1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/memnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 
  38 //=============================================================================
  39 //------------------------------hash-------------------------------------------
  40 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  41 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  42 // the same value in the presence of edge swapping.
  43 uint MulNode::hash() const {
  44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  45 }
  46 
  47 //------------------------------Identity---------------------------------------
  48 // Multiplying a one preserves the other argument
  49 Node* MulNode::Identity(PhaseGVN* phase) {
  50   register const Type *one = mul_id();  // The multiplicative identity
  51   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  52   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  53 
  54   return this;
  55 }
  56 
  57 //------------------------------Ideal------------------------------------------
  58 // We also canonicalize the Node, moving constants to the right input,
  59 // and flatten expressions (so that 1+x+2 becomes x+3).
  60 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  61   const Type *t1 = phase->type( in(1) );
  62   const Type *t2 = phase->type( in(2) );
  63   Node *progress = NULL;        // Progress flag
  64   // We are OK if right is a constant, or right is a load and
  65   // left is a non-constant.
  66   if( !(t2->singleton() ||
  67         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
  68     if( t1->singleton() ||       // Left input is a constant?
  69         // Otherwise, sort inputs (commutativity) to help value numbering.
  70         (in(1)->_idx > in(2)->_idx) ) {
  71       swap_edges(1, 2);
  72       const Type *t = t1;
  73       t1 = t2;
  74       t2 = t;
  75       progress = this;            // Made progress
  76     }
  77   }
  78 
  79   // If the right input is a constant, and the left input is a product of a
  80   // constant, flatten the expression tree.
  81   uint op = Opcode();
  82   if( t2->singleton() &&        // Right input is a constant?
  83       op != Op_MulF &&          // Float & double cannot reassociate
  84       op != Op_MulD ) {
  85     if( t2 == Type::TOP ) return NULL;
  86     Node *mul1 = in(1);
  87 #ifdef ASSERT
  88     // Check for dead loop
  89     int   op1 = mul1->Opcode();
  90     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
  91         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
  92         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
  93           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
  94       assert(false, "dead loop in MulNode::Ideal");
  95 #endif
  96 
  97     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
  98       // Mul of a constant?
  99       const Type *t12 = phase->type( mul1->in(2) );
 100       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 101         // Compute new constant; check for overflow
 102         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 103         if( tcon01->singleton() ) {
 104           // The Mul of the flattened expression
 105           set_req(1, mul1->in(1));
 106           set_req(2, phase->makecon( tcon01 ));
 107           t2 = tcon01;
 108           progress = this;      // Made progress
 109         }
 110       }
 111     }
 112     // If the right input is a constant, and the left input is an add of a
 113     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 114     const Node *add1 = in(1);
 115     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 116       // Add of a constant?
 117       const Type *t12 = phase->type( add1->in(2) );
 118       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 119         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 120         // Compute new constant; check for overflow
 121         const Type *tcon01 = mul_ring(t2,t12);
 122         if( tcon01->singleton() ) {
 123 
 124         // Convert (X+con1)*con0 into X*con0
 125           Node *mul = clone();    // mul = ()*con0
 126           mul->set_req(1,add1->in(1));  // mul = X*con0
 127           mul = phase->transform(mul);
 128 
 129           Node *add2 = add1->clone();
 130           add2->set_req(1, mul);        // X*con0 + con0*con1
 131           add2->set_req(2, phase->makecon(tcon01) );
 132           progress = add2;
 133         }
 134       }
 135     } // End of is left input an add
 136   } // End of is right input a Mul
 137 
 138   return progress;
 139 }
 140 
 141 //------------------------------Value-----------------------------------------
 142 const Type* MulNode::Value(PhaseGVN* phase) const {
 143   const Type *t1 = phase->type( in(1) );
 144   const Type *t2 = phase->type( in(2) );
 145   // Either input is TOP ==> the result is TOP
 146   if( t1 == Type::TOP ) return Type::TOP;
 147   if( t2 == Type::TOP ) return Type::TOP;
 148 
 149   // Either input is ZERO ==> the result is ZERO.
 150   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 151   int op = Opcode();
 152   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 153     const Type *zero = add_id();        // The multiplicative zero
 154     if( t1->higher_equal( zero ) ) return zero;
 155     if( t2->higher_equal( zero ) ) return zero;
 156   }
 157 
 158   // Either input is BOTTOM ==> the result is the local BOTTOM
 159   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 160     return bottom_type();
 161 
 162 #if defined(IA32)
 163   // Can't trust native compilers to properly fold strict double
 164   // multiplication with round-to-zero on this platform.
 165   if (op == Op_MulD && phase->C->method()->is_strict()) {
 166     return TypeD::DOUBLE;
 167   }
 168 #endif
 169 
 170   return mul_ring(t1,t2);            // Local flavor of type multiplication
 171 }
 172 
 173 
 174 //=============================================================================
 175 //------------------------------Ideal------------------------------------------
 176 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 177 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 178   // Swap constant to right
 179   jint con;
 180   if ((con = in(1)->find_int_con(0)) != 0) {
 181     swap_edges(1, 2);
 182     // Finish rest of method to use info in 'con'
 183   } else if ((con = in(2)->find_int_con(0)) == 0) {
 184     return MulNode::Ideal(phase, can_reshape);
 185   }
 186 
 187   // Now we have a constant Node on the right and the constant in con
 188   if( con == 0 ) return NULL;   // By zero is handled by Value call
 189   if( con == 1 ) return NULL;   // By one  is handled by Identity call
 190 
 191   // Check for negative constant; if so negate the final result
 192   bool sign_flip = false;
 193   if( con < 0 ) {
 194     con = -con;
 195     sign_flip = true;
 196   }
 197 
 198   // Get low bit; check for being the only bit
 199   Node *res = NULL;
 200   jint bit1 = con & -con;       // Extract low bit
 201   if( bit1 == con ) {           // Found a power of 2?
