1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/countbitsnode.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/mathexactnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "trace/traceMacros.hpp"
  52 
  53 class LibraryIntrinsic : public InlineCallGenerator {
  54   // Extend the set of intrinsics known to the runtime:
  55  public:
  56  private:
  57   bool             _is_virtual;
  58   bool             _does_virtual_dispatch;
  59   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  60   int8_t           _last_predicate; // Last generated predicate
  61   vmIntrinsics::ID _intrinsic_id;
  62 
  63  public:
  64   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  65     : InlineCallGenerator(m),
  66       _is_virtual(is_virtual),
  67       _does_virtual_dispatch(does_virtual_dispatch),
  68       _predicates_count((int8_t)predicates_count),
  69       _last_predicate((int8_t)-1),
  70       _intrinsic_id(id)
  71   {
  72   }
  73   virtual bool is_intrinsic() const { return true; }
  74   virtual bool is_virtual()   const { return _is_virtual; }
  75   virtual bool is_predicated() const { return _predicates_count > 0; }
  76   virtual int  predicates_count() const { return _predicates_count; }
  77   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  78   virtual JVMState* generate(JVMState* jvms);
  79   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  80   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  81 };
  82 
  83 
  84 // Local helper class for LibraryIntrinsic:
  85 class LibraryCallKit : public GraphKit {
  86  private:
  87   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  88   Node*             _result;        // the result node, if any
  89   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  90 
  91   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  92 
  93  public:
  94   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  95     : GraphKit(jvms),
  96       _intrinsic(intrinsic),
  97       _result(NULL)
  98   {
  99     // Check if this is a root compile.  In that case we don't have a caller.
 100     if (!jvms->has_method()) {
 101       _reexecute_sp = sp();
 102     } else {
 103       // Find out how many arguments the interpreter needs when deoptimizing
 104       // and save the stack pointer value so it can used by uncommon_trap.
 105       // We find the argument count by looking at the declared signature.
 106       bool ignored_will_link;
 107       ciSignature* declared_signature = NULL;
 108       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 109       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 110       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 111     }
 112   }
 113 
 114   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 115 
 116   ciMethod*         caller()    const    { return jvms()->method(); }
 117   int               bci()       const    { return jvms()->bci(); }
 118   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 119   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 120   ciMethod*         callee()    const    { return _intrinsic->method(); }
 121 
 122   bool  try_to_inline(int predicate);
 123   Node* try_to_predicate(int predicate);
 124 
 125   void push_result() {
 126     // Push the result onto the stack.
 127     if (!stopped() && result() != NULL) {
 128       BasicType bt = result()->bottom_type()->basic_type();
 129       push_node(bt, result());
 130     }
 131   }
 132 
 133  private:
 134   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 135     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 136   }
 137 
 138   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 139   void  set_result(RegionNode* region, PhiNode* value);
 140   Node*     result() { return _result; }
 141 
 142   virtual int reexecute_sp() { return _reexecute_sp; }
 143 
 144   // Helper functions to inline natives
 145   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 146   Node* generate_slow_guard(Node* test, RegionNode* region);
 147   Node* generate_fair_guard(Node* test, RegionNode* region);
 148   Node* generate_negative_guard(Node* index, RegionNode* region,
 149                                 // resulting CastII of index:
 150                                 Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   Node* load_mirror_from_klass(Node* klass);
 156   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 157                                       RegionNode* region, int null_path,
 158                                       int offset);
 159   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                      RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::array_klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* generate_access_flags_guard(Node* kls,
 174                                     int modifier_mask, int modifier_bits,
 175                                     RegionNode* region);
 176   Node* generate_interface_guard(Node* kls, RegionNode* region);
 177   Node* generate_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, false);
 179   }
 180   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, true);
 182   }
 183   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, false);
 185   }
 186   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, true);
 188   }
 189   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 190                                     bool obj_array, bool not_array);
 191   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 192   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 193                                      bool is_virtual = false, bool is_static = false);
 194   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, false, true);
 196   }
 197   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, true, false);
 199   }
 200   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 201 
 202   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 203   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 204   bool inline_string_compareTo();
 205   bool inline_string_indexOf();
 206   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 207   bool inline_string_equals();
 208   Node* round_double_node(Node* n);
 209   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 210   bool inline_math_native(vmIntrinsics::ID id);
 211   bool inline_trig(vmIntrinsics::ID id);
 212   bool inline_math(vmIntrinsics::ID id);
 213   template <typename OverflowOp>
 214   bool inline_math_overflow(Node* arg1, Node* arg2);
 215   void inline_math_mathExact(Node* math, Node* test);
 216   bool inline_math_addExactI(bool is_increment);
 217   bool inline_math_addExactL(bool is_increment);
 218   bool inline_math_multiplyExactI();
 219   bool inline_math_multiplyExactL();
 220   bool inline_math_negateExactI();
 221   bool inline_math_negateExactL();
 222   bool inline_math_subtractExactI(bool is_decrement);
 223   bool inline_math_subtractExactL(bool is_decrement);
 224   bool inline_exp();
 225   bool inline_pow();
 226   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 227   bool inline_min_max(vmIntrinsics::ID id);
 228   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 229   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 230   int classify_unsafe_addr(Node* &base, Node* &offset);
 231   Node* make_unsafe_address(Node* base, Node* offset);
 232   // Helper for inline_unsafe_access.
 233   // Generates the guards that check whether the result of
 234   // Unsafe.getObject should be recorded in an SATB log buffer.
 235   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 236   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 266   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 267   bool inline_unsafe_ordered_store(BasicType type);
 268   bool inline_unsafe_fence(vmIntrinsics::ID id);
 269   bool inline_fp_conversions(vmIntrinsics::ID id);
 270   bool inline_number_methods(vmIntrinsics::ID id);
 271   bool inline_reference_get();
 272   bool inline_Class_cast();
 273   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 274   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 275   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 276   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 277   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 278   bool inline_sha_implCompress(vmIntrinsics::ID id);
 279   bool inline_digestBase_implCompressMB(int predicate);
 280   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 281                                  bool long_state, address stubAddr, const char *stubName,
 282                                  Node* src_start, Node* ofs, Node* limit);
 283   Node* get_state_from_sha_object(Node *sha_object);
 284   Node* get_state_from_sha5_object(Node *sha_object);
 285   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 286   bool inline_encodeISOArray();
 287   bool inline_updateCRC32();
 288   bool inline_updateBytesCRC32();
 289   bool inline_updateByteBufferCRC32();
 290   bool inline_multiplyToLen();
 291 
 292   bool inline_profileBoolean();
 293 };
 294 
 295 
 296 //---------------------------make_vm_intrinsic----------------------------
 297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 298   vmIntrinsics::ID id = m->intrinsic_id();
 299   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 300 
 301   ccstr disable_intr = NULL;
 302 
 303   if ((DisableIntrinsic[0] != '\0'
 304        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 305       (method_has_option_value("DisableIntrinsic", disable_intr)
 306        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 307     // disabled by a user request on the command line:
 308     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 309     return NULL;
 310   }
 311 
 312   if (!m->is_loaded()) {
 313     // do not attempt to inline unloaded methods
 314     return NULL;
 315   }
 316 
 317   // Only a few intrinsics implement a virtual dispatch.
 318   // They are expensive calls which are also frequently overridden.
 319   if (is_virtual) {
 320     switch (id) {
 321     case vmIntrinsics::_hashCode:
 322     case vmIntrinsics::_clone:
 323       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 324       break;
 325     default:
 326       return NULL;
 327     }
 328   }
 329 
 330   // -XX:-InlineNatives disables nearly all intrinsics:
 331   if (!InlineNatives) {
 332     switch (id) {
 333     case vmIntrinsics::_indexOf:
 334     case vmIntrinsics::_compareTo:
 335     case vmIntrinsics::_equals:
 336     case vmIntrinsics::_equalsC:
 337     case vmIntrinsics::_getAndAddInt:
 338     case vmIntrinsics::_getAndAddLong:
 339     case vmIntrinsics::_getAndSetInt:
 340     case vmIntrinsics::_getAndSetLong:
 341     case vmIntrinsics::_getAndSetObject:
 342     case vmIntrinsics::_loadFence:
 343     case vmIntrinsics::_storeFence:
 344     case vmIntrinsics::_fullFence:
 345       break;  // InlineNatives does not control String.compareTo
 346     case vmIntrinsics::_Reference_get:
 347       break;  // InlineNatives does not control Reference.get
 348     default:
 349       return NULL;
 350     }
 351   }
 352 
 353   int predicates = 0;
 354   bool does_virtual_dispatch = false;
 355 
 356   switch (id) {
 357   case vmIntrinsics::_compareTo:
 358     if (!SpecialStringCompareTo)  return NULL;
 359     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 360     break;
 361   case vmIntrinsics::_indexOf:
 362     if (!SpecialStringIndexOf)  return NULL;
 363     break;
 364   case vmIntrinsics::_equals:
 365     if (!SpecialStringEquals)  return NULL;
 366     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 367     break;
 368   case vmIntrinsics::_equalsC:
 369     if (!SpecialArraysEquals)  return NULL;
 370     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 371     break;
 372   case vmIntrinsics::_arraycopy:
 373     if (!InlineArrayCopy)  return NULL;
 374     break;
 375   case vmIntrinsics::_copyMemory:
 376     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 377     if (!InlineArrayCopy)  return NULL;
 378     break;
 379   case vmIntrinsics::_hashCode:
 380     if (!InlineObjectHash)  return NULL;
 381     does_virtual_dispatch = true;
 382     break;
 383   case vmIntrinsics::_clone:
 384     does_virtual_dispatch = true;
 385   case vmIntrinsics::_copyOf:
 386   case vmIntrinsics::_copyOfRange:
 387     if (!InlineObjectCopy)  return NULL;
 388     // These also use the arraycopy intrinsic mechanism:
 389     if (!InlineArrayCopy)  return NULL;
 390     break;
 391   case vmIntrinsics::_encodeISOArray:
 392     if (!SpecialEncodeISOArray)  return NULL;
 393     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 394     break;
 395   case vmIntrinsics::_checkIndex:
 396     // We do not intrinsify this.  The optimizer does fine with it.
 397     return NULL;
 398 
 399   case vmIntrinsics::_getCallerClass:
 400     if (!InlineReflectionGetCallerClass)  return NULL;
 401     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 402     break;
 403 
 404   case vmIntrinsics::_bitCount_i:
 405     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 406     break;
 407 
 408   case vmIntrinsics::_bitCount_l:
 409     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 410     break;
 411 
 412   case vmIntrinsics::_numberOfLeadingZeros_i:
 413     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 414     break;
 415 
 416   case vmIntrinsics::_numberOfLeadingZeros_l:
 417     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_numberOfTrailingZeros_i:
 421     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_numberOfTrailingZeros_l:
 425     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_reverseBytes_c:
 429     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 430     break;
 431   case vmIntrinsics::_reverseBytes_s:
 432     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 433     break;
 434   case vmIntrinsics::_reverseBytes_i:
 435     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 436     break;
 437   case vmIntrinsics::_reverseBytes_l:
 438     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 439     break;
 440 
 441   case vmIntrinsics::_Reference_get:
 442     // Use the intrinsic version of Reference.get() so that the value in
 443     // the referent field can be registered by the G1 pre-barrier code.
 444     // Also add memory barrier to prevent commoning reads from this field
 445     // across safepoint since GC can change it value.
 446     break;
 447 
 448   case vmIntrinsics::_compareAndSwapObject:
 449 #ifdef _LP64
 450     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 451 #endif
 452     break;
 453 
 454   case vmIntrinsics::_compareAndSwapLong:
 455     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 456     break;
 457 
 458   case vmIntrinsics::_getAndAddInt:
 459     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 460     break;
 461 
 462   case vmIntrinsics::_getAndAddLong:
 463     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 464     break;
 465 
 466   case vmIntrinsics::_getAndSetInt:
 467     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 468     break;
 469 
 470   case vmIntrinsics::_getAndSetLong:
 471     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndSetObject:
 475 #ifdef _LP64
 476     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 477     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 478     break;
 479 #else
 480     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 481     break;
 482 #endif
 483 
 484   case vmIntrinsics::_aescrypt_encryptBlock:
 485   case vmIntrinsics::_aescrypt_decryptBlock:
 486     if (!UseAESIntrinsics) return NULL;
 487     break;
 488 
 489   case vmIntrinsics::_multiplyToLen:
 490     if (!UseMultiplyToLenIntrinsic) return NULL;
 491     break;
 492 
 493   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 494   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 495     if (!UseAESIntrinsics) return NULL;
 496     // these two require the predicated logic
 497     predicates = 1;
 498     break;
 499 
 500   case vmIntrinsics::_sha_implCompress:
 501     if (!UseSHA1Intrinsics) return NULL;
 502     break;
 503 
 504   case vmIntrinsics::_sha2_implCompress:
 505     if (!UseSHA256Intrinsics) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_sha5_implCompress:
 509     if (!UseSHA512Intrinsics) return NULL;
 510     break;
 511 
 512   case vmIntrinsics::_digestBase_implCompressMB:
 513     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 514     predicates = 3;
 515     break;
 516 
 517   case vmIntrinsics::_updateCRC32:
 518   case vmIntrinsics::_updateBytesCRC32:
 519   case vmIntrinsics::_updateByteBufferCRC32:
 520     if (!UseCRC32Intrinsics) return NULL;
 521     break;
 522 
 523   case vmIntrinsics::_incrementExactI:
 524   case vmIntrinsics::_addExactI:
 525     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 526     break;
 527   case vmIntrinsics::_incrementExactL:
 528   case vmIntrinsics::_addExactL:
 529     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 530     break;
 531   case vmIntrinsics::_decrementExactI:
 532   case vmIntrinsics::_subtractExactI:
 533     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 534     break;
 535   case vmIntrinsics::_decrementExactL:
 536   case vmIntrinsics::_subtractExactL:
 537     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 538     break;
 539   case vmIntrinsics::_negateExactI:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_negateExactL:
 543     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_multiplyExactI:
 546     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548   case vmIntrinsics::_multiplyExactL:
 549     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 550     break;
 551 
 552  default:
 553     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 554     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 555     break;
 556   }
 557 
 558   // -XX:-InlineClassNatives disables natives from the Class class.
 559   // The flag applies to all reflective calls, notably Array.newArray
 560   // (visible to Java programmers as Array.newInstance).
 561   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 562       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 563     if (!InlineClassNatives)  return NULL;
 564   }
 565 
 566   // -XX:-InlineThreadNatives disables natives from the Thread class.
 567   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 568     if (!InlineThreadNatives)  return NULL;
 569   }
 570 
 571   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 572   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 573       m->holder()->name() == ciSymbol::java_lang_Float() ||
 574       m->holder()->name() == ciSymbol::java_lang_Double()) {
 575     if (!InlineMathNatives)  return NULL;
 576   }
 577 
 578   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 579   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 580     if (!InlineUnsafeOps)  return NULL;
 581   }
 582 
 583   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 584 }
 585 
 586 //----------------------register_library_intrinsics-----------------------
 587 // Initialize this file's data structures, for each Compile instance.
 588 void Compile::register_library_intrinsics() {
 589   // Nothing to do here.
 590 }
 591 
 592 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 593   LibraryCallKit kit(jvms, this);
 594   Compile* C = kit.C;
 595   int nodes = C->unique();
 596 #ifndef PRODUCT
 597   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 598     char buf[1000];
 599     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 600     tty->print_cr("Intrinsic %s", str);
 601   }
 602 #endif
 603   ciMethod* callee = kit.callee();
 604   const int bci    = kit.bci();
 605 
 606   // Try to inline the intrinsic.
 607   if (kit.try_to_inline(_last_predicate)) {
 608     if (C->print_intrinsics() || C->print_inlining()) {
 609       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 610     }
 611     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 612     if (C->log()) {
 613       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 614                      vmIntrinsics::name_at(intrinsic_id()),
 615                      (is_virtual() ? " virtual='1'" : ""),
 616                      C->unique() - nodes);
 617     }
 618     // Push the result from the inlined method onto the stack.
 619     kit.push_result();
 620     C->print_inlining_update(this);
 621     return kit.transfer_exceptions_into_jvms();
 622   }
 623 
 624   // The intrinsic bailed out
 625   if (C->print_intrinsics() || C->print_inlining()) {
 626     if (jvms->has_method()) {
 627       // Not a root compile.
 628       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 629       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 630     } else {
 631       // Root compile
 632       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 633                vmIntrinsics::name_at(intrinsic_id()),
 634                (is_virtual() ? " (virtual)" : ""), bci);
 635     }
 636   }
 637   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 638   C->print_inlining_update(this);
 639   return NULL;
 640 }
 641 
 642 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 643   LibraryCallKit kit(jvms, this);
 644   Compile* C = kit.C;
 645   int nodes = C->unique();
 646   _last_predicate = predicate;
 647 #ifndef PRODUCT
 648   assert(is_predicated() && predicate < predicates_count(), "sanity");
 649   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 650     char buf[1000];
 651     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 652     tty->print_cr("Predicate for intrinsic %s", str);
 653   }
 654 #endif
 655   ciMethod* callee = kit.callee();
 656   const int bci    = kit.bci();
 657 
 658   Node* slow_ctl = kit.try_to_predicate(predicate);
 659   if (!kit.failing()) {
 660     if (C->print_intrinsics() || C->print_inlining()) {
 661       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 662     }
 663     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 664     if (C->log()) {
 665       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 666                      vmIntrinsics::name_at(intrinsic_id()),
 667                      (is_virtual() ? " virtual='1'" : ""),
 668                      C->unique() - nodes);
 669     }
 670     return slow_ctl; // Could be NULL if the check folds.
 671   }
 672 
 673   // The intrinsic bailed out
 674   if (C->print_intrinsics() || C->print_inlining()) {
 675     if (jvms->has_method()) {
 676       // Not a root compile.
 677       const char* msg = "failed to generate predicate for intrinsic";
 678       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 679     } else {
 680       // Root compile
 681       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 682                                         vmIntrinsics::name_at(intrinsic_id()),
 683                                         (is_virtual() ? " (virtual)" : ""), bci);
 684     }
 685   }
 686   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 687   return NULL;
 688 }
 689 
 690 bool LibraryCallKit::try_to_inline(int predicate) {
 691   // Handle symbolic names for otherwise undistinguished boolean switches:
 692   const bool is_store       = true;
 693   const bool is_native_ptr  = true;
 694   const bool is_static      = true;
 695   const bool is_volatile    = true;
 696 
 697   if (!jvms()->has_method()) {
 698     // Root JVMState has a null method.
 699     assert(map()->memory()->Opcode() == Op_Parm, "");
 700     // Insert the memory aliasing node
 701     set_all_memory(reset_memory());
 702   }
 703   assert(merged_memory(), "");
 704 
 705 
 706   switch (intrinsic_id()) {
 707   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 708   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 709   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 710 
 711   case vmIntrinsics::_dsin:
 712   case vmIntrinsics::_dcos:
 713   case vmIntrinsics::_dtan:
 714   case vmIntrinsics::_dabs:
 715   case vmIntrinsics::_datan2:
 716   case vmIntrinsics::_dsqrt:
 717   case vmIntrinsics::_dexp:
 718   case vmIntrinsics::_dlog:
 719   case vmIntrinsics::_dlog10:
 720   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 721 
 722   case vmIntrinsics::_min:
 723   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 724 
 725   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 726   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 727   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 728   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 729   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 730   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 731   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 732   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 733   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 734   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 735   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 736   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 737 
 738   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 739 
 740   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 741   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 742   case vmIntrinsics::_equals:                   return inline_string_equals();
 743 
 744   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 745   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 746   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 747   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 748   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 749   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 750   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 751   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 752   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 753 
 754   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 755   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 756   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 757   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 758   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 759   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 760   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 761   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 762   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 763 
 764   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 765   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 766   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 767   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 768   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 769   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 770   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 771   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 772 
 773   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 774   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 775   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 776   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 777   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 778   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 779   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 780   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 781 
 782   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 783   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 784   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 785   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 786   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 787   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 788   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 789   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 790   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 791 
 792   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 793   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 794   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 795   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 796   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 797   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 798   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 799   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 800   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 801 
 802   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 803   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 804   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 805 
 806   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 807   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 808   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 809 
 810   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 811   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 812   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 813   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 814   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 815 
 816   case vmIntrinsics::_loadFence:
 817   case vmIntrinsics::_storeFence:
 818   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 819 
 820   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 821   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 822 
 823 #ifdef TRACE_HAVE_INTRINSICS
 824   case vmIntrinsics::_classID:                  return inline_native_classID();
 825   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 826   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 827 #endif
 828   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 829   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 830   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 831   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 832   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 833   case vmIntrinsics::_getLength:                return inline_native_getLength();
 834   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 835   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 836   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 837   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 838 
 839   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 840 
 841   case vmIntrinsics::_isInstance:
 842   case vmIntrinsics::_getModifiers:
 843   case vmIntrinsics::_isInterface:
 844   case vmIntrinsics::_isArray:
 845   case vmIntrinsics::_isPrimitive:
 846   case vmIntrinsics::_getSuperclass:
 847   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 848 
 849   case vmIntrinsics::_floatToRawIntBits:
 850   case vmIntrinsics::_floatToIntBits:
 851   case vmIntrinsics::_intBitsToFloat:
 852   case vmIntrinsics::_doubleToRawLongBits:
 853   case vmIntrinsics::_doubleToLongBits:
 854   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 855 
 856   case vmIntrinsics::_numberOfLeadingZeros_i:
 857   case vmIntrinsics::_numberOfLeadingZeros_l:
 858   case vmIntrinsics::_numberOfTrailingZeros_i:
 859   case vmIntrinsics::_numberOfTrailingZeros_l:
 860   case vmIntrinsics::_bitCount_i:
 861   case vmIntrinsics::_bitCount_l:
 862   case vmIntrinsics::_reverseBytes_i:
 863   case vmIntrinsics::_reverseBytes_l:
 864   case vmIntrinsics::_reverseBytes_s:
 865   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 866 
 867   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 868 
 869   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 870 
 871   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 872 
 873   case vmIntrinsics::_aescrypt_encryptBlock:
 874   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 875 
 876   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 877   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 878     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 879 
 880   case vmIntrinsics::_sha_implCompress:
 881   case vmIntrinsics::_sha2_implCompress:
 882   case vmIntrinsics::_sha5_implCompress:
 883     return inline_sha_implCompress(intrinsic_id());
 884 
 885   case vmIntrinsics::_digestBase_implCompressMB:
 886     return inline_digestBase_implCompressMB(predicate);
 887 
 888   case vmIntrinsics::_multiplyToLen:
 889     return inline_multiplyToLen();
 890 
 891   case vmIntrinsics::_encodeISOArray:
 892     return inline_encodeISOArray();
 893 
 894   case vmIntrinsics::_updateCRC32:
 895     return inline_updateCRC32();
 896   case vmIntrinsics::_updateBytesCRC32:
 897     return inline_updateBytesCRC32();
 898   case vmIntrinsics::_updateByteBufferCRC32:
 899     return inline_updateByteBufferCRC32();
 900 
 901   case vmIntrinsics::_profileBoolean:
 902     return inline_profileBoolean();
 903 
 904   default:
 905     // If you get here, it may be that someone has added a new intrinsic
 906     // to the list in vmSymbols.hpp without implementing it here.
