1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/loopnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/movenode.hpp"
  34 #include "opto/mulnode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/subnode.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 #include "math.h"
  45 
  46 //=============================================================================
  47 //------------------------------Identity---------------------------------------
  48 // If right input is a constant 0, return the left input.
  49 Node* SubNode::Identity(PhaseGVN* phase) {
  50   assert(in(1) != this, "Must already have called Value");
  51   assert(in(2) != this, "Must already have called Value");
  52 
  53   // Remove double negation
  54   const Type *zero = add_id();
  55   if( phase->type( in(1) )->higher_equal( zero ) &&
  56       in(2)->Opcode() == Opcode() &&
  57       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
  58     return in(2)->in(2);
  59   }
  60 
  61   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  62   if( in(1)->Opcode() == Op_AddI ) {
  63     if( phase->eqv(in(1)->in(2),in(2)) )
  64       return in(1)->in(1);
  65     if (phase->eqv(in(1)->in(1),in(2)))
  66       return in(1)->in(2);
  67 
  68     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
  69     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
  70     // are originally used, although the optimizer sometimes jiggers things).
  71     // This folding through an O2 removes a loop-exit use of a loop-varying
  72     // value and generally lowers register pressure in and around the loop.
  73     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
  74         phase->eqv(in(1)->in(2)->in(1),in(2)) )
  75       return in(1)->in(1);
  76   }
  77 
  78   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  79 }
  80 
  81 //------------------------------Value------------------------------------------
  82 // A subtract node differences it's two inputs.
  83 const Type* SubNode::Value_common(PhaseTransform *phase) const {
  84   const Node* in1 = in(1);
  85   const Node* in2 = in(2);
  86   // Either input is TOP ==> the result is TOP
  87   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  88   if( t1 == Type::TOP ) return Type::TOP;
  89   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  90   if( t2 == Type::TOP ) return Type::TOP;
  91 
  92   // Not correct for SubFnode and AddFNode (must check for infinity)
  93   // Equal?  Subtract is zero
  94   if (in1->eqv_uncast(in2))  return add_id();
  95 
  96   // Either input is BOTTOM ==> the result is the local BOTTOM
  97   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
  98     return bottom_type();
  99 
 100   return NULL;
 101 }
 102 
 103 const Type* SubNode::Value(PhaseGVN* phase) const {
 104   const Type* t = Value_common(phase);
 105   if (t != NULL) {
 106     return t;
 107   }
 108   const Type* t1 = phase->type(in(1));
 109   const Type* t2 = phase->type(in(2));
 110   return sub(t1,t2);            // Local flavor of type subtraction
 111 
 112 }
 113 
 114 SubNode* SubNode::make(BasicType bt, Node *in1, Node *in2) {
 115   switch(bt) {
 116   case T_INT:         return new SubINode(in1, in2);
 117   case T_LONG:        return new SubLNode(in1, in2);
 118   case T_FLOAT:       return new SubFNode(in1, in2);
 119   case T_DOUBLE:      return new SubDNode(in1, in2);
 120   }
 121   fatal("Bad basic type %s", type2name(bt));
 122   return NULL;
 123 }
 124 
 125 //=============================================================================
 126 
 127 //------------------------------Helper function--------------------------------
 128 static bool ok_to_convert(Node* inc, Node* iv) {
 129     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
 130     // "-" is loop invariant and collapsing extends the live-range of "x"
 131     // to overlap with the "+", forcing another register to be used in
 132     // the loop.
 133     // This test will be clearer with '&&' (apply DeMorgan's rule)
 134     // but I like the early cutouts that happen here.
 135     const PhiNode *phi;
 136     if( ( !inc->in(1)->is_Phi() ||
 137           !(phi=inc->in(1)->as_Phi()) ||
 138           phi->is_copy() ||
 139           !phi->region()->is_CountedLoop() ||
 140           inc != phi->region()->as_CountedLoop()->incr() )
 141        &&
 142         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
 143         // because "x" maybe invariant.
 144         ( !iv->is_loop_iv() )
 145       ) {
 146       return true;
 147     } else {
 148       return false;
 149     }
 150 }
 151 //------------------------------Ideal------------------------------------------
 152 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 153   Node *in1 = in(1);
 154   Node *in2 = in(2);
 155   uint op1 = in1->Opcode();
 156   uint op2 = in2->Opcode();
 157 
 158 #ifdef ASSERT
 159   // Check for dead loop
 160   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 161       ( op1 == Op_AddI || op1 == Op_SubI ) &&
 162       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 163         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
 164     assert(false, "dead loop in SubINode::Ideal");
 165 #endif
 166 
 167   const Type *t2 = phase->type( in2 );
 168   if( t2 == Type::TOP ) return NULL;
 169   // Convert "x-c0" into "x+ -c0".
 170   if( t2->base() == Type::Int ){        // Might be bottom or top...
