1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef PRAGMA_DIAG_PUSH
  46 #define PRAGMA_DIAG_PUSH
  47 #endif
  48 #ifndef PRAGMA_DIAG_POP
  49 #define PRAGMA_DIAG_POP
  50 #endif
  51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  53 #endif
  54 #ifndef PRAGMA_FORMAT_IGNORED
  55 #define PRAGMA_FORMAT_IGNORED
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  59 #endif
  60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  62 #endif
  63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  65 #endif
  66 #ifndef ATTRIBUTE_PRINTF
  67 #define ATTRIBUTE_PRINTF(fmt, vargs)
  68 #endif
  69 #ifndef ATTRIBUTE_SCANF
  70 #define ATTRIBUTE_SCANF(fmt, vargs)
  71 #endif
  72 
  73 
  74 #include "utilities/macros.hpp"
  75 
  76 // This file holds all globally used constants & types, class (forward)
  77 // declarations and a few frequently used utility functions.
  78 
  79 //----------------------------------------------------------------------------------------------------
  80 // Constants
  81 
  82 const int LogBytesPerShort   = 1;
  83 const int LogBytesPerInt     = 2;
  84 #ifdef _LP64
  85 const int LogBytesPerWord    = 3;
  86 #else
  87 const int LogBytesPerWord    = 2;
  88 #endif
  89 const int LogBytesPerLong    = 3;
  90 
  91 const int BytesPerShort      = 1 << LogBytesPerShort;
  92 const int BytesPerInt        = 1 << LogBytesPerInt;
  93 const int BytesPerWord       = 1 << LogBytesPerWord;
  94 const int BytesPerLong       = 1 << LogBytesPerLong;
  95 
  96 const int LogBitsPerByte     = 3;
  97 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  98 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  99 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 100 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 101 
 102 const int BitsPerByte        = 1 << LogBitsPerByte;
 103 const int BitsPerShort       = 1 << LogBitsPerShort;
 104 const int BitsPerInt         = 1 << LogBitsPerInt;
 105 const int BitsPerWord        = 1 << LogBitsPerWord;
 106 const int BitsPerLong        = 1 << LogBitsPerLong;
 107 
 108 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 109 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 110 
 111 const int WordsPerLong       = 2;       // Number of stack entries for longs
 112 
 113 const int oopSize            = sizeof(char*); // Full-width oop
 114 extern int heapOopSize;                       // Oop within a java object
 115 const int wordSize           = sizeof(char*);
 116 const int longSize           = sizeof(jlong);
 117 const int jintSize           = sizeof(jint);
 118 const int size_tSize         = sizeof(size_t);
 119 
 120 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 121 
 122 extern int LogBytesPerHeapOop;                // Oop within a java object
 123 extern int LogBitsPerHeapOop;
 124 extern int BytesPerHeapOop;
 125 extern int BitsPerHeapOop;
 126 
 127 const int BitsPerJavaInteger = 32;
 128 const int BitsPerJavaLong    = 64;
 129 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 130 
 131 // Size of a char[] needed to represent a jint as a string in decimal.
 132 const int jintAsStringSize = 12;
 133 
 134 // In fact this should be
 135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 136 // see os::set_memory_serialize_page()
 137 #ifdef _LP64
 138 const int SerializePageShiftCount = 4;
 139 #else
 140 const int SerializePageShiftCount = 3;
 141 #endif
 142 
 143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 144 // pointer into the heap.  We require that object sizes be measured in
 145 // units of heap words, so that that
 146 //   HeapWord* hw;
 147 //   hw += oop(hw)->foo();
 148 // works, where foo is a method (like size or scavenge) that returns the
 149 // object size.
 150 class HeapWord {
 151   friend class VMStructs;
 152  private:
 153   char* i;
 154 #ifndef PRODUCT
 155  public:
 156   char* value() { return i; }
 157 #endif
 158 };
 159 
 160 // Analogous opaque struct for metadata allocated from
 161 // metaspaces.
 162 class MetaWord {
 163   friend class VMStructs;
 164  private:
 165   char* i;
 166 };
 167 
 168 // HeapWordSize must be 2^LogHeapWordSize.
 169 const int HeapWordSize        = sizeof(HeapWord);
 170 #ifdef _LP64
 171 const int LogHeapWordSize     = 3;
 172 #else
 173 const int LogHeapWordSize     = 2;
 174 #endif
 175 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 177 
 178 // The larger HeapWordSize for 64bit requires larger heaps
 179 // for the same application running in 64bit.  See bug 4967770.
 180 // The minimum alignment to a heap word size is done.  Other
 181 // parts of the memory system may require additional alignment
 182 // and are responsible for those alignments.
 183 #ifdef _LP64
 184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 185 #else
 186 #define ScaleForWordSize(x) (x)
 187 #endif
 188 
 189 // The minimum number of native machine words necessary to contain "byte_size"
 190 // bytes.