 907 #ifndef PRODUCT
 908     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 909       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 910                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 911     }
 912 #endif
 913     return false;
 914   }
 915 }
 916 
 917 Node* LibraryCallKit::try_to_predicate(int predicate) {
 918   if (!jvms()->has_method()) {
 919     // Root JVMState has a null method.
 920     assert(map()->memory()->Opcode() == Op_Parm, "");
 921     // Insert the memory aliasing node
 922     set_all_memory(reset_memory());
 923   }
 924   assert(merged_memory(), "");
 925 
 926   switch (intrinsic_id()) {
 927   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 928     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 929   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 930     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 931   case vmIntrinsics::_digestBase_implCompressMB:
 932     return inline_digestBase_implCompressMB_predicate(predicate);
 933 
 934   default:
 935     // If you get here, it may be that someone has added a new intrinsic
 936     // to the list in vmSymbols.hpp without implementing it here.
 937 #ifndef PRODUCT
 938     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 939       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 940                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 941     }
 942 #endif
 943     Node* slow_ctl = control();
 944     set_control(top()); // No fast path instrinsic
 945     return slow_ctl;
 946   }
 947 }
 948 
 949 //------------------------------set_result-------------------------------
 950 // Helper function for finishing intrinsics.
 951 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 952   record_for_igvn(region);
 953   set_control(_gvn.transform(region));
 954   set_result( _gvn.transform(value));
 955   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 956 }
 957 
 958 //------------------------------generate_guard---------------------------
 959 // Helper function for generating guarded fast-slow graph structures.
 960 // The given 'test', if true, guards a slow path.  If the test fails
 961 // then a fast path can be taken.  (We generally hope it fails.)
 962 // In all cases, GraphKit::control() is updated to the fast path.
 963 // The returned value represents the control for the slow path.
 964 // The return value is never 'top'; it is either a valid control
 965 // or NULL if it is obvious that the slow path can never be taken.
 966 // Also, if region and the slow control are not NULL, the slow edge
 967 // is appended to the region.
 968 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 969   if (stopped()) {
 970     // Already short circuited.
 971     return NULL;
 972   }
 973 
 974   // Build an if node and its projections.
 975   // If test is true we take the slow path, which we assume is uncommon.
 976   if (_gvn.type(test) == TypeInt::ZERO) {
 977     // The slow branch is never taken.  No need to build this guard.
 978     return NULL;
 979   }
 980 
 981   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 982 
 983   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 984   if (if_slow == top()) {
 985     // The slow branch is never taken.  No need to build this guard.
 986     return NULL;
 987   }
 988 
 989   if (region != NULL)
 990     region->add_req(if_slow);
 991 
 992   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 993   set_control(if_fast);
 994 
 995   return if_slow;
 996 }
 997 
 998 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 999   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1000 }
1001 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1002   return generate_guard(test, region, PROB_FAIR);
1003 }
1004 
1005 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1006                                                      Node* *pos_index) {
1007   if (stopped())
1008     return NULL;                // already stopped
1009   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1010     return NULL;                // index is already adequately typed
1011   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1012   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1013   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1014   if (is_neg != NULL && pos_index != NULL) {
1015     // Emulate effect of Parse::adjust_map_after_if.
1016     Node* ccast = new CastIINode(index, TypeInt::POS);
1017     ccast->set_req(0, control());
1018     (*pos_index) = _gvn.transform(ccast);
1019   }
1020   return is_neg;
1021 }
1022 
1023 // Make sure that 'position' is a valid limit index, in [0..length].
1024 // There are two equivalent plans for checking this:
1025 //   A. (offset + copyLength)  unsigned<=  arrayLength
1026 //   B. offset  <=  (arrayLength - copyLength)
1027 // We require that all of the values above, except for the sum and
1028 // difference, are already known to be non-negative.
1029 // Plan A is robust in the face of overflow, if offset and copyLength
1030 // are both hugely positive.
1031 //
1032 // Plan B is less direct and intuitive, but it does not overflow at
1033 // all, since the difference of two non-negatives is always
1034 // representable.  Whenever Java methods must perform the equivalent
1035 // check they generally use Plan B instead of Plan A.
1036 // For the moment we use Plan A.
1037 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1038                                                   Node* subseq_length,
1039                                                   Node* array_length,
1040                                                   RegionNode* region) {
1041   if (stopped())
1042     return NULL;                // already stopped
1043   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1044   if (zero_offset && subseq_length->eqv_uncast(array_length))
1045     return NULL;                // common case of whole-array copy
1046   Node* last = subseq_length;
1047   if (!zero_offset)             // last += offset
1048     last = _gvn.transform(new AddINode(last, offset));
1049   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1050   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1051   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1052   return is_over;
1053 }
1054 
1055 
1056 //--------------------------generate_current_thread--------------------
1057 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1058   ciKlass*    thread_klass = env()->Thread_klass();
1059   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1060   Node* thread = _gvn.transform(new ThreadLocalNode());
1061   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1062   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1063   tls_output = thread;
1064   return threadObj;
1065 }
1066 
1067 
1068 //------------------------------make_string_method_node------------------------
1069 // Helper method for String intrinsic functions. This version is called
1070 // with str1 and str2 pointing to String object nodes.
1071 //
1072 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1073   Node* no_ctrl = NULL;
1074 
1075   // Get start addr of string
1076   Node* str1_value   = load_String_value(no_ctrl, str1);
1077   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1078   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1079 
1080   // Get length of string 1
1081   Node* str1_len  = load_String_length(no_ctrl, str1);
1082 
1083   Node* str2_value   = load_String_value(no_ctrl, str2);
1084   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1085   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1086 
1087   Node* str2_len = NULL;
1088   Node* result = NULL;
1089 
1090   switch (opcode) {
1091   case Op_StrIndexOf:
1092     // Get length of string 2
1093     str2_len = load_String_length(no_ctrl, str2);
1094 
1095     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1096                                 str1_start, str1_len, str2_start, str2_len);
1097     break;
1098   case Op_StrComp:
1099     // Get length of string 2
1100     str2_len = load_String_length(no_ctrl, str2);
1101 
1102     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1103                              str1_start, str1_len, str2_start, str2_len);
1104     break;
1105   case Op_StrEquals:
1106     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1107                                str1_start, str2_start, str1_len);
1108     break;
1109   default:
1110     ShouldNotReachHere();
1111     return NULL;
1112   }
1113 
1114   // All these intrinsics have checks.
1115   C->set_has_split_ifs(true); // Has chance for split-if optimization
1116 
1117   return _gvn.transform(result);
1118 }
1119 
1120 // Helper method for String intrinsic functions. This version is called
1121 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1122 // to Int nodes containing the lenghts of str1 and str2.
1123 //
1124 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1125   Node* result = NULL;
1126   switch (opcode) {
1127   case Op_StrIndexOf:
1128     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1129                                 str1_start, cnt1, str2_start, cnt2);
1130     break;
1131   case Op_StrComp:
1132     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1133                              str1_start, cnt1, str2_start, cnt2);
1134     break;
1135   case Op_StrEquals:
1136     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1137                                str1_start, str2_start, cnt1);
1138     break;
1139   default:
1140     ShouldNotReachHere();
1141     return NULL;
1142   }
1143 
1144   // All these intrinsics have checks.
1145   C->set_has_split_ifs(true); // Has chance for split-if optimization
1146 
1147   return _gvn.transform(result);
1148 }
1149 
1150 //------------------------------inline_string_compareTo------------------------
1151 // public int java.lang.String.compareTo(String anotherString);
1152 bool LibraryCallKit::inline_string_compareTo() {
1153   Node* receiver = null_check(argument(0));
1154   Node* arg      = null_check(argument(1));
1155   if (stopped()) {
1156     return true;
1157   }
1158   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1159   return true;
1160 }
1161 
1162 //------------------------------inline_string_equals------------------------
1163 bool LibraryCallKit::inline_string_equals() {
1164   Node* receiver = null_check_receiver();
1165   // NOTE: Do not null check argument for String.equals() because spec
1166   // allows to specify NULL as argument.
1167   Node* argument = this->argument(1);
1168   if (stopped()) {
1169     return true;
1170   }
1171 
1172   // paths (plus control) merge
1173   RegionNode* region = new RegionNode(5);
1174   Node* phi = new PhiNode(region, TypeInt::BOOL);
1175 
1176   // does source == target string?
1177   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1178   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1179 
1180   Node* if_eq = generate_slow_guard(bol, NULL);
1181   if (if_eq != NULL) {
1182     // receiver == argument
1183     phi->init_req(2, intcon(1));
1184     region->init_req(2, if_eq);
1185   }
1186 
1187   // get String klass for instanceOf
1188   ciInstanceKlass* klass = env()->String_klass();
1189 
1190   if (!stopped()) {
1191     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1192     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1193     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1194 
1195     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1196     //instanceOf == true, fallthrough
1197 
1198     if (inst_false != NULL) {
1199       phi->init_req(3, intcon(0));
1200       region->init_req(3, inst_false);
1201     }
1202   }
1203 
1204   if (!stopped()) {
1205     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1206 
1207     // Properly cast the argument to String
1208     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1209     // This path is taken only when argument's type is String:NotNull.
1210     argument = cast_not_null(argument, false);
1211 
1212     Node* no_ctrl = NULL;
1213 
1214     // Get start addr of receiver
1215     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1216     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1217     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1218 
1219     // Get length of receiver
1220     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1221 
1222     // Get start addr of argument
1223     Node* argument_val    = load_String_value(no_ctrl, argument);
1224     Node* argument_offset = load_String_offset(no_ctrl, argument);
1225     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1226 
1227     // Get length of argument
1228     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1229 
1230     // Check for receiver count != argument count
1231     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1232     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1233     Node* if_ne = generate_slow_guard(bol, NULL);
1234     if (if_ne != NULL) {
1235       phi->init_req(4, intcon(0));
1236       region->init_req(4, if_ne);
1237     }
1238 
1239     // Check for count == 0 is done by assembler code for StrEquals.
1240 
1241     if (!stopped()) {
1242       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1243       phi->init_req(1, equals);
1244       region->init_req(1, control());
1245     }
1246   }
1247 
1248   // post merge
1249   set_control(_gvn.transform(region));
1250   record_for_igvn(region);
1251 
1252   set_result(_gvn.transform(phi));
1253   return true;
1254 }
1255 
1256 //------------------------------inline_array_equals----------------------------
1257 bool LibraryCallKit::inline_array_equals() {
1258   Node* arg1 = argument(0);
1259   Node* arg2 = argument(1);
1260   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1261   return true;
1262 }
1263 
1264 // Java version of String.indexOf(constant string)
1265 // class StringDecl {
1266 //   StringDecl(char[] ca) {
1267 //     offset = 0;
1268 //     count = ca.length;
1269 //     value = ca;
1270 //   }
1271 //   int offset;
1272 //   int count;
1273 //   char[] value;
1274 // }
1275 //
1276 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1277 //                             int targetOffset, int cache_i, int md2) {
1278 //   int cache = cache_i;
1279 //   int sourceOffset = string_object.offset;
1280 //   int sourceCount = string_object.count;
1281 //   int targetCount = target_object.length;
1282 //
1283 //   int targetCountLess1 = targetCount - 1;
1284 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1285 //
1286 //   char[] source = string_object.value;
1287 //   char[] target = target_object;
1288 //   int lastChar = target[targetCountLess1];
1289 //
1290 //  outer_loop:
1291 //   for (int i = sourceOffset; i < sourceEnd; ) {
1292 //     int src = source[i + targetCountLess1];
1293 //     if (src == lastChar) {
1294 //       // With random strings and a 4-character alphabet,
1295 //       // reverse matching at this point sets up 0.8% fewer
1296 //       // frames, but (paradoxically) makes 0.3% more probes.
1297 //       // Since those probes are nearer the lastChar probe,
1298 //       // there is may be a net D$ win with reverse matching.
1299 //       // But, reversing loop inhibits unroll of inner loop
1300 //       // for unknown reason.  So, does running outer loop from
1301 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1302 //       for (int j = 0; j < targetCountLess1; j++) {
1303 //         if (target[targetOffset + j] != source[i+j]) {
1304 //           if ((cache & (1 << source[i+j])) == 0) {
1305 //             if (md2 < j+1) {
1306 //               i += j+1;
1307 //               continue outer_loop;
1308 //             }
1309 //           }
1310 //           i += md2;
1311 //           continue outer_loop;
1312 //         }
1313 //       }
1314 //       return i - sourceOffset;
1315 //     }
1316 //     if ((cache & (1 << src)) == 0) {
1317 //       i += targetCountLess1;
1318 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1319 //     i++;
1320 //   }
1321 //   return -1;
1322 // }
1323 
1324 //------------------------------string_indexOf------------------------
1325 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1326                                      jint cache_i, jint md2_i) {
1327 
1328   Node* no_ctrl  = NULL;
1329   float likely   = PROB_LIKELY(0.9);
1330   float unlikely = PROB_UNLIKELY(0.9);
1331 
1332   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1333 
1334   Node* source        = load_String_value(no_ctrl, string_object);
1335   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1336   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1337 
1338   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1339   jint target_length = target_array->length();
1340   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1341   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1342 
1343   // String.value field is known to be @Stable.
1344   if (UseImplicitStableValues) {
1345     target = cast_array_to_stable(target, target_type);
1346   }
1347 
1348   IdealKit kit(this, false, true);
1349 #define __ kit.
1350   Node* zero             = __ ConI(0);
1351   Node* one              = __ ConI(1);
1352   Node* cache            = __ ConI(cache_i);
1353   Node* md2              = __ ConI(md2_i);
1354   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1355   Node* targetCountLess1 = __ ConI(target_length - 1);
1356   Node* targetOffset     = __ ConI(targetOffset_i);
1357   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1358 
1359   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1360   Node* outer_loop = __ make_label(2 /* goto */);
1361   Node* return_    = __ make_label(1);
1362 
1363   __ set(rtn,__ ConI(-1));
1364   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1365        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1366        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1367        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1368        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1369          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1370               Node* tpj = __ AddI(targetOffset, __ value(j));
1371               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1372               Node* ipj  = __ AddI(__ value(i), __ value(j));
1373               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1374               __ if_then(targ, BoolTest::ne, src2); {
1375                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1376                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1377                     __ increment(i, __ AddI(__ value(j), one));
1378                     __ goto_(outer_loop);
1379                   } __ end_if(); __ dead(j);
1380                 }__ end_if(); __ dead(j);
1381                 __ increment(i, md2);
1382                 __ goto_(outer_loop);
1383               }__ end_if();
1384               __ increment(j, one);
1385          }__ end_loop(); __ dead(j);
1386          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1387          __ goto_(return_);
1388        }__ end_if();
1389        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1390          __ increment(i, targetCountLess1);
1391        }__ end_if();
1392        __ increment(i, one);
1393        __ bind(outer_loop);
1394   }__ end_loop(); __ dead(i);
1395   __ bind(return_);
1396 
1397   // Final sync IdealKit and GraphKit.
1398   final_sync(kit);
1399   Node* result = __ value(rtn);
1400 #undef __
1401   C->set_has_loops(true);
1402   return result;
1403 }
1404 
1405 //------------------------------inline_string_indexOf------------------------
1406 bool LibraryCallKit::inline_string_indexOf() {
1407   Node* receiver = argument(0);
1408   Node* arg      = argument(1);
1409 
1410   Node* result;
1411   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1412       UseSSE42Intrinsics) {
1413     // Generate SSE4.2 version of indexOf
1414     // We currently only have match rules that use SSE4.2
1415 
1416     receiver = null_check(receiver);
1417     arg      = null_check(arg);
1418     if (stopped()) {
1419       return true;
1420     }
1421 
1422     // Make the merge point
1423     RegionNode* result_rgn = new RegionNode(4);
1424     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1425     Node* no_ctrl  = NULL;
1426 
1427     // Get start addr of source string
1428     Node* source = load_String_value(no_ctrl, receiver);
1429     Node* source_offset = load_String_offset(no_ctrl, receiver);
1430     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1431 
1432     // Get length of source string
1433     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1434 
1435     // Get start addr of substring
1436     Node* substr = load_String_value(no_ctrl, arg);
1437     Node* substr_offset = load_String_offset(no_ctrl, arg);
1438     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1439 
1440     // Get length of source string
1441     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1442 
1443     // Check for substr count > string count
1444     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1445     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1446     Node* if_gt = generate_slow_guard(bol, NULL);
1447     if (if_gt != NULL) {
1448       result_phi->init_req(2, intcon(-1));
1449       result_rgn->init_req(2, if_gt);
1450     }
1451 
1452     if (!stopped()) {
1453       // Check for substr count == 0
1454       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1455       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1456       Node* if_zero = generate_slow_guard(bol, NULL);
1457       if (if_zero != NULL) {
1458         result_phi->init_req(3, intcon(0));
1459         result_rgn->init_req(3, if_zero);
1460       }
1461     }
1462 
1463     if (!stopped()) {
1464       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1465       result_phi->init_req(1, result);
1466       result_rgn->init_req(1, control());
1467     }
1468     set_control(_gvn.transform(result_rgn));
1469     record_for_igvn(result_rgn);
1470     result = _gvn.transform(result_phi);
1471 
1472   } else { // Use LibraryCallKit::string_indexOf
1473     // don't intrinsify if argument isn't a constant string.
1474     if (!arg->is_Con()) {
1475      return false;
1476     }
1477     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1478     if (str_type == NULL) {
1479       return false;
1480     }
1481     ciInstanceKlass* klass = env()->String_klass();
1482     ciObject* str_const = str_type->const_oop();
1483     if (str_const == NULL || str_const->klass() != klass) {
1484       return false;
1485     }
1486     ciInstance* str = str_const->as_instance();
1487     assert(str != NULL, "must be instance");
1488 
1489     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1490     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1491 
1492     int o;
1493     int c;
1494     if (java_lang_String::has_offset_field()) {
1495       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1496       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1497     } else {
1498       o = 0;
1499       c = pat->length();
1500     }
1501 
1502     // constant strings have no offset and count == length which
1503     // simplifies the resulting code somewhat so lets optimize for that.
1504     if (o != 0 || c != pat->length()) {
1505      return false;
1506     }
1507 
1508     receiver = null_check(receiver, T_OBJECT);
1509     // NOTE: No null check on the argument is needed since it's a constant String oop.
1510     if (stopped()) {
1511       return true;
1512     }
1513 
1514     // The null string as a pattern always returns 0 (match at beginning of string)
1515     if (c == 0) {
1516       set_result(intcon(0));
1517       return true;
1518     }
1519 
1520     // Generate default indexOf
1521     jchar lastChar = pat->char_at(o + (c - 1));
1522     int cache = 0;
1523     int i;
1524     for (i = 0; i < c - 1; i++) {
1525       assert(i < pat->length(), "out of range");
1526       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1527     }
1528 
1529     int md2 = c;
1530     for (i = 0; i < c - 1; i++) {
1531       assert(i < pat->length(), "out of range");
1532       if (pat->char_at(o + i) == lastChar) {
1533         md2 = (c - 1) - i;
1534       }
1535     }
1536 
1537     result = string_indexOf(receiver, pat, o, cache, md2);
1538   }
1539   set_result(result);
1540   return true;
1541 }
1542 
1543 //--------------------------round_double_node--------------------------------
1544 // Round a double node if necessary.
1545 Node* LibraryCallKit::round_double_node(Node* n) {
1546   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1547     n = _gvn.transform(new RoundDoubleNode(0, n));
1548   return n;
1549 }
1550 
1551 //------------------------------inline_math-----------------------------------
1552 // public static double Math.abs(double)
1553 // public static double Math.sqrt(double)
1554 // public static double Math.log(double)
1555 // public static double Math.log10(double)
1556 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1557   Node* arg = round_double_node(argument(0));
1558   Node* n;
1559   switch (id) {
1560   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1561   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1562   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1563   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1564   default:  fatal_unexpected_iid(id);  break;
1565   }
1566   set_result(_gvn.transform(n));
1567   return true;
1568 }
1569 
1570 //------------------------------inline_trig----------------------------------
1571 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1572 // argument reduction which will turn into a fast/slow diamond.
1573 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1574   Node* arg = round_double_node(argument(0));
1575   Node* n = NULL;
1576 
1577   switch (id) {
1578   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1579   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1580   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1581   default:  fatal_unexpected_iid(id);  break;
1582   }
1583   n = _gvn.transform(n);
1584 
1585   // Rounding required?  Check for argument reduction!
1586   if (Matcher::strict_fp_requires_explicit_rounding) {
1587     static const double     pi_4 =  0.7853981633974483;
1588     static const double neg_pi_4 = -0.7853981633974483;
1589     // pi/2 in 80-bit extended precision
1590     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1591     // -pi/2 in 80-bit extended precision
1592     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1593     // Cutoff value for using this argument reduction technique
1594     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1595     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1596 
1597     // Pseudocode for sin:
1598     // if (x <= Math.PI / 4.0) {
1599     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1600     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1601     // } else {
1602     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1603     // }
1604     // return StrictMath.sin(x);
1605 
1606     // Pseudocode for cos:
1607     // if (x <= Math.PI / 4.0) {
1608     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1609     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1610     // } else {
1611     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1612     // }
1613     // return StrictMath.cos(x);
1614 
1615     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1616     // requires a special machine instruction to load it.  Instead we'll try
1617     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1618     // probably do the math inside the SIN encoding.
