frequencies based on IfNode probabilities.
1422 void PhaseCFG::estimate_block_frequency() {
1423 
1424   // Force conditional branches leading to uncommon traps to be unlikely,
1425   // not because we get to the uncommon_trap with less relative frequency,
1426   // but because an uncommon_trap typically causes a deopt, so we only get
1427   // there once.
1428   if (C->do_freq_based_layout()) {
1429     Block_List worklist;
1430     Block* root_blk = get_block(0);
1431     for (uint i = 1; i < root_blk->num_preds(); i++) {
1432       Block *pb = get_block_for_node(root_blk->pred(i));
1433       if (pb->has_uncommon_code()) {
1434         worklist.push(pb);
1435       }
1436     }
1437     while (worklist.size() > 0) {
1438       Block* uct = worklist.pop();
1439       if (uct == get_root_block()) {
1440         continue;
1441       }
1442       for (uint i = 1; i < uct->num_preds(); i++) {
1443         Block *pb = get_block_for_node(uct->pred(i));
1444         if (pb->_num_succs == 1) {
1445           worklist.push(pb);
1446         } else if (pb->num_fall_throughs() == 2) {
1447           pb->update_uncommon_branch(uct);
1448         }
1449       }
1450     }
1451   }
1452 
1453   // Create the loop tree and calculate loop depth.
1454   _root_loop = create_loop_tree();
1455   _root_loop->compute_loop_depth(0);
1456 
1457   // Compute block frequency of each block, relative to a single loop entry.
1458   _root_loop->compute_freq();
1459 
1460   // Adjust all frequencies to be relative to a single method entry
1461   _root_loop->_freq = 1.0;
1462   _root_loop->scale_freq();
1463 
1464   // Save outmost loop frequency for LRG frequency threshold
1465   _outer_loop_frequency = _root_loop->outer_loop_freq();
1466 
1467   // force paths ending at uncommon traps to be infrequent
1468   if (!C->do_freq_based_layout()) {
1469     Block_List worklist;
1470     Block* root_blk = get_block(0);
1471     for (uint i = 1; i < root_blk->num_preds(); i++) {
1472       Block *pb = get_block_for_node(root_blk->pred(i));
1473       if (pb->has_uncommon_code()) {
1474         worklist.push(pb);
1475       }
1476     }
1477     while (worklist.size() > 0) {
1478       Block* uct = worklist.pop();
1479       uct->_freq = PROB_MIN;
1480       for (uint i = 1; i < uct->num_preds(); i++) {
1481         Block *pb = get_block_for_node(uct->pred(i));
1482         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1483           worklist.push(pb);
1484         }
1485       }
1486     }
1487   }
1488 
1489 #ifdef ASSERT
1490   for (uint i = 0; i < number_of_blocks(); i++) {
1491     Block* b = get_block(i);
1492     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1493   }
1494 #endif
1495 
1496 #ifndef PRODUCT
1497   if (PrintCFGBlockFreq) {
1498     tty->print_cr("CFG Block Frequencies");
1499     _root_loop->dump_tree();
1500     if (Verbose) {
1501       tty->print_cr("PhaseCFG dump");
1502       dump();
1503       tty->print_cr("Node dump");
1504       _root->dump(99999);
1505     }
1506   }
1507 #endif
1508 }
1509 
1510 //----------------------------create_loop_tree--------------------------------
1511 // Create a loop tree from the CFG
1512 CFGLoop* PhaseCFG::create_loop_tree() {
1513 
1514 #ifdef ASSERT
1515   assert(get_block(0) == get_root_block(), "first block should be root block");
1516   for (uint i = 0; i < number_of_blocks(); i++) {
1517     Block* block = get_block(i);
1518     // Check that _loop field are clear...we could clear them if not.
1519     assert(block->_loop == NULL, "clear _loop expected");
1520     // Sanity check that the RPO numbering is reflected in the _blocks array.
1521     // It doesn't have to be for the loop tree to be built, but if it is not,
1522     // then the blocks have been reordered since dom graph building...which
1523     // may question the RPO numbering
1524     assert(block->_rpo == i, "unexpected reverse post order number");
1525   }
1526 #endif
1527 
1528   int idct = 0;
1529   CFGLoop* root_loop = new CFGLoop(idct++);
1530 
1531   Block_List worklist;
1532 
1533   // Assign blocks to loops
1534   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1535     Block* block = get_block(i);
1536 
1537     if (block->head()->is_Loop()) {
1538       Block* loop_head = block;
1539       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1540       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1541       Block* tail = get_block_for_node(tail_n);
1542 
1543       // Defensively filter out Loop nodes for non-single-entry loops.