 191 inline size_t heap_word_size(size_t byte_size) {
 192   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 193 }
 194 
 195 const size_t K                  = 1024;
 196 const size_t M                  = K*K;
 197 const size_t G                  = M*K;
 198 const size_t HWperKB            = K / sizeof(HeapWord);
 199 
 200 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 201 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 202 
 203 // Constants for converting from a base unit to milli-base units.  For
 204 // example from seconds to milliseconds and microseconds
 205 
 206 const int MILLIUNITS    = 1000;         // milli units per base unit
 207 const int MICROUNITS    = 1000000;      // micro units per base unit
 208 const int NANOUNITS     = 1000000000;   // nano units per base unit
 209 
 210 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 211 const jint  NANOSECS_PER_MILLISEC = 1000000;
 212 
 213 inline const char* proper_unit_for_byte_size(size_t s) {
 214 #ifdef _LP64
 215   if (s >= 10*G) {
 216     return "G";
 217   }
 218 #endif
 219   if (s >= 10*M) {
 220     return "M";
 221   } else if (s >= 10*K) {
 222     return "K";
 223   } else {
 224     return "B";
 225   }
 226 }
 227 
 228 template <class T>
 229 inline T byte_size_in_proper_unit(T s) {
 230 #ifdef _LP64
 231   if (s >= 10*G) {
 232     return (T)(s/G);
 233   }
 234 #endif
 235   if (s >= 10*M) {
 236     return (T)(s/M);
 237   } else if (s >= 10*K) {
 238     return (T)(s/K);
 239   } else {
 240     return s;
 241   }
 242 }
 243 
 244 //----------------------------------------------------------------------------------------------------
 245 // VM type definitions
 246 
 247 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 248 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 249 
 250 typedef intptr_t  intx;
 251 typedef uintptr_t uintx;
 252 
 253 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 254 const intx  max_intx  = (uintx)min_intx - 1;
 255 const uintx max_uintx = (uintx)-1;
 256 
 257 // Table of values:
 258 //      sizeof intx         4               8
 259 // min_intx             0x80000000      0x8000000000000000
 260 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 261 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 262 
 263 typedef unsigned int uint;   NEEDS_CLEANUP
 264 
 265 
 266 //----------------------------------------------------------------------------------------------------
 267 // Java type definitions
 268 
 269 // All kinds of 'plain' byte addresses
 270 typedef   signed char s_char;
 271 typedef unsigned char u_char;
 272 typedef u_char*       address;
 273 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 274                                     // except for some implementations of a C++
 275                                     // linkage pointer to function. Should never
 276                                     // need one of those to be placed in this
 277                                     // type anyway.
 278 
 279 //  Utility functions to "portably" (?) bit twiddle pointers
 280 //  Where portable means keep ANSI C++ compilers quiet
 281 
 282 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 283 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 284 
 285 //  Utility functions to "portably" make cast to/from function pointers.
 286 
 287 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 288 inline address_word  castable_address(address x)              { return address_word(x) ; }
 289 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 290 
 291 // Pointer subtraction.
 292 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 293 // the range we might need to find differences from one end of the heap
 294 // to the other.
 295 // A typical use might be:
 296 //     if (pointer_delta(end(), top()) >= size) {
 297 //       // enough room for an object of size
 298 //       ...
 299 // and then additions like
 300 //       ... top() + size ...
 301 // are safe because we know that top() is at least size below end().
 302 inline size_t pointer_delta(const void* left,
 303                             const void* right,
 304                             size_t element_size) {
 305   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 306 }
 307 // A version specialized for HeapWord*'s.
 308 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 309   return pointer_delta(left, right, sizeof(HeapWord));
 310 }
 311 // A version specialized for MetaWord*'s.
 312 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 313   return pointer_delta(left, right, sizeof(MetaWord));
 314 }
 315 
 316 //
 317 // ANSI C++ does not allow casting from one pointer type to a function pointer
 318 // directly without at best a warning. This macro accomplishes it silently
 319 // In every case that is present at this point the value be cast is a pointer
 320 // to a C linkage function. In somecase the type used for the cast reflects
 321 // that linkage and a picky compiler would not complain. In other cases because
 322 // there is no convenient place to place a typedef with extern C linkage (i.e
 323 // a platform dependent header file) it doesn't. At this point no compiler seems
 324 // picky enough to catch these instances (which are few). It is possible that
 325 // using templates could fix these for all cases. This use of templates is likely
 326 // so far from the middle of the road that it is likely to be problematic in
 327 // many C++ compilers.
 328 //
 329 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 330 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 331 
 332 // Unsigned byte types for os and stream.hpp
 333 
 334 // Unsigned one, two, four and eigth byte quantities used for describing
 335 // the .class file format. See JVM book chapter 4.
 336 
 337 typedef jubyte  u1;
 338 typedef jushort u2;
 339 typedef juint   u4;
 340 typedef julong  u8;
 341 
 342 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 343 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 344 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 345 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 346 
 347 typedef jbyte  s1;
 348 typedef jshort s2;
 349 typedef jint   s4;
 350 typedef jlong  s8;
 351 
 352 //----------------------------------------------------------------------------------------------------
 353 // JVM spec restrictions
 354 
 355 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 356 
 357 // Default ProtectionDomainCacheSize values
 358 
 359 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 360 
 361 //----------------------------------------------------------------------------------------------------
 362 // Default and minimum StringTableSize values
 363 
 364 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 365 const int minimumStringTableSize = 1009;
 366 
 367 const int defaultSymbolTableSize = 20011;
 368 const int minimumSymbolTableSize = 1009;
 369 
 370 
 371 //----------------------------------------------------------------------------------------------------
 372 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 373 //
 374 // Determines whether on-the-fly class replacement and frame popping are enabled.
 375 
 376 #define HOTSWAP
 377 
 378 //----------------------------------------------------------------------------------------------------
 379 // Object alignment, in units of HeapWords.
