1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/escape.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 
  40 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  41   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  42   _in_worklist(C->comp_arena()),
  43   _next_pidx(0),
  44   _collecting(true),
  45   _verify(false),
  46   _compile(C),
  47   _igvn(igvn),
  48   _node_map(C->comp_arena()) {
  49   // Add unknown java object.
  50   add_java_object(C->top(), PointsToNode::GlobalEscape);
  51   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  52   // Add ConP(#NULL) and ConN(#NULL) nodes.
  53   Node* oop_null = igvn->zerocon(T_OBJECT);
  54   assert(oop_null->_idx < nodes_size(), "should be created already");
  55   add_java_object(oop_null, PointsToNode::NoEscape);
  56   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  57   if (UseCompressedOops) {
  58     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  59     assert(noop_null->_idx < nodes_size(), "should be created already");
  60     map_ideal_node(noop_null, null_obj);
  61   }
  62   _pcmp_neq = NULL; // Should be initialized
  63   _pcmp_eq  = NULL;
  64 }
  65 
  66 bool ConnectionGraph::has_candidates(Compile *C) {
  67   // EA brings benefits only when the code has allocations and/or locks which
  68   // are represented by ideal Macro nodes.
  69   int cnt = C->macro_count();
  70   for (int i = 0; i < cnt; i++) {
  71     Node *n = C->macro_node(i);
  72     if (n->is_Allocate())
  73       return true;
  74     if (n->is_Lock()) {
  75       Node* obj = n->as_Lock()->obj_node()->uncast();
  76       if (!(obj->is_Parm() || obj->is_Con()))
  77         return true;
  78     }
  79     if (n->is_CallStaticJava() &&
  80         n->as_CallStaticJava()->is_boxing_method()) {
  81       return true;
  82     }
  83   }
  84   return false;
  85 }
  86 
  87 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  88   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  89   ResourceMark rm;
  90 
  91   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  92   // to create space for them in ConnectionGraph::_nodes[].
  93   Node* oop_null = igvn->zerocon(T_OBJECT);
  94   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  95   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  96   // Perform escape analysis
  97   if (congraph->compute_escape()) {
  98     // There are non escaping objects.
  99     C->set_congraph(congraph);
 100   }
 101   // Cleanup.
 102   if (oop_null->outcnt() == 0)
 103     igvn->hash_delete(oop_null);
 104   if (noop_null->outcnt() == 0)
 105     igvn->hash_delete(noop_null);
 106 }
 107 
 108 bool ConnectionGraph::compute_escape() {
 109   Compile* C = _compile;
 110   PhaseGVN* igvn = _igvn;
 111 
 112   // Worklists used by EA.
 113   Unique_Node_List delayed_worklist;
 114   GrowableArray<Node*> alloc_worklist;
 115   GrowableArray<Node*> ptr_cmp_worklist;
 116   GrowableArray<Node*> storestore_worklist;
 117   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 118   GrowableArray<PointsToNode*>   ptnodes_worklist;
 119   GrowableArray<JavaObjectNode*> java_objects_worklist;
 120   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 121   GrowableArray<FieldNode*>      oop_fields_worklist;
 122   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 123 
 124   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 125 
 126   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 127   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 128   // Initialize worklist
 129   if (C->root() != NULL) {
 130     ideal_nodes.push(C->root());
 131   }
 132   // Processed ideal nodes are unique on ideal_nodes list
 133   // but several ideal nodes are mapped to the phantom_obj.
 134   // To avoid duplicated entries on the following worklists
 135   // add the phantom_obj only once to them.
 136   ptnodes_worklist.append(phantom_obj);
 137   java_objects_worklist.append(phantom_obj);
 138   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 139     Node* n = ideal_nodes.at(next);
 140     // Create PointsTo nodes and add them to Connection Graph. Called
 141     // only once per ideal node since ideal_nodes is Unique_Node list.
 142     add_node_to_connection_graph(n, &delayed_worklist);
 143     PointsToNode* ptn = ptnode_adr(n->_idx);
 144     if (ptn != NULL && ptn != phantom_obj) {
 145       ptnodes_worklist.append(ptn);
 146       if (ptn->is_JavaObject()) {
 147         java_objects_worklist.append(ptn->as_JavaObject());
 148         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 149             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 150           // Only allocations and java static calls results are interesting.
 151           non_escaped_worklist.append(ptn->as_JavaObject());
 152         }
 153       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 154         oop_fields_worklist.append(ptn->as_Field());
 155       }
 156     }
 157     if (n->is_MergeMem()) {
 158       // Collect all MergeMem nodes to add memory slices for
 159       // scalar replaceable objects in split_unique_types().
 160       _mergemem_worklist.append(n->as_MergeMem());
 161     } else if (OptimizePtrCompare && n->is_Cmp() &&
 162                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 163       // Collect compare pointers nodes.
 164       ptr_cmp_worklist.append(n);
 165     } else if (n->is_MemBarStoreStore()) {
 166       // Collect all MemBarStoreStore nodes so that depending on the
 167       // escape status of the associated Allocate node some of them
 168       // may be eliminated.
 169       storestore_worklist.append(n);
 170     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 171                (n->req() > MemBarNode::Precedent)) {
 172       record_for_optimizer(n);
 173 #ifdef ASSERT
 174     } else if (n->is_AddP()) {
 175       // Collect address nodes for graph verification.
 176       addp_worklist.append(n);
 177 #endif
 178     } else if (n->is_ArrayCopy()) {
 179       // Keep a list of ArrayCopy nodes so if one of its input is non
 180       // escaping, we can record a unique type
 181       arraycopy_worklist.append(n->as_ArrayCopy());
 182     }
 183     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 184       Node* m = n->fast_out(i);   // Get user
 185       ideal_nodes.push(m);
 186     }
 187   }
 188   if (non_escaped_worklist.length() == 0) {
 189     _collecting = false;
 190     return false; // Nothing to do.
 191   }
 192   // Add final simple edges to graph.
 193   while(delayed_worklist.size() > 0) {
 194     Node* n = delayed_worklist.pop();
 195     add_final_edges(n);
 196   }
 197   int ptnodes_length = ptnodes_worklist.length();
 198 
 199 #ifdef ASSERT
 200   if (VerifyConnectionGraph) {
 201     // Verify that no new simple edges could be created and all
 202     // local vars has edges.
 203     _verify = true;
 204     for (int next = 0; next < ptnodes_length; ++next) {
 205       PointsToNode* ptn = ptnodes_worklist.at(next);
 206       add_final_edges(ptn->ideal_node());
 207       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 208         ptn->dump();
 209         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 210       }
 211     }
 212     _verify = false;
 213   }
 214 #endif
 215   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 216   // processing, calls to CI to resolve symbols (types, fields, methods)
 217   // referenced in bytecode. During symbol resolution VM may throw
 218   // an exception which CI cleans and converts to compilation failure.
 219   if (C->failing())  return false;
 220 
 221   // 2. Finish Graph construction by propagating references to all
 222   //    java objects through graph.
 223   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 224                                  java_objects_worklist, oop_fields_worklist)) {
 225     // All objects escaped or hit time or iterations limits.
 226     _collecting = false;
 227     return false;
 228   }
 229 
 230   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 231   //    scalar replaceable allocations on alloc_worklist for processing
 232   //    in split_unique_types().
 233   int non_escaped_length = non_escaped_worklist.length();
 234   for (int next = 0; next < non_escaped_length; next++) {
 235     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 236     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 237     Node* n = ptn->ideal_node();
 238     if (n->is_Allocate()) {
 239       n->as_Allocate()->_is_non_escaping = noescape;
 240     }
 241     if (n->is_CallStaticJava()) {
 242       n->as_CallStaticJava()->_is_non_escaping = noescape;
 243     }
 244     if (noescape && ptn->scalar_replaceable()) {
 245       adjust_scalar_replaceable_state(ptn);
 246       if (ptn->scalar_replaceable()) {
 247         alloc_worklist.append(ptn->ideal_node());
 248       }
 249     }
 250   }
 251 
 252 #ifdef ASSERT
 253   if (VerifyConnectionGraph) {
 254     // Verify that graph is complete - no new edges could be added or needed.
 255     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 256                             java_objects_worklist, addp_worklist);
 257   }
 258   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 259   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 260          null_obj->edge_count() == 0 &&
 261          !null_obj->arraycopy_src() &&
 262          !null_obj->arraycopy_dst(), "sanity");
 263 #endif
 264 
 265   _collecting = false;
 266 
 267   } // TracePhase t3("connectionGraph")
 268 
 269   // 4. Optimize ideal graph based on EA information.
 270   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 271   if (has_non_escaping_obj) {
 272     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 273   }
 274 
 275 #ifndef PRODUCT
 276   if (PrintEscapeAnalysis) {
 277     dump(ptnodes_worklist); // Dump ConnectionGraph
 278   }
 279 #endif
 280 
 281   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 282 #ifdef ASSERT
 283   if (VerifyConnectionGraph) {
 284     int alloc_length = alloc_worklist.length();
 285     for (int next = 0; next < alloc_length; ++next) {
 286       Node* n = alloc_worklist.at(next);
 287       PointsToNode* ptn = ptnode_adr(n->_idx);
 288       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 289     }
 290   }
 291 #endif
 292 
 293   // 5. Separate memory graph for scalar replaceable allcations.
 294   if (has_scalar_replaceable_candidates &&
 295       C->AliasLevel() >= 3 && EliminateAllocations) {
 296     // Now use the escape information to create unique types for
 297     // scalar replaceable objects.
 298     split_unique_types(alloc_worklist, arraycopy_worklist);
 299     if (C->failing())  return false;
 300     C->print_method(PHASE_AFTER_EA, 2);
 301 
 302 #ifdef ASSERT
 303   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 304     tty->print("=== No allocations eliminated for ");
 305     C->method()->print_short_name();
 306     if(!EliminateAllocations) {
 307       tty->print(" since EliminateAllocations is off ===");
 308     } else if(!has_scalar_replaceable_candidates) {
 309       tty->print(" since there are no scalar replaceable candidates ===");
 310     } else if(C->AliasLevel() < 3) {
 311       tty->print(" since AliasLevel < 3 ===");
 312     }
 313     tty->cr();
 314 #endif
 315   }
 316   return has_non_escaping_obj;
 317 }
 318 
 319 // Utility function for nodes that load an object
 320 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 321   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 322   // ThreadLocal has RawPtr type.
 323   const Type* t = _igvn->type(n);
 324   if (t->make_ptr() != NULL) {
 325     Node* adr = n->in(MemNode::Address);
 326 #ifdef ASSERT
 327     if (!adr->is_AddP()) {
 328       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 329     } else {
 330       assert((ptnode_adr(adr->_idx) == NULL ||
 331               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 332     }
 333 #endif
 334     add_local_var_and_edge(n, PointsToNode::NoEscape,
 335                            adr, delayed_worklist);
 336   }
 337 }
 338 
 339 // Populate Connection Graph with PointsTo nodes and create simple
 340 // connection graph edges.
 341 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 342   assert(!_verify, "this method should not be called for verification");
 343   PhaseGVN* igvn = _igvn;
 344   uint n_idx = n->_idx;
 345   PointsToNode* n_ptn = ptnode_adr(n_idx);
 346   if (n_ptn != NULL)
 347     return; // No need to redefine PointsTo node during first iteration.
 348 
 349   if (n->is_Call()) {
 350     // Arguments to allocation and locking don't escape.
 351     if (n->is_AbstractLock()) {
 352       // Put Lock and Unlock nodes on IGVN worklist to process them during
 353       // first IGVN optimization when escape information is still available.
 354       record_for_optimizer(n);
 355     } else if (n->is_Allocate()) {
 356       add_call_node(n->as_Call());
 357       record_for_optimizer(n);
 358     } else {
 359       if (n->is_CallStaticJava()) {
 360         const char* name = n->as_CallStaticJava()->_name;
 361         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 362           return; // Skip uncommon traps
 363       }
 364       // Don't mark as processed since call's arguments have to be processed.
 365       delayed_worklist->push(n);
 366       // Check if a call returns an object.
 367       if ((n->as_Call()->returns_pointer() &&
 368            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 369           (n->is_CallStaticJava() &&
 370            n->as_CallStaticJava()->is_boxing_method())) {
 371         add_call_node(n->as_Call());
 372       }
 373     }
 374     return;
 375   }
 376   // Put this check here to process call arguments since some call nodes
 377   // point to phantom_obj.
 378   if (n_ptn == phantom_obj || n_ptn == null_obj)
 379     return; // Skip predefined nodes.
 380 
 381   int opcode = n->Opcode();
 382   switch (opcode) {
 383     case Op_AddP: {
 384       Node* base = get_addp_base(n);
 385       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 386       // Field nodes are created for all field types. They are used in
 387       // adjust_scalar_replaceable_state() and split_unique_types().
 388       // Note, non-oop fields will have only base edges in Connection
 389       // Graph because such fields are not used for oop loads and stores.
 390       int offset = address_offset(n, igvn);
 391       add_field(n, PointsToNode::NoEscape, offset);
 392       if (ptn_base == NULL) {
 393         delayed_worklist->push(n); // Process it later.
 394       } else {
 395         n_ptn = ptnode_adr(n_idx);
 396         add_base(n_ptn->as_Field(), ptn_base);
 397       }
 398       break;
 399     }
 400     case Op_CastX2P: {
 401       map_ideal_node(n, phantom_obj);
 402       break;
 403     }
 404     case Op_CastPP:
 405     case Op_CheckCastPP:
 406     case Op_EncodeP:
 407     case Op_DecodeN:
 408     case Op_EncodePKlass:
 409     case Op_DecodeNKlass: {
 410       add_local_var_and_edge(n, PointsToNode::NoEscape,
 411                              n->in(1), delayed_worklist);
 412       break;
 413     }
 414     case Op_CMoveP: {
 415       add_local_var(n, PointsToNode::NoEscape);
 416       // Do not add edges during first iteration because some could be
 417       // not defined yet.
 418       delayed_worklist->push(n);
 419       break;
 420     }
 421     case Op_ConP:
 422     case Op_ConN:
 423     case Op_ConNKlass: {
 424       // assume all oop constants globally escape except for null
 425       PointsToNode::EscapeState es;
 426       const Type* t = igvn->type(n);
 427       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 428         es = PointsToNode::NoEscape;
 429       } else {
 430         es = PointsToNode::GlobalEscape;
 431       }
 432       add_java_object(n, es);
 433       break;
 434     }
 435     case Op_CreateEx: {
 436       // assume that all exception objects globally escape
 437       map_ideal_node(n, phantom_obj);
 438       break;
 439     }
 440     case Op_LoadKlass:
 441     case Op_LoadNKlass: {
 442       // Unknown class is loaded
 443       map_ideal_node(n, phantom_obj);
 444       break;
 445     }
 446     case Op_LoadP:
 447     case Op_LoadN:
 448     case Op_LoadPLocked: {
 449       add_objload_to_connection_graph(n, delayed_worklist);
 450       break;
 451     }
 452     case Op_Parm: {
 453       map_ideal_node(n, phantom_obj);
 454       break;
 455     }
 456     case Op_PartialSubtypeCheck: {
 457       // Produces Null or notNull and is used in only in CmpP so
 458       // phantom_obj could be used.