 171     const TypeInt *i = t2->is_int();
 172     if( i->is_con() )
 173       return new AddINode(in1, phase->intcon(-i->get_con()));
 174   }
 175 
 176   // Convert "(x+c0) - y" into (x-y) + c0"
 177   // Do not collapse (x+c0)-y if "+" is a loop increment or
 178   // if "y" is a loop induction variable.
 179   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 180     const Type *tadd = phase->type( in1->in(2) );
 181     if( tadd->singleton() && tadd != Type::TOP ) {
 182       Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
 183       return new AddINode( sub2, in1->in(2) );
 184     }
 185   }
 186 
 187 
 188   // Convert "x - (y+c0)" into "(x-y) - c0"
 189   // Need the same check as in above optimization but reversed.
 190   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
 191     Node* in21 = in2->in(1);
 192     Node* in22 = in2->in(2);
 193     const TypeInt* tcon = phase->type(in22)->isa_int();
 194     if (tcon != NULL && tcon->is_con()) {
 195       Node* sub2 = phase->transform( new SubINode(in1, in21) );
 196       Node* neg_c0 = phase->intcon(- tcon->get_con());
 197       return new AddINode(sub2, neg_c0);
 198     }
 199   }
 200 
 201   const Type *t1 = phase->type( in1 );
 202   if( t1 == Type::TOP ) return NULL;
 203 
 204 #ifdef ASSERT
 205   // Check for dead loop
 206   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
 207       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 208         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 209     assert(false, "dead loop in SubINode::Ideal");
 210 #endif
 211 
 212   // Convert "x - (x+y)" into "-y"
 213   if( op2 == Op_AddI &&
 214       phase->eqv( in1, in2->in(1) ) )
 215     return new SubINode( phase->intcon(0),in2->in(2));
 216   // Convert "(x-y) - x" into "-y"
 217   if( op1 == Op_SubI &&
 218       phase->eqv( in1->in(1), in2 ) )
 219     return new SubINode( phase->intcon(0),in1->in(2));
 220   // Convert "x - (y+x)" into "-y"
 221   if( op2 == Op_AddI &&
 222       phase->eqv( in1, in2->in(2) ) )
 223     return new SubINode( phase->intcon(0),in2->in(1));
 224 
 225   // Convert "0 - (x-y)" into "y-x"
 226   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
 227     return new SubINode( in2->in(2), in2->in(1) );
 228 
 229   // Convert "0 - (x+con)" into "-con-x"
 230   jint con;
 231   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 232       (con = in2->in(2)->find_int_con(0)) != 0 )
 233     return new SubINode( phase->intcon(-con), in2->in(1) );
 234 
 235   // Convert "(X+A) - (X+B)" into "A - B"
 236   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 237     return new SubINode( in1->in(2), in2->in(2) );
 238 
 239   // Convert "(A+X) - (B+X)" into "A - B"
 240   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 241     return new SubINode( in1->in(1), in2->in(1) );
 242 
 243   // Convert "(A+X) - (X+B)" into "A - B"
 244   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 245     return new SubINode( in1->in(1), in2->in(2) );
 246 
 247   // Convert "(X+A) - (B+X)" into "A - B"
 248   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 249     return new SubINode( in1->in(2), in2->in(1) );
 250 
 251   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 252   // nicer to optimize than subtract.
 253   if( op2 == Op_SubI && in2->outcnt() == 1) {
 254     Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
 255     return new SubINode( add1, in2->in(1) );
 256   }
 257 
 258   return NULL;
 259 }
 260 
 261 //------------------------------sub--------------------------------------------
 262 // A subtract node differences it's two inputs.
 263 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 264   const TypeInt *r0 = t1->is_int(); // Handy access
 265   const TypeInt *r1 = t2->is_int();
 266   int32_t lo = java_subtract(r0->_lo, r1->_hi);
 267   int32_t hi = java_subtract(r0->_hi, r1->_lo);
 268 
 269   // We next check for 32-bit overflow.
 270   // If that happens, we just assume all integers are possible.
 271   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 272        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 273       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 274        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 275     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 276   else                          // Overflow; assume all integers
 277     return TypeInt::INT;
 278 }
 279 
 280 //=============================================================================
 281 //------------------------------Ideal------------------------------------------
 282 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 283   Node *in1 = in(1);
 284   Node *in2 = in(2);
 285   uint op1 = in1->Opcode();
 286   uint op2 = in2->Opcode();
 287 
 288 #ifdef ASSERT
 289   // Check for dead loop
 290   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 291       ( op1 == Op_AddL || op1 == Op_SubL ) &&
 292       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 293         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
 294     assert(false, "dead loop in SubLNode::Ideal");
 295 #endif
 296 
 297   if( phase->type( in2 ) == Type::TOP ) return NULL;
 298   const TypeLong *i = phase->type( in2 )->isa_long();
 299   // Convert "x-c0" into "x+ -c0".
 300   if( i &&                      // Might be bottom or top...