 380 //
 381 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 382 // reference fields can be naturally aligned.
 383 
 384 extern int MinObjAlignment;
 385 extern int MinObjAlignmentInBytes;
 386 extern int MinObjAlignmentInBytesMask;
 387 
 388 extern int LogMinObjAlignment;
 389 extern int LogMinObjAlignmentInBytes;
 390 
 391 const int LogKlassAlignmentInBytes = 3;
 392 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 393 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 394 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 395 
 396 // Maximal size of heap where unscaled compression can be used. Also upper bound
 397 // for heap placement: 4GB.
 398 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 399 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 400 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 401 extern uint64_t OopEncodingHeapMax;
 402 
 403 // Maximal size of compressed class space. Above this limit compression is not possible.
 404 // Also upper bound for placement of zero based class space. (Class space is further limited
 405 // to be < 3G, see arguments.cpp.)
 406 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 407 
 408 // Machine dependent stuff
 409 
 410 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 411 // Include Restricted Transactional Memory lock eliding optimization
 412 #define INCLUDE_RTM_OPT 1
 413 #define RTM_OPT_ONLY(code) code
 414 #else
 415 #define INCLUDE_RTM_OPT 0
 416 #define RTM_OPT_ONLY(code)
 417 #endif
 418 // States of Restricted Transactional Memory usage.
 419 enum RTMState {
 420   NoRTM      = 0x2, // Don't use RTM
 421   UseRTM     = 0x1, // Use RTM
 422   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 423 };
 424 
 425 // The maximum size of the code cache.  Can be overridden by targets.
 426 #define CODE_CACHE_SIZE_LIMIT (2*G)
 427 // Allow targets to reduce the default size of the code cache.
 428 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 429 
 430 #ifdef TARGET_ARCH_x86
 431 # include "globalDefinitions_x86.hpp"
 432 #endif
 433 #ifdef TARGET_ARCH_sparc
 434 # include "globalDefinitions_sparc.hpp"
 435 #endif
 436 #ifdef TARGET_ARCH_zero
 437 # include "globalDefinitions_zero.hpp"
 438 #endif
 439 #ifdef TARGET_ARCH_arm
 440 # include "globalDefinitions_arm.hpp"
 441 #endif
 442 #ifdef TARGET_ARCH_ppc
 443 # include "globalDefinitions_ppc.hpp"
 444 #endif
 445 #ifdef TARGET_ARCH_aarch64
 446 # include "globalDefinitions_aarch64.hpp"
 447 #endif
 448 
 449 /*
 450  * If a platform does not support native stack walking
 451  * the platform specific globalDefinitions (above)
 452  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 453  */
 454 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 455 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 456 #endif
 457 
 458 // To assure the IRIW property on processors that are not multiple copy
 459 // atomic, sync instructions must be issued between volatile reads to
 460 // assure their ordering, instead of after volatile stores.
 461 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 462 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 463 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 464 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 465 #else
 466 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 467 #endif
 468 
 469 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 470 // Note: this value must be a power of 2
 471 
 472 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 473 
 474 // Signed variants of alignment helpers.  There are two versions of each, a macro
 475 // for use in places like enum definitions that require compile-time constant
 476 // expressions and a function for all other places so as to get type checking.
 477 
 478 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 479 
 480 inline bool is_size_aligned(size_t size, size_t alignment) {
 481   return align_size_up_(size, alignment) == size;
 482 }
 483 
 484 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 485   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 486 }
 487 
 488 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 489   return align_size_up_(size, alignment);
 490 }
 491 
 492 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 493 
 494 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 495   return align_size_down_(size, alignment);
 496 }
 497 
 498 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 499 
 500 inline void* align_ptr_up(void* ptr, size_t alignment) {
 501   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 502 }
 503 
 504 inline void* align_ptr_down(void* ptr, size_t alignment) {
 505   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 506 }
 507 
 508 // Align objects by rounding up their size, in HeapWord units.
 509 
 510 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 511 
 512 inline intptr_t align_object_size(intptr_t size) {
 513   return align_size_up(size, MinObjAlignment);
 514 }
 515 
 516 inline bool is_object_aligned(intptr_t addr) {
 517   return addr == align_object_size(addr);
 518 }
 519 
 520 // Pad out certain offsets to jlong alignment, in HeapWord units.
 521 
 522 inline intptr_t align_object_offset(intptr_t offset) {
 523   return align_size_up(offset, HeapWordsPerLong);
 524 }
 525 
 526 inline void* align_pointer_up(const void* addr, size_t size) {
 527   return (void*) align_size_up_((uintptr_t)addr, size);
 528 }
 529 
 530 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 531 
 532 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 533   size_t aligned_size = align_size_down_(size, alignment);
 534   return aligned_size > 0 ? aligned_size : alignment;
 535 }
 536 
 537 // Clamp an address to be within a specific page
 538 // 1. If addr is on the page it is returned as is
 539 // 2. If addr is above the page_address the start of the *next* page will be returned
 540 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 541 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 542   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 543     // address is in the specified page, just return it as is
 544     return addr;
 545   } else if (addr > page_address) {
 546     // address is above specified page, return start of next page
 547     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 548   } else {
 549     // address is below specified page, return start of page
 550     return (address)align_size_down(intptr_t(page_address), page_size);
 551   }
 552 }
 553 
 554 
 555 // The expected size in bytes of a cache line, used to pad data structures.