 459       map_ideal_node(n, phantom_obj); // Result is unknown
 460       break;
 461     }
 462     case Op_Phi: {
 463       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 464       // ThreadLocal has RawPtr type.
 465       const Type* t = n->as_Phi()->type();
 466       if (t->make_ptr() != NULL) {
 467         add_local_var(n, PointsToNode::NoEscape);
 468         // Do not add edges during first iteration because some could be
 469         // not defined yet.
 470         delayed_worklist->push(n);
 471       }
 472       break;
 473     }
 474     case Op_Proj: {
 475       // we are only interested in the oop result projection from a call
 476       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 477           n->in(0)->as_Call()->returns_pointer()) {
 478         add_local_var_and_edge(n, PointsToNode::NoEscape,
 479                                n->in(0), delayed_worklist);
 480       }
 481       break;
 482     }
 483     case Op_Rethrow: // Exception object escapes
 484     case Op_Return: {
 485       if (n->req() > TypeFunc::Parms &&
 486           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 487         // Treat Return value as LocalVar with GlobalEscape escape state.
 488         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 489                                n->in(TypeFunc::Parms), delayed_worklist);
 490       }
 491       break;
 492     }
 493     case Op_GetAndSetP:
 494     case Op_GetAndSetN: {
 495       add_objload_to_connection_graph(n, delayed_worklist);
 496       // fallthrough
 497     }
 498     case Op_StoreP:
 499     case Op_StoreN:
 500     case Op_StoreNKlass:
 501     case Op_StorePConditional:
 502     case Op_CompareAndSwapP:
 503     case Op_CompareAndSwapN: {
 504       Node* adr = n->in(MemNode::Address);
 505       const Type *adr_type = igvn->type(adr);
 506       adr_type = adr_type->make_ptr();
 507       if (adr_type == NULL) {
 508         break; // skip dead nodes
 509       }
 510       if (adr_type->isa_oopptr() ||
 511           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 512                         (adr_type == TypeRawPtr::NOTNULL &&
 513                          adr->in(AddPNode::Address)->is_Proj() &&
 514                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 515         delayed_worklist->push(n); // Process it later.
 516 #ifdef ASSERT
 517         assert(adr->is_AddP(), "expecting an AddP");
 518         if (adr_type == TypeRawPtr::NOTNULL) {
 519           // Verify a raw address for a store captured by Initialize node.
 520           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 521           assert(offs != Type::OffsetBot, "offset must be a constant");
 522         }
 523 #endif
 524       } else {
 525         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 526         if (adr->is_BoxLock())
 527           break;
 528         // Stored value escapes in unsafe access.
 529         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 530           // Pointer stores in G1 barriers looks like unsafe access.
 531           // Ignore such stores to be able scalar replace non-escaping
 532           // allocations.
 533           if (UseG1GC && adr->is_AddP()) {
 534             Node* base = get_addp_base(adr);
 535             if (base->Opcode() == Op_LoadP &&
 536                 base->in(MemNode::Address)->is_AddP()) {
 537               adr = base->in(MemNode::Address);
 538               Node* tls = get_addp_base(adr);
 539               if (tls->Opcode() == Op_ThreadLocal) {
 540                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 541                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 542                                      PtrQueue::byte_offset_of_buf())) {
 543                   break; // G1 pre barrier previous oop value store.
 544                 }
 545                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 546                                      PtrQueue::byte_offset_of_buf())) {
 547                   break; // G1 post barrier card address store.
 548                 }
 549               }
 550             }
 551           }
 552           delayed_worklist->push(n); // Process unsafe access later.
 553           break;
 554         }
 555 #ifdef ASSERT
 556         n->dump(1);
 557         assert(false, "not unsafe or G1 barrier raw StoreP");
 558 #endif
 559       }
 560       break;
 561     }
 562     case Op_AryEq:
 563     case Op_StrComp:
 564     case Op_StrEquals:
 565     case Op_StrIndexOf:
 566     case Op_EncodeISOArray: {
 567       add_local_var(n, PointsToNode::ArgEscape);
 568       delayed_worklist->push(n); // Process it later.
 569       break;
 570     }
 571     case Op_ThreadLocal: {
 572       add_java_object(n, PointsToNode::ArgEscape);
 573       break;
 574     }
 575     default:
 576       ; // Do nothing for nodes not related to EA.
 577   }
 578   return;
 579 }
 580 
 581 #ifdef ASSERT
 582 #define ELSE_FAIL(name)                               \
 583       /* Should not be called for not pointer type. */  \
 584       n->dump(1);                                       \
 585       assert(false, name);                              \
 586       break;
 587 #else
 588 #define ELSE_FAIL(name) \
 589       break;
 590 #endif
 591 
 592 // Add final simple edges to graph.
 593 void ConnectionGraph::add_final_edges(Node *n) {
 594   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 595 #ifdef ASSERT
 596   if (_verify && n_ptn->is_JavaObject())
 597     return; // This method does not change graph for JavaObject.
 598 #endif
 599 
 600   if (n->is_Call()) {
 601     process_call_arguments(n->as_Call());
 602     return;
 603   }
 604   assert(n->is_Store() || n->is_LoadStore() ||
 605          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 606          "node should be registered already");
 607   int opcode = n->Opcode();
 608   switch (opcode) {
 609     case Op_AddP: {
 610       Node* base = get_addp_base(n);
 611       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 612       assert(ptn_base != NULL, "field's base should be registered");
 613       add_base(n_ptn->as_Field(), ptn_base);
 614       break;
 615     }
 616     case Op_CastPP:
 617     case Op_CheckCastPP:
 618     case Op_EncodeP:
 619     case Op_DecodeN:
 620     case Op_EncodePKlass:
 621     case Op_DecodeNKlass: {
 622       add_local_var_and_edge(n, PointsToNode::NoEscape,
 623                              n->in(1), NULL);
 624       break;
 625     }
 626     case Op_CMoveP: {
 627       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 628         Node* in = n->in(i);
 629         if (in == NULL)
 630           continue;  // ignore NULL
 631         Node* uncast_in = in->uncast();
 632         if (uncast_in->is_top() || uncast_in == n)
 633           continue;  // ignore top or inputs which go back this node
 634         PointsToNode* ptn = ptnode_adr(in->_idx);
 635         assert(ptn != NULL, "node should be registered");
 636         add_edge(n_ptn, ptn);
 637       }
 638       break;
 639     }
 640     case Op_LoadP:
 641     case Op_LoadN:
 642     case Op_LoadPLocked: {
 643       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 644       // ThreadLocal has RawPtr type.
 645       const Type* t = _igvn->type(n);
 646       if (t->make_ptr() != NULL) {
 647         Node* adr = n->in(MemNode::Address);
 648         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 649         break;
 650       }
 651       ELSE_FAIL("Op_LoadP");
 652     }
 653     case Op_Phi: {
 654       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 655       // ThreadLocal has RawPtr type.
 656       const Type* t = n->as_Phi()->type();
 657       if (t->make_ptr() != NULL) {
 658         for (uint i = 1; i < n->req(); i++) {
 659           Node* in = n->in(i);
 660           if (in == NULL)
 661             continue;  // ignore NULL
 662           Node* uncast_in = in->uncast();
 663           if (uncast_in->is_top() || uncast_in == n)
 664             continue;  // ignore top or inputs which go back this node
 665           PointsToNode* ptn = ptnode_adr(in->_idx);
 666           assert(ptn != NULL, "node should be registered");
 667           add_edge(n_ptn, ptn);
 668         }
 669         break;
 670       }
 671       ELSE_FAIL("Op_Phi");
 672     }
 673     case Op_Proj: {
 674       // we are only interested in the oop result projection from a call
 675       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 676           n->in(0)->as_Call()->returns_pointer()) {
 677         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 678         break;
 679       }
 680       ELSE_FAIL("Op_Proj");
 681     }
 682     case Op_Rethrow: // Exception object escapes
 683     case Op_Return: {
 684       if (n->req() > TypeFunc::Parms &&
 685           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 686         // Treat Return value as LocalVar with GlobalEscape escape state.
 687         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 688                                n->in(TypeFunc::Parms), NULL);
 689         break;
 690       }
 691       ELSE_FAIL("Op_Return");
 692     }
 693     case Op_StoreP:
 694     case Op_StoreN:
 695     case Op_StoreNKlass:
 696     case Op_StorePConditional:
 697     case Op_CompareAndSwapP:
 698     case Op_CompareAndSwapN:
 699     case Op_GetAndSetP:
 700     case Op_GetAndSetN: {
 701       Node* adr = n->in(MemNode::Address);
 702       const Type *adr_type = _igvn->type(adr);
 703       adr_type = adr_type->make_ptr();
 704 #ifdef ASSERT
 705       if (adr_type == NULL) {
 706         n->dump(1);
 707         assert(adr_type != NULL, "dead node should not be on list");
 708         break;
 709       }
 710 #endif
 711       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 712         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 713       }
 714       if (adr_type->isa_oopptr() ||
 715           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 716                         (adr_type == TypeRawPtr::NOTNULL &&
 717                          adr->in(AddPNode::Address)->is_Proj() &&
 718                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 719         // Point Address to Value
 720         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 721         assert(adr_ptn != NULL &&
 722                adr_ptn->as_Field()->is_oop(), "node should be registered");
 723         Node *val = n->in(MemNode::ValueIn);
 724         PointsToNode* ptn = ptnode_adr(val->_idx);
 725         assert(ptn != NULL, "node should be registered");
 726         add_edge(adr_ptn, ptn);
 727         break;
 728       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 729         // Stored value escapes in unsafe access.
 730         Node *val = n->in(MemNode::ValueIn);
 731         PointsToNode* ptn = ptnode_adr(val->_idx);
 732         assert(ptn != NULL, "node should be registered");
 733         set_escape_state(ptn, PointsToNode::GlobalEscape);
 734         // Add edge to object for unsafe access with offset.
 735         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 736         assert(adr_ptn != NULL, "node should be registered");
 737         if (adr_ptn->is_Field()) {
 738           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 739           add_edge(adr_ptn, ptn);
 740         }
 741         break;
 742       }
 743       ELSE_FAIL("Op_StoreP");
 744     }
 745     case Op_AryEq:
 746     case Op_StrComp:
 747     case Op_StrEquals:
 748     case Op_StrIndexOf:
 749     case Op_EncodeISOArray: {
 750       // char[] arrays passed to string intrinsic do not escape but
 751       // they are not scalar replaceable. Adjust escape state for them.
 752       // Start from in(2) edge since in(1) is memory edge.
 753       for (uint i = 2; i < n->req(); i++) {
 754         Node* adr = n->in(i);
 755         const Type* at = _igvn->type(adr);
 756         if (!adr->is_top() && at->isa_ptr()) {
 757           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 758                  at->isa_ptr() != NULL, "expecting a pointer");
 759           if (adr->is_AddP()) {
 760             adr = get_addp_base(adr);
 761           }
 762           PointsToNode* ptn = ptnode_adr(adr->_idx);
 763           assert(ptn != NULL, "node should be registered");
 764           add_edge(n_ptn, ptn);
 765         }
 766       }
 767       break;
 768     }
 769     default: {
 770       // This method should be called only for EA specific nodes which may
 771       // miss some edges when they were created.
 772 #ifdef ASSERT
 773       n->dump(1);
 774 #endif
 775       guarantee(false, "unknown node");
 776     }
 777   }
 778   return;
 779 }
 780 
 781 void ConnectionGraph::add_call_node(CallNode* call) {
 782   assert(call->returns_pointer(), "only for call which returns pointer");
 783   uint call_idx = call->_idx;
 784   if (call->is_Allocate()) {
 785     Node* k = call->in(AllocateNode::KlassNode);
 786     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 787     assert(kt != NULL, "TypeKlassPtr  required.");
 788     ciKlass* cik = kt->klass();
 789     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 790     bool scalar_replaceable = true;
 791     if (call->is_AllocateArray()) {
 792       if (!cik->is_array_klass()) { // StressReflectiveCode
 793         es = PointsToNode::GlobalEscape;
 794       } else {
 795         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 796         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 797           // Not scalar replaceable if the length is not constant or too big.
 798           scalar_replaceable = false;
 799         }
 800       }
 801     } else {  // Allocate instance
 802       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 803           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 804          !cik->is_instance_klass() || // StressReflectiveCode
 805           cik->as_instance_klass()->has_finalizer()) {
 806         es = PointsToNode::GlobalEscape;
 807       }
 808     }
 809     add_java_object(call, es);
 810     PointsToNode* ptn = ptnode_adr(call_idx);
 811     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 812       ptn->set_scalar_replaceable(false);
 813     }
 814   } else if (call->is_CallStaticJava()) {
 815     // Call nodes could be different types:
 816     //
 817     // 1. CallDynamicJavaNode (what happened during call is unknown):
 818     //
 819     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 820     //
 821     //    - all oop arguments are escaping globally;
 822     //
 823     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 824     //
 825     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 826     //
 827     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 828     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 829     //      during call is returned;
 830     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 831     //      which are returned and does not escape during call;
 832     //
 833     //    - oop arguments escaping status is defined by bytecode analysis;
 834     //
 835     // For a static call, we know exactly what method is being called.
 836     // Use bytecode estimator to record whether the call's return value escapes.
 837     ciMethod* meth = call->as_CallJava()->method();
 838     if (meth == NULL) {
 839       const char* name = call->as_CallStaticJava()->_name;
 840       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 841       // Returns a newly allocated unescaped object.
 842       add_java_object(call, PointsToNode::NoEscape);
 843       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 844     } else if (meth->is_boxing_method()) {
 845       // Returns boxing object
 846       PointsToNode::EscapeState es;
 847       vmIntrinsics::ID intr = meth->intrinsic_id();
 848       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 849         // It does not escape if object is always allocated.
 850         es = PointsToNode::NoEscape;
 851       } else {
 852         // It escapes globally if object could be loaded from cache.
 853         es = PointsToNode::GlobalEscape;
 854       }
 855       add_java_object(call, es);
 856     } else {
 857       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 858       call_analyzer->copy_dependencies(_compile->dependencies());
 859       if (call_analyzer->is_return_allocated()) {
 860         // Returns a newly allocated unescaped object, simply
 861         // update dependency information.
 862         // Mark it as NoEscape so that objects referenced by
 863         // it's fields will be marked as NoEscape at least.
 864         add_java_object(call, PointsToNode::NoEscape);
 865         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 866       } else {
 867         // Determine whether any arguments are returned.
