1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/objArrayKlass.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/convertnode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/narrowptrnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 #include "opto/runtime.hpp"
  42 #include "opto/subnode.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 //=============================================================================
  49 //------------------------------Value------------------------------------------
  50 // Compute the type of the RegionNode.
  51 const Type* RegionNode::Value(PhaseGVN* phase) const {
  52   for( uint i=1; i<req(); ++i ) {       // For all paths in
  53     Node *n = in(i);            // Get Control source
  54     if( !n ) continue;          // Missing inputs are TOP
  55     if( phase->type(n) == Type::CONTROL )
  56       return Type::CONTROL;
  57   }
  58   return Type::TOP;             // All paths dead?  Then so are we
  59 }
  60 
  61 //------------------------------Identity---------------------------------------
  62 // Check for Region being Identity.
  63 Node* RegionNode::Identity(PhaseGVN* phase) {
  64   // Cannot have Region be an identity, even if it has only 1 input.
  65   // Phi users cannot have their Region input folded away for them,
  66   // since they need to select the proper data input
  67   return this;
  68 }
  69 
  70 //------------------------------merge_region-----------------------------------
  71 // If a Region flows into a Region, merge into one big happy merge.  This is
  72 // hard to do if there is stuff that has to happen
  73 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  74   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  75     return NULL;
  76   Node *progress = NULL;        // Progress flag
  77   PhaseIterGVN *igvn = phase->is_IterGVN();
  78 
  79   uint rreq = region->req();
  80   for( uint i = 1; i < rreq; i++ ) {
  81     Node *r = region->in(i);
  82     if( r && r->Opcode() == Op_Region && // Found a region?
  83         r->in(0) == r &&        // Not already collapsed?
  84         r != region &&          // Avoid stupid situations
  85         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  86       assert(!r->as_Region()->has_phi(), "no phi users");
  87       if( !progress ) {         // No progress
  88         if (region->has_phi()) {
  89           return NULL;        // Only flatten if no Phi users
  90           // igvn->hash_delete( phi );
  91         }
  92         igvn->hash_delete( region );
  93         progress = region;      // Making progress
  94       }
  95       igvn->hash_delete( r );
  96 
  97       // Append inputs to 'r' onto 'region'
  98       for( uint j = 1; j < r->req(); j++ ) {
  99         // Move an input from 'r' to 'region'
 100         region->add_req(r->in(j));
 101         r->set_req(j, phase->C->top());
 102         // Update phis of 'region'
 103         //for( uint k = 0; k < max; k++ ) {
 104         //  Node *phi = region->out(k);
 105         //  if( phi->is_Phi() ) {
 106         //    phi->add_req(phi->in(i));
 107         //  }
 108         //}
 109 
 110         rreq++;                 // One more input to Region
 111       } // Found a region to merge into Region
 112       igvn->_worklist.push(r);
 113       // Clobber pointer to the now dead 'r'
 114       region->set_req(i, phase->C->top());
 115     }
 116   }
 117 
 118   return progress;
 119 }
 120 
 121 
 122 
 123 //--------------------------------has_phi--------------------------------------
 124 // Helper function: Return any PhiNode that uses this region or NULL
 125 PhiNode* RegionNode::has_phi() const {
 126   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 127     Node* phi = fast_out(i);
 128     if (phi->is_Phi()) {   // Check for Phi users
 129       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 130       return phi->as_Phi();  // this one is good enough
 131     }
 132   }
 133 
 134   return NULL;
 135 }
 136 
 137 
 138 //-----------------------------has_unique_phi----------------------------------
 139 // Helper function: Return the only PhiNode that uses this region or NULL
 140 PhiNode* RegionNode::has_unique_phi() const {
 141   // Check that only one use is a Phi
 142   PhiNode* only_phi = NULL;
 143   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 144     Node* phi = fast_out(i);
 145     if (phi->is_Phi()) {   // Check for Phi users
 146       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 147       if (only_phi == NULL) {
 148         only_phi = phi->as_Phi();
 149       } else {
 150         return NULL;  // multiple phis
 151       }
 152     }
 153   }
 154 
 155   return only_phi;
 156 }
 157 
 158 
 159 //------------------------------check_phi_clipping-----------------------------
 160 // Helper function for RegionNode's identification of FP clipping
 161 // Check inputs to the Phi
 162 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 163   min     = NULL;
 164   max     = NULL;
 165   val     = NULL;
 166   min_idx = 0;
 167   max_idx = 0;
 168   val_idx = 0;
 169   uint  phi_max = phi->req();
 170   if( phi_max == 4 ) {
 171     for( uint j = 1; j < phi_max; ++j ) {
 172       Node *n = phi->in(j);
 173       int opcode = n->Opcode();
 174       switch( opcode ) {
 175       case Op_ConI:
 176         {
 177           if( min == NULL ) {
 178             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 179             min_idx = j;
 180           } else {
 181             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 182             max_idx = j;
 183             if( min->get_int() > max->get_int() ) {
 184               // Swap min and max
 185               ConNode *temp;
 186               uint     temp_idx;
 187               temp     = min;     min     = max;     max     = temp;
 188               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 189             }
 190           }
 191         }
 192         break;
 193       default:
 194         {
 195           val = n;
 196           val_idx = j;
 197         }
 198         break;
 199       }
 200     }
 201   }
 202   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 203 }
 204 
 205 
 206 //------------------------------check_if_clipping------------------------------
 207 // Helper function for RegionNode's identification of FP clipping
 208 // Check that inputs to Region come from two IfNodes,
 209 //
 210 //            If
 211 //      False    True
 212 //       If        |
 213 //  False  True    |
 214 //    |      |     |
 215 //  RegionNode_inputs
 216 //
 217 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 218   top_if = NULL;
 219   bot_if = NULL;
 220 
 221   // Check control structure above RegionNode for (if  ( if  ) )
 222   Node *in1 = region->in(1);
 223   Node *in2 = region->in(2);
 224   Node *in3 = region->in(3);
 225   // Check that all inputs are projections
 226   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 227     Node *in10 = in1->in(0);
 228     Node *in20 = in2->in(0);
 229     Node *in30 = in3->in(0);
 230     // Check that #1 and #2 are ifTrue and ifFalse from same If
 231     if( in10 != NULL && in10->is_If() &&
 232         in20 != NULL && in20->is_If() &&
 233         in30 != NULL && in30->is_If() && in10 == in20 &&
 234         (in1->Opcode() != in2->Opcode()) ) {
 235       Node  *in100 = in10->in(0);
 236       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 237       // Check that control for in10 comes from other branch of IF from in3
 238       if( in1000 != NULL && in1000->is_If() &&
 239           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 240         // Control pattern checks
 241         top_if = (IfNode*)in1000;
 242         bot_if = (IfNode*)in10;
 243       }
 244     }
 245   }
 246 
 247   return (top_if != NULL);
 248 }
 249 
 250 
 251 //------------------------------check_convf2i_clipping-------------------------
 252 // Helper function for RegionNode's identification of FP clipping
 253 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 254 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 255   convf2i = NULL;
 256 
 257   // Check for the RShiftNode
 258   Node *rshift = phi->in(idx);
 259   assert( rshift, "Previous checks ensure phi input is present");
 260   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 261 
 262   // Check for the LShiftNode
 263   Node *lshift = rshift->in(1);
 264   assert( lshift, "Previous checks ensure phi input is present");
 265   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 266 
 267   // Check for the ConvF2INode
 268   Node *conv = lshift->in(1);
 269   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 270 
 271   // Check that shift amounts are only to get sign bits set after F2I
 272   jint max_cutoff     = max->get_int();
 273   jint min_cutoff     = min->get_int();
 274   jint left_shift     = lshift->in(2)->get_int();
 275   jint right_shift    = rshift->in(2)->get_int();
 276   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 277   if( left_shift != right_shift ||
 278       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 279       max_post_shift < max_cutoff ||
 280       max_post_shift < -min_cutoff ) {
 281     // Shifts are necessary but current transformation eliminates them
 282     return false;
 283   }
 284 
 285   // OK to return the result of ConvF2I without shifting
 286   convf2i = (ConvF2INode*)conv;
 287   return true;
 288 }
 289 
 290 
 291 //------------------------------check_compare_clipping-------------------------
 292 // Helper function for RegionNode's identification of FP clipping
 293 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 294   Node *i1 = iff->in(1);
 295   if ( !i1->is_Bool() ) { return false; }
 296   BoolNode *bool1 = i1->as_Bool();
 297   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 298   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 299   const Node *cmpF = bool1->in(1);
 300   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 301   // Test that the float value being compared against
 302   // is equivalent to the int value used as a limit
 303   Node *nodef = cmpF->in(2);
 304   if( nodef->Opcode() != Op_ConF ) { return false; }
 305   jfloat conf = nodef->getf();
 306   jint   coni = limit->get_int();
 307   if( ((int)conf) != coni )        { return false; }
 308   input = cmpF->in(1);
 309   return true;
 310 }
 311 
 312 //------------------------------is_unreachable_region--------------------------
 313 // Find if the Region node is reachable from the root.
 314 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 315   assert(req() == 2, "");
 316 
 317   // First, cut the simple case of fallthrough region when NONE of
 318   // region's phis references itself directly or through a data node.
 319   uint max = outcnt();
 320   uint i;
 321   for (i = 0; i < max; i++) {
 322     Node* phi = raw_out(i);
 323     if (phi != NULL && phi->is_Phi()) {
 324       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 325       if (phi->outcnt() == 0)
 326         continue; // Safe case - no loops
 327       if (phi->outcnt() == 1) {
 328         Node* u = phi->raw_out(0);
 329         // Skip if only one use is an other Phi or Call or Uncommon trap.
 330         // It is safe to consider this case as fallthrough.
 331         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 332           continue;
 333       }
 334       // Check when phi references itself directly or through an other node.
 335       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 336         break; // Found possible unsafe data loop.