1544       // For all reasonable loops, the head occurs before the tail in RPO.
1545       if (i <= tail->_rpo) {
1546 
1547         // The tail and (recursive) predecessors of the tail
1548         // are made members of a new loop.
1549 
1550         assert(worklist.size() == 0, "nonempty worklist");
1551         CFGLoop* nloop = new CFGLoop(idct++);
1552         assert(loop_head->_loop == NULL, "just checking");
1553         loop_head->_loop = nloop;
1554         // Add to nloop so push_pred() will skip over inner loops
1555         nloop->add_member(loop_head);
1556         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1557 
1558         while (worklist.size() > 0) {
1559           Block* member = worklist.pop();
1560           if (member != loop_head) {
1561             for (uint j = 1; j < member->num_preds(); j++) {
1562               nloop->push_pred(member, j, worklist, this);
1563             }
1564           }
1565         }
1566       }
1567     }
1568   }
1569 
1570   // Create a member list for each loop consisting
1571   // of both blocks and (immediate child) loops.
1572   for (uint i = 0; i < number_of_blocks(); i++) {
1573     Block* block = get_block(i);
1574     CFGLoop* lp = block->_loop;
1575     if (lp == NULL) {
1576       // Not assigned to a loop. Add it to the method's pseudo loop.
1577       block->_loop = root_loop;
1578       lp = root_loop;
1579     }
1580     if (lp == root_loop || block != lp->head()) { // loop heads are already members
1581       lp->add_member(block);
1582     }
1583     if (lp != root_loop) {
1584       if (lp->parent() == NULL) {
1585         // Not a nested loop. Make it a child of the method's pseudo loop.
1586         root_loop->add_nested_loop(lp);
1587       }
1588       if (block == lp->head()) {
1589         // Add nested loop to member list of parent loop.
1590         lp->parent()->add_member(lp);
1591       }
1592     }
1593   }
1594 
1595   return root_loop;
1596 }
1597 
1598 //------------------------------push_pred--------------------------------------
1599 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1600   Node* pred_n = blk->pred(i);
1601   Block* pred = cfg->get_block_for_node(pred_n);
1602   CFGLoop *pred_loop = pred->_loop;
1603   if (pred_loop == NULL) {
1604     // Filter out blocks for non-single-entry loops.
1605     // For all reasonable loops, the head occurs before the tail in RPO.
1606     if (pred->_rpo > head()->_rpo) {
1607       pred->_loop = this;
1608       worklist.push(pred);
1609     }
1610   } else if (pred_loop != this) {
1611     // Nested loop.
1612     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1613       pred_loop = pred_loop->_parent;
1614     }
1615     // Make pred's loop be a child
1616     if (pred_loop->_parent == NULL) {
1617       add_nested_loop(pred_loop);
1618       // Continue with loop entry predecessor.
1619       Block* pred_head = pred_loop->head();
1620       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1621       assert(pred_head != head(), "loop head in only one loop");
1622       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1623     } else {
1624       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1625     }
1626   }
1627 }
1628 
1629 //------------------------------add_nested_loop--------------------------------
1630 // Make cl a child of the current loop in the loop tree.
1631 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1632   assert(_parent == NULL, "no parent yet");
1633   assert(cl != this, "not my own parent");
1634   cl->_parent = this;
1635   CFGLoop* ch = _child;
1636   if (ch == NULL) {
1637     _child = cl;
1638   } else {
1639     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1640     ch->_sibling = cl;
1641   }
1642 }
1643 
1644 //------------------------------compute_loop_depth-----------------------------
1645 // Store the loop depth in each CFGLoop object.
1646 // Recursively walk the children to do the same for them.
1647 void CFGLoop::compute_loop_depth(int depth) {
1648   _depth = depth;
1649   CFGLoop* ch = _child;
1650   while (ch != NULL) {
1651     ch->compute_loop_depth(depth + 1);
1652     ch = ch->_sibling;
1653   }
1654 }
1655 
1656 //------------------------------compute_freq-----------------------------------
1657 // Compute the frequency of each block and loop, relative to a single entry
1658 // into the dominating loop head.
1659 void CFGLoop::compute_freq() {
1660   // Bottom up traversal of loop tree (visit inner loops first.)
1661   // Set loop head frequency to 1.0, then transitively
1662   // compute frequency for all successors in the loop,
1663   // as well as for each exit edge.  Inner loops are
1664   // treated as single blocks with loop exit targets
1665   // as the successor blocks.