1619 
1620     // Make the merge point
1621     RegionNode* r = new RegionNode(3);
1622     Node* phi = new PhiNode(r, Type::DOUBLE);
1623 
1624     // Flatten arg so we need only 1 test
1625     Node *abs = _gvn.transform(new AbsDNode(arg));
1626     // Node for PI/4 constant
1627     Node *pi4 = makecon(TypeD::make(pi_4));
1628     // Check PI/4 : abs(arg)
1629     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1630     // Check: If PI/4 < abs(arg) then go slow
1631     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1632     // Branch either way
1633     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1634     set_control(opt_iff(r,iff));
1635 
1636     // Set fast path result
1637     phi->init_req(2, n);
1638 
1639     // Slow path - non-blocking leaf call
1640     Node* call = NULL;
1641     switch (id) {
1642     case vmIntrinsics::_dsin:
1643       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1644                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1645                                "Sin", NULL, arg, top());
1646       break;
1647     case vmIntrinsics::_dcos:
1648       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1649                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1650                                "Cos", NULL, arg, top());
1651       break;
1652     case vmIntrinsics::_dtan:
1653       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1654                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1655                                "Tan", NULL, arg, top());
1656       break;
1657     }
1658     assert(control()->in(0) == call, "");
1659     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1660     r->init_req(1, control());
1661     phi->init_req(1, slow_result);
1662 
1663     // Post-merge
1664     set_control(_gvn.transform(r));
1665     record_for_igvn(r);
1666     n = _gvn.transform(phi);
1667 
1668     C->set_has_split_ifs(true); // Has chance for split-if optimization
1669   }
1670   set_result(n);
1671   return true;
1672 }
1673 
1674 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1675   //-------------------
1676   //result=(result.isNaN())? funcAddr():result;
1677   // Check: If isNaN() by checking result!=result? then either trap
1678   // or go to runtime
1679   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1680   // Build the boolean node
1681   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1682 
1683   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1684     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1685       // The pow or exp intrinsic returned a NaN, which requires a call
1686       // to the runtime.  Recompile with the runtime call.
1687       uncommon_trap(Deoptimization::Reason_intrinsic,
1688                     Deoptimization::Action_make_not_entrant);
1689     }
1690     return result;
1691   } else {
1692     // If this inlining ever returned NaN in the past, we compile a call
1693     // to the runtime to properly handle corner cases
1694 
1695     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1696     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1697     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1698 
1699     if (!if_slow->is_top()) {
1700       RegionNode* result_region = new RegionNode(3);
1701       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1702 
1703       result_region->init_req(1, if_fast);
1704       result_val->init_req(1, result);
1705 
1706       set_control(if_slow);
1707 
1708       const TypePtr* no_memory_effects = NULL;
1709       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1710                                    no_memory_effects,
1711                                    x, top(), y, y ? top() : NULL);
1712       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1713 #ifdef ASSERT
1714       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1715       assert(value_top == top(), "second value must be top");
1716 #endif
1717 
1718       result_region->init_req(2, control());
1719       result_val->init_req(2, value);
1720       set_control(_gvn.transform(result_region));
1721       return _gvn.transform(result_val);
1722     } else {
1723       return result;
1724     }
1725   }
1726 }
1727 
1728 //------------------------------inline_exp-------------------------------------
1729 // Inline exp instructions, if possible.  The Intel hardware only misses
1730 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1731 bool LibraryCallKit::inline_exp() {
1732   Node* arg = round_double_node(argument(0));
1733   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1734 
1735   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1736   set_result(n);
1737 
1738   C->set_has_split_ifs(true); // Has chance for split-if optimization
1739   return true;
1740 }
1741 
1742 //------------------------------inline_pow-------------------------------------
1743 // Inline power instructions, if possible.
1744 bool LibraryCallKit::inline_pow() {
1745   // Pseudocode for pow
1746   // if (y == 2) {
1747   //   return x * x;
1748   // } else {
1749   //   if (x <= 0.0) {
1750   //     long longy = (long)y;
1751   //     if ((double)longy == y) { // if y is long
1752   //       if (y + 1 == y) longy = 0; // huge number: even
1753   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1754   //     } else {
1755   //       result = NaN;
1756   //     }
1757   //   } else {
1758   //     result = DPow(x,y);
1759   //   }
1760   //   if (result != result)?  {
1761   //     result = uncommon_trap() or runtime_call();
1762   //   }
1763   //   return result;
1764   // }
1765 
1766   Node* x = round_double_node(argument(0));
1767   Node* y = round_double_node(argument(2));
1768 
1769   Node* result = NULL;
1770 
1771   Node*   const_two_node = makecon(TypeD::make(2.0));
1772   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1773   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1774   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1775   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1776   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1777 
1778   RegionNode* region_node = new RegionNode(3);
1779   region_node->init_req(1, if_true);
1780 
1781   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1782   // special case for x^y where y == 2, we can convert it to x * x
1783   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1784 
1785   // set control to if_false since we will now process the false branch
1786   set_control(if_false);
1787 
1788   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1789     // Short form: skip the fancy tests and just check for NaN result.
1790     result = _gvn.transform(new PowDNode(C, control(), x, y));
1791   } else {
1792     // If this inlining ever returned NaN in the past, include all
1793     // checks + call to the runtime.
1794 
1795     // Set the merge point for If node with condition of (x <= 0.0)
1796     // There are four possible paths to region node and phi node
1797     RegionNode *r = new RegionNode(4);
1798     Node *phi = new PhiNode(r, Type::DOUBLE);
1799 
1800     // Build the first if node: if (x <= 0.0)
1801     // Node for 0 constant
1802     Node *zeronode = makecon(TypeD::ZERO);
1803     // Check x:0
1804     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1805     // Check: If (x<=0) then go complex path
1806     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1807     // Branch either way
1808     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1809     // Fast path taken; set region slot 3
1810     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1811     r->init_req(3,fast_taken); // Capture fast-control
1812 
1813     // Fast path not-taken, i.e. slow path
1814     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1815 
1816     // Set fast path result
1817     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1818     phi->init_req(3, fast_result);
1819 
1820     // Complex path
1821     // Build the second if node (if y is long)
1822     // Node for (long)y
1823     Node *longy = _gvn.transform(new ConvD2LNode(y));
1824     // Node for (double)((long) y)
1825     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1826     // Check (double)((long) y) : y
1827     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1828     // Check if (y isn't long) then go to slow path
1829 
1830     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1831     // Branch either way
1832     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1833     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1834 
1835     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1836 
1837     // Calculate DPow(abs(x), y)*(1 & (long)y)
1838     // Node for constant 1
1839     Node *conone = longcon(1);
1840     // 1& (long)y
1841     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1842 
1843     // A huge number is always even. Detect a huge number by checking
1844     // if y + 1 == y and set integer to be tested for parity to 0.
1845     // Required for corner case:
1846     // (long)9.223372036854776E18 = max_jlong
1847     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1848     // max_jlong is odd but 9.223372036854776E18 is even
1849     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1850     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1851     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1852     Node* correctedsign = NULL;
1853     if (ConditionalMoveLimit != 0) {
1854       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1855     } else {
1856       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1857       RegionNode *r = new RegionNode(3);
1858       Node *phi = new PhiNode(r, TypeLong::LONG);
1859       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1860       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1861       phi->init_req(1, signnode);
1862       phi->init_req(2, longcon(0));
1863       correctedsign = _gvn.transform(phi);
1864       ylong_path = _gvn.transform(r);
1865       record_for_igvn(r);
1866     }
1867 
1868     // zero node
1869     Node *conzero = longcon(0);
1870     // Check (1&(long)y)==0?
1871     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1872     // Check if (1&(long)y)!=0?, if so the result is negative
1873     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1874     // abs(x)
1875     Node *absx=_gvn.transform(new AbsDNode(x));
1876     // abs(x)^y
1877     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1878     // -abs(x)^y
1879     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1880     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1881     Node *signresult = NULL;
1882     if (ConditionalMoveLimit != 0) {
1883       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1884     } else {
1885       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1886       RegionNode *r = new RegionNode(3);
1887       Node *phi = new PhiNode(r, Type::DOUBLE);
1888       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1889       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1890       phi->init_req(1, absxpowy);
1891       phi->init_req(2, negabsxpowy);
1892       signresult = _gvn.transform(phi);
1893       ylong_path = _gvn.transform(r);
1894       record_for_igvn(r);
1895     }
1896     // Set complex path fast result
1897     r->init_req(2, ylong_path);
1898     phi->init_req(2, signresult);
1899 
1900     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1901     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1902     r->init_req(1,slow_path);
1903     phi->init_req(1,slow_result);
1904 
1905     // Post merge
1906     set_control(_gvn.transform(r));
1907     record_for_igvn(r);
1908     result = _gvn.transform(phi);
1909   }
1910 
1911   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1912 
1913   // control from finish_pow_exp is now input to the region node
1914   region_node->set_req(2, control());
1915   // the result from finish_pow_exp is now input to the phi node
1916   phi_node->init_req(2, result);
1917   set_control(_gvn.transform(region_node));
1918   record_for_igvn(region_node);
1919   set_result(_gvn.transform(phi_node));
1920 
1921   C->set_has_split_ifs(true); // Has chance for split-if optimization
1922   return true;
1923 }
1924 
1925 //------------------------------runtime_math-----------------------------
1926 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1927   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1928          "must be (DD)D or (D)D type");
1929 
1930   // Inputs
1931   Node* a = round_double_node(argument(0));
1932   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1933 
1934   const TypePtr* no_memory_effects = NULL;
1935   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1936                                  no_memory_effects,
1937                                  a, top(), b, b ? top() : NULL);
1938   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1939 #ifdef ASSERT
1940   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1941   assert(value_top == top(), "second value must be top");
1942 #endif
1943 
1944   set_result(value);
1945   return true;
1946 }
1947 
1948 //------------------------------inline_math_native-----------------------------
1949 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1950 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1951   switch (id) {
1952     // These intrinsics are not properly supported on all hardware
1953   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1954     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1955   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1956     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1957   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1958     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1959 
1960   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1961     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1962   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1963     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1964 
1965     // These intrinsics are supported on all hardware
1966   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1967   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1968 
1969   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1970     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1971   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1972     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1973 #undef FN_PTR
1974 
1975    // These intrinsics are not yet correctly implemented
1976   case vmIntrinsics::_datan2:
1977     return false;
1978 
1979   default:
1980     fatal_unexpected_iid(id);
1981     return false;
1982   }
1983 }
1984 
1985 static bool is_simple_name(Node* n) {
1986   return (n->req() == 1         // constant
1987           || (n->is_Type() && n->as_Type()->type()->singleton())
1988           || n->is_Proj()       // parameter or return value
1989           || n->is_Phi()        // local of some sort
1990           );
1991 }
1992 
1993 //----------------------------inline_min_max-----------------------------------
1994 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1995   set_result(generate_min_max(id, argument(0), argument(1)));
1996   return true;
1997 }
1998 
1999 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2000   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2001   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2002   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2003   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2004 
2005   {
2006     PreserveJVMState pjvms(this);
2007     PreserveReexecuteState preexecs(this);
2008     jvms()->set_should_reexecute(true);
2009 
2010     set_control(slow_path);
2011     set_i_o(i_o());
2012 
2013     uncommon_trap(Deoptimization::Reason_intrinsic,
2014                   Deoptimization::Action_none);
2015   }
2016 
2017   set_control(fast_path);
2018   set_result(math);
2019 }
2020 
2021 template <typename OverflowOp>
2022 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2023   typedef typename OverflowOp::MathOp MathOp;
2024 
2025   MathOp* mathOp = new MathOp(arg1, arg2);
2026   Node* operation = _gvn.transform( mathOp );
2027   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2028   inline_math_mathExact(operation, ofcheck);
2029   return true;
2030 }
2031 
2032 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2033   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2034 }
2035 
2036 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2037   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2038 }
2039 
2040 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2041   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2042 }
2043 
2044 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2045   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2046 }
2047 
2048 bool LibraryCallKit::inline_math_negateExactI() {
2049   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2050 }
2051 
2052 bool LibraryCallKit::inline_math_negateExactL() {
2053   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2054 }
2055 
2056 bool LibraryCallKit::inline_math_multiplyExactI() {
2057   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2058 }
2059 
2060 bool LibraryCallKit::inline_math_multiplyExactL() {
2061   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2062 }
2063 
2064 Node*
2065 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2066   // These are the candidate return value:
2067   Node* xvalue = x0;
2068   Node* yvalue = y0;
2069 
2070   if (xvalue == yvalue) {
2071     return xvalue;
2072   }
2073 
2074   bool want_max = (id == vmIntrinsics::_max);
2075 
2076   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2077   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2078   if (txvalue == NULL || tyvalue == NULL)  return top();
2079   // This is not really necessary, but it is consistent with a
2080   // hypothetical MaxINode::Value method:
2081   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2082 
2083   // %%% This folding logic should (ideally) be in a different place.
2084   // Some should be inside IfNode, and there to be a more reliable
2085   // transformation of ?: style patterns into cmoves.  We also want
2086   // more powerful optimizations around cmove and min/max.
2087 
2088   // Try to find a dominating comparison of these guys.
2089   // It can simplify the index computation for Arrays.copyOf
2090   // and similar uses of System.arraycopy.
2091   // First, compute the normalized version of CmpI(x, y).
2092   int   cmp_op = Op_CmpI;
2093   Node* xkey = xvalue;
2094   Node* ykey = yvalue;
2095   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2096   if (ideal_cmpxy->is_Cmp()) {
2097     // E.g., if we have CmpI(length - offset, count),
2098     // it might idealize to CmpI(length, count + offset)
2099     cmp_op = ideal_cmpxy->Opcode();
2100     xkey = ideal_cmpxy->in(1);
2101     ykey = ideal_cmpxy->in(2);
2102   }
2103 
2104   // Start by locating any relevant comparisons.
2105   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2106   Node* cmpxy = NULL;
2107   Node* cmpyx = NULL;
2108   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2109     Node* cmp = start_from->fast_out(k);
2110     if (cmp->outcnt() > 0 &&            // must have prior uses
2111         cmp->in(0) == NULL &&           // must be context-independent
2112         cmp->Opcode() == cmp_op) {      // right kind of compare
2113       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2114       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2115     }
2116   }
2117 
2118   const int NCMPS = 2;
2119   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2120   int cmpn;
2121   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2122     if (cmps[cmpn] != NULL)  break;     // find a result
2123   }
2124   if (cmpn < NCMPS) {
2125     // Look for a dominating test that tells us the min and max.
2126     int depth = 0;                // Limit search depth for speed
2127     Node* dom = control();
2128     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2129       if (++depth >= 100)  break;
2130       Node* ifproj = dom;
2131       if (!ifproj->is_Proj())  continue;
2132       Node* iff = ifproj->in(0);
2133       if (!iff->is_If())  continue;
2134       Node* bol = iff->in(1);
2135       if (!bol->is_Bool())  continue;
2136       Node* cmp = bol->in(1);
2137       if (cmp == NULL)  continue;
2138       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2139         if (cmps[cmpn] == cmp)  break;
2140       if (cmpn == NCMPS)  continue;
2141       BoolTest::mask btest = bol->as_Bool()->_test._test;
2142       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2143       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2144       // At this point, we know that 'x btest y' is true.
2145       switch (btest) {
2146       case BoolTest::eq:
2147         // They are proven equal, so we can collapse the min/max.
2148         // Either value is the answer.  Choose the simpler.
2149         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2150           return yvalue;
2151         return xvalue;
2152       case BoolTest::lt:          // x < y
2153       case BoolTest::le:          // x <= y
2154         return (want_max ? yvalue : xvalue);
2155       case BoolTest::gt:          // x > y
2156       case BoolTest::ge:          // x >= y
2157         return (want_max ? xvalue : yvalue);
2158       }
2159     }
2160   }
2161 
2162   // We failed to find a dominating test.
2163   // Let's pick a test that might GVN with prior tests.
2164   Node*          best_bol   = NULL;
2165   BoolTest::mask best_btest = BoolTest::illegal;
2166   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2167     Node* cmp = cmps[cmpn];
2168     if (cmp == NULL)  continue;
2169     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2170       Node* bol = cmp->fast_out(j);
2171       if (!bol->is_Bool())  continue;
2172       BoolTest::mask btest = bol->as_Bool()->_test._test;
2173       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2174       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2175       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2176         best_bol   = bol->as_Bool();
2177         best_btest = btest;
2178       }
2179     }
2180   }
2181 
2182   Node* answer_if_true  = NULL;
2183   Node* answer_if_false = NULL;
2184   switch (best_btest) {
2185   default:
2186     if (cmpxy == NULL)
2187       cmpxy = ideal_cmpxy;
2188     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2189     // and fall through:
2190   case BoolTest::lt:          // x < y
2191   case BoolTest::le:          // x <= y
2192     answer_if_true  = (want_max ? yvalue : xvalue);
2193     answer_if_false = (want_max ? xvalue : yvalue);
2194     break;
2195   case BoolTest::gt:          // x > y
2196   case BoolTest::ge:          // x >= y
2197     answer_if_true  = (want_max ? xvalue : yvalue);
2198     answer_if_false = (want_max ? yvalue : xvalue);
2199     break;
2200   }
2201 
2202   jint hi, lo;
2203   if (want_max) {
2204     // We can sharpen the minimum.
2205     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2206     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2207   } else {
2208     // We can sharpen the maximum.
2209     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2210     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2211   }
2212 
2213   // Use a flow-free graph structure, to avoid creating excess control edges
2214   // which could hinder other optimizations.
2215   // Since Math.min/max is often used with arraycopy, we want
2216   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2217   Node* cmov = CMoveNode::make(NULL, best_bol,
2218                                answer_if_false, answer_if_true,
2219                                TypeInt::make(lo, hi, widen));
2220 
2221   return _gvn.transform(cmov);
2222 
2223   /*
2224   // This is not as desirable as it may seem, since Min and Max
2225   // nodes do not have a full set of optimizations.
2226   // And they would interfere, anyway, with 'if' optimizations
2227   // and with CMoveI canonical forms.
2228   switch (id) {
2229   case vmIntrinsics::_min:
2230     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2231   case vmIntrinsics::_max:
2232     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2233   default:
2234     ShouldNotReachHere();
2235   }
2236   */
2237 }
2238 
2239 inline int
2240 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2241   const TypePtr* base_type = TypePtr::NULL_PTR;
2242   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2243   if (base_type == NULL) {
2244     // Unknown type.
2245     return Type::AnyPtr;
2246   } else if (base_type == TypePtr::NULL_PTR) {
2247     // Since this is a NULL+long form, we have to switch to a rawptr.
2248     base   = _gvn.transform(new CastX2PNode(offset));
2249     offset = MakeConX(0);
2250     return Type::RawPtr;
2251   } else if (base_type->base() == Type::RawPtr) {
2252     return Type::RawPtr;
2253   } else if (base_type->isa_oopptr()) {
2254     // Base is never null => always a heap address.
2255     if (base_type->ptr() == TypePtr::NotNull) {
2256       return Type::OopPtr;
2257     }
2258     // Offset is small => always a heap address.
2259     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2260     if (offset_type != NULL &&
2261         base_type->offset() == 0 &&     // (should always be?)
2262         offset_type->_lo >= 0 &&
2263         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2264       return Type::OopPtr;
2265     }
2266     // Otherwise, it might either be oop+off or NULL+addr.
2267     return Type::AnyPtr;
2268   } else {
2269     // No information:
2270     return Type::AnyPtr;
2271   }
2272 }
2273 
2274 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2275   int kind = classify_unsafe_addr(base, offset);
2276   if (kind == Type::RawPtr) {
2277     return basic_plus_adr(top(), base, offset);
2278   } else {
2279     return basic_plus_adr(base, offset);
2280   }
2281 }
2282 
2283 //--------------------------inline_number_methods-----------------------------
2284 // inline int     Integer.numberOfLeadingZeros(int)
2285 // inline int        Long.numberOfLeadingZeros(long)
2286 //
2287 // inline int     Integer.numberOfTrailingZeros(int)
2288 // inline int        Long.numberOfTrailingZeros(long)
2289 //
2290 // inline int     Integer.bitCount(int)
2291 // inline int        Long.bitCount(long)
2292 //
2293 // inline char  Character.reverseBytes(char)
2294 // inline short     Short.reverseBytes(short)
2295 // inline int     Integer.reverseBytes(int)
2296 // inline long       Long.reverseBytes(long)
2297 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2298   Node* arg = argument(0);
2299   Node* n;
2300   switch (id) {
2301   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2302   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2303   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2304   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2305   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2306   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2307   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2308   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2309   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2310   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2311   default:  fatal_unexpected_iid(id);  break;
2312   }
2313   set_result(_gvn.transform(n));
2314   return true;
2315 }
2316 
2317 //----------------------------inline_unsafe_access----------------------------
2318 
2319 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2320 
2321 // Helper that guards and inserts a pre-barrier.
2322 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2323                                         Node* pre_val, bool need_mem_bar) {
2324   // We could be accessing the referent field of a reference object. If so, when G1
2325   // is enabled, we need to log the value in the referent field in an SATB buffer.
2326   // This routine performs some compile time filters and generates suitable
2327   // runtime filters that guard the pre-barrier code.
2328   // Also add memory barrier for non volatile load from the referent field
2329   // to prevent commoning of loads across safepoint.
2330   if (!UseG1GC && !need_mem_bar)
2331     return;
2332 
2333   // Some compile time checks.
2334 
2335   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2336   const TypeX* otype = offset->find_intptr_t_type();
2337   if (otype != NULL && otype->is_con() &&
2338       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2339     // Constant offset but not the reference_offset so just return
2340     return;
2341   }
2342 
2343   // We only need to generate the runtime guards for instances.
2344   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2345   if (btype != NULL) {
2346     if (btype->isa_aryptr()) {
2347       // Array type so nothing to do
2348       return;
2349     }
2350 
2351     const TypeInstPtr* itype = btype->isa_instptr();
2352     if (itype != NULL) {
2353       // Can the klass of base_oop be statically determined to be
2354       // _not_ a sub-class of Reference and _not_ Object?
2355       ciKlass* klass = itype->klass();
2356       if ( klass->is_loaded() &&
2357           !klass->is_subtype_of(env()->Reference_klass()) &&
2358           !env()->Object_klass()->is_subtype_of(klass)) {
2359         return;
2360       }
2361     }
2362   }
2363 
2364   // The compile time filters did not reject base_oop/offset so
2365   // we need to generate the following runtime filters
2366   //
2367   // if (offset == java_lang_ref_Reference::_reference_offset) {
2368   //   if (instance_of(base, java.lang.ref.Reference)) {
2369   //     pre_barrier(_, pre_val, ...);
2370   //   }
2371   // }
2372 
2373   float likely   = PROB_LIKELY(  0.999);
2374   float unlikely = PROB_UNLIKELY(0.999);
2375 
2376   IdealKit ideal(this);
2377 #define __ ideal.
2378 
2379   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2380 
2381   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2382       // Update graphKit memory and control from IdealKit.
2383       sync_kit(ideal);
2384 
2385       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2386       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2387 
2388       // Update IdealKit memory and control from graphKit.