 301       i->is_con() )
 302     return new AddLNode(in1, phase->longcon(-i->get_con()));
 303 
 304   // Convert "(x+c0) - y" into (x-y) + c0"
 305   // Do not collapse (x+c0)-y if "+" is a loop increment or
 306   // if "y" is a loop induction variable.
 307   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 308     Node *in11 = in1->in(1);
 309     const Type *tadd = phase->type( in1->in(2) );
 310     if( tadd->singleton() && tadd != Type::TOP ) {
 311       Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
 312       return new AddLNode( sub2, in1->in(2) );
 313     }
 314   }
 315 
 316   // Convert "x - (y+c0)" into "(x-y) - c0"
 317   // Need the same check as in above optimization but reversed.
 318   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
 319     Node* in21 = in2->in(1);
 320     Node* in22 = in2->in(2);
 321     const TypeLong* tcon = phase->type(in22)->isa_long();
 322     if (tcon != NULL && tcon->is_con()) {
 323       Node* sub2 = phase->transform( new SubLNode(in1, in21) );
 324       Node* neg_c0 = phase->longcon(- tcon->get_con());
 325       return new AddLNode(sub2, neg_c0);
 326     }
 327   }
 328 
 329   const Type *t1 = phase->type( in1 );
 330   if( t1 == Type::TOP ) return NULL;
 331 
 332 #ifdef ASSERT
 333   // Check for dead loop
 334   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
 335       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 336         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 337     assert(false, "dead loop in SubLNode::Ideal");
 338 #endif
 339 
 340   // Convert "x - (x+y)" into "-y"
 341   if( op2 == Op_AddL &&
 342       phase->eqv( in1, in2->in(1) ) )
 343     return new SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
 344   // Convert "x - (y+x)" into "-y"
 345   if( op2 == Op_AddL &&
 346       phase->eqv( in1, in2->in(2) ) )
 347     return new SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
 348 
 349   // Convert "0 - (x-y)" into "y-x"
 350   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
 351     return new SubLNode( in2->in(2), in2->in(1) );
 352 
 353   // Convert "(X+A) - (X+B)" into "A - B"
 354   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 355     return new SubLNode( in1->in(2), in2->in(2) );
 356 
 357   // Convert "(A+X) - (B+X)" into "A - B"
 358   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 359     return new SubLNode( in1->in(1), in2->in(1) );
 360 
 361   // Convert "A-(B-C)" into (A+C)-B"
 362   if( op2 == Op_SubL && in2->outcnt() == 1) {
 363     Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
 364     return new SubLNode( add1, in2->in(1) );
 365   }
 366 
 367   return NULL;
 368 }
 369 
 370 //------------------------------sub--------------------------------------------
 371 // A subtract node differences it's two inputs.
 372 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 373   const TypeLong *r0 = t1->is_long(); // Handy access
 374   const TypeLong *r1 = t2->is_long();
 375   jlong lo = java_subtract(r0->_lo, r1->_hi);
 376   jlong hi = java_subtract(r0->_hi, r1->_lo);
 377 
 378   // We next check for 32-bit overflow.
 379   // If that happens, we just assume all integers are possible.
 380   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 381        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 382       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 383        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 384     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 385   else                          // Overflow; assume all integers
 386     return TypeLong::LONG;
 387 }
 388 
 389 //=============================================================================
 390 //------------------------------Value------------------------------------------
 391 // A subtract node differences its two inputs.
 392 const Type* SubFPNode::Value(PhaseGVN* phase) const {
 393   const Node* in1 = in(1);
 394   const Node* in2 = in(2);
 395   // Either input is TOP ==> the result is TOP
 396   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 397   if( t1 == Type::TOP ) return Type::TOP;
 398   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 399   if( t2 == Type::TOP ) return Type::TOP;
 400 
 401   // if both operands are infinity of same sign, the result is NaN; do
 402   // not replace with zero
 403   if( (t1->is_finite() && t2->is_finite()) ) {
 404     if( phase->eqv(in1, in2) ) return add_id();
 405   }
 406 
 407   // Either input is BOTTOM ==> the result is the local BOTTOM
 408   const Type *bot = bottom_type();
 409   if( (t1 == bot) || (t2 == bot) ||
 410       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 411     return bot;
 412 
 413   return sub(t1,t2);            // Local flavor of type subtraction
 414 }
 415 
 416 
 417 //=============================================================================
 418 //------------------------------Ideal------------------------------------------
 419 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 420   const Type *t2 = phase->type( in(2) );
 421   // Convert "x-c0" into "x+ -c0".
 422   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 423     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 424   }
 425 
 426   // Not associative because of boundary conditions (infinity)
 427   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 428     // Convert "x - (x+y)" into "-y"
 429     if( in(2)->is_Add() &&
 430         phase->eqv(in(1),in(2)->in(1) ) )
 431       return new SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
 432   }
 433 
 434   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 435   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 436   //if( phase->type(in(1)) == TypeF::ZERO )
 437   //return new (phase->C, 2) NegFNode(in(2));
 438 
 439   return NULL;
 440 }
 441 
 442 //------------------------------sub--------------------------------------------
 443 // A subtract node differences its two inputs.