1666 
1667   // Nested loops first
1668   CFGLoop* ch = _child;
1669   while (ch != NULL) {
1670     ch->compute_freq();
1671     ch = ch->_sibling;
1672   }
1673   assert (_members.length() > 0, "no empty loops");
1674   Block* hd = head();
1675   hd->_freq = 1.0;
1676   for (int i = 0; i < _members.length(); i++) {
1677     CFGElement* s = _members.at(i);
1678     double freq = s->_freq;
1679     if (s->is_block()) {
1680       Block* b = s->as_Block();
1681       for (uint j = 0; j < b->_num_succs; j++) {
1682         Block* sb = b->_succs[j];
1683         update_succ_freq(sb, freq * b->succ_prob(j));
1684       }
1685     } else {
1686       CFGLoop* lp = s->as_CFGLoop();
1687       assert(lp->_parent == this, "immediate child");
1688       for (int k = 0; k < lp->_exits.length(); k++) {
1689         Block* eb = lp->_exits.at(k).get_target();
1690         double prob = lp->_exits.at(k).get_prob();
1691         update_succ_freq(eb, freq * prob);
1692       }
1693     }
1694   }
1695 
1696   // For all loops other than the outer, "method" loop,
1697   // sum and normalize the exit probability. The "method" loop
1698   // should keep the initial exit probability of 1, so that
1699   // inner blocks do not get erroneously scaled.
1700   if (_depth != 0) {
1701     // Total the exit probabilities for this loop.
1702     double exits_sum = 0.0f;
1703     for (int i = 0; i < _exits.length(); i++) {
1704       exits_sum += _exits.at(i).get_prob();
1705     }
1706 
1707     // Normalize the exit probabilities. Until now, the
1708     // probabilities estimate the possibility of exit per
1709     // a single loop iteration; afterward, they estimate
1710     // the probability of exit per loop entry.
1711     for (int i = 0; i < _exits.length(); i++) {
1712       Block* et = _exits.at(i).get_target();
1713       float new_prob = 0.0f;
1714       if (_exits.at(i).get_prob() > 0.0f) {
1715         new_prob = _exits.at(i).get_prob() / exits_sum;
1716       }
1717       BlockProbPair bpp(et, new_prob);
1718       _exits.at_put(i, bpp);
1719     }
1720 
1721     // Save the total, but guard against unreasonable probability,
1722     // as the value is used to estimate the loop trip count.
1723     // An infinite trip count would blur relative block
1724     // frequencies.
1725     if (exits_sum > 1.0f) exits_sum = 1.0;
1726     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1727     _exit_prob = exits_sum;
1728   }
1729 }
1730 
1731 //------------------------------succ_prob-------------------------------------
1732 // Determine the probability of reaching successor 'i' from the receiver block.
1733 float Block::succ_prob(uint i) {
1734   int eidx = end_idx();
1735   Node *n = get_node(eidx);  // Get ending Node
1736 
1737   int op = n->Opcode();
1738   if (n->is_Mach()) {
1739     if (n->is_MachNullCheck()) {
1740       // Can only reach here if called after lcm. The original Op_If is gone,
1741       // so we attempt to infer the probability from one or both of the
1742       // successor blocks.
1743       assert(_num_succs == 2, "expecting 2 successors of a null check");
1744       // If either successor has only one predecessor, then the
1745       // probability estimate can be derived using the
1746       // relative frequency of the successor and this block.
1747       if (_succs[i]->num_preds() == 2) {
1748         return _succs[i]->_freq / _freq;
1749       } else if (_succs[1-i]->num_preds() == 2) {
1750         return 1 - (_succs[1-i]->_freq / _freq);
1751       } else {
1752         // Estimate using both successor frequencies
1753         float freq = _succs[i]->_freq;
1754         return freq / (freq + _succs[1-i]->_freq);
1755       }
1756     }
1757     op = n->as_Mach()->ideal_Opcode();
1758   }
1759 
1760 
1761   // Switch on branch type
1762   switch( op ) {
1763   case Op_CountedLoopEnd:
1764   case Op_If: {
1765     assert (i < 2, "just checking");
1766     // Conditionals pass on only part of their frequency
1767     float prob  = n->as_MachIf()->_prob;
1768     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1769     // If succ[i] is the FALSE branch, invert path info
1770     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1771       return 1.0f - prob; // not taken
1772     } else {
1773       return prob; // taken
1774     }
1775   }
1776 
1777   case Op_Jump:
1778     // Divide the frequency between all successors evenly
1779     return 1.0f/_num_succs;
1780 
1781   case Op_Catch: {
1782     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1783     if (ci->_con == CatchProjNode::fall_through_index) {
1784       // Fall-thru path gets the lion's share.