2389       __ sync_kit(this);
2390 
2391       Node* one = __ ConI(1);
2392       // is_instof == 0 if base_oop == NULL
2393       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2394 
2395         // Update graphKit from IdeakKit.
2396         sync_kit(ideal);
2397 
2398         // Use the pre-barrier to record the value in the referent field
2399         pre_barrier(false /* do_load */,
2400                     __ ctrl(),
2401                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2402                     pre_val /* pre_val */,
2403                     T_OBJECT);
2404         if (need_mem_bar) {
2405           // Add memory barrier to prevent commoning reads from this field
2406           // across safepoint since GC can change its value.
2407           insert_mem_bar(Op_MemBarCPUOrder);
2408         }
2409         // Update IdealKit from graphKit.
2410         __ sync_kit(this);
2411 
2412       } __ end_if(); // _ref_type != ref_none
2413   } __ end_if(); // offset == referent_offset
2414 
2415   // Final sync IdealKit and GraphKit.
2416   final_sync(ideal);
2417 #undef __
2418 }
2419 
2420 
2421 // Interpret Unsafe.fieldOffset cookies correctly:
2422 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2423 
2424 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2425   // Attempt to infer a sharper value type from the offset and base type.
2426   ciKlass* sharpened_klass = NULL;
2427 
2428   // See if it is an instance field, with an object type.
2429   if (alias_type->field() != NULL) {
2430     assert(!is_native_ptr, "native pointer op cannot use a java address");
2431     if (alias_type->field()->type()->is_klass()) {
2432       sharpened_klass = alias_type->field()->type()->as_klass();
2433     }
2434   }
2435 
2436   // See if it is a narrow oop array.
2437   if (adr_type->isa_aryptr()) {
2438     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2439       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2440       if (elem_type != NULL) {
2441         sharpened_klass = elem_type->klass();
2442       }
2443     }
2444   }
2445 
2446   // The sharpened class might be unloaded if there is no class loader
2447   // contraint in place.
2448   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2449     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2450 
2451 #ifndef PRODUCT
2452     if (C->print_intrinsics() || C->print_inlining()) {
2453       tty->print("  from base type: ");  adr_type->dump();
2454       tty->print("  sharpened value: ");  tjp->dump();
2455     }
2456 #endif
2457     // Sharpen the value type.
2458     return tjp;
2459   }
2460   return NULL;
2461 }
2462 
2463 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2464   if (callee()->is_static())  return false;  // caller must have the capability!
2465 
2466 #ifndef PRODUCT
2467   {
2468     ResourceMark rm;
2469     // Check the signatures.
2470     ciSignature* sig = callee()->signature();
2471 #ifdef ASSERT
2472     if (!is_store) {
2473       // Object getObject(Object base, int/long offset), etc.
2474       BasicType rtype = sig->return_type()->basic_type();
2475       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2476           rtype = T_ADDRESS;  // it is really a C void*
2477       assert(rtype == type, "getter must return the expected value");
2478       if (!is_native_ptr) {
2479         assert(sig->count() == 2, "oop getter has 2 arguments");
2480         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2481         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2482       } else {
2483         assert(sig->count() == 1, "native getter has 1 argument");
2484         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2485       }
2486     } else {
2487       // void putObject(Object base, int/long offset, Object x), etc.
2488       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2489       if (!is_native_ptr) {
2490         assert(sig->count() == 3, "oop putter has 3 arguments");
2491         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2492         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2493       } else {
2494         assert(sig->count() == 2, "native putter has 2 arguments");
2495         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2496       }
2497       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2498       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2499         vtype = T_ADDRESS;  // it is really a C void*
2500       assert(vtype == type, "putter must accept the expected value");
2501     }
2502 #endif // ASSERT
2503  }
2504 #endif //PRODUCT
2505 
2506   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2507 
2508   Node* receiver = argument(0);  // type: oop
2509 
2510   // Build address expression.
2511   Node* adr;
2512   Node* heap_base_oop = top();
2513   Node* offset = top();
2514   Node* val;
2515 
2516   if (!is_native_ptr) {
2517     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2518     Node* base = argument(1);  // type: oop
2519     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2520     offset = argument(2);  // type: long
2521     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2522     // to be plain byte offsets, which are also the same as those accepted
2523     // by oopDesc::field_base.
2524     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2525            "fieldOffset must be byte-scaled");
2526     // 32-bit machines ignore the high half!
2527     offset = ConvL2X(offset);
2528     adr = make_unsafe_address(base, offset);
2529     heap_base_oop = base;
2530     val = is_store ? argument(4) : NULL;
2531   } else {
2532     Node* ptr = argument(1);  // type: long
2533     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2534     adr = make_unsafe_address(NULL, ptr);
2535     val = is_store ? argument(3) : NULL;
2536   }
2537 
2538   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2539 
2540   // First guess at the value type.
2541   const Type *value_type = Type::get_const_basic_type(type);
2542 
2543   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2544   // there was not enough information to nail it down.
2545   Compile::AliasType* alias_type = C->alias_type(adr_type);
2546   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2547 
2548   // We will need memory barriers unless we can determine a unique
2549   // alias category for this reference.  (Note:  If for some reason
2550   // the barriers get omitted and the unsafe reference begins to "pollute"
2551   // the alias analysis of the rest of the graph, either Compile::can_alias
2552   // or Compile::must_alias will throw a diagnostic assert.)
2553   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2554 
2555   // If we are reading the value of the referent field of a Reference
2556   // object (either by using Unsafe directly or through reflection)
2557   // then, if G1 is enabled, we need to record the referent in an
2558   // SATB log buffer using the pre-barrier mechanism.
2559   // Also we need to add memory barrier to prevent commoning reads
2560   // from this field across safepoint since GC can change its value.
2561   bool need_read_barrier = !is_native_ptr && !is_store &&
2562                            offset != top() && heap_base_oop != top();
2563 
2564   if (!is_store && type == T_OBJECT) {
2565     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2566     if (tjp != NULL) {
2567       value_type = tjp;
2568     }
2569   }
2570 
2571   receiver = null_check(receiver);
2572   if (stopped()) {
2573     return true;
2574   }
2575   // Heap pointers get a null-check from the interpreter,
2576   // as a courtesy.  However, this is not guaranteed by Unsafe,
2577   // and it is not possible to fully distinguish unintended nulls
2578   // from intended ones in this API.
2579 
2580   if (is_volatile) {
2581     // We need to emit leading and trailing CPU membars (see below) in
2582     // addition to memory membars when is_volatile. This is a little
2583     // too strong, but avoids the need to insert per-alias-type
2584     // volatile membars (for stores; compare Parse::do_put_xxx), which
2585     // we cannot do effectively here because we probably only have a
2586     // rough approximation of type.
2587     need_mem_bar = true;
2588     // For Stores, place a memory ordering barrier now.
2589     if (is_store) {
2590       insert_mem_bar(Op_MemBarRelease);
2591     } else {
2592       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2593         insert_mem_bar(Op_MemBarVolatile);
2594       }
2595     }
2596   }
2597 
2598   // Memory barrier to prevent normal and 'unsafe' accesses from
2599   // bypassing each other.  Happens after null checks, so the
2600   // exception paths do not take memory state from the memory barrier,
2601   // so there's no problems making a strong assert about mixing users
2602   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2603   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2604   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2605 
2606   if (!is_store) {
2607     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2608     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2609     // load value
2610     switch (type) {
2611     case T_BOOLEAN:
2612     case T_CHAR:
2613     case T_BYTE:
2614     case T_SHORT:
2615     case T_INT:
2616     case T_LONG:
2617     case T_FLOAT:
2618     case T_DOUBLE:
2619       break;
2620     case T_OBJECT:
2621       if (need_read_barrier) {
2622         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2623       }
2624       break;
2625     case T_ADDRESS:
2626       // Cast to an int type.
2627       p = _gvn.transform(new CastP2XNode(NULL, p));
2628       p = ConvX2UL(p);
2629       break;
2630     default:
2631       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2632       break;
2633     }
2634     // The load node has the control of the preceding MemBarCPUOrder.  All
2635     // following nodes will have the control of the MemBarCPUOrder inserted at
2636     // the end of this method.  So, pushing the load onto the stack at a later
2637     // point is fine.
2638     set_result(p);
2639   } else {
2640     // place effect of store into memory
2641     switch (type) {
2642     case T_DOUBLE:
2643       val = dstore_rounding(val);
2644       break;
2645     case T_ADDRESS:
2646       // Repackage the long as a pointer.
2647       val = ConvL2X(val);
2648       val = _gvn.transform(new CastX2PNode(val));
2649       break;
2650     }
2651 
2652     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2653     if (type != T_OBJECT ) {
2654       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2655     } else {
2656       // Possibly an oop being stored to Java heap or native memory
2657       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2658         // oop to Java heap.
2659         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2660       } else {
2661         // We can't tell at compile time if we are storing in the Java heap or outside
2662         // of it. So we need to emit code to conditionally do the proper type of
2663         // store.
2664 
2665         IdealKit ideal(this);
2666 #define __ ideal.
2667         // QQQ who knows what probability is here??
2668         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2669           // Sync IdealKit and graphKit.
2670           sync_kit(ideal);
2671           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2672           // Update IdealKit memory.
2673           __ sync_kit(this);
2674         } __ else_(); {
2675           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2676         } __ end_if();
2677         // Final sync IdealKit and GraphKit.
2678         final_sync(ideal);
2679 #undef __
2680       }
2681     }
2682   }
2683 
2684   if (is_volatile) {
2685     if (!is_store) {
2686       insert_mem_bar(Op_MemBarAcquire);
2687     } else {
2688       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2689         insert_mem_bar(Op_MemBarVolatile);
2690       }
2691     }
2692   }
2693 
2694   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2695 
2696   return true;
2697 }
2698 
2699 //----------------------------inline_unsafe_load_store----------------------------
2700 // This method serves a couple of different customers (depending on LoadStoreKind):
2701 //
2702 // LS_cmpxchg:
2703 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2704 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2705 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2706 //
2707 // LS_xadd:
2708 //   public int  getAndAddInt( Object o, long offset, int  delta)
2709 //   public long getAndAddLong(Object o, long offset, long delta)
2710 //
2711 // LS_xchg:
2712 //   int    getAndSet(Object o, long offset, int    newValue)
2713 //   long   getAndSet(Object o, long offset, long   newValue)
2714 //   Object getAndSet(Object o, long offset, Object newValue)
2715 //
2716 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2717   // This basic scheme here is the same as inline_unsafe_access, but
2718   // differs in enough details that combining them would make the code
2719   // overly confusing.  (This is a true fact! I originally combined
2720   // them, but even I was confused by it!) As much code/comments as
2721   // possible are retained from inline_unsafe_access though to make
2722   // the correspondences clearer. - dl
2723 
2724   if (callee()->is_static())  return false;  // caller must have the capability!
2725 
2726 #ifndef PRODUCT
2727   BasicType rtype;
2728   {
2729     ResourceMark rm;
2730     // Check the signatures.
2731     ciSignature* sig = callee()->signature();
2732     rtype = sig->return_type()->basic_type();
2733     if (kind == LS_xadd || kind == LS_xchg) {
2734       // Check the signatures.
2735 #ifdef ASSERT
2736       assert(rtype == type, "get and set must return the expected type");
2737       assert(sig->count() == 3, "get and set has 3 arguments");
2738       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2739       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2740       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2741 #endif // ASSERT
2742     } else if (kind == LS_cmpxchg) {
2743       // Check the signatures.
2744 #ifdef ASSERT
2745       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2746       assert(sig->count() == 4, "CAS has 4 arguments");
2747       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2748       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2749 #endif // ASSERT
2750     } else {
2751       ShouldNotReachHere();
2752     }
2753   }
2754 #endif //PRODUCT
2755 
2756   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2757 
2758   // Get arguments:
2759   Node* receiver = NULL;
2760   Node* base     = NULL;
2761   Node* offset   = NULL;
2762   Node* oldval   = NULL;
2763   Node* newval   = NULL;
2764   if (kind == LS_cmpxchg) {
2765     const bool two_slot_type = type2size[type] == 2;
2766     receiver = argument(0);  // type: oop
2767     base     = argument(1);  // type: oop
2768     offset   = argument(2);  // type: long
2769     oldval   = argument(4);  // type: oop, int, or long
2770     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2771   } else if (kind == LS_xadd || kind == LS_xchg){
2772     receiver = argument(0);  // type: oop
2773     base     = argument(1);  // type: oop
2774     offset   = argument(2);  // type: long
2775     oldval   = NULL;
2776     newval   = argument(4);  // type: oop, int, or long
2777   }
2778 
2779   // Null check receiver.
2780   receiver = null_check(receiver);
2781   if (stopped()) {
2782     return true;
2783   }
2784 
2785   // Build field offset expression.
2786   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2787   // to be plain byte offsets, which are also the same as those accepted
2788   // by oopDesc::field_base.
2789   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2790   // 32-bit machines ignore the high half of long offsets
2791   offset = ConvL2X(offset);
2792   Node* adr = make_unsafe_address(base, offset);
2793   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2794 
2795   // For CAS, unlike inline_unsafe_access, there seems no point in
2796   // trying to refine types. Just use the coarse types here.
2797   const Type *value_type = Type::get_const_basic_type(type);
2798   Compile::AliasType* alias_type = C->alias_type(adr_type);
2799   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2800 
2801   if (kind == LS_xchg && type == T_OBJECT) {
2802     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2803     if (tjp != NULL) {
2804       value_type = tjp;
2805     }
2806   }
2807 
2808   int alias_idx = C->get_alias_index(adr_type);
2809 
2810   // Memory-model-wise, a LoadStore acts like a little synchronized
2811   // block, so needs barriers on each side.  These don't translate
2812   // into actual barriers on most machines, but we still need rest of
2813   // compiler to respect ordering.
2814 
2815   insert_mem_bar(Op_MemBarRelease);
2816   insert_mem_bar(Op_MemBarCPUOrder);
2817 
2818   // 4984716: MemBars must be inserted before this
2819   //          memory node in order to avoid a false
2820   //          dependency which will confuse the scheduler.
2821   Node *mem = memory(alias_idx);
2822 
2823   // For now, we handle only those cases that actually exist: ints,
2824   // longs, and Object. Adding others should be straightforward.
2825   Node* load_store;
2826   switch(type) {
2827   case T_INT:
2828     if (kind == LS_xadd) {
2829       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2830     } else if (kind == LS_xchg) {
2831       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2832     } else if (kind == LS_cmpxchg) {
2833       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2834     } else {
2835       ShouldNotReachHere();
2836     }
2837     break;
2838   case T_LONG:
2839     if (kind == LS_xadd) {
2840       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2841     } else if (kind == LS_xchg) {
2842       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2843     } else if (kind == LS_cmpxchg) {
2844       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2845     } else {
2846       ShouldNotReachHere();
2847     }
2848     break;
2849   case T_OBJECT:
2850     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2851     // could be delayed during Parse (for example, in adjust_map_after_if()).
2852     // Execute transformation here to avoid barrier generation in such case.
2853     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2854       newval = _gvn.makecon(TypePtr::NULL_PTR);
2855 
2856     // Reference stores need a store barrier.
2857     if (kind == LS_xchg) {
2858       // If pre-barrier must execute before the oop store, old value will require do_load here.
2859       if (!can_move_pre_barrier()) {
2860         pre_barrier(true /* do_load*/,
2861                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2862                     NULL /* pre_val*/,
2863                     T_OBJECT);
2864       } // Else move pre_barrier to use load_store value, see below.
2865     } else if (kind == LS_cmpxchg) {
2866       // Same as for newval above:
2867       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2868         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2869       }
2870       // The only known value which might get overwritten is oldval.
2871       pre_barrier(false /* do_load */,
2872                   control(), NULL, NULL, max_juint, NULL, NULL,
2873                   oldval /* pre_val */,
2874                   T_OBJECT);
2875     } else {
2876       ShouldNotReachHere();
2877     }
2878 
2879 #ifdef _LP64
2880     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2881       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2882       if (kind == LS_xchg) {
2883         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2884                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2885       } else {
2886         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2887         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2888         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2889                                                                 newval_enc, oldval_enc));
2890       }
2891     } else
2892 #endif
2893     {
2894       if (kind == LS_xchg) {
2895         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2896       } else {
2897         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2898         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2899       }
2900     }
2901     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2902     break;
2903   default:
2904     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2905     break;
2906   }
2907 
2908   // SCMemProjNodes represent the memory state of a LoadStore. Their
2909   // main role is to prevent LoadStore nodes from being optimized away
2910   // when their results aren't used.
2911   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2912   set_memory(proj, alias_idx);
2913 
2914   if (type == T_OBJECT && kind == LS_xchg) {
2915 #ifdef _LP64
2916     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2917       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2918     }
2919 #endif
2920     if (can_move_pre_barrier()) {
2921       // Don't need to load pre_val. The old value is returned by load_store.
2922       // The pre_barrier can execute after the xchg as long as no safepoint
2923       // gets inserted between them.
2924       pre_barrier(false /* do_load */,
2925                   control(), NULL, NULL, max_juint, NULL, NULL,
2926                   load_store /* pre_val */,
2927                   T_OBJECT);
2928     }
2929   }
2930 
2931   // Add the trailing membar surrounding the access
2932   insert_mem_bar(Op_MemBarCPUOrder);
2933   insert_mem_bar(Op_MemBarAcquire);
2934 
2935   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2936   set_result(load_store);
2937   return true;
2938 }
2939 
2940 //----------------------------inline_unsafe_ordered_store----------------------
2941 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2942 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2943 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2944 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2945   // This is another variant of inline_unsafe_access, differing in
2946   // that it always issues store-store ("release") barrier and ensures
2947   // store-atomicity (which only matters for "long").
2948 
2949   if (callee()->is_static())  return false;  // caller must have the capability!
2950 
2951 #ifndef PRODUCT
2952   {
2953     ResourceMark rm;
2954     // Check the signatures.
2955     ciSignature* sig = callee()->signature();
2956 #ifdef ASSERT
2957     BasicType rtype = sig->return_type()->basic_type();
2958     assert(rtype == T_VOID, "must return void");
2959     assert(sig->count() == 3, "has 3 arguments");
2960     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2961     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2962 #endif // ASSERT
2963   }
2964 #endif //PRODUCT
2965 
2966   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2967 
2968   // Get arguments:
2969   Node* receiver = argument(0);  // type: oop
2970   Node* base     = argument(1);  // type: oop
2971   Node* offset   = argument(2);  // type: long
2972   Node* val      = argument(4);  // type: oop, int, or long
2973 
2974   // Null check receiver.
2975   receiver = null_check(receiver);
2976   if (stopped()) {
2977     return true;
2978   }
2979 
2980   // Build field offset expression.
2981   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2982   // 32-bit machines ignore the high half of long offsets
2983   offset = ConvL2X(offset);
2984   Node* adr = make_unsafe_address(base, offset);
2985   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2986   const Type *value_type = Type::get_const_basic_type(type);
2987   Compile::AliasType* alias_type = C->alias_type(adr_type);
2988 
2989   insert_mem_bar(Op_MemBarRelease);
2990   insert_mem_bar(Op_MemBarCPUOrder);
2991   // Ensure that the store is atomic for longs:
2992   const bool require_atomic_access = true;
2993   Node* store;
2994   if (type == T_OBJECT) // reference stores need a store barrier.
2995     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
2996   else {
2997     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
2998   }
2999   insert_mem_bar(Op_MemBarCPUOrder);
3000   return true;
3001 }
3002 
3003 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3004   // Regardless of form, don't allow previous ld/st to move down,
3005   // then issue acquire, release, or volatile mem_bar.
3006   insert_mem_bar(Op_MemBarCPUOrder);
3007   switch(id) {
3008     case vmIntrinsics::_loadFence:
3009       insert_mem_bar(Op_LoadFence);
3010       return true;
3011     case vmIntrinsics::_storeFence:
3012       insert_mem_bar(Op_StoreFence);
3013       return true;
3014     case vmIntrinsics::_fullFence:
3015       insert_mem_bar(Op_MemBarVolatile);
3016       return true;
3017     default:
3018       fatal_unexpected_iid(id);
3019       return false;
3020   }
3021 }
3022 
3023 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3024   if (!kls->is_Con()) {
3025     return true;
3026   }
3027   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3028   if (klsptr == NULL) {
3029     return true;
3030   }
3031   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3032   // don't need a guard for a klass that is already initialized
3033   return !ik->is_initialized();
3034 }
3035 
3036 //----------------------------inline_unsafe_allocate---------------------------
3037 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3038 bool LibraryCallKit::inline_unsafe_allocate() {
3039   if (callee()->is_static())  return false;  // caller must have the capability!
3040 
3041   null_check_receiver();  // null-check, then ignore
3042   Node* cls = null_check(argument(1));
3043   if (stopped())  return true;
3044 
3045   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3046   kls = null_check(kls);
3047   if (stopped())  return true;  // argument was like int.class
3048 
3049   Node* test = NULL;
3050   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3051     // Note:  The argument might still be an illegal value like
3052     // Serializable.class or Object[].class.   The runtime will handle it.
3053     // But we must make an explicit check for initialization.
3054     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3055     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3056     // can generate code to load it as unsigned byte.
3057     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3058     Node* bits = intcon(InstanceKlass::fully_initialized);
3059     test = _gvn.transform(new SubINode(inst, bits));
3060     // The 'test' is non-zero if we need to take a slow path.