 202     res = new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
 203   } else {
 204 
 205     // Check for constant with 2 bits set
 206     jint bit2 = con-bit1;
 207     bit2 = bit2 & -bit2;          // Extract 2nd bit
 208     if( bit2 + bit1 == con ) {    // Found all bits in con?
 209       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
 210       Node *n2 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
 211       res = new AddINode( n2, n1 );
 212 
 213     } else if (is_power_of_2(con+1)) {
 214       // Sleezy: power-of-2 -1.  Next time be generic.
 215       jint temp = (jint) (con + 1);
 216       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
 217       res = new SubINode( n1, in(1) );
 218     } else {
 219       return MulNode::Ideal(phase, can_reshape);
 220     }
 221   }
 222 
 223   if( sign_flip ) {             // Need to negate result?
 224     res = phase->transform(res);// Transform, before making the zero con
 225     res = new SubINode(phase->intcon(0),res);
 226   }
 227 
 228   return res;                   // Return final result
 229 }
 230 
 231 //------------------------------mul_ring---------------------------------------
 232 // Compute the product type of two integer ranges into this node.
 233 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
 234   const TypeInt *r0 = t0->is_int(); // Handy access
 235   const TypeInt *r1 = t1->is_int();
 236 
 237   // Fetch endpoints of all ranges
 238   int32_t lo0 = r0->_lo;
 239   double a = (double)lo0;
 240   int32_t hi0 = r0->_hi;
 241   double b = (double)hi0;
 242   int32_t lo1 = r1->_lo;
 243   double c = (double)lo1;
 244   int32_t hi1 = r1->_hi;
 245   double d = (double)hi1;
 246 
 247   // Compute all endpoints & check for overflow
 248   int32_t A = java_multiply(lo0, lo1);
 249   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
 250   int32_t B = java_multiply(lo0, hi1);
 251   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
 252   int32_t C = java_multiply(hi0, lo1);
 253   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
 254   int32_t D = java_multiply(hi0, hi1);
 255   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
 256 
 257   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 258   else { lo0 = B; hi0 = A; }
 259   if( C < D ) {
 260     if( C < lo0 ) lo0 = C;
 261     if( D > hi0 ) hi0 = D;
 262   } else {
 263     if( D < lo0 ) lo0 = D;
 264     if( C > hi0 ) hi0 = C;
 265   }
 266   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 267 }
 268 
 269 
 270 //=============================================================================
 271 //------------------------------Ideal------------------------------------------
 272 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 273 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 274   // Swap constant to right
 275   jlong con;
 276   if ((con = in(1)->find_long_con(0)) != 0) {
 277     swap_edges(1, 2);
 278     // Finish rest of method to use info in 'con'
 279   } else if ((con = in(2)->find_long_con(0)) == 0) {
 280     return MulNode::Ideal(phase, can_reshape);
 281   }
 282 
 283   // Now we have a constant Node on the right and the constant in con
 284   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
 285   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
 286 
 287   // Check for negative constant; if so negate the final result
 288   bool sign_flip = false;
 289   if( con < 0 ) {
 290     con = -con;
 291     sign_flip = true;
 292   }
 293 
 294   // Get low bit; check for being the only bit
 295   Node *res = NULL;
 296   jlong bit1 = con & -con;      // Extract low bit
 297   if( bit1 == con ) {           // Found a power of 2?
 298     res = new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
 299   } else {
 300 
 301     // Check for constant with 2 bits set
 302     jlong bit2 = con-bit1;
 303     bit2 = bit2 & -bit2;          // Extract 2nd bit
 304     if( bit2 + bit1 == con ) {    // Found all bits in con?
 305       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
 306       Node *n2 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
 307       res = new AddLNode( n2, n1 );
 308 
 309     } else if (is_power_of_2_long(con+1)) {
 310       // Sleezy: power-of-2 -1.  Next time be generic.
 311       jlong temp = (jlong) (con + 1);
 312       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
 313       res = new SubLNode( n1, in(1) );
 314     } else {
 315       return MulNode::Ideal(phase, can_reshape);
 316     }
 317   }
 318 
 319   if( sign_flip ) {             // Need to negate result?
 320     res = phase->transform(res);// Transform, before making the zero con
 321     res = new SubLNode(phase->longcon(0),res);
 322   }
 323 
 324   return res;                   // Return final result
 325 }
 326 
 327 //------------------------------mul_ring---------------------------------------
 328 // Compute the product type of two integer ranges into this node.
 329 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
 330   const TypeLong *r0 = t0->is_long(); // Handy access
 331   const TypeLong *r1 = t1->is_long();
 332 
 333   // Fetch endpoints of all ranges
 334   jlong lo0 = r0->_lo;
 335   double a = (double)lo0;
 336   jlong hi0 = r0->_hi;
 337   double b = (double)hi0;
 338   jlong lo1 = r1->_lo;
 339   double c = (double)lo1;
 340   jlong hi1 = r1->_hi;
 341   double d = (double)hi1;
 342 
 343   // Compute all endpoints & check for overflow
 344   jlong A = java_multiply(lo0, lo1);
 345   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
 346   jlong B = java_multiply(lo0, hi1);
 347   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
 348   jlong C = java_multiply(hi0, lo1);
 349   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
 350   jlong D = java_multiply(hi0, hi1);
 351   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
 352 
 353   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 354   else { lo0 = B; hi0 = A; }
 355   if( C < D ) {
 356     if( C < lo0 ) lo0 = C;
 357     if( D > hi0 ) hi0 = D;
 358   } else {
 359     if( D < lo0 ) lo0 = D;
 360     if( C > hi0 ) hi0 = C;
 361   }
 362   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 363 }
 364 
 365 //=============================================================================
 366 //------------------------------mul_ring---------------------------------------
 367 // Compute the product type of two double ranges into this node.
 368 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 369   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 370   return TypeF::make( t0->getf() * t1->getf() );
 371 }
 372 
 373 //=============================================================================
 374 //------------------------------mul_ring---------------------------------------
 375 // Compute the product type of two double ranges into this node.
 376 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 377   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 378   // We must be multiplying 2 double constants.
 379   return TypeD::make( t0->getd() * t1->getd() );
 380 }
 381 
 382 //=============================================================================
 383 //------------------------------Value------------------------------------------
 384 const Type* MulHiLNode::Value(PhaseGVN* phase) const {
 385   // Either input is TOP ==> the result is TOP
 386   const Type *t1 = phase->type( in(1) );
 387   const Type *t2 = phase->type( in(2) );
 388   if( t1 == Type::TOP ) return Type::TOP;
 389   if( t2 == Type::TOP ) return Type::TOP;
 390 
 391   // Either input is BOTTOM ==> the result is the local BOTTOM
 392   const Type *bot = bottom_type();
 393   if( (t1 == bot) || (t2 == bot) ||
 394       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 395     return bot;
 396 
 397   // It is not worth trying to constant fold this stuff!
 398   return TypeLong::LONG;
 399 }
 400 
 401 //=============================================================================
 402 //------------------------------mul_ring---------------------------------------
 403 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 404 // For the logical operations the ring's MUL is really a logical AND function.
 405 // This also type-checks the inputs for sanity.  Guaranteed never to
 406 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 407 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 408   const TypeInt *r0 = t0->is_int(); // Handy access
 409   const TypeInt *r1 = t1->is_int();
 410   int widen = MAX2(r0->_widen,r1->_widen);
 411 
 412   // If either input is a constant, might be able to trim cases
 413   if( !r0->is_con() && !r1->is_con() )
 414     return TypeInt::INT;        // No constants to be had
 415 
 416   // Both constants?  Return bits
 417   if( r0->is_con() && r1->is_con() )
 418     return TypeInt::make( r0->get_con() & r1->get_con() );
 419 
 420   if( r0->is_con() && r0->get_con() > 0 )
 421     return TypeInt::make(0, r0->get_con(), widen);
 422 
 423   if( r1->is_con() && r1->get_con() > 0 )
 424     return TypeInt::make(0, r1->get_con(), widen);
 425 
 426   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
 427     return TypeInt::BOOL;
 428   }
 429 
 430   return TypeInt::INT;          // No constants to be had
 431 }
 432 
 433 //------------------------------Identity---------------------------------------
 434 // Masking off the high bits of an unsigned load is not required
 435 Node* AndINode::Identity(PhaseGVN* phase) {
 436 
 437   // x & x => x
 438   if (phase->eqv(in(1), in(2))) return in(1);
 439 
 440   Node* in1 = in(1);
 441   uint op = in1->Opcode();
 442   const TypeInt* t2 = phase->type(in(2))->isa_int();
 443   if (t2 && t2->is_con()) {
 444     int con = t2->get_con();
 445     // Masking off high bits which are always zero is useless.
 446     const TypeInt* t1 = phase->type( in(1) )->isa_int();
 447     if (t1 != NULL && t1->_lo >= 0) {
 448       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
 449       if ((t1_support & con) == t1_support)
 450         return in1;
 451     }
 452     // Masking off the high bits of a unsigned-shift-right is not
 453     // needed either.
 454     if (op == Op_URShiftI) {
 455       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 456       if (t12 && t12->is_con()) {  // Shift is by a constant
 457         int shift = t12->get_con();
 458         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 459         int mask = max_juint >> shift;
 460         if ((mask & con) == mask)  // If AND is useless, skip it
 461           return in1;
 462       }
 463     }
 464   }
 465   return MulNode::Identity(phase);
 466 }
 467 
 468 //------------------------------Ideal------------------------------------------
 469 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 470   // Special case constant AND mask
 471   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 472   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 473   const int mask = t2->get_con();
 474   Node *load = in(1);
 475   uint lop = load->Opcode();
 476 
 477   // Masking bits off of a Character?  Hi bits are already zero.
 478   if( lop == Op_LoadUS &&
 479       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 480     return new AndINode(load,phase->intcon(mask&0xFFFF));
 481 
 482   // Masking bits off of a Short?  Loading a Character does some masking
 483   if (can_reshape &&
 484       load->outcnt() == 1 && load->unique_out() == this) {
 485     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 486       Node *ldus = new LoadUSNode(load->in(MemNode::Control),
 487                                   load->in(MemNode::Memory),
 488                                   load->in(MemNode::Address),
 489                                   load->adr_type(),
 490                                   TypeInt::CHAR, MemNode::unordered);
 491       ldus = phase->transform(ldus);
 492       return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
 493     }
 494 
 495     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 496     // an and.
 497     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
 498       Node* ldub = new LoadUBNode(load->in(MemNode::Control),
 499                                   load->in(MemNode::Memory),
 500                                   load->in(MemNode::Address),
 501                                   load->adr_type(),
 502                                   TypeInt::UBYTE, MemNode::unordered);
 503       ldub = phase->transform(ldub);
 504       return new AndINode(ldub, phase->intcon(mask));
 505     }
 506   }
 507 
 508   // Masking off sign bits?  Dont make them!
 509   if( lop == Op_RShiftI ) {
 510     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 511     if( t12 && t12->is_con() ) { // Shift is by a constant
 512       int shift = t12->get_con();
 513       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 514       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 515       // If the AND'ing of the 2 masks has no bits, then only original shifted
 516       // bits survive.  NO sign-extension bits survive the maskings.
 517       if( (sign_bits_mask & mask) == 0 ) {
 518         // Use zero-fill shift instead
 519         Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
 520         return new AndINode( zshift, in(2) );
 521       }
 522     }
 523   }
 524 
 525   // Check for 'negate/and-1', a pattern emitted when someone asks for
 526   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 527   // plus 1) and the mask is of the low order bit.  Skip the negate.
 528   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 529       phase->type(load->in(1)) == TypeInt::ZERO )
 530     return new AndINode( load->in(2), in(2) );
 531 
 532   return MulNode::Ideal(phase, can_reshape);
 533 }
 534 
 535 //=============================================================================
 536 //------------------------------mul_ring---------------------------------------
 537 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 538 // For the logical operations the ring's MUL is really a logical AND function.
 539 // This also type-checks the inputs for sanity.  Guaranteed never to
 540 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 541 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 542   const TypeLong *r0 = t0->is_long(); // Handy access
 543   const TypeLong *r1 = t1->is_long();
 544   int widen = MAX2(r0->_widen,r1->_widen);
 545 
 546   // If either input is a constant, might be able to trim cases
 547   if( !r0->is_con() && !r1->is_con() )
 548     return TypeLong::LONG;      // No constants to be had
 549 
 550   // Both constants?  Return bits
 551   if( r0->is_con() && r1->is_con() )
 552     return TypeLong::make( r0->get_con() & r1->get_con() );
 553 
 554   if( r0->is_con() && r0->get_con() > 0 )
 555     return TypeLong::make(CONST64(0), r0->get_con(), widen);
 556 
 557   if( r1->is_con() && r1->get_con() > 0 )
 558     return TypeLong::make(CONST64(0), r1->get_con(), widen);
 559 
 560   return TypeLong::LONG;        // No constants to be had
 561 }
 562 
 563 //------------------------------Identity---------------------------------------
 564 // Masking off the high bits of an unsigned load is not required
 565 Node* AndLNode::Identity(PhaseGVN* phase) {
 566 
 567   // x & x => x
 568   if (phase->eqv(in(1), in(2))) return in(1);
 569 
 570   Node *usr = in(1);
 571   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 572   if( t2 && t2->is_con() ) {
 573     jlong con = t2->get_con();
 574     // Masking off high bits which are always zero is useless.
 575     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 576     if (t1 != NULL && t1->_lo >= 0) {
 577       int bit_count = log2_long(t1->_hi) + 1;
 578       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
 579       if ((t1_support & con) == t1_support)
 580         return usr;
 581     }
 582     uint lop = usr->Opcode();
 583     // Masking off the high bits of a unsigned-shift-right is not
 584     // needed either.
 585     if( lop == Op_URShiftL ) {
 586       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 587       if( t12 && t12->is_con() ) {  // Shift is by a constant
 588         int shift = t12->get_con();
 589         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 590         jlong mask = max_julong >> shift;
 591         if( (mask&con) == mask )  // If AND is useless, skip it
 592           return usr;
 593       }
 594     }
 595   }
 596   return MulNode::Identity(phase);
 597 }
 598 
 599 //------------------------------Ideal------------------------------------------
 600 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 601   // Special case constant AND mask
 602   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 603   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 604   const jlong mask = t2->get_con();
 605 
 606   Node* in1 = in(1);
 607   uint op = in1->Opcode();
 608 
 609   // Are we masking a long that was converted from an int with a mask
 610   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 611   // convert masks which would cause a sign extension of the integer
 612   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 613   // would be optimized away later in Identity.
 614   if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
 615     Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
 616     andi = phase->transform(andi);
 617     return new ConvI2LNode(andi);
 618   }
 619 
 620   // Masking off sign bits?  Dont make them!
 621   if (op == Op_RShiftL) {
 622     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 623     if( t12 && t12->is_con() ) { // Shift is by a constant
 624       int shift = t12->get_con();
 625       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 626       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
 627       // If the AND'ing of the 2 masks has no bits, then only original shifted
 628       // bits survive.  NO sign-extension bits survive the maskings.
 629       if( (sign_bits_mask & mask) == 0 ) {
 630         // Use zero-fill shift instead
 631         Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
 632         return new AndLNode(zshift, in(2));
 633       }
 634     }
 635   }
 636 
 637   return MulNode::Ideal(phase, can_reshape);
 638 }
 639 
 640 //=============================================================================
 641 //------------------------------Identity---------------------------------------
 642 Node* LShiftINode::Identity(PhaseGVN* phase) {
 643   const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
 644   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
 645 }
 646 
 647 //------------------------------Ideal------------------------------------------
 648 // If the right input is a constant, and the left input is an add of a
 649 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 650 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 651   const Type *t  = phase->type( in(2) );
 652   if( t == Type::TOP ) return NULL;       // Right input is dead
 653   const TypeInt *t2 = t->isa_int();
 654   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 655   const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
 656 
 657   if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
 658 
 659   // Left input is an add of a constant?
 660   Node *add1 = in(1);
 661   int add1_op = add1->Opcode();
 662   if( add1_op == Op_AddI ) {    // Left input is an add?
 663     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
 664     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
 665     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 666       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
 667       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
 668       if( con < 16 ) {
 669         // Compute X << con0
 670         Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
 671         // Compute X<<con0 + (con1<<con0)
 672         return new AddINode( lsh, phase->intcon(t12->get_con() << con));
 673       }
 674     }
 675   }
 676 
 677   // Check for "(x>>c0)<<c0" which just masks off low bits
 678   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
 679       add1->in(2) == in(2) )
 680     // Convert to "(x & -(1<<c0))"
 681     return new AndINode(add1->in(1),phase->intcon( -(1<<con)));
 682 
 683   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 684   if( add1_op == Op_AndI ) {
 685     Node *add2 = add1->in(1);
 686     int add2_op = add2->Opcode();
 687     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
 688         add2->in(2) == in(2) ) {
 689       // Convert to "(x & (Y<<c0))"
 690       Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) );
 691       return new AndINode( add2->in(1), y_sh );
 692     }
 693   }
 694 
 695   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
 696   // before shifting them away.
 697   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
 698   if( add1_op == Op_AndI &&
 699       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
 700     return new LShiftINode( add1->in(1), in(2) );
 701 
 702   return NULL;
 703 }
 704 
 705 //------------------------------Value------------------------------------------
 706 // A LShiftINode shifts its input2 left by input1 amount.
 707 const Type* LShiftINode::Value(PhaseGVN* phase) const {
 708   const Type *t1 = phase->type( in(1) );
 709   const Type *t2 = phase->type( in(2) );
 710   // Either input is TOP ==> the result is TOP
 711   if( t1 == Type::TOP ) return Type::TOP;
 712   if( t2 == Type::TOP ) return Type::TOP;
 713 
 714   // Left input is ZERO ==> the result is ZERO.
 715   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 716   // Shift by zero does nothing
 717   if( t2 == TypeInt::ZERO ) return t1;
 718 
 719   // Either input is BOTTOM ==> the result is BOTTOM
 720   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
 721       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 722     return TypeInt::INT;
 723 
 724   const TypeInt *r1 = t1->is_int(); // Handy access
 725   const TypeInt *r2 = t2->is_int(); // Handy access
 726 
 727   if (!r2->is_con())
 728     return TypeInt::INT;
 729 
 730   uint shift = r2->get_con();
 731   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 732   // Shift by a multiple of 32 does nothing:
 733   if (shift == 0)  return t1;
 734 
 735   // If the shift is a constant, shift the bounds of the type,
 736   // unless this could lead to an overflow.
 737   if (!r1->is_con()) {
 738     jint lo = r1->_lo, hi = r1->_hi;
 739     if (((lo << shift) >> shift) == lo &&
 740         ((hi << shift) >> shift) == hi) {
 741       // No overflow.  The range shifts up cleanly.
 742       return TypeInt::make((jint)lo << (jint)shift,
 743                            (jint)hi << (jint)shift,
 744                            MAX2(r1->_widen,r2->_widen));
 745     }
 746     return TypeInt::INT;
 747   }
 748 
 749   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
 750 }
 751 
 752 //=============================================================================
 753 //------------------------------Identity---------------------------------------
 754 Node* LShiftLNode::Identity(PhaseGVN* phase) {
 755   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
 756   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
 757 }
 758 
 759 //------------------------------Ideal------------------------------------------
 760 // If the right input is a constant, and the left input is an add of a
 761 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 762 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 763   const Type *t  = phase->type( in(2) );
 764   if( t == Type::TOP ) return NULL;       // Right input is dead
 765   const TypeInt *t2 = t->isa_int();
 766   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 767   const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
 768 
 769   if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
 770 
 771   // Left input is an add of a constant?
 772   Node *add1 = in(1);
 773   int add1_op = add1->Opcode();
 774   if( add1_op == Op_AddL ) {    // Left input is an add?
 775     // Avoid dead data cycles from dead loops
 776     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
 777     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
 778     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 779       // Compute X << con0
 780       Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
 781       // Compute X<<con0 + (con1<<con0)
 782       return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
 783     }
 784   }
 785 
 786   // Check for "(x>>c0)<<c0" which just masks off low bits
 787   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
 788       add1->in(2) == in(2) )
 789     // Convert to "(x & -(1<<c0))"
 790     return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
 791 
 792   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 793   if( add1_op == Op_AndL ) {
 794     Node *add2 = add1->in(1);
 795     int add2_op = add2->Opcode();
 796     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
 797         add2->in(2) == in(2) ) {
 798       // Convert to "(x & (Y<<c0))"
 799       Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) );
 800       return new AndLNode( add2->in(1), y_sh );
 801     }
 802   }
 803 
 804   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
 805   // before shifting them away.
 806   const jlong bits_mask = jlong(max_julong >> con);
 807   if( add1_op == Op_AndL &&
 808       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
 809     return new LShiftLNode( add1->in(1), in(2) );
 810 
 811   return NULL;
 812 }
 813 
 814 //------------------------------Value------------------------------------------
 815 // A LShiftLNode shifts its input2 left by input1 amount.
 816 const Type* LShiftLNode::Value(PhaseGVN* phase) const {
 817   const Type *t1 = phase->type( in(1) );
 818   const Type *t2 = phase->type( in(2) );
 819   // Either input is TOP ==> the result is TOP
 820   if( t1 == Type::TOP ) return Type::TOP;
 821   if( t2 == Type::TOP ) return Type::TOP;
 822 
 823   // Left input is ZERO ==> the result is ZERO.
 824   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
 825   // Shift by zero does nothing
 826   if( t2 == TypeInt::ZERO ) return t1;
 827 
 828   // Either input is BOTTOM ==> the result is BOTTOM
 829   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
 830       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 831     return TypeLong::LONG;
 832 
 833   const TypeLong *r1 = t1->is_long(); // Handy access
 834   const TypeInt  *r2 = t2->is_int();  // Handy access
 835 
 836   if (!r2->is_con())
 837     return TypeLong::LONG;
 838 
 839   uint shift = r2->get_con();
 840   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 841   // Shift by a multiple of 64 does nothing:
 842   if (shift == 0)  return t1;
 843 
 844   // If the shift is a constant, shift the bounds of the type,
 845   // unless this could lead to an overflow.
 846   if (!r1->is_con()) {
 847     jlong lo = r1->_lo, hi = r1->_hi;
 848     if (((lo << shift) >> shift) == lo &&
 849         ((hi << shift) >> shift) == hi) {
 850       // No overflow.  The range shifts up cleanly.
 851       return TypeLong::make((jlong)lo << (jint)shift,
 852                             (jlong)hi << (jint)shift,
 853                             MAX2(r1->_widen,r2->_widen));
 854     }
 855     return TypeLong::LONG;
 856   }
 857 
 858   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
 859 }
 860 
 861 //=============================================================================
 862 //------------------------------Identity---------------------------------------
 863 Node* RShiftINode::Identity(PhaseGVN* phase) {
 864   const TypeInt *t2 = phase->type(in(2))->isa_int();
 865   if( !t2 ) return this;
 866   if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
 867     return in(1);
 868 
 869   // Check for useless sign-masking
 870   if( in(1)->Opcode() == Op_LShiftI &&
 871       in(1)->req() == 3 &&
 872       in(1)->in(2) == in(2) &&
 873       t2->is_con() ) {
 874     uint shift = t2->get_con();
 875     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
 876     // Compute masks for which this shifting doesn't change
 877     int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
 878     int hi = ~lo;               // 00007FFF
 879     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
 880     if( !t11 ) return this;
 881     // Does actual value fit inside of mask?
 882     if( lo <= t11->_lo && t11->_hi <= hi )
 883       return in(1)->in(1);      // Then shifting is a nop
 884   }
 885 
 886   return this;
 887 }
 888 
 889 //------------------------------Ideal------------------------------------------
 890 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 891   // Inputs may be TOP if they are dead.
 892   const TypeInt *t1 = phase->type( in(1) )->isa_int();
 893   if( !t1 ) return NULL;        // Left input is an integer
 894   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 895   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 896   const TypeInt *t3;  // type of in(1).in(2)
 897   int shift = t2->get_con();
 898   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 899 
 900   if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
 901 
 902   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
 903   // Such expressions arise normally from shift chains like (byte)(x >> 24).
 904   const Node *mask = in(1);
 905   if( mask->Opcode() == Op_AndI &&
 906       (t3 = phase->type(mask->in(2))->isa_int()) &&
 907       t3->is_con() ) {
 908     Node *x = mask->in(1);
 909     jint maskbits = t3->get_con();
 910     // Convert to "(x >> shift) & (mask >> shift)"
 911     Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
 912     return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
 913   }
 914 
 915   // Check for "(short[i] <<16)>>16" which simply sign-extends
 916   const Node *shl = in(1);
 917   if( shl->Opcode() != Op_LShiftI ) return NULL;
 918 
 919   if( shift == 16 &&
 920       (t3 = phase->type(shl->in(2))->isa_int()) &&
 921       t3->is_con(16) ) {
 922     Node *ld = shl->in(1);
 923     if( ld->Opcode() == Op_LoadS ) {
 924       // Sign extension is just useless here.  Return a RShiftI of zero instead
 925       // returning 'ld' directly.  We cannot return an old Node directly as
 926       // that is the job of 'Identity' calls and Identity calls only work on
 927       // direct inputs ('ld' is an extra Node removed from 'this').  The
 928       // combined optimization requires Identity only return direct inputs.
 929       set_req(1, ld);
 930       set_req(2, phase->intcon(0));
 931       return this;
 932     }
 933     else if( can_reshape &&
 934              ld->Opcode() == Op_LoadUS &&
 935              ld->outcnt() == 1 && ld->unique_out() == shl)
 936       // Replace zero-extension-load with sign-extension-load
 937       return new LoadSNode( ld->in(MemNode::Control),
 938                             ld->in(MemNode::Memory),
 939                             ld->in(MemNode::Address),
 940                             ld->adr_type(), TypeInt::SHORT,
 941                             MemNode::unordered);
 942   }
 943 
 944   // Check for "(byte[i] <<24)>>24" which simply sign-extends
 945   if( shift == 24 &&
 946       (t3 = phase->type(shl->in(2))->isa_int()) &&
 947       t3->is_con(24) ) {
 948     Node *ld = shl->in(1);
 949     if( ld->Opcode() == Op_LoadB ) {
 950       // Sign extension is just useless here
 951       set_req(1, ld);
 952       set_req(2, phase->intcon(0));
 953       return this;
 954     }
 955   }
 956 
 957   return NULL;
 958 }
 959 
 960 //------------------------------Value------------------------------------------
 961 // A RShiftINode shifts its input2 right by input1 amount.
 962 const Type* RShiftINode::Value(PhaseGVN* phase) const {
 963   const Type *t1 = phase->type( in(1) );
 964   const Type *t2 = phase->type( in(2) );
 965   // Either input is TOP ==> the result is TOP
 966   if( t1 == Type::TOP ) return Type::TOP;
 967   if( t2 == Type::TOP ) return Type::TOP;
 968 
 969   // Left input is ZERO ==> the result is ZERO.
 970   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 971   // Shift by zero does nothing
 972   if( t2 == TypeInt::ZERO ) return t1;
 973 
 974   // Either input is BOTTOM ==> the result is BOTTOM
 975   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
 976     return TypeInt::INT;
 977 
 978   if (t2 == TypeInt::INT)
 979     return TypeInt::INT;
 980 
 981   const TypeInt *r1 = t1->is_int(); // Handy access
 982   const TypeInt *r2 = t2->is_int(); // Handy access
 983 
 984   // If the shift is a constant, just shift the bounds of the type.
 985   // For example, if the shift is 31, we just propagate sign bits.
 986   if (r2->is_con()) {
 987     uint shift = r2->get_con();
 988     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 989     // Shift by a multiple of 32 does nothing:
 990     if (shift == 0)  return t1;
 991     // Calculate reasonably aggressive bounds for the result.
 992     // This is necessary if we are to correctly type things
 993     // like (x<<24>>24) == ((byte)x).
 994     jint lo = (jint)r1->_lo >> (jint)shift;
 995     jint hi = (jint)r1->_hi >> (jint)shift;
 996     assert(lo <= hi, "must have valid bounds");
 997     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
 998 #ifdef ASSERT
 999     // Make sure we get the sign-capture idiom correct.
1000     if (shift == BitsPerJavaInteger-1) {
1001       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1002       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1003     }
1004 #endif
1005     return ti;
1006   }
1007 
1008   if( !r1->is_con() || !r2->is_con() )
1009     return TypeInt::INT;
1010 
1011   // Signed shift right
1012   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1013 }
1014 
1015 //=============================================================================
1016 //------------------------------Identity---------------------------------------
1017 Node* RShiftLNode::Identity(PhaseGVN* phase) {
1018   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1019   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1020 }
1021 
1022 //------------------------------Value------------------------------------------
1023 // A RShiftLNode shifts its input2 right by input1 amount.
1024 const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1025   const Type *t1 = phase->type( in(1) );
1026   const Type *t2 = phase->type( in(2) );
1027   // Either input is TOP ==> the result is TOP
1028   if( t1 == Type::TOP ) return Type::TOP;
1029   if( t2 == Type::TOP ) return Type::TOP;
1030 
1031   // Left input is ZERO ==> the result is ZERO.
1032   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1033   // Shift by zero does nothing
1034   if( t2 == TypeInt::ZERO ) return t1;
1035 
1036   // Either input is BOTTOM ==> the result is BOTTOM
1037   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1038     return TypeLong::LONG;
1039 
1040   if (t2 == TypeInt::INT)
1041     return TypeLong::LONG;
1042 
1043   const TypeLong *r1 = t1->is_long(); // Handy access
1044   const TypeInt  *r2 = t2->is_int (); // Handy access
1045 
1046   // If the shift is a constant, just shift the bounds of the type.
1047   // For example, if the shift is 63, we just propagate sign bits.
1048   if (r2->is_con()) {
1049     uint shift = r2->get_con();
1050     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1051     // Shift by a multiple of 64 does nothing:
1052     if (shift == 0)  return t1;
1053     // Calculate reasonably aggressive bounds for the result.
1054     // This is necessary if we are to correctly type things
1055     // like (x<<24>>24) == ((byte)x).
1056     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1057     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1058     assert(lo <= hi, "must have valid bounds");
1059     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1060     #ifdef ASSERT
1061     // Make sure we get the sign-capture idiom correct.
1062     if (shift == (2*BitsPerJavaInteger)-1) {
1063       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1064       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1065     }
1066     #endif
1067     return tl;
1068   }
1069 
1070   return TypeLong::LONG;                // Give up
1071 }
1072 
1073 //=============================================================================
1074 //------------------------------Identity---------------------------------------
1075 Node* URShiftINode::Identity(PhaseGVN* phase) {
1076   const TypeInt *ti = phase->type( in(2) )->isa_int();
1077   if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1078 
1079   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1080   // Happens during new-array length computation.
1081   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1082   Node *add = in(1);
1083   if( add->Opcode() == Op_AddI ) {
1084     const TypeInt *t2  = phase->type(add->in(2))->isa_int();
1085     if( t2 && t2->is_con(wordSize - 1) &&
1086         add->in(1)->Opcode() == Op_LShiftI ) {
1087       // Check that shift_counts are LogBytesPerWord
1088       Node          *lshift_count   = add->in(1)->in(2);
1089       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1090       if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1091           t_lshift_count == phase->type(in(2)) ) {
1092         Node          *x   = add->in(1)->in(1);
1093         const TypeInt *t_x = phase->type(x)->isa_int();
1094         if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1095           return x;
1096         }
1097       }
1098     }
1099   }
1100 
1101   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1102 }
1103 
1104 //------------------------------Ideal------------------------------------------
1105 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1106   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1107   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1108   const int con = t2->get_con() & 31; // Shift count is always masked
1109   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1110   // We'll be wanting the right-shift amount as a mask of that many bits
1111   const int mask = right_n_bits(BitsPerJavaInteger - con);
1112 
1113   int in1_op = in(1)->Opcode();
1114 
1115   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1116   if( in1_op == Op_URShiftI ) {
1117     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1118     if( t12 && t12->is_con() ) { // Right input is a constant
1119       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1120       const int con2 = t12->get_con() & 31; // Shift count is always masked
1121       const int con3 = con+con2;
1122       if( con3 < 32 )           // Only merge shifts if total is < 32
1123         return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1124     }
1125   }
1126 
1127   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1128   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1129   // If Q is "X << z" the rounding is useless.  Look for patterns like
1130   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1131   Node *add = in(1);
1132   if( in1_op == Op_AddI ) {
1133     Node *lshl = add->in(1);
1134     if( lshl->Opcode() == Op_LShiftI &&
1135         phase->type(lshl->in(2)) == t2 ) {
1136       Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1137       Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1138       return new AndINode( sum, phase->intcon(mask) );
1139     }
1140   }
1141 
1142   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1143   // This shortens the mask.  Also, if we are extracting a high byte and
1144   // storing it to a buffer, the mask will be removed completely.
1145   Node *andi = in(1);
1146   if( in1_op == Op_AndI ) {
1147     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1148     if( t3 && t3->is_con() ) { // Right input is a constant
1149       jint mask2 = t3->get_con();
1150       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1151       Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1152       return new AndINode(newshr, phase->intcon(mask2));
1153       // The negative values are easier to materialize than positive ones.
1154       // A typical case from address arithmetic is ((x & ~15) >> 4).
1155       // It's better to change that to ((x >> 4) & ~0) versus
1156       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1157     }
1158   }
1159 
1160   // Check for "(X << z ) >>> z" which simply zero-extends
1161   Node *shl = in(1);
1162   if( in1_op == Op_LShiftI &&
1163       phase->type(shl->in(2)) == t2 )
1164     return new AndINode( shl->in(1), phase->intcon(mask) );
1165 
1166   return NULL;
1167 }
1168 
1169 //------------------------------Value------------------------------------------
1170 // A URShiftINode shifts its input2 right by input1 amount.
1171 const Type* URShiftINode::Value(PhaseGVN* phase) const {
1172   // (This is a near clone of RShiftINode::Value.)
1173   const Type *t1 = phase->type( in(1) );
1174   const Type *t2 = phase->type( in(2) );
1175   // Either input is TOP ==> the result is TOP
1176   if( t1 == Type::TOP ) return Type::TOP;
1177   if( t2 == Type::TOP ) return Type::TOP;
1178 
1179   // Left input is ZERO ==> the result is ZERO.
1180   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1181   // Shift by zero does nothing
1182   if( t2 == TypeInt::ZERO ) return t1;
1183 
1184   // Either input is BOTTOM ==> the result is BOTTOM
1185   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1186     return TypeInt::INT;
1187 
1188   if (t2 == TypeInt::INT)
1189     return TypeInt::INT;
1190 
1191   const TypeInt *r1 = t1->is_int();     // Handy access
1192   const TypeInt *r2 = t2->is_int();     // Handy access
1193 
1194   if (r2->is_con()) {
1195     uint shift = r2->get_con();
1196     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1197     // Shift by a multiple of 32 does nothing:
1198     if (shift == 0)  return t1;
1199     // Calculate reasonably aggressive bounds for the result.
1200     jint lo = (juint)r1->_lo >> (juint)shift;
1201     jint hi = (juint)r1->_hi >> (juint)shift;
1202     if (r1->_hi >= 0 && r1->_lo < 0) {
1203       // If the type has both negative and positive values,
1204       // there are two separate sub-domains to worry about:
1205       // The positive half and the negative half.
1206       jint neg_lo = lo;
1207       jint neg_hi = (juint)-1 >> (juint)shift;
1208       jint pos_lo = (juint) 0 >> (juint)shift;
1209       jint pos_hi = hi;
1210       lo = MIN2(neg_lo, pos_lo);  // == 0
1211       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1212     }
1213     assert(lo <= hi, "must have valid bounds");
1214     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1215     #ifdef ASSERT
1216     // Make sure we get the sign-capture idiom correct.
1217     if (shift == BitsPerJavaInteger-1) {
1218       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1219       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1220     }
1221     #endif
1222     return ti;
1223   }
1224 
1225   //
1226   // Do not support shifted oops in info for GC
1227   //
1228   // else if( t1->base() == Type::InstPtr ) {
1229   //
1230   //   const TypeInstPtr *o = t1->is_instptr();
1231   //   if( t1->singleton() )
1232   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1233   // }
1234   // else if( t1->base() == Type::KlassPtr ) {
1235   //   const TypeKlassPtr *o = t1->is_klassptr();
1236   //   if( t1->singleton() )
1237   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1238   // }
1239 
1240   return TypeInt::INT;
1241 }
1242 
1243 //=============================================================================
1244 //------------------------------Identity---------------------------------------
1245 Node* URShiftLNode::Identity(PhaseGVN* phase) {
1246   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1247   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1248 }
1249 
1250 //------------------------------Ideal------------------------------------------
1251 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1252   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1253   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1254   const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1255   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1256                               // note: mask computation below does not work for 0 shift count
1257   // We'll be wanting the right-shift amount as a mask of that many bits
1258   const jlong mask = jlong(max_julong >> con);
1259 
1260   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1261   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1262   // If Q is "X << z" the rounding is useless.  Look for patterns like
1263   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1264   Node *add = in(1);
1265   if( add->Opcode() == Op_AddL ) {
1266     Node *lshl = add->in(1);
1267     if( lshl->Opcode() == Op_LShiftL &&
1268         phase->type(lshl->in(2)) == t2 ) {
1269       Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1270       Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1271       return new AndLNode( sum, phase->longcon(mask) );
1272     }
1273   }
1274 
1275   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1276   // This shortens the mask.  Also, if we are extracting a high byte and
1277   // storing it to a buffer, the mask will be removed completely.
1278   Node *andi = in(1);
1279   if( andi->Opcode() == Op_AndL ) {
1280     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1281     if( t3 && t3->is_con() ) { // Right input is a constant
1282       jlong mask2 = t3->get_con();
1283       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1284       Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1285       return new AndLNode(newshr, phase->longcon(mask2));
1286     }
1287   }
1288 
1289   // Check for "(X << z ) >>> z" which simply zero-extends
1290   Node *shl = in(1);
1291   if( shl->Opcode() == Op_LShiftL &&
1292       phase->type(shl->in(2)) == t2 )
1293     return new AndLNode( shl->in(1), phase->longcon(mask) );
1294 
1295   return NULL;
1296 }
1297 
1298 //------------------------------Value------------------------------------------
1299 // A URShiftINode shifts its input2 right by input1 amount.
1300 const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1301   // (This is a near clone of RShiftLNode::Value.)
1302   const Type *t1 = phase->type( in(1) );
1303   const Type *t2 = phase->type( in(2) );
1304   // Either input is TOP ==> the result is TOP
1305   if( t1 == Type::TOP ) return Type::TOP;
1306   if( t2 == Type::TOP ) return Type::TOP;
1307 
1308   // Left input is ZERO ==> the result is ZERO.
1309   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1310   // Shift by zero does nothing
1311   if( t2 == TypeInt::ZERO ) return t1;
1312 
1313   // Either input is BOTTOM ==> the result is BOTTOM
1314   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1315     return TypeLong::LONG;
1316 
1317   if (t2 == TypeInt::INT)
1318     return TypeLong::LONG;
1319 
1320   const TypeLong *r1 = t1->is_long(); // Handy access
1321   const TypeInt  *r2 = t2->is_int (); // Handy access
1322 
1323   if (r2->is_con()) {
1324     uint shift = r2->get_con();
1325     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1326     // Shift by a multiple of 64 does nothing:
1327     if (shift == 0)  return t1;
1328     // Calculate reasonably aggressive bounds for the result.
1329     jlong lo = (julong)r1->_lo >> (juint)shift;
1330     jlong hi = (julong)r1->_hi >> (juint)shift;
1331     if (r1->_hi >= 0 && r1->_lo < 0) {
1332       // If the type has both negative and positive values,
1333       // there are two separate sub-domains to worry about:
1334       // The positive half and the negative half.
1335       jlong neg_lo = lo;
1336       jlong neg_hi = (julong)-1 >> (juint)shift;
1337       jlong pos_lo = (julong) 0 >> (juint)shift;
1338       jlong pos_hi = hi;
1339       //lo = MIN2(neg_lo, pos_lo);  // == 0
1340       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1341       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1342       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1343     }
1344     assert(lo <= hi, "must have valid bounds");
1345     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1346     #ifdef ASSERT
1347     // Make sure we get the sign-capture idiom correct.
1348     if (shift == BitsPerJavaLong - 1) {
1349       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1350       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1351     }
1352     #endif
1353     return tl;
1354   }
1355 
1356   return TypeLong::LONG;                // Give up
1357 }