 556 #ifndef DEFAULT_CACHE_LINE_SIZE
 557   #define DEFAULT_CACHE_LINE_SIZE 64
 558 #endif
 559 
 560 
 561 //----------------------------------------------------------------------------------------------------
 562 // Utility macros for compilers
 563 // used to silence compiler warnings
 564 
 565 #define Unused_Variable(var) var
 566 
 567 
 568 //----------------------------------------------------------------------------------------------------
 569 // Miscellaneous
 570 
 571 // 6302670 Eliminate Hotspot __fabsf dependency
 572 // All fabs() callers should call this function instead, which will implicitly
 573 // convert the operand to double, avoiding a dependency on __fabsf which
 574 // doesn't exist in early versions of Solaris 8.
 575 inline double fabsd(double value) {
 576   return fabs(value);
 577 }
 578 
 579 //----------------------------------------------------------------------------------------------------
 580 // Special casts
 581 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 582 typedef union {
 583   jfloat f;
 584   jint i;
 585 } FloatIntConv;
 586 
 587 typedef union {
 588   jdouble d;
 589   jlong l;
 590   julong ul;
 591 } DoubleLongConv;
 592 
 593 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 594 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 595 
 596 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 597 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 598 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 599 
 600 inline jint low (jlong value)                    { return jint(value); }
 601 inline jint high(jlong value)                    { return jint(value >> 32); }
 602 
 603 // the fancy casts are a hopefully portable way
 604 // to do unsigned 32 to 64 bit type conversion
 605 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 606                                                    *value |= (jlong)(julong)(juint)low; }
 607 
 608 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 609                                                    *value |= (jlong)high       << 32; }
 610 
 611 inline jlong jlong_from(jint h, jint l) {
 612   jlong result = 0; // initialization to avoid warning
 613   set_high(&result, h);
 614   set_low(&result,  l);
 615   return result;
 616 }
 617 
 618 union jlong_accessor {
 619   jint  words[2];
 620   jlong long_value;
 621 };
 622 
 623 void basic_types_init(); // cannot define here; uses assert
 624 
 625 
 626 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 627 enum BasicType {
 628   T_BOOLEAN     =  4,
 629   T_CHAR        =  5,
 630   T_FLOAT       =  6,
 631   T_DOUBLE      =  7,
 632   T_BYTE        =  8,
 633   T_SHORT       =  9,
 634   T_INT         = 10,
 635   T_LONG        = 11,
 636   T_OBJECT      = 12,
 637   T_ARRAY       = 13,
 638   T_VOID        = 14,
 639   T_ADDRESS     = 15,
 640   T_NARROWOOP   = 16,
 641   T_METADATA    = 17,
 642   T_NARROWKLASS = 18,
 643   T_CONFLICT    = 19, // for stack value type with conflicting contents
 644   T_ILLEGAL     = 99
 645 };
 646 
 647 inline bool is_java_primitive(BasicType t) {
 648   return T_BOOLEAN <= t && t <= T_LONG;
 649 }
 650 
 651 inline bool is_subword_type(BasicType t) {
 652   // these guys are processed exactly like T_INT in calling sequences:
 653   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 654 }
 655 
 656 inline bool is_signed_subword_type(BasicType t) {
 657   return (t == T_BYTE || t == T_SHORT);
 658 }
 659 
 660 // Convert a char from a classfile signature to a BasicType
 661 inline BasicType char2type(char c) {
 662   switch( c ) {
 663   case 'B': return T_BYTE;
 664   case 'C': return T_CHAR;
 665   case 'D': return T_DOUBLE;
 666   case 'F': return T_FLOAT;
 667   case 'I': return T_INT;
 668   case 'J': return T_LONG;
 669   case 'S': return T_SHORT;
 670   case 'Z': return T_BOOLEAN;
 671   case 'V': return T_VOID;
 672   case 'L': return T_OBJECT;
 673   case '[': return T_ARRAY;
 674   }
 675   return T_ILLEGAL;
 676 }
 677 
 678 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 679 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 680 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 681 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 682 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 683 extern BasicType name2type(const char* name);
 684 
 685 // Auxilary math routines
 686 // least common multiple
 687 extern size_t lcm(size_t a, size_t b);
 688 
 689 
 690 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 691 enum BasicTypeSize {
 692   T_BOOLEAN_size     = 1,
 693   T_CHAR_size        = 1,
 694   T_FLOAT_size       = 1,
 695   T_DOUBLE_size      = 2,
 696   T_BYTE_size        = 1,
 697   T_SHORT_size       = 1,
 698   T_INT_size         = 1,
 699   T_LONG_size        = 2,
 700   T_OBJECT_size      = 1,
 701   T_ARRAY_size       = 1,
 702   T_NARROWOOP_size   = 1,
 703   T_NARROWKLASS_size = 1,
 704   T_VOID_size        = 0
 705 };
 706 
 707 
 708 // maps a BasicType to its instance field storage type:
 709 // all sub-word integral types are widened to T_INT
 710 extern BasicType type2field[T_CONFLICT+1];
 711 extern BasicType type2wfield[T_CONFLICT+1];
 712 
 713 
 714 // size in bytes
 715 enum ArrayElementSize {
 716   T_BOOLEAN_aelem_bytes     = 1,
 717   T_CHAR_aelem_bytes        = 2,
 718   T_FLOAT_aelem_bytes       = 4,
 719   T_DOUBLE_aelem_bytes      = 8,
 720   T_BYTE_aelem_bytes        = 1,
 721   T_SHORT_aelem_bytes       = 2,
 722   T_INT_aelem_bytes         = 4,
 723   T_LONG_aelem_bytes        = 8,
 724 #ifdef _LP64
 725   T_OBJECT_aelem_bytes      = 8,
 726   T_ARRAY_aelem_bytes       = 8,
 727 #else
 728   T_OBJECT_aelem_bytes      = 4,
 729   T_ARRAY_aelem_bytes       = 4,
 730 #endif
 731   T_NARROWOOP_aelem_bytes   = 4,
 732   T_NARROWKLASS_aelem_bytes = 4,
 733   T_VOID_aelem_bytes        = 0
 734 };
 735 
 736 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 737 #ifdef ASSERT
 738 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 739 #else
 740 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 741 #endif
 742 
 743 
 744 // JavaValue serves as a container for arbitrary Java values.