 868         const TypeTuple* d = call->tf()->domain();
 869         bool ret_arg = false;
 870         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 871           if (d->field_at(i)->isa_ptr() != NULL &&
 872               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 873             ret_arg = true;
 874             break;
 875           }
 876         }
 877         if (ret_arg) {
 878           add_local_var(call, PointsToNode::ArgEscape);
 879         } else {
 880           // Returns unknown object.
 881           map_ideal_node(call, phantom_obj);
 882         }
 883       }
 884     }
 885   } else {
 886     // An other type of call, assume the worst case:
 887     // returned value is unknown and globally escapes.
 888     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 889     map_ideal_node(call, phantom_obj);
 890   }
 891 }
 892 
 893 void ConnectionGraph::process_call_arguments(CallNode *call) {
 894     bool is_arraycopy = false;
 895     switch (call->Opcode()) {
 896 #ifdef ASSERT
 897     case Op_Allocate:
 898     case Op_AllocateArray:
 899     case Op_Lock:
 900     case Op_Unlock:
 901       assert(false, "should be done already");
 902       break;
 903 #endif
 904     case Op_ArrayCopy:
 905     case Op_CallLeafNoFP:
 906       // Most array copies are ArrayCopy nodes at this point but there
 907       // are still a few direct calls to the copy subroutines (See
 908       // PhaseStringOpts::copy_string())
 909       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 910         call->as_CallLeaf()->is_call_to_arraycopystub();
 911       // fall through
 912     case Op_CallLeaf: {
 913       // Stub calls, objects do not escape but they are not scale replaceable.
 914       // Adjust escape state for outgoing arguments.
 915       const TypeTuple * d = call->tf()->domain();
 916       bool src_has_oops = false;
 917       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 918         const Type* at = d->field_at(i);
 919         Node *arg = call->in(i);
 920         if (arg == NULL) {
 921           continue;
 922         }
 923         const Type *aat = _igvn->type(arg);
 924         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 925           continue;
 926         if (arg->is_AddP()) {
 927           //
 928           // The inline_native_clone() case when the arraycopy stub is called
 929           // after the allocation before Initialize and CheckCastPP nodes.
 930           // Or normal arraycopy for object arrays case.
 931           //
 932           // Set AddP's base (Allocate) as not scalar replaceable since
 933           // pointer to the base (with offset) is passed as argument.
 934           //
 935           arg = get_addp_base(arg);
 936         }
 937         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 938         assert(arg_ptn != NULL, "should be registered");
 939         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 940         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 941           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 942                  aat->isa_ptr() != NULL, "expecting an Ptr");
 943           bool arg_has_oops = aat->isa_oopptr() &&
 944                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 945                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 946           if (i == TypeFunc::Parms) {
 947             src_has_oops = arg_has_oops;
 948           }
 949           //
 950           // src or dst could be j.l.Object when other is basic type array:
 951           //
 952           //   arraycopy(char[],0,Object*,0,size);
 953           //   arraycopy(Object*,0,char[],0,size);
 954           //
 955           // Don't add edges in such cases.
 956           //
 957           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 958                                        arg_has_oops && (i > TypeFunc::Parms);
 959 #ifdef ASSERT
 960           if (!(is_arraycopy ||
 961                 (call->as_CallLeaf()->_name != NULL &&
 962                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 963                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 964                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 965                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 966                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 967                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 968                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 969                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 970                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 971                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 972                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 973                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 974                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 975                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 976                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 977                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 978                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
 979                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
 980                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
 981                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0)
 982                  ))) {
 983             call->dump();
 984             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 985           }
 986 #endif
 987           // Always process arraycopy's destination object since
 988           // we need to add all possible edges to references in
 989           // source object.
 990           if (arg_esc >= PointsToNode::ArgEscape &&
 991               !arg_is_arraycopy_dest) {
 992             continue;
 993           }
 994           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
 995           if (call->is_ArrayCopy()) {
 996             ArrayCopyNode* ac = call->as_ArrayCopy();
 997             if (ac->is_clonebasic() ||
 998                 ac->is_arraycopy_validated() ||
 999                 ac->is_copyof_validated() ||
1000                 ac->is_copyofrange_validated()) {
1001               es = PointsToNode::NoEscape;
1002             }
1003           }
1004           set_escape_state(arg_ptn, es);
1005           if (arg_is_arraycopy_dest) {
1006             Node* src = call->in(TypeFunc::Parms);
1007             if (src->is_AddP()) {
1008               src = get_addp_base(src);
1009             }
1010             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1011             assert(src_ptn != NULL, "should be registered");
1012             if (arg_ptn != src_ptn) {
1013               // Special arraycopy edge:
1014               // A destination object's field can't have the source object
1015               // as base since objects escape states are not related.
1016               // Only escape state of destination object's fields affects
1017               // escape state of fields in source object.
1018               add_arraycopy(call, es, src_ptn, arg_ptn);
1019             }
1020           }
1021         }
1022       }
1023       break;
1024     }
1025     case Op_CallStaticJava: {
1026       // For a static call, we know exactly what method is being called.
1027       // Use bytecode estimator to record the call's escape affects
1028 #ifdef ASSERT
1029       const char* name = call->as_CallStaticJava()->_name;
1030       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1031 #endif
1032       ciMethod* meth = call->as_CallJava()->method();
1033       if ((meth != NULL) && meth->is_boxing_method()) {
1034         break; // Boxing methods do not modify any oops.
1035       }
1036       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1037       // fall-through if not a Java method or no analyzer information
1038       if (call_analyzer != NULL) {
1039         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1040         const TypeTuple* d = call->tf()->domain();
1041         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1042           const Type* at = d->field_at(i);
1043           int k = i - TypeFunc::Parms;
1044           Node* arg = call->in(i);
1045           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1046           if (at->isa_ptr() != NULL &&
1047               call_analyzer->is_arg_returned(k)) {
1048             // The call returns arguments.
1049             if (call_ptn != NULL) { // Is call's result used?
1050               assert(call_ptn->is_LocalVar(), "node should be registered");
1051               assert(arg_ptn != NULL, "node should be registered");
1052               add_edge(call_ptn, arg_ptn);
1053             }
1054           }
1055           if (at->isa_oopptr() != NULL &&
1056               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1057             if (!call_analyzer->is_arg_stack(k)) {
1058               // The argument global escapes
1059               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1060             } else {
1061               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1062               if (!call_analyzer->is_arg_local(k)) {
1063                 // The argument itself doesn't escape, but any fields might
1064                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1065               }
1066             }
1067           }
1068         }
1069         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1070           // The call returns arguments.
1071           assert(call_ptn->edge_count() > 0, "sanity");
1072           if (!call_analyzer->is_return_local()) {
1073             // Returns also unknown object.
1074             add_edge(call_ptn, phantom_obj);
1075           }
1076         }
1077         break;
1078       }
1079     }
1080     default: {
1081       // Fall-through here if not a Java method or no analyzer information
1082       // or some other type of call, assume the worst case: all arguments
1083       // globally escape.
1084       const TypeTuple* d = call->tf()->domain();
1085       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1086         const Type* at = d->field_at(i);
1087         if (at->isa_oopptr() != NULL) {
1088           Node* arg = call->in(i);
1089           if (arg->is_AddP()) {
1090             arg = get_addp_base(arg);
1091           }
1092           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1093           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1094         }
1095       }
1096     }
1097   }
1098 }
1099 
1100 
1101 // Finish Graph construction.
1102 bool ConnectionGraph::complete_connection_graph(
1103                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1104                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1105                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1106                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1107   // Normally only 1-3 passes needed to build Connection Graph depending
1108   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1109   // Set limit to 20 to catch situation when something did go wrong and
1110   // bailout Escape Analysis.
1111   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1112 #define CG_BUILD_ITER_LIMIT 20
1113 
1114   // Propagate GlobalEscape and ArgEscape escape states and check that
1115   // we still have non-escaping objects. The method pushs on _worklist
1116   // Field nodes which reference phantom_object.
1117   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1118     return false; // Nothing to do.
1119   }
1120   // Now propagate references to all JavaObject nodes.
1121   int java_objects_length = java_objects_worklist.length();
1122   elapsedTimer time;
1123   bool timeout = false;
1124   int new_edges = 1;
1125   int iterations = 0;
1126   do {
1127     while ((new_edges > 0) &&
1128            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1129       double start_time = time.seconds();
1130       time.start();
1131       new_edges = 0;
1132       // Propagate references to phantom_object for nodes pushed on _worklist
1133       // by find_non_escaped_objects() and find_field_value().
1134       new_edges += add_java_object_edges(phantom_obj, false);
1135       for (int next = 0; next < java_objects_length; ++next) {
1136         JavaObjectNode* ptn = java_objects_worklist.at(next);
1137         new_edges += add_java_object_edges(ptn, true);
1138 
1139 #define SAMPLE_SIZE 4
1140         if ((next % SAMPLE_SIZE) == 0) {
1141           // Each 4 iterations calculate how much time it will take
1142           // to complete graph construction.
1143           time.stop();
1144           // Poll for requests from shutdown mechanism to quiesce compiler
1145           // because Connection graph construction may take long time.
1146           CompileBroker::maybe_block();
1147           double stop_time = time.seconds();
1148           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1149           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1150           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1151             timeout = true;
1152             break; // Timeout
1153           }
1154           start_time = stop_time;
1155           time.start();
1156         }
1157 #undef SAMPLE_SIZE
1158 
1159       }
1160       if (timeout) break;
1161       if (new_edges > 0) {
1162         // Update escape states on each iteration if graph was updated.
1163         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1164           return false; // Nothing to do.
1165         }
1166       }
1167       time.stop();
1168       if (time.seconds() >= EscapeAnalysisTimeout) {
1169         timeout = true;
1170         break;
1171       }
1172     }
1173     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1174       time.start();
1175       // Find fields which have unknown value.
1176       int fields_length = oop_fields_worklist.length();
1177       for (int next = 0; next < fields_length; next++) {
1178         FieldNode* field = oop_fields_worklist.at(next);
1179         if (field->edge_count() == 0) {
1180           new_edges += find_field_value(field);
1181           // This code may added new edges to phantom_object.
1182           // Need an other cycle to propagate references to phantom_object.
1183         }
1184       }
1185       time.stop();
1186       if (time.seconds() >= EscapeAnalysisTimeout) {
1187         timeout = true;
1188         break;
1189       }
1190     } else {
1191       new_edges = 0; // Bailout
1192     }
1193   } while (new_edges > 0);
1194 
1195   // Bailout if passed limits.
1196   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1197     Compile* C = _compile;
1198     if (C->log() != NULL) {
1199       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1200       C->log()->text("%s", timeout ? "time" : "iterations");
1201       C->log()->end_elem(" limit'");
1202     }
1203     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1204            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1205     // Possible infinite build_connection_graph loop,
1206     // bailout (no changes to ideal graph were made).
1207     return false;
1208   }
1209 #ifdef ASSERT
1210   if (Verbose && PrintEscapeAnalysis) {
1211     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1212                   iterations, nodes_size(), ptnodes_worklist.length());
1213   }
1214 #endif
1215 
1216 #undef CG_BUILD_ITER_LIMIT
1217 
1218   // Find fields initialized by NULL for non-escaping Allocations.
1219   int non_escaped_length = non_escaped_worklist.length();
1220   for (int next = 0; next < non_escaped_length; next++) {
1221     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1222     PointsToNode::EscapeState es = ptn->escape_state();
1223     assert(es <= PointsToNode::ArgEscape, "sanity");
1224     if (es == PointsToNode::NoEscape) {
1225       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1226         // Adding references to NULL object does not change escape states
1227         // since it does not escape. Also no fields are added to NULL object.
1228         add_java_object_edges(null_obj, false);
1229       }
1230     }
1231     Node* n = ptn->ideal_node();
1232     if (n->is_Allocate()) {
1233       // The object allocated by this Allocate node will never be
1234       // seen by an other thread. Mark it so that when it is
1235       // expanded no MemBarStoreStore is added.
1236       InitializeNode* ini = n->as_Allocate()->initialization();
1237       if (ini != NULL)
1238         ini->set_does_not_escape();
1239     }
1240   }
1241   return true; // Finished graph construction.
1242 }
1243 
1244 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1245 // and check that we still have non-escaping java objects.
1246 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1247                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1248   GrowableArray<PointsToNode*> escape_worklist;
1249   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1250   int ptnodes_length = ptnodes_worklist.length();
1251   for (int next = 0; next < ptnodes_length; ++next) {
1252     PointsToNode* ptn = ptnodes_worklist.at(next);
1253     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1254         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1255       escape_worklist.push(ptn);
1256     }
1257   }
1258   // Set escape states to referenced nodes (edges list).
1259   while (escape_worklist.length() > 0) {
1260     PointsToNode* ptn = escape_worklist.pop();
1261     PointsToNode::EscapeState es  = ptn->escape_state();
1262     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1263     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1264         es >= PointsToNode::ArgEscape) {
1265       // GlobalEscape or ArgEscape state of field means it has unknown value.
1266       if (add_edge(ptn, phantom_obj)) {
1267         // New edge was added
1268         add_field_uses_to_worklist(ptn->as_Field());
1269       }
1270     }
1271     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1272       PointsToNode* e = i.get();
1273       if (e->is_Arraycopy()) {
1274         assert(ptn->arraycopy_dst(), "sanity");
1275         // Propagate only fields escape state through arraycopy edge.
1276         if (e->fields_escape_state() < field_es) {
1277           set_fields_escape_state(e, field_es);
1278           escape_worklist.push(e);
1279         }
1280       } else if (es >= field_es) {
1281         // fields_escape_state is also set to 'es' if it is less than 'es'.
1282         if (e->escape_state() < es) {
1283           set_escape_state(e, es);
1284           escape_worklist.push(e);
1285         }
1286       } else {
1287         // Propagate field escape state.
1288         bool es_changed = false;
1289         if (e->fields_escape_state() < field_es) {
1290           set_fields_escape_state(e, field_es);
1291           es_changed = true;
1292         }
1293         if ((e->escape_state() < field_es) &&
1294             e->is_Field() && ptn->is_JavaObject() &&
1295             e->as_Field()->is_oop()) {
1296           // Change escape state of referenced fields.
1297           set_escape_state(e, field_es);
1298           es_changed = true;
1299         } else if (e->escape_state() < es) {
1300           set_escape_state(e, es);
1301           es_changed = true;
1302         }
1303         if (es_changed) {
1304           escape_worklist.push(e);
1305         }
1306       }
1307     }
1308   }
1309   // Remove escaped objects from non_escaped list.
1310   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1311     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1312     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1313       non_escaped_worklist.delete_at(next);
1314     }
1315     if (ptn->escape_state() == PointsToNode::NoEscape) {
1316       // Find fields in non-escaped allocations which have unknown value.