1785       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1786     } else {
1787       // Presume exceptional paths are equally unlikely
1788       return PROB_UNLIKELY_MAG(5);
1789     }
1790   }
1791 
1792   case Op_Root:
1793   case Op_Goto:
1794     // Pass frequency straight thru to target
1795     return 1.0f;
1796 
1797   case Op_NeverBranch:
1798     return 0.0f;
1799 
1800   case Op_TailCall:
1801   case Op_TailJump:
1802   case Op_Return:
1803   case Op_Halt:
1804   case Op_Rethrow:
1805     // Do not push out freq to root block
1806     return 0.0f;
1807 
1808   default:
1809     ShouldNotReachHere();
1810   }
1811 
1812   return 0.0f;
1813 }
1814 
1815 //------------------------------num_fall_throughs-----------------------------
1816 // Return the number of fall-through candidates for a block
1817 int Block::num_fall_throughs() {
1818   int eidx = end_idx();
1819   Node *n = get_node(eidx);  // Get ending Node
1820 
1821   int op = n->Opcode();
1822   if (n->is_Mach()) {
1823     if (n->is_MachNullCheck()) {
1824       // In theory, either side can fall-thru, for simplicity sake,
1825       // let's say only the false branch can now.
1826       return 1;
1827     }
1828     op = n->as_Mach()->ideal_Opcode();
1829   }
1830 
1831   // Switch on branch type
1832   switch( op ) {
1833   case Op_CountedLoopEnd:
1834   case Op_If:
1835     return 2;
1836 
1837   case Op_Root:
1838   case Op_Goto:
1839     return 1;
1840 
1841   case Op_Catch: {
1842     for (uint i = 0; i < _num_succs; i++) {
1843       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1844       if (ci->_con == CatchProjNode::fall_through_index) {
1845         return 1;
1846       }
1847     }
1848     return 0;
1849   }
1850 
1851   case Op_Jump:
1852   case Op_NeverBranch:
1853   case Op_TailCall:
1854   case Op_TailJump:
1855   case Op_Return:
1856   case Op_Halt:
1857   case Op_Rethrow:
1858     return 0;
1859 
1860   default:
1861     ShouldNotReachHere();
1862   }
1863 
1864   return 0;
1865 }
1866 
1867 //------------------------------succ_fall_through-----------------------------
1868 // Return true if a specific successor could be fall-through target.
1869 bool Block::succ_fall_through(uint i) {
1870   int eidx = end_idx();
1871   Node *n = get_node(eidx);  // Get ending Node
1872 
1873   int op = n->Opcode();
1874   if (n->is_Mach()) {
1875     if (n->is_MachNullCheck()) {
1876       // In theory, either side can fall-thru, for simplicity sake,
1877       // let's say only the false branch can now.
1878       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
1879     }
1880     op = n->as_Mach()->ideal_Opcode();
1881   }
1882 
1883   // Switch on branch type
1884   switch( op ) {
1885   case Op_CountedLoopEnd:
1886   case Op_If:
1887   case Op_Root:
1888   case Op_Goto:
1889     return true;
1890 
1891   case Op_Catch: {
1892     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1893     return ci->_con == CatchProjNode::fall_through_index;
1894   }
1895 
1896   case Op_Jump:
1897   case Op_NeverBranch:
1898   case Op_TailCall:
1899   case Op_TailJump:
1900   case Op_Return:
1901   case Op_Halt:
1902   case Op_Rethrow:
1903     return false;
1904 
1905   default:
1906     ShouldNotReachHere();
1907   }
1908 
1909   return false;
1910 }
1911 
1912 //------------------------------update_uncommon_branch------------------------
1913 // Update the probability of a two-branch to be uncommon
1914 void Block::update_uncommon_branch(Block* ub) {
1915   int eidx = end_idx();
1916   Node *n = get_node(eidx);  // Get ending Node
1917 
1918   int op = n->as_Mach()->ideal_Opcode();
1919 
1920   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1921   assert(num_fall_throughs() == 2, "must be a two way branch block");
1922 
1923   // Which successor is ub?