 745 
 746 class JavaValue {
 747 
 748  public:
 749   typedef union JavaCallValue {
 750     jfloat   f;
 751     jdouble  d;
 752     jint     i;
 753     jlong    l;
 754     jobject  h;
 755   } JavaCallValue;
 756 
 757  private:
 758   BasicType _type;
 759   JavaCallValue _value;
 760 
 761  public:
 762   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 763 
 764   JavaValue(jfloat value) {
 765     _type    = T_FLOAT;
 766     _value.f = value;
 767   }
 768 
 769   JavaValue(jdouble value) {
 770     _type    = T_DOUBLE;
 771     _value.d = value;
 772   }
 773 
 774  jfloat get_jfloat() const { return _value.f; }
 775  jdouble get_jdouble() const { return _value.d; }
 776  jint get_jint() const { return _value.i; }
 777  jlong get_jlong() const { return _value.l; }
 778  jobject get_jobject() const { return _value.h; }
 779  JavaCallValue* get_value_addr() { return &_value; }
 780  BasicType get_type() const { return _type; }
 781 
 782  void set_jfloat(jfloat f) { _value.f = f;}
 783  void set_jdouble(jdouble d) { _value.d = d;}
 784  void set_jint(jint i) { _value.i = i;}
 785  void set_jlong(jlong l) { _value.l = l;}
 786  void set_jobject(jobject h) { _value.h = h;}
 787  void set_type(BasicType t) { _type = t; }
 788 
 789  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 790  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 791  jchar get_jchar() const { return (jchar) (_value.i);}
 792  jshort get_jshort() const { return (jshort) (_value.i);}
 793 
 794 };
 795 
 796 
 797 #define STACK_BIAS      0
 798 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 799 // in order to extend the reach of the stack pointer.
 800 #if defined(SPARC) && defined(_LP64)
 801 #undef STACK_BIAS
 802 #define STACK_BIAS      0x7ff
 803 #endif
 804 
 805 
 806 // TosState describes the top-of-stack state before and after the execution of
 807 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 808 // registers. The TosState corresponds to the 'machine represention' of this cached
 809 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 810 // as well as a 5th state in case the top-of-stack value is actually on the top
 811 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 812 // state when it comes to machine representation but is used separately for (oop)
 813 // type specific operations (e.g. verification code).
 814 
 815 enum TosState {         // describes the tos cache contents
 816   btos = 0,             // byte, bool tos cached
 817   ctos = 1,             // char tos cached
 818   stos = 2,             // short tos cached
 819   itos = 3,             // int tos cached
 820   ltos = 4,             // long tos cached
 821   ftos = 5,             // float tos cached
 822   dtos = 6,             // double tos cached
 823   atos = 7,             // object cached
 824   vtos = 8,             // tos not cached
 825   number_of_states,
 826   ilgl                  // illegal state: should not occur
 827 };
 828 
 829 
 830 inline TosState as_TosState(BasicType type) {
 831   switch (type) {
 832     case T_BYTE   : return btos;
 833     case T_BOOLEAN: return btos; // FIXME: Add ztos
 834     case T_CHAR   : return ctos;
 835     case T_SHORT  : return stos;
 836     case T_INT    : return itos;
 837     case T_LONG   : return ltos;
 838     case T_FLOAT  : return ftos;
 839     case T_DOUBLE : return dtos;
 840     case T_VOID   : return vtos;
 841     case T_ARRAY  : // fall through
 842     case T_OBJECT : return atos;
 843   }
 844   return ilgl;
 845 }
 846 
 847 inline BasicType as_BasicType(TosState state) {
 848   switch (state) {
 849     //case ztos: return T_BOOLEAN;//FIXME
 850     case btos : return T_BYTE;
 851     case ctos : return T_CHAR;
 852     case stos : return T_SHORT;
 853     case itos : return T_INT;
 854     case ltos : return T_LONG;
 855     case ftos : return T_FLOAT;
 856     case dtos : return T_DOUBLE;
 857     case atos : return T_OBJECT;
 858     case vtos : return T_VOID;
 859   }
 860   return T_ILLEGAL;
 861 }
 862 
 863 
 864 // Helper function to convert BasicType info into TosState
 865 // Note: Cannot define here as it uses global constant at the time being.
 866 TosState as_TosState(BasicType type);
 867 
 868 
 869 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 870 // information is needed by the safepoint code.
 871 //
 872 // There are 4 essential states:
 873 //
 874 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 875 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 876 //  _thread_in_vm       : Executing in the vm
 877 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 878 //
 879 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 880 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 881 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 882 //
 883 // Given a state, the xxx_trans state can always be found by adding 1.