3061   }
3062 
3063   Node* obj = new_instance(kls, test);
3064   set_result(obj);
3065   return true;
3066 }
3067 
3068 #ifdef TRACE_HAVE_INTRINSICS
3069 /*
3070  * oop -> myklass
3071  * myklass->trace_id |= USED
3072  * return myklass->trace_id & ~0x3
3073  */
3074 bool LibraryCallKit::inline_native_classID() {
3075   null_check_receiver();  // null-check, then ignore
3076   Node* cls = null_check(argument(1), T_OBJECT);
3077   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3078   kls = null_check(kls, T_OBJECT);
3079   ByteSize offset = TRACE_ID_OFFSET;
3080   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3081   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3082   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3083   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3084   Node* clsused = longcon(0x01l); // set the class bit
3085   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3086 
3087   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3088   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3089   set_result(andl);
3090   return true;
3091 }
3092 
3093 bool LibraryCallKit::inline_native_threadID() {
3094   Node* tls_ptr = NULL;
3095   Node* cur_thr = generate_current_thread(tls_ptr);
3096   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3097   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3098   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3099 
3100   Node* threadid = NULL;
3101   size_t thread_id_size = OSThread::thread_id_size();
3102   if (thread_id_size == (size_t) BytesPerLong) {
3103     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3104   } else if (thread_id_size == (size_t) BytesPerInt) {
3105     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3106   } else {
3107     ShouldNotReachHere();
3108   }
3109   set_result(threadid);
3110   return true;
3111 }
3112 #endif
3113 
3114 //------------------------inline_native_time_funcs--------------
3115 // inline code for System.currentTimeMillis() and System.nanoTime()
3116 // these have the same type and signature
3117 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3118   const TypeFunc* tf = OptoRuntime::void_long_Type();
3119   const TypePtr* no_memory_effects = NULL;
3120   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3121   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3122 #ifdef ASSERT
3123   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3124   assert(value_top == top(), "second value must be top");
3125 #endif
3126   set_result(value);
3127   return true;
3128 }
3129 
3130 //------------------------inline_native_currentThread------------------
3131 bool LibraryCallKit::inline_native_currentThread() {
3132   Node* junk = NULL;
3133   set_result(generate_current_thread(junk));
3134   return true;
3135 }
3136 
3137 //------------------------inline_native_isInterrupted------------------
3138 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3139 bool LibraryCallKit::inline_native_isInterrupted() {
3140   // Add a fast path to t.isInterrupted(clear_int):
3141   //   (t == Thread.current() &&
3142   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3143   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3144   // So, in the common case that the interrupt bit is false,
3145   // we avoid making a call into the VM.  Even if the interrupt bit
3146   // is true, if the clear_int argument is false, we avoid the VM call.
3147   // However, if the receiver is not currentThread, we must call the VM,
3148   // because there must be some locking done around the operation.
3149 
3150   // We only go to the fast case code if we pass two guards.
3151   // Paths which do not pass are accumulated in the slow_region.
3152 
3153   enum {
3154     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3155     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3156     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3157     PATH_LIMIT
3158   };
3159 
3160   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3161   // out of the function.
3162   insert_mem_bar(Op_MemBarCPUOrder);
3163 
3164   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3165   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3166 
3167   RegionNode* slow_region = new RegionNode(1);
3168   record_for_igvn(slow_region);
3169 
3170   // (a) Receiving thread must be the current thread.
3171   Node* rec_thr = argument(0);
3172   Node* tls_ptr = NULL;
3173   Node* cur_thr = generate_current_thread(tls_ptr);
3174   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3175   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3176 
3177   generate_slow_guard(bol_thr, slow_region);
3178 
3179   // (b) Interrupt bit on TLS must be false.
3180   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3181   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3182   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3183 
3184   // Set the control input on the field _interrupted read to prevent it floating up.
3185   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3186   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3187   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3188 
3189   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3190 
3191   // First fast path:  if (!TLS._interrupted) return false;
3192   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3193   result_rgn->init_req(no_int_result_path, false_bit);
3194   result_val->init_req(no_int_result_path, intcon(0));
3195 
3196   // drop through to next case
3197   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3198 
3199 #ifndef TARGET_OS_FAMILY_windows
3200   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3201   Node* clr_arg = argument(1);
3202   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3203   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3204   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3205 
3206   // Second fast path:  ... else if (!clear_int) return true;
3207   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3208   result_rgn->init_req(no_clear_result_path, false_arg);
3209   result_val->init_req(no_clear_result_path, intcon(1));
3210 
3211   // drop through to next case
3212   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3213 #else
3214   // To return true on Windows you must read the _interrupted field
3215   // and check the the event state i.e. take the slow path.
3216 #endif // TARGET_OS_FAMILY_windows
3217 
3218   // (d) Otherwise, go to the slow path.
3219   slow_region->add_req(control());
3220   set_control( _gvn.transform(slow_region));
3221 
3222   if (stopped()) {
3223     // There is no slow path.
3224     result_rgn->init_req(slow_result_path, top());
3225     result_val->init_req(slow_result_path, top());
3226   } else {
3227     // non-virtual because it is a private non-static
3228     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3229 
3230     Node* slow_val = set_results_for_java_call(slow_call);
3231     // this->control() comes from set_results_for_java_call
3232 
3233     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3234     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3235 
3236     // These two phis are pre-filled with copies of of the fast IO and Memory
3237     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3238     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3239 
3240     result_rgn->init_req(slow_result_path, control());
3241     result_io ->init_req(slow_result_path, i_o());
3242     result_mem->init_req(slow_result_path, reset_memory());
3243     result_val->init_req(slow_result_path, slow_val);
3244 
3245     set_all_memory(_gvn.transform(result_mem));
3246     set_i_o(       _gvn.transform(result_io));
3247   }
3248 
3249   C->set_has_split_ifs(true); // Has chance for split-if optimization
3250   set_result(result_rgn, result_val);
3251   return true;
3252 }
3253 
3254 //---------------------------load_mirror_from_klass----------------------------
3255 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3256 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3257   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3258   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3259 }
3260 
3261 //-----------------------load_klass_from_mirror_common-------------------------
3262 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3263 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3264 // and branch to the given path on the region.
3265 // If never_see_null, take an uncommon trap on null, so we can optimistically
3266 // compile for the non-null case.
3267 // If the region is NULL, force never_see_null = true.
3268 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3269                                                     bool never_see_null,
3270                                                     RegionNode* region,
3271                                                     int null_path,
3272                                                     int offset) {
3273   if (region == NULL)  never_see_null = true;
3274   Node* p = basic_plus_adr(mirror, offset);
3275   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3276   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3277   Node* null_ctl = top();
3278   kls = null_check_oop(kls, &null_ctl, never_see_null);
3279   if (region != NULL) {
3280     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3281     region->init_req(null_path, null_ctl);
3282   } else {
3283     assert(null_ctl == top(), "no loose ends");
3284   }
3285   return kls;
3286 }
3287 
3288 //--------------------(inline_native_Class_query helpers)---------------------
3289 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3290 // Fall through if (mods & mask) == bits, take the guard otherwise.
3291 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3292   // Branch around if the given klass has the given modifier bit set.
3293   // Like generate_guard, adds a new path onto the region.
3294   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3295   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3296   Node* mask = intcon(modifier_mask);
3297   Node* bits = intcon(modifier_bits);
3298   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3299   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3300   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3301   return generate_fair_guard(bol, region);
3302 }
3303 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3304   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3305 }
3306 
3307 //-------------------------inline_native_Class_query-------------------
3308 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3309   const Type* return_type = TypeInt::BOOL;
3310   Node* prim_return_value = top();  // what happens if it's a primitive class?
3311   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3312   bool expect_prim = false;     // most of these guys expect to work on refs
3313 
3314   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3315 
3316   Node* mirror = argument(0);
3317   Node* obj    = top();
3318 
3319   switch (id) {
3320   case vmIntrinsics::_isInstance:
3321     // nothing is an instance of a primitive type
3322     prim_return_value = intcon(0);
3323     obj = argument(1);
3324     break;
3325   case vmIntrinsics::_getModifiers:
3326     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3327     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3328     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3329     break;
3330   case vmIntrinsics::_isInterface:
3331     prim_return_value = intcon(0);
3332     break;
3333   case vmIntrinsics::_isArray:
3334     prim_return_value = intcon(0);
3335     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3336     break;
3337   case vmIntrinsics::_isPrimitive:
3338     prim_return_value = intcon(1);
3339     expect_prim = true;  // obviously
3340     break;
3341   case vmIntrinsics::_getSuperclass:
3342     prim_return_value = null();
3343     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3344     break;
3345   case vmIntrinsics::_getClassAccessFlags:
3346     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3347     return_type = TypeInt::INT;  // not bool!  6297094
3348     break;
3349   default:
3350     fatal_unexpected_iid(id);
3351     break;
3352   }
3353 
3354   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3355   if (mirror_con == NULL)  return false;  // cannot happen?
3356 
3357 #ifndef PRODUCT
3358   if (C->print_intrinsics() || C->print_inlining()) {
3359     ciType* k = mirror_con->java_mirror_type();
3360     if (k) {
3361       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3362       k->print_name();
3363       tty->cr();
3364     }
3365   }
3366 #endif
3367 
3368   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3369   RegionNode* region = new RegionNode(PATH_LIMIT);
3370   record_for_igvn(region);
3371   PhiNode* phi = new PhiNode(region, return_type);
3372 
3373   // The mirror will never be null of Reflection.getClassAccessFlags, however
3374   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3375   // if it is. See bug 4774291.
3376 
3377   // For Reflection.getClassAccessFlags(), the null check occurs in
3378   // the wrong place; see inline_unsafe_access(), above, for a similar
3379   // situation.
3380   mirror = null_check(mirror);
3381   // If mirror or obj is dead, only null-path is taken.
3382   if (stopped())  return true;
3383 
3384   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3385 
3386   // Now load the mirror's klass metaobject, and null-check it.
3387   // Side-effects region with the control path if the klass is null.
3388   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3389   // If kls is null, we have a primitive mirror.
3390   phi->init_req(_prim_path, prim_return_value);
3391   if (stopped()) { set_result(region, phi); return true; }
3392   bool safe_for_replace = (region->in(_prim_path) == top());
3393 
3394   Node* p;  // handy temp
3395   Node* null_ctl;
3396 
3397   // Now that we have the non-null klass, we can perform the real query.
3398   // For constant classes, the query will constant-fold in LoadNode::Value.
3399   Node* query_value = top();
3400   switch (id) {
3401   case vmIntrinsics::_isInstance:
3402     // nothing is an instance of a primitive type
3403     query_value = gen_instanceof(obj, kls, safe_for_replace);
3404     break;
3405 
3406   case vmIntrinsics::_getModifiers:
3407     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3408     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3409     break;
3410 
3411   case vmIntrinsics::_isInterface:
3412     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3413     if (generate_interface_guard(kls, region) != NULL)
3414       // A guard was added.  If the guard is taken, it was an interface.
3415       phi->add_req(intcon(1));
3416     // If we fall through, it's a plain class.
3417     query_value = intcon(0);
3418     break;
3419 
3420   case vmIntrinsics::_isArray:
3421     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3422     if (generate_array_guard(kls, region) != NULL)
3423       // A guard was added.  If the guard is taken, it was an array.
3424       phi->add_req(intcon(1));
3425     // If we fall through, it's a plain class.
3426     query_value = intcon(0);
3427     break;
3428 
3429   case vmIntrinsics::_isPrimitive:
3430     query_value = intcon(0); // "normal" path produces false
3431     break;
3432 
3433   case vmIntrinsics::_getSuperclass:
3434     // The rules here are somewhat unfortunate, but we can still do better
3435     // with random logic than with a JNI call.
3436     // Interfaces store null or Object as _super, but must report null.
3437     // Arrays store an intermediate super as _super, but must report Object.
3438     // Other types can report the actual _super.
3439     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3440     if (generate_interface_guard(kls, region) != NULL)
3441       // A guard was added.  If the guard is taken, it was an interface.
3442       phi->add_req(null());
3443     if (generate_array_guard(kls, region) != NULL)
3444       // A guard was added.  If the guard is taken, it was an array.
3445       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3446     // If we fall through, it's a plain class.  Get its _super.
3447     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3448     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3449     null_ctl = top();
3450     kls = null_check_oop(kls, &null_ctl);
3451     if (null_ctl != top()) {
3452       // If the guard is taken, Object.superClass is null (both klass and mirror).
3453       region->add_req(null_ctl);
3454       phi   ->add_req(null());
3455     }
3456     if (!stopped()) {
3457       query_value = load_mirror_from_klass(kls);
3458     }
3459     break;
3460 
3461   case vmIntrinsics::_getClassAccessFlags:
3462     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3463     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3464     break;
3465 
3466   default:
3467     fatal_unexpected_iid(id);
3468     break;
3469   }
3470 
3471   // Fall-through is the normal case of a query to a real class.
3472   phi->init_req(1, query_value);
3473   region->init_req(1, control());
3474 
3475   C->set_has_split_ifs(true); // Has chance for split-if optimization
3476   set_result(region, phi);
3477   return true;
3478 }
3479 
3480 //-------------------------inline_Class_cast-------------------
3481 bool LibraryCallKit::inline_Class_cast() {
3482   Node* mirror = argument(0); // Class
3483   Node* obj    = argument(1);
3484   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3485   if (mirror_con == NULL) {
3486     return false;  // dead path (mirror->is_top()).
3487   }
3488   if (obj == NULL || obj->is_top()) {
3489     return false;  // dead path
3490   }
3491   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3492 
3493   // First, see if Class.cast() can be folded statically.
3494   // java_mirror_type() returns non-null for compile-time Class constants.
3495   ciType* tm = mirror_con->java_mirror_type();
3496   if (tm != NULL && tm->is_klass() &&
3497       tp != NULL && tp->klass() != NULL) {
3498     if (!tp->klass()->is_loaded()) {
3499       // Don't use intrinsic when class is not loaded.
3500       return false;
3501     } else {
3502       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3503       if (static_res == Compile::SSC_always_true) {
3504         // isInstance() is true - fold the code.
3505         set_result(obj);
3506         return true;
3507       } else if (static_res == Compile::SSC_always_false) {
3508         // Don't use intrinsic, have to throw ClassCastException.
3509         // If the reference is null, the non-intrinsic bytecode will
3510         // be optimized appropriately.
3511         return false;
3512       }
3513     }
3514   }
3515 
3516   // Bailout intrinsic and do normal inlining if exception path is frequent.
3517   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3518     return false;
3519   }
3520 
3521   // Generate dynamic checks.
3522   // Class.cast() is java implementation of _checkcast bytecode.
3523   // Do checkcast (Parse::do_checkcast()) optimizations here.
3524 
3525   mirror = null_check(mirror);
3526   // If mirror is dead, only null-path is taken.
3527   if (stopped()) {
3528     return true;
3529   }
3530 
3531   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3532   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3533   RegionNode* region = new RegionNode(PATH_LIMIT);
3534   record_for_igvn(region);
3535 
3536   // Now load the mirror's klass metaobject, and null-check it.
3537   // If kls is null, we have a primitive mirror and
3538   // nothing is an instance of a primitive type.
3539   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3540 
3541   Node* res = top();
3542   if (!stopped()) {
3543     Node* bad_type_ctrl = top();
3544     // Do checkcast optimizations.
3545     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3546     region->init_req(_bad_type_path, bad_type_ctrl);
3547   }
3548   if (region->in(_prim_path) != top() ||
3549       region->in(_bad_type_path) != top()) {
3550     // Let Interpreter throw ClassCastException.
3551     PreserveJVMState pjvms(this);
3552     set_control(_gvn.transform(region));
3553     uncommon_trap(Deoptimization::Reason_intrinsic,
3554                   Deoptimization::Action_maybe_recompile);
3555   }
3556   if (!stopped()) {
3557     set_result(res);
3558   }
3559   return true;
3560 }
3561 
3562 
3563 //--------------------------inline_native_subtype_check------------------------
3564 // This intrinsic takes the JNI calls out of the heart of
3565 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3566 bool LibraryCallKit::inline_native_subtype_check() {
3567   // Pull both arguments off the stack.
3568   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3569   args[0] = argument(0);
3570   args[1] = argument(1);
3571   Node* klasses[2];             // corresponding Klasses: superk, subk
3572   klasses[0] = klasses[1] = top();
3573 
3574   enum {
3575     // A full decision tree on {superc is prim, subc is prim}:
3576     _prim_0_path = 1,           // {P,N} => false
3577                                 // {P,P} & superc!=subc => false
3578     _prim_same_path,            // {P,P} & superc==subc => true
3579     _prim_1_path,               // {N,P} => false
3580     _ref_subtype_path,          // {N,N} & subtype check wins => true
3581     _both_ref_path,             // {N,N} & subtype check loses => false
3582     PATH_LIMIT
3583   };
3584 
3585   RegionNode* region = new RegionNode(PATH_LIMIT);
3586   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3587   record_for_igvn(region);
3588 
3589   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3590   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3591   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3592 
3593   // First null-check both mirrors and load each mirror's klass metaobject.
3594   int which_arg;
3595   for (which_arg = 0; which_arg <= 1; which_arg++) {
3596     Node* arg = args[which_arg];
3597     arg = null_check(arg);
3598     if (stopped())  break;
3599     args[which_arg] = arg;
3600 
3601     Node* p = basic_plus_adr(arg, class_klass_offset);
3602     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3603     klasses[which_arg] = _gvn.transform(kls);
3604   }
3605 
3606   // Having loaded both klasses, test each for null.
3607   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3608   for (which_arg = 0; which_arg <= 1; which_arg++) {
3609     Node* kls = klasses[which_arg];
3610     Node* null_ctl = top();
3611     kls = null_check_oop(kls, &null_ctl, never_see_null);
3612     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3613     region->init_req(prim_path, null_ctl);
3614     if (stopped())  break;
3615     klasses[which_arg] = kls;
3616   }
3617 
3618   if (!stopped()) {
3619     // now we have two reference types, in klasses[0..1]
3620     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3621     Node* superk = klasses[0];  // the receiver
3622     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3623     // now we have a successful reference subtype check
3624     region->set_req(_ref_subtype_path, control());
3625   }
3626 
3627   // If both operands are primitive (both klasses null), then
3628   // we must return true when they are identical primitives.
3629   // It is convenient to test this after the first null klass check.
3630   set_control(region->in(_prim_0_path)); // go back to first null check
3631   if (!stopped()) {
3632     // Since superc is primitive, make a guard for the superc==subc case.
3633     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3634     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3635     generate_guard(bol_eq, region, PROB_FAIR);
3636     if (region->req() == PATH_LIMIT+1) {
3637       // A guard was added.  If the added guard is taken, superc==subc.
3638       region->swap_edges(PATH_LIMIT, _prim_same_path);
3639       region->del_req(PATH_LIMIT);
3640     }
3641     region->set_req(_prim_0_path, control()); // Not equal after all.
3642   }
3643 
3644   // these are the only paths that produce 'true':
3645   phi->set_req(_prim_same_path,   intcon(1));
3646   phi->set_req(_ref_subtype_path, intcon(1));
3647 
3648   // pull together the cases:
3649   assert(region->req() == PATH_LIMIT, "sane region");
3650   for (uint i = 1; i < region->req(); i++) {
3651     Node* ctl = region->in(i);
3652     if (ctl == NULL || ctl == top()) {
3653       region->set_req(i, top());
3654       phi   ->set_req(i, top());
3655     } else if (phi->in(i) == NULL) {
3656       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3657     }
3658   }
3659 
3660   set_control(_gvn.transform(region));
3661   set_result(_gvn.transform(phi));
3662   return true;
3663 }
3664 
3665 //---------------------generate_array_guard_common------------------------
3666 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3667                                                   bool obj_array, bool not_array) {
3668   // If obj_array/non_array==false/false:
3669   // Branch around if the given klass is in fact an array (either obj or prim).
3670   // If obj_array/non_array==false/true:
3671   // Branch around if the given klass is not an array klass of any kind.
3672   // If obj_array/non_array==true/true:
3673   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3674   // If obj_array/non_array==true/false:
3675   // Branch around if the kls is an oop array (Object[] or subtype)
3676   //
3677   // Like generate_guard, adds a new path onto the region.
3678   jint  layout_con = 0;
3679   Node* layout_val = get_layout_helper(kls, layout_con);
3680   if (layout_val == NULL) {
3681     bool query = (obj_array
3682                   ? Klass::layout_helper_is_objArray(layout_con)
3683                   : Klass::layout_helper_is_array(layout_con));
3684     if (query == not_array) {
3685       return NULL;                       // never a branch
3686     } else {                             // always a branch
3687       Node* always_branch = control();
3688       if (region != NULL)
3689         region->add_req(always_branch);
3690       set_control(top());
3691       return always_branch;
3692     }
3693   }
3694   // Now test the correct condition.
3695   jint  nval = (obj_array
3696                 ? ((jint)Klass::_lh_array_tag_type_value
3697                    <<    Klass::_lh_array_tag_shift)
3698                 : Klass::_lh_neutral_value);
3699   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3700   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3701   // invert the test if we are looking for a non-array
3702   if (not_array)  btest = BoolTest(btest).negate();
3703   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3704   return generate_fair_guard(bol, region);
3705 }
3706 
3707 
3708 //-----------------------inline_native_newArray--------------------------
3709 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3710 bool LibraryCallKit::inline_native_newArray() {
3711   Node* mirror    = argument(0);
3712   Node* count_val = argument(1);
3713 
3714   mirror = null_check(mirror);
3715   // If mirror or obj is dead, only null-path is taken.
3716   if (stopped())  return true;
3717 
3718   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3719   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3720   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3721   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3722   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3723 
3724   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3725   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3726                                                   result_reg, _slow_path);
3727   Node* normal_ctl   = control();
3728   Node* no_array_ctl = result_reg->in(_slow_path);
3729 
3730   // Generate code for the slow case.  We make a call to newArray().
3731   set_control(no_array_ctl);
3732   if (!stopped()) {
3733     // Either the input type is void.class, or else the
3734     // array klass has not yet been cached.  Either the
3735     // ensuing call will throw an exception, or else it
3736     // will cache the array klass for next time.
3737     PreserveJVMState pjvms(this);
3738     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3739     Node* slow_result = set_results_for_java_call(slow_call);
3740     // this->control() comes from set_results_for_java_call
3741     result_reg->set_req(_slow_path, control());
3742     result_val->set_req(_slow_path, slow_result);
3743     result_io ->set_req(_slow_path, i_o());
3744     result_mem->set_req(_slow_path, reset_memory());
3745   }
3746 
3747   set_control(normal_ctl);
3748   if (!stopped()) {
3749     // Normal case:  The array type has been cached in the java.lang.Class.
3750     // The following call works fine even if the array type is polymorphic.
3751     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3752     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3753     result_reg->init_req(_normal_path, control());
3754     result_val->init_req(_normal_path, obj);
3755     result_io ->init_req(_normal_path, i_o());
3756     result_mem->init_req(_normal_path, reset_memory());
3757   }
3758 
3759   // Return the combined state.
3760   set_i_o(        _gvn.transform(result_io)  );
3761   set_all_memory( _gvn.transform(result_mem));
3762 
3763   C->set_has_split_ifs(true); // Has chance for split-if optimization
3764   set_result(result_reg, result_val);
3765   return true;
3766 }
3767 
3768 //----------------------inline_native_getLength--------------------------
3769 // public static native int java.lang.reflect.Array.getLength(Object array);
3770 bool LibraryCallKit::inline_native_getLength() {
3771   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3772 
3773   Node* array = null_check(argument(0));
3774   // If array is dead, only null-path is taken.
3775   if (stopped())  return true;
3776 
3777   // Deoptimize if it is a non-array.