1924   uint s;
1925   for (s = 0; s <_num_succs; s++) {
1926     if (_succs[s] == ub) break;
1927   }
1928   assert(s < 2, "uncommon successor must be found");
1929 
1930   // If ub is the true path, make the proability small, else
1931   // ub is the false path, and make the probability large
1932   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
1933 
1934   // Get existing probability
1935   float p = n->as_MachIf()->_prob;
1936 
1937   if (invert) p = 1.0 - p;
1938   if (p > PROB_MIN) {
1939     p = PROB_MIN;
1940   }
1941   if (invert) p = 1.0 - p;
1942 
1943   n->as_MachIf()->_prob = p;
1944 }
1945 
1946 //------------------------------update_succ_freq-------------------------------
1947 // Update the appropriate frequency associated with block 'b', a successor of
1948 // a block in this loop.
1949 void CFGLoop::update_succ_freq(Block* b, double freq) {
1950   if (b->_loop == this) {
1951     if (b == head()) {
1952       // back branch within the loop
1953       // Do nothing now, the loop carried frequency will be
1954       // adjust later in scale_freq().
1955     } else {
1956       // simple branch within the loop
1957       b->_freq += freq;
1958     }
1959   } else if (!in_loop_nest(b)) {
1960     // branch is exit from this loop
1961     BlockProbPair bpp(b, freq);
1962     _exits.append(bpp);
1963   } else {
1964     // branch into nested loop
1965     CFGLoop* ch = b->_loop;
1966     ch->_freq += freq;
1967   }
1968 }
1969 
1970 //------------------------------in_loop_nest-----------------------------------
1971 // Determine if block b is in the receiver's loop nest.
1972 bool CFGLoop::in_loop_nest(Block* b) {
1973   int depth = _depth;
1974   CFGLoop* b_loop = b->_loop;
1975   int b_depth = b_loop->_depth;
1976   if (depth == b_depth) {
1977     return true;
1978   }
1979   while (b_depth > depth) {
1980     b_loop = b_loop->_parent;
1981     b_depth = b_loop->_depth;
1982   }
1983   return b_loop == this;
1984 }
1985 
1986 //------------------------------scale_freq-------------------------------------
1987 // Scale frequency of loops and blocks by trip counts from outer loops
1988 // Do a top down traversal of loop tree (visit outer loops first.)
1989 void CFGLoop::scale_freq() {
1990   double loop_freq = _freq * trip_count();
1991   _freq = loop_freq;
1992   for (int i = 0; i < _members.length(); i++) {
1993     CFGElement* s = _members.at(i);
1994     double block_freq = s->_freq * loop_freq;
1995     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
1996       block_freq = MIN_BLOCK_FREQUENCY;
1997     s->_freq = block_freq;
1998   }
1999   CFGLoop* ch = _child;
2000   while (ch != NULL) {
2001     ch->scale_freq();
2002     ch = ch->_sibling;
2003   }
2004 }
2005 
2006 // Frequency of outer loop
2007 double CFGLoop::outer_loop_freq() const {
2008   if (_child != NULL) {
2009     return _child->_freq;
2010   }
2011   return _freq;
2012 }
2013 
2014 #ifndef PRODUCT
2015 //------------------------------dump_tree--------------------------------------
2016 void CFGLoop::dump_tree() const {
2017   dump();
2018   if (_child != NULL)   _child->dump_tree();
2019   if (_sibling != NULL) _sibling->dump_tree();
2020 }
2021 
2022 //------------------------------dump-------------------------------------------
2023 void CFGLoop::dump() const {
2024   for (int i = 0; i < _depth; i++) tty->print("   ");
2025   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
2026              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2027   for (int i = 0; i < _depth; i++) tty->print("   ");
2028   tty->print("         members:");
2029   int k = 0;
2030   for (int i = 0; i < _members.length(); i++) {
2031     if (k++ >= 6) {
2032       tty->print("\n              ");
2033       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2034       k = 0;
2035     }
2036     CFGElement *s = _members.at(i);
2037     if (s->is_block()) {
2038       Block *b = s->as_Block();
2039       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2040     } else {
2041       CFGLoop* lp = s->as_CFGLoop();
2042       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2043     }
2044   }
2045   tty->print("\n");
2046   for (int i = 0; i < _depth; i++) tty->print("   ");
2047   tty->print("         exits:  ");
2048   k = 0;
2049   for (int i = 0; i < _exits.length(); i++) {
2050     if (k++ >= 7) {
2051       tty->print("\n              ");
2052       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2053       k = 0;
2054     }
2055     Block *blk = _exits.at(i).get_target();
2056     double prob = _exits.at(i).get_prob();
2057     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2058   }
2059   tty->print("\n");
2060 }
2061 #endif