 444 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 445   // no folding if one of operands is infinity or NaN, do not do constant folding
 446   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 447     return TypeF::make( t1->getf() - t2->getf() );
 448   }
 449   else if( g_isnan(t1->getf()) ) {
 450     return t1;
 451   }
 452   else if( g_isnan(t2->getf()) ) {
 453     return t2;
 454   }
 455   else {
 456     return Type::FLOAT;
 457   }
 458 }
 459 
 460 //=============================================================================
 461 //------------------------------Ideal------------------------------------------
 462 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 463   const Type *t2 = phase->type( in(2) );
 464   // Convert "x-c0" into "x+ -c0".
 465   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 466     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 467   }
 468 
 469   // Not associative because of boundary conditions (infinity)
 470   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 471     // Convert "x - (x+y)" into "-y"
 472     if( in(2)->is_Add() &&
 473         phase->eqv(in(1),in(2)->in(1) ) )
 474       return new SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
 475   }
 476 
 477   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 478   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 479   //if( phase->type(in(1)) == TypeD::ZERO )
 480   //return new (phase->C, 2) NegDNode(in(2));
 481 
 482   return NULL;
 483 }
 484 
 485 //------------------------------sub--------------------------------------------
 486 // A subtract node differences its two inputs.
 487 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 488   // no folding if one of operands is infinity or NaN, do not do constant folding
 489   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 490     return TypeD::make( t1->getd() - t2->getd() );
 491   }
 492   else if( g_isnan(t1->getd()) ) {
 493     return t1;
 494   }
 495   else if( g_isnan(t2->getd()) ) {
 496     return t2;
 497   }
 498   else {
 499     return Type::DOUBLE;
 500   }
 501 }
 502 
 503 //=============================================================================
 504 //------------------------------Idealize---------------------------------------
 505 // Unlike SubNodes, compare must still flatten return value to the
 506 // range -1, 0, 1.
 507 // And optimizations like those for (X + Y) - X fail if overflow happens.
 508 Node* CmpNode::Identity(PhaseGVN* phase) {
 509   return this;
 510 }
 511 
 512 #ifndef PRODUCT
 513 //----------------------------related------------------------------------------
 514 // Related nodes of comparison nodes include all data inputs (until hitting a
 515 // control boundary) as well as all outputs until and including control nodes
 516 // as well as their projections. In compact mode, data inputs till depth 1 and
 517 // all outputs till depth 1 are considered.
 518 void CmpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
 519   if (compact) {
 520     this->collect_nodes(in_rel, 1, false, true);
 521     this->collect_nodes(out_rel, -1, false, false);
 522   } else {
 523     this->collect_nodes_in_all_data(in_rel, false);
 524     this->collect_nodes_out_all_ctrl_boundary(out_rel);
 525     // Now, find all control nodes in out_rel, and include their projections
 526     // and projection targets (if any) in the result.
 527     GrowableArray<Node*> proj(Compile::current()->unique());
 528     for (GrowableArrayIterator<Node*> it = out_rel->begin(); it != out_rel->end(); ++it) {
 529       Node* n = *it;
 530       if (n->is_CFG() && !n->is_Proj()) {
 531         // Assume projections and projection targets are found at levels 1 and 2.
 532         n->collect_nodes(&proj, -2, false, false);
 533         for (GrowableArrayIterator<Node*> p = proj.begin(); p != proj.end(); ++p) {
 534           out_rel->append_if_missing(*p);
 535         }
 536         proj.clear();
 537       }
 538     }
 539   }
 540 }
 541 #endif
 542 
 543 //=============================================================================
 544 //------------------------------cmp--------------------------------------------
 545 // Simplify a CmpI (compare 2 integers) node, based on local information.
 546 // If both inputs are constants, compare them.
 547 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 548   const TypeInt *r0 = t1->is_int(); // Handy access
 549   const TypeInt *r1 = t2->is_int();
 550 
 551   if( r0->_hi < r1->_lo )       // Range is always low?
 552     return TypeInt::CC_LT;
 553   else if( r0->_lo > r1->_hi )  // Range is always high?
 554     return TypeInt::CC_GT;
 555 
 556   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 557     assert(r0->get_con() == r1->get_con(), "must be equal");
 558     return TypeInt::CC_EQ;      // Equal results.
 559   } else if( r0->_hi == r1->_lo ) // Range is never high?
 560     return TypeInt::CC_LE;
 561   else if( r0->_lo == r1->_hi ) // Range is never low?
 562     return TypeInt::CC_GE;
 563   return TypeInt::CC;           // else use worst case results
 564 }
 565 
 566 // Simplify a CmpU (compare 2 integers) node, based on local information.
 567 // If both inputs are constants, compare them.