1317       find_init_values(ptn, phantom_obj, NULL);
1318     }
1319   }
1320   return (non_escaped_worklist.length() > 0);
1321 }
1322 
1323 // Add all references to JavaObject node by walking over all uses.
1324 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1325   int new_edges = 0;
1326   if (populate_worklist) {
1327     // Populate _worklist by uses of jobj's uses.
1328     for (UseIterator i(jobj); i.has_next(); i.next()) {
1329       PointsToNode* use = i.get();
1330       if (use->is_Arraycopy())
1331         continue;
1332       add_uses_to_worklist(use);
1333       if (use->is_Field() && use->as_Field()->is_oop()) {
1334         // Put on worklist all field's uses (loads) and
1335         // related field nodes (same base and offset).
1336         add_field_uses_to_worklist(use->as_Field());
1337       }
1338     }
1339   }
1340   for (int l = 0; l < _worklist.length(); l++) {
1341     PointsToNode* use = _worklist.at(l);
1342     if (PointsToNode::is_base_use(use)) {
1343       // Add reference from jobj to field and from field to jobj (field's base).
1344       use = PointsToNode::get_use_node(use)->as_Field();
1345       if (add_base(use->as_Field(), jobj)) {
1346         new_edges++;
1347       }
1348       continue;
1349     }
1350     assert(!use->is_JavaObject(), "sanity");
1351     if (use->is_Arraycopy()) {
1352       if (jobj == null_obj) // NULL object does not have field edges
1353         continue;
1354       // Added edge from Arraycopy node to arraycopy's source java object
1355       if (add_edge(use, jobj)) {
1356         jobj->set_arraycopy_src();
1357         new_edges++;
1358       }
1359       // and stop here.
1360       continue;
1361     }
1362     if (!add_edge(use, jobj))
1363       continue; // No new edge added, there was such edge already.
1364     new_edges++;
1365     if (use->is_LocalVar()) {
1366       add_uses_to_worklist(use);
1367       if (use->arraycopy_dst()) {
1368         for (EdgeIterator i(use); i.has_next(); i.next()) {
1369           PointsToNode* e = i.get();
1370           if (e->is_Arraycopy()) {
1371             if (jobj == null_obj) // NULL object does not have field edges
1372               continue;
1373             // Add edge from arraycopy's destination java object to Arraycopy node.
1374             if (add_edge(jobj, e)) {
1375               new_edges++;
1376               jobj->set_arraycopy_dst();
1377             }
1378           }
1379         }
1380       }
1381     } else {
1382       // Added new edge to stored in field values.
1383       // Put on worklist all field's uses (loads) and
1384       // related field nodes (same base and offset).
1385       add_field_uses_to_worklist(use->as_Field());
1386     }
1387   }
1388   _worklist.clear();
1389   _in_worklist.Reset();
1390   return new_edges;
1391 }
1392 
1393 // Put on worklist all related field nodes.
1394 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1395   assert(field->is_oop(), "sanity");
1396   int offset = field->offset();
1397   add_uses_to_worklist(field);
1398   // Loop over all bases of this field and push on worklist Field nodes
1399   // with the same offset and base (since they may reference the same field).
1400   for (BaseIterator i(field); i.has_next(); i.next()) {
1401     PointsToNode* base = i.get();
1402     add_fields_to_worklist(field, base);
1403     // Check if the base was source object of arraycopy and go over arraycopy's
1404     // destination objects since values stored to a field of source object are
1405     // accessable by uses (loads) of fields of destination objects.
1406     if (base->arraycopy_src()) {
1407       for (UseIterator j(base); j.has_next(); j.next()) {
1408         PointsToNode* arycp = j.get();
1409         if (arycp->is_Arraycopy()) {
1410           for (UseIterator k(arycp); k.has_next(); k.next()) {
1411             PointsToNode* abase = k.get();
1412             if (abase->arraycopy_dst() && abase != base) {
1413               // Look for the same arraycopy reference.
1414               add_fields_to_worklist(field, abase);
1415             }
1416           }
1417         }
1418       }
1419     }
1420   }
1421 }
1422 
1423 // Put on worklist all related field nodes.
1424 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1425   int offset = field->offset();
1426   if (base->is_LocalVar()) {
1427     for (UseIterator j(base); j.has_next(); j.next()) {
1428       PointsToNode* f = j.get();
1429       if (PointsToNode::is_base_use(f)) { // Field
1430         f = PointsToNode::get_use_node(f);
1431         if (f == field || !f->as_Field()->is_oop())
1432           continue;
1433         int offs = f->as_Field()->offset();
1434         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1435           add_to_worklist(f);
1436         }
1437       }
1438     }
1439   } else {
1440     assert(base->is_JavaObject(), "sanity");
1441     if (// Skip phantom_object since it is only used to indicate that
1442         // this field's content globally escapes.
1443         (base != phantom_obj) &&
1444         // NULL object node does not have fields.
1445         (base != null_obj)) {
1446       for (EdgeIterator i(base); i.has_next(); i.next()) {
1447         PointsToNode* f = i.get();
1448         // Skip arraycopy edge since store to destination object field
1449         // does not update value in source object field.
1450         if (f->is_Arraycopy()) {
1451           assert(base->arraycopy_dst(), "sanity");
1452           continue;
1453         }
1454         if (f == field || !f->as_Field()->is_oop())
1455           continue;
1456         int offs = f->as_Field()->offset();
1457         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1458           add_to_worklist(f);
1459         }
1460       }
1461     }
1462   }
1463 }
1464 
1465 // Find fields which have unknown value.
1466 int ConnectionGraph::find_field_value(FieldNode* field) {
1467   // Escaped fields should have init value already.
1468   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1469   int new_edges = 0;
1470   for (BaseIterator i(field); i.has_next(); i.next()) {
1471     PointsToNode* base = i.get();
1472     if (base->is_JavaObject()) {
1473       // Skip Allocate's fields which will be processed later.
1474       if (base->ideal_node()->is_Allocate())
1475         return 0;
1476       assert(base == null_obj, "only NULL ptr base expected here");
1477     }
1478   }
1479   if (add_edge(field, phantom_obj)) {
1480     // New edge was added
1481     new_edges++;
1482     add_field_uses_to_worklist(field);
1483   }
1484   return new_edges;
1485 }
1486 
1487 // Find fields initializing values for allocations.
1488 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1489   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1490   int new_edges = 0;
1491   Node* alloc = pta->ideal_node();
1492   if (init_val == phantom_obj) {
1493     // Do nothing for Allocate nodes since its fields values are
1494     // "known" unless they are initialized by arraycopy/clone.
1495     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1496       return 0;
1497     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1498 #ifdef ASSERT
1499     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1500       const char* name = alloc->as_CallStaticJava()->_name;
1501       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1502     }
1503 #endif
1504     // Non-escaped allocation returned from Java or runtime call have
1505     // unknown values in fields.
1506     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1507       PointsToNode* field = i.get();
1508       if (field->is_Field() && field->as_Field()->is_oop()) {
1509         if (add_edge(field, phantom_obj)) {
1510           // New edge was added
1511           new_edges++;
1512           add_field_uses_to_worklist(field->as_Field());
1513         }
1514       }
1515     }
1516     return new_edges;
1517   }
1518   assert(init_val == null_obj, "sanity");
1519   // Do nothing for Call nodes since its fields values are unknown.
1520   if (!alloc->is_Allocate())
1521     return 0;
1522 
1523   InitializeNode* ini = alloc->as_Allocate()->initialization();
1524   bool visited_bottom_offset = false;
1525   GrowableArray<int> offsets_worklist;
1526 
1527   // Check if an oop field's initializing value is recorded and add
1528   // a corresponding NULL if field's value if it is not recorded.
1529   // Connection Graph does not record a default initialization by NULL
1530   // captured by Initialize node.
1531   //
1532   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1533     PointsToNode* field = i.get(); // Field (AddP)
1534     if (!field->is_Field() || !field->as_Field()->is_oop())
1535       continue; // Not oop field
1536     int offset = field->as_Field()->offset();
1537     if (offset == Type::OffsetBot) {
1538       if (!visited_bottom_offset) {
1539         // OffsetBot is used to reference array's element,
1540         // always add reference to NULL to all Field nodes since we don't
1541         // known which element is referenced.
1542         if (add_edge(field, null_obj)) {
1543           // New edge was added
1544           new_edges++;
1545           add_field_uses_to_worklist(field->as_Field());
1546           visited_bottom_offset = true;
1547         }
1548       }
1549     } else {
1550       // Check only oop fields.
1551       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1552       if (adr_type->isa_rawptr()) {
1553 #ifdef ASSERT
1554         // Raw pointers are used for initializing stores so skip it
1555         // since it should be recorded already
1556         Node* base = get_addp_base(field->ideal_node());
1557         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1558                (base->in(0) == alloc),"unexpected pointer type");
1559 #endif
1560         continue;
1561       }
1562       if (!offsets_worklist.contains(offset)) {
1563         offsets_worklist.append(offset);
1564         Node* value = NULL;
1565         if (ini != NULL) {
1566           // StoreP::memory_type() == T_ADDRESS
1567           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1568           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1569           // Make sure initializing store has the same type as this AddP.
1570           // This AddP may reference non existing field because it is on a
1571           // dead branch of bimorphic call which is not eliminated yet.
1572           if (store != NULL && store->is_Store() &&
1573               store->as_Store()->memory_type() == ft) {
1574             value = store->in(MemNode::ValueIn);
1575 #ifdef ASSERT
1576             if (VerifyConnectionGraph) {
1577               // Verify that AddP already points to all objects the value points to.
1578               PointsToNode* val = ptnode_adr(value->_idx);
1579               assert((val != NULL), "should be processed already");
1580               PointsToNode* missed_obj = NULL;
1581               if (val->is_JavaObject()) {
1582                 if (!field->points_to(val->as_JavaObject())) {
1583                   missed_obj = val;
1584                 }
1585               } else {
1586                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1587                   tty->print_cr("----------init store has invalid value -----");
1588                   store->dump();
1589                   val->dump();
1590                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1591                 }
1592                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1593                   PointsToNode* obj = j.get();
1594                   if (obj->is_JavaObject()) {
1595                     if (!field->points_to(obj->as_JavaObject())) {
1596                       missed_obj = obj;
1597                       break;
1598                     }
1599                   }
1600                 }
1601               }
1602               if (missed_obj != NULL) {
1603                 tty->print_cr("----------field---------------------------------");
1604                 field->dump();
1605                 tty->print_cr("----------missed referernce to object-----------");
1606                 missed_obj->dump();
1607                 tty->print_cr("----------object referernced by init store -----");
1608                 store->dump();
1609                 val->dump();
1610                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1611               }
1612             }
1613 #endif
1614           } else {
1615             // There could be initializing stores which follow allocation.
1616             // For example, a volatile field store is not collected
1617             // by Initialize node.
1618             //
1619             // Need to check for dependent loads to separate such stores from
1620             // stores which follow loads. For now, add initial value NULL so
1621             // that compare pointers optimization works correctly.
1622           }
1623         }
1624         if (value == NULL) {
1625           // A field's initializing value was not recorded. Add NULL.
1626           if (add_edge(field, null_obj)) {
1627             // New edge was added
1628             new_edges++;
1629             add_field_uses_to_worklist(field->as_Field());
1630           }
1631         }
1632       }
1633     }
1634   }
1635   return new_edges;
1636 }
1637 
1638 // Adjust scalar_replaceable state after Connection Graph is built.
1639 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1640   // Search for non-escaping objects which are not scalar replaceable
1641   // and mark them to propagate the state to referenced objects.
1642 
1643   // 1. An object is not scalar replaceable if the field into which it is
1644   // stored has unknown offset (stored into unknown element of an array).
1645   //
1646   for (UseIterator i(jobj); i.has_next(); i.next()) {
1647     PointsToNode* use = i.get();
1648     if (use->is_Arraycopy()) {
1649       continue;
1650     }
1651     if (use->is_Field()) {
1652       FieldNode* field = use->as_Field();
1653       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1654       if (field->offset() == Type::OffsetBot) {
1655         jobj->set_scalar_replaceable(false);
1656         return;
1657       }
1658       // 2. An object is not scalar replaceable if the field into which it is
1659       // stored has multiple bases one of which is null.
1660       if (field->base_count() > 1) {
1661         for (BaseIterator i(field); i.has_next(); i.next()) {
1662           PointsToNode* base = i.get();
1663           if (base == null_obj) {
1664             jobj->set_scalar_replaceable(false);
1665             return;
1666           }
1667         }
1668       }
1669     }
1670     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1671     // 3. An object is not scalar replaceable if it is merged with other objects.
1672     for (EdgeIterator j(use); j.has_next(); j.next()) {
1673       PointsToNode* ptn = j.get();
1674       if (ptn->is_JavaObject() && ptn != jobj) {
1675         // Mark all objects.
1676         jobj->set_scalar_replaceable(false);
1677          ptn->set_scalar_replaceable(false);
1678       }
1679     }
1680     if (!jobj->scalar_replaceable()) {
1681       return;
1682     }
1683   }
1684 
1685   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1686     if (j.get()->is_Arraycopy()) {
1687       continue;
1688     }
1689 
1690     // Non-escaping object node should point only to field nodes.
1691     FieldNode* field = j.get()->as_Field();
1692     int offset = field->as_Field()->offset();
1693 
1694     // 4. An object is not scalar replaceable if it has a field with unknown
1695     // offset (array's element is accessed in loop).
1696     if (offset == Type::OffsetBot) {
1697       jobj->set_scalar_replaceable(false);
1698       return;
1699     }
1700     // 5. Currently an object is not scalar replaceable if a LoadStore node
1701     // access its field since the field value is unknown after it.
1702     //
1703     Node* n = field->ideal_node();
1704     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1705       if (n->fast_out(i)->is_LoadStore()) {
1706         jobj->set_scalar_replaceable(false);
1707         return;
1708       }
1709     }
1710 
1711     // 6. Or the address may point to more then one object. This may produce
1712     // the false positive result (set not scalar replaceable)
1713     // since the flow-insensitive escape analysis can't separate
1714     // the case when stores overwrite the field's value from the case
1715     // when stores happened on different control branches.
1716     //
1717     // Note: it will disable scalar replacement in some cases:
1718     //
1719     //    Point p[] = new Point[1];
1720     //    p[0] = new Point(); // Will be not scalar replaced
1721     //
1722     // but it will save us from incorrect optimizations in next cases:
1723     //
1724     //    Point p[] = new Point[1];
1725     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1726     //
1727     if (field->base_count() > 1) {
1728       for (BaseIterator i(field); i.has_next(); i.next()) {
1729         PointsToNode* base = i.get();
1730         // Don't take into account LocalVar nodes which
1731         // may point to only one object which should be also
1732         // this field's base by now.
1733         if (base->is_JavaObject() && base != jobj) {
1734           // Mark all bases.