 884 //
 885 enum JavaThreadState {
 886   _thread_uninitialized     =  0, // should never happen (missing initialization)
 887   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 888   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 889   _thread_in_native         =  4, // running in native code
 890   _thread_in_native_trans   =  5, // corresponding transition state
 891   _thread_in_vm             =  6, // running in VM
 892   _thread_in_vm_trans       =  7, // corresponding transition state
 893   _thread_in_Java           =  8, // running in Java or in stub code
 894   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 895   _thread_blocked           = 10, // blocked in vm
 896   _thread_blocked_trans     = 11, // corresponding transition state
 897   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 898 };
 899 
 900 
 901 // Handy constants for deciding which compiler mode to use.
 902 enum MethodCompilation {
 903   InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
 904 };
 905 
 906 // Enumeration to distinguish tiers of compilation
 907 enum CompLevel {
 908   CompLevel_any               = -1,
 909   CompLevel_all               = -1,
 910   CompLevel_none              = 0,         // Interpreter
 911   CompLevel_simple            = 1,         // C1
 912   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 913   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 914   CompLevel_full_optimization = 4,         // C2 or Shark
 915 
 916 #if defined(COMPILER2) || defined(SHARK)
 917   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 918 #elif defined(COMPILER1)
 919   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 920 #else
 921   CompLevel_highest_tier      = CompLevel_none,
 922 #endif
 923 
 924 #if defined(TIERED)
 925   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 926 #elif defined(COMPILER1)
 927   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 928 #elif defined(COMPILER2) || defined(SHARK)
 929   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 930 #else
 931   CompLevel_initial_compile   = CompLevel_none
 932 #endif
 933 };
 934 
 935 inline bool is_c1_compile(int comp_level) {
 936   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 937 }
 938 
 939 inline bool is_c2_compile(int comp_level) {
 940   return comp_level == CompLevel_full_optimization;
 941 }
 942 
 943 inline bool is_highest_tier_compile(int comp_level) {
 944   return comp_level == CompLevel_highest_tier;
 945 }
 946 
 947 inline bool is_compile(int comp_level) {
 948   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 949 }
 950 
 951 //----------------------------------------------------------------------------------------------------
 952 // 'Forward' declarations of frequently used classes
 953 // (in order to reduce interface dependencies & reduce
 954 // number of unnecessary compilations after changes)
 955 
 956 class symbolTable;
 957 class ClassFileStream;
 958 
 959 class Event;
 960 
 961 class Thread;
 962 class  VMThread;
 963 class  JavaThread;
 964 class Threads;
 965 
 966 class VM_Operation;
 967 class VMOperationQueue;
 968 
 969 class CodeBlob;
 970 class  nmethod;
 971 class  OSRAdapter;
 972 class  I2CAdapter;
 973 class  C2IAdapter;
 974 class CompiledIC;
 975 class relocInfo;
 976 class ScopeDesc;
 977 class PcDesc;
 978 
 979 class Recompiler;
 980 class Recompilee;
 981 class RecompilationPolicy;
 982 class RFrame;
 983 class  CompiledRFrame;
 984 class  InterpretedRFrame;
 985 
 986 class frame;
 987 
 988 class vframe;
 989 class   javaVFrame;
 990 class     interpretedVFrame;
 991 class     compiledVFrame;
 992 class     deoptimizedVFrame;
 993 class   externalVFrame;
 994 class     entryVFrame;
 995 
 996 class RegisterMap;
 997 
 998 class Mutex;
 999 class Monitor;
1000 class BasicLock;
1001 class BasicObjectLock;
1002 
1003 class PeriodicTask;
1004 
1005 class JavaCallWrapper;
1006 
1007 class   oopDesc;
1008 class   metaDataOopDesc;
1009 
1010 class NativeCall;
1011 
1012 class zone;
1013 
1014 class StubQueue;
1015 
1016 class outputStream;
1017 
1018 class ResourceArea;
1019 
1020 class DebugInformationRecorder;
1021 class ScopeValue;
1022 class CompressedStream;
1023 class   DebugInfoReadStream;
1024 class   DebugInfoWriteStream;
1025 class LocationValue;
1026 class ConstantValue;
1027 class IllegalValue;
1028 
1029 class PrivilegedElement;
1030 class MonitorArray;
1031 
1032 class MonitorInfo;
1033 
1034 class OffsetClosure;
1035 class OopMapCache;
1036 class InterpreterOopMap;
1037 class OopMapCacheEntry;
1038 class OSThread;
1039 
1040 typedef int (*OSThreadStartFunc)(void*);
1041 
1042 class Space;
1043 
1044 class JavaValue;
1045 class methodHandle;
1046 class JavaCallArguments;
1047 
1048 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1049 
1050 extern void basic_fatal(const char* msg);
1051 
1052 
1053 //----------------------------------------------------------------------------------------------------
1054 // Special constants for debugging
1055 
1056 const jint     badInt           = -3;                       // generic "bad int" value
1057 const long     badAddressVal    = -2;                       // generic "bad address" value
1058 const long     badOopVal        = -1;                       // generic "bad oop" value
1059 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1060 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1061 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1062 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1063 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1064 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1065 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1066 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1067 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1068 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1069 
1070 
1071 // (These must be implemented as #defines because C++ compilers are
1072 // not obligated to inline non-integral constants!)