3778   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3779 
3780   if (non_array != NULL) {
3781     PreserveJVMState pjvms(this);
3782     set_control(non_array);
3783     uncommon_trap(Deoptimization::Reason_intrinsic,
3784                   Deoptimization::Action_maybe_recompile);
3785   }
3786 
3787   // If control is dead, only non-array-path is taken.
3788   if (stopped())  return true;
3789 
3790   // The works fine even if the array type is polymorphic.
3791   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3792   Node* result = load_array_length(array);
3793 
3794   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3795   set_result(result);
3796   return true;
3797 }
3798 
3799 //------------------------inline_array_copyOf----------------------------
3800 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3801 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3802 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3803   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3804 
3805   // Get the arguments.
3806   Node* original          = argument(0);
3807   Node* start             = is_copyOfRange? argument(1): intcon(0);
3808   Node* end               = is_copyOfRange? argument(2): argument(1);
3809   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3810 
3811   Node* newcopy;
3812 
3813   // Set the original stack and the reexecute bit for the interpreter to reexecute
3814   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3815   { PreserveReexecuteState preexecs(this);
3816     jvms()->set_should_reexecute(true);
3817 
3818     array_type_mirror = null_check(array_type_mirror);
3819     original          = null_check(original);
3820 
3821     // Check if a null path was taken unconditionally.
3822     if (stopped())  return true;
3823 
3824     Node* orig_length = load_array_length(original);
3825 
3826     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3827     klass_node = null_check(klass_node);
3828 
3829     RegionNode* bailout = new RegionNode(1);
3830     record_for_igvn(bailout);
3831 
3832     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3833     // Bail out if that is so.
3834     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3835     if (not_objArray != NULL) {
3836       // Improve the klass node's type from the new optimistic assumption:
3837       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3838       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3839       Node* cast = new CastPPNode(klass_node, akls);
3840       cast->init_req(0, control());
3841       klass_node = _gvn.transform(cast);
3842     }
3843 
3844     // Bail out if either start or end is negative.
3845     generate_negative_guard(start, bailout, &start);
3846     generate_negative_guard(end,   bailout, &end);
3847 
3848     Node* length = end;
3849     if (_gvn.type(start) != TypeInt::ZERO) {
3850       length = _gvn.transform(new SubINode(end, start));
3851     }
3852 
3853     // Bail out if length is negative.
3854     // Without this the new_array would throw
3855     // NegativeArraySizeException but IllegalArgumentException is what
3856     // should be thrown
3857     generate_negative_guard(length, bailout, &length);
3858 
3859     if (bailout->req() > 1) {
3860       PreserveJVMState pjvms(this);
3861       set_control(_gvn.transform(bailout));
3862       uncommon_trap(Deoptimization::Reason_intrinsic,
3863                     Deoptimization::Action_maybe_recompile);
3864     }
3865 
3866     if (!stopped()) {
3867       // How many elements will we copy from the original?
3868       // The answer is MinI(orig_length - start, length).
3869       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3870       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3871 
3872       // Generate a direct call to the right arraycopy function(s).
3873       // We know the copy is disjoint but we might not know if the
3874       // oop stores need checking.
3875       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3876       // This will fail a store-check if x contains any non-nulls.
3877 
3878       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3879       // loads/stores but it is legal only if we're sure the
3880       // Arrays.copyOf would succeed. So we need all input arguments
3881       // to the copyOf to be validated, including that the copy to the
3882       // new array won't trigger an ArrayStoreException. That subtype
3883       // check can be optimized if we know something on the type of
3884       // the input array from type speculation.
3885       if (_gvn.type(klass_node)->singleton()) {
3886         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3887         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3888 
3889         int test = C->static_subtype_check(superk, subk);
3890         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3891           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3892           if (t_original->speculative_type() != NULL) {
3893             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3894           }
3895         }
3896       }
3897 
3898       bool validated = false;
3899       // Reason_class_check rather than Reason_intrinsic because we
3900       // want to intrinsify even if this traps.
3901       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3902         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3903                                                    klass_node);
3904 
3905         if (not_subtype_ctrl != top()) {
3906           PreserveJVMState pjvms(this);
3907           set_control(not_subtype_ctrl);
3908           uncommon_trap(Deoptimization::Reason_class_check,
3909                         Deoptimization::Action_make_not_entrant);
3910           assert(stopped(), "Should be stopped");
3911         }
3912         validated = true;
3913       }
3914 
3915       newcopy = new_array(klass_node, length, 0);  // no arguments to push
3916 
3917       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3918                                               load_object_klass(original), klass_node);
3919       if (!is_copyOfRange) {
3920         ac->set_copyof(validated);
3921       } else {
3922         ac->set_copyofrange(validated);
3923       }
3924       Node* n = _gvn.transform(ac);
3925       if (n == ac) {
3926         ac->connect_outputs(this);
3927       } else {
3928         assert(validated, "shouldn't transform if all arguments not validated");
3929         set_all_memory(n);
3930       }
3931     }
3932   } // original reexecute is set back here
3933 
3934   C->set_has_split_ifs(true); // Has chance for split-if optimization
3935   if (!stopped()) {
3936     set_result(newcopy);
3937   }
3938   return true;
3939 }
3940 
3941 
3942 //----------------------generate_virtual_guard---------------------------
3943 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3944 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3945                                              RegionNode* slow_region) {
3946   ciMethod* method = callee();
3947   int vtable_index = method->vtable_index();
3948   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3949          err_msg_res("bad index %d", vtable_index));
3950   // Get the Method* out of the appropriate vtable entry.
3951   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3952                      vtable_index*vtableEntry::size()) * wordSize +
3953                      vtableEntry::method_offset_in_bytes();
3954   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3955   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3956 
3957   // Compare the target method with the expected method (e.g., Object.hashCode).
3958   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3959 
3960   Node* native_call = makecon(native_call_addr);
3961   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3962   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3963 
3964   return generate_slow_guard(test_native, slow_region);
3965 }
3966 
3967 //-----------------------generate_method_call----------------------------
3968 // Use generate_method_call to make a slow-call to the real
3969 // method if the fast path fails.  An alternative would be to
3970 // use a stub like OptoRuntime::slow_arraycopy_Java.
3971 // This only works for expanding the current library call,
3972 // not another intrinsic.  (E.g., don't use this for making an
3973 // arraycopy call inside of the copyOf intrinsic.)
3974 CallJavaNode*
3975 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3976   // When compiling the intrinsic method itself, do not use this technique.
3977   guarantee(callee() != C->method(), "cannot make slow-call to self");
3978 
3979   ciMethod* method = callee();
3980   // ensure the JVMS we have will be correct for this call
3981   guarantee(method_id == method->intrinsic_id(), "must match");
3982 
3983   const TypeFunc* tf = TypeFunc::make(method);
3984   CallJavaNode* slow_call;
3985   if (is_static) {
3986     assert(!is_virtual, "");
3987     slow_call = new CallStaticJavaNode(C, tf,
3988                            SharedRuntime::get_resolve_static_call_stub(),
3989                            method, bci());
3990   } else if (is_virtual) {
3991     null_check_receiver();
3992     int vtable_index = Method::invalid_vtable_index;
3993     if (UseInlineCaches) {
3994       // Suppress the vtable call
3995     } else {
3996       // hashCode and clone are not a miranda methods,
3997       // so the vtable index is fixed.
3998       // No need to use the linkResolver to get it.
3999        vtable_index = method->vtable_index();
4000        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4001               err_msg_res("bad index %d", vtable_index));
4002     }
4003     slow_call = new CallDynamicJavaNode(tf,
4004                           SharedRuntime::get_resolve_virtual_call_stub(),
4005                           method, vtable_index, bci());
4006   } else {  // neither virtual nor static:  opt_virtual
4007     null_check_receiver();
4008     slow_call = new CallStaticJavaNode(C, tf,
4009                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4010                                 method, bci());
4011     slow_call->set_optimized_virtual(true);
4012   }
4013   set_arguments_for_java_call(slow_call);
4014   set_edges_for_java_call(slow_call);
4015   return slow_call;
4016 }
4017 
4018 
4019 /**
4020  * Build special case code for calls to hashCode on an object. This call may
4021  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4022  * slightly different code.
4023  */
4024 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4025   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4026   assert(!(is_virtual && is_static), "either virtual, special, or static");
4027 
4028   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4029 
4030   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4031   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4032   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4033   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4034   Node* obj = NULL;
4035   if (!is_static) {
4036     // Check for hashing null object
4037     obj = null_check_receiver();
4038     if (stopped())  return true;        // unconditionally null
4039     result_reg->init_req(_null_path, top());
4040     result_val->init_req(_null_path, top());
4041   } else {
4042     // Do a null check, and return zero if null.
4043     // System.identityHashCode(null) == 0
4044     obj = argument(0);
4045     Node* null_ctl = top();
4046     obj = null_check_oop(obj, &null_ctl);
4047     result_reg->init_req(_null_path, null_ctl);
4048     result_val->init_req(_null_path, _gvn.intcon(0));
4049   }
4050 
4051   // Unconditionally null?  Then return right away.
4052   if (stopped()) {
4053     set_control( result_reg->in(_null_path));
4054     if (!stopped())
4055       set_result(result_val->in(_null_path));
4056     return true;
4057   }
4058 
4059   // We only go to the fast case code if we pass a number of guards.  The
4060   // paths which do not pass are accumulated in the slow_region.
4061   RegionNode* slow_region = new RegionNode(1);
4062   record_for_igvn(slow_region);
4063 
4064   // If this is a virtual call, we generate a funny guard.  We pull out
4065   // the vtable entry corresponding to hashCode() from the target object.
4066   // If the target method which we are calling happens to be the native
4067   // Object hashCode() method, we pass the guard.  We do not need this
4068   // guard for non-virtual calls -- the caller is known to be the native
4069   // Object hashCode().
4070   if (is_virtual) {
4071     // After null check, get the object's klass.
4072     Node* obj_klass = load_object_klass(obj);
4073     generate_virtual_guard(obj_klass, slow_region);
4074   }
4075 
4076   // Get the header out of the object, use LoadMarkNode when available
4077   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4078   // The control of the load must be NULL. Otherwise, the load can move before
4079   // the null check after castPP removal.
4080   Node* no_ctrl = NULL;
4081   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4082 
4083   // Test the header to see if it is unlocked.
4084   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4085   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4086   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4087   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4088   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4089 
4090   generate_slow_guard(test_unlocked, slow_region);
4091 
4092   // Get the hash value and check to see that it has been properly assigned.
4093   // We depend on hash_mask being at most 32 bits and avoid the use of
4094   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4095   // vm: see markOop.hpp.
4096   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4097   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4098   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4099   // This hack lets the hash bits live anywhere in the mark object now, as long
4100   // as the shift drops the relevant bits into the low 32 bits.  Note that
4101   // Java spec says that HashCode is an int so there's no point in capturing
4102   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4103   hshifted_header      = ConvX2I(hshifted_header);
4104   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4105 
4106   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4107   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4108   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4109 
4110   generate_slow_guard(test_assigned, slow_region);
4111 
4112   Node* init_mem = reset_memory();
4113   // fill in the rest of the null path:
4114   result_io ->init_req(_null_path, i_o());
4115   result_mem->init_req(_null_path, init_mem);
4116 
4117   result_val->init_req(_fast_path, hash_val);
4118   result_reg->init_req(_fast_path, control());
4119   result_io ->init_req(_fast_path, i_o());
4120   result_mem->init_req(_fast_path, init_mem);
4121 
4122   // Generate code for the slow case.  We make a call to hashCode().
4123   set_control(_gvn.transform(slow_region));
4124   if (!stopped()) {
4125     // No need for PreserveJVMState, because we're using up the present state.
4126     set_all_memory(init_mem);
4127     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4128     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4129     Node* slow_result = set_results_for_java_call(slow_call);
4130     // this->control() comes from set_results_for_java_call
4131     result_reg->init_req(_slow_path, control());
4132     result_val->init_req(_slow_path, slow_result);
4133     result_io  ->set_req(_slow_path, i_o());
4134     result_mem ->set_req(_slow_path, reset_memory());
4135   }
4136 
4137   // Return the combined state.
4138   set_i_o(        _gvn.transform(result_io)  );
4139   set_all_memory( _gvn.transform(result_mem));
4140 
4141   set_result(result_reg, result_val);
4142   return true;
4143 }
4144 
4145 //---------------------------inline_native_getClass----------------------------
4146 // public final native Class<?> java.lang.Object.getClass();
4147 //
4148 // Build special case code for calls to getClass on an object.
4149 bool LibraryCallKit::inline_native_getClass() {
4150   Node* obj = null_check_receiver();
4151   if (stopped())  return true;
4152   set_result(load_mirror_from_klass(load_object_klass(obj)));
4153   return true;
4154 }
4155 
4156 //-----------------inline_native_Reflection_getCallerClass---------------------
4157 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4158 //
4159 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4160 //
4161 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4162 // in that it must skip particular security frames and checks for
4163 // caller sensitive methods.
4164 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4165 #ifndef PRODUCT
4166   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4167     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4168   }
4169 #endif
4170 
4171   if (!jvms()->has_method()) {
4172 #ifndef PRODUCT
4173     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4174       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4175     }
4176 #endif
4177     return false;
4178   }
4179 
4180   // Walk back up the JVM state to find the caller at the required
4181   // depth.
4182   JVMState* caller_jvms = jvms();
4183 
4184   // Cf. JVM_GetCallerClass
4185   // NOTE: Start the loop at depth 1 because the current JVM state does
4186   // not include the Reflection.getCallerClass() frame.
4187   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4188     ciMethod* m = caller_jvms->method();
4189     switch (n) {
4190     case 0:
4191       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4192       break;
4193     case 1:
4194       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4195       if (!m->caller_sensitive()) {
4196 #ifndef PRODUCT
4197         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4198           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4199         }
4200 #endif
4201         return false;  // bail-out; let JVM_GetCallerClass do the work
4202       }
4203       break;
4204     default:
4205       if (!m->is_ignored_by_security_stack_walk()) {
4206         // We have reached the desired frame; return the holder class.
4207         // Acquire method holder as java.lang.Class and push as constant.
4208         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4209         ciInstance* caller_mirror = caller_klass->java_mirror();
4210         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4211 
4212 #ifndef PRODUCT
4213         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4214           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4215           tty->print_cr("  JVM state at this point:");
4216           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4217             ciMethod* m = jvms()->of_depth(i)->method();
4218             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4219           }
4220         }
4221 #endif
4222         return true;
4223       }
4224       break;
4225     }
4226   }
4227 
4228 #ifndef PRODUCT
4229   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4230     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4231     tty->print_cr("  JVM state at this point:");
4232     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4233       ciMethod* m = jvms()->of_depth(i)->method();
4234       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4235     }
4236   }
4237 #endif
4238 
4239   return false;  // bail-out; let JVM_GetCallerClass do the work
4240 }
4241 
4242 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4243   Node* arg = argument(0);
4244   Node* result;
4245 
4246   switch (id) {
4247   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4248   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4249   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4250   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4251 
4252   case vmIntrinsics::_doubleToLongBits: {
4253     // two paths (plus control) merge in a wood
4254     RegionNode *r = new RegionNode(3);
4255     Node *phi = new PhiNode(r, TypeLong::LONG);
4256 
4257     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4258     // Build the boolean node
4259     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4260 
4261     // Branch either way.
4262     // NaN case is less traveled, which makes all the difference.
4263     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4264     Node *opt_isnan = _gvn.transform(ifisnan);
4265     assert( opt_isnan->is_If(), "Expect an IfNode");
4266     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4267     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4268 
4269     set_control(iftrue);
4270 
4271     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4272     Node *slow_result = longcon(nan_bits); // return NaN
4273     phi->init_req(1, _gvn.transform( slow_result ));
4274     r->init_req(1, iftrue);
4275 
4276     // Else fall through
4277     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4278     set_control(iffalse);
4279 
4280     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4281     r->init_req(2, iffalse);
4282 
4283     // Post merge
4284     set_control(_gvn.transform(r));
4285     record_for_igvn(r);
4286 
4287     C->set_has_split_ifs(true); // Has chance for split-if optimization
4288     result = phi;
4289     assert(result->bottom_type()->isa_long(), "must be");
4290     break;
4291   }
4292 
4293   case vmIntrinsics::_floatToIntBits: {
4294     // two paths (plus control) merge in a wood
4295     RegionNode *r = new RegionNode(3);
4296     Node *phi = new PhiNode(r, TypeInt::INT);
4297 
4298     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4299     // Build the boolean node
4300     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4301 
4302     // Branch either way.
4303     // NaN case is less traveled, which makes all the difference.
4304     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4305     Node *opt_isnan = _gvn.transform(ifisnan);
4306     assert( opt_isnan->is_If(), "Expect an IfNode");
4307     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4308     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4309 
4310     set_control(iftrue);
4311 
4312     static const jint nan_bits = 0x7fc00000;
4313     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4314     phi->init_req(1, _gvn.transform( slow_result ));
4315     r->init_req(1, iftrue);
4316 
4317     // Else fall through
4318     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4319     set_control(iffalse);
4320 
4321     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4322     r->init_req(2, iffalse);
4323 
4324     // Post merge
4325     set_control(_gvn.transform(r));
4326     record_for_igvn(r);
4327 
4328     C->set_has_split_ifs(true); // Has chance for split-if optimization
4329     result = phi;
4330     assert(result->bottom_type()->isa_int(), "must be");
4331     break;
4332   }
4333 
4334   default:
4335     fatal_unexpected_iid(id);
4336     break;
4337   }
4338   set_result(_gvn.transform(result));
4339   return true;
4340 }
4341 
4342 #ifdef _LP64
4343 #define XTOP ,top() /*additional argument*/
4344 #else  //_LP64
4345 #define XTOP        /*no additional argument*/
4346 #endif //_LP64
4347 
4348 //----------------------inline_unsafe_copyMemory-------------------------
4349 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4350 bool LibraryCallKit::inline_unsafe_copyMemory() {
4351   if (callee()->is_static())  return false;  // caller must have the capability!
4352   null_check_receiver();  // null-check receiver
4353   if (stopped())  return true;
4354 
4355   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4356 
4357   Node* src_ptr =         argument(1);   // type: oop
4358   Node* src_off = ConvL2X(argument(2));  // type: long
4359   Node* dst_ptr =         argument(4);   // type: oop
4360   Node* dst_off = ConvL2X(argument(5));  // type: long
4361   Node* size    = ConvL2X(argument(7));  // type: long
4362 
4363   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4364          "fieldOffset must be byte-scaled");
4365 
4366   Node* src = make_unsafe_address(src_ptr, src_off);
4367   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4368 
4369   // Conservatively insert a memory barrier on all memory slices.
4370   // Do not let writes of the copy source or destination float below the copy.
4371   insert_mem_bar(Op_MemBarCPUOrder);
4372 
4373   // Call it.  Note that the length argument is not scaled.
4374   make_runtime_call(RC_LEAF|RC_NO_FP,
4375                     OptoRuntime::fast_arraycopy_Type(),
4376                     StubRoutines::unsafe_arraycopy(),
4377                     "unsafe_arraycopy",
4378                     TypeRawPtr::BOTTOM,
4379                     src, dst, size XTOP);
4380 
4381   // Do not let reads of the copy destination float above the copy.
4382   insert_mem_bar(Op_MemBarCPUOrder);
4383 
4384   return true;
4385 }
4386 
4387 //------------------------clone_coping-----------------------------------
4388 // Helper function for inline_native_clone.
4389 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4390   assert(obj_size != NULL, "");
4391   Node* raw_obj = alloc_obj->in(1);
4392   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4393 
4394   AllocateNode* alloc = NULL;
4395   if (ReduceBulkZeroing) {
4396     // We will be completely responsible for initializing this object -
4397     // mark Initialize node as complete.
4398     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4399     // The object was just allocated - there should be no any stores!
4400     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4401     // Mark as complete_with_arraycopy so that on AllocateNode
4402     // expansion, we know this AllocateNode is initialized by an array
4403     // copy and a StoreStore barrier exists after the array copy.
4404     alloc->initialization()->set_complete_with_arraycopy();
4405   }
4406 
4407   // Copy the fastest available way.
4408   // TODO: generate fields copies for small objects instead.
4409   Node* src  = obj;
4410   Node* dest = alloc_obj;
4411   Node* size = _gvn.transform(obj_size);
4412 
4413   // Exclude the header but include array length to copy by 8 bytes words.
4414   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4415   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4416                             instanceOopDesc::base_offset_in_bytes();
4417   // base_off:
4418   // 8  - 32-bit VM
4419   // 12 - 64-bit VM, compressed klass
4420   // 16 - 64-bit VM, normal klass
4421   if (base_off % BytesPerLong != 0) {
4422     assert(UseCompressedClassPointers, "");
4423     if (is_array) {
4424       // Exclude length to copy by 8 bytes words.
4425       base_off += sizeof(int);
4426     } else {
4427       // Include klass to copy by 8 bytes words.
4428       base_off = instanceOopDesc::klass_offset_in_bytes();
4429     }
4430     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4431   }
4432   src  = basic_plus_adr(src,  base_off);
4433   dest = basic_plus_adr(dest, base_off);
4434 
4435   // Compute the length also, if needed:
4436   Node* countx = size;
4437   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4438   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4439 
4440   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4441 
4442   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4443   ac->set_clonebasic();
4444   Node* n = _gvn.transform(ac);
4445   if (n == ac) {
4446     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4447   } else {
4448     set_all_memory(n);
4449   }
4450 
4451   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4452   if (card_mark) {
4453     assert(!is_array, "");
4454     // Put in store barrier for any and all oops we are sticking
4455     // into this object.  (We could avoid this if we could prove
4456     // that the object type contains no oop fields at all.)
4457     Node* no_particular_value = NULL;
4458     Node* no_particular_field = NULL;
4459     int raw_adr_idx = Compile::AliasIdxRaw;
4460     post_barrier(control(),
4461                  memory(raw_adr_type),
4462                  alloc_obj,
4463                  no_particular_field,
4464                  raw_adr_idx,
4465                  no_particular_value,
4466                  T_OBJECT,
4467                  false);
4468   }
4469 
4470   // Do not let reads from the cloned object float above the arraycopy.
4471   if (alloc != NULL) {
4472     // Do not let stores that initialize this object be reordered with
4473     // a subsequent store that would make this object accessible by
4474     // other threads.
4475     // Record what AllocateNode this StoreStore protects so that
4476     // escape analysis can go from the MemBarStoreStoreNode to the
4477     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4478     // based on the escape status of the AllocateNode.