 568 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
 569   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
 570 
 571   // comparing two unsigned ints
 572   const TypeInt *r0 = t1->is_int();   // Handy access
 573   const TypeInt *r1 = t2->is_int();
 574 
 575   // Current installed version
 576   // Compare ranges for non-overlap
 577   juint lo0 = r0->_lo;
 578   juint hi0 = r0->_hi;
 579   juint lo1 = r1->_lo;
 580   juint hi1 = r1->_hi;
 581 
 582   // If either one has both negative and positive values,
 583   // it therefore contains both 0 and -1, and since [0..-1] is the
 584   // full unsigned range, the type must act as an unsigned bottom.
 585   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
 586   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
 587 
 588   if (bot0 || bot1) {
 589     // All unsigned values are LE -1 and GE 0.
 590     if (lo0 == 0 && hi0 == 0) {
 591       return TypeInt::CC_LE;            //   0 <= bot
 592     } else if (lo1 == 0 && hi1 == 0) {
 593       return TypeInt::CC_GE;            // bot >= 0
 594     }
 595   } else {
 596     // We can use ranges of the form [lo..hi] if signs are the same.
 597     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 598     // results are reversed, '-' > '+' for unsigned compare
 599     if (hi0 < lo1) {
 600       return TypeInt::CC_LT;            // smaller
 601     } else if (lo0 > hi1) {
 602       return TypeInt::CC_GT;            // greater
 603     } else if (hi0 == lo1 && lo0 == hi1) {
 604       return TypeInt::CC_EQ;            // Equal results
 605     } else if (lo0 >= hi1) {
 606       return TypeInt::CC_GE;
 607     } else if (hi0 <= lo1) {
 608       // Check for special case in Hashtable::get.  (See below.)
 609       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 610         return TypeInt::CC_LT;
 611       return TypeInt::CC_LE;
 612     }
 613   }
 614   // Check for special case in Hashtable::get - the hash index is
 615   // mod'ed to the table size so the following range check is useless.
 616   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 617   // to be positive.
 618   // (This is a gross hack, since the sub method never
 619   // looks at the structure of the node in any other case.)
 620   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 621     return TypeInt::CC_LT;
 622   return TypeInt::CC;                   // else use worst case results
 623 }
 624 
 625 const Type* CmpUNode::Value(PhaseGVN* phase) const {
 626   const Type* t = SubNode::Value_common(phase);
 627   if (t != NULL) {
 628     return t;
 629   }
 630   const Node* in1 = in(1);
 631   const Node* in2 = in(2);
 632   const Type* t1 = phase->type(in1);
 633   const Type* t2 = phase->type(in2);
 634   assert(t1->isa_int(), "CmpU has only Int type inputs");
 635   if (t2 == TypeInt::INT) { // Compare to bottom?
 636     return bottom_type();
 637   }
 638   uint in1_op = in1->Opcode();
 639   if (in1_op == Op_AddI || in1_op == Op_SubI) {
 640     // The problem rise when result of AddI(SubI) may overflow
 641     // signed integer value. Let say the input type is
 642     // [256, maxint] then +128 will create 2 ranges due to
 643     // overflow: [minint, minint+127] and [384, maxint].
 644     // But C2 type system keep only 1 type range and as result
 645     // it use general [minint, maxint] for this case which we
 646     // can't optimize.
 647     //
 648     // Make 2 separate type ranges based on types of AddI(SubI) inputs
 649     // and compare results of their compare. If results are the same
 650     // CmpU node can be optimized.
 651     const Node* in11 = in1->in(1);
 652     const Node* in12 = in1->in(2);
 653     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
 654     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
 655     // Skip cases when input types are top or bottom.
 656     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
 657         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
 658       const TypeInt *r0 = t11->is_int();
 659       const TypeInt *r1 = t12->is_int();
 660       jlong lo_r0 = r0->_lo;
 661       jlong hi_r0 = r0->_hi;
 662       jlong lo_r1 = r1->_lo;
 663       jlong hi_r1 = r1->_hi;
 664       if (in1_op == Op_SubI) {
 665         jlong tmp = hi_r1;
 666         hi_r1 = -lo_r1;
 667         lo_r1 = -tmp;
 668         // Note, for substructing [minint,x] type range
 669         // long arithmetic provides correct overflow answer.
 670         // The confusion come from the fact that in 32-bit
 671         // -minint == minint but in 64-bit -minint == maxint+1.
 672       }
 673       jlong lo_long = lo_r0 + lo_r1;
 674       jlong hi_long = hi_r0 + hi_r1;
 675       int lo_tr1 = min_jint;
 676       int hi_tr1 = (int)hi_long;
 677       int lo_tr2 = (int)lo_long;
 678       int hi_tr2 = max_jint;
 679       bool underflow = lo_long != (jlong)lo_tr2;
 680       bool overflow  = hi_long != (jlong)hi_tr1;
 681       // Use sub(t1, t2) when there is no overflow (one type range)
 682       // or when both overflow and underflow (too complex).
 683       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
 684         // Overflow only on one boundary, compare 2 separate type ranges.
 685         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
 686         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
 687         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
 688         const Type* cmp1 = sub(tr1, t2);
 689         const Type* cmp2 = sub(tr2, t2);
 690         if (cmp1 == cmp2) {
 691           return cmp1; // Hit!
 692         }
 693       }
 694     }
 695   }
 696 
 697   return sub(t1, t2);            // Local flavor of type subtraction
 698 }
 699 
 700 bool CmpUNode::is_index_range_check() const {
 701   // Check for the "(X ModI Y) CmpU Y" shape
 702   return (in(1)->Opcode() == Op_ModI &&
 703           in(1)->in(2)->eqv_uncast(in(2)));
 704 }
 705 
 706 //------------------------------Idealize---------------------------------------
 707 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 708   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 709     switch (in(1)->Opcode()) {
 710     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 711       return new CmpLNode(in(1)->in(1),in(1)->in(2));
 712     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 713       return new CmpFNode(in(1)->in(1),in(1)->in(2));
 714     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 715       return new CmpDNode(in(1)->in(1),in(1)->in(2));
 716     //case Op_SubI:
 717       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 718       // can be turned into (x <?> y).
 719       // This is handled (with more general cases) by Ideal_sub_algebra.
 720     }
 721   }
 722   return NULL;                  // No change
 723 }
 724 
 725 
 726 //=============================================================================
 727 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 728 // If both inputs are constants, compare them.
 729 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 730   const TypeLong *r0 = t1->is_long(); // Handy access
 731   const TypeLong *r1 = t2->is_long();
 732 
 733   if( r0->_hi < r1->_lo )       // Range is always low?
 734     return TypeInt::CC_LT;
 735   else if( r0->_lo > r1->_hi )  // Range is always high?
 736     return TypeInt::CC_GT;
 737 
 738   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 739     assert(r0->get_con() == r1->get_con(), "must be equal");
 740     return TypeInt::CC_EQ;      // Equal results.
 741   } else if( r0->_hi == r1->_lo ) // Range is never high?
 742     return TypeInt::CC_LE;
 743   else if( r0->_lo == r1->_hi ) // Range is never low?
 744     return TypeInt::CC_GE;
 745   return TypeInt::CC;           // else use worst case results
 746 }
 747 
 748 //=============================================================================
 749 //------------------------------sub--------------------------------------------
 750 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 751 // If both inputs are constants, compare them.
 752 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 753   const TypePtr *r0 = t1->is_ptr(); // Handy access
 754   const TypePtr *r1 = t2->is_ptr();
 755 
 756   // Undefined inputs makes for an undefined result
 757   if( TypePtr::above_centerline(r0->_ptr) ||
 758       TypePtr::above_centerline(r1->_ptr) )
 759     return Type::TOP;
 760 
 761   if (r0 == r1 && r0->singleton()) {
 762     // Equal pointer constants (klasses, nulls, etc.)
 763     return TypeInt::CC_EQ;
 764   }
 765 
 766   // See if it is 2 unrelated classes.
 767   const TypeOopPtr* p0 = r0->isa_oopptr();
 768   const TypeOopPtr* p1 = r1->isa_oopptr();
 769   if (p0 && p1) {
 770     Node* in1 = in(1)->uncast();
 771     Node* in2 = in(2)->uncast();
 772     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
 773     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
 774     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
 775       return TypeInt::CC_GT;  // different pointers
 776     }
 777     ciKlass* klass0 = p0->klass();
 778     bool    xklass0 = p0->klass_is_exact();
 779     ciKlass* klass1 = p1->klass();
 780     bool    xklass1 = p1->klass_is_exact();
 781     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 782     if (klass0 && klass1 &&
 783         kps != 1 &&             // both or neither are klass pointers
 784         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
 785         klass1->is_loaded() && !klass1->is_interface() &&
 786         (!klass0->is_obj_array_klass() ||
 787          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
 788         (!klass1->is_obj_array_klass() ||
 789          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
 790       bool unrelated_classes = false;
 791       // See if neither subclasses the other, or if the class on top
 792       // is precise.  In either of these cases, the compare is known
 793       // to fail if at least one of the pointers is provably not null.
 794       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
 795         // Do nothing; we know nothing for imprecise types
 796       } else if (klass0->is_subtype_of(klass1)) {
 797         // If klass1's type is PRECISE, then classes are unrelated.
 798         unrelated_classes = xklass1;
 799       } else if (klass1->is_subtype_of(klass0)) {
 800         // If klass0's type is PRECISE, then classes are unrelated.
 801         unrelated_classes = xklass0;
 802       } else {                  // Neither subtypes the other
 803         unrelated_classes = true;
 804       }
 805       if (unrelated_classes) {
 806         // The oops classes are known to be unrelated. If the joined PTRs of
 807         // two oops is not Null and not Bottom, then we are sure that one
 808         // of the two oops is non-null, and the comparison will always fail.
 809         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 810         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 811           return TypeInt::CC_GT;
 812         }
 813       }
 814     }
 815   }
 816 
 817   // Known constants can be compared exactly
 818   // Null can be distinguished from any NotNull pointers
 819   // Unknown inputs makes an unknown result
 820   if( r0->singleton() ) {
 821     intptr_t bits0 = r0->get_con();
 822     if( r1->singleton() )
 823       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 824     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 825   } else if( r1->singleton() ) {
 826     intptr_t bits1 = r1->get_con();
 827     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 828   } else
 829     return TypeInt::CC;
 830 }
 831 
 832 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
 833   // Return the klass node for
 834   //   LoadP(AddP(foo:Klass, #java_mirror))
 835   //   or NULL if not matching.
 836   if (n->Opcode() != Op_LoadP) return NULL;
 837 
 838   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 839   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
 840 
 841   Node* adr = n->in(MemNode::Address);
 842   intptr_t off = 0;
 843   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
 844   if (k == NULL)  return NULL;
 845   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
 846   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
 847 
 848   // We've found the klass node of a Java mirror load.
 849   return k;
 850 }
 851 
 852 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
 853   // for ConP(Foo.class) return ConP(Foo.klass)
 854   // otherwise return NULL
 855   if (!n->is_Con()) return NULL;
 856 
 857   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 858   if (!tp) return NULL;
 859 
 860   ciType* mirror_type = tp->java_mirror_type();
 861   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
 862   // time Class constants only.
 863   if (!mirror_type) return NULL;
 864 
 865   // x.getClass() == int.class can never be true (for all primitive types)
 866   // Return a ConP(NULL) node for this case.
 867   if (mirror_type->is_classless()) {
 868     return phase->makecon(TypePtr::NULL_PTR);
 869   }
 870 
 871   // return the ConP(Foo.klass)
 872   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
 873   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
 874 }
 875 
 876 //------------------------------Ideal------------------------------------------
 877 // Normalize comparisons between Java mirror loads to compare the klass instead.
 878 //
 879 // Also check for the case of comparing an unknown klass loaded from the primary
 880 // super-type array vs a known klass with no subtypes.  This amounts to
 881 // checking to see an unknown klass subtypes a known klass with no subtypes;
 882 // this only happens on an exact match.  We can shorten this test by 1 load.
 883 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 884   // Normalize comparisons between Java mirrors into comparisons of the low-
 885   // level klass, where a dependent load could be shortened.
 886   //
 887   // The new pattern has a nice effect of matching the same pattern used in the
 888   // fast path of instanceof/checkcast/Class.isInstance(), which allows
 889   // redundant exact type check be optimized away by GVN.
 890   // For example, in
 891   //   if (x.getClass() == Foo.class) {
 892   //     Foo foo = (Foo) x;
 893   //     // ... use a ...
 894   //   }
 895   // a CmpPNode could be shared between if_acmpne and checkcast
 896   {
 897     Node* k1 = isa_java_mirror_load(phase, in(1));
 898     Node* k2 = isa_java_mirror_load(phase, in(2));
 899     Node* conk2 = isa_const_java_mirror(phase, in(2));
 900 
 901     if (k1 && (k2 || conk2)) {
 902       Node* lhs = k1;
 903       Node* rhs = (k2 != NULL) ? k2 : conk2;
 904       this->set_req(1, lhs);
 905       this->set_req(2, rhs);
 906       return this;
 907     }
 908   }
 909 
 910   // Constant pointer on right?
 911   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
 912   if (t2 == NULL || !t2->klass_is_exact())
 913     return NULL;
 914   // Get the constant klass we are comparing to.
 915   ciKlass* superklass = t2->klass();
 916 
 917   // Now check for LoadKlass on left.
 918   Node* ldk1 = in(1);
 919   if (ldk1->is_DecodeNKlass()) {
 920     ldk1 = ldk1->in(1);
 921     if (ldk1->Opcode() != Op_LoadNKlass )
 922       return NULL;
 923   } else if (ldk1->Opcode() != Op_LoadKlass )
 924     return NULL;
 925   // Take apart the address of the LoadKlass:
 926   Node* adr1 = ldk1->in(MemNode::Address);
 927   intptr_t con2 = 0;
 928   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
 929   if (ldk2 == NULL)
 930     return NULL;
 931   if (con2 == oopDesc::klass_offset_in_bytes()) {
 932     // We are inspecting an object's concrete class.
 933     // Short-circuit the check if the query is abstract.
 934     if (superklass->is_interface() ||
 935         superklass->is_abstract()) {
 936       // Make it come out always false:
 937       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
 938       return this;
 939     }
 940   }
 941 
 942   // Check for a LoadKlass from primary supertype array.
 943   // Any nested loadklass from loadklass+con must be from the p.s. array.
 944   if (ldk2->is_DecodeNKlass()) {
 945     // Keep ldk2 as DecodeN since it could be used in CmpP below.