1073 #define       badAddress        ((address)::badAddressVal)
1074 #define       badOop            (cast_to_oop(::badOopVal))
1075 #define       badHeapWord       (::badHeapWordVal)
1076 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1077 
1078 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1079 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1080 
1081 //----------------------------------------------------------------------------------------------------
1082 // Utility functions for bitfield manipulations
1083 
1084 const intptr_t AllBits    = ~0; // all bits set in a word
1085 const intptr_t NoBits     =  0; // no bits set in a word
1086 const jlong    NoLongBits =  0; // no bits set in a long
1087 const intptr_t OneBit     =  1; // only right_most bit set in a word
1088 
1089 // get a word with the n.th or the right-most or left-most n bits set
1090 // (note: #define used only so that they can be used in enum constant definitions)
1091 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1092 #define right_n_bits(n)   (nth_bit(n) - 1)
1093 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1094 
1095 // bit-operations using a mask m
1096 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1097 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1098 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1099 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1100 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1101 
1102 // bit-operations using the n.th bit
1103 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1104 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1105 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1106 
1107 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1108 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1109   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1110 }
1111 
1112 
1113 //----------------------------------------------------------------------------------------------------
1114 // Utility functions for integers
1115 
1116 // Avoid use of global min/max macros which may cause unwanted double
1117 // evaluation of arguments.
1118 #ifdef max
1119 #undef max
1120 #endif
1121 
1122 #ifdef min
1123 #undef min
1124 #endif
1125 
1126 #define max(a,b) Do_not_use_max_use_MAX2_instead
1127 #define min(a,b) Do_not_use_min_use_MIN2_instead
1128 
1129 // It is necessary to use templates here. Having normal overloaded
1130 // functions does not work because it is necessary to provide both 32-
1131 // and 64-bit overloaded functions, which does not work, and having
1132 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1133 // will be even more error-prone than macros.
1134 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1135 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1136 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1137 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1138 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1139 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1140 
1141 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1142 
1143 // true if x is a power of 2, false otherwise
1144 inline bool is_power_of_2(intptr_t x) {
1145   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1146 }
1147 
1148 // long version of is_power_of_2
1149 inline bool is_power_of_2_long(jlong x) {
1150   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1151 }
1152 
1153 // Returns largest i such that 2^i <= x.
1154 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1155 // If x == 0, the function returns -1.
1156 inline int log2_intptr(intptr_t x) {
1157   int i = -1;
1158   uintptr_t p = 1;
1159   while (p != 0 && p <= (uintptr_t)x) {
1160     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1161     i++; p *= 2;
1162   }
1163   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1164   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1165   return i;
1166 }
1167 
1168 //* largest i such that 2^i <= x
1169 //  A negative value of 'x' will return '63'
1170 inline int log2_long(jlong x) {
1171   int i = -1;
1172   julong p =  1;
1173   while (p != 0 && p <= (julong)x) {
1174     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1175     i++; p *= 2;
1176   }
1177   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1178   // (if p = 0 then overflow occurred and i = 63)
1179   return i;
1180 }
1181 
1182 //* the argument must be exactly a power of 2
1183 inline int exact_log2(intptr_t x) {
1184   #ifdef ASSERT
1185     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1186   #endif
1187   return log2_intptr(x);
1188 }
1189 
1190 //* the argument must be exactly a power of 2
1191 inline int exact_log2_long(jlong x) {
1192   #ifdef ASSERT
1193     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1194   #endif
1195   return log2_long(x);
1196 }
1197 
1198 
1199 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1200 inline intptr_t round_to(intptr_t x, uintx s) {
1201   #ifdef ASSERT
1202     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1203   #endif
1204   const uintx m = s - 1;
1205   return mask_bits(x + m, ~m);
1206 }
1207 
1208 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1209 inline intptr_t round_down(intptr_t x, uintx s) {
1210   #ifdef ASSERT
1211     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1212   #endif
1213   const uintx m = s - 1;
1214   return mask_bits(x, ~m);
1215 }
1216 
1217 
1218 inline bool is_odd (intx x) { return x & 1;      }
1219 inline bool is_even(intx x) { return !is_odd(x); }
1220 
1221 // "to" should be greater than "from."
1222 inline intx byte_size(void* from, void* to) {
1223   return (address)to - (address)from;
1224 }
1225 
1226 //----------------------------------------------------------------------------------------------------
1227 // Avoid non-portable casts with these routines (DEPRECATED)
1228 
1229 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1230 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1231 
1232 // Given sequence of four bytes, build into a 32-bit word
1233 // following the conventions used in class files.
1234 // On the 386, this could be realized with a simple address cast.