4479     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4480   } else {
4481     insert_mem_bar(Op_MemBarCPUOrder);
4482   }
4483 }
4484 
4485 //------------------------inline_native_clone----------------------------
4486 // protected native Object java.lang.Object.clone();
4487 //
4488 // Here are the simple edge cases:
4489 //  null receiver => normal trap
4490 //  virtual and clone was overridden => slow path to out-of-line clone
4491 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4492 //
4493 // The general case has two steps, allocation and copying.
4494 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4495 //
4496 // Copying also has two cases, oop arrays and everything else.
4497 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4498 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4499 //
4500 // These steps fold up nicely if and when the cloned object's klass
4501 // can be sharply typed as an object array, a type array, or an instance.
4502 //
4503 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4504   PhiNode* result_val;
4505 
4506   // Set the reexecute bit for the interpreter to reexecute
4507   // the bytecode that invokes Object.clone if deoptimization happens.
4508   { PreserveReexecuteState preexecs(this);
4509     jvms()->set_should_reexecute(true);
4510 
4511     Node* obj = null_check_receiver();
4512     if (stopped())  return true;
4513 
4514     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4515 
4516     // If we are going to clone an instance, we need its exact type to
4517     // know the number and types of fields to convert the clone to
4518     // loads/stores. Maybe a speculative type can help us.
4519     if (!obj_type->klass_is_exact() &&
4520         obj_type->speculative_type() != NULL &&
4521         obj_type->speculative_type()->is_instance_klass()) {
4522       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4523       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4524           !spec_ik->has_injected_fields()) {
4525         ciKlass* k = obj_type->klass();
4526         if (!k->is_instance_klass() ||
4527             k->as_instance_klass()->is_interface() ||
4528             k->as_instance_klass()->has_subklass()) {
4529           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4530         }
4531       }
4532     }
4533 
4534     Node* obj_klass = load_object_klass(obj);
4535     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4536     const TypeOopPtr*   toop   = ((tklass != NULL)
4537                                 ? tklass->as_instance_type()
4538                                 : TypeInstPtr::NOTNULL);
4539 
4540     // Conservatively insert a memory barrier on all memory slices.
4541     // Do not let writes into the original float below the clone.
4542     insert_mem_bar(Op_MemBarCPUOrder);
4543 
4544     // paths into result_reg:
4545     enum {
4546       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4547       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4548       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4549       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4550       PATH_LIMIT
4551     };
4552     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4553     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4554     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4555     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4556     record_for_igvn(result_reg);
4557 
4558     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4559     int raw_adr_idx = Compile::AliasIdxRaw;
4560 
4561     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4562     if (array_ctl != NULL) {
4563       // It's an array.
4564       PreserveJVMState pjvms(this);
4565       set_control(array_ctl);
4566       Node* obj_length = load_array_length(obj);
4567       Node* obj_size  = NULL;
4568       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4569 
4570       if (!use_ReduceInitialCardMarks()) {
4571         // If it is an oop array, it requires very special treatment,
4572         // because card marking is required on each card of the array.
4573         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4574         if (is_obja != NULL) {
4575           PreserveJVMState pjvms2(this);
4576           set_control(is_obja);
4577           // Generate a direct call to the right arraycopy function(s).
4578           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4579           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4580           ac->set_cloneoop();
4581           Node* n = _gvn.transform(ac);
4582           assert(n == ac, "cannot disappear");
4583           ac->connect_outputs(this);
4584 
4585           result_reg->init_req(_objArray_path, control());
4586           result_val->init_req(_objArray_path, alloc_obj);
4587           result_i_o ->set_req(_objArray_path, i_o());
4588           result_mem ->set_req(_objArray_path, reset_memory());
4589         }
4590       }
4591       // Otherwise, there are no card marks to worry about.
4592       // (We can dispense with card marks if we know the allocation
4593       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4594       //  causes the non-eden paths to take compensating steps to
4595       //  simulate a fresh allocation, so that no further
4596       //  card marks are required in compiled code to initialize
4597       //  the object.)
4598 
4599       if (!stopped()) {
4600         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4601 
4602         // Present the results of the copy.
4603         result_reg->init_req(_array_path, control());
4604         result_val->init_req(_array_path, alloc_obj);
4605         result_i_o ->set_req(_array_path, i_o());
4606         result_mem ->set_req(_array_path, reset_memory());
4607       }
4608     }
4609 
4610     // We only go to the instance fast case code if we pass a number of guards.
4611     // The paths which do not pass are accumulated in the slow_region.
4612     RegionNode* slow_region = new RegionNode(1);
4613     record_for_igvn(slow_region);
4614     if (!stopped()) {
4615       // It's an instance (we did array above).  Make the slow-path tests.
4616       // If this is a virtual call, we generate a funny guard.  We grab
4617       // the vtable entry corresponding to clone() from the target object.
4618       // If the target method which we are calling happens to be the
4619       // Object clone() method, we pass the guard.  We do not need this
4620       // guard for non-virtual calls; the caller is known to be the native
4621       // Object clone().
4622       if (is_virtual) {
4623         generate_virtual_guard(obj_klass, slow_region);
4624       }
4625 
4626       // The object must be cloneable and must not have a finalizer.
4627       // Both of these conditions may be checked in a single test.
4628       // We could optimize the cloneable test further, but we don't care.
4629       generate_access_flags_guard(obj_klass,
4630                                   // Test both conditions:
4631                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4632                                   // Must be cloneable but not finalizer:
4633                                   JVM_ACC_IS_CLONEABLE,
4634                                   slow_region);
4635     }
4636 
4637     if (!stopped()) {
4638       // It's an instance, and it passed the slow-path tests.
4639       PreserveJVMState pjvms(this);
4640       Node* obj_size  = NULL;
4641       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4642       // is reexecuted if deoptimization occurs and there could be problems when merging
4643       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4644       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4645 
4646       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4647 
4648       // Present the results of the slow call.
4649       result_reg->init_req(_instance_path, control());
4650       result_val->init_req(_instance_path, alloc_obj);
4651       result_i_o ->set_req(_instance_path, i_o());
4652       result_mem ->set_req(_instance_path, reset_memory());
4653     }
4654 
4655     // Generate code for the slow case.  We make a call to clone().
4656     set_control(_gvn.transform(slow_region));
4657     if (!stopped()) {
4658       PreserveJVMState pjvms(this);
4659       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4660       Node* slow_result = set_results_for_java_call(slow_call);
4661       // this->control() comes from set_results_for_java_call
4662       result_reg->init_req(_slow_path, control());
4663       result_val->init_req(_slow_path, slow_result);
4664       result_i_o ->set_req(_slow_path, i_o());
4665       result_mem ->set_req(_slow_path, reset_memory());
4666     }
4667 
4668     // Return the combined state.
4669     set_control(    _gvn.transform(result_reg));
4670     set_i_o(        _gvn.transform(result_i_o));
4671     set_all_memory( _gvn.transform(result_mem));
4672   } // original reexecute is set back here
4673 
4674   set_result(_gvn.transform(result_val));
4675   return true;
4676 }
4677 
4678 //------------------------------inline_arraycopy-----------------------
4679 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4680 //                                                      Object dest, int destPos,
4681 //                                                      int length);
4682 bool LibraryCallKit::inline_arraycopy() {
4683   // Get the arguments.
4684   Node* src         = argument(0);  // type: oop
4685   Node* src_offset  = argument(1);  // type: int
4686   Node* dest        = argument(2);  // type: oop
4687   Node* dest_offset = argument(3);  // type: int
4688   Node* length      = argument(4);  // type: int
4689 
4690   // The following tests must be performed
4691   // (1) src and dest are arrays.
4692   // (2) src and dest arrays must have elements of the same BasicType
4693   // (3) src and dest must not be null.
4694   // (4) src_offset must not be negative.
4695   // (5) dest_offset must not be negative.
4696   // (6) length must not be negative.
4697   // (7) src_offset + length must not exceed length of src.
4698   // (8) dest_offset + length must not exceed length of dest.
4699   // (9) each element of an oop array must be assignable
4700 
4701   // (3) src and dest must not be null.
4702   // always do this here because we need the JVM state for uncommon traps
4703   src  = null_check(src,  T_ARRAY);
4704   dest = null_check(dest, T_ARRAY);
4705 
4706   // Check for allocation before we add nodes that would confuse
4707   // tightly_coupled_allocation()
4708   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4709 
4710   ciMethod* trap_method = method();
4711   int trap_bci = bci();
4712   SafePointNode* sfpt = NULL;
4713   if (alloc != NULL) {
4714     // The JVM state for uncommon traps between the allocation and
4715     // arraycopy is set to the state before the allocation: if the
4716     // initialization is performed by the array copy, we don't want to
4717     // go back to the interpreter with an unitialized array.
4718     JVMState* old_jvms = alloc->jvms();
4719     JVMState* jvms = old_jvms->clone_shallow(C);
4720     uint size = alloc->req();
4721     sfpt = new SafePointNode(size, jvms);
4722     jvms->set_map(sfpt);
4723     for (uint i = 0; i < size; i++) {
4724       sfpt->init_req(i, alloc->in(i));
4725     }
4726     // re-push array length for deoptimization
4727     sfpt->ins_req(jvms->stkoff() + jvms->sp(), alloc->in(AllocateNode::ALength));
4728     jvms->set_sp(jvms->sp()+1);
4729     jvms->set_monoff(jvms->monoff()+1);
4730     jvms->set_scloff(jvms->scloff()+1);
4731     jvms->set_endoff(jvms->endoff()+1);
4732     jvms->set_should_reexecute(true);
4733 
4734     sfpt->set_i_o(map()->i_o());
4735     sfpt->set_memory(map()->memory());
4736 
4737     trap_method = jvms->method();
4738     trap_bci = jvms->bci();
4739   }
4740 
4741   bool validated = false;
4742 
4743   const Type* src_type  = _gvn.type(src);
4744   const Type* dest_type = _gvn.type(dest);
4745   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4746   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4747 
4748   // Do we have the type of src?
4749   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4750   // Do we have the type of dest?
4751   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4752   // Is the type for src from speculation?
4753   bool src_spec = false;
4754   // Is the type for dest from speculation?
4755   bool dest_spec = false;
4756 
4757   if (!has_src || !has_dest) {
4758     // We don't have sufficient type information, let's see if
4759     // speculative types can help. We need to have types for both src
4760     // and dest so that it pays off.
4761 
4762     // Do we already have or could we have type information for src
4763     bool could_have_src = has_src;
4764     // Do we already have or could we have type information for dest
4765     bool could_have_dest = has_dest;
4766 
4767     ciKlass* src_k = NULL;
4768     if (!has_src) {
4769       src_k = src_type->speculative_type_not_null();
4770       if (src_k != NULL && src_k->is_array_klass()) {
4771         could_have_src = true;
4772       }
4773     }
4774 
4775     ciKlass* dest_k = NULL;
4776     if (!has_dest) {
4777       dest_k = dest_type->speculative_type_not_null();
4778       if (dest_k != NULL && dest_k->is_array_klass()) {
4779         could_have_dest = true;
4780       }
4781     }
4782 
4783     if (could_have_src && could_have_dest) {
4784       // This is going to pay off so emit the required guards
4785       if (!has_src) {
4786         src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4787         src_type  = _gvn.type(src);
4788         top_src  = src_type->isa_aryptr();
4789         has_src = (top_src != NULL && top_src->klass() != NULL);
4790         src_spec = true;
4791       }
4792       if (!has_dest) {
4793         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4794         dest_type  = _gvn.type(dest);
4795         top_dest  = dest_type->isa_aryptr();
4796         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4797         dest_spec = true;
4798       }
4799     }
4800   }
4801 
4802   if (has_src && has_dest) {
4803     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4804     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4805     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4806     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4807 
4808     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4809       // If both arrays are object arrays then having the exact types
4810       // for both will remove the need for a subtype check at runtime
4811       // before the call and may make it possible to pick a faster copy
4812       // routine (without a subtype check on every element)
4813       // Do we have the exact type of src?
4814       bool could_have_src = src_spec;
4815       // Do we have the exact type of dest?
4816       bool could_have_dest = dest_spec;
4817       ciKlass* src_k = top_src->klass();
4818       ciKlass* dest_k = top_dest->klass();
4819       if (!src_spec) {
4820         src_k = src_type->speculative_type_not_null();
4821         if (src_k != NULL && src_k->is_array_klass()) {
4822           could_have_src = true;
4823         }
4824       }
4825       if (!dest_spec) {
4826         dest_k = dest_type->speculative_type_not_null();
4827         if (dest_k != NULL && dest_k->is_array_klass()) {
4828           could_have_dest = true;
4829         }
4830       }
4831       if (could_have_src && could_have_dest) {
4832         // If we can have both exact types, emit the missing guards
4833         if (could_have_src && !src_spec) {
4834           src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4835         }
4836         if (could_have_dest && !dest_spec) {
4837           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4838         }
4839       }
4840     }
4841   }
4842 
4843   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4844     // validate arguments: enables transformation the ArrayCopyNode
4845     validated = true;
4846 
4847     RegionNode* slow_region = new RegionNode(1);
4848     record_for_igvn(slow_region);
4849 
4850     // (1) src and dest are arrays.
4851     generate_non_array_guard(load_object_klass(src), slow_region);
4852     generate_non_array_guard(load_object_klass(dest), slow_region);
4853 
4854     // (2) src and dest arrays must have elements of the same BasicType
4855     // done at macro expansion or at Ideal transformation time
4856 
4857     // (4) src_offset must not be negative.
4858     generate_negative_guard(src_offset, slow_region);
4859 
4860     // (5) dest_offset must not be negative.
4861     generate_negative_guard(dest_offset, slow_region);
4862 
4863     // (7) src_offset + length must not exceed length of src.
4864     generate_limit_guard(src_offset, length,
4865                          load_array_length(src),
4866                          slow_region);
4867 
4868     // (8) dest_offset + length must not exceed length of dest.
4869     generate_limit_guard(dest_offset, length,
4870                          load_array_length(dest),
4871                          slow_region);
4872 
4873     // (9) each element of an oop array must be assignable
4874     Node* src_klass  = load_object_klass(src);
4875     Node* dest_klass = load_object_klass(dest);
4876     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4877 
4878     if (not_subtype_ctrl != top()) {
4879       if (sfpt != NULL) {
4880         GraphKit kit(sfpt->jvms());
4881         PreserveJVMState pjvms(&kit);
4882         kit.set_control(not_subtype_ctrl);
4883         kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4884                           Deoptimization::Action_make_not_entrant);
4885         assert(kit.stopped(), "Should be stopped");
4886       } else {
4887         PreserveJVMState pjvms(this);
4888         set_control(not_subtype_ctrl);
4889         uncommon_trap(Deoptimization::Reason_intrinsic,
4890                       Deoptimization::Action_make_not_entrant);
4891         assert(stopped(), "Should be stopped");
4892       }
4893     }
4894     if (sfpt != NULL) {
4895       GraphKit kit(sfpt->jvms());
4896       kit.set_control(_gvn.transform(slow_region));
4897       kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4898                         Deoptimization::Action_make_not_entrant);
4899       assert(kit.stopped(), "Should be stopped");
4900     } else {
4901       PreserveJVMState pjvms(this);
4902       set_control(_gvn.transform(slow_region));
4903       uncommon_trap(Deoptimization::Reason_intrinsic,
4904                     Deoptimization::Action_make_not_entrant);
4905       assert(stopped(), "Should be stopped");
4906     }
4907   }
4908 
4909   if (stopped()) {
4910     return true;
4911   }
4912 
4913   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4914                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4915                                           // so the compiler has a chance to eliminate them: during macro expansion,
4916                                           // we have to set their control (CastPP nodes are eliminated).
4917                                           load_object_klass(src), load_object_klass(dest),
4918                                           load_array_length(src), load_array_length(dest));
4919 
4920   ac->set_arraycopy(validated);
4921 
4922   Node* n = _gvn.transform(ac);
4923   if (n == ac) {
4924     ac->connect_outputs(this);
4925   } else {
4926     assert(validated, "shouldn't transform if all arguments not validated");
4927     set_all_memory(n);
4928   }
4929 
4930   return true;
4931 }
4932 
4933 
4934 // Helper function which determines if an arraycopy immediately follows
4935 // an allocation, with no intervening tests or other escapes for the object.
4936 AllocateArrayNode*
4937 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4938                                            RegionNode* slow_region) {
4939   if (stopped())             return NULL;  // no fast path
4940   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4941 
4942   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4943   if (alloc == NULL)  return NULL;
4944 
4945   Node* rawmem = memory(Compile::AliasIdxRaw);
4946   // Is the allocation's memory state untouched?
4947   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4948     // Bail out if there have been raw-memory effects since the allocation.
4949     // (Example:  There might have been a call or safepoint.)
4950     return NULL;
4951   }
4952   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4953   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4954     return NULL;
4955   }
4956 
4957   // There must be no unexpected observers of this allocation.
4958   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4959     Node* obs = ptr->fast_out(i);
4960     if (obs != this->map()) {
4961       return NULL;
4962     }
4963   }
4964 
4965   // This arraycopy must unconditionally follow the allocation of the ptr.
4966   Node* alloc_ctl = ptr->in(0);
4967   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4968 
4969   Node* ctl = control();
4970   while (ctl != alloc_ctl) {
4971     // There may be guards which feed into the slow_region.
4972     // Any other control flow means that we might not get a chance
4973     // to finish initializing the allocated object.
4974     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4975       IfNode* iff = ctl->in(0)->as_If();
4976       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4977       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4978       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4979         ctl = iff->in(0);       // This test feeds the known slow_region.
4980         continue;
4981       }
4982       // One more try:  Various low-level checks bottom out in
4983       // uncommon traps.  If the debug-info of the trap omits
4984       // any reference to the allocation, as we've already
4985       // observed, then there can be no objection to the trap.
4986       bool found_trap = false;
4987       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4988         Node* obs = not_ctl->fast_out(j);
4989         if (obs->in(0) == not_ctl && obs->is_Call() &&
4990             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4991           found_trap = true; break;
4992         }
4993       }
4994       if (found_trap) {
4995         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4996         continue;
4997       }
4998     }
4999     return NULL;
5000   }
5001 
5002   // If we get this far, we have an allocation which immediately
5003   // precedes the arraycopy, and we can take over zeroing the new object.
5004   // The arraycopy will finish the initialization, and provide
5005   // a new control state to which we will anchor the destination pointer.
5006 
5007   return alloc;
5008 }
5009 
5010 //-------------inline_encodeISOArray-----------------------------------
5011 // encode char[] to byte[] in ISO_8859_1
5012 bool LibraryCallKit::inline_encodeISOArray() {
5013   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5014   // no receiver since it is static method
5015   Node *src         = argument(0);
5016   Node *src_offset  = argument(1);
5017   Node *dst         = argument(2);
5018   Node *dst_offset  = argument(3);
5019   Node *length      = argument(4);
5020 
5021   const Type* src_type = src->Value(&_gvn);
5022   const Type* dst_type = dst->Value(&_gvn);
5023   const TypeAryPtr* top_src = src_type->isa_aryptr();
5024   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5025   if (top_src  == NULL || top_src->klass()  == NULL ||
5026       top_dest == NULL || top_dest->klass() == NULL) {
5027     // failed array check
5028     return false;
5029   }
5030 
5031   // Figure out the size and type of the elements we will be copying.
5032   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5033   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5034   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5035     return false;
5036   }
5037   Node* src_start = array_element_address(src, src_offset, src_elem);
5038   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5039   // 'src_start' points to src array + scaled offset
5040   // 'dst_start' points to dst array + scaled offset
5041 
5042   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5043   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5044   enc = _gvn.transform(enc);
5045   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5046   set_memory(res_mem, mtype);
5047   set_result(enc);
5048   return true;
5049 }
5050 
5051 //-------------inline_multiplyToLen-----------------------------------
5052 bool LibraryCallKit::inline_multiplyToLen() {
5053   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5054 
5055   address stubAddr = StubRoutines::multiplyToLen();
5056   if (stubAddr == NULL) {
5057     return false; // Intrinsic's stub is not implemented on this platform
5058   }
5059   const char* stubName = "multiplyToLen";
5060 
5061   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5062 
5063   Node* x    = argument(1);
5064   Node* xlen = argument(2);
5065   Node* y    = argument(3);
5066   Node* ylen = argument(4);
5067   Node* z    = argument(5);
5068 
5069   const Type* x_type = x->Value(&_gvn);
5070   const Type* y_type = y->Value(&_gvn);
5071   const TypeAryPtr* top_x = x_type->isa_aryptr();
5072   const TypeAryPtr* top_y = y_type->isa_aryptr();
5073   if (top_x  == NULL || top_x->klass()  == NULL ||
5074       top_y == NULL || top_y->klass() == NULL) {
5075     // failed array check
5076     return false;
5077   }
5078 
5079   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5080   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5081   if (x_elem != T_INT || y_elem != T_INT) {
5082     return false;
5083   }
5084 
5085   // Set the original stack and the reexecute bit for the interpreter to reexecute
5086   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5087   // on the return from z array allocation in runtime.
5088   { PreserveReexecuteState preexecs(this);
5089     jvms()->set_should_reexecute(true);
5090 
5091     Node* x_start = array_element_address(x, intcon(0), x_elem);
5092     Node* y_start = array_element_address(y, intcon(0), y_elem);
5093     // 'x_start' points to x array + scaled xlen
5094     // 'y_start' points to y array + scaled ylen
5095 
5096     // Allocate the result array
5097     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5098     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5099     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5100 
5101     IdealKit ideal(this);
5102 
5103 #define __ ideal.
5104      Node* one = __ ConI(1);
5105      Node* zero = __ ConI(0);
5106      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5107      __ set(need_alloc, zero);
5108      __ set(z_alloc, z);
5109      __ if_then(z, BoolTest::eq, null()); {
5110        __ increment (need_alloc, one);
5111      } __ else_(); {
5112        // Update graphKit memory and control from IdealKit.
5113        sync_kit(ideal);
5114        Node* zlen_arg = load_array_length(z);
5115        // Update IdealKit memory and control from graphKit.
5116        __ sync_kit(this);
5117        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5118          __ increment (need_alloc, one);
5119        } __ end_if();
5120      } __ end_if();
5121 
5122      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5123        // Update graphKit memory and control from IdealKit.
5124        sync_kit(ideal);
5125        Node * narr = new_array(klass_node, zlen, 1);
5126        // Update IdealKit memory and control from graphKit.
5127        __ sync_kit(this);
5128        __ set(z_alloc, narr);
5129      } __ end_if();
5130 
5131      sync_kit(ideal);
5132      z = __ value(z_alloc);
5133      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5134      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5135      // Final sync IdealKit and GraphKit.