1735           jobj->set_scalar_replaceable(false);
1736           base->set_scalar_replaceable(false);
1737         }
1738       }
1739     }
1740   }
1741 }
1742 
1743 #ifdef ASSERT
1744 void ConnectionGraph::verify_connection_graph(
1745                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1746                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1747                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1748                          GrowableArray<Node*>& addp_worklist) {
1749   // Verify that graph is complete - no new edges could be added.
1750   int java_objects_length = java_objects_worklist.length();
1751   int non_escaped_length  = non_escaped_worklist.length();
1752   int new_edges = 0;
1753   for (int next = 0; next < java_objects_length; ++next) {
1754     JavaObjectNode* ptn = java_objects_worklist.at(next);
1755     new_edges += add_java_object_edges(ptn, true);
1756   }
1757   assert(new_edges == 0, "graph was not complete");
1758   // Verify that escape state is final.
1759   int length = non_escaped_worklist.length();
1760   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1761   assert((non_escaped_length == non_escaped_worklist.length()) &&
1762          (non_escaped_length == length) &&
1763          (_worklist.length() == 0), "escape state was not final");
1764 
1765   // Verify fields information.
1766   int addp_length = addp_worklist.length();
1767   for (int next = 0; next < addp_length; ++next ) {
1768     Node* n = addp_worklist.at(next);
1769     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1770     if (field->is_oop()) {
1771       // Verify that field has all bases
1772       Node* base = get_addp_base(n);
1773       PointsToNode* ptn = ptnode_adr(base->_idx);
1774       if (ptn->is_JavaObject()) {
1775         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1776       } else {
1777         assert(ptn->is_LocalVar(), "sanity");
1778         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1779           PointsToNode* e = i.get();
1780           if (e->is_JavaObject()) {
1781             assert(field->has_base(e->as_JavaObject()), "sanity");
1782           }
1783         }
1784       }
1785       // Verify that all fields have initializing values.
1786       if (field->edge_count() == 0) {
1787         tty->print_cr("----------field does not have references----------");
1788         field->dump();
1789         for (BaseIterator i(field); i.has_next(); i.next()) {
1790           PointsToNode* base = i.get();
1791           tty->print_cr("----------field has next base---------------------");
1792           base->dump();
1793           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1794             tty->print_cr("----------base has fields-------------------------");
1795             for (EdgeIterator j(base); j.has_next(); j.next()) {
1796               j.get()->dump();
1797             }
1798             tty->print_cr("----------base has references---------------------");
1799             for (UseIterator j(base); j.has_next(); j.next()) {
1800               j.get()->dump();
1801             }
1802           }
1803         }
1804         for (UseIterator i(field); i.has_next(); i.next()) {
1805           i.get()->dump();
1806         }
1807         assert(field->edge_count() > 0, "sanity");
1808       }
1809     }
1810   }
1811 }
1812 #endif
1813 
1814 // Optimize ideal graph.
1815 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1816                                            GrowableArray<Node*>& storestore_worklist) {
1817   Compile* C = _compile;
1818   PhaseIterGVN* igvn = _igvn;
1819   if (EliminateLocks) {
1820     // Mark locks before changing ideal graph.
1821     int cnt = C->macro_count();
1822     for( int i=0; i < cnt; i++ ) {
1823       Node *n = C->macro_node(i);
1824       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1825         AbstractLockNode* alock = n->as_AbstractLock();
1826         if (!alock->is_non_esc_obj()) {
1827           if (not_global_escape(alock->obj_node())) {
1828             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1829             // The lock could be marked eliminated by lock coarsening
1830             // code during first IGVN before EA. Replace coarsened flag
1831             // to eliminate all associated locks/unlocks.
1832 #ifdef ASSERT
1833             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1834 #endif
1835             alock->set_non_esc_obj();
1836           }
1837         }
1838       }
1839     }
1840   }
1841 
1842   if (OptimizePtrCompare) {
1843     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1844     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1845     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1846     // Optimize objects compare.
1847     while (ptr_cmp_worklist.length() != 0) {
1848       Node *n = ptr_cmp_worklist.pop();
1849       Node *res = optimize_ptr_compare(n);
1850       if (res != NULL) {
1851 #ifndef PRODUCT
1852         if (PrintOptimizePtrCompare) {
1853           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1854           if (Verbose) {
1855             n->dump(1);
1856           }
1857         }
1858 #endif
1859         igvn->replace_node(n, res);
1860       }
1861     }
1862     // cleanup
1863     if (_pcmp_neq->outcnt() == 0)
1864       igvn->hash_delete(_pcmp_neq);
1865     if (_pcmp_eq->outcnt()  == 0)
1866       igvn->hash_delete(_pcmp_eq);
1867   }
1868 
1869   // For MemBarStoreStore nodes added in library_call.cpp, check
1870   // escape status of associated AllocateNode and optimize out
1871   // MemBarStoreStore node if the allocated object never escapes.
1872   while (storestore_worklist.length() != 0) {
1873     Node *n = storestore_worklist.pop();
1874     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1875     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1876     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1877     if (not_global_escape(alloc)) {
1878       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1879       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1880       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1881       igvn->register_new_node_with_optimizer(mb);
1882       igvn->replace_node(storestore, mb);
1883     }
1884   }
1885 }
1886 
1887 // Optimize objects compare.
1888 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1889   assert(OptimizePtrCompare, "sanity");
1890   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1891   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1892   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1893   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1894   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1895   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1896 
1897   // Check simple cases first.
1898   if (jobj1 != NULL) {
1899     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1900       if (jobj1 == jobj2) {
1901         // Comparing the same not escaping object.
1902         return _pcmp_eq;
1903       }
1904       Node* obj = jobj1->ideal_node();
1905       // Comparing not escaping allocation.
1906       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1907           !ptn2->points_to(jobj1)) {
1908         return _pcmp_neq; // This includes nullness check.
1909       }
1910     }
1911   }
1912   if (jobj2 != NULL) {
1913     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1914       Node* obj = jobj2->ideal_node();
1915       // Comparing not escaping allocation.
1916       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1917           !ptn1->points_to(jobj2)) {
1918         return _pcmp_neq; // This includes nullness check.
1919       }
1920     }
1921   }
1922   if (jobj1 != NULL && jobj1 != phantom_obj &&
1923       jobj2 != NULL && jobj2 != phantom_obj &&
1924       jobj1->ideal_node()->is_Con() &&
1925       jobj2->ideal_node()->is_Con()) {
1926     // Klass or String constants compare. Need to be careful with
1927     // compressed pointers - compare types of ConN and ConP instead of nodes.
1928     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1929     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1930     if (t1->make_ptr() == t2->make_ptr()) {
1931       return _pcmp_eq;
1932     } else {
1933       return _pcmp_neq;
1934     }
1935   }
1936   if (ptn1->meet(ptn2)) {
1937     return NULL; // Sets are not disjoint
1938   }
1939 
1940   // Sets are disjoint.
1941   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1942   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1943   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1944   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1945   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1946       set2_has_unknown_ptr && set1_has_null_ptr) {
1947     // Check nullness of unknown object.
1948     return NULL;
1949   }
1950 
1951   // Disjointness by itself is not sufficient since
1952   // alias analysis is not complete for escaped objects.
1953   // Disjoint sets are definitely unrelated only when
1954   // at least one set has only not escaping allocations.
1955   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1956     if (ptn1->non_escaping_allocation()) {
1957       return _pcmp_neq;
1958     }
1959   }
1960   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1961     if (ptn2->non_escaping_allocation()) {
1962       return _pcmp_neq;
1963     }
1964   }
1965   return NULL;
1966 }
1967 
1968 // Connection Graph constuction functions.
1969 
1970 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1971   PointsToNode* ptadr = _nodes.at(n->_idx);
1972   if (ptadr != NULL) {
1973     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1974     return;
1975   }
1976   Compile* C = _compile;
1977   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1978   _nodes.at_put(n->_idx, ptadr);
1979 }
1980 
1981 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1982   PointsToNode* ptadr = _nodes.at(n->_idx);
1983   if (ptadr != NULL) {
1984     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1985     return;
1986   }
1987   Compile* C = _compile;
1988   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1989   _nodes.at_put(n->_idx, ptadr);
1990 }
1991 
1992 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1993   PointsToNode* ptadr = _nodes.at(n->_idx);
1994   if (ptadr != NULL) {
1995     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1996     return;
1997   }
1998   bool unsafe = false;
1999   bool is_oop = is_oop_field(n, offset, &unsafe);
2000   if (unsafe) {
2001     es = PointsToNode::GlobalEscape;
2002   }
2003   Compile* C = _compile;
2004   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2005   _nodes.at_put(n->_idx, field);
2006 }
2007 
2008 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2009                                     PointsToNode* src, PointsToNode* dst) {
2010   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2011   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2012   PointsToNode* ptadr = _nodes.at(n->_idx);
2013   if (ptadr != NULL) {
2014     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2015     return;
2016   }
2017   Compile* C = _compile;
2018   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2019   _nodes.at_put(n->_idx, ptadr);
2020   // Add edge from arraycopy node to source object.
2021   (void)add_edge(ptadr, src);
2022   src->set_arraycopy_src();
2023   // Add edge from destination object to arraycopy node.
2024   (void)add_edge(dst, ptadr);
2025   dst->set_arraycopy_dst();
2026 }
2027 
2028 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2029   const Type* adr_type = n->as_AddP()->bottom_type();
2030   BasicType bt = T_INT;
2031   if (offset == Type::OffsetBot) {
2032     // Check only oop fields.
2033     if (!adr_type->isa_aryptr() ||
2034         (adr_type->isa_aryptr()->klass() == NULL) ||
2035          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2036       // OffsetBot is used to reference array's element. Ignore first AddP.
2037       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2038         bt = T_OBJECT;
2039       }
2040     }
2041   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2042     if (adr_type->isa_instptr()) {
2043       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2044       if (field != NULL) {
2045         bt = field->layout_type();
2046       } else {
2047         // Check for unsafe oop field access
2048         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2049           bt = T_OBJECT;
2050           (*unsafe) = true;
2051         }
2052       }
2053     } else if (adr_type->isa_aryptr()) {
2054       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2055         // Ignore array length load.
2056       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2057         // Ignore first AddP.
2058       } else {
2059         const Type* elemtype = adr_type->isa_aryptr()->elem();
2060         bt = elemtype->array_element_basic_type();
2061       }
2062     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2063       // Allocation initialization, ThreadLocal field access, unsafe access
2064       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2065         bt = T_OBJECT;
2066       }
2067     }
2068   }
2069   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2070 }
2071 
2072 // Returns unique pointed java object or NULL.
2073 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2074   assert(!_collecting, "should not call when contructed graph");
2075   // If the node was created after the escape computation we can't answer.
2076   uint idx = n->_idx;
2077   if (idx >= nodes_size()) {
2078     return NULL;
2079   }
2080   PointsToNode* ptn = ptnode_adr(idx);
2081   if (ptn->is_JavaObject()) {
2082     return ptn->as_JavaObject();
2083   }
2084   assert(ptn->is_LocalVar(), "sanity");
2085   // Check all java objects it points to.
2086   JavaObjectNode* jobj = NULL;
2087   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2088     PointsToNode* e = i.get();
2089     if (e->is_JavaObject()) {
2090       if (jobj == NULL) {
2091         jobj = e->as_JavaObject();
2092       } else if (jobj != e) {
2093         return NULL;
2094       }
2095     }
2096   }
2097   return jobj;
2098 }
2099 
2100 // Return true if this node points only to non-escaping allocations.
2101 bool PointsToNode::non_escaping_allocation() {
2102   if (is_JavaObject()) {
2103     Node* n = ideal_node();
2104     if (n->is_Allocate() || n->is_CallStaticJava()) {
2105       return (escape_state() == PointsToNode::NoEscape);
2106     } else {
2107       return false;
2108     }
2109   }
2110   assert(is_LocalVar(), "sanity");
2111   // Check all java objects it points to.
2112   for (EdgeIterator i(this); i.has_next(); i.next()) {
2113     PointsToNode* e = i.get();
2114     if (e->is_JavaObject()) {
2115       Node* n = e->ideal_node();
2116       if ((e->escape_state() != PointsToNode::NoEscape) ||
2117           !(n->is_Allocate() || n->is_CallStaticJava())) {
2118         return false;
2119       }
2120     }
2121   }
2122   return true;
2123 }
2124 
2125 // Return true if we know the node does not escape globally.
2126 bool ConnectionGraph::not_global_escape(Node *n) {
2127   assert(!_collecting, "should not call during graph construction");
2128   // If the node was created after the escape computation we can't answer.
2129   uint idx = n->_idx;
2130   if (idx >= nodes_size()) {
2131     return false;
2132   }
2133   PointsToNode* ptn = ptnode_adr(idx);
2134   PointsToNode::EscapeState es = ptn->escape_state();
2135   // If we have already computed a value, return it.
2136   if (es >= PointsToNode::GlobalEscape)
2137     return false;
2138   if (ptn->is_JavaObject()) {
2139     return true; // (es < PointsToNode::GlobalEscape);
2140   }
2141   assert(ptn->is_LocalVar(), "sanity");
2142   // Check all java objects it points to.
2143   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2144     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2145       return false;
2146   }
2147   return true;
2148 }
2149 
2150 
2151 // Helper functions
2152 
2153 // Return true if this node points to specified node or nodes it points to.
2154 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2155   if (is_JavaObject()) {
2156     return (this == ptn);
2157   }
2158   assert(is_LocalVar() || is_Field(), "sanity");
2159   for (EdgeIterator i(this); i.has_next(); i.next()) {
2160     if (i.get() == ptn)
2161       return true;
2162   }
2163   return false;
2164 }
2165 
2166 // Return true if one node points to an other.
2167 bool PointsToNode::meet(PointsToNode* ptn) {
2168   if (this == ptn) {
2169     return true;
2170   } else if (ptn->is_JavaObject()) {
2171     return this->points_to(ptn->as_JavaObject());
2172   } else if (this->is_JavaObject()) {
2173     return ptn->points_to(this->as_JavaObject());
2174   }
2175   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2176   int ptn_count =  ptn->edge_count();
2177   for (EdgeIterator i(this); i.has_next(); i.next()) {
2178     PointsToNode* this_e = i.get();
2179     for (int j = 0; j < ptn_count; j++) {
2180       if (this_e == ptn->edge(j))
2181         return true;
2182     }
2183   }
2184   return false;
2185 }
2186 
2187 #ifdef ASSERT
2188 // Return true if bases point to this java object.
2189 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2190   for (BaseIterator i(this); i.has_next(); i.next()) {
2191     if (i.get() == jobj)
2192       return true;
2193   }
2194   return false;
2195 }
2196 #endif
2197 
2198 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2199   const Type *adr_type = phase->type(adr);
2200   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2201       adr->in(AddPNode::Address)->is_Proj() &&
2202       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2203     // We are computing a raw address for a store captured by an Initialize
2204     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2205     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2206     assert(offs != Type::OffsetBot ||
2207            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2208            "offset must be a constant or it is initialization of array");
2209     return offs;
2210   }
2211   const TypePtr *t_ptr = adr_type->isa_ptr();
2212   assert(t_ptr != NULL, "must be a pointer type");
2213   return t_ptr->offset();
2214 }
2215 
2216 Node* ConnectionGraph::get_addp_base(Node *addp) {
2217   assert(addp->is_AddP(), "must be AddP");
2218   //
2219   // AddP cases for Base and Address inputs:
2220   // case #1. Direct object's field reference:
2221   //     Allocate
2222   //       |
2223   //     Proj #5 ( oop result )
2224   //       |
2225   //     CheckCastPP (cast to instance type)
2226   //      | |
2227   //     AddP  ( base == address )
2228   //
2229   // case #2. Indirect object's field reference:
2230   //      Phi
2231   //       |
2232   //     CastPP (cast to instance type)
2233   //      | |
2234   //     AddP  ( base == address )
2235   //
2236   // case #3. Raw object's field reference for Initialize node:
2237   //      Allocate
2238   //        |
2239   //      Proj #5 ( oop result )
2240   //  top   |
2241   //     \  |
2242   //     AddP  ( base == top )
2243   //
2244   // case #4. Array's element reference:
2245   //   {CheckCastPP | CastPP}
2246   //     |  | |
2247   //     |  AddP ( array's element offset )
2248   //     |  |
2249   //     AddP ( array's offset )
2250   //
2251   // case #5. Raw object's field reference for arraycopy stub call:
2252   //          The inline_native_clone() case when the arraycopy stub is called
2253   //          after the allocation before Initialize and CheckCastPP nodes.
2254   //      Allocate
2255   //        |
2256   //      Proj #5 ( oop result )
2257   //       | |
2258   //       AddP  ( base == address )
2259   //
2260   // case #6. Constant Pool, ThreadLocal, CastX2P or
2261   //          Raw object's field reference:
2262   //      {ConP, ThreadLocal, CastX2P, raw Load}
2263   //  top   |
2264   //     \  |
2265   //     AddP  ( base == top )
2266   //
2267   // case #7. Klass's field reference.
2268   //      LoadKlass
2269   //       | |
2270   //       AddP  ( base == address )
2271   //
2272   // case #8. narrow Klass's field reference.
2273   //      LoadNKlass
2274   //       |
2275   //      DecodeN
2276   //       | |
2277   //       AddP  ( base == address )
2278   //
2279   Node *base = addp->in(AddPNode::Base);
2280   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2281     base = addp->in(AddPNode::Address);
2282     while (base->is_AddP()) {
2283       // Case #6 (unsafe access) may have several chained AddP nodes.
2284       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2285       base = base->in(AddPNode::Address);
2286     }
2287     Node* uncast_base = base->uncast();
2288     int opcode = uncast_base->Opcode();
2289     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2290            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2291            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2292            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2293   }
2294   return base;
2295 }
2296 
2297 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2298   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2299   Node* addp2 = addp->raw_out(0);
2300   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2301       addp2->in(AddPNode::Base) == n &&
2302       addp2->in(AddPNode::Address) == addp) {
2303     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2304     //
2305     // Find array's offset to push it on worklist first and
2306     // as result process an array's element offset first (pushed second)
2307     // to avoid CastPP for the array's offset.
2308     // Otherwise the inserted CastPP (LocalVar) will point to what
2309     // the AddP (Field) points to. Which would be wrong since
2310     // the algorithm expects the CastPP has the same point as
2311     // as AddP's base CheckCastPP (LocalVar).
2312     //
2313     //    ArrayAllocation
2314     //     |
2315     //    CheckCastPP
2316     //     |
2317     //    memProj (from ArrayAllocation CheckCastPP)
2318     //     |  ||
2319     //     |  ||   Int (element index)
2320     //     |  ||    |   ConI (log(element size))
2321     //     |  ||    |   /
2322     //     |  ||   LShift
2323     //     |  ||  /
2324     //     |  AddP (array's element offset)
2325     //     |  |
2326     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2327     //     | / /
2328     //     AddP (array's offset)
2329     //      |
2330     //     Load/Store (memory operation on array's element)
2331     //
2332     return addp2;
2333   }
2334   return NULL;
2335 }
2336 
2337 //
2338 // Adjust the type and inputs of an AddP which computes the
2339 // address of a field of an instance
2340 //
2341 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2342   PhaseGVN* igvn = _igvn;
2343   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2344   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2345   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2346   if (t == NULL) {
2347     // We are computing a raw address for a store captured by an Initialize
2348     // compute an appropriate address type (cases #3 and #5).
2349     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2350     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2351     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2352     assert(offs != Type::OffsetBot, "offset must be a constant");
2353     t = base_t->add_offset(offs)->is_oopptr();
2354   }
2355   int inst_id =  base_t->instance_id();
2356   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2357                              "old type must be non-instance or match new type");
2358 
2359   // The type 't' could be subclass of 'base_t'.
2360   // As result t->offset() could be large then base_t's size and it will
2361   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2362   // constructor verifies correctness of the offset.
2363   //
2364   // It could happened on subclass's branch (from the type profiling
2365   // inlining) which was not eliminated during parsing since the exactness
2366   // of the allocation type was not propagated to the subclass type check.
2367   //
2368   // Or the type 't' could be not related to 'base_t' at all.
2369   // It could happened when CHA type is different from MDO type on a dead path
2370   // (for example, from instanceof check) which is not collapsed during parsing.
2371   //
2372   // Do nothing for such AddP node and don't process its users since
2373   // this code branch will go away.
2374   //
2375   if (!t->is_known_instance() &&
2376       !base_t->klass()->is_subtype_of(t->klass())) {
2377      return false; // bail out
2378   }
2379   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2380   // Do NOT remove the next line: ensure a new alias index is allocated
2381   // for the instance type. Note: C++ will not remove it since the call
2382   // has side effect.
2383   int alias_idx = _compile->get_alias_index(tinst);
2384   igvn->set_type(addp, tinst);
2385   // record the allocation in the node map
2386   set_map(addp, get_map(base->_idx));
2387   // Set addp's Base and Address to 'base'.
2388   Node *abase = addp->in(AddPNode::Base);
2389   Node *adr   = addp->in(AddPNode::Address);
2390   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2391       adr->in(0)->_idx == (uint)inst_id) {
2392     // Skip AddP cases #3 and #5.
2393   } else {
2394     assert(!abase->is_top(), "sanity"); // AddP case #3
2395     if (abase != base) {
2396       igvn->hash_delete(addp);
2397       addp->set_req(AddPNode::Base, base);
2398       if (abase == adr) {
2399         addp->set_req(AddPNode::Address, base);
2400       } else {
2401         // AddP case #4 (adr is array's element offset AddP node)
2402 #ifdef ASSERT
2403         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2404         assert(adr->is_AddP() && atype != NULL &&
2405                atype->instance_id() == inst_id, "array's element offset should be processed first");
2406 #endif
2407       }
2408       igvn->hash_insert(addp);
2409     }
2410   }
2411   // Put on IGVN worklist since at least addp's type was changed above.
2412   record_for_optimizer(addp);
2413   return true;
2414 }
2415 
2416 //
2417 // Create a new version of orig_phi if necessary. Returns either the newly
2418 // created phi or an existing phi.  Sets create_new to indicate whether a new
2419 // phi was created.  Cache the last newly created phi in the node map.
2420 //
2421 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2422   Compile *C = _compile;
2423   PhaseGVN* igvn = _igvn;
2424   new_created = false;
2425   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2426   // nothing to do if orig_phi is bottom memory or matches alias_idx
2427   if (phi_alias_idx == alias_idx) {
2428     return orig_phi;
2429   }
2430   // Have we recently created a Phi for this alias index?
2431   PhiNode *result = get_map_phi(orig_phi->_idx);
2432   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2433     return result;
2434   }
2435   // Previous check may fail when the same wide memory Phi was split into Phis
2436   // for different memory slices. Search all Phis for this region.
2437   if (result != NULL) {
2438     Node* region = orig_phi->in(0);
2439     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2440       Node* phi = region->fast_out(i);
2441       if (phi->is_Phi() &&
2442           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2443         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2444         return phi->as_Phi();
2445       }
2446     }
2447   }
2448   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2449     if (C->do_escape_analysis() == true && !C->failing()) {
2450       // Retry compilation without escape analysis.
2451       // If this is the first failure, the sentinel string will "stick"
2452       // to the Compile object, and the C2Compiler will see it and retry.
2453       C->record_failure(C2Compiler::retry_no_escape_analysis());
2454     }
2455     return NULL;
2456   }
2457   orig_phi_worklist.append_if_missing(orig_phi);
2458   const TypePtr *atype = C->get_adr_type(alias_idx);
2459   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2460   C->copy_node_notes_to(result, orig_phi);
2461   igvn->set_type(result, result->bottom_type());
2462   record_for_optimizer(result);
2463   set_map(orig_phi, result);
2464   new_created = true;
2465   return result;
2466 }
2467 
2468 //
2469 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2470 // specified alias index.
2471 //
2472 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2473   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2474   Compile *C = _compile;
2475   PhaseGVN* igvn = _igvn;
2476   bool new_phi_created;
2477   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2478   if (!new_phi_created) {
2479     return result;
2480   }
2481   GrowableArray<PhiNode *>  phi_list;
2482   GrowableArray<uint>  cur_input;
2483   PhiNode *phi = orig_phi;
2484   uint idx = 1;
2485   bool finished = false;
2486   while(!finished) {
2487     while (idx < phi->req()) {
2488       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2489       if (mem != NULL && mem->is_Phi()) {
2490         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2491         if (new_phi_created) {
2492           // found an phi for which we created a new split, push current one on worklist and begin
2493           // processing new one
2494           phi_list.push(phi);
2495           cur_input.push(idx);
2496           phi = mem->as_Phi();
2497           result = newphi;
2498           idx = 1;
2499           continue;
2500         } else {
2501           mem = newphi;
2502         }
2503       }
2504       if (C->failing()) {
2505         return NULL;
2506       }
2507       result->set_req(idx++, mem);
2508     }
2509 #ifdef ASSERT
2510     // verify that the new Phi has an input for each input of the original
2511     assert( phi->req() == result->req(), "must have same number of inputs.");
2512     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2513 #endif
2514     // Check if all new phi's inputs have specified alias index.
2515     // Otherwise use old phi.
2516     for (uint i = 1; i < phi->req(); i++) {
2517       Node* in = result->in(i);
2518       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2519     }
2520     // we have finished processing a Phi, see if there are any more to do
2521     finished = (phi_list.length() == 0 );
2522     if (!finished) {
2523       phi = phi_list.pop();
2524       idx = cur_input.pop();
2525       PhiNode *prev_result = get_map_phi(phi->_idx);
2526       prev_result->set_req(idx++, result);
2527       result = prev_result;
2528     }
2529   }
2530   return result;
2531 }
2532 
2533 //
2534 // The next methods are derived from methods in MemNode.
2535 //
2536 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2537   Node *mem = mmem;
2538   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2539   // means an array I have not precisely typed yet.  Do not do any
2540   // alias stuff with it any time soon.
2541   if (toop->base() != Type::AnyPtr &&
2542       !(toop->klass() != NULL &&
2543         toop->klass()->is_java_lang_Object() &&
2544         toop->offset() == Type::OffsetBot)) {
2545     mem = mmem->memory_at(alias_idx);
2546     // Update input if it is progress over what we have now
2547   }
2548   return mem;
2549 }
2550 
2551 //
2552 // Move memory users to their memory slices.
2553 //
2554 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2555   Compile* C = _compile;
2556   PhaseGVN* igvn = _igvn;
2557   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2558   assert(tp != NULL, "ptr type");
2559   int alias_idx = C->get_alias_index(tp);
2560   int general_idx = C->get_general_index(alias_idx);
2561 
2562   // Move users first
2563   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2564     Node* use = n->fast_out(i);
2565     if (use->is_MergeMem()) {
2566       MergeMemNode* mmem = use->as_MergeMem();
2567       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2568       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2569         continue; // Nothing to do
2570       }
2571       // Replace previous general reference to mem node.
2572       uint orig_uniq = C->unique();
2573       Node* m = find_inst_mem(n, general_idx, orig_phis);
2574       assert(orig_uniq == C->unique(), "no new nodes");
2575       mmem->set_memory_at(general_idx, m);
2576       --imax;
2577       --i;
2578     } else if (use->is_MemBar()) {
2579       assert(!use->is_Initialize(), "initializing stores should not be moved");
2580       if (use->req() > MemBarNode::Precedent &&
2581           use->in(MemBarNode::Precedent) == n) {
2582         // Don't move related membars.
2583         record_for_optimizer(use);
2584         continue;
2585       }
2586       tp = use->as_MemBar()->adr_type()->isa_ptr();
2587       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2588           alias_idx == general_idx) {
2589         continue; // Nothing to do
2590       }
2591       // Move to general memory slice.
2592       uint orig_uniq = C->unique();
2593       Node* m = find_inst_mem(n, general_idx, orig_phis);
2594       assert(orig_uniq == C->unique(), "no new nodes");
2595       igvn->hash_delete(use);
2596       imax -= use->replace_edge(n, m);
2597       igvn->hash_insert(use);
2598       record_for_optimizer(use);
2599       --i;
2600 #ifdef ASSERT
2601     } else if (use->is_Mem()) {
2602       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2603         // Don't move related cardmark.
2604         continue;
2605       }
2606       // Memory nodes should have new memory input.
2607       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2608       assert(tp != NULL, "ptr type");
2609       int idx = C->get_alias_index(tp);
2610       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2611              "Following memory nodes should have new memory input or be on the same memory slice");
2612     } else if (use->is_Phi()) {
2613       // Phi nodes should be split and moved already.
2614       tp = use->as_Phi()->adr_type()->isa_ptr();
2615       assert(tp != NULL, "ptr type");
2616       int idx = C->get_alias_index(tp);
2617       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2618     } else {
2619       use->dump();
2620       assert(false, "should not be here");
2621 #endif
2622     }
2623   }
2624 }
2625 
2626 //
2627 // Search memory chain of "mem" to find a MemNode whose address
2628 // is the specified alias index.
2629 //
2630 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2631   if (orig_mem == NULL)
2632     return orig_mem;
2633   Compile* C = _compile;
2634   PhaseGVN* igvn = _igvn;
2635   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2636   bool is_instance = (toop != NULL) && toop->is_known_instance();
2637   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2638   Node *prev = NULL;
2639   Node *result = orig_mem;
2640   while (prev != result) {
2641     prev = result;
2642     if (result == start_mem)
2643       break;  // hit one of our sentinels
2644     if (result->is_Mem()) {
2645       const Type *at = igvn->type(result->in(MemNode::Address));
2646       if (at == Type::TOP)
2647         break; // Dead
2648       assert (at->isa_ptr() != NULL, "pointer type required.");
2649       int idx = C->get_alias_index(at->is_ptr());
2650       if (idx == alias_idx)
2651         break; // Found
2652       if (!is_instance && (at->isa_oopptr() == NULL ||
2653                            !at->is_oopptr()->is_known_instance())) {
2654         break; // Do not skip store to general memory slice.
2655       }
2656       result = result->in(MemNode::Memory);
2657     }
2658     if (!is_instance)
2659       continue;  // don't search further for non-instance types
2660     // skip over a call which does not affect this memory slice
2661     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2662       Node *proj_in = result->in(0);
2663       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2664         break;  // hit one of our sentinels
2665       } else if (proj_in->is_Call()) {
2666         // ArrayCopy node processed here as well
2667         CallNode *call = proj_in->as_Call();
2668         if (!call->may_modify(toop, igvn)) {
2669           result = call->in(TypeFunc::Memory);
2670         }
2671       } else if (proj_in->is_Initialize()) {
2672         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2673         // Stop if this is the initialization for the object instance which
2674         // which contains this memory slice, otherwise skip over it.
2675         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2676           result = proj_in->in(TypeFunc::Memory);
2677         }
2678       } else if (proj_in->is_MemBar()) {
2679         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2680             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2681             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2682           // clone
2683           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2684           if (ac->may_modify(toop, igvn)) {
2685             break;
2686           }
2687         }
2688         result = proj_in->in(TypeFunc::Memory);
2689       }
2690     } else if (result->is_MergeMem()) {
2691       MergeMemNode *mmem = result->as_MergeMem();
2692       result = step_through_mergemem(mmem, alias_idx, toop);
2693       if (result == mmem->base_memory()) {
2694         // Didn't find instance memory, search through general slice recursively.
2695         result = mmem->memory_at(C->get_general_index(alias_idx));
2696         result = find_inst_mem(result, alias_idx, orig_phis);
2697         if (C->failing()) {
2698           return NULL;
2699         }
2700         mmem->set_memory_at(alias_idx, result);
2701       }
2702     } else if (result->is_Phi() &&
2703                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2704       Node *un = result->as_Phi()->unique_input(igvn);
2705       if (un != NULL) {
2706         orig_phis.append_if_missing(result->as_Phi());
2707         result = un;
2708       } else {
2709         break;
2710       }
2711     } else if (result->is_ClearArray()) {
2712       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2713         // Can not bypass initialization of the instance
2714         // we are looking for.
2715         break;
2716       }
2717       // Otherwise skip it (the call updated 'result' value).
2718     } else if (result->Opcode() == Op_SCMemProj) {
2719       Node* mem = result->in(0);
2720       Node* adr = NULL;
2721       if (mem->is_LoadStore()) {
2722         adr = mem->in(MemNode::Address);
2723       } else {
2724         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2725         adr = mem->in(3); // Memory edge corresponds to destination array
2726       }
2727       const Type *at = igvn->type(adr);
2728       if (at != Type::TOP) {
2729         assert (at->isa_ptr() != NULL, "pointer type required.");
2730         int idx = C->get_alias_index(at->is_ptr());
2731         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2732         break;
2733       }
2734       result = mem->in(MemNode::Memory);
2735     }
2736   }
2737   if (result->is_Phi()) {
2738     PhiNode *mphi = result->as_Phi();
2739     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2740     const TypePtr *t = mphi->adr_type();
2741     if (!is_instance) {
2742       // Push all non-instance Phis on the orig_phis worklist to update inputs
2743       // during Phase 4 if needed.
2744       orig_phis.append_if_missing(mphi);
2745     } else if (C->get_alias_index(t) != alias_idx) {
2746       // Create a new Phi with the specified alias index type.
2747       result = split_memory_phi(mphi, alias_idx, orig_phis);
2748     }
2749   }
2750   // the result is either MemNode, PhiNode, InitializeNode.
2751   return result;
2752 }
2753 
2754 //
2755 //  Convert the types of unescaped object to instance types where possible,
2756 //  propagate the new type information through the graph, and update memory
2757 //  edges and MergeMem inputs to reflect the new type.
2758 //
2759 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2760 //  The processing is done in 4 phases:
2761 //
2762 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2763 //            types for the CheckCastPP for allocations where possible.
2764 //            Propagate the new types through users as follows:
2765 //               casts and Phi:  push users on alloc_worklist
2766 //               AddP:  cast Base and Address inputs to the instance type
2767 //                      push any AddP users on alloc_worklist and push any memnode
2768 //                      users onto memnode_worklist.
2769 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2770 //            search the Memory chain for a store with the appropriate type
2771 //            address type.  If a Phi is found, create a new version with
2772 //            the appropriate memory slices from each of the Phi inputs.
2773 //            For stores, process the users as follows:
2774 //               MemNode:  push on memnode_worklist
2775 //               MergeMem: push on mergemem_worklist
2776 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2777 //            moving the first node encountered of each  instance type to the
2778 //            the input corresponding to its alias index.
2779 //            appropriate memory slice.
2780 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2781 //
2782 // In the following example, the CheckCastPP nodes are the cast of allocation
2783 // results and the allocation of node 29 is unescaped and eligible to be an
2784 // instance type.
2785 //
2786 // We start with:
2787 //
2788 //     7 Parm #memory
2789 //    10  ConI  "12"
2790 //    19  CheckCastPP   "Foo"
2791 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2792 //    29  CheckCastPP   "Foo"
2793 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2794 //
2795 //    40  StoreP  25   7  20   ... alias_index=4
2796 //    50  StoreP  35  40  30   ... alias_index=4
2797 //    60  StoreP  45  50  20   ... alias_index=4
2798 //    70  LoadP    _  60  30   ... alias_index=4
2799 //    80  Phi     75  50  60   Memory alias_index=4
2800 //    90  LoadP    _  80  30   ... alias_index=4
2801 //   100  LoadP    _  80  20   ... alias_index=4
2802 //
2803 //
2804 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2805 // and creating a new alias index for node 30.  This gives:
2806 //
2807 //     7 Parm #memory
2808 //    10  ConI  "12"
2809 //    19  CheckCastPP   "Foo"
2810 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2811 //    29  CheckCastPP   "Foo"  iid=24
2812 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2813 //
2814 //    40  StoreP  25   7  20   ... alias_index=4
2815 //    50  StoreP  35  40  30   ... alias_index=6
2816 //    60  StoreP  45  50  20   ... alias_index=4
2817 //    70  LoadP    _  60  30   ... alias_index=6
2818 //    80  Phi     75  50  60   Memory alias_index=4
2819 //    90  LoadP    _  80  30   ... alias_index=6
2820 //   100  LoadP    _  80  20   ... alias_index=4
2821 //
2822 // In phase 2, new memory inputs are computed for the loads and stores,
2823 // And a new version of the phi is created.  In phase 4, the inputs to
2824 // node 80 are updated and then the memory nodes are updated with the
2825 // values computed in phase 2.  This results in:
2826 //
2827 //     7 Parm #memory
2828 //    10  ConI  "12"
2829 //    19  CheckCastPP   "Foo"
2830 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2831 //    29  CheckCastPP   "Foo"  iid=24
2832 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2833 //
2834 //    40  StoreP  25  7   20   ... alias_index=4
2835 //    50  StoreP  35  7   30   ... alias_index=6
2836 //    60  StoreP  45  40  20   ... alias_index=4
2837 //    70  LoadP    _  50  30   ... alias_index=6
2838 //    80  Phi     75  40  60   Memory alias_index=4
2839 //   120  Phi     75  50  50   Memory alias_index=6
2840 //    90  LoadP    _ 120  30   ... alias_index=6
2841 //   100  LoadP    _  80  20   ... alias_index=4
2842 //
2843 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2844   GrowableArray<Node *>  memnode_worklist;
2845   GrowableArray<PhiNode *>  orig_phis;
2846   PhaseIterGVN  *igvn = _igvn;
2847   uint new_index_start = (uint) _compile->num_alias_types();
2848   Arena* arena = Thread::current()->resource_area();
2849   VectorSet visited(arena);
2850   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2851   uint unique_old = _compile->unique();
2852 
2853   //  Phase 1:  Process possible allocations from alloc_worklist.
2854   //  Create instance types for the CheckCastPP for allocations where possible.
2855   //
2856   // (Note: don't forget to change the order of the second AddP node on
2857   //  the alloc_worklist if the order of the worklist processing is changed,
2858   //  see the comment in find_second_addp().)
2859   //
2860   while (alloc_worklist.length() != 0) {
2861     Node *n = alloc_worklist.pop();
2862     uint ni = n->_idx;
2863     if (n->is_Call()) {
2864       CallNode *alloc = n->as_Call();
2865       // copy escape information to call node
2866       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2867       PointsToNode::EscapeState es = ptn->escape_state();
2868       // We have an allocation or call which returns a Java object,
2869       // see if it is unescaped.
2870       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2871         continue;
2872       // Find CheckCastPP for the allocate or for the return value of a call
2873       n = alloc->result_cast();
2874       if (n == NULL) {            // No uses except Initialize node
2875         if (alloc->is_Allocate()) {
2876           // Set the scalar_replaceable flag for allocation
2877           // so it could be eliminated if it has no uses.
2878           alloc->as_Allocate()->_is_scalar_replaceable = true;
2879         }
2880         if (alloc->is_CallStaticJava()) {
2881           // Set the scalar_replaceable flag for boxing method
2882           // so it could be eliminated if it has no uses.
2883           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2884         }
2885         continue;
2886       }
2887       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2888         assert(!alloc->is_Allocate(), "allocation should have unique type");
2889         continue;
2890       }
2891 
2892       // The inline code for Object.clone() casts the allocation result to
2893       // java.lang.Object and then to the actual type of the allocated
2894       // object. Detect this case and use the second cast.
2895       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2896       // the allocation result is cast to java.lang.Object and then
2897       // to the actual Array type.
2898       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2899           && (alloc->is_AllocateArray() ||
2900               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2901         Node *cast2 = NULL;
2902         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2903           Node *use = n->fast_out(i);
2904           if (use->is_CheckCastPP()) {
2905             cast2 = use;
2906             break;
2907           }
2908         }
2909         if (cast2 != NULL) {
2910           n = cast2;
2911         } else {
2912           // Non-scalar replaceable if the allocation type is unknown statically
2913           // (reflection allocation), the object can't be restored during
2914           // deoptimization without precise type.
2915           continue;
2916         }
2917       }
2918 
2919       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2920       if (t == NULL)
2921         continue;  // not a TypeOopPtr
2922       if (!t->klass_is_exact())
2923         continue; // not an unique type
2924 
2925       if (alloc->is_Allocate()) {
2926         // Set the scalar_replaceable flag for allocation
2927         // so it could be eliminated.
2928         alloc->as_Allocate()->_is_scalar_replaceable = true;
2929       }
2930       if (alloc->is_CallStaticJava()) {
2931         // Set the scalar_replaceable flag for boxing method
2932         // so it could be eliminated.
2933         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2934       }
2935       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2936       // in order for an object to be scalar-replaceable, it must be:
2937       //   - a direct allocation (not a call returning an object)
2938       //   - non-escaping
2939       //   - eligible to be a unique type
2940       //   - not determined to be ineligible by escape analysis
2941       set_map(alloc, n);
2942       set_map(n, alloc);
2943       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2944       igvn->hash_delete(n);
2945       igvn->set_type(n,  tinst);
2946       n->raise_bottom_type(tinst);
2947       igvn->hash_insert(n);
2948       record_for_optimizer(n);
2949       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2950 
2951         // First, put on the worklist all Field edges from Connection Graph
2952         // which is more accurate than putting immediate users from Ideal Graph.
2953         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2954           PointsToNode* tgt = e.get();
2955           if (tgt->is_Arraycopy()) {
2956             continue;
2957           }
2958           Node* use = tgt->ideal_node();
2959           assert(tgt->is_Field() && use->is_AddP(),
2960                  "only AddP nodes are Field edges in CG");
2961           if (use->outcnt() > 0) { // Don't process dead nodes
2962             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2963             if (addp2 != NULL) {
2964               assert(alloc->is_AllocateArray(),"array allocation was expected");
2965               alloc_worklist.append_if_missing(addp2);
2966             }
2967             alloc_worklist.append_if_missing(use);
2968           }
2969         }
2970 
2971         // An allocation may have an Initialize which has raw stores. Scan
2972         // the users of the raw allocation result and push AddP users
2973         // on alloc_worklist.
2974         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2975         assert (raw_result != NULL, "must have an allocation result");
2976         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2977           Node *use = raw_result->fast_out(i);
2978           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2979             Node* addp2 = find_second_addp(use, raw_result);
2980             if (addp2 != NULL) {
2981               assert(alloc->is_AllocateArray(),"array allocation was expected");
2982               alloc_worklist.append_if_missing(addp2);
2983             }
2984             alloc_worklist.append_if_missing(use);
2985           } else if (use->is_MemBar()) {
2986             memnode_worklist.append_if_missing(use);
2987           }
2988         }
2989       }
2990     } else if (n->is_AddP()) {
2991       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2992       if (jobj == NULL || jobj == phantom_obj) {
2993 #ifdef ASSERT
2994         ptnode_adr(get_addp_base(n)->_idx)->dump();
2995         ptnode_adr(n->_idx)->dump();
2996         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2997 #endif
2998         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2999         return;
3000       }
3001       Node *base = get_map(jobj->idx());  // CheckCastPP node
3002       if (!split_AddP(n, base)) continue; // wrong type from dead path
3003     } else if (n->is_Phi() ||
3004                n->is_CheckCastPP() ||
3005                n->is_EncodeP() ||
3006                n->is_DecodeN() ||
3007                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3008       if (visited.test_set(n->_idx)) {
3009         assert(n->is_Phi(), "loops only through Phi's");
3010         continue;  // already processed
3011       }
3012       JavaObjectNode* jobj = unique_java_object(n);
3013       if (jobj == NULL || jobj == phantom_obj) {
3014 #ifdef ASSERT
3015         ptnode_adr(n->_idx)->dump();
3016         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3017 #endif
3018         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3019         return;
3020       } else {
3021         Node *val = get_map(jobj->idx());   // CheckCastPP node
3022         TypeNode *tn = n->as_Type();
3023         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3024         assert(tinst != NULL && tinst->is_known_instance() &&
3025                tinst->instance_id() == jobj->idx() , "instance type expected.");
3026 
3027         const Type *tn_type = igvn->type(tn);
3028         const TypeOopPtr *tn_t;
3029         if (tn_type->isa_narrowoop()) {
3030           tn_t = tn_type->make_ptr()->isa_oopptr();
3031         } else {
3032           tn_t = tn_type->isa_oopptr();
3033         }
3034         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3035           if (tn_type->isa_narrowoop()) {
3036             tn_type = tinst->make_narrowoop();
3037           } else {
3038             tn_type = tinst;
3039           }
3040           igvn->hash_delete(tn);
3041           igvn->set_type(tn, tn_type);
3042           tn->set_type(tn_type);
3043           igvn->hash_insert(tn);
3044           record_for_optimizer(n);
3045         } else {
3046           assert(tn_type == TypePtr::NULL_PTR ||
3047                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3048                  "unexpected type");
3049           continue; // Skip dead path with different type
3050         }
3051       }
3052     } else {
3053       debug_only(n->dump();)
3054       assert(false, "EA: unexpected node");
3055       continue;
3056     }
3057     // push allocation's users on appropriate worklist
3058     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3059       Node *use = n->fast_out(i);
3060       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3061         // Load/store to instance's field
3062         memnode_worklist.append_if_missing(use);
3063       } else if (use->is_MemBar()) {
3064         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3065           memnode_worklist.append_if_missing(use);
3066         }
3067       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3068         Node* addp2 = find_second_addp(use, n);
3069         if (addp2 != NULL) {
3070           alloc_worklist.append_if_missing(addp2);
3071         }
3072         alloc_worklist.append_if_missing(use);
3073       } else if (use->is_Phi() ||
3074                  use->is_CheckCastPP() ||
3075                  use->is_EncodeNarrowPtr() ||
3076                  use->is_DecodeNarrowPtr() ||
3077                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3078         alloc_worklist.append_if_missing(use);
3079 #ifdef ASSERT
3080       } else if (use->is_Mem()) {
3081         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3082       } else if (use->is_MergeMem()) {
3083         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3084       } else if (use->is_SafePoint()) {
3085         // Look for MergeMem nodes for calls which reference unique allocation
3086         // (through CheckCastPP nodes) even for debug info.
3087         Node* m = use->in(TypeFunc::Memory);
3088         if (m->is_MergeMem()) {
3089           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3090         }
3091       } else if (use->Opcode() == Op_EncodeISOArray) {
3092         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3093           // EncodeISOArray overwrites destination array
3094           memnode_worklist.append_if_missing(use);
3095         }
3096       } else {
3097         uint op = use->Opcode();
3098         if (!(op == Op_CmpP || op == Op_Conv2B ||
3099               op == Op_CastP2X || op == Op_StoreCM ||
3100               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3101               op == Op_StrEquals || op == Op_StrIndexOf)) {
3102           n->dump();
3103           use->dump();
3104           assert(false, "EA: missing allocation reference path");
3105         }
3106 #endif
3107       }
3108     }
3109 
3110   }
3111 
3112   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3113   // type, record it in the ArrayCopy node so we know what memory this
3114   // node uses/modified.
3115   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3116     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3117     Node* dest = ac->in(ArrayCopyNode::Dest);
3118     if (dest->is_AddP()) {
3119       dest = get_addp_base(dest);
3120     }
3121     JavaObjectNode* jobj = unique_java_object(dest);
3122     if (jobj != NULL) {
3123       Node *base = get_map(jobj->idx());
3124       if (base != NULL) {
3125         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3126         ac->_dest_type = base_t;
3127       }
3128     }
3129     Node* src = ac->in(ArrayCopyNode::Src);
3130     if (src->is_AddP()) {
3131       src = get_addp_base(src);
3132     }
3133     jobj = unique_java_object(src);
3134     if (jobj != NULL) {
3135       Node* base = get_map(jobj->idx());
3136       if (base != NULL) {
3137         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3138         ac->_src_type = base_t;
3139       }
3140     }
3141   }
3142 
3143   // New alias types were created in split_AddP().
3144   uint new_index_end = (uint) _compile->num_alias_types();
3145   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3146 
3147   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3148   //            compute new values for Memory inputs  (the Memory inputs are not
3149   //            actually updated until phase 4.)
3150   if (memnode_worklist.length() == 0)
3151     return;  // nothing to do
3152   while (memnode_worklist.length() != 0) {
3153     Node *n = memnode_worklist.pop();
3154     if (visited.test_set(n->_idx))
3155       continue;
3156     if (n->is_Phi() || n->is_ClearArray()) {
3157       // we don't need to do anything, but the users must be pushed
3158     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3159       // we don't need to do anything, but the users must be pushed
3160       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3161       if (n == NULL)
3162         continue;
3163     } else if (n->Opcode() == Op_EncodeISOArray) {
3164       // get the memory projection
3165       n = n->find_out_with(Op_SCMemProj);
3166       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3167     } else {
3168       assert(n->is_Mem(), "memory node required.");
3169       Node *addr = n->in(MemNode::Address);
3170       const Type *addr_t = igvn->type(addr);
3171       if (addr_t == Type::TOP)
3172         continue;
3173       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3174       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3175       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3176       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3177       if (_compile->failing()) {
3178         return;
3179       }
3180       if (mem != n->in(MemNode::Memory)) {
3181         // We delay the memory edge update since we need old one in
3182         // MergeMem code below when instances memory slices are separated.
3183         set_map(n, mem);
3184       }
3185       if (n->is_Load()) {
3186         continue;  // don't push users
3187       } else if (n->is_LoadStore()) {
3188         // get the memory projection
3189         n = n->find_out_with(Op_SCMemProj);
3190         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3191       }
3192     }
3193     // push user on appropriate worklist
3194     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3195       Node *use = n->fast_out(i);
3196       if (use->is_Phi() || use->is_ClearArray()) {
3197         memnode_worklist.append_if_missing(use);
3198       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3199         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3200           continue;
3201         memnode_worklist.append_if_missing(use);
3202       } else if (use->is_MemBar()) {
3203         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3204           memnode_worklist.append_if_missing(use);
3205         }
3206 #ifdef ASSERT
3207       } else if(use->is_Mem()) {
3208         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3209       } else if (use->is_MergeMem()) {
3210         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3211       } else if (use->Opcode() == Op_EncodeISOArray) {
3212         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3213           // EncodeISOArray overwrites destination array
3214           memnode_worklist.append_if_missing(use);
3215         }
3216       } else {
3217         uint op = use->Opcode();
3218         if (!(op == Op_StoreCM ||
3219               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3220                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3221               op == Op_AryEq || op == Op_StrComp ||
3222               op == Op_StrEquals || op == Op_StrIndexOf)) {
3223           n->dump();
3224           use->dump();
3225           assert(false, "EA: missing memory path");
3226         }
3227 #endif
3228       }
3229     }
3230   }
3231 
3232   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3233   //            Walk each memory slice moving the first node encountered of each
3234   //            instance type to the the input corresponding to its alias index.
3235   uint length = _mergemem_worklist.length();
3236   for( uint next = 0; next < length; ++next ) {
3237     MergeMemNode* nmm = _mergemem_worklist.at(next);
3238     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3239     // Note: we don't want to use MergeMemStream here because we only want to
3240     // scan inputs which exist at the start, not ones we add during processing.
3241     // Note 2: MergeMem may already contains instance memory slices added
3242     // during find_inst_mem() call when memory nodes were processed above.
3243     igvn->hash_delete(nmm);
3244     uint nslices = MIN2(nmm->req(), new_index_start);
3245     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3246       Node* mem = nmm->in(i);
3247       Node* cur = NULL;
3248       if (mem == NULL || mem->is_top())
3249         continue;
3250       // First, update mergemem by moving memory nodes to corresponding slices
3251       // if their type became more precise since this mergemem was created.
3252       while (mem->is_Mem()) {
3253         const Type *at = igvn->type(mem->in(MemNode::Address));
3254         if (at != Type::TOP) {
3255           assert (at->isa_ptr() != NULL, "pointer type required.");
3256           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3257           if (idx == i) {
3258             if (cur == NULL)
3259               cur = mem;
3260           } else {
3261             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3262               nmm->set_memory_at(idx, mem);
3263             }
3264           }
3265         }
3266         mem = mem->in(MemNode::Memory);
3267       }
3268       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3269       // Find any instance of the current type if we haven't encountered
3270       // already a memory slice of the instance along the memory chain.
3271       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3272         if((uint)_compile->get_general_index(ni) == i) {
3273           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3274           if (nmm->is_empty_memory(m)) {
3275             Node* result = find_inst_mem(mem, ni, orig_phis);
3276             if (_compile->failing()) {
3277               return;
3278             }
3279             nmm->set_memory_at(ni, result);
3280           }
3281         }
3282       }
3283     }
3284     // Find the rest of instances values
3285     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3286       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3287       Node* result = step_through_mergemem(nmm, ni, tinst);
3288       if (result == nmm->base_memory()) {
3289         // Didn't find instance memory, search through general slice recursively.
3290         result = nmm->memory_at(_compile->get_general_index(ni));
3291         result = find_inst_mem(result, ni, orig_phis);
3292         if (_compile->failing()) {
3293           return;
3294         }
3295         nmm->set_memory_at(ni, result);
3296       }
3297     }
3298     igvn->hash_insert(nmm);
3299     record_for_optimizer(nmm);
3300   }
3301 
3302   //  Phase 4:  Update the inputs of non-instance memory Phis and
3303   //            the Memory input of memnodes
3304   // First update the inputs of any non-instance Phi's from
3305   // which we split out an instance Phi.  Note we don't have
3306   // to recursively process Phi's encounted on the input memory
3307   // chains as is done in split_memory_phi() since they  will
3308   // also be processed here.
3309   for (int j = 0; j < orig_phis.length(); j++) {
3310     PhiNode *phi = orig_phis.at(j);
3311     int alias_idx = _compile->get_alias_index(phi->adr_type());
3312     igvn->hash_delete(phi);
3313     for (uint i = 1; i < phi->req(); i++) {
3314       Node *mem = phi->in(i);
3315       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3316       if (_compile->failing()) {
3317         return;
3318       }
3319       if (mem != new_mem) {
3320         phi->set_req(i, new_mem);
3321       }
3322     }
3323     igvn->hash_insert(phi);
3324     record_for_optimizer(phi);
3325   }
3326 
3327   // Update the memory inputs of MemNodes with the value we computed
3328   // in Phase 2 and move stores memory users to corresponding memory slices.
3329   // Disable memory split verification code until the fix for 6984348.
3330   // Currently it produces false negative results since it does not cover all cases.
3331 #if 0 // ifdef ASSERT
3332   visited.Reset();
3333   Node_Stack old_mems(arena, _compile->unique() >> 2);
3334 #endif
3335   for (uint i = 0; i < ideal_nodes.size(); i++) {
3336     Node*    n = ideal_nodes.at(i);
3337     Node* nmem = get_map(n->_idx);
3338     assert(nmem != NULL, "sanity");
3339     if (n->is_Mem()) {
3340 #if 0 // ifdef ASSERT
3341       Node* old_mem = n->in(MemNode::Memory);
3342       if (!visited.test_set(old_mem->_idx)) {
3343         old_mems.push(old_mem, old_mem->outcnt());
3344       }
3345 #endif
3346       assert(n->in(MemNode::Memory) != nmem, "sanity");
3347       if (!n->is_Load()) {
3348         // Move memory users of a store first.
3349         move_inst_mem(n, orig_phis);
3350       }
3351       // Now update memory input
3352       igvn->hash_delete(n);
3353       n->set_req(MemNode::Memory, nmem);
3354       igvn->hash_insert(n);
3355       record_for_optimizer(n);
3356     } else {
3357       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3358              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3359     }
3360   }
3361 #if 0 // ifdef ASSERT
3362   // Verify that memory was split correctly
3363   while (old_mems.is_nonempty()) {
3364     Node* old_mem = old_mems.node();
3365     uint  old_cnt = old_mems.index();
3366     old_mems.pop();
3367     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3368   }
3369 #endif
3370 }
3371 
3372 #ifndef PRODUCT
3373 static const char *node_type_names[] = {
3374   "UnknownType",
3375   "JavaObject",
3376   "LocalVar",
3377   "Field",
3378   "Arraycopy"
3379 };
3380 
3381 static const char *esc_names[] = {
3382   "UnknownEscape",
3383   "NoEscape",
3384   "ArgEscape",
3385   "GlobalEscape"
3386 };
3387 
3388 void PointsToNode::dump(bool print_state) const {
3389   NodeType nt = node_type();
3390   tty->print("%s ", node_type_names[(int) nt]);
3391   if (print_state) {
3392     EscapeState es = escape_state();
3393     EscapeState fields_es = fields_escape_state();
3394     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3395     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3396       tty->print("NSR ");
3397   }
3398   if (is_Field()) {
3399     FieldNode* f = (FieldNode*)this;
3400     if (f->is_oop())
3401       tty->print("oop ");
3402     if (f->offset() > 0)
3403       tty->print("+%d ", f->offset());
3404     tty->print("(");
3405     for (BaseIterator i(f); i.has_next(); i.next()) {
3406       PointsToNode* b = i.get();
3407       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3408     }
3409     tty->print(" )");
3410   }
3411   tty->print("[");
3412   for (EdgeIterator i(this); i.has_next(); i.next()) {
3413     PointsToNode* e = i.get();
3414     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3415   }
3416   tty->print(" [");
3417   for (UseIterator i(this); i.has_next(); i.next()) {
3418     PointsToNode* u = i.get();
3419     bool is_base = false;
3420     if (PointsToNode::is_base_use(u)) {
3421       is_base = true;
3422       u = PointsToNode::get_use_node(u)->as_Field();
3423     }
3424     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3425   }
3426   tty->print(" ]]  ");
3427   if (_node == NULL)
3428     tty->print_cr("<null>");
3429   else
3430     _node->dump();
3431 }
3432 
3433 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3434   bool first = true;
3435   int ptnodes_length = ptnodes_worklist.length();
3436   for (int i = 0; i < ptnodes_length; i++) {
3437     PointsToNode *ptn = ptnodes_worklist.at(i);
3438     if (ptn == NULL || !ptn->is_JavaObject())
3439       continue;
3440     PointsToNode::EscapeState es = ptn->escape_state();
3441     if ((es != PointsToNode::NoEscape) && !Verbose) {
3442       continue;
3443     }
3444     Node* n = ptn->ideal_node();
3445     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3446                              n->as_CallStaticJava()->is_boxing_method())) {
3447       if (first) {
3448         tty->cr();
3449         tty->print("======== Connection graph for ");
3450         _compile->method()->print_short_name();
3451         tty->cr();
3452         first = false;
3453       }
3454       ptn->dump();
3455       // Print all locals and fields which reference this allocation
3456       for (UseIterator j(ptn); j.has_next(); j.next()) {
3457         PointsToNode* use = j.get();
3458         if (use->is_LocalVar()) {
3459           use->dump(Verbose);
3460         } else if (Verbose) {
3461           use->dump();
3462         }
3463       }
3464       tty->cr();
3465     }
3466   }
3467 }
3468 #endif