1235 //
1236 
1237 // This routine takes eight bytes:
1238 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1239   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1240        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1241        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1242        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1243        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1244        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1245        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1246        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1247 }
1248 
1249 // This routine takes four bytes:
1250 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1251   return  (( u4(c1) << 24 )  &  0xff000000)
1252        |  (( u4(c2) << 16 )  &  0x00ff0000)
1253        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1254        |  (( u4(c4) <<  0 )  &  0x000000ff);
1255 }
1256 
1257 // And this one works if the four bytes are contiguous in memory:
1258 inline u4 build_u4_from( u1* p ) {
1259   return  build_u4_from( p[0], p[1], p[2], p[3] );
1260 }
1261 
1262 // Ditto for two-byte ints:
1263 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1264   return  u2((( u2(c1) <<  8 )  &  0xff00)
1265           |  (( u2(c2) <<  0 )  &  0x00ff));
1266 }
1267 
1268 // And this one works if the two bytes are contiguous in memory:
1269 inline u2 build_u2_from( u1* p ) {
1270   return  build_u2_from( p[0], p[1] );
1271 }
1272 
1273 // Ditto for floats:
1274 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1275   u4 u = build_u4_from( c1, c2, c3, c4 );
1276   return  *(jfloat*)&u;
1277 }
1278 
1279 inline jfloat build_float_from( u1* p ) {
1280   u4 u = build_u4_from( p );
1281   return  *(jfloat*)&u;
1282 }
1283 
1284 
1285 // now (64-bit) longs
1286 
1287 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1288   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1289        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1290        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1291        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1292        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1293        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1294        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1295        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1296 }
1297 
1298 inline jlong build_long_from( u1* p ) {
1299   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1300 }
1301 
1302 
1303 // Doubles, too!
1304 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1305   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1306   return  *(jdouble*)&u;
1307 }
1308 
1309 inline jdouble build_double_from( u1* p ) {
1310   jlong u = build_long_from( p );
1311   return  *(jdouble*)&u;
1312 }
1313 
1314 
1315 // Portable routines to go the other way:
1316 
1317 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1318   c1 = u1(x >> 8);
1319   c2 = u1(x);
1320 }
1321 
1322 inline void explode_short_to( u2 x, u1* p ) {
1323   explode_short_to( x, p[0], p[1]);
1324 }
1325 
1326 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1327   c1 = u1(x >> 24);
1328   c2 = u1(x >> 16);
1329   c3 = u1(x >>  8);
1330   c4 = u1(x);
1331 }
1332 
1333 inline void explode_int_to( u4 x, u1* p ) {
1334   explode_int_to( x, p[0], p[1], p[2], p[3]);
1335 }
1336 
1337 
1338 // Pack and extract shorts to/from ints:
1339 
1340 inline int extract_low_short_from_int(jint x) {
1341   return x & 0xffff;
1342 }
1343 
1344 inline int extract_high_short_from_int(jint x) {
1345   return (x >> 16) & 0xffff;
1346 }
1347 
1348 inline int build_int_from_shorts( jushort low, jushort high ) {
1349   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1350 }
1351 
1352 // Convert pointer to intptr_t, for use in printing pointers.
1353 inline intptr_t p2i(const void * p) {
1354   return (intptr_t) p;
1355 }
1356 
1357 // Printf-style formatters for fixed- and variable-width types as pointers and
1358 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1359 // doesn't provide appropriate definitions, they should be provided in
1360 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1361 
1362 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1363 
1364 // Format 32-bit quantities.
1365 #define INT32_FORMAT           "%" PRId32
1366 #define UINT32_FORMAT          "%" PRIu32
1367 #define INT32_FORMAT_W(width)  "%" #width PRId32
1368 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1369 
1370 #define PTR32_FORMAT           "0x%08" PRIx32
1371 
1372 // Format 64-bit quantities.
1373 #define INT64_FORMAT           "%" PRId64
1374 #define UINT64_FORMAT          "%" PRIu64
1375 #define UINT64_FORMAT_X        "%" PRIx64
1376 #define INT64_FORMAT_W(width)  "%" #width PRId64
1377 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1378 
1379 #define PTR64_FORMAT           "0x%016" PRIx64
1380 
1381 // Format jlong, if necessary
1382 #ifndef JLONG_FORMAT
1383 #define JLONG_FORMAT           INT64_FORMAT
1384 #endif
1385 #ifndef JULONG_FORMAT
1386 #define JULONG_FORMAT          UINT64_FORMAT
1387 #endif
1388 #ifndef JULONG_FORMAT_X
1389 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1390 #endif
1391 
1392 // Format pointers which change size between 32- and 64-bit.
1393 #ifdef  _LP64
1394 #define INTPTR_FORMAT "0x%016" PRIxPTR
1395 #define PTR_FORMAT    "0x%016" PRIxPTR
1396 #else   // !_LP64
1397 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1398 #define PTR_FORMAT    "0x%08"  PRIxPTR
1399 #endif  // _LP64
1400 
1401 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1402 
1403 #define SSIZE_FORMAT             "%"   PRIdPTR
1404 #define SIZE_FORMAT              "%"   PRIuPTR
1405 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1406 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1407 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1408 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1409 
1410 #define INTX_FORMAT           "%" PRIdPTR
1411 #define UINTX_FORMAT          "%" PRIuPTR
1412 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1413 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1414 
1415 
1416 // Enable zap-a-lot if in debug version.
1417 
1418 # ifdef ASSERT
1419 # ifdef COMPILER2
1420 #   define ENABLE_ZAP_DEAD_LOCALS
1421 #endif /* COMPILER2 */
1422 # endif /* ASSERT */
1423 
1424 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1425 
1426 // Dereference vptr
1427 // All C++ compilers that we know of have the vtbl pointer in the first
1428 // word.  If there are exceptions, this function needs to be made compiler
1429 // specific.
1430 static inline void* dereference_vptr(const void* addr) {
1431   return *(void**)addr;
1432 }
1433 
1434 #ifndef PRODUCT
1435 
1436 // For unit testing only
1437 class GlobalDefinitions {
1438 public:
1439   static void test_globals();
1440 };
1441 
1442 #endif // PRODUCT
1443 
1444 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP