1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/biasedLocking.hpp"
  42 #include "runtime/compilationPolicy.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/signature.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "runtime/vframe.hpp"
  50 #include "runtime/vframeArray.hpp"
  51 #include "runtime/vframe_hp.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/xmlstream.hpp"
  54 
  55 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  56 
  57 bool DeoptimizationMarker::_is_active = false;
  58 
  59 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  60                                          int  caller_adjustment,
  61                                          int  caller_actual_parameters,
  62                                          int  number_of_frames,
  63                                          intptr_t* frame_sizes,
  64                                          address* frame_pcs,
  65                                          BasicType return_type) {
  66   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  67   _caller_adjustment         = caller_adjustment;
  68   _caller_actual_parameters  = caller_actual_parameters;
  69   _number_of_frames          = number_of_frames;
  70   _frame_sizes               = frame_sizes;
  71   _frame_pcs                 = frame_pcs;
  72   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  73   _return_type               = return_type;
  74   _initial_info              = 0;
  75   // PD (x86 only)
  76   _counter_temp              = 0;
  77   _unpack_kind               = 0;
  78   _sender_sp_temp            = 0;
  79 
  80   _total_frame_sizes         = size_of_frames();
  81 }
  82 
  83 
  84 Deoptimization::UnrollBlock::~UnrollBlock() {
  85   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  86   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  87   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  88 }
  89 
  90 
  91 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  92   assert(register_number < RegisterMap::reg_count, "checking register number");
  93   return &_register_block[register_number * 2];
  94 }
  95 
  96 
  97 
  98 int Deoptimization::UnrollBlock::size_of_frames() const {
  99   // Acount first for the adjustment of the initial frame
 100   int result = _caller_adjustment;
 101   for (int index = 0; index < number_of_frames(); index++) {
 102     result += frame_sizes()[index];
 103   }
 104   return result;
 105 }
 106 
 107 
 108 void Deoptimization::UnrollBlock::print() {
 109   ttyLocker ttyl;
 110   tty->print_cr("UnrollBlock");
 111   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 112   tty->print(   "  frame_sizes: ");
 113   for (int index = 0; index < number_of_frames(); index++) {
 114     tty->print("%d ", frame_sizes()[index]);
 115   }
 116   tty->cr();
 117 }
 118 
 119 
 120 // In order to make fetch_unroll_info work properly with escape
 121 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 122 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 123 // of previously eliminated objects occurs in realloc_objects, which is
 124 // called from the method fetch_unroll_info_helper below.
 125 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 126   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 127   // but makes the entry a little slower. There is however a little dance we have to
 128   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 129 
 130   // fetch_unroll_info() is called at the beginning of the deoptimization
 131   // handler. Note this fact before we start generating temporary frames
 132   // that can confuse an asynchronous stack walker. This counter is
 133   // decremented at the end of unpack_frames().
 134   thread->inc_in_deopt_handler();
 135 
 136   return fetch_unroll_info_helper(thread);
 137 JRT_END
 138 
 139 
 140 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 141 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 142 
 143   // Note: there is a safepoint safety issue here. No matter whether we enter
 144   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 145   // the vframeArray is created.
 146   //
 147 
 148   // Allocate our special deoptimization ResourceMark
 149   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 150   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 151   thread->set_deopt_mark(dmark);
 152 
 153   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 154   RegisterMap map(thread, true);
 155   RegisterMap dummy_map(thread, false);
 156   // Now get the deoptee with a valid map
 157   frame deoptee = stub_frame.sender(&map);
 158   // Set the deoptee nmethod
 159   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 160   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 161 
 162   if (VerifyStack) {
 163     thread->validate_frame_layout();
 164   }
 165 
 166   // Create a growable array of VFrames where each VFrame represents an inlined
 167   // Java frame.  This storage is allocated with the usual system arena.
 168   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 169   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 170   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 171   while (!vf->is_top()) {
 172     assert(vf->is_compiled_frame(), "Wrong frame type");
 173     chunk->push(compiledVFrame::cast(vf));
 174     vf = vf->sender();
 175   }
 176   assert(vf->is_compiled_frame(), "Wrong frame type");
 177   chunk->push(compiledVFrame::cast(vf));
 178 
 179   bool realloc_failures = false;
 180 
 181 #ifdef COMPILER2
 182   // Reallocate the non-escaping objects and restore their fields. Then
 183   // relock objects if synchronization on them was eliminated.
 184   if (DoEscapeAnalysis || EliminateNestedLocks) {
 185     if (EliminateAllocations) {
 186       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 187       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 188 
 189       // The flag return_oop() indicates call sites which return oop
 190       // in compiled code. Such sites include java method calls,
 191       // runtime calls (for example, used to allocate new objects/arrays
 192       // on slow code path) and any other calls generated in compiled code.
 193       // It is not guaranteed that we can get such information here only
 194       // by analyzing bytecode in deoptimized frames. This is why this flag
 195       // is set during method compilation (see Compile::Process_OopMap_Node()).
 196       // If the previous frame was popped, we don't have a result.
 197       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 198       Handle return_value;
 199       if (save_oop_result) {
 200         // Reallocation may trigger GC. If deoptimization happened on return from
 201         // call which returns oop we need to save it since it is not in oopmap.
 202         oop result = deoptee.saved_oop_result(&map);
 203         assert(result == NULL || result->is_oop(), "must be oop");
 204         return_value = Handle(thread, result);
 205         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 206         if (TraceDeoptimization) {
 207           ttyLocker ttyl;
 208           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
 209         }
 210       }
 211       if (objects != NULL) {
 212         JRT_BLOCK
 213           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 214         JRT_END
 215         reassign_fields(&deoptee, &map, objects, realloc_failures);
 216 #ifndef PRODUCT
 217         if (TraceDeoptimization) {
 218           ttyLocker ttyl;
 219           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 220           print_objects(objects, realloc_failures);
 221         }
 222 #endif
 223       }
 224       if (save_oop_result) {
 225         // Restore result.
 226         deoptee.set_saved_oop_result(&map, return_value());
 227       }
 228     }
 229     if (EliminateLocks) {
 230 #ifndef PRODUCT
 231       bool first = true;
 232 #endif
 233       for (int i = 0; i < chunk->length(); i++) {
 234         compiledVFrame* cvf = chunk->at(i);
 235         assert (cvf->scope() != NULL,"expect only compiled java frames");
 236         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 237         if (monitors->is_nonempty()) {
 238           relock_objects(monitors, thread, realloc_failures);
 239 #ifndef PRODUCT
 240           if (TraceDeoptimization) {
 241             ttyLocker ttyl;
 242             for (int j = 0; j < monitors->length(); j++) {
 243               MonitorInfo* mi = monitors->at(j);
 244               if (mi->eliminated()) {
 245                 if (first) {
 246                   first = false;
 247                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 248                 }
 249                 if (mi->owner_is_scalar_replaced()) {
 250                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 251                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 252                 } else {
 253                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
 254                 }
 255               }
 256             }
 257           }
 258 #endif
 259         }
 260       }
 261     }
 262   }
 263 #endif // COMPILER2
 264   // Ensure that no safepoint is taken after pointers have been stored
 265   // in fields of rematerialized objects.  If a safepoint occurs from here on
 266   // out the java state residing in the vframeArray will be missed.
 267   No_Safepoint_Verifier no_safepoint;
 268 
 269   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 270 #ifdef COMPILER2
 271   if (realloc_failures) {
 272     pop_frames_failed_reallocs(thread, array);
 273   }
 274 #endif
 275 
 276   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 277   thread->set_vframe_array_head(array);
 278 
 279   // Now that the vframeArray has been created if we have any deferred local writes
 280   // added by jvmti then we can free up that structure as the data is now in the
 281   // vframeArray
 282 
 283   if (thread->deferred_locals() != NULL) {
 284     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 285     int i = 0;
 286     do {
 287       // Because of inlining we could have multiple vframes for a single frame
 288       // and several of the vframes could have deferred writes. Find them all.
 289       if (list->at(i)->id() == array->original().id()) {
 290         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 291         list->remove_at(i);
 292         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 293         delete dlv;
 294       } else {
 295         i++;
 296       }
 297     } while ( i < list->length() );
 298     if (list->length() == 0) {
 299       thread->set_deferred_locals(NULL);
 300       // free the list and elements back to C heap.
 301       delete list;
 302     }
 303 
 304   }
 305 
 306 #ifndef SHARK
 307   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 308   CodeBlob* cb = stub_frame.cb();
 309   // Verify we have the right vframeArray
 310   assert(cb->frame_size() >= 0, "Unexpected frame size");
 311   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 312 
 313   // If the deopt call site is a MethodHandle invoke call site we have
 314   // to adjust the unpack_sp.
 315   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 316   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 317     unpack_sp = deoptee.unextended_sp();
 318 
 319 #ifdef ASSERT
 320   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 321 #endif
 322 #else
 323   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 324 #endif // !SHARK
 325 
 326   // This is a guarantee instead of an assert because if vframe doesn't match
 327   // we will unpack the wrong deoptimized frame and wind up in strange places
 328   // where it will be very difficult to figure out what went wrong. Better
 329   // to die an early death here than some very obscure death later when the
 330   // trail is cold.
 331   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 332   // in that it will fail to detect a problem when there is one. This needs
 333   // more work in tiger timeframe.
 334   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 335 
 336   int number_of_frames = array->frames();
 337 
 338   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 339   // virtual activation, which is the reverse of the elements in the vframes array.
 340   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 341   // +1 because we always have an interpreter return address for the final slot.
 342   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 343   int popframe_extra_args = 0;
 344   // Create an interpreter return address for the stub to use as its return
 345   // address so the skeletal frames are perfectly walkable
 346   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 347 
 348   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 349   // activation be put back on the expression stack of the caller for reexecution
 350   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 351     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 352   }
 353 
 354   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 355   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 356   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 357   //
 358   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 359   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 360 
 361   // It's possible that the number of parameters at the call site is
 362   // different than number of arguments in the callee when method
 363   // handles are used.  If the caller is interpreted get the real
 364   // value so that the proper amount of space can be added to it's
 365   // frame.
 366   bool caller_was_method_handle = false;
 367   if (deopt_sender.is_interpreted_frame()) {
 368     methodHandle method = deopt_sender.interpreter_frame_method();
 369     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 370     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 371       // Method handle invokes may involve fairly arbitrary chains of
 372       // calls so it's impossible to know how much actual space the
 373       // caller has for locals.
 374       caller_was_method_handle = true;
 375     }
 376   }
 377 
 378   //
 379   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 380   // frame_sizes/frame_pcs[1] next oldest frame (int)
 381   // frame_sizes/frame_pcs[n] youngest frame (int)
 382   //
 383   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 384   // owns the space for the return address to it's caller).  Confusing ain't it.
 385   //
 386   // The vframe array can address vframes with indices running from
 387   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 388   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 389   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 390   // so things look a little strange in this loop.
 391   //
 392   int callee_parameters = 0;
 393   int callee_locals = 0;
 394   for (int index = 0; index < array->frames(); index++ ) {
 395     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 396     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 397     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 398     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 399                                                                                                     callee_locals,
 400                                                                                                     index == 0,
 401                                                                                                     popframe_extra_args);
 402     // This pc doesn't have to be perfect just good enough to identify the frame
 403     // as interpreted so the skeleton frame will be walkable
 404     // The correct pc will be set when the skeleton frame is completely filled out
 405     // The final pc we store in the loop is wrong and will be overwritten below
 406     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 407 
 408     callee_parameters = array->element(index)->method()->size_of_parameters();
 409     callee_locals = array->element(index)->method()->max_locals();
 410     popframe_extra_args = 0;
 411   }
 412 
 413   // Compute whether the root vframe returns a float or double value.
 414   BasicType return_type;
 415   {
 416     HandleMark hm;
 417     methodHandle method(thread, array->element(0)->method());
 418     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 419     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 420   }
 421 
 422   // Compute information for handling adapters and adjusting the frame size of the caller.
 423   int caller_adjustment = 0;
 424 
 425   // Compute the amount the oldest interpreter frame will have to adjust
 426   // its caller's stack by. If the caller is a compiled frame then
 427   // we pretend that the callee has no parameters so that the
 428   // extension counts for the full amount of locals and not just
 429   // locals-parms. This is because without a c2i adapter the parm
 430   // area as created by the compiled frame will not be usable by
 431   // the interpreter. (Depending on the calling convention there
 432   // may not even be enough space).
 433 
 434   // QQQ I'd rather see this pushed down into last_frame_adjust
 435   // and have it take the sender (aka caller).
 436 
 437   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 438     caller_adjustment = last_frame_adjust(0, callee_locals);
 439   } else if (callee_locals > callee_parameters) {
 440     // The caller frame may need extending to accommodate
 441     // non-parameter locals of the first unpacked interpreted frame.
 442     // Compute that adjustment.
 443     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 444   }
 445 
 446   // If the sender is deoptimized the we must retrieve the address of the handler
 447   // since the frame will "magically" show the original pc before the deopt
 448   // and we'd undo the deopt.
 449 
 450   frame_pcs[0] = deopt_sender.raw_pc();
 451 
 452 #ifndef SHARK
 453   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 454 #endif // SHARK
 455 
 456   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 457                                       caller_adjustment * BytesPerWord,
 458                                       caller_was_method_handle ? 0 : callee_parameters,
 459                                       number_of_frames,
 460                                       frame_sizes,
 461                                       frame_pcs,
 462                                       return_type);
 463   // On some platforms, we need a way to pass some platform dependent
 464   // information to the unpacking code so the skeletal frames come out
 465   // correct (initial fp value, unextended sp, ...)
 466   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 467 
 468   if (array->frames() > 1) {
 469     if (VerifyStack && TraceDeoptimization) {
 470       ttyLocker ttyl;
 471       tty->print_cr("Deoptimizing method containing inlining");
 472     }
 473   }
 474 
 475   array->set_unroll_block(info);
 476   return info;
 477 }
 478 
 479 // Called to cleanup deoptimization data structures in normal case
 480 // after unpacking to stack and when stack overflow error occurs
 481 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 482                                         vframeArray *array) {
 483 
 484   // Get array if coming from exception
 485   if (array == NULL) {
 486     array = thread->vframe_array_head();
 487   }
 488   thread->set_vframe_array_head(NULL);
 489 
 490   // Free the previous UnrollBlock
 491   vframeArray* old_array = thread->vframe_array_last();
 492   thread->set_vframe_array_last(array);
 493 
 494   if (old_array != NULL) {
 495     UnrollBlock* old_info = old_array->unroll_block();
 496     old_array->set_unroll_block(NULL);
 497     delete old_info;
 498     delete old_array;
 499   }
 500 
 501   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 502   // inside the vframeArray (StackValueCollections)
 503 
 504   delete thread->deopt_mark();
 505   thread->set_deopt_mark(NULL);
 506   thread->set_deopt_nmethod(NULL);
 507 
 508 
 509   if (JvmtiExport::can_pop_frame()) {
 510 #ifndef CC_INTERP
 511     // Regardless of whether we entered this routine with the pending
 512     // popframe condition bit set, we should always clear it now
 513     thread->clear_popframe_condition();
 514 #else
 515     // C++ interpreter will clear has_pending_popframe when it enters
 516     // with method_resume. For deopt_resume2 we clear it now.
 517     if (thread->popframe_forcing_deopt_reexecution())
 518         thread->clear_popframe_condition();
 519 #endif /* CC_INTERP */
 520   }
 521 
 522   // unpack_frames() is called at the end of the deoptimization handler
 523   // and (in C2) at the end of the uncommon trap handler. Note this fact
 524   // so that an asynchronous stack walker can work again. This counter is
 525   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 526   // the beginning of uncommon_trap().
 527   thread->dec_in_deopt_handler();
 528 }
 529 
 530 
 531 // Return BasicType of value being returned
 532 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 533 
 534   // We are already active int he special DeoptResourceMark any ResourceObj's we
 535   // allocate will be freed at the end of the routine.
 536 
 537   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 538   // but makes the entry a little slower. There is however a little dance we have to
 539   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 540   ResetNoHandleMark rnhm; // No-op in release/product versions
 541   HandleMark hm;
 542 
 543   frame stub_frame = thread->last_frame();
 544 
 545   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 546   // must point to the vframeArray for the unpack frame.
 547   vframeArray* array = thread->vframe_array_head();
 548 
 549 #ifndef PRODUCT
 550   if (TraceDeoptimization) {
 551     ttyLocker ttyl;
 552     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 553   }
 554 #endif
 555   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 556               stub_frame.pc(), stub_frame.sp(), exec_mode);
 557 
 558   UnrollBlock* info = array->unroll_block();
 559 
 560   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 561   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 562 
 563   BasicType bt = info->return_type();
 564 
 565   // If we have an exception pending, claim that the return type is an oop
 566   // so the deopt_blob does not overwrite the exception_oop.
 567 
 568   if (exec_mode == Unpack_exception)
 569     bt = T_OBJECT;
 570 
 571   // Cleanup thread deopt data
 572   cleanup_deopt_info(thread, array);
 573 
 574 #ifndef PRODUCT
 575   if (VerifyStack) {
 576     ResourceMark res_mark;
 577 
 578     thread->validate_frame_layout();
 579 
 580     // Verify that the just-unpacked frames match the interpreter's
 581     // notions of expression stack and locals
 582     vframeArray* cur_array = thread->vframe_array_last();
 583     RegisterMap rm(thread, false);
 584     rm.set_include_argument_oops(false);
 585     bool is_top_frame = true;
 586     int callee_size_of_parameters = 0;
 587     int callee_max_locals = 0;
 588     for (int i = 0; i < cur_array->frames(); i++) {
 589       vframeArrayElement* el = cur_array->element(i);
 590       frame* iframe = el->iframe();
 591       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 592 
 593       // Get the oop map for this bci
 594       InterpreterOopMap mask;
 595       int cur_invoke_parameter_size = 0;
 596       bool try_next_mask = false;
 597       int next_mask_expression_stack_size = -1;
 598       int top_frame_expression_stack_adjustment = 0;
 599       methodHandle mh(thread, iframe->interpreter_frame_method());
 600       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 601       BytecodeStream str(mh);
 602       str.set_start(iframe->interpreter_frame_bci());
 603       int max_bci = mh->code_size();
 604       // Get to the next bytecode if possible
 605       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 606       // Check to see if we can grab the number of outgoing arguments
 607       // at an uncommon trap for an invoke (where the compiler
 608       // generates debug info before the invoke has executed)
 609       Bytecodes::Code cur_code = str.next();
 610       if (cur_code == Bytecodes::_invokevirtual   ||
 611           cur_code == Bytecodes::_invokespecial   ||
 612           cur_code == Bytecodes::_invokestatic    ||
 613           cur_code == Bytecodes::_invokeinterface ||
 614           cur_code == Bytecodes::_invokedynamic) {
 615         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 616         Symbol* signature = invoke.signature();
 617         ArgumentSizeComputer asc(signature);
 618         cur_invoke_parameter_size = asc.size();
 619         if (invoke.has_receiver()) {
 620           // Add in receiver
 621           ++cur_invoke_parameter_size;
 622         }
 623         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 624           callee_size_of_parameters++;
 625         }
 626       }
 627       if (str.bci() < max_bci) {
 628         Bytecodes::Code bc = str.next();
 629         if (bc >= 0) {
 630           // The interpreter oop map generator reports results before
 631           // the current bytecode has executed except in the case of
 632           // calls. It seems to be hard to tell whether the compiler
 633           // has emitted debug information matching the "state before"
 634           // a given bytecode or the state after, so we try both
 635           switch (cur_code) {
 636             case Bytecodes::_invokevirtual:
 637             case Bytecodes::_invokespecial:
 638             case Bytecodes::_invokestatic:
 639             case Bytecodes::_invokeinterface:
 640             case Bytecodes::_invokedynamic:
 641             case Bytecodes::_athrow:
 642               break;
 643             default: {
 644               InterpreterOopMap next_mask;
 645               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 646               next_mask_expression_stack_size = next_mask.expression_stack_size();
 647               // Need to subtract off the size of the result type of
 648               // the bytecode because this is not described in the
 649               // debug info but returned to the interpreter in the TOS
 650               // caching register
 651               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 652               if (bytecode_result_type != T_ILLEGAL) {
 653                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 654               }
 655               assert(top_frame_expression_stack_adjustment >= 0, "");
 656               try_next_mask = true;
 657               break;
 658             }
 659           }
 660         }
 661       }
 662 
 663       // Verify stack depth and oops in frame
 664       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 665       if (!(
 666             /* SPARC */
 667             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 668             /* x86 */
 669             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 670             (try_next_mask &&
 671              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 672                                                                     top_frame_expression_stack_adjustment))) ||
 673             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 674             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 675              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 676             )) {
 677         ttyLocker ttyl;
 678 
 679         // Print out some information that will help us debug the problem
 680         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 681         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 682         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 683                       iframe->interpreter_frame_expression_stack_size());
 684         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 685         tty->print_cr("  try_next_mask = %d", try_next_mask);
 686         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 687         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 688         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 689         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 690         tty->print_cr("  exec_mode = %d", exec_mode);
 691         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 692         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 693         tty->print_cr("  Interpreted frames:");
 694         for (int k = 0; k < cur_array->frames(); k++) {
 695           vframeArrayElement* el = cur_array->element(k);
 696           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 697         }
 698         cur_array->print_on_2(tty);
 699         guarantee(false, "wrong number of expression stack elements during deopt");
 700       }
 701       VerifyOopClosure verify;
 702       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 703       callee_size_of_parameters = mh->size_of_parameters();
 704       callee_max_locals = mh->max_locals();
 705       is_top_frame = false;
 706     }
 707   }
 708 #endif /* !PRODUCT */
 709 
 710 
 711   return bt;
 712 JRT_END
 713 
 714 
 715 int Deoptimization::deoptimize_dependents() {
 716   Threads::deoptimized_wrt_marked_nmethods();
 717   return 0;
 718 }
 719 
 720 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 721   = Deoptimization::Action_reinterpret;
 722 
 723 #ifdef COMPILER2
 724 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 725   Handle pending_exception(thread->pending_exception());
 726   const char* exception_file = thread->exception_file();
 727   int exception_line = thread->exception_line();
 728   thread->clear_pending_exception();
 729 
 730   bool failures = false;
 731 
 732   for (int i = 0; i < objects->length(); i++) {
 733     assert(objects->at(i)->is_object(), "invalid debug information");
 734     ObjectValue* sv = (ObjectValue*) objects->at(i);
 735 
 736     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 737     oop obj = NULL;
 738 
 739     if (k->oop_is_instance()) {
 740       InstanceKlass* ik = InstanceKlass::cast(k());
 741       obj = ik->allocate_instance(THREAD);
 742     } else if (k->oop_is_typeArray()) {
 743       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 744       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 745       int len = sv->field_size() / type2size[ak->element_type()];
 746       obj = ak->allocate(len, THREAD);
 747     } else if (k->oop_is_objArray()) {
 748       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 749       obj = ak->allocate(sv->field_size(), THREAD);
 750     }
 751 
 752     if (obj == NULL) {
 753       failures = true;
 754     }
 755 
 756     assert(sv->value().is_null(), "redundant reallocation");
 757     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 758     CLEAR_PENDING_EXCEPTION;
 759     sv->set_value(obj);
 760   }
 761 
 762   if (failures) {
 763     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 764   } else if (pending_exception.not_null()) {
 765     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 766   }
 767 
 768   return failures;
 769 }
 770 
 771 // This assumes that the fields are stored in ObjectValue in the same order
 772 // they are yielded by do_nonstatic_fields.
 773 class FieldReassigner: public FieldClosure {
 774   frame* _fr;
 775   RegisterMap* _reg_map;
 776   ObjectValue* _sv;
 777   InstanceKlass* _ik;
 778   oop _obj;
 779 
 780   int _i;
 781 public:
 782   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 783     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 784 
 785   int i() const { return _i; }
 786 
 787 
 788   void do_field(fieldDescriptor* fd) {
 789     intptr_t val;
 790     StackValue* value =
 791       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 792     int offset = fd->offset();
 793     switch (fd->field_type()) {
 794     case T_OBJECT: case T_ARRAY:
 795       assert(value->type() == T_OBJECT, "Agreement.");
 796       _obj->obj_field_put(offset, value->get_obj()());
 797       break;
 798 
 799     case T_LONG: case T_DOUBLE: {
 800       assert(value->type() == T_INT, "Agreement.");
 801       StackValue* low =
 802         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 803 #ifdef _LP64
 804       jlong res = (jlong)low->get_int();
 805 #else
 806 #ifdef SPARC
 807       // For SPARC we have to swap high and low words.
 808       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 809 #else
 810       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 811 #endif //SPARC
 812 #endif
 813       _obj->long_field_put(offset, res);
 814       break;
 815     }
 816     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 817     case T_INT: case T_FLOAT: // 4 bytes.
 818       assert(value->type() == T_INT, "Agreement.");
 819       val = value->get_int();
 820       _obj->int_field_put(offset, (jint)*((jint*)&val));
 821       break;
 822 
 823     case T_SHORT: case T_CHAR: // 2 bytes
 824       assert(value->type() == T_INT, "Agreement.");
 825       val = value->get_int();
 826       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 827       break;
 828 
 829     case T_BOOLEAN: case T_BYTE: // 1 byte
 830       assert(value->type() == T_INT, "Agreement.");
 831       val = value->get_int();
 832       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 833       break;
 834 
 835     default:
 836       ShouldNotReachHere();
 837     }
 838     _i++;
 839   }
 840 };
 841 
 842 // restore elements of an eliminated type array
 843 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 844   int index = 0;
 845   intptr_t val;
 846 
 847   for (int i = 0; i < sv->field_size(); i++) {
 848     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 849     switch(type) {
 850     case T_LONG: case T_DOUBLE: {
 851       assert(value->type() == T_INT, "Agreement.");
 852       StackValue* low =
 853         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 854 #ifdef _LP64
 855       jlong res = (jlong)low->get_int();
 856 #else
 857 #ifdef SPARC
 858       // For SPARC we have to swap high and low words.
 859       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 860 #else
 861       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 862 #endif //SPARC
 863 #endif
 864       obj->long_at_put(index, res);
 865       break;
 866     }
 867 
 868     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 869     case T_INT: case T_FLOAT: // 4 bytes.
 870       assert(value->type() == T_INT, "Agreement.");
 871       val = value->get_int();
 872       obj->int_at_put(index, (jint)*((jint*)&val));
 873       break;
 874 
 875     case T_SHORT: case T_CHAR: // 2 bytes
 876       assert(value->type() == T_INT, "Agreement.");
 877       val = value->get_int();
 878       obj->short_at_put(index, (jshort)*((jint*)&val));
 879       break;
 880 
 881     case T_BOOLEAN: case T_BYTE: // 1 byte
 882       assert(value->type() == T_INT, "Agreement.");
 883       val = value->get_int();
 884       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 885       break;
 886 
 887       default:
 888         ShouldNotReachHere();
 889     }
 890     index++;
 891   }
 892 }
 893 
 894 
 895 // restore fields of an eliminated object array
 896 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 897   for (int i = 0; i < sv->field_size(); i++) {
 898     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 899     assert(value->type() == T_OBJECT, "object element expected");
 900     obj->obj_at_put(i, value->get_obj()());
 901   }
 902 }
 903 
 904 
 905 // restore fields of all eliminated objects and arrays
 906 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 907   for (int i = 0; i < objects->length(); i++) {
 908     ObjectValue* sv = (ObjectValue*) objects->at(i);
 909     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 910     Handle obj = sv->value();
 911     assert(obj.not_null() || realloc_failures, "reallocation was missed");
 912     if (obj.is_null()) {
 913       continue;
 914     }
 915 
 916     if (k->oop_is_instance()) {
 917       InstanceKlass* ik = InstanceKlass::cast(k());
 918       FieldReassigner reassign(fr, reg_map, sv, obj());
 919       ik->do_nonstatic_fields(&reassign);
 920     } else if (k->oop_is_typeArray()) {
 921       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 922       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 923     } else if (k->oop_is_objArray()) {
 924       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 925     }
 926   }
 927 }
 928 
 929 
 930 // relock objects for which synchronization was eliminated
 931 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
 932   for (int i = 0; i < monitors->length(); i++) {
 933     MonitorInfo* mon_info = monitors->at(i);
 934     if (mon_info->eliminated()) {
 935       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
 936       if (!mon_info->owner_is_scalar_replaced()) {
 937         Handle obj = Handle(mon_info->owner());
 938         markOop mark = obj->mark();
 939         if (UseBiasedLocking && mark->has_bias_pattern()) {
 940           // New allocated objects may have the mark set to anonymously biased.
 941           // Also the deoptimized method may called methods with synchronization
 942           // where the thread-local object is bias locked to the current thread.
 943           assert(mark->is_biased_anonymously() ||
 944                  mark->biased_locker() == thread, "should be locked to current thread");
 945           // Reset mark word to unbiased prototype.
 946           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 947           obj->set_mark(unbiased_prototype);
 948         }
 949         BasicLock* lock = mon_info->lock();
 950         ObjectSynchronizer::slow_enter(obj, lock, thread);
 951         assert(mon_info->owner()->is_locked(), "object must be locked now");
 952       }
 953     }
 954   }
 955 }
 956 
 957 
 958 #ifndef PRODUCT
 959 // print information about reallocated objects
 960 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 961   fieldDescriptor fd;
 962 
 963   for (int i = 0; i < objects->length(); i++) {
 964     ObjectValue* sv = (ObjectValue*) objects->at(i);
 965     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 966     Handle obj = sv->value();
 967 
 968     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
 969     k->print_value();
 970     assert(obj.not_null() || realloc_failures, "reallocation was missed");
 971     if (obj.is_null()) {
 972       tty->print(" allocation failed");
 973     } else {
 974       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 975     }
 976     tty->cr();
 977 
 978     if (Verbose && !obj.is_null()) {
 979       k->oop_print_on(obj(), tty);
 980     }
 981   }
 982 }
 983 #endif
 984 #endif // COMPILER2
 985 
 986 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
 987   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
 988 
 989 #ifndef PRODUCT
 990   if (TraceDeoptimization) {
 991     ttyLocker ttyl;
 992     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 993     fr.print_on(tty);
 994     tty->print_cr("     Virtual frames (innermost first):");
 995     for (int index = 0; index < chunk->length(); index++) {
 996       compiledVFrame* vf = chunk->at(index);
 997       tty->print("       %2d - ", index);
 998       vf->print_value();
 999       int bci = chunk->at(index)->raw_bci();
1000       const char* code_name;
1001       if (bci == SynchronizationEntryBCI) {
1002         code_name = "sync entry";
1003       } else {
1004         Bytecodes::Code code = vf->method()->code_at(bci);
1005         code_name = Bytecodes::name(code);
1006       }
1007       tty->print(" - %s", code_name);
1008       tty->print_cr(" @ bci %d ", bci);
1009       if (Verbose) {
1010         vf->print();
1011         tty->cr();
1012       }
1013     }
1014   }
1015 #endif
1016 
1017   // Register map for next frame (used for stack crawl).  We capture
1018   // the state of the deopt'ing frame's caller.  Thus if we need to
1019   // stuff a C2I adapter we can properly fill in the callee-save
1020   // register locations.
1021   frame caller = fr.sender(reg_map);
1022   int frame_size = caller.sp() - fr.sp();
1023 
1024   frame sender = caller;
1025 
1026   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1027   // the vframeArray containing the unpacking information is allocated in the C heap.
1028   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1029   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1030 
1031   // Compare the vframeArray to the collected vframes
1032   assert(array->structural_compare(thread, chunk), "just checking");
1033 
1034 #ifndef PRODUCT
1035   if (TraceDeoptimization) {
1036     ttyLocker ttyl;
1037     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1038   }
1039 #endif // PRODUCT
1040 
1041   return array;
1042 }
1043 
1044 #ifdef COMPILER2
1045 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1046   // Reallocation of some scalar replaced objects failed. Record
1047   // that we need to pop all the interpreter frames for the
1048   // deoptimized compiled frame.
1049   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1050   thread->set_frames_to_pop_failed_realloc(array->frames());
1051   // Unlock all monitors here otherwise the interpreter will see a
1052   // mix of locked and unlocked monitors (because of failed
1053   // reallocations of synchronized objects) and be confused.
1054   for (int i = 0; i < array->frames(); i++) {
1055     MonitorChunk* monitors = array->element(i)->monitors();
1056     if (monitors != NULL) {
1057       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1058         BasicObjectLock* src = monitors->at(j);
1059         if (src->obj() != NULL) {
1060           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1061         }
1062       }
1063       array->element(i)->free_monitors(thread);
1064 #ifdef ASSERT
1065       array->element(i)->set_removed_monitors();
1066 #endif
1067     }
1068   }
1069 }
1070 #endif
1071 
1072 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1073   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1074   for (int i = 0; i < monitors->length(); i++) {
1075     MonitorInfo* mon_info = monitors->at(i);
1076     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1077       objects_to_revoke->append(Handle(mon_info->owner()));
1078     }
1079   }
1080 }
1081 
1082 
1083 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1084   if (!UseBiasedLocking) {
1085     return;
1086   }
1087 
1088   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1089 
1090   // Unfortunately we don't have a RegisterMap available in most of
1091   // the places we want to call this routine so we need to walk the
1092   // stack again to update the register map.
1093   if (map == NULL || !map->update_map()) {
1094     StackFrameStream sfs(thread, true);
1095     bool found = false;
1096     while (!found && !sfs.is_done()) {
1097       frame* cur = sfs.current();
1098       sfs.next();
1099       found = cur->id() == fr.id();
1100     }
1101     assert(found, "frame to be deoptimized not found on target thread's stack");
1102     map = sfs.register_map();
1103   }
1104 
1105   vframe* vf = vframe::new_vframe(&fr, map, thread);
1106   compiledVFrame* cvf = compiledVFrame::cast(vf);
1107   // Revoke monitors' biases in all scopes
1108   while (!cvf->is_top()) {
1109     collect_monitors(cvf, objects_to_revoke);
1110     cvf = compiledVFrame::cast(cvf->sender());
1111   }
1112   collect_monitors(cvf, objects_to_revoke);
1113 
1114   if (SafepointSynchronize::is_at_safepoint()) {
1115     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1116   } else {
1117     BiasedLocking::revoke(objects_to_revoke);
1118   }
1119 }
1120 
1121 
1122 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1123   if (!UseBiasedLocking) {
1124     return;
1125   }
1126 
1127   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1128   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1129   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1130     if (jt->has_last_Java_frame()) {
1131       StackFrameStream sfs(jt, true);
1132       while (!sfs.is_done()) {
1133         frame* cur = sfs.current();
1134         if (cb->contains(cur->pc())) {
1135           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1136           compiledVFrame* cvf = compiledVFrame::cast(vf);
1137           // Revoke monitors' biases in all scopes
1138           while (!cvf->is_top()) {
1139             collect_monitors(cvf, objects_to_revoke);
1140             cvf = compiledVFrame::cast(cvf->sender());
1141           }
1142           collect_monitors(cvf, objects_to_revoke);
1143         }
1144         sfs.next();
1145       }
1146     }
1147   }
1148   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1149 }
1150 
1151 
1152 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1153   assert(fr.can_be_deoptimized(), "checking frame type");
1154 
1155   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1156 
1157   // Patch the nmethod so that when execution returns to it we will
1158   // deopt the execution state and return to the interpreter.
1159   fr.deoptimize(thread);
1160 }
1161 
1162 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1163   // Deoptimize only if the frame comes from compile code.
1164   // Do not deoptimize the frame which is already patched
1165   // during the execution of the loops below.
1166   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1167     return;
1168   }
1169   ResourceMark rm;
1170   DeoptimizationMarker dm;
1171   if (UseBiasedLocking) {
1172     revoke_biases_of_monitors(thread, fr, map);
1173   }
1174   deoptimize_single_frame(thread, fr);
1175 
1176 }
1177 
1178 
1179 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1180   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1181          "can only deoptimize other thread at a safepoint");
1182   // Compute frame and register map based on thread and sp.
1183   RegisterMap reg_map(thread, UseBiasedLocking);
1184   frame fr = thread->last_frame();
1185   while (fr.id() != id) {
1186     fr = fr.sender(&reg_map);
1187   }
1188   deoptimize(thread, fr, &reg_map);
1189 }
1190 
1191 
1192 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1193   if (thread == Thread::current()) {
1194     Deoptimization::deoptimize_frame_internal(thread, id);
1195   } else {
1196     VM_DeoptimizeFrame deopt(thread, id);
1197     VMThread::execute(&deopt);
1198   }
1199 }
1200 
1201 
1202 // JVMTI PopFrame support
1203 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1204 {
1205   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1206 }
1207 JRT_END
1208 
1209 MethodData*
1210 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1211                                 bool create_if_missing) {
1212   Thread* THREAD = thread;
1213   MethodData* mdo = m()->method_data();
1214   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1215     // Build an MDO.  Ignore errors like OutOfMemory;
1216     // that simply means we won't have an MDO to update.
1217     Method::build_interpreter_method_data(m, THREAD);
1218     if (HAS_PENDING_EXCEPTION) {
1219       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1220       CLEAR_PENDING_EXCEPTION;
1221     }
1222     mdo = m()->method_data();
1223   }
1224   return mdo;
1225 }
1226 
1227 #if defined(COMPILER2) || defined(SHARK)
1228 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1229   // in case of an unresolved klass entry, load the class.
1230   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1231     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1232     return;
1233   }
1234 
1235   if (!constant_pool->tag_at(index).is_symbol()) return;
1236 
1237   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1238   Symbol*  symbol  = constant_pool->symbol_at(index);
1239 
1240   // class name?
1241   if (symbol->byte_at(0) != '(') {
1242     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1243     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1244     return;
1245   }
1246 
1247   // then it must be a signature!
1248   ResourceMark rm(THREAD);
1249   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1250     if (ss.is_object()) {
1251       Symbol* class_name = ss.as_symbol(CHECK);
1252       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1253       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1254     }
1255   }
1256 }
1257 
1258 
1259 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1260   EXCEPTION_MARK;
1261   load_class_by_index(constant_pool, index, THREAD);
1262   if (HAS_PENDING_EXCEPTION) {
1263     // Exception happened during classloading. We ignore the exception here, since it
1264     // is going to be rethrown since the current activation is going to be deoptimized and
1265     // the interpreter will re-execute the bytecode.
1266     CLEAR_PENDING_EXCEPTION;
1267     // Class loading called java code which may have caused a stack
1268     // overflow. If the exception was thrown right before the return
1269     // to the runtime the stack is no longer guarded. Reguard the
1270     // stack otherwise if we return to the uncommon trap blob and the
1271     // stack bang causes a stack overflow we crash.
1272     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1273     JavaThread* thread = (JavaThread*)THREAD;
1274     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1275     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1276     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1277   }
1278 }
1279 
1280 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1281   HandleMark hm;
1282 
1283   // uncommon_trap() is called at the beginning of the uncommon trap
1284   // handler. Note this fact before we start generating temporary frames
1285   // that can confuse an asynchronous stack walker. This counter is
1286   // decremented at the end of unpack_frames().
1287   thread->inc_in_deopt_handler();
1288 
1289   // We need to update the map if we have biased locking.
1290   RegisterMap reg_map(thread, UseBiasedLocking);
1291   frame stub_frame = thread->last_frame();
1292   frame fr = stub_frame.sender(&reg_map);
1293   // Make sure the calling nmethod is not getting deoptimized and removed
1294   // before we are done with it.
1295   nmethodLocker nl(fr.pc());
1296 
1297   // Log a message
1298   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1299               trap_request, fr.pc());
1300 
1301   {
1302     ResourceMark rm;
1303 
1304     // Revoke biases of any monitors in the frame to ensure we can migrate them
1305     revoke_biases_of_monitors(thread, fr, &reg_map);
1306 
1307     DeoptReason reason = trap_request_reason(trap_request);
1308     DeoptAction action = trap_request_action(trap_request);
1309     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1310 
1311     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1312     compiledVFrame* cvf = compiledVFrame::cast(vf);
1313 
1314     nmethod* nm = cvf->code();
1315 
1316     ScopeDesc*      trap_scope  = cvf->scope();
1317     methodHandle    trap_method = trap_scope->method();
1318     int             trap_bci    = trap_scope->bci();
1319     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1320 
1321     // Record this event in the histogram.
1322     gather_statistics(reason, action, trap_bc);
1323 
1324     // Ensure that we can record deopt. history:
1325     // Need MDO to record RTM code generation state.
1326     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1327 
1328     MethodData* trap_mdo =
1329       get_method_data(thread, trap_method, create_if_missing);
1330 
1331     // Log a message
1332     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1333                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
1334                               trap_method->name_and_sig_as_C_string(), trap_bci);
1335 
1336     // Print a bunch of diagnostics, if requested.
1337     if (TraceDeoptimization || LogCompilation) {
1338       ResourceMark rm;
1339       ttyLocker ttyl;
1340       char buf[100];
1341       if (xtty != NULL) {
1342         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1343                          os::current_thread_id(),
1344                          format_trap_request(buf, sizeof(buf), trap_request));
1345         nm->log_identity(xtty);
1346       }
1347       Symbol* class_name = NULL;
1348       bool unresolved = false;
1349       if (unloaded_class_index >= 0) {
1350         constantPoolHandle constants (THREAD, trap_method->constants());
1351         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1352           class_name = constants->klass_name_at(unloaded_class_index);
1353           unresolved = true;
1354           if (xtty != NULL)
1355             xtty->print(" unresolved='1'");
1356         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1357           class_name = constants->symbol_at(unloaded_class_index);
1358         }
1359         if (xtty != NULL)
1360           xtty->name(class_name);
1361       }
1362       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1363         // Dump the relevant MDO state.
1364         // This is the deopt count for the current reason, any previous
1365         // reasons or recompiles seen at this point.
1366         int dcnt = trap_mdo->trap_count(reason);
1367         if (dcnt != 0)
1368           xtty->print(" count='%d'", dcnt);
1369         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1370         int dos = (pdata == NULL)? 0: pdata->trap_state();
1371         if (dos != 0) {
1372           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1373           if (trap_state_is_recompiled(dos)) {
1374             int recnt2 = trap_mdo->overflow_recompile_count();
1375             if (recnt2 != 0)
1376               xtty->print(" recompiles2='%d'", recnt2);
1377           }
1378         }
1379       }
1380       if (xtty != NULL) {
1381         xtty->stamp();
1382         xtty->end_head();
1383       }
1384       if (TraceDeoptimization) {  // make noise on the tty
1385         tty->print("Uncommon trap occurred in");
1386         nm->method()->print_short_name(tty);
1387         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1388                    fr.pc(),
1389                    os::current_thread_id(),
1390                    trap_reason_name(reason),
1391                    trap_action_name(action),
1392                    unloaded_class_index);
1393         if (class_name != NULL) {
1394           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1395           class_name->print_symbol_on(tty);
1396         }
1397         tty->cr();
1398       }
1399       if (xtty != NULL) {
1400         // Log the precise location of the trap.
1401         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1402           xtty->begin_elem("jvms bci='%d'", sd->bci());
1403           xtty->method(sd->method());
1404           xtty->end_elem();
1405           if (sd->is_top())  break;
1406         }
1407         xtty->tail("uncommon_trap");
1408       }
1409     }
1410     // (End diagnostic printout.)
1411 
1412     // Load class if necessary
1413     if (unloaded_class_index >= 0) {
1414       constantPoolHandle constants(THREAD, trap_method->constants());
1415       load_class_by_index(constants, unloaded_class_index);
1416     }
1417 
1418     // Flush the nmethod if necessary and desirable.
1419     //
1420     // We need to avoid situations where we are re-flushing the nmethod
1421     // because of a hot deoptimization site.  Repeated flushes at the same
1422     // point need to be detected by the compiler and avoided.  If the compiler
1423     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1424     // module must take measures to avoid an infinite cycle of recompilation
1425     // and deoptimization.  There are several such measures:
1426     //
1427     //   1. If a recompilation is ordered a second time at some site X
1428     //   and for the same reason R, the action is adjusted to 'reinterpret',
1429     //   to give the interpreter time to exercise the method more thoroughly.
1430     //   If this happens, the method's overflow_recompile_count is incremented.
1431     //
1432     //   2. If the compiler fails to reduce the deoptimization rate, then
1433     //   the method's overflow_recompile_count will begin to exceed the set
1434     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1435     //   is adjusted to 'make_not_compilable', and the method is abandoned
1436     //   to the interpreter.  This is a performance hit for hot methods,
1437     //   but is better than a disastrous infinite cycle of recompilations.
1438     //   (Actually, only the method containing the site X is abandoned.)
1439     //
1440     //   3. In parallel with the previous measures, if the total number of
1441     //   recompilations of a method exceeds the much larger set limit
1442     //   PerMethodRecompilationCutoff, the method is abandoned.
1443     //   This should only happen if the method is very large and has
1444     //   many "lukewarm" deoptimizations.  The code which enforces this
1445     //   limit is elsewhere (class nmethod, class Method).
1446     //
1447     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1448     // to recompile at each bytecode independently of the per-BCI cutoff.
1449     //
1450     // The decision to update code is up to the compiler, and is encoded
1451     // in the Action_xxx code.  If the compiler requests Action_none
1452     // no trap state is changed, no compiled code is changed, and the
1453     // computation suffers along in the interpreter.
1454     //
1455     // The other action codes specify various tactics for decompilation
1456     // and recompilation.  Action_maybe_recompile is the loosest, and
1457     // allows the compiled code to stay around until enough traps are seen,
1458     // and until the compiler gets around to recompiling the trapping method.
1459     //
1460     // The other actions cause immediate removal of the present code.
1461 
1462     bool update_trap_state = (reason != Reason_tenured);
1463     bool make_not_entrant = false;
1464     bool make_not_compilable = false;
1465     bool reprofile = false;
1466     switch (action) {
1467     case Action_none:
1468       // Keep the old code.
1469       update_trap_state = false;
1470       break;
1471     case Action_maybe_recompile:
1472       // Do not need to invalidate the present code, but we can
1473       // initiate another
1474       // Start compiler without (necessarily) invalidating the nmethod.
1475       // The system will tolerate the old code, but new code should be
1476       // generated when possible.
1477       break;
1478     case Action_reinterpret:
1479       // Go back into the interpreter for a while, and then consider
1480       // recompiling form scratch.
1481       make_not_entrant = true;
1482       // Reset invocation counter for outer most method.
1483       // This will allow the interpreter to exercise the bytecodes
1484       // for a while before recompiling.
1485       // By contrast, Action_make_not_entrant is immediate.
1486       //
1487       // Note that the compiler will track null_check, null_assert,
1488       // range_check, and class_check events and log them as if they
1489       // had been traps taken from compiled code.  This will update
1490       // the MDO trap history so that the next compilation will
1491       // properly detect hot trap sites.
1492       reprofile = true;
1493       break;
1494     case Action_make_not_entrant:
1495       // Request immediate recompilation, and get rid of the old code.
1496       // Make them not entrant, so next time they are called they get
1497       // recompiled.  Unloaded classes are loaded now so recompile before next
1498       // time they are called.  Same for uninitialized.  The interpreter will
1499       // link the missing class, if any.
1500       make_not_entrant = true;
1501       break;
1502     case Action_make_not_compilable:
1503       // Give up on compiling this method at all.
1504       make_not_entrant = true;
1505       make_not_compilable = true;
1506       break;
1507     default:
1508       ShouldNotReachHere();
1509     }
1510 
1511     // Setting +ProfileTraps fixes the following, on all platforms:
1512     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1513     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1514     // recompile relies on a MethodData* to record heroic opt failures.
1515 
1516     // Whether the interpreter is producing MDO data or not, we also need
1517     // to use the MDO to detect hot deoptimization points and control
1518     // aggressive optimization.
1519     bool inc_recompile_count = false;
1520     ProfileData* pdata = NULL;
1521     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1522       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1523       uint this_trap_count = 0;
1524       bool maybe_prior_trap = false;
1525       bool maybe_prior_recompile = false;
1526       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1527                                    nm->method(),
1528                                    //outputs:
1529                                    this_trap_count,
1530                                    maybe_prior_trap,
1531                                    maybe_prior_recompile);
1532       // Because the interpreter also counts null, div0, range, and class
1533       // checks, these traps from compiled code are double-counted.
1534       // This is harmless; it just means that the PerXTrapLimit values
1535       // are in effect a little smaller than they look.
1536 
1537       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1538       if (per_bc_reason != Reason_none) {
1539         // Now take action based on the partially known per-BCI history.
1540         if (maybe_prior_trap
1541             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1542           // If there are too many traps at this BCI, force a recompile.
1543           // This will allow the compiler to see the limit overflow, and
1544           // take corrective action, if possible.  The compiler generally
1545           // does not use the exact PerBytecodeTrapLimit value, but instead
1546           // changes its tactics if it sees any traps at all.  This provides
1547           // a little hysteresis, delaying a recompile until a trap happens
1548           // several times.
1549           //
1550           // Actually, since there is only one bit of counter per BCI,
1551           // the possible per-BCI counts are {0,1,(per-method count)}.
1552           // This produces accurate results if in fact there is only
1553           // one hot trap site, but begins to get fuzzy if there are
1554           // many sites.  For example, if there are ten sites each
1555           // trapping two or more times, they each get the blame for
1556           // all of their traps.
1557           make_not_entrant = true;
1558         }
1559 
1560         // Detect repeated recompilation at the same BCI, and enforce a limit.
1561         if (make_not_entrant && maybe_prior_recompile) {
1562           // More than one recompile at this point.
1563           inc_recompile_count = maybe_prior_trap;
1564         }
1565       } else {
1566         // For reasons which are not recorded per-bytecode, we simply
1567         // force recompiles unconditionally.
1568         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1569         make_not_entrant = true;
1570       }
1571 
1572       // Go back to the compiler if there are too many traps in this method.
1573       if (this_trap_count >= per_method_trap_limit(reason)) {
1574         // If there are too many traps in this method, force a recompile.
1575         // This will allow the compiler to see the limit overflow, and
1576         // take corrective action, if possible.
1577         // (This condition is an unlikely backstop only, because the
1578         // PerBytecodeTrapLimit is more likely to take effect first,
1579         // if it is applicable.)
1580         make_not_entrant = true;
1581       }
1582 
1583       // Here's more hysteresis:  If there has been a recompile at
1584       // this trap point already, run the method in the interpreter
1585       // for a while to exercise it more thoroughly.
1586       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1587         reprofile = true;
1588       }
1589     }
1590 
1591     // Take requested actions on the method:
1592 
1593     // Recompile
1594     if (make_not_entrant) {
1595       if (!nm->make_not_entrant()) {
1596         return; // the call did not change nmethod's state
1597       }
1598 
1599       if (pdata != NULL) {
1600         // Record the recompilation event, if any.
1601         int tstate0 = pdata->trap_state();
1602         int tstate1 = trap_state_set_recompiled(tstate0, true);
1603         if (tstate1 != tstate0)
1604           pdata->set_trap_state(tstate1);
1605       }
1606 
1607 #if INCLUDE_RTM_OPT
1608       // Restart collecting RTM locking abort statistic if the method
1609       // is recompiled for a reason other than RTM state change.
1610       // Assume that in new recompiled code the statistic could be different,
1611       // for example, due to different inlining.
1612       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1613           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1614         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1615       }
1616 #endif
1617       // For code aging we count traps separately here, using make_not_entrant()
1618       // as a guard against simultaneous deopts in multiple threads.
1619       if (reason == Reason_tenured && trap_mdo != NULL) {
1620         trap_mdo->inc_tenure_traps();
1621       }
1622     }
1623 
1624     if (inc_recompile_count) {
1625       trap_mdo->inc_overflow_recompile_count();
1626       if ((uint)trap_mdo->overflow_recompile_count() >
1627           (uint)PerBytecodeRecompilationCutoff) {
1628         // Give up on the method containing the bad BCI.
1629         if (trap_method() == nm->method()) {
1630           make_not_compilable = true;
1631         } else {
1632           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1633           // But give grace to the enclosing nm->method().
1634         }
1635       }
1636     }
1637 
1638     // Reprofile
1639     if (reprofile) {
1640       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1641     }
1642 
1643     // Give up compiling
1644     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1645       assert(make_not_entrant, "consistent");
1646       nm->method()->set_not_compilable(CompLevel_full_optimization);
1647     }
1648 
1649   } // Free marked resources
1650 
1651 }
1652 JRT_END
1653 
1654 ProfileData*
1655 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1656                                          int trap_bci,
1657                                          Deoptimization::DeoptReason reason,
1658                                          Method* compiled_method,
1659                                          //outputs:
1660                                          uint& ret_this_trap_count,
1661                                          bool& ret_maybe_prior_trap,
1662                                          bool& ret_maybe_prior_recompile) {
1663   uint prior_trap_count = trap_mdo->trap_count(reason);
1664   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1665 
1666   // If the runtime cannot find a place to store trap history,
1667   // it is estimated based on the general condition of the method.
1668   // If the method has ever been recompiled, or has ever incurred
1669   // a trap with the present reason , then this BCI is assumed
1670   // (pessimistically) to be the culprit.
1671   bool maybe_prior_trap      = (prior_trap_count != 0);
1672   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1673   ProfileData* pdata = NULL;
1674 
1675 
1676   // For reasons which are recorded per bytecode, we check per-BCI data.
1677   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1678   if (per_bc_reason != Reason_none) {
1679     // Find the profile data for this BCI.  If there isn't one,
1680     // try to allocate one from the MDO's set of spares.
1681     // This will let us detect a repeated trap at this point.
1682     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1683 
1684     if (pdata != NULL) {
1685       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1686         if (LogCompilation && xtty != NULL) {
1687           ttyLocker ttyl;
1688           // no more room for speculative traps in this MDO
1689           xtty->elem("speculative_traps_oom");
1690         }
1691       }
1692       // Query the trap state of this profile datum.
1693       int tstate0 = pdata->trap_state();
1694       if (!trap_state_has_reason(tstate0, per_bc_reason))
1695         maybe_prior_trap = false;
1696       if (!trap_state_is_recompiled(tstate0))
1697         maybe_prior_recompile = false;
1698 
1699       // Update the trap state of this profile datum.
1700       int tstate1 = tstate0;
1701       // Record the reason.
1702       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1703       // Store the updated state on the MDO, for next time.
1704       if (tstate1 != tstate0)
1705         pdata->set_trap_state(tstate1);
1706     } else {
1707       if (LogCompilation && xtty != NULL) {
1708         ttyLocker ttyl;
1709         // Missing MDP?  Leave a small complaint in the log.
1710         xtty->elem("missing_mdp bci='%d'", trap_bci);
1711       }
1712     }
1713   }
1714 
1715   // Return results:
1716   ret_this_trap_count = this_trap_count;
1717   ret_maybe_prior_trap = maybe_prior_trap;
1718   ret_maybe_prior_recompile = maybe_prior_recompile;
1719   return pdata;
1720 }
1721 
1722 void
1723 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1724   ResourceMark rm;
1725   // Ignored outputs:
1726   uint ignore_this_trap_count;
1727   bool ignore_maybe_prior_trap;
1728   bool ignore_maybe_prior_recompile;
1729   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1730   query_update_method_data(trap_mdo, trap_bci,
1731                            (DeoptReason)reason,
1732                            NULL,
1733                            ignore_this_trap_count,
1734                            ignore_maybe_prior_trap,
1735                            ignore_maybe_prior_recompile);
1736 }
1737 
1738 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1739 
1740   // Still in Java no safepoints
1741   {
1742     // This enters VM and may safepoint
1743     uncommon_trap_inner(thread, trap_request);
1744   }
1745   return fetch_unroll_info_helper(thread);
1746 }
1747 
1748 // Local derived constants.
1749 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1750 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1751 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1752 
1753 //---------------------------trap_state_reason---------------------------------
1754 Deoptimization::DeoptReason
1755 Deoptimization::trap_state_reason(int trap_state) {
1756   // This assert provides the link between the width of DataLayout::trap_bits
1757   // and the encoding of "recorded" reasons.  It ensures there are enough
1758   // bits to store all needed reasons in the per-BCI MDO profile.
1759   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1760   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1761   trap_state -= recompile_bit;
1762   if (trap_state == DS_REASON_MASK) {
1763     return Reason_many;
1764   } else {
1765     assert((int)Reason_none == 0, "state=0 => Reason_none");
1766     return (DeoptReason)trap_state;
1767   }
1768 }
1769 //-------------------------trap_state_has_reason-------------------------------
1770 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1771   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1772   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1773   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1774   trap_state -= recompile_bit;
1775   if (trap_state == DS_REASON_MASK) {
1776     return -1;  // true, unspecifically (bottom of state lattice)
1777   } else if (trap_state == reason) {
1778     return 1;   // true, definitely
1779   } else if (trap_state == 0) {
1780     return 0;   // false, definitely (top of state lattice)
1781   } else {
1782     return 0;   // false, definitely
1783   }
1784 }
1785 //-------------------------trap_state_add_reason-------------------------------
1786 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1787   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1788   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1789   trap_state -= recompile_bit;
1790   if (trap_state == DS_REASON_MASK) {
1791     return trap_state + recompile_bit;     // already at state lattice bottom
1792   } else if (trap_state == reason) {
1793     return trap_state + recompile_bit;     // the condition is already true
1794   } else if (trap_state == 0) {
1795     return reason + recompile_bit;          // no condition has yet been true
1796   } else {
1797     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1798   }
1799 }
1800 //-----------------------trap_state_is_recompiled------------------------------
1801 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1802   return (trap_state & DS_RECOMPILE_BIT) != 0;
1803 }
1804 //-----------------------trap_state_set_recompiled-----------------------------
1805 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1806   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1807   else    return trap_state & ~DS_RECOMPILE_BIT;
1808 }
1809 //---------------------------format_trap_state---------------------------------
1810 // This is used for debugging and diagnostics, including LogFile output.
1811 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1812                                               int trap_state) {
1813   DeoptReason reason      = trap_state_reason(trap_state);
1814   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1815   // Re-encode the state from its decoded components.
1816   int decoded_state = 0;
1817   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1818     decoded_state = trap_state_add_reason(decoded_state, reason);
1819   if (recomp_flag)
1820     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1821   // If the state re-encodes properly, format it symbolically.
1822   // Because this routine is used for debugging and diagnostics,
1823   // be robust even if the state is a strange value.
1824   size_t len;
1825   if (decoded_state != trap_state) {
1826     // Random buggy state that doesn't decode??
1827     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1828   } else {
1829     len = jio_snprintf(buf, buflen, "%s%s",
1830                        trap_reason_name(reason),
1831                        recomp_flag ? " recompiled" : "");
1832   }
1833   if (len >= buflen)
1834     buf[buflen-1] = '\0';
1835   return buf;
1836 }
1837 
1838 
1839 //--------------------------------statics--------------------------------------
1840 const char* Deoptimization::_trap_reason_name[] = {
1841   // Note:  Keep this in sync. with enum DeoptReason.
1842   "none",
1843   "null_check",
1844   "null_assert",
1845   "range_check",
1846   "class_check",
1847   "array_check",
1848   "intrinsic",
1849   "bimorphic",
1850   "unloaded",
1851   "uninitialized",
1852   "unreached",
1853   "unhandled",
1854   "constraint",
1855   "div0_check",
1856   "age",
1857   "predicate",
1858   "loop_limit_check",
1859   "speculate_class_check",
1860   "speculate_null_check",
1861   "rtm_state_change",
1862   "unstable_if",
1863   "tenured"
1864 };
1865 const char* Deoptimization::_trap_action_name[] = {
1866   // Note:  Keep this in sync. with enum DeoptAction.
1867   "none",
1868   "maybe_recompile",
1869   "reinterpret",
1870   "make_not_entrant",
1871   "make_not_compilable"
1872 };
1873 
1874 const char* Deoptimization::trap_reason_name(int reason) {
1875   // Check that every reason has a name
1876   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
1877 
1878   if (reason == Reason_many)  return "many";
1879   if ((uint)reason < Reason_LIMIT)
1880     return _trap_reason_name[reason];
1881   static char buf[20];
1882   sprintf(buf, "reason%d", reason);
1883   return buf;
1884 }
1885 const char* Deoptimization::trap_action_name(int action) {
1886   // Check that every action has a name
1887   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
1888 
1889   if ((uint)action < Action_LIMIT)
1890     return _trap_action_name[action];
1891   static char buf[20];
1892   sprintf(buf, "action%d", action);
1893   return buf;
1894 }
1895 
1896 // This is used for debugging and diagnostics, including LogFile output.
1897 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1898                                                 int trap_request) {
1899   jint unloaded_class_index = trap_request_index(trap_request);
1900   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1901   const char* action = trap_action_name(trap_request_action(trap_request));
1902   size_t len;
1903   if (unloaded_class_index < 0) {
1904     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1905                        reason, action);
1906   } else {
1907     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1908                        reason, action, unloaded_class_index);
1909   }
1910   if (len >= buflen)
1911     buf[buflen-1] = '\0';
1912   return buf;
1913 }
1914 
1915 juint Deoptimization::_deoptimization_hist
1916         [Deoptimization::Reason_LIMIT]
1917     [1 + Deoptimization::Action_LIMIT]
1918         [Deoptimization::BC_CASE_LIMIT]
1919   = {0};
1920 
1921 enum {
1922   LSB_BITS = 8,
1923   LSB_MASK = right_n_bits(LSB_BITS)
1924 };
1925 
1926 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1927                                        Bytecodes::Code bc) {
1928   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1929   assert(action >= 0 && action < Action_LIMIT, "oob");
1930   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1931   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1932   juint* cases = _deoptimization_hist[reason][1+action];
1933   juint* bc_counter_addr = NULL;
1934   juint  bc_counter      = 0;
1935   // Look for an unused counter, or an exact match to this BC.
1936   if (bc != Bytecodes::_illegal) {
1937     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1938       juint* counter_addr = &cases[bc_case];
1939       juint  counter = *counter_addr;
1940       if ((counter == 0 && bc_counter_addr == NULL)
1941           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1942         // this counter is either free or is already devoted to this BC
1943         bc_counter_addr = counter_addr;
1944         bc_counter = counter | bc;
1945       }
1946     }
1947   }
1948   if (bc_counter_addr == NULL) {
1949     // Overflow, or no given bytecode.
1950     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1951     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1952   }
1953   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1954 }
1955 
1956 jint Deoptimization::total_deoptimization_count() {
1957   return _deoptimization_hist[Reason_none][0][0];
1958 }
1959 
1960 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1961   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1962   return _deoptimization_hist[reason][0][0];
1963 }
1964 
1965 void Deoptimization::print_statistics() {
1966   juint total = total_deoptimization_count();
1967   juint account = total;
1968   if (total != 0) {
1969     ttyLocker ttyl;
1970     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1971     tty->print_cr("Deoptimization traps recorded:");
1972     #define PRINT_STAT_LINE(name, r) \
1973       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1974     PRINT_STAT_LINE("total", total);
1975     // For each non-zero entry in the histogram, print the reason,
1976     // the action, and (if specifically known) the type of bytecode.
1977     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1978       for (int action = 0; action < Action_LIMIT; action++) {
1979         juint* cases = _deoptimization_hist[reason][1+action];
1980         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1981           juint counter = cases[bc_case];
1982           if (counter != 0) {
1983             char name[1*K];
1984             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1985             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1986               bc = Bytecodes::_illegal;
1987             sprintf(name, "%s/%s/%s",
1988                     trap_reason_name(reason),
1989                     trap_action_name(action),
1990                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1991             juint r = counter >> LSB_BITS;
1992             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1993             account -= r;
1994           }
1995         }
1996       }
1997     }
1998     if (account != 0) {
1999       PRINT_STAT_LINE("unaccounted", account);
2000     }
2001     #undef PRINT_STAT_LINE
2002     if (xtty != NULL)  xtty->tail("statistics");
2003   }
2004 }
2005 #else // COMPILER2 || SHARK
2006 
2007 
2008 // Stubs for C1 only system.
2009 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2010   return false;
2011 }
2012 
2013 const char* Deoptimization::trap_reason_name(int reason) {
2014   return "unknown";
2015 }
2016 
2017 void Deoptimization::print_statistics() {
2018   // no output
2019 }
2020 
2021 void
2022 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2023   // no udpate
2024 }
2025 
2026 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2027   return 0;
2028 }
2029 
2030 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2031                                        Bytecodes::Code bc) {
2032   // no update
2033 }
2034 
2035 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2036                                               int trap_state) {
2037   jio_snprintf(buf, buflen, "#%d", trap_state);
2038   return buf;
2039 }
2040 
2041 #endif // COMPILER2 || SHARK