5136      final_sync(ideal);
5137 #undef __
5138 
5139     Node* z_start = array_element_address(z, intcon(0), T_INT);
5140 
5141     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5142                                    OptoRuntime::multiplyToLen_Type(),
5143                                    stubAddr, stubName, TypePtr::BOTTOM,
5144                                    x_start, xlen, y_start, ylen, z_start, zlen);
5145   } // original reexecute is set back here
5146 
5147   C->set_has_split_ifs(true); // Has chance for split-if optimization
5148   set_result(z);
5149   return true;
5150 }
5151 
5152 
5153 /**
5154  * Calculate CRC32 for byte.
5155  * int java.util.zip.CRC32.update(int crc, int b)
5156  */
5157 bool LibraryCallKit::inline_updateCRC32() {
5158   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5159   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5160   // no receiver since it is static method
5161   Node* crc  = argument(0); // type: int
5162   Node* b    = argument(1); // type: int
5163 
5164   /*
5165    *    int c = ~ crc;
5166    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5167    *    b = b ^ (c >>> 8);
5168    *    crc = ~b;
5169    */
5170 
5171   Node* M1 = intcon(-1);
5172   crc = _gvn.transform(new XorINode(crc, M1));
5173   Node* result = _gvn.transform(new XorINode(crc, b));
5174   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5175 
5176   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5177   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5178   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5179   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5180 
5181   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5182   result = _gvn.transform(new XorINode(crc, result));
5183   result = _gvn.transform(new XorINode(result, M1));
5184   set_result(result);
5185   return true;
5186 }
5187 
5188 /**
5189  * Calculate CRC32 for byte[] array.
5190  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5191  */
5192 bool LibraryCallKit::inline_updateBytesCRC32() {
5193   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5194   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5195   // no receiver since it is static method
5196   Node* crc     = argument(0); // type: int
5197   Node* src     = argument(1); // type: oop
5198   Node* offset  = argument(2); // type: int
5199   Node* length  = argument(3); // type: int
5200 
5201   const Type* src_type = src->Value(&_gvn);
5202   const TypeAryPtr* top_src = src_type->isa_aryptr();
5203   if (top_src  == NULL || top_src->klass()  == NULL) {
5204     // failed array check
5205     return false;
5206   }
5207 
5208   // Figure out the size and type of the elements we will be copying.
5209   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5210   if (src_elem != T_BYTE) {
5211     return false;
5212   }
5213 
5214   // 'src_start' points to src array + scaled offset
5215   Node* src_start = array_element_address(src, offset, src_elem);
5216 
5217   // We assume that range check is done by caller.
5218   // TODO: generate range check (offset+length < src.length) in debug VM.
5219 
5220   // Call the stub.
5221   address stubAddr = StubRoutines::updateBytesCRC32();
5222   const char *stubName = "updateBytesCRC32";
5223 
5224   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5225                                  stubAddr, stubName, TypePtr::BOTTOM,
5226                                  crc, src_start, length);
5227   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5228   set_result(result);
5229   return true;
5230 }
5231 
5232 /**
5233  * Calculate CRC32 for ByteBuffer.
5234  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5235  */
5236 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5237   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5238   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5239   // no receiver since it is static method
5240   Node* crc     = argument(0); // type: int
5241   Node* src     = argument(1); // type: long
5242   Node* offset  = argument(3); // type: int
5243   Node* length  = argument(4); // type: int
5244 
5245   src = ConvL2X(src);  // adjust Java long to machine word
5246   Node* base = _gvn.transform(new CastX2PNode(src));
5247   offset = ConvI2X(offset);
5248 
5249   // 'src_start' points to src array + scaled offset
5250   Node* src_start = basic_plus_adr(top(), base, offset);
5251 
5252   // Call the stub.
5253   address stubAddr = StubRoutines::updateBytesCRC32();
5254   const char *stubName = "updateBytesCRC32";
5255 
5256   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5257                                  stubAddr, stubName, TypePtr::BOTTOM,
5258                                  crc, src_start, length);
5259   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5260   set_result(result);
5261   return true;
5262 }
5263 
5264 //----------------------------inline_reference_get----------------------------
5265 // public T java.lang.ref.Reference.get();
5266 bool LibraryCallKit::inline_reference_get() {
5267   const int referent_offset = java_lang_ref_Reference::referent_offset;
5268   guarantee(referent_offset > 0, "should have already been set");
5269 
5270   // Get the argument:
5271   Node* reference_obj = null_check_receiver();
5272   if (stopped()) return true;
5273 
5274   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5275 
5276   ciInstanceKlass* klass = env()->Object_klass();
5277   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5278 
5279   Node* no_ctrl = NULL;
5280   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5281 
5282   // Use the pre-barrier to record the value in the referent field
5283   pre_barrier(false /* do_load */,
5284               control(),
5285               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5286               result /* pre_val */,
5287               T_OBJECT);
5288 
5289   // Add memory barrier to prevent commoning reads from this field
5290   // across safepoint since GC can change its value.
5291   insert_mem_bar(Op_MemBarCPUOrder);
5292 
5293   set_result(result);
5294   return true;
5295 }
5296 
5297 
5298 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5299                                               bool is_exact=true, bool is_static=false) {
5300 
5301   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5302   assert(tinst != NULL, "obj is null");
5303   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5304   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5305 
5306   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5307                                                                           ciSymbol::make(fieldTypeString),
5308                                                                           is_static);
5309   if (field == NULL) return (Node *) NULL;
5310   assert (field != NULL, "undefined field");
5311 
5312   // Next code  copied from Parse::do_get_xxx():
5313 
5314   // Compute address and memory type.
5315   int offset  = field->offset_in_bytes();
5316   bool is_vol = field->is_volatile();
5317   ciType* field_klass = field->type();
5318   assert(field_klass->is_loaded(), "should be loaded");
5319   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5320   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5321   BasicType bt = field->layout_type();
5322 
5323   // Build the resultant type of the load
5324   const Type *type;
5325   if (bt == T_OBJECT) {
5326     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5327   } else {
5328     type = Type::get_const_basic_type(bt);
5329   }
5330 
5331   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5332     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5333   }
5334   // Build the load.
5335   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5336   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5337   // If reference is volatile, prevent following memory ops from
5338   // floating up past the volatile read.  Also prevents commoning
5339   // another volatile read.
5340   if (is_vol) {
5341     // Memory barrier includes bogus read of value to force load BEFORE membar
5342     insert_mem_bar(Op_MemBarAcquire, loadedField);
5343   }
5344   return loadedField;
5345 }
5346 
5347 
5348 //------------------------------inline_aescrypt_Block-----------------------
5349 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5350   address stubAddr;
5351   const char *stubName;
5352   assert(UseAES, "need AES instruction support");
5353 
5354   switch(id) {
5355   case vmIntrinsics::_aescrypt_encryptBlock:
5356     stubAddr = StubRoutines::aescrypt_encryptBlock();
5357     stubName = "aescrypt_encryptBlock";
5358     break;
5359   case vmIntrinsics::_aescrypt_decryptBlock:
5360     stubAddr = StubRoutines::aescrypt_decryptBlock();
5361     stubName = "aescrypt_decryptBlock";
5362     break;
5363   }
5364   if (stubAddr == NULL) return false;
5365 
5366   Node* aescrypt_object = argument(0);
5367   Node* src             = argument(1);
5368   Node* src_offset      = argument(2);
5369   Node* dest            = argument(3);
5370   Node* dest_offset     = argument(4);
5371 
5372   // (1) src and dest are arrays.
5373   const Type* src_type = src->Value(&_gvn);
5374   const Type* dest_type = dest->Value(&_gvn);
5375   const TypeAryPtr* top_src = src_type->isa_aryptr();
5376   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5377   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5378 
5379   // for the quick and dirty code we will skip all the checks.
5380   // we are just trying to get the call to be generated.
5381   Node* src_start  = src;
5382   Node* dest_start = dest;
5383   if (src_offset != NULL || dest_offset != NULL) {
5384     assert(src_offset != NULL && dest_offset != NULL, "");
5385     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5386     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5387   }
5388 
5389   // now need to get the start of its expanded key array
5390   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5391   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5392   if (k_start == NULL) return false;
5393 
5394   if (Matcher::pass_original_key_for_aes()) {
5395     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5396     // compatibility issues between Java key expansion and SPARC crypto instructions
5397     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5398     if (original_k_start == NULL) return false;
5399 
5400     // Call the stub.
5401     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5402                       stubAddr, stubName, TypePtr::BOTTOM,
5403                       src_start, dest_start, k_start, original_k_start);
5404   } else {
5405     // Call the stub.
5406     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5407                       stubAddr, stubName, TypePtr::BOTTOM,
5408                       src_start, dest_start, k_start);
5409   }
5410 
5411   return true;
5412 }
5413 
5414 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5415 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5416   address stubAddr;
5417   const char *stubName;
5418 
5419   assert(UseAES, "need AES instruction support");
5420 
5421   switch(id) {
5422   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5423     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5424     stubName = "cipherBlockChaining_encryptAESCrypt";
5425     break;
5426   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5427     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5428     stubName = "cipherBlockChaining_decryptAESCrypt";
5429     break;
5430   }
5431   if (stubAddr == NULL) return false;
5432 
5433   Node* cipherBlockChaining_object = argument(0);
5434   Node* src                        = argument(1);
5435   Node* src_offset                 = argument(2);
5436   Node* len                        = argument(3);
5437   Node* dest                       = argument(4);
5438   Node* dest_offset                = argument(5);
5439 
5440   // (1) src and dest are arrays.
5441   const Type* src_type = src->Value(&_gvn);
5442   const Type* dest_type = dest->Value(&_gvn);
5443   const TypeAryPtr* top_src = src_type->isa_aryptr();
5444   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5445   assert (top_src  != NULL && top_src->klass()  != NULL
5446           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5447 
5448   // checks are the responsibility of the caller
5449   Node* src_start  = src;
5450   Node* dest_start = dest;
5451   if (src_offset != NULL || dest_offset != NULL) {
5452     assert(src_offset != NULL && dest_offset != NULL, "");
5453     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5454     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5455   }
5456 
5457   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5458   // (because of the predicated logic executed earlier).
5459   // so we cast it here safely.
5460   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5461 
5462   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5463   if (embeddedCipherObj == NULL) return false;
5464 
5465   // cast it to what we know it will be at runtime
5466   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5467   assert(tinst != NULL, "CBC obj is null");
5468   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5469   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5470   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5471 
5472   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5473   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5474   const TypeOopPtr* xtype = aklass->as_instance_type();
5475   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5476   aescrypt_object = _gvn.transform(aescrypt_object);
5477 
5478   // we need to get the start of the aescrypt_object's expanded key array
5479   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5480   if (k_start == NULL) return false;
5481 
5482   // similarly, get the start address of the r vector
5483   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5484   if (objRvec == NULL) return false;
5485   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5486 
5487   Node* cbcCrypt;
5488   if (Matcher::pass_original_key_for_aes()) {
5489     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5490     // compatibility issues between Java key expansion and SPARC crypto instructions
5491     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5492     if (original_k_start == NULL) return false;
5493 
5494     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5495     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5496                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5497                                  stubAddr, stubName, TypePtr::BOTTOM,
5498                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5499   } else {
5500     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5501     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5502                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5503                                  stubAddr, stubName, TypePtr::BOTTOM,
5504                                  src_start, dest_start, k_start, r_start, len);
5505   }
5506 
5507   // return cipher length (int)
5508   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5509   set_result(retvalue);
5510   return true;
5511 }
5512 
5513 //------------------------------get_key_start_from_aescrypt_object-----------------------
5514 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5515   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5516   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5517   if (objAESCryptKey == NULL) return (Node *) NULL;
5518 
5519   // now have the array, need to get the start address of the K array
5520   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5521   return k_start;
5522 }
5523 
5524 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5525 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5526   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5527   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5528   if (objAESCryptKey == NULL) return (Node *) NULL;
5529 
5530   // now have the array, need to get the start address of the lastKey array
5531   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5532   return original_k_start;
5533 }
5534 
5535 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5536 // Return node representing slow path of predicate check.
5537 // the pseudo code we want to emulate with this predicate is:
5538 // for encryption:
5539 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5540 // for decryption:
5541 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5542 //    note cipher==plain is more conservative than the original java code but that's OK
5543 //
5544 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5545   // The receiver was checked for NULL already.
5546   Node* objCBC = argument(0);
5547 
5548   // Load embeddedCipher field of CipherBlockChaining object.
5549   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5550 
5551   // get AESCrypt klass for instanceOf check
5552   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5553   // will have same classloader as CipherBlockChaining object
5554   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5555   assert(tinst != NULL, "CBCobj is null");
5556   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5557 
5558   // we want to do an instanceof comparison against the AESCrypt class
5559   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5560   if (!klass_AESCrypt->is_loaded()) {
5561     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5562     Node* ctrl = control();
5563     set_control(top()); // no regular fast path
5564     return ctrl;
5565   }
5566   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5567 
5568   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5569   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5570   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5571 
5572   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5573 
5574   // for encryption, we are done
5575   if (!decrypting)
5576     return instof_false;  // even if it is NULL
5577 
5578   // for decryption, we need to add a further check to avoid
5579   // taking the intrinsic path when cipher and plain are the same
5580   // see the original java code for why.
5581   RegionNode* region = new RegionNode(3);
5582   region->init_req(1, instof_false);
5583   Node* src = argument(1);
5584   Node* dest = argument(4);
5585   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5586   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5587   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5588   region->init_req(2, src_dest_conjoint);
5589 
5590   record_for_igvn(region);
5591   return _gvn.transform(region);
5592 }
5593 
5594 //------------------------------inline_sha_implCompress-----------------------
5595 //
5596 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5597 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5598 //
5599 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5600 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5601 //
5602 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5603 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5604 //
5605 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5606   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5607 
5608   Node* sha_obj = argument(0);
5609   Node* src     = argument(1); // type oop
5610   Node* ofs     = argument(2); // type int
5611 
5612   const Type* src_type = src->Value(&_gvn);
5613   const TypeAryPtr* top_src = src_type->isa_aryptr();
5614   if (top_src  == NULL || top_src->klass()  == NULL) {
5615     // failed array check
5616     return false;
5617   }
5618   // Figure out the size and type of the elements we will be copying.
5619   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5620   if (src_elem != T_BYTE) {
5621     return false;
5622   }
5623   // 'src_start' points to src array + offset
5624   Node* src_start = array_element_address(src, ofs, src_elem);
5625   Node* state = NULL;
5626   address stubAddr;
5627   const char *stubName;
5628 
5629   switch(id) {
5630   case vmIntrinsics::_sha_implCompress:
5631     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5632     state = get_state_from_sha_object(sha_obj);
5633     stubAddr = StubRoutines::sha1_implCompress();
5634     stubName = "sha1_implCompress";
5635     break;
5636   case vmIntrinsics::_sha2_implCompress:
5637     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5638     state = get_state_from_sha_object(sha_obj);
5639     stubAddr = StubRoutines::sha256_implCompress();
5640     stubName = "sha256_implCompress";
5641     break;
5642   case vmIntrinsics::_sha5_implCompress:
5643     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5644     state = get_state_from_sha5_object(sha_obj);
5645     stubAddr = StubRoutines::sha512_implCompress();
5646     stubName = "sha512_implCompress";
5647     break;
5648   default:
5649     fatal_unexpected_iid(id);
5650     return false;
5651   }
5652   if (state == NULL) return false;
5653 
5654   // Call the stub.
5655   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5656                                  stubAddr, stubName, TypePtr::BOTTOM,
5657                                  src_start, state);
5658 
5659   return true;
5660 }
5661 
5662 //------------------------------inline_digestBase_implCompressMB-----------------------
5663 //
5664 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5665 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5666 //
5667 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5668   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5669          "need SHA1/SHA256/SHA512 instruction support");
5670   assert((uint)predicate < 3, "sanity");
5671   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5672 
5673   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5674   Node* src            = argument(1); // byte[] array
5675   Node* ofs            = argument(2); // type int
5676   Node* limit          = argument(3); // type int
5677 
5678   const Type* src_type = src->Value(&_gvn);
5679   const TypeAryPtr* top_src = src_type->isa_aryptr();
5680   if (top_src  == NULL || top_src->klass()  == NULL) {
5681     // failed array check
5682     return false;
5683   }
5684   // Figure out the size and type of the elements we will be copying.
5685   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5686   if (src_elem != T_BYTE) {
5687     return false;
5688   }
5689   // 'src_start' points to src array + offset
5690   Node* src_start = array_element_address(src, ofs, src_elem);
5691 
5692   const char* klass_SHA_name = NULL;
5693   const char* stub_name = NULL;
5694   address     stub_addr = NULL;
5695   bool        long_state = false;
5696 
5697   switch (predicate) {
5698   case 0:
5699     if (UseSHA1Intrinsics) {
5700       klass_SHA_name = "sun/security/provider/SHA";
5701       stub_name = "sha1_implCompressMB";
5702       stub_addr = StubRoutines::sha1_implCompressMB();
5703     }
5704     break;
5705   case 1:
5706     if (UseSHA256Intrinsics) {
5707       klass_SHA_name = "sun/security/provider/SHA2";
5708       stub_name = "sha256_implCompressMB";
5709       stub_addr = StubRoutines::sha256_implCompressMB();
5710     }
5711     break;
5712   case 2:
5713     if (UseSHA512Intrinsics) {
5714       klass_SHA_name = "sun/security/provider/SHA5";
5715       stub_name = "sha512_implCompressMB";
5716       stub_addr = StubRoutines::sha512_implCompressMB();
5717       long_state = true;
5718     }
5719     break;
5720   default:
5721     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5722   }
5723   if (klass_SHA_name != NULL) {
5724     // get DigestBase klass to lookup for SHA klass
5725     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5726     assert(tinst != NULL, "digestBase_obj is not instance???");
5727     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5728 
5729     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5730     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5731     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5732     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5733   }
5734   return false;
5735 }
5736 //------------------------------inline_sha_implCompressMB-----------------------
5737 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5738                                                bool long_state, address stubAddr, const char *stubName,
5739                                                Node* src_start, Node* ofs, Node* limit) {
5740   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5741   const TypeOopPtr* xtype = aklass->as_instance_type();
5742   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5743   sha_obj = _gvn.transform(sha_obj);
5744 
5745   Node* state;
5746   if (long_state) {
5747     state = get_state_from_sha5_object(sha_obj);
5748   } else {
5749     state = get_state_from_sha_object(sha_obj);
5750   }
5751   if (state == NULL) return false;
5752 
5753   // Call the stub.
5754   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5755                                  OptoRuntime::digestBase_implCompressMB_Type(),
5756                                  stubAddr, stubName, TypePtr::BOTTOM,
5757                                  src_start, state, ofs, limit);
5758   // return ofs (int)
5759   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5760   set_result(result);
5761 
5762   return true;
5763 }
5764 
5765 //------------------------------get_state_from_sha_object-----------------------
5766 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5767   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5768   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5769   if (sha_state == NULL) return (Node *) NULL;
5770 
5771   // now have the array, need to get the start address of the state array
5772   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5773   return state;
5774 }
5775 
5776 //------------------------------get_state_from_sha5_object-----------------------
5777 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5778   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5779   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5780   if (sha_state == NULL) return (Node *) NULL;
5781 
5782   // now have the array, need to get the start address of the state array
5783   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5784   return state;
5785 }
5786 
5787 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5788 // Return node representing slow path of predicate check.
5789 // the pseudo code we want to emulate with this predicate is:
5790 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5791 //
5792 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5793   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5794          "need SHA1/SHA256/SHA512 instruction support");
5795   assert((uint)predicate < 3, "sanity");
5796 
5797   // The receiver was checked for NULL already.
5798   Node* digestBaseObj = argument(0);
5799 
5800   // get DigestBase klass for instanceOf check
5801   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5802   assert(tinst != NULL, "digestBaseObj is null");
5803   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5804 
5805   const char* klass_SHA_name = NULL;
5806   switch (predicate) {
5807   case 0:
5808     if (UseSHA1Intrinsics) {
5809       // we want to do an instanceof comparison against the SHA class
5810       klass_SHA_name = "sun/security/provider/SHA";
5811     }
5812     break;
5813   case 1:
5814     if (UseSHA256Intrinsics) {
5815       // we want to do an instanceof comparison against the SHA2 class
5816       klass_SHA_name = "sun/security/provider/SHA2";
5817     }
5818     break;
5819   case 2:
5820     if (UseSHA512Intrinsics) {
5821       // we want to do an instanceof comparison against the SHA5 class
5822       klass_SHA_name = "sun/security/provider/SHA5";
5823     }
5824     break;
5825   default:
5826     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5827   }
5828 
5829   ciKlass* klass_SHA = NULL;
5830   if (klass_SHA_name != NULL) {
5831     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5832   }
5833   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5834     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5835     Node* ctrl = control();
5836     set_control(top()); // no intrinsic path
5837     return ctrl;
5838   }
5839   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5840 
5841   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5842   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5843   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5844   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5845 
5846   return instof_false;  // even if it is NULL
5847 }
5848 
5849 bool LibraryCallKit::inline_profileBoolean() {
5850   Node* counts = argument(1);
5851   const TypeAryPtr* ary = NULL;
5852   ciArray* aobj = NULL;
5853   if (counts->is_Con()
5854       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
5855       && (aobj = ary->const_oop()->as_array()) != NULL
5856       && (aobj->length() == 2)) {
5857     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
5858     jint false_cnt = aobj->element_value(0).as_int();
5859     jint  true_cnt = aobj->element_value(1).as_int();
5860 
5861     method()->set_injected_profile(true);
5862 
5863     if (C->log() != NULL) {
5864       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
5865                      false_cnt, true_cnt);
5866     }
5867 
5868     if (false_cnt + true_cnt == 0) {
5869       // According to profile, never executed.
5870       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
5871                           Deoptimization::Action_reinterpret);
5872       return true;
5873     }
5874     // Stop profiling.
5875     // MethodHandleImpl::profileBoolean() has profiling logic in it's bytecode.
5876     // By replacing method's body with profile data (represented as ProfileBooleanNode
5877     // on IR level) we effectively disable profiling.
5878     // It enables full speed execution once optimized code is generated.
5879     Node* profile = _gvn.transform(new ProfileBooleanNode(argument(0), false_cnt, true_cnt));
5880     C->record_for_igvn(profile);
5881     set_result(profile);
5882     return true;
5883   } else {
5884     // Continue profiling.
5885     // Profile data isn't available at the moment. So, execute method's bytecode version.
5886     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
5887     // is compiled and counters aren't available since corresponding MethodHandle
5888     // isn't a compile-time constant.
5889     return false;
5890   }
5891 }