1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45 protected:
  46 #ifdef ASSERT
  47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  48 #endif
  49   virtual uint size_of() const;
  50 public:
  51   enum { Control,               // When is it safe to do this load?
  52          Memory,                // Chunk of memory is being loaded from
  53          Address,               // Actually address, derived from base
  54          ValueIn,               // Value to store
  55          OopStore               // Preceeding oop store, only in StoreCM
  56   };
  57   typedef enum { unordered = 0,
  58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  59                  release        // Store has to release or be preceded by MemBarRelease.
  60   } MemOrd;
  61 protected:
  62   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  63     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
  64     init_class_id(Class_Mem);
  65     debug_only(_adr_type=at; adr_type();)
  66   }
  67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  68     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
  69     init_class_id(Class_Mem);
  70     debug_only(_adr_type=at; adr_type();)
  71   }
  72   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  73     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
  74     init_class_id(Class_Mem);
  75     debug_only(_adr_type=at; adr_type();)
  76   }
  77 
  78   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
  79 
  80 public:
  81   // Helpers for the optimizer.  Documented in memnode.cpp.
  82   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  83                                       Node* p2, AllocateNode* a2,
  84                                       PhaseTransform* phase);
  85   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  86 
  87   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  88   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  89   // This one should probably be a phase-specific function:
  90   static bool all_controls_dominate(Node* dom, Node* sub);
  91 
  92   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  93 
  94   // Shared code for Ideal methods:
  95   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  96 
  97   // Helper function for adr_type() implementations.
  98   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  99 
 100   // Raw access function, to allow copying of adr_type efficiently in
 101   // product builds and retain the debug info for debug builds.
 102   const TypePtr *raw_adr_type() const {
 103 #ifdef ASSERT
 104     return _adr_type;
 105 #else
 106     return 0;
 107 #endif
 108   }
 109 
 110   // Map a load or store opcode to its corresponding store opcode.
 111   // (Return -1 if unknown.)
 112   virtual int store_Opcode() const { return -1; }
 113 
 114   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 115   virtual BasicType memory_type() const = 0;
 116   virtual int memory_size() const {
 117 #ifdef ASSERT
 118     return type2aelembytes(memory_type(), true);
 119 #else
 120     return type2aelembytes(memory_type());
 121 #endif
 122   }
 123 
 124   // Search through memory states which precede this node (load or store).
 125   // Look for an exact match for the address, with no intervening
 126   // aliased stores.
 127   Node* find_previous_store(PhaseTransform* phase);
 128 
 129   // Can this node (load or store) accurately see a stored value in
 130   // the given memory state?  (The state may or may not be in(Memory).)
 131   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 132 
 133   void set_unaligned_access() { _unaligned_access = true; }
 134   bool is_unaligned_access() const { return _unaligned_access; }
 135   void set_mismatched_access() { _mismatched_access = true; }
 136   bool is_mismatched_access() const { return _mismatched_access; }
 137 
 138 #ifndef PRODUCT
 139   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 140   virtual void dump_spec(outputStream *st) const;
 141 #endif
 142 };
 143 
 144 //------------------------------LoadNode---------------------------------------
 145 // Load value; requires Memory and Address
 146 class LoadNode : public MemNode {
 147 public:
 148   // Some loads (from unsafe) should be pinned: they don't depend only
 149   // on the dominating test.  The boolean field _depends_only_on_test
 150   // below records whether that node depends only on the dominating
 151   // test.
 152   // Methods used to build LoadNodes pass an argument of type enum
 153   // ControlDependency instead of a boolean because those methods
 154   // typically have multiple boolean parameters with default values:
 155   // passing the wrong boolean to one of these parameters by mistake
 156   // goes easily unnoticed. Using an enum, the compiler can check that
 157   // the type of a value and the type of the parameter match.
 158   enum ControlDependency {
 159     Pinned,
 160     DependsOnlyOnTest
 161   };
 162 private:
 163   // LoadNode::hash() doesn't take the _depends_only_on_test field
 164   // into account: If the graph already has a non-pinned LoadNode and
 165   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 166   // to replace the pinned LoadNode with the non-pinned LoadNode,
 167   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 168   // those inputs in the first place. If the graph already has a
 169   // pinned LoadNode and we add a non pinned LoadNode with the same
 170   // inputs, it's safe (but suboptimal) for GVN to replace the
 171   // non-pinned LoadNode by the pinned LoadNode.
 172   bool _depends_only_on_test;
 173 
 174   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 175   // loads that can be reordered, and such requiring acquire semantics to
 176   // adhere to the Java specification.  The required behaviour is stored in
 177   // this field.
 178   const MemOrd _mo;
 179 
 180 protected:
 181   virtual uint cmp(const Node &n) const;
 182   virtual uint size_of() const; // Size is bigger
 183   // Should LoadNode::Ideal() attempt to remove control edges?
 184   virtual bool can_remove_control() const;
 185   const Type* const _type;      // What kind of value is loaded?
 186 
 187   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
 188 public:
 189 
 190   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 191     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 192     init_class_id(Class_Load);
 193   }
 194   inline bool is_unordered() const { return !is_acquire(); }
 195   inline bool is_acquire() const {
 196     assert(_mo == unordered || _mo == acquire, "unexpected");
 197     return _mo == acquire;
 198   }
 199 
 200   // Polymorphic factory method:
 201    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 202                      const TypePtr* at, const Type *rt, BasicType bt,
 203                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 204 
 205   virtual uint hash()   const;  // Check the type
 206 
 207   // Handle algebraic identities here.  If we have an identity, return the Node
 208   // we are equivalent to.  We look for Load of a Store.
 209   virtual Node *Identity( PhaseTransform *phase );
 210 
 211   // If the load is from Field memory and the pointer is non-null, it might be possible to
 212   // zero out the control input.
 213   // If the offset is constant and the base is an object allocation,
 214   // try to hook me up to the exact initializing store.
 215   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 216 
 217   // Split instance field load through Phi.
 218   Node* split_through_phi(PhaseGVN *phase);
 219 
 220   // Recover original value from boxed values
 221   Node *eliminate_autobox(PhaseGVN *phase);
 222 
 223   // Compute a new Type for this node.  Basically we just do the pre-check,
 224   // then call the virtual add() to set the type.
 225   virtual const Type *Value( PhaseTransform *phase ) const;
 226 
 227   // Common methods for LoadKlass and LoadNKlass nodes.
 228   const Type *klass_value_common( PhaseTransform *phase ) const;
 229   Node *klass_identity_common( PhaseTransform *phase );
 230 
 231   virtual uint ideal_reg() const;
 232   virtual const Type *bottom_type() const;
 233   // Following method is copied from TypeNode:
 234   void set_type(const Type* t) {
 235     assert(t != NULL, "sanity");
 236     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 237     *(const Type**)&_type = t;   // cast away const-ness
 238     // If this node is in the hash table, make sure it doesn't need a rehash.
 239     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 240   }
 241   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 242 
 243   // Do not match memory edge
 244   virtual uint match_edge(uint idx) const;
 245 
 246   // Map a load opcode to its corresponding store opcode.
 247   virtual int store_Opcode() const = 0;
 248 
 249   // Check if the load's memory input is a Phi node with the same control.
 250   bool is_instance_field_load_with_local_phi(Node* ctrl);
 251 
 252 #ifndef PRODUCT
 253   virtual void dump_spec(outputStream *st) const;
 254 #endif
 255 #ifdef ASSERT
 256   // Helper function to allow a raw load without control edge for some cases
 257   static bool is_immutable_value(Node* adr);
 258 #endif
 259 protected:
 260   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 261                                      ciKlass* klass) const;
 262 
 263   Node* can_see_arraycopy_value(Node* st, PhaseTransform* phase) const;
 264 
 265   // depends_only_on_test is almost always true, and needs to be almost always
 266   // true to enable key hoisting & commoning optimizations.  However, for the
 267   // special case of RawPtr loads from TLS top & end, and other loads performed by
 268   // GC barriers, the control edge carries the dependence preventing hoisting past
 269   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 270   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 271   // which produce results (new raw memory state) inside of loops preventing all
 272   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 273   // See comment in macro.cpp, around line 125 expand_allocate_common().
 274   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 275 };
 276 
 277 //------------------------------LoadBNode--------------------------------------
 278 // Load a byte (8bits signed) from memory
 279 class LoadBNode : public LoadNode {
 280 public:
 281   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 282     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 283   virtual int Opcode() const;
 284   virtual uint ideal_reg() const { return Op_RegI; }
 285   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 286   virtual const Type *Value(PhaseTransform *phase) const;
 287   virtual int store_Opcode() const { return Op_StoreB; }
 288   virtual BasicType memory_type() const { return T_BYTE; }
 289 };
 290 
 291 //------------------------------LoadUBNode-------------------------------------
 292 // Load a unsigned byte (8bits unsigned) from memory
 293 class LoadUBNode : public LoadNode {
 294 public:
 295   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 296     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 297   virtual int Opcode() const;
 298   virtual uint ideal_reg() const { return Op_RegI; }
 299   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 300   virtual const Type *Value(PhaseTransform *phase) const;
 301   virtual int store_Opcode() const { return Op_StoreB; }
 302   virtual BasicType memory_type() const { return T_BYTE; }
 303 };
 304 
 305 //------------------------------LoadUSNode-------------------------------------
 306 // Load an unsigned short/char (16bits unsigned) from memory
 307 class LoadUSNode : public LoadNode {
 308 public:
 309   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 310     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 311   virtual int Opcode() const;
 312   virtual uint ideal_reg() const { return Op_RegI; }
 313   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 314   virtual const Type *Value(PhaseTransform *phase) const;
 315   virtual int store_Opcode() const { return Op_StoreC; }
 316   virtual BasicType memory_type() const { return T_CHAR; }
 317 };
 318 
 319 //------------------------------LoadSNode--------------------------------------
 320 // Load a short (16bits signed) from memory
 321 class LoadSNode : public LoadNode {
 322 public:
 323   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 324     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 325   virtual int Opcode() const;
 326   virtual uint ideal_reg() const { return Op_RegI; }
 327   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 328   virtual const Type *Value(PhaseTransform *phase) const;
 329   virtual int store_Opcode() const { return Op_StoreC; }
 330   virtual BasicType memory_type() const { return T_SHORT; }
 331 };
 332 
 333 //------------------------------LoadINode--------------------------------------
 334 // Load an integer from memory
 335 class LoadINode : public LoadNode {
 336 public:
 337   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 338     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 339   virtual int Opcode() const;
 340   virtual uint ideal_reg() const { return Op_RegI; }
 341   virtual int store_Opcode() const { return Op_StoreI; }
 342   virtual BasicType memory_type() const { return T_INT; }
 343 };
 344 
 345 //------------------------------LoadRangeNode----------------------------------
 346 // Load an array length from the array
 347 class LoadRangeNode : public LoadINode {
 348 public:
 349   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 350     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 351   virtual int Opcode() const;
 352   virtual const Type *Value( PhaseTransform *phase ) const;
 353   virtual Node *Identity( PhaseTransform *phase );
 354   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 355 };
 356 
 357 //------------------------------LoadLNode--------------------------------------
 358 // Load a long from memory
 359 class LoadLNode : public LoadNode {
 360   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 361   virtual uint cmp( const Node &n ) const {
 362     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 363       && LoadNode::cmp(n);
 364   }
 365   virtual uint size_of() const { return sizeof(*this); }
 366   const bool _require_atomic_access;  // is piecewise load forbidden?
 367 
 368 public:
 369   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 370             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 371     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 372   virtual int Opcode() const;
 373   virtual uint ideal_reg() const { return Op_RegL; }
 374   virtual int store_Opcode() const { return Op_StoreL; }
 375   virtual BasicType memory_type() const { return T_LONG; }
 376   bool require_atomic_access() const { return _require_atomic_access; }
 377   static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 378                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 379 #ifndef PRODUCT
 380   virtual void dump_spec(outputStream *st) const {
 381     LoadNode::dump_spec(st);
 382     if (_require_atomic_access)  st->print(" Atomic!");
 383   }
 384 #endif
 385 };
 386 
 387 //------------------------------LoadL_unalignedNode----------------------------
 388 // Load a long from unaligned memory
 389 class LoadL_unalignedNode : public LoadLNode {
 390 public:
 391   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 392     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 393   virtual int Opcode() const;
 394 };
 395 
 396 //------------------------------LoadFNode--------------------------------------
 397 // Load a float (64 bits) from memory
 398 class LoadFNode : public LoadNode {
 399 public:
 400   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 401     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 402   virtual int Opcode() const;
 403   virtual uint ideal_reg() const { return Op_RegF; }
 404   virtual int store_Opcode() const { return Op_StoreF; }
 405   virtual BasicType memory_type() const { return T_FLOAT; }
 406 };
 407 
 408 //------------------------------LoadDNode--------------------------------------
 409 // Load a double (64 bits) from memory
 410 class LoadDNode : public LoadNode {
 411   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 412   virtual uint cmp( const Node &n ) const {
 413     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 414       && LoadNode::cmp(n);
 415   }
 416   virtual uint size_of() const { return sizeof(*this); }
 417   const bool _require_atomic_access;  // is piecewise load forbidden?
 418 
 419 public:
 420   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 421             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 422     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 423   virtual int Opcode() const;
 424   virtual uint ideal_reg() const { return Op_RegD; }
 425   virtual int store_Opcode() const { return Op_StoreD; }
 426   virtual BasicType memory_type() const { return T_DOUBLE; }
 427   bool require_atomic_access() const { return _require_atomic_access; }
 428   static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 429                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 430 #ifndef PRODUCT
 431   virtual void dump_spec(outputStream *st) const {
 432     LoadNode::dump_spec(st);
 433     if (_require_atomic_access)  st->print(" Atomic!");
 434   }
 435 #endif
 436 };
 437 
 438 //------------------------------LoadD_unalignedNode----------------------------
 439 // Load a double from unaligned memory
 440 class LoadD_unalignedNode : public LoadDNode {
 441 public:
 442   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 443     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 444   virtual int Opcode() const;
 445 };
 446 
 447 //------------------------------LoadPNode--------------------------------------
 448 // Load a pointer from memory (either object or array)
 449 class LoadPNode : public LoadNode {
 450 public:
 451   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 452     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 453   virtual int Opcode() const;
 454   virtual uint ideal_reg() const { return Op_RegP; }
 455   virtual int store_Opcode() const { return Op_StoreP; }
 456   virtual BasicType memory_type() const { return T_ADDRESS; }
 457 };
 458 
 459 
 460 //------------------------------LoadNNode--------------------------------------
 461 // Load a narrow oop from memory (either object or array)
 462 class LoadNNode : public LoadNode {
 463 public:
 464   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 465     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 466   virtual int Opcode() const;
 467   virtual uint ideal_reg() const { return Op_RegN; }
 468   virtual int store_Opcode() const { return Op_StoreN; }
 469   virtual BasicType memory_type() const { return T_NARROWOOP; }
 470 };
 471 
 472 //------------------------------LoadKlassNode----------------------------------
 473 // Load a Klass from an object
 474 class LoadKlassNode : public LoadPNode {
 475 protected:
 476   // In most cases, LoadKlassNode does not have the control input set. If the control
 477   // input is set, it must not be removed (by LoadNode::Ideal()).
 478   virtual bool can_remove_control() const;
 479 public:
 480   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 481     : LoadPNode(c, mem, adr, at, tk, mo) {}
 482   virtual int Opcode() const;
 483   virtual const Type *Value( PhaseTransform *phase ) const;
 484   virtual Node *Identity( PhaseTransform *phase );
 485   virtual bool depends_only_on_test() const { return true; }
 486 
 487   // Polymorphic factory method:
 488   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 489                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 490 };
 491 
 492 //------------------------------LoadNKlassNode---------------------------------
 493 // Load a narrow Klass from an object.
 494 class LoadNKlassNode : public LoadNNode {
 495 public:
 496   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 497     : LoadNNode(c, mem, adr, at, tk, mo) {}
 498   virtual int Opcode() const;
 499   virtual uint ideal_reg() const { return Op_RegN; }
 500   virtual int store_Opcode() const { return Op_StoreNKlass; }
 501   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 502 
 503   virtual const Type *Value( PhaseTransform *phase ) const;
 504   virtual Node *Identity( PhaseTransform *phase );
 505   virtual bool depends_only_on_test() const { return true; }
 506 };
 507 
 508 
 509 //------------------------------StoreNode--------------------------------------
 510 // Store value; requires Store, Address and Value
 511 class StoreNode : public MemNode {
 512 private:
 513   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 514   // stores that can be reordered, and such requiring release semantics to
 515   // adhere to the Java specification.  The required behaviour is stored in
 516   // this field.
 517   const MemOrd _mo;
 518   // Needed for proper cloning.
 519   virtual uint size_of() const { return sizeof(*this); }
 520 protected:
 521   virtual uint cmp( const Node &n ) const;
 522   virtual bool depends_only_on_test() const { return false; }
 523 
 524   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 525   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 526 
 527 public:
 528   // We must ensure that stores of object references will be visible
 529   // only after the object's initialization. So the callers of this
 530   // procedure must indicate that the store requires `release'
 531   // semantics, if the stored value is an object reference that might
 532   // point to a new object and may become externally visible.
 533   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 534     : MemNode(c, mem, adr, at, val), _mo(mo) {
 535     init_class_id(Class_Store);
 536   }
 537   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 538     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 539     init_class_id(Class_Store);
 540   }
 541 
 542   inline bool is_unordered() const { return !is_release(); }
 543   inline bool is_release() const {
 544     assert((_mo == unordered || _mo == release), "unexpected");
 545     return _mo == release;
 546   }
 547 
 548   // Conservatively release stores of object references in order to
 549   // ensure visibility of object initialization.
 550   static inline MemOrd release_if_reference(const BasicType t) {
 551 #ifdef AARCH64
 552     // AArch64 doesn't need a release store here because object
 553     // initialization contains the necessary barriers.
 554     return unordered;
 555 #else
 556     const MemOrd mo = (t == T_ARRAY ||
 557                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 558                        t == T_OBJECT) ? release : unordered;
 559     return mo;
 560 #endif
 561   }
 562 
 563   // Polymorphic factory method
 564   //
 565   // We must ensure that stores of object references will be visible
 566   // only after the object's initialization. So the callers of this
 567   // procedure must indicate that the store requires `release'
 568   // semantics, if the stored value is an object reference that might
 569   // point to a new object and may become externally visible.
 570   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 571                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 572 
 573   virtual uint hash() const;    // Check the type
 574 
 575   // If the store is to Field memory and the pointer is non-null, we can
 576   // zero out the control input.
 577   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 578 
 579   // Compute a new Type for this node.  Basically we just do the pre-check,
 580   // then call the virtual add() to set the type.
 581   virtual const Type *Value( PhaseTransform *phase ) const;
 582 
 583   // Check for identity function on memory (Load then Store at same address)
 584   virtual Node *Identity( PhaseTransform *phase );
 585 
 586   // Do not match memory edge
 587   virtual uint match_edge(uint idx) const;
 588 
 589   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 590 
 591   // Map a store opcode to its corresponding own opcode, trivially.
 592   virtual int store_Opcode() const { return Opcode(); }
 593 
 594   // have all possible loads of the value stored been optimized away?
 595   bool value_never_loaded(PhaseTransform *phase) const;
 596 };
 597 
 598 //------------------------------StoreBNode-------------------------------------
 599 // Store byte to memory
 600 class StoreBNode : public StoreNode {
 601 public:
 602   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 603     : StoreNode(c, mem, adr, at, val, mo) {}
 604   virtual int Opcode() const;
 605   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 606   virtual BasicType memory_type() const { return T_BYTE; }
 607 };
 608 
 609 //------------------------------StoreCNode-------------------------------------
 610 // Store char/short to memory
 611 class StoreCNode : public StoreNode {
 612 public:
 613   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 614     : StoreNode(c, mem, adr, at, val, mo) {}
 615   virtual int Opcode() const;
 616   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 617   virtual BasicType memory_type() const { return T_CHAR; }
 618 };
 619 
 620 //------------------------------StoreINode-------------------------------------
 621 // Store int to memory
 622 class StoreINode : public StoreNode {
 623 public:
 624   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 625     : StoreNode(c, mem, adr, at, val, mo) {}
 626   virtual int Opcode() const;
 627   virtual BasicType memory_type() const { return T_INT; }
 628 };
 629 
 630 //------------------------------StoreLNode-------------------------------------
 631 // Store long to memory
 632 class StoreLNode : public StoreNode {
 633   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 634   virtual uint cmp( const Node &n ) const {
 635     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 636       && StoreNode::cmp(n);
 637   }
 638   virtual uint size_of() const { return sizeof(*this); }
 639   const bool _require_atomic_access;  // is piecewise store forbidden?
 640 
 641 public:
 642   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 643     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 644   virtual int Opcode() const;
 645   virtual BasicType memory_type() const { return T_LONG; }
 646   bool require_atomic_access() const { return _require_atomic_access; }
 647   static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 648 #ifndef PRODUCT
 649   virtual void dump_spec(outputStream *st) const {
 650     StoreNode::dump_spec(st);
 651     if (_require_atomic_access)  st->print(" Atomic!");
 652   }
 653 #endif
 654 };
 655 
 656 //------------------------------StoreFNode-------------------------------------
 657 // Store float to memory
 658 class StoreFNode : public StoreNode {
 659 public:
 660   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 661     : StoreNode(c, mem, adr, at, val, mo) {}
 662   virtual int Opcode() const;
 663   virtual BasicType memory_type() const { return T_FLOAT; }
 664 };
 665 
 666 //------------------------------StoreDNode-------------------------------------
 667 // Store double to memory
 668 class StoreDNode : public StoreNode {
 669   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 670   virtual uint cmp( const Node &n ) const {
 671     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 672       && StoreNode::cmp(n);
 673   }
 674   virtual uint size_of() const { return sizeof(*this); }
 675   const bool _require_atomic_access;  // is piecewise store forbidden?
 676 public:
 677   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 678              MemOrd mo, bool require_atomic_access = false)
 679     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 680   virtual int Opcode() const;
 681   virtual BasicType memory_type() const { return T_DOUBLE; }
 682   bool require_atomic_access() const { return _require_atomic_access; }
 683   static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 684 #ifndef PRODUCT
 685   virtual void dump_spec(outputStream *st) const {
 686     StoreNode::dump_spec(st);
 687     if (_require_atomic_access)  st->print(" Atomic!");
 688   }
 689 #endif
 690 
 691 };
 692 
 693 //------------------------------StorePNode-------------------------------------
 694 // Store pointer to memory
 695 class StorePNode : public StoreNode {
 696 public:
 697   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 698     : StoreNode(c, mem, adr, at, val, mo) {}
 699   virtual int Opcode() const;
 700   virtual BasicType memory_type() const { return T_ADDRESS; }
 701 };
 702 
 703 //------------------------------StoreNNode-------------------------------------
 704 // Store narrow oop to memory
 705 class StoreNNode : public StoreNode {
 706 public:
 707   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 708     : StoreNode(c, mem, adr, at, val, mo) {}
 709   virtual int Opcode() const;
 710   virtual BasicType memory_type() const { return T_NARROWOOP; }
 711 };
 712 
 713 //------------------------------StoreNKlassNode--------------------------------------
 714 // Store narrow klass to memory
 715 class StoreNKlassNode : public StoreNNode {
 716 public:
 717   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 718     : StoreNNode(c, mem, adr, at, val, mo) {}
 719   virtual int Opcode() const;
 720   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 721 };
 722 
 723 //------------------------------StoreCMNode-----------------------------------
 724 // Store card-mark byte to memory for CM
 725 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 726 // Preceeding equivalent StoreCMs may be eliminated.
 727 class StoreCMNode : public StoreNode {
 728  private:
 729   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 730   virtual uint cmp( const Node &n ) const {
 731     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 732       && StoreNode::cmp(n);
 733   }
 734   virtual uint size_of() const { return sizeof(*this); }
 735   int _oop_alias_idx;   // The alias_idx of OopStore
 736 
 737 public:
 738   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 739     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 740     _oop_alias_idx(oop_alias_idx) {
 741     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 742            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 743            "bad oop alias idx");
 744   }
 745   virtual int Opcode() const;
 746   virtual Node *Identity( PhaseTransform *phase );
 747   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 748   virtual const Type *Value( PhaseTransform *phase ) const;
 749   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 750   int oop_alias_idx() const { return _oop_alias_idx; }
 751 };
 752 
 753 //------------------------------LoadPLockedNode---------------------------------
 754 // Load-locked a pointer from memory (either object or array).
 755 // On Sparc & Intel this is implemented as a normal pointer load.
 756 // On PowerPC and friends it's a real load-locked.
 757 class LoadPLockedNode : public LoadPNode {
 758 public:
 759   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 760     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 761   virtual int Opcode() const;
 762   virtual int store_Opcode() const { return Op_StorePConditional; }
 763   virtual bool depends_only_on_test() const { return true; }
 764 };
 765 
 766 //------------------------------SCMemProjNode---------------------------------------
 767 // This class defines a projection of the memory  state of a store conditional node.
 768 // These nodes return a value, but also update memory.
 769 class SCMemProjNode : public ProjNode {
 770 public:
 771   enum {SCMEMPROJCON = (uint)-2};
 772   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 773   virtual int Opcode() const;
 774   virtual bool      is_CFG() const  { return false; }
 775   virtual const Type *bottom_type() const {return Type::MEMORY;}
 776   virtual const TypePtr *adr_type() const {
 777     Node* ctrl = in(0);
 778     if (ctrl == NULL)  return NULL; // node is dead
 779     return ctrl->in(MemNode::Memory)->adr_type();
 780   }
 781   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 782   virtual const Type *Value( PhaseTransform *phase ) const;
 783 #ifndef PRODUCT
 784   virtual void dump_spec(outputStream *st) const {};
 785 #endif
 786 };
 787 
 788 //------------------------------LoadStoreNode---------------------------
 789 // Note: is_Mem() method returns 'true' for this class.
 790 class LoadStoreNode : public Node {
 791 private:
 792   const Type* const _type;      // What kind of value is loaded?
 793   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 794   virtual uint size_of() const; // Size is bigger
 795 public:
 796   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 797   virtual bool depends_only_on_test() const { return false; }
 798   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 799 
 800   virtual const Type *bottom_type() const { return _type; }
 801   virtual uint ideal_reg() const;
 802   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 803 
 804   bool result_not_used() const;
 805 };
 806 
 807 class LoadStoreConditionalNode : public LoadStoreNode {
 808 public:
 809   enum {
 810     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 811   };
 812   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 813 };
 814 
 815 //------------------------------StorePConditionalNode---------------------------
 816 // Conditionally store pointer to memory, if no change since prior
 817 // load-locked.  Sets flags for success or failure of the store.
 818 class StorePConditionalNode : public LoadStoreConditionalNode {
 819 public:
 820   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 821   virtual int Opcode() const;
 822   // Produces flags
 823   virtual uint ideal_reg() const { return Op_RegFlags; }
 824 };
 825 
 826 //------------------------------StoreIConditionalNode---------------------------
 827 // Conditionally store int to memory, if no change since prior
 828 // load-locked.  Sets flags for success or failure of the store.
 829 class StoreIConditionalNode : public LoadStoreConditionalNode {
 830 public:
 831   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 832   virtual int Opcode() const;
 833   // Produces flags
 834   virtual uint ideal_reg() const { return Op_RegFlags; }
 835 };
 836 
 837 //------------------------------StoreLConditionalNode---------------------------
 838 // Conditionally store long to memory, if no change since prior
 839 // load-locked.  Sets flags for success or failure of the store.
 840 class StoreLConditionalNode : public LoadStoreConditionalNode {
 841 public:
 842   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 843   virtual int Opcode() const;
 844   // Produces flags
 845   virtual uint ideal_reg() const { return Op_RegFlags; }
 846 };
 847 
 848 
 849 //------------------------------CompareAndSwapLNode---------------------------
 850 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 851 public:
 852   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 853   virtual int Opcode() const;
 854 };
 855 
 856 
 857 //------------------------------CompareAndSwapINode---------------------------
 858 class CompareAndSwapINode : public LoadStoreConditionalNode {
 859 public:
 860   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 861   virtual int Opcode() const;
 862 };
 863 
 864 
 865 //------------------------------CompareAndSwapPNode---------------------------
 866 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 867 public:
 868   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 869   virtual int Opcode() const;
 870 };
 871 
 872 //------------------------------CompareAndSwapNNode---------------------------
 873 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 874 public:
 875   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 876   virtual int Opcode() const;
 877 };
 878 
 879 //------------------------------GetAndAddINode---------------------------
 880 class GetAndAddINode : public LoadStoreNode {
 881 public:
 882   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 883   virtual int Opcode() const;
 884 };
 885 
 886 //------------------------------GetAndAddLNode---------------------------
 887 class GetAndAddLNode : public LoadStoreNode {
 888 public:
 889   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 890   virtual int Opcode() const;
 891 };
 892 
 893 
 894 //------------------------------GetAndSetINode---------------------------
 895 class GetAndSetINode : public LoadStoreNode {
 896 public:
 897   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 898   virtual int Opcode() const;
 899 };
 900 
 901 //------------------------------GetAndSetINode---------------------------
 902 class GetAndSetLNode : public LoadStoreNode {
 903 public:
 904   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 905   virtual int Opcode() const;
 906 };
 907 
 908 //------------------------------GetAndSetPNode---------------------------
 909 class GetAndSetPNode : public LoadStoreNode {
 910 public:
 911   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 912   virtual int Opcode() const;
 913 };
 914 
 915 //------------------------------GetAndSetNNode---------------------------
 916 class GetAndSetNNode : public LoadStoreNode {
 917 public:
 918   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 919   virtual int Opcode() const;
 920 };
 921 
 922 //------------------------------ClearArray-------------------------------------
 923 class ClearArrayNode: public Node {
 924 public:
 925   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 926     : Node(ctrl,arymem,word_cnt,base) {
 927     init_class_id(Class_ClearArray);
 928   }
 929   virtual int         Opcode() const;
 930   virtual const Type *bottom_type() const { return Type::MEMORY; }
 931   // ClearArray modifies array elements, and so affects only the
 932   // array memory addressed by the bottom_type of its base address.
 933   virtual const class TypePtr *adr_type() const;
 934   virtual Node *Identity( PhaseTransform *phase );
 935   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 936   virtual uint match_edge(uint idx) const;
 937 
 938   // Clear the given area of an object or array.
 939   // The start offset must always be aligned mod BytesPerInt.
 940   // The end offset must always be aligned mod BytesPerLong.
 941   // Return the new memory.
 942   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 943                             intptr_t start_offset,
 944                             intptr_t end_offset,
 945                             PhaseGVN* phase);
 946   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 947                             intptr_t start_offset,
 948                             Node* end_offset,
 949                             PhaseGVN* phase);
 950   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 951                             Node* start_offset,
 952                             Node* end_offset,
 953                             PhaseGVN* phase);
 954   // Return allocation input memory edge if it is different instance
 955   // or itself if it is the one we are looking for.
 956   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 957 };
 958 
 959 //------------------------------MemBar-----------------------------------------
 960 // There are different flavors of Memory Barriers to match the Java Memory
 961 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
 962 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
 963 // volatile-load.  Monitor-exit and volatile-store act as Release: no
 964 // preceding ref can be moved to after them.  We insert a MemBar-Release
 965 // before a FastUnlock or volatile-store.  All volatiles need to be
 966 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
 967 // separate it from any following volatile-load.
 968 class MemBarNode: public MultiNode {
 969   virtual uint hash() const ;                  // { return NO_HASH; }
 970   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 971 
 972   virtual uint size_of() const { return sizeof(*this); }
 973   // Memory type this node is serializing.  Usually either rawptr or bottom.
 974   const TypePtr* _adr_type;
 975 
 976 public:
 977   enum {
 978     Precedent = TypeFunc::Parms  // optional edge to force precedence
 979   };
 980   MemBarNode(Compile* C, int alias_idx, Node* precedent);
 981   virtual int Opcode() const = 0;
 982   virtual const class TypePtr *adr_type() const { return _adr_type; }
 983   virtual const Type *Value( PhaseTransform *phase ) const;
 984   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 985   virtual uint match_edge(uint idx) const { return 0; }
 986   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
 987   virtual Node *match( const ProjNode *proj, const Matcher *m );
 988   // Factory method.  Builds a wide or narrow membar.
 989   // Optional 'precedent' becomes an extra edge if not null.
 990   static MemBarNode* make(Compile* C, int opcode,
 991                           int alias_idx = Compile::AliasIdxBot,
 992                           Node* precedent = NULL);
 993 };
 994 
 995 // "Acquire" - no following ref can move before (but earlier refs can
 996 // follow, like an early Load stalled in cache).  Requires multi-cpu
 997 // visibility.  Inserted after a volatile load.
 998 class MemBarAcquireNode: public MemBarNode {
 999 public:
1000   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1001     : MemBarNode(C, alias_idx, precedent) {}
1002   virtual int Opcode() const;
1003 };
1004 
1005 // "Acquire" - no following ref can move before (but earlier refs can
1006 // follow, like an early Load stalled in cache).  Requires multi-cpu
1007 // visibility.  Inserted independ of any load, as required
1008 // for intrinsic sun.misc.Unsafe.loadFence().
1009 class LoadFenceNode: public MemBarNode {
1010 public:
1011   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1012     : MemBarNode(C, alias_idx, precedent) {}
1013   virtual int Opcode() const;
1014 };
1015 
1016 // "Release" - no earlier ref can move after (but later refs can move
1017 // up, like a speculative pipelined cache-hitting Load).  Requires
1018 // multi-cpu visibility.  Inserted before a volatile store.
1019 class MemBarReleaseNode: public MemBarNode {
1020 public:
1021   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1022     : MemBarNode(C, alias_idx, precedent) {}
1023   virtual int Opcode() const;
1024 };
1025 
1026 // "Release" - no earlier ref can move after (but later refs can move
1027 // up, like a speculative pipelined cache-hitting Load).  Requires
1028 // multi-cpu visibility.  Inserted independent of any store, as required
1029 // for intrinsic sun.misc.Unsafe.storeFence().
1030 class StoreFenceNode: public MemBarNode {
1031 public:
1032   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1033     : MemBarNode(C, alias_idx, precedent) {}
1034   virtual int Opcode() const;
1035 };
1036 
1037 // "Acquire" - no following ref can move before (but earlier refs can
1038 // follow, like an early Load stalled in cache).  Requires multi-cpu
1039 // visibility.  Inserted after a FastLock.
1040 class MemBarAcquireLockNode: public MemBarNode {
1041 public:
1042   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1043     : MemBarNode(C, alias_idx, precedent) {}
1044   virtual int Opcode() const;
1045 };
1046 
1047 // "Release" - no earlier ref can move after (but later refs can move
1048 // up, like a speculative pipelined cache-hitting Load).  Requires
1049 // multi-cpu visibility.  Inserted before a FastUnLock.
1050 class MemBarReleaseLockNode: public MemBarNode {
1051 public:
1052   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1053     : MemBarNode(C, alias_idx, precedent) {}
1054   virtual int Opcode() const;
1055 };
1056 
1057 class MemBarStoreStoreNode: public MemBarNode {
1058 public:
1059   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1060     : MemBarNode(C, alias_idx, precedent) {
1061     init_class_id(Class_MemBarStoreStore);
1062   }
1063   virtual int Opcode() const;
1064 };
1065 
1066 // Ordering between a volatile store and a following volatile load.
1067 // Requires multi-CPU visibility?
1068 class MemBarVolatileNode: public MemBarNode {
1069 public:
1070   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1071     : MemBarNode(C, alias_idx, precedent) {}
1072   virtual int Opcode() const;
1073 };
1074 
1075 // Ordering within the same CPU.  Used to order unsafe memory references
1076 // inside the compiler when we lack alias info.  Not needed "outside" the
1077 // compiler because the CPU does all the ordering for us.
1078 class MemBarCPUOrderNode: public MemBarNode {
1079 public:
1080   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1081     : MemBarNode(C, alias_idx, precedent) {}
1082   virtual int Opcode() const;
1083   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1084 };
1085 
1086 // Isolation of object setup after an AllocateNode and before next safepoint.
1087 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1088 class InitializeNode: public MemBarNode {
1089   friend class AllocateNode;
1090 
1091   enum {
1092     Incomplete    = 0,
1093     Complete      = 1,
1094     WithArraycopy = 2
1095   };
1096   int _is_complete;
1097 
1098   bool _does_not_escape;
1099 
1100 public:
1101   enum {
1102     Control    = TypeFunc::Control,
1103     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1104     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1105     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1106   };
1107 
1108   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1109   virtual int Opcode() const;
1110   virtual uint size_of() const { return sizeof(*this); }
1111   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1112   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1113 
1114   // Manage incoming memory edges via a MergeMem on in(Memory):
1115   Node* memory(uint alias_idx);
1116 
1117   // The raw memory edge coming directly from the Allocation.
1118   // The contents of this memory are *always* all-zero-bits.
1119   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1120 
1121   // Return the corresponding allocation for this initialization (or null if none).
1122   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1123   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1124   AllocateNode* allocation();
1125 
1126   // Anything other than zeroing in this init?
1127   bool is_non_zero();
1128 
1129   // An InitializeNode must completed before macro expansion is done.
1130   // Completion requires that the AllocateNode must be followed by
1131   // initialization of the new memory to zero, then to any initializers.
1132   bool is_complete() { return _is_complete != Incomplete; }
1133   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1134 
1135   // Mark complete.  (Must not yet be complete.)
1136   void set_complete(PhaseGVN* phase);
1137   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1138 
1139   bool does_not_escape() { return _does_not_escape; }
1140   void set_does_not_escape() { _does_not_escape = true; }
1141 
1142 #ifdef ASSERT
1143   // ensure all non-degenerate stores are ordered and non-overlapping
1144   bool stores_are_sane(PhaseTransform* phase);
1145 #endif //ASSERT
1146 
1147   // See if this store can be captured; return offset where it initializes.
1148   // Return 0 if the store cannot be moved (any sort of problem).
1149   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1150 
1151   // Capture another store; reformat it to write my internal raw memory.
1152   // Return the captured copy, else NULL if there is some sort of problem.
1153   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1154 
1155   // Find captured store which corresponds to the range [start..start+size).
1156   // Return my own memory projection (meaning the initial zero bits)
1157   // if there is no such store.  Return NULL if there is a problem.
1158   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1159 
1160   // Called when the associated AllocateNode is expanded into CFG.
1161   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1162                         intptr_t header_size, Node* size_in_bytes,
1163                         PhaseGVN* phase);
1164 
1165  private:
1166   void remove_extra_zeroes();
1167 
1168   // Find out where a captured store should be placed (or already is placed).
1169   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1170                                      PhaseTransform* phase);
1171 
1172   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1173 
1174   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1175 
1176   bool detect_init_independence(Node* n, int& count);
1177 
1178   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1179                                PhaseGVN* phase);
1180 
1181   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1182 };
1183 
1184 //------------------------------MergeMem---------------------------------------
1185 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1186 class MergeMemNode: public Node {
1187   virtual uint hash() const ;                  // { return NO_HASH; }
1188   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1189   friend class MergeMemStream;
1190   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1191 
1192 public:
1193   // If the input is a whole memory state, clone it with all its slices intact.
1194   // Otherwise, make a new memory state with just that base memory input.
1195   // In either case, the result is a newly created MergeMem.
1196   static MergeMemNode* make(Node* base_memory);
1197 
1198   virtual int Opcode() const;
1199   virtual Node *Identity( PhaseTransform *phase );
1200   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1201   virtual uint ideal_reg() const { return NotAMachineReg; }
1202   virtual uint match_edge(uint idx) const { return 0; }
1203   virtual const RegMask &out_RegMask() const;
1204   virtual const Type *bottom_type() const { return Type::MEMORY; }
1205   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1206   // sparse accessors
1207   // Fetch the previously stored "set_memory_at", or else the base memory.
1208   // (Caller should clone it if it is a phi-nest.)
1209   Node* memory_at(uint alias_idx) const;
1210   // set the memory, regardless of its previous value
1211   void set_memory_at(uint alias_idx, Node* n);
1212   // the "base" is the memory that provides the non-finite support
1213   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1214   // warning: setting the base can implicitly set any of the other slices too
1215   void set_base_memory(Node* def);
1216   // sentinel value which denotes a copy of the base memory:
1217   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1218   static Node* make_empty_memory(); // where the sentinel comes from
1219   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1220   // hook for the iterator, to perform any necessary setup
1221   void iteration_setup(const MergeMemNode* other = NULL);
1222   // push sentinels until I am at least as long as the other (semantic no-op)
1223   void grow_to_match(const MergeMemNode* other);
1224   bool verify_sparse() const PRODUCT_RETURN0;
1225 #ifndef PRODUCT
1226   virtual void dump_spec(outputStream *st) const;
1227 #endif
1228 };
1229 
1230 class MergeMemStream : public StackObj {
1231  private:
1232   MergeMemNode*       _mm;
1233   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1234   Node*               _mm_base;  // loop-invariant base memory of _mm
1235   int                 _idx;
1236   int                 _cnt;
1237   Node*               _mem;
1238   Node*               _mem2;
1239   int                 _cnt2;
1240 
1241   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1242     // subsume_node will break sparseness at times, whenever a memory slice
1243     // folds down to a copy of the base ("fat") memory.  In such a case,
1244     // the raw edge will update to base, although it should be top.
1245     // This iterator will recognize either top or base_memory as an
1246     // "empty" slice.  See is_empty, is_empty2, and next below.
1247     //
1248     // The sparseness property is repaired in MergeMemNode::Ideal.
1249     // As long as access to a MergeMem goes through this iterator
1250     // or the memory_at accessor, flaws in the sparseness will
1251     // never be observed.
1252     //
1253     // Also, iteration_setup repairs sparseness.
1254     assert(mm->verify_sparse(), "please, no dups of base");
1255     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1256 
1257     _mm  = mm;
1258     _mm_base = mm->base_memory();
1259     _mm2 = mm2;
1260     _cnt = mm->req();
1261     _idx = Compile::AliasIdxBot-1; // start at the base memory
1262     _mem = NULL;
1263     _mem2 = NULL;
1264   }
1265 
1266 #ifdef ASSERT
1267   Node* check_memory() const {
1268     if (at_base_memory())
1269       return _mm->base_memory();
1270     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1271       return _mm->memory_at(_idx);
1272     else
1273       return _mm_base;
1274   }
1275   Node* check_memory2() const {
1276     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1277   }
1278 #endif
1279 
1280   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1281   void assert_synch() const {
1282     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1283            "no side-effects except through the stream");
1284   }
1285 
1286  public:
1287 
1288   // expected usages:
1289   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1290   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1291 
1292   // iterate over one merge
1293   MergeMemStream(MergeMemNode* mm) {
1294     mm->iteration_setup();
1295     init(mm);
1296     debug_only(_cnt2 = 999);
1297   }
1298   // iterate in parallel over two merges
1299   // only iterates through non-empty elements of mm2
1300   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1301     assert(mm2, "second argument must be a MergeMem also");
1302     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1303     mm->iteration_setup(mm2);
1304     init(mm, mm2);
1305     _cnt2 = mm2->req();
1306   }
1307 #ifdef ASSERT
1308   ~MergeMemStream() {
1309     assert_synch();
1310   }
1311 #endif
1312 
1313   MergeMemNode* all_memory() const {
1314     return _mm;
1315   }
1316   Node* base_memory() const {
1317     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1318     return _mm_base;
1319   }
1320   const MergeMemNode* all_memory2() const {
1321     assert(_mm2 != NULL, "");
1322     return _mm2;
1323   }
1324   bool at_base_memory() const {
1325     return _idx == Compile::AliasIdxBot;
1326   }
1327   int alias_idx() const {
1328     assert(_mem, "must call next 1st");
1329     return _idx;
1330   }
1331 
1332   const TypePtr* adr_type() const {
1333     return Compile::current()->get_adr_type(alias_idx());
1334   }
1335 
1336   const TypePtr* adr_type(Compile* C) const {
1337     return C->get_adr_type(alias_idx());
1338   }
1339   bool is_empty() const {
1340     assert(_mem, "must call next 1st");
1341     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1342     return _mem->is_top();
1343   }
1344   bool is_empty2() const {
1345     assert(_mem2, "must call next 1st");
1346     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1347     return _mem2->is_top();
1348   }
1349   Node* memory() const {
1350     assert(!is_empty(), "must not be empty");
1351     assert_synch();
1352     return _mem;
1353   }
1354   // get the current memory, regardless of empty or non-empty status
1355   Node* force_memory() const {
1356     assert(!is_empty() || !at_base_memory(), "");
1357     // Use _mm_base to defend against updates to _mem->base_memory().
1358     Node *mem = _mem->is_top() ? _mm_base : _mem;
1359     assert(mem == check_memory(), "");
1360     return mem;
1361   }
1362   Node* memory2() const {
1363     assert(_mem2 == check_memory2(), "");
1364     return _mem2;
1365   }
1366   void set_memory(Node* mem) {
1367     if (at_base_memory()) {
1368       // Note that this does not change the invariant _mm_base.
1369       _mm->set_base_memory(mem);
1370     } else {
1371       _mm->set_memory_at(_idx, mem);
1372     }
1373     _mem = mem;
1374     assert_synch();
1375   }
1376 
1377   // Recover from a side effect to the MergeMemNode.
1378   void set_memory() {
1379     _mem = _mm->in(_idx);
1380   }
1381 
1382   bool next()  { return next(false); }
1383   bool next2() { return next(true); }
1384 
1385   bool next_non_empty()  { return next_non_empty(false); }
1386   bool next_non_empty2() { return next_non_empty(true); }
1387   // next_non_empty2 can yield states where is_empty() is true
1388 
1389  private:
1390   // find the next item, which might be empty
1391   bool next(bool have_mm2) {
1392     assert((_mm2 != NULL) == have_mm2, "use other next");
1393     assert_synch();
1394     if (++_idx < _cnt) {
1395       // Note:  This iterator allows _mm to be non-sparse.
1396       // It behaves the same whether _mem is top or base_memory.
1397       _mem = _mm->in(_idx);
1398       if (have_mm2)
1399         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1400       return true;
1401     }
1402     return false;
1403   }
1404 
1405   // find the next non-empty item
1406   bool next_non_empty(bool have_mm2) {
1407     while (next(have_mm2)) {
1408       if (!is_empty()) {
1409         // make sure _mem2 is filled in sensibly
1410         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1411         return true;
1412       } else if (have_mm2 && !is_empty2()) {
1413         return true;   // is_empty() == true
1414       }
1415     }
1416     return false;
1417   }
1418 };
1419 
1420 //------------------------------Prefetch---------------------------------------
1421 
1422 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1423 class PrefetchAllocationNode : public Node {
1424 public:
1425   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1426   virtual int Opcode() const;
1427   virtual uint ideal_reg() const { return NotAMachineReg; }
1428   virtual uint match_edge(uint idx) const { return idx==2; }
1429   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1430 };
1431 
1432 #endif // SHARE_VM_OPTO_MEMNODE_HPP