 337     }
 338   }
 339   if (i >= max)
 340     return false; // An unsafe case was NOT found - don't need graph walk.
 341 
 342   // Unsafe case - check if the Region node is reachable from root.
 343   ResourceMark rm;
 344 
 345   Arena *a = Thread::current()->resource_area();
 346   Node_List nstack(a);
 347   VectorSet visited(a);
 348 
 349   // Mark all control nodes reachable from root outputs
 350   Node *n = (Node*)phase->C->root();
 351   nstack.push(n);
 352   visited.set(n->_idx);
 353   while (nstack.size() != 0) {
 354     n = nstack.pop();
 355     uint max = n->outcnt();
 356     for (uint i = 0; i < max; i++) {
 357       Node* m = n->raw_out(i);
 358       if (m != NULL && m->is_CFG()) {
 359         if (phase->eqv(m, this)) {
 360           return false; // We reached the Region node - it is not dead.
 361         }
 362         if (!visited.test_set(m->_idx))
 363           nstack.push(m);
 364       }
 365     }
 366   }
 367 
 368   return true; // The Region node is unreachable - it is dead.
 369 }
 370 
 371 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
 372   // Incremental inlining + PhaseStringOpts sometimes produce:
 373   //
 374   // cmpP with 1 top input
 375   //           |
 376   //          If
 377   //         /  \
 378   //   IfFalse  IfTrue  /- Some Node
 379   //         \  /      /    /
 380   //        Region    / /-MergeMem
 381   //             \---Phi
 382   //
 383   //
 384   // It's expected by PhaseStringOpts that the Region goes away and is
 385   // replaced by If's control input but because there's still a Phi,
 386   // the Region stays in the graph. The top input from the cmpP is
 387   // propagated forward and a subgraph that is useful goes away. The
 388   // code below replaces the Phi with the MergeMem so that the Region
 389   // is simplified.
 390 
 391   PhiNode* phi = has_unique_phi();
 392   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
 393     MergeMemNode* m = NULL;
 394     assert(phi->req() == 3, "same as region");
 395     for (uint i = 1; i < 3; ++i) {
 396       Node *mem = phi->in(i);
 397       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
 398         // Nothing is control-dependent on path #i except the region itself.
 399         m = mem->as_MergeMem();
 400         uint j = 3 - i;
 401         Node* other = phi->in(j);
 402         if (other && other == m->base_memory()) {
 403           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 404           // This will allow the diamond to collapse completely.
 405           phase->is_IterGVN()->replace_node(phi, m);
 406           return true;
 407         }
 408       }
 409     }
 410   }
 411   return false;
 412 }
 413 
 414 //------------------------------Ideal------------------------------------------
 415 // Return a node which is more "ideal" than the current node.  Must preserve
 416 // the CFG, but we can still strip out dead paths.
 417 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 418   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 419   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 420 
 421   // Check for RegionNode with no Phi users and both inputs come from either
 422   // arm of the same IF.  If found, then the control-flow split is useless.
 423   bool has_phis = false;
 424   if (can_reshape) {            // Need DU info to check for Phi users
 425     has_phis = (has_phi() != NULL);       // Cache result
 426     if (has_phis && try_clean_mem_phi(phase)) {
 427       has_phis = false;
 428     }
 429 
 430     if (!has_phis) {            // No Phi users?  Nothing merging?
 431       for (uint i = 1; i < req()-1; i++) {
 432         Node *if1 = in(i);
 433         if( !if1 ) continue;
 434         Node *iff = if1->in(0);
 435         if( !iff || !iff->is_If() ) continue;
 436         for( uint j=i+1; j<req(); j++ ) {
 437           if( in(j) && in(j)->in(0) == iff &&
 438               if1->Opcode() != in(j)->Opcode() ) {
 439             // Add the IF Projections to the worklist. They (and the IF itself)
 440             // will be eliminated if dead.
 441             phase->is_IterGVN()->add_users_to_worklist(iff);
 442             set_req(i, iff->in(0));// Skip around the useless IF diamond
 443             set_req(j, NULL);
 444             return this;      // Record progress
 445           }
 446         }
 447       }
 448     }
 449   }
 450 
 451   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 452   // degrades to a copy.
 453   bool add_to_worklist = false;
 454   bool modified = false;
 455   int cnt = 0;                  // Count of values merging
 456   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 457   int del_it = 0;               // The last input path we delete
 458   // For all inputs...
 459   for( uint i=1; i<req(); ++i ){// For all paths in
 460     Node *n = in(i);            // Get the input
 461     if( n != NULL ) {
 462       // Remove useless control copy inputs
 463       if( n->is_Region() && n->as_Region()->is_copy() ) {
 464         set_req(i, n->nonnull_req());
 465         modified = true;
 466         i--;
 467         continue;
 468       }
 469       if( n->is_Proj() ) {      // Remove useless rethrows
 470         Node *call = n->in(0);
 471         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 472           set_req(i, call->in(0));
 473           modified = true;
 474           i--;
 475           continue;
 476         }
 477       }
 478       if( phase->type(n) == Type::TOP ) {
 479         set_req(i, NULL);       // Ignore TOP inputs
 480         modified = true;
 481         i--;
 482         continue;
 483       }
 484       cnt++;                    // One more value merging
 485 
 486     } else if (can_reshape) {   // Else found dead path with DU info
 487       PhaseIterGVN *igvn = phase->is_IterGVN();
 488       del_req(i);               // Yank path from self
 489       del_it = i;
 490       uint max = outcnt();
 491       DUIterator j;
 492       bool progress = true;
 493       while(progress) {         // Need to establish property over all users
 494         progress = false;
 495         for (j = outs(); has_out(j); j++) {
 496           Node *n = out(j);
 497           if( n->req() != req() && n->is_Phi() ) {
 498             assert( n->in(0) == this, "" );
 499             igvn->hash_delete(n); // Yank from hash before hacking edges
 500             n->set_req_X(i,NULL,igvn);// Correct DU info
 501             n->del_req(i);        // Yank path from Phis
 502             if( max != outcnt() ) {
 503               progress = true;
 504               j = refresh_out_pos(j);
 505               max = outcnt();
 506             }
 507           }
 508         }
 509       }
 510       add_to_worklist = true;
 511       i--;
 512     }
 513   }
 514 
 515   if (can_reshape && cnt == 1) {
 516     // Is it dead loop?
 517     // If it is LoopNopde it had 2 (+1 itself) inputs and
 518     // one of them was cut. The loop is dead if it was EntryContol.
 519     // Loop node may have only one input because entry path
 520     // is removed in PhaseIdealLoop::Dominators().
 521     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 522     if (this->is_Loop() && (del_it == LoopNode::EntryControl ||
 523                             del_it == 0 && is_unreachable_region(phase)) ||
 524        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
 525       // Yes,  the region will be removed during the next step below.
 526       // Cut the backedge input and remove phis since no data paths left.
 527       // We don't cut outputs to other nodes here since we need to put them
 528       // on the worklist.
 529       PhaseIterGVN *igvn = phase->is_IterGVN();
 530       if (in(1)->outcnt() == 1) {
 531         igvn->_worklist.push(in(1));
 532       }
 533       del_req(1);
 534       cnt = 0;
 535       assert( req() == 1, "no more inputs expected" );
 536       uint max = outcnt();
 537       bool progress = true;
 538       Node *top = phase->C->top();
 539       DUIterator j;
 540       while(progress) {
 541         progress = false;
 542         for (j = outs(); has_out(j); j++) {
 543           Node *n = out(j);
 544           if( n->is_Phi() ) {
 545             assert( igvn->eqv(n->in(0), this), "" );
 546             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 547             // Break dead loop data path.
 548             // Eagerly replace phis with top to avoid phis copies generation.
 549             igvn->replace_node(n, top);
 550             if( max != outcnt() ) {
 551               progress = true;
 552               j = refresh_out_pos(j);
 553               max = outcnt();
 554             }
 555           }
 556         }
 557       }
 558       add_to_worklist = true;
 559     }
 560   }
 561   if (add_to_worklist) {
 562     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 563   }
 564 
 565   if( cnt <= 1 ) {              // Only 1 path in?
 566     set_req(0, NULL);           // Null control input for region copy
 567     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 568       // No inputs or all inputs are NULL.
 569       return NULL;
 570     } else if (can_reshape) {   // Optimization phase - remove the node
 571       PhaseIterGVN *igvn = phase->is_IterGVN();
 572       Node *parent_ctrl;
 573       if( cnt == 0 ) {
 574         assert( req() == 1, "no inputs expected" );
 575         // During IGVN phase such region will be subsumed by TOP node
 576         // so region's phis will have TOP as control node.
 577         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 578         // Also set other user's input to top.
 579         parent_ctrl = phase->C->top();
 580       } else {
 581         // The fallthrough case since we already checked dead loops above.
 582         parent_ctrl = in(1);
 583         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 584         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 585       }
 586       if (!add_to_worklist)
 587         igvn->add_users_to_worklist(this); // Check for further allowed opts
 588       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 589         Node* n = last_out(i);
 590         igvn->hash_delete(n); // Remove from worklist before modifying edges
 591         if( n->is_Phi() ) {   // Collapse all Phis
 592           // Eagerly replace phis to avoid copies generation.
 593           Node* in;
 594           if( cnt == 0 ) {
 595             assert( n->req() == 1, "No data inputs expected" );
 596             in = parent_ctrl; // replaced by top
 597           } else {
 598             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 599             in = n->in(1);               // replaced by unique input
 600             if( n->as_Phi()->is_unsafe_data_reference(in) )
 601               in = phase->C->top();      // replaced by top
 602           }
 603           igvn->replace_node(n, in);
 604         }
 605         else if( n->is_Region() ) { // Update all incoming edges
 606           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 607           uint uses_found = 0;
 608           for( uint k=1; k < n->req(); k++ ) {
 609             if( n->in(k) == this ) {
 610               n->set_req(k, parent_ctrl);
 611               uses_found++;
 612             }
 613           }
 614           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 615             i -= (uses_found - 1);
 616           }
 617         }
 618         else {
 619           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 620           n->set_req(0, parent_ctrl);
 621         }
 622 #ifdef ASSERT
 623         for( uint k=0; k < n->req(); k++ ) {
 624           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 625         }
 626 #endif
 627       }
 628       // Remove the RegionNode itself from DefUse info
 629       igvn->remove_dead_node(this);
 630       return NULL;
 631     }
 632     return this;                // Record progress
 633   }
 634 
 635 
 636   // If a Region flows into a Region, merge into one big happy merge.
 637   if (can_reshape) {
 638     Node *m = merge_region(this, phase);
 639     if (m != NULL)  return m;
 640   }
 641 
 642   // Check if this region is the root of a clipping idiom on floats
 643   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 644     // Check that only one use is a Phi and that it simplifies to two constants +
 645     PhiNode* phi = has_unique_phi();
 646     if (phi != NULL) {          // One Phi user
 647       // Check inputs to the Phi
 648       ConNode *min;
 649       ConNode *max;
 650       Node    *val;
 651       uint     min_idx;
 652       uint     max_idx;
 653       uint     val_idx;
 654       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 655         IfNode *top_if;
 656         IfNode *bot_if;
 657         if( check_if_clipping( this, bot_if, top_if ) ) {
 658           // Control pattern checks, now verify compares
 659           Node   *top_in = NULL;   // value being compared against
 660           Node   *bot_in = NULL;
 661           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 662               check_compare_clipping( false, top_if, max, top_in ) ) {
 663             if( bot_in == top_in ) {
 664               PhaseIterGVN *gvn = phase->is_IterGVN();
 665               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 666               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 667 
 668               // Check for the ConvF2INode
 669               ConvF2INode *convf2i;
 670               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 671                 convf2i->in(1) == bot_in ) {
 672                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 673                 // max test
 674                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 675                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 676                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 677                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 678                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 679                 // min test
 680                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 681                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 682                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 683                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 684                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 685                 // update input edges to region node
 686                 set_req_X( min_idx, if_min, gvn );
 687                 set_req_X( max_idx, if_max, gvn );
 688                 set_req_X( val_idx, ifF,    gvn );
 689                 // remove unnecessary 'LShiftI; RShiftI' idiom
 690                 gvn->hash_delete(phi);
 691                 phi->set_req_X( val_idx, convf2i, gvn );
 692                 gvn->hash_find_insert(phi);
 693                 // Return transformed region node
 694                 return this;
 695               }
 696             }
 697           }
 698         }
 699       }
 700     }
 701   }
 702 
 703   return modified ? this : NULL;
 704 }
 705 
 706 
 707 
 708 const RegMask &RegionNode::out_RegMask() const {
 709   return RegMask::Empty;
 710 }
 711 
 712 // Find the one non-null required input.  RegionNode only
 713 Node *Node::nonnull_req() const {
 714   assert( is_Region(), "" );
 715   for( uint i = 1; i < _cnt; i++ )
 716     if( in(i) )
 717       return in(i);
 718   ShouldNotReachHere();
 719   return NULL;
 720 }
 721 
 722 
 723 //=============================================================================
 724 // note that these functions assume that the _adr_type field is flattened
 725 uint PhiNode::hash() const {
 726   const Type* at = _adr_type;
 727   return TypeNode::hash() + (at ? at->hash() : 0);
 728 }
 729 uint PhiNode::cmp( const Node &n ) const {
 730   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 731 }
 732 static inline
 733 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 734   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 735   return Compile::current()->alias_type(at)->adr_type();
 736 }
 737 
 738 //----------------------------make---------------------------------------------
 739 // create a new phi with edges matching r and set (initially) to x
 740 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 741   uint preds = r->req();   // Number of predecessor paths
 742   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 743   PhiNode* p = new PhiNode(r, t, at);
 744   for (uint j = 1; j < preds; j++) {
 745     // Fill in all inputs, except those which the region does not yet have
 746     if (r->in(j) != NULL)
 747       p->init_req(j, x);
 748   }
 749   return p;
 750 }
 751 PhiNode* PhiNode::make(Node* r, Node* x) {
 752   const Type*    t  = x->bottom_type();
 753   const TypePtr* at = NULL;
 754   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 755   return make(r, x, t, at);
 756 }
 757 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 758   const Type*    t  = x->bottom_type();
 759   const TypePtr* at = NULL;
 760   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 761   return new PhiNode(r, t, at);
 762 }
 763 
 764 
 765 //------------------------slice_memory-----------------------------------------
 766 // create a new phi with narrowed memory type
 767 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 768   PhiNode* mem = (PhiNode*) clone();
 769   *(const TypePtr**)&mem->_adr_type = adr_type;
 770   // convert self-loops, or else we get a bad graph
 771   for (uint i = 1; i < req(); i++) {
 772     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 773   }
 774   mem->verify_adr_type();
 775   return mem;
 776 }
 777 
 778 //------------------------split_out_instance-----------------------------------
 779 // Split out an instance type from a bottom phi.
 780 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 781   const TypeOopPtr *t_oop = at->isa_oopptr();
 782   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 783   const TypePtr *t = adr_type();
 784   assert(type() == Type::MEMORY &&
 785          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 786           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 787           t->is_oopptr()->cast_to_exactness(true)
 788            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 789            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 790          "bottom or raw memory required");
 791 
 792   // Check if an appropriate node already exists.
 793   Node *region = in(0);
 794   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 795     Node* use = region->fast_out(k);
 796     if( use->is_Phi()) {
 797       PhiNode *phi2 = use->as_Phi();
 798       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 799         return phi2;
 800       }
 801     }
 802   }
 803   Compile *C = igvn->C;
 804   Arena *a = Thread::current()->resource_area();
 805   Node_Array node_map = new Node_Array(a);
 806   Node_Stack stack(a, C->live_nodes() >> 4);
 807   PhiNode *nphi = slice_memory(at);
 808   igvn->register_new_node_with_optimizer( nphi );
 809   node_map.map(_idx, nphi);
 810   stack.push((Node *)this, 1);
 811   while(!stack.is_empty()) {
 812     PhiNode *ophi = stack.node()->as_Phi();
 813     uint i = stack.index();
 814     assert(i >= 1, "not control edge");
 815     stack.pop();
 816     nphi = node_map[ophi->_idx]->as_Phi();
 817     for (; i < ophi->req(); i++) {
 818       Node *in = ophi->in(i);
 819       if (in == NULL || igvn->type(in) == Type::TOP)
 820         continue;
 821       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 822       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 823       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 824         opt = node_map[optphi->_idx];
 825         if (opt == NULL) {
 826           stack.push(ophi, i);
 827           nphi = optphi->slice_memory(at);
 828           igvn->register_new_node_with_optimizer( nphi );
 829           node_map.map(optphi->_idx, nphi);
 830           ophi = optphi;
 831           i = 0; // will get incremented at top of loop
 832           continue;
 833         }
 834       }
 835       nphi->set_req(i, opt);
 836     }
 837   }
 838   return nphi;
 839 }
 840 
 841 //------------------------verify_adr_type--------------------------------------
 842 #ifdef ASSERT
 843 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 844   if (visited.test_set(_idx))  return;  //already visited
 845 
 846   // recheck constructor invariants:
 847   verify_adr_type(false);
 848 
 849   // recheck local phi/phi consistency:
 850   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 851          "adr_type must be consistent across phi nest");
 852 
 853   // walk around
 854   for (uint i = 1; i < req(); i++) {
 855     Node* n = in(i);
 856     if (n == NULL)  continue;
 857     const Node* np = in(i);
 858     if (np->is_Phi()) {
 859       np->as_Phi()->verify_adr_type(visited, at);
 860     } else if (n->bottom_type() == Type::TOP
 861                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 862       // ignore top inputs
 863     } else {
 864       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 865       // recheck phi/non-phi consistency at leaves:
 866       assert((nat != NULL) == (at != NULL), "");
 867       assert(nat == at || nat == TypePtr::BOTTOM,
 868              "adr_type must be consistent at leaves of phi nest");
 869     }
 870   }
 871 }
 872 
 873 // Verify a whole nest of phis rooted at this one.
 874 void PhiNode::verify_adr_type(bool recursive) const {
 875   if (is_error_reported())  return;  // muzzle asserts when debugging an error
 876   if (Node::in_dump())      return;  // muzzle asserts when printing
 877 
 878   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 879 
 880   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 881 
 882   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 883          "Phi::adr_type must be pre-normalized");
 884 
 885   if (recursive) {
 886     VectorSet visited(Thread::current()->resource_area());
 887     verify_adr_type(visited, _adr_type);
 888   }
 889 }
 890 #endif
 891 
 892 
 893 //------------------------------Value------------------------------------------
 894 // Compute the type of the PhiNode
 895 const Type* PhiNode::Value(PhaseGVN* phase) const {
 896   Node *r = in(0);              // RegionNode
 897   if( !r )                      // Copy or dead
 898     return in(1) ? phase->type(in(1)) : Type::TOP;
 899 
 900   // Note: During parsing, phis are often transformed before their regions.
 901   // This means we have to use type_or_null to defend against untyped regions.
 902   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 903     return Type::TOP;
 904 
 905   // Check for trip-counted loop.  If so, be smarter.
 906   CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 907   if (l && l->can_be_counted_loop(phase) &&
 908       ((const Node*)l->phi() == this)) { // Trip counted loop!
 909     // protect against init_trip() or limit() returning NULL
 910     const Node *init   = l->init_trip();
 911     const Node *limit  = l->limit();
 912     const Node* stride = l->stride();
 913     if (init != NULL && limit != NULL && stride != NULL) {
 914       const TypeInt* lo = phase->type(init)->isa_int();
 915       const TypeInt* hi = phase->type(limit)->isa_int();
 916       const TypeInt* stride_t = phase->type(stride)->isa_int();
 917       if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
 918         assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
 919         if (stride_t->_hi < 0) {          // Down-counter loop
 920           swap(lo, hi);
 921           return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
 922         } else if (stride_t->_lo >= 0) {
 923           return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
 924         }
 925       }
 926     }
 927   }
 928 
 929   // Until we have harmony between classes and interfaces in the type
 930   // lattice, we must tread carefully around phis which implicitly
 931   // convert the one to the other.
 932   const TypePtr* ttp = _type->make_ptr();
 933   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 934   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 935   bool is_intf = false;
 936   if (ttip != NULL) {
 937     ciKlass* k = ttip->klass();
 938     if (k->is_loaded() && k->is_interface())
 939       is_intf = true;
 940   }
 941   if (ttkp != NULL) {
 942     ciKlass* k = ttkp->klass();
 943     if (k->is_loaded() && k->is_interface())
 944       is_intf = true;
 945   }
 946 
 947   // Default case: merge all inputs
 948   const Type *t = Type::TOP;        // Merged type starting value
 949   for (uint i = 1; i < req(); ++i) {// For all paths in
 950     // Reachable control path?
 951     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 952       const Type* ti = phase->type(in(i));
 953       // We assume that each input of an interface-valued Phi is a true
 954       // subtype of that interface.  This might not be true of the meet
 955       // of all the input types.  The lattice is not distributive in
 956       // such cases.  Ward off asserts in type.cpp by refusing to do
 957       // meets between interfaces and proper classes.
 958       const TypePtr* tip = ti->make_ptr();
 959       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 960       if (tiip) {
 961         bool ti_is_intf = false;
 962         ciKlass* k = tiip->klass();
 963         if (k->is_loaded() && k->is_interface())
 964           ti_is_intf = true;
 965         if (is_intf != ti_is_intf)
 966           { t = _type; break; }
 967       }
 968       t = t->meet_speculative(ti);
 969     }
 970   }
 971 
 972   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 973   // That is, we expect that "t->higher_equal(_type)" holds true.
 974   // There are various exceptions:
 975   // - Inputs which are phis might in fact be widened unnecessarily.
 976   //   For example, an input might be a widened int while the phi is a short.
 977   // - Inputs might be BotPtrs but this phi is dependent on a null check,
 978   //   and postCCP has removed the cast which encodes the result of the check.
 979   // - The type of this phi is an interface, and the inputs are classes.
 980   // - Value calls on inputs might produce fuzzy results.
 981   //   (Occurrences of this case suggest improvements to Value methods.)
 982   //
 983   // It is not possible to see Type::BOTTOM values as phi inputs,
 984   // because the ciTypeFlow pre-pass produces verifier-quality types.
 985   const Type* ft = t->filter_speculative(_type);  // Worst case type
 986 
 987 #ifdef ASSERT
 988   // The following logic has been moved into TypeOopPtr::filter.
 989   const Type* jt = t->join_speculative(_type);
 990   if (jt->empty()) {           // Emptied out???
 991 
 992     // Check for evil case of 't' being a class and '_type' expecting an
 993     // interface.  This can happen because the bytecodes do not contain
 994     // enough type info to distinguish a Java-level interface variable
 995     // from a Java-level object variable.  If we meet 2 classes which
 996     // both implement interface I, but their meet is at 'j/l/O' which
 997     // doesn't implement I, we have no way to tell if the result should
 998     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
 999     // into a Phi which "knows" it's an Interface type we'll have to
1000     // uplift the type.
1001     if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1002       assert(ft == _type, ""); // Uplift to interface
1003     } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1004       assert(ft == _type, ""); // Uplift to interface
1005     } else {
1006       // We also have to handle 'evil cases' of interface- vs. class-arrays
1007       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1008       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1009           assert(ft == _type, "");   // Uplift to array of interface
1010       } else {
1011         // Otherwise it's something stupid like non-overlapping int ranges
1012         // found on dying counted loops.
1013         assert(ft == Type::TOP, ""); // Canonical empty value
1014       }
1015     }
1016   }
1017 
1018   else {
1019 
1020     // If we have an interface-typed Phi and we narrow to a class type, the join
1021     // should report back the class.  However, if we have a J/L/Object
1022     // class-typed Phi and an interface flows in, it's possible that the meet &
1023     // join report an interface back out.  This isn't possible but happens
1024     // because the type system doesn't interact well with interfaces.
1025     const TypePtr *jtp = jt->make_ptr();
1026     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1027     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1028     if( jtip && ttip ) {
1029       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1030           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1031         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1032                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1033         jt = ft;
1034       }
1035     }
1036     if( jtkp && ttkp ) {
1037       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1038           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1039           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1040         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1041                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1042         jt = ft;
1043       }
1044     }
1045     if (jt != ft && jt->base() == ft->base()) {
1046       if (jt->isa_int() &&
1047           jt->is_int()->_lo == ft->is_int()->_lo &&
1048           jt->is_int()->_hi == ft->is_int()->_hi)
1049         jt = ft;
1050       if (jt->isa_long() &&
1051           jt->is_long()->_lo == ft->is_long()->_lo &&
1052           jt->is_long()->_hi == ft->is_long()->_hi)
1053         jt = ft;
1054     }
1055     if (jt != ft) {
1056       tty->print("merge type:  "); t->dump(); tty->cr();
1057       tty->print("kill type:   "); _type->dump(); tty->cr();
1058       tty->print("join type:   "); jt->dump(); tty->cr();
1059       tty->print("filter type: "); ft->dump(); tty->cr();
1060     }
1061     assert(jt == ft, "");
1062   }
1063 #endif //ASSERT
1064 
1065   // Deal with conversion problems found in data loops.
1066   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1067 
1068   return ft;
1069 }
1070 
1071 
1072 //------------------------------is_diamond_phi---------------------------------
1073 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1074 // index of the true path or 0 otherwise.
1075 // If check_control_only is true, do not inspect the If node at the
1076 // top, and return -1 (not an edge number) on success.
1077 int PhiNode::is_diamond_phi(bool check_control_only) const {
1078   // Check for a 2-path merge
1079   Node *region = in(0);
1080   if( !region ) return 0;
1081   if( region->req() != 3 ) return 0;
1082   if(         req() != 3 ) return 0;
1083   // Check that both paths come from the same If
1084   Node *ifp1 = region->in(1);
1085   Node *ifp2 = region->in(2);
1086   if( !ifp1 || !ifp2 ) return 0;
1087   Node *iff = ifp1->in(0);
1088   if( !iff || !iff->is_If() ) return 0;
1089   if( iff != ifp2->in(0) ) return 0;
1090   if (check_control_only)  return -1;
1091   // Check for a proper bool/cmp
1092   const Node *b = iff->in(1);
1093   if( !b->is_Bool() ) return 0;
1094   const Node *cmp = b->in(1);
1095   if( !cmp->is_Cmp() ) return 0;
1096 
1097   // Check for branching opposite expected
1098   if( ifp2->Opcode() == Op_IfTrue ) {
1099     assert( ifp1->Opcode() == Op_IfFalse, "" );
1100     return 2;
1101   } else {
1102     assert( ifp1->Opcode() == Op_IfTrue, "" );
1103     return 1;
1104   }
1105 }
1106 
1107 //----------------------------check_cmove_id-----------------------------------
1108 // Check for CMove'ing a constant after comparing against the constant.
1109 // Happens all the time now, since if we compare equality vs a constant in
1110 // the parser, we "know" the variable is constant on one path and we force
1111 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1112 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1113 // general in that we don't need constants.  Since CMove's are only inserted
1114 // in very special circumstances, we do it here on generic Phi's.
1115 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1116   assert(true_path !=0, "only diamond shape graph expected");
1117 
1118   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1119   // phi->region->if_proj->ifnode->bool->cmp
1120   Node*     region = in(0);
1121   Node*     iff    = region->in(1)->in(0);
1122   BoolNode* b      = iff->in(1)->as_Bool();
1123   Node*     cmp    = b->in(1);
1124   Node*     tval   = in(true_path);
1125   Node*     fval   = in(3-true_path);
1126   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1127   if (id == NULL)
1128     return NULL;
1129 
1130   // Either value might be a cast that depends on a branch of 'iff'.
1131   // Since the 'id' value will float free of the diamond, either
1132   // decast or return failure.
1133   Node* ctl = id->in(0);
1134   if (ctl != NULL && ctl->in(0) == iff) {
1135     if (id->is_ConstraintCast()) {
1136       return id->in(1);
1137     } else {
1138       // Don't know how to disentangle this value.
1139       return NULL;
1140     }
1141   }
1142 
1143   return id;
1144 }
1145 
1146 //------------------------------Identity---------------------------------------
1147 // Check for Region being Identity.
1148 Node* PhiNode::Identity(PhaseGVN* phase) {
1149   // Check for no merging going on
1150   // (There used to be special-case code here when this->region->is_Loop.
1151   // It would check for a tributary phi on the backedge that the main phi
1152   // trivially, perhaps with a single cast.  The unique_input method
1153   // does all this and more, by reducing such tributaries to 'this'.)
1154   Node* uin = unique_input(phase, false);
1155   if (uin != NULL) {
1156     return uin;
1157   }
1158 
1159   int true_path = is_diamond_phi();
1160   if (true_path != 0) {
1161     Node* id = is_cmove_id(phase, true_path);
1162     if (id != NULL)  return id;
1163   }
1164 
1165   return this;                     // No identity
1166 }
1167 
1168 //-----------------------------unique_input------------------------------------
1169 // Find the unique value, discounting top, self-loops, and casts.
1170 // Return top if there are no inputs, and self if there are multiple.
1171 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1172   //  1) One unique direct input,
1173   // or if uncast is true:
1174   //  2) some of the inputs have an intervening ConstraintCast
1175   //  3) an input is a self loop
1176   //
1177   //  1) input   or   2) input     or   3) input __
1178   //     /   \           /   \               \  /  \
1179   //     \   /          |    cast             phi  cast
1180   //      phi            \   /               /  \  /
1181   //                      phi               /    --
1182 
1183   Node* r = in(0);                      // RegionNode
1184   if (r == NULL)  return in(1);         // Already degraded to a Copy
1185   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1186 
1187   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1188     Node* rc = r->in(i);
1189     if (rc == NULL || phase->type(rc) == Type::TOP)
1190       continue;                 // ignore unreachable control path
1191     Node* n = in(i);
1192     if (n == NULL)
1193       continue;
1194     Node* un = n;
1195     if (uncast) {
1196 #ifdef ASSERT
1197       Node* m = un->uncast();
1198 #endif
1199       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1200         Node* next = un->in(1);
1201         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1202           // risk exposing raw ptr at safepoint
1203           break;
1204         }
1205         un = next;
1206       }
1207       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1208     }
1209     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1210       continue; // ignore if top, or in(i) and "this" are in a data cycle
1211     }
1212     // Check for a unique input (maybe uncasted)
1213     if (input == NULL) {
1214       input = un;
1215     } else if (input != un) {
1216       input = NodeSentinel; // no unique input
1217     }
1218   }
1219   if (input == NULL) {
1220     return phase->C->top();        // no inputs
1221   }
1222 
1223   if (input != NodeSentinel) {
1224     return input;           // one unique direct input
1225   }
1226 
1227   // Nothing.
1228   return NULL;
1229 }
1230 
1231 //------------------------------is_x2logic-------------------------------------
1232 // Check for simple convert-to-boolean pattern
1233 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1234 // Convert Phi to an ConvIB.
1235 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1236   assert(true_path !=0, "only diamond shape graph expected");
1237   // Convert the true/false index into an expected 0/1 return.
1238   // Map 2->0 and 1->1.
1239   int flipped = 2-true_path;
1240 
1241   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1242   // phi->region->if_proj->ifnode->bool->cmp
1243   Node *region = phi->in(0);
1244   Node *iff = region->in(1)->in(0);
1245   BoolNode *b = (BoolNode*)iff->in(1);
1246   const CmpNode *cmp = (CmpNode*)b->in(1);
1247 
1248   Node *zero = phi->in(1);
1249   Node *one  = phi->in(2);
1250   const Type *tzero = phase->type( zero );
1251   const Type *tone  = phase->type( one  );
1252 
1253   // Check for compare vs 0
1254   const Type *tcmp = phase->type(cmp->in(2));
1255   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1256     // Allow cmp-vs-1 if the other input is bounded by 0-1
1257     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1258       return NULL;
1259     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1260   }
1261 
1262   // Check for setting zero/one opposite expected
1263   if( tzero == TypeInt::ZERO ) {
1264     if( tone == TypeInt::ONE ) {
1265     } else return NULL;
1266   } else if( tzero == TypeInt::ONE ) {
1267     if( tone == TypeInt::ZERO ) {
1268       flipped = 1-flipped;
1269     } else return NULL;
1270   } else return NULL;
1271 
1272   // Check for boolean test backwards
1273   if( b->_test._test == BoolTest::ne ) {
1274   } else if( b->_test._test == BoolTest::eq ) {
1275     flipped = 1-flipped;
1276   } else return NULL;
1277 
1278   // Build int->bool conversion
1279   Node *n = new Conv2BNode( cmp->in(1) );
1280   if( flipped )
1281     n = new XorINode( phase->transform(n), phase->intcon(1) );
1282 
1283   return n;
1284 }
1285 
1286 //------------------------------is_cond_add------------------------------------
1287 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1288 // To be profitable the control flow has to disappear; there can be no other
1289 // values merging here.  We replace the test-and-branch with:
1290 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1291 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1292 // Then convert Y to 0-or-Y and finally add.
1293 // This is a key transform for SpecJava _201_compress.
1294 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1295   assert(true_path !=0, "only diamond shape graph expected");
1296 
1297   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1298   // phi->region->if_proj->ifnode->bool->cmp
1299   RegionNode *region = (RegionNode*)phi->in(0);
1300   Node *iff = region->in(1)->in(0);
1301   BoolNode* b = iff->in(1)->as_Bool();
1302   const CmpNode *cmp = (CmpNode*)b->in(1);
1303 
1304   // Make sure only merging this one phi here
1305   if (region->has_unique_phi() != phi)  return NULL;
1306 
1307   // Make sure each arm of the diamond has exactly one output, which we assume
1308   // is the region.  Otherwise, the control flow won't disappear.
1309   if (region->in(1)->outcnt() != 1) return NULL;
1310   if (region->in(2)->outcnt() != 1) return NULL;
1311 
1312   // Check for "(P < Q)" of type signed int
1313   if (b->_test._test != BoolTest::lt)  return NULL;
1314   if (cmp->Opcode() != Op_CmpI)        return NULL;
1315 
1316   Node *p = cmp->in(1);
1317   Node *q = cmp->in(2);
1318   Node *n1 = phi->in(  true_path);
1319   Node *n2 = phi->in(3-true_path);
1320 
1321   int op = n1->Opcode();
1322   if( op != Op_AddI           // Need zero as additive identity
1323       /*&&op != Op_SubI &&
1324       op != Op_AddP &&
1325       op != Op_XorI &&
1326       op != Op_OrI*/ )
1327     return NULL;
1328 
1329   Node *x = n2;
1330   Node *y = NULL;
1331   if( x == n1->in(1) ) {
1332     y = n1->in(2);
1333   } else if( x == n1->in(2) ) {
1334     y = n1->in(1);
1335   } else return NULL;
1336 
1337   // Not so profitable if compare and add are constants
1338   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1339     return NULL;
1340 
1341   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1342   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1343   return new AddINode(j_and,x);
1344 }
1345 
1346 //------------------------------is_absolute------------------------------------
1347 // Check for absolute value.
1348 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1349   assert(true_path !=0, "only diamond shape graph expected");
1350 
1351   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1352   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1353 
1354   // ABS ends with the merge of 2 control flow paths.
1355   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1356   int false_path = 3 - true_path;
1357 
1358   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1359   // phi->region->if_proj->ifnode->bool->cmp
1360   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1361 
1362   // Check bool sense
1363   switch( bol->_test._test ) {
1364   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1365   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1366   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1367   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1368   default:           return NULL;                              break;
1369   }
1370 
1371   // Test is next
1372   Node *cmp = bol->in(1);
1373   const Type *tzero = NULL;
1374   switch( cmp->Opcode() ) {
1375   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1376   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1377   default: return NULL;
1378   }
1379 
1380   // Find zero input of compare; the other input is being abs'd
1381   Node *x = NULL;
1382   bool flip = false;
1383   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1384     x = cmp->in(3 - cmp_zero_idx);
1385   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1386     // The test is inverted, we should invert the result...
1387     x = cmp->in(cmp_zero_idx);
1388     flip = true;
1389   } else {
1390     return NULL;
1391   }
1392 
1393   // Next get the 2 pieces being selected, one is the original value
1394   // and the other is the negated value.
1395   if( phi_root->in(phi_x_idx) != x ) return NULL;
1396 
1397   // Check other phi input for subtract node
1398   Node *sub = phi_root->in(3 - phi_x_idx);
1399 
1400   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1401   if( tzero == TypeF::ZERO ) {
1402     if( sub->Opcode() != Op_SubF ||
1403         sub->in(2) != x ||
1404         phase->type(sub->in(1)) != tzero ) return NULL;
1405     x = new AbsFNode(x);
1406     if (flip) {
1407       x = new SubFNode(sub->in(1), phase->transform(x));
1408     }
1409   } else {
1410     if( sub->Opcode() != Op_SubD ||
1411         sub->in(2) != x ||
1412         phase->type(sub->in(1)) != tzero ) return NULL;
1413     x = new AbsDNode(x);
1414     if (flip) {
1415       x = new SubDNode(sub->in(1), phase->transform(x));
1416     }
1417   }
1418 
1419   return x;
1420 }
1421 
1422 //------------------------------split_once-------------------------------------
1423 // Helper for split_flow_path
1424 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1425   igvn->hash_delete(n);         // Remove from hash before hacking edges
1426 
1427   uint j = 1;
1428   for (uint i = phi->req()-1; i > 0; i--) {
1429     if (phi->in(i) == val) {   // Found a path with val?
1430       // Add to NEW Region/Phi, no DU info
1431       newn->set_req( j++, n->in(i) );
1432       // Remove from OLD Region/Phi
1433       n->del_req(i);
1434     }
1435   }
1436 
1437   // Register the new node but do not transform it.  Cannot transform until the
1438   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1439   igvn->register_new_node_with_optimizer( newn );
1440 
1441   // Now I can point to the new node.
1442   n->add_req(newn);
1443   igvn->_worklist.push(n);
1444 }
1445 
1446 //------------------------------split_flow_path--------------------------------
1447 // Check for merging identical values and split flow paths
1448 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1449   BasicType bt = phi->type()->basic_type();
1450   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1451     return NULL;                // Bail out on funny non-value stuff
1452   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1453     return NULL;                // third unequal input to be worth doing
1454 
1455   // Scan for a constant
1456   uint i;
1457   for( i = 1; i < phi->req()-1; i++ ) {
1458     Node *n = phi->in(i);
1459     if( !n ) return NULL;
1460     if( phase->type(n) == Type::TOP ) return NULL;
1461     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1462       break;
1463   }
1464   if( i >= phi->req() )         // Only split for constants
1465     return NULL;
1466 
1467   Node *val = phi->in(i);       // Constant to split for
1468   uint hit = 0;                 // Number of times it occurs
1469   Node *r = phi->region();
1470 
1471   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1472     Node *n = phi->in(i);
1473     if( !n ) return NULL;
1474     if( phase->type(n) == Type::TOP ) return NULL;
1475     if( phi->in(i) == val ) {
1476       hit++;
1477       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1478         return NULL;            // don't split loop entry path
1479       }
1480     }
1481   }
1482 
1483   if( hit <= 1 ||               // Make sure we find 2 or more
1484       hit == phi->req()-1 )     // and not ALL the same value
1485     return NULL;
1486 
1487   // Now start splitting out the flow paths that merge the same value.
1488   // Split first the RegionNode.
1489   PhaseIterGVN *igvn = phase->is_IterGVN();
1490   RegionNode *newr = new RegionNode(hit+1);
1491   split_once(igvn, phi, val, r, newr);
1492 
1493   // Now split all other Phis than this one
1494   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1495     Node* phi2 = r->fast_out(k);
1496     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1497       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1498       split_once(igvn, phi, val, phi2, newphi);
1499     }
1500   }
1501 
1502   // Clean up this guy
1503   igvn->hash_delete(phi);
1504   for( i = phi->req()-1; i > 0; i-- ) {
1505     if( phi->in(i) == val ) {
1506       phi->del_req(i);
1507     }
1508   }
1509   phi->add_req(val);
1510 
1511   return phi;
1512 }
1513 
1514 //=============================================================================
1515 //------------------------------simple_data_loop_check-------------------------
1516 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1517 //  Returns:
1518 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1519 // Safe       - safe case when the phi and it's inputs reference only safe data
1520 //              nodes;
1521 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1522 //              is no reference back to the phi - need a graph walk
1523 //              to determine if it is in a loop;
1524 // UnsafeLoop - unsafe case when the phi references itself directly or through
1525 //              unsafe data node.
1526 //  Note: a safe data node is a node which could/never reference itself during
1527 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1528 //  I mark Phi nodes as safe node not only because they can reference itself
1529 //  but also to prevent mistaking the fallthrough case inside an outer loop
1530 //  as dead loop when the phi references itselfs through an other phi.
1531 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1532   // It is unsafe loop if the phi node references itself directly.
1533   if (in == (Node*)this)
1534     return UnsafeLoop; // Unsafe loop
1535   // Unsafe loop if the phi node references itself through an unsafe data node.
1536   // Exclude cases with null inputs or data nodes which could reference
1537   // itself (safe for dead loops).
1538   if (in != NULL && !in->is_dead_loop_safe()) {
1539     // Check inputs of phi's inputs also.
1540     // It is much less expensive then full graph walk.
1541     uint cnt = in->req();
1542     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1543     for (; i < cnt; ++i) {
1544       Node* m = in->in(i);
1545       if (m == (Node*)this)
1546         return UnsafeLoop; // Unsafe loop
1547       if (m != NULL && !m->is_dead_loop_safe()) {
1548         // Check the most common case (about 30% of all cases):
1549         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1550         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1551         if (m1 == (Node*)this)
1552           return UnsafeLoop; // Unsafe loop
1553         if (m1 != NULL && m1 == m->in(2) &&
1554             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1555           continue; // Safe case
1556         }
1557         // The phi references an unsafe node - need full analysis.
1558         return Unsafe;
1559       }
1560     }
1561   }
1562   return Safe; // Safe case - we can optimize the phi node.
1563 }
1564 
1565 //------------------------------is_unsafe_data_reference-----------------------
1566 // If phi can be reached through the data input - it is data loop.
1567 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1568   assert(req() > 1, "");
1569   // First, check simple cases when phi references itself directly or
1570   // through an other node.
1571   LoopSafety safety = simple_data_loop_check(in);
1572   if (safety == UnsafeLoop)
1573     return true;  // phi references itself - unsafe loop
1574   else if (safety == Safe)
1575     return false; // Safe case - phi could be replaced with the unique input.
1576 
1577   // Unsafe case when we should go through data graph to determine
1578   // if the phi references itself.
1579 
1580   ResourceMark rm;
1581 
1582   Arena *a = Thread::current()->resource_area();
1583   Node_List nstack(a);
1584   VectorSet visited(a);
1585 
1586   nstack.push(in); // Start with unique input.
1587   visited.set(in->_idx);
1588   while (nstack.size() != 0) {
1589     Node* n = nstack.pop();
1590     uint cnt = n->req();
1591     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1592     for (; i < cnt; i++) {
1593       Node* m = n->in(i);
1594       if (m == (Node*)this) {
1595         return true;    // Data loop
1596       }
1597       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1598         if (!visited.test_set(m->_idx))
1599           nstack.push(m);
1600       }
1601     }
1602   }
1603   return false; // The phi is not reachable from its inputs
1604 }
1605 
1606 
1607 //------------------------------Ideal------------------------------------------
1608 // Return a node which is more "ideal" than the current node.  Must preserve
1609 // the CFG, but we can still strip out dead paths.
1610 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1611   // The next should never happen after 6297035 fix.
1612   if( is_copy() )               // Already degraded to a Copy ?
1613     return NULL;                // No change
1614 
1615   Node *r = in(0);              // RegionNode
1616   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1617 
1618   // Note: During parsing, phis are often transformed before their regions.
1619   // This means we have to use type_or_null to defend against untyped regions.
1620   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1621     return NULL;                // No change
1622 
1623   Node *top = phase->C->top();
1624   bool new_phi = (outcnt() == 0); // transforming new Phi
1625   // No change for igvn if new phi is not hooked
1626   if (new_phi && can_reshape)
1627     return NULL;
1628 
1629   // The are 2 situations when only one valid phi's input is left
1630   // (in addition to Region input).
1631   // One: region is not loop - replace phi with this input.
1632   // Two: region is loop - replace phi with top since this data path is dead
1633   //                       and we need to break the dead data loop.
1634   Node* progress = NULL;        // Record if any progress made
1635   for( uint j = 1; j < req(); ++j ){ // For all paths in
1636     // Check unreachable control paths
1637     Node* rc = r->in(j);
1638     Node* n = in(j);            // Get the input
1639     if (rc == NULL || phase->type(rc) == Type::TOP) {
1640       if (n != top) {           // Not already top?
1641         PhaseIterGVN *igvn = phase->is_IterGVN();
1642         if (can_reshape && igvn != NULL) {
1643           igvn->_worklist.push(r);
1644         }
1645         set_req(j, top);        // Nuke it down
1646         progress = this;        // Record progress
1647       }
1648     }
1649   }
1650 
1651   if (can_reshape && outcnt() == 0) {
1652     // set_req() above may kill outputs if Phi is referenced
1653     // only by itself on the dead (top) control path.
1654     return top;
1655   }
1656 
1657   bool uncasted = false;
1658   Node* uin = unique_input(phase, false);
1659   if (uin == NULL) {
1660     uncasted = true;
1661     uin = unique_input(phase, true);
1662   }
1663   if (uin == top) {             // Simplest case: no alive inputs.
1664     if (can_reshape)            // IGVN transformation
1665       return top;
1666     else
1667       return NULL;              // Identity will return TOP
1668   } else if (uin != NULL) {
1669     // Only one not-NULL unique input path is left.
1670     // Determine if this input is backedge of a loop.
1671     // (Skip new phis which have no uses and dead regions).
1672     if (outcnt() > 0 && r->in(0) != NULL) {
1673       // First, take the short cut when we know it is a loop and
1674       // the EntryControl data path is dead.
1675       // Loop node may have only one input because entry path
1676       // is removed in PhaseIdealLoop::Dominators().
1677       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1678       bool is_loop = (r->is_Loop() && r->req() == 3);
1679       // Then, check if there is a data loop when phi references itself directly
1680       // or through other data nodes.
1681       if (is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl)) ||
1682          !is_loop && is_unsafe_data_reference(uin)) {
1683         // Break this data loop to avoid creation of a dead loop.
1684         if (can_reshape) {
1685           return top;
1686         } else {
1687           // We can't return top if we are in Parse phase - cut inputs only
1688           // let Identity to handle the case.
1689           replace_edge(uin, top);
1690           return NULL;
1691         }
1692       }
1693     }
1694 
1695     if (uncasted) {
1696       const Type* phi_type = bottom_type();
1697       assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1698       int opcode;
1699       if (phi_type->isa_int()) {
1700         opcode = Op_CastII;
1701       } else {
1702         const Type* uin_type = phase->type(uin);
1703         if (phi_type->join(TypePtr::NOTNULL) == uin_type->join(TypePtr::NOTNULL)) {
1704           opcode = Op_CastPP;
1705         } else {
1706           opcode = Op_CheckCastPP;
1707         }
1708       }
1709       // Add a cast to carry the control dependency of the Phi that is
1710       // going away
1711       Node* cast = ConstraintCastNode::make_cast(opcode, r, uin, phi_type, true);
1712       cast = phase->transform(cast);
1713       // set all inputs to the new cast so the Phi is removed by Identity
1714       for (uint i = 1; i < req(); i++) {
1715         set_req(i, cast);
1716       }
1717       uin = cast;
1718     }
1719 
1720     // One unique input.
1721     debug_only(Node* ident = Identity(phase));
1722     // The unique input must eventually be detected by the Identity call.
1723 #ifdef ASSERT
1724     if (ident != uin && !ident->is_top()) {
1725       // print this output before failing assert
1726       r->dump(3);
1727       this->dump(3);
1728       ident->dump();
1729       uin->dump();
1730     }
1731 #endif
1732     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1733     return NULL;
1734   }
1735 
1736   Node* opt = NULL;
1737   int true_path = is_diamond_phi();
1738   if( true_path != 0 ) {
1739     // Check for CMove'ing identity. If it would be unsafe,
1740     // handle it here. In the safe case, let Identity handle it.
1741     Node* unsafe_id = is_cmove_id(phase, true_path);
1742     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1743       opt = unsafe_id;
1744 
1745     // Check for simple convert-to-boolean pattern
1746     if( opt == NULL )
1747       opt = is_x2logic(phase, this, true_path);
1748 
1749     // Check for absolute value
1750     if( opt == NULL )
1751       opt = is_absolute(phase, this, true_path);
1752 
1753     // Check for conditional add
1754     if( opt == NULL && can_reshape )
1755       opt = is_cond_add(phase, this, true_path);
1756 
1757     // These 4 optimizations could subsume the phi:
1758     // have to check for a dead data loop creation.
1759     if( opt != NULL ) {
1760       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1761         // Found dead loop.
1762         if( can_reshape )
1763           return top;
1764         // We can't return top if we are in Parse phase - cut inputs only
1765         // to stop further optimizations for this phi. Identity will return TOP.
1766         assert(req() == 3, "only diamond merge phi here");
1767         set_req(1, top);
1768         set_req(2, top);
1769         return NULL;
1770       } else {
1771         return opt;
1772       }
1773     }
1774   }
1775 
1776   // Check for merging identical values and split flow paths
1777   if (can_reshape) {
1778     opt = split_flow_path(phase, this);
1779     // This optimization only modifies phi - don't need to check for dead loop.
1780     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1781     if (opt != NULL)  return opt;
1782   }
1783 
1784   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1785     // Try to undo Phi of AddP:
1786     // (Phi (AddP base base y) (AddP base2 base2 y))
1787     // becomes:
1788     // newbase := (Phi base base2)
1789     // (AddP newbase newbase y)
1790     //
1791     // This occurs as a result of unsuccessful split_thru_phi and
1792     // interferes with taking advantage of addressing modes. See the
1793     // clone_shift_expressions code in matcher.cpp
1794     Node* addp = in(1);
1795     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1796     Node* y = addp->in(AddPNode::Offset);
1797     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1798       // make sure that all the inputs are similar to the first one,
1799       // i.e. AddP with base == address and same offset as first AddP
1800       bool doit = true;
1801       for (uint i = 2; i < req(); i++) {
1802         if (in(i) == NULL ||
1803             in(i)->Opcode() != Op_AddP ||
1804             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1805             in(i)->in(AddPNode::Offset) != y) {
1806           doit = false;
1807           break;
1808         }
1809         // Accumulate type for resulting Phi
1810         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1811       }
1812       Node* base = NULL;
1813       if (doit) {
1814         // Check for neighboring AddP nodes in a tree.
1815         // If they have a base, use that it.
1816         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1817           Node* u = this->fast_out(k);
1818           if (u->is_AddP()) {
1819             Node* base2 = u->in(AddPNode::Base);
1820             if (base2 != NULL && !base2->is_top()) {
1821               if (base == NULL)
1822                 base = base2;
1823               else if (base != base2)
1824                 { doit = false; break; }
1825             }
1826           }
1827         }
1828       }
1829       if (doit) {
1830         if (base == NULL) {
1831           base = new PhiNode(in(0), type, NULL);
1832           for (uint i = 1; i < req(); i++) {
1833             base->init_req(i, in(i)->in(AddPNode::Base));
1834           }
1835           phase->is_IterGVN()->register_new_node_with_optimizer(base);
1836         }
1837         return new AddPNode(base, base, y);
1838       }
1839     }
1840   }
1841 
1842   // Split phis through memory merges, so that the memory merges will go away.
1843   // Piggy-back this transformation on the search for a unique input....
1844   // It will be as if the merged memory is the unique value of the phi.
1845   // (Do not attempt this optimization unless parsing is complete.
1846   // It would make the parser's memory-merge logic sick.)
1847   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1848   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1849     // see if this phi should be sliced
1850     uint merge_width = 0;
1851     bool saw_self = false;
1852     for( uint i=1; i<req(); ++i ) {// For all paths in
1853       Node *ii = in(i);
1854       if (ii->is_MergeMem()) {
1855         MergeMemNode* n = ii->as_MergeMem();
1856         merge_width = MAX2(merge_width, n->req());
1857         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1858       }
1859     }
1860 
1861     // This restriction is temporarily necessary to ensure termination:
1862     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1863 
1864     if (merge_width > Compile::AliasIdxRaw) {
1865       // found at least one non-empty MergeMem
1866       const TypePtr* at = adr_type();
1867       if (at != TypePtr::BOTTOM) {
1868         // Patch the existing phi to select an input from the merge:
1869         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1870         //     Phi:AT1(...m1...)
1871         int alias_idx = phase->C->get_alias_index(at);
1872         for (uint i=1; i<req(); ++i) {
1873           Node *ii = in(i);
1874           if (ii->is_MergeMem()) {
1875             MergeMemNode* n = ii->as_MergeMem();
1876             // compress paths and change unreachable cycles to TOP
1877             // If not, we can update the input infinitely along a MergeMem cycle
1878             // Equivalent code is in MemNode::Ideal_common
1879             Node *m  = phase->transform(n);
1880             if (outcnt() == 0) {  // Above transform() may kill us!
1881               return top;
1882             }
1883             // If transformed to a MergeMem, get the desired slice
1884             // Otherwise the returned node represents memory for every slice
1885             Node *new_mem = (m->is_MergeMem()) ?
1886                              m->as_MergeMem()->memory_at(alias_idx) : m;
1887             // Update input if it is progress over what we have now
1888             if (new_mem != ii) {
1889               set_req(i, new_mem);
1890               progress = this;
1891             }
1892           }
1893         }
1894       } else {
1895         // We know that at least one MergeMem->base_memory() == this
1896         // (saw_self == true). If all other inputs also references this phi
1897         // (directly or through data nodes) - it is dead loop.
1898         bool saw_safe_input = false;
1899         for (uint j = 1; j < req(); ++j) {
1900           Node *n = in(j);
1901           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1902             continue;              // skip known cases
1903           if (!is_unsafe_data_reference(n)) {
1904             saw_safe_input = true; // found safe input
1905             break;
1906           }
1907         }
1908         if (!saw_safe_input)
1909           return top; // all inputs reference back to this phi - dead loop
1910 
1911         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1912         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1913         PhaseIterGVN *igvn = phase->is_IterGVN();
1914         Node* hook = new Node(1);
1915         PhiNode* new_base = (PhiNode*) clone();
1916         // Must eagerly register phis, since they participate in loops.
1917         if (igvn) {
1918           igvn->register_new_node_with_optimizer(new_base);
1919           hook->add_req(new_base);
1920         }
1921         MergeMemNode* result = MergeMemNode::make(new_base);
1922         for (uint i = 1; i < req(); ++i) {
1923           Node *ii = in(i);
1924           if (ii->is_MergeMem()) {
1925             MergeMemNode* n = ii->as_MergeMem();
1926             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1927               // If we have not seen this slice yet, make a phi for it.
1928               bool made_new_phi = false;
1929               if (mms.is_empty()) {
1930                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1931                 made_new_phi = true;
1932                 if (igvn) {
1933                   igvn->register_new_node_with_optimizer(new_phi);
1934                   hook->add_req(new_phi);
1935                 }
1936                 mms.set_memory(new_phi);
1937               }
1938               Node* phi = mms.memory();
1939               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1940               phi->set_req(i, mms.memory2());
1941             }
1942           }
1943         }
1944         // Distribute all self-loops.
1945         { // (Extra braces to hide mms.)
1946           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1947             Node* phi = mms.memory();
1948             for (uint i = 1; i < req(); ++i) {
1949               if (phi->in(i) == this)  phi->set_req(i, phi);
1950             }
1951           }
1952         }
1953         // now transform the new nodes, and return the mergemem
1954         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1955           Node* phi = mms.memory();
1956           mms.set_memory(phase->transform(phi));
1957         }
1958         if (igvn) { // Unhook.
1959           igvn->hash_delete(hook);
1960           for (uint i = 1; i < hook->req(); i++) {
1961             hook->set_req(i, NULL);
1962           }
1963         }
1964         // Replace self with the result.
1965         return result;
1966       }
1967     }
1968     //
1969     // Other optimizations on the memory chain
1970     //
1971     const TypePtr* at = adr_type();
1972     for( uint i=1; i<req(); ++i ) {// For all paths in
1973       Node *ii = in(i);
1974       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
1975       if (ii != new_in ) {
1976         set_req(i, new_in);
1977         progress = this;
1978       }
1979     }
1980   }
1981 
1982 #ifdef _LP64
1983   // Push DecodeN/DecodeNKlass down through phi.
1984   // The rest of phi graph will transform by split EncodeP node though phis up.
1985   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
1986     bool may_push = true;
1987     bool has_decodeN = false;
1988     bool is_decodeN = false;
1989     for (uint i=1; i<req(); ++i) {// For all paths in
1990       Node *ii = in(i);
1991       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
1992         // Do optimization if a non dead path exist.
1993         if (ii->in(1)->bottom_type() != Type::TOP) {
1994           has_decodeN = true;
1995           is_decodeN = ii->is_DecodeN();
1996         }
1997       } else if (!ii->is_Phi()) {
1998         may_push = false;
1999       }
2000     }
2001 
2002     if (has_decodeN && may_push) {
2003       PhaseIterGVN *igvn = phase->is_IterGVN();
2004       // Make narrow type for new phi.
2005       const Type* narrow_t;
2006       if (is_decodeN) {
2007         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2008       } else {
2009         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2010       }
2011       PhiNode* new_phi = new PhiNode(r, narrow_t);
2012       uint orig_cnt = req();
2013       for (uint i=1; i<req(); ++i) {// For all paths in
2014         Node *ii = in(i);
2015         Node* new_ii = NULL;
2016         if (ii->is_DecodeNarrowPtr()) {
2017           assert(ii->bottom_type() == bottom_type(), "sanity");
2018           new_ii = ii->in(1);
2019         } else {
2020           assert(ii->is_Phi(), "sanity");
2021           if (ii->as_Phi() == this) {
2022             new_ii = new_phi;
2023           } else {
2024             if (is_decodeN) {
2025               new_ii = new EncodePNode(ii, narrow_t);
2026             } else {
2027               new_ii = new EncodePKlassNode(ii, narrow_t);
2028             }
2029             igvn->register_new_node_with_optimizer(new_ii);
2030           }
2031         }
2032         new_phi->set_req(i, new_ii);
2033       }
2034       igvn->register_new_node_with_optimizer(new_phi, this);
2035       if (is_decodeN) {
2036         progress = new DecodeNNode(new_phi, bottom_type());
2037       } else {
2038         progress = new DecodeNKlassNode(new_phi, bottom_type());
2039       }
2040     }
2041   }
2042 #endif
2043 
2044   return progress;              // Return any progress
2045 }
2046 
2047 //------------------------------is_tripcount-----------------------------------
2048 bool PhiNode::is_tripcount() const {
2049   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2050           in(0)->as_CountedLoop()->phi() == this);
2051 }
2052 
2053 //------------------------------out_RegMask------------------------------------
2054 const RegMask &PhiNode::in_RegMask(uint i) const {
2055   return i ? out_RegMask() : RegMask::Empty;
2056 }
2057 
2058 const RegMask &PhiNode::out_RegMask() const {
2059   uint ideal_reg = _type->ideal_reg();
2060   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2061   if( ideal_reg == 0 ) return RegMask::Empty;
2062   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2063 }
2064 
2065 #ifndef PRODUCT
2066 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2067   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2068   // and all outputs till level 1. In compact mode, inputs till level 1 are
2069   // collected.
2070   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2071   this->collect_nodes(out_rel, -1, false, false);
2072 }
2073 
2074 void PhiNode::dump_spec(outputStream *st) const {
2075   TypeNode::dump_spec(st);
2076   if (is_tripcount()) {
2077     st->print(" #tripcount");
2078   }
2079 }
2080 #endif
2081 
2082 
2083 //=============================================================================
2084 const Type* GotoNode::Value(PhaseGVN* phase) const {
2085   // If the input is reachable, then we are executed.
2086   // If the input is not reachable, then we are not executed.
2087   return phase->type(in(0));
2088 }
2089 
2090 Node* GotoNode::Identity(PhaseGVN* phase) {
2091   return in(0);                // Simple copy of incoming control
2092 }
2093 
2094 const RegMask &GotoNode::out_RegMask() const {
2095   return RegMask::Empty;
2096 }
2097 
2098 #ifndef PRODUCT
2099 //-----------------------------related-----------------------------------------
2100 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2101 // outputs at level 1. This is regardless of compact mode.
2102 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2103   this->collect_nodes(in_rel, 1, false, false);
2104   this->collect_nodes(out_rel, -1, false, false);
2105 }
2106 #endif
2107 
2108 
2109 //=============================================================================
2110 const RegMask &JumpNode::out_RegMask() const {
2111   return RegMask::Empty;
2112 }
2113 
2114 #ifndef PRODUCT
2115 //-----------------------------related-----------------------------------------
2116 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2117 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2118 // This is regardless of compact mode.
2119 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2120   this->collect_nodes(in_rel, 1, false, false);
2121   this->collect_nodes(out_rel, -2, false, false);
2122 }
2123 #endif
2124 
2125 //=============================================================================
2126 const RegMask &JProjNode::out_RegMask() const {
2127   return RegMask::Empty;
2128 }
2129 
2130 //=============================================================================
2131 const RegMask &CProjNode::out_RegMask() const {
2132   return RegMask::Empty;
2133 }
2134 
2135 
2136 
2137 //=============================================================================
2138 
2139 uint PCTableNode::hash() const { return Node::hash() + _size; }
2140 uint PCTableNode::cmp( const Node &n ) const
2141 { return _size == ((PCTableNode&)n)._size; }
2142 
2143 const Type *PCTableNode::bottom_type() const {
2144   const Type** f = TypeTuple::fields(_size);
2145   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2146   return TypeTuple::make(_size, f);
2147 }
2148 
2149 //------------------------------Value------------------------------------------
2150 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2151 // Control, otherwise the table targets are not reachable
2152 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2153   if( phase->type(in(0)) == Type::CONTROL )
2154     return bottom_type();
2155   return Type::TOP;             // All paths dead?  Then so are we
2156 }
2157 
2158 //------------------------------Ideal------------------------------------------
2159 // Return a node which is more "ideal" than the current node.  Strip out
2160 // control copies
2161 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2162   return remove_dead_region(phase, can_reshape) ? this : NULL;
2163 }
2164 
2165 //=============================================================================
2166 uint JumpProjNode::hash() const {
2167   return Node::hash() + _dest_bci;
2168 }
2169 
2170 uint JumpProjNode::cmp( const Node &n ) const {
2171   return ProjNode::cmp(n) &&
2172     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2173 }
2174 
2175 #ifndef PRODUCT
2176 void JumpProjNode::dump_spec(outputStream *st) const {
2177   ProjNode::dump_spec(st);
2178   st->print("@bci %d ",_dest_bci);
2179 }
2180 
2181 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2182   ProjNode::dump_compact_spec(st);
2183   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2184 }
2185 
2186 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2187   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2188   this->collect_nodes(in_rel, 1, false, false);
2189   this->collect_nodes(out_rel, -1, false, false);
2190 }
2191 #endif
2192 
2193 //=============================================================================
2194 //------------------------------Value------------------------------------------
2195 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2196 // have the default "fall_through_index" path.
2197 const Type* CatchNode::Value(PhaseGVN* phase) const {
2198   // Unreachable?  Then so are all paths from here.
2199   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2200   // First assume all paths are reachable
2201   const Type** f = TypeTuple::fields(_size);
2202   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2203   // Identify cases that will always throw an exception
2204   // () rethrow call
2205   // () virtual or interface call with NULL receiver
2206   // () call is a check cast with incompatible arguments
2207   if( in(1)->is_Proj() ) {
2208     Node *i10 = in(1)->in(0);
2209     if( i10->is_Call() ) {
2210       CallNode *call = i10->as_Call();
2211       // Rethrows always throw exceptions, never return
2212       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2213         f[CatchProjNode::fall_through_index] = Type::TOP;
2214       } else if( call->req() > TypeFunc::Parms ) {
2215         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2216         // Check for null receiver to virtual or interface calls
2217         if( call->is_CallDynamicJava() &&
2218             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2219           f[CatchProjNode::fall_through_index] = Type::TOP;
2220         }
2221       } // End of if not a runtime stub
2222     } // End of if have call above me
2223   } // End of slot 1 is not a projection
2224   return TypeTuple::make(_size, f);
2225 }
2226 
2227 //=============================================================================
2228 uint CatchProjNode::hash() const {
2229   return Node::hash() + _handler_bci;
2230 }
2231 
2232 
2233 uint CatchProjNode::cmp( const Node &n ) const {
2234   return ProjNode::cmp(n) &&
2235     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2236 }
2237 
2238 
2239 //------------------------------Identity---------------------------------------
2240 // If only 1 target is possible, choose it if it is the main control
2241 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2242   // If my value is control and no other value is, then treat as ID
2243   const TypeTuple *t = phase->type(in(0))->is_tuple();
2244   if (t->field_at(_con) != Type::CONTROL)  return this;
2245   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2246   // also remove any exception table entry.  Thus we must know the call
2247   // feeding the Catch will not really throw an exception.  This is ok for
2248   // the main fall-thru control (happens when we know a call can never throw
2249   // an exception) or for "rethrow", because a further optimization will
2250   // yank the rethrow (happens when we inline a function that can throw an
2251   // exception and the caller has no handler).  Not legal, e.g., for passing
2252   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2253   // These cases MUST throw an exception via the runtime system, so the VM
2254   // will be looking for a table entry.
2255   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2256   CallNode *call;
2257   if (_con != TypeFunc::Control && // Bail out if not the main control.
2258       !(proj->is_Proj() &&      // AND NOT a rethrow
2259         proj->in(0)->is_Call() &&
2260         (call = proj->in(0)->as_Call()) &&
2261         call->entry_point() == OptoRuntime::rethrow_stub()))
2262     return this;
2263 
2264   // Search for any other path being control
2265   for (uint i = 0; i < t->cnt(); i++) {
2266     if (i != _con && t->field_at(i) == Type::CONTROL)
2267       return this;
2268   }
2269   // Only my path is possible; I am identity on control to the jump
2270   return in(0)->in(0);
2271 }
2272 
2273 
2274 #ifndef PRODUCT
2275 void CatchProjNode::dump_spec(outputStream *st) const {
2276   ProjNode::dump_spec(st);
2277   st->print("@bci %d ",_handler_bci);
2278 }
2279 #endif
2280 
2281 //=============================================================================
2282 //------------------------------Identity---------------------------------------
2283 // Check for CreateEx being Identity.
2284 Node* CreateExNode::Identity(PhaseGVN* phase) {
2285   if( phase->type(in(1)) == Type::TOP ) return in(1);
2286   if( phase->type(in(0)) == Type::TOP ) return in(0);
2287   // We only come from CatchProj, unless the CatchProj goes away.
2288   // If the CatchProj is optimized away, then we just carry the
2289   // exception oop through.
2290   CallNode *call = in(1)->in(0)->as_Call();
2291 
2292   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2293     ? this
2294     : call->in(TypeFunc::Parms);
2295 }
2296 
2297 //=============================================================================
2298 //------------------------------Value------------------------------------------
2299 // Check for being unreachable.
2300 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2301   if (!in(0) || in(0)->is_top()) return Type::TOP;
2302   return bottom_type();
2303 }
2304 
2305 //------------------------------Ideal------------------------------------------
2306 // Check for no longer being part of a loop
2307 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2308   if (can_reshape && !in(0)->is_Loop()) {
2309     // Dead code elimination can sometimes delete this projection so
2310     // if it's not there, there's nothing to do.
2311     Node* fallthru = proj_out(0);
2312     if (fallthru != NULL) {
2313       phase->is_IterGVN()->replace_node(fallthru, in(0));
2314     }
2315     return phase->C->top();
2316   }
2317   return NULL;
2318 }
2319 
2320 #ifndef PRODUCT
2321 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2322   st->print("%s", Name());
2323 }
2324 #endif