 946     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
 947       return NULL;
 948   } else if (ldk2->Opcode() != Op_LoadKlass)
 949     return NULL;
 950 
 951   // Verify that we understand the situation
 952   if (con2 != (intptr_t) superklass->super_check_offset())
 953     return NULL;                // Might be element-klass loading from array klass
 954 
 955   // If 'superklass' has no subklasses and is not an interface, then we are
 956   // assured that the only input which will pass the type check is
 957   // 'superklass' itself.
 958   //
 959   // We could be more liberal here, and allow the optimization on interfaces
 960   // which have a single implementor.  This would require us to increase the
 961   // expressiveness of the add_dependency() mechanism.
 962   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
 963 
 964   // Object arrays must have their base element have no subtypes
 965   while (superklass->is_obj_array_klass()) {
 966     ciType* elem = superklass->as_obj_array_klass()->element_type();
 967     superklass = elem->as_klass();
 968   }
 969   if (superklass->is_instance_klass()) {
 970     ciInstanceKlass* ik = superklass->as_instance_klass();
 971     if (ik->has_subklass() || ik->is_interface())  return NULL;
 972     // Add a dependency if there is a chance that a subclass will be added later.
 973     if (!ik->is_final()) {
 974       phase->C->dependencies()->assert_leaf_type(ik);
 975     }
 976   }
 977 
 978   // Bypass the dependent load, and compare directly
 979   this->set_req(1,ldk2);
 980 
 981   return this;
 982 }
 983 
 984 //=============================================================================
 985 //------------------------------sub--------------------------------------------
 986 // Simplify an CmpN (compare 2 pointers) node, based on local information.
 987 // If both inputs are constants, compare them.
 988 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
 989   const TypePtr *r0 = t1->make_ptr(); // Handy access
 990   const TypePtr *r1 = t2->make_ptr();
 991 
 992   // Undefined inputs makes for an undefined result
 993   if ((r0 == NULL) || (r1 == NULL) ||
 994       TypePtr::above_centerline(r0->_ptr) ||
 995       TypePtr::above_centerline(r1->_ptr)) {
 996     return Type::TOP;
 997   }
 998   if (r0 == r1 && r0->singleton()) {
 999     // Equal pointer constants (klasses, nulls, etc.)
1000     return TypeInt::CC_EQ;
1001   }
1002 
1003   // See if it is 2 unrelated classes.
1004   const TypeOopPtr* p0 = r0->isa_oopptr();
1005   const TypeOopPtr* p1 = r1->isa_oopptr();
1006   if (p0 && p1) {
1007     ciKlass* klass0 = p0->klass();
1008     bool    xklass0 = p0->klass_is_exact();
1009     ciKlass* klass1 = p1->klass();
1010     bool    xklass1 = p1->klass_is_exact();
1011     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
1012     if (klass0 && klass1 &&
1013         kps != 1 &&             // both or neither are klass pointers
1014         !klass0->is_interface() && // do not trust interfaces
1015         !klass1->is_interface()) {
1016       bool unrelated_classes = false;
1017       // See if neither subclasses the other, or if the class on top
1018       // is precise.  In either of these cases, the compare is known
1019       // to fail if at least one of the pointers is provably not null.
1020       if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
1021         // Do nothing; we know nothing for imprecise types
1022       } else if (klass0->is_subtype_of(klass1)) {
1023         // If klass1's type is PRECISE, then classes are unrelated.
1024         unrelated_classes = xklass1;
1025       } else if (klass1->is_subtype_of(klass0)) {
1026         // If klass0's type is PRECISE, then classes are unrelated.
1027         unrelated_classes = xklass0;
1028       } else {                  // Neither subtypes the other
1029         unrelated_classes = true;
1030       }
1031       if (unrelated_classes) {
1032         // The oops classes are known to be unrelated. If the joined PTRs of
1033         // two oops is not Null and not Bottom, then we are sure that one
1034         // of the two oops is non-null, and the comparison will always fail.
1035         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
1036         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
1037           return TypeInt::CC_GT;
1038         }
1039       }
1040     }
1041   }
1042 
1043   // Known constants can be compared exactly
1044   // Null can be distinguished from any NotNull pointers
1045   // Unknown inputs makes an unknown result
1046   if( r0->singleton() ) {
1047     intptr_t bits0 = r0->get_con();
1048     if( r1->singleton() )
1049       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
1050     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1051   } else if( r1->singleton() ) {
1052     intptr_t bits1 = r1->get_con();
1053     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1054   } else
1055     return TypeInt::CC;
1056 }
1057 
1058 //------------------------------Ideal------------------------------------------
1059 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1060   return NULL;
1061 }
1062 
1063 //=============================================================================
1064 //------------------------------Value------------------------------------------
1065 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1066 // If both inputs are constants, compare them.
1067 const Type* CmpFNode::Value(PhaseGVN* phase) const {
1068   const Node* in1 = in(1);
1069   const Node* in2 = in(2);
1070   // Either input is TOP ==> the result is TOP
1071   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1072   if( t1 == Type::TOP ) return Type::TOP;
1073   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1074   if( t2 == Type::TOP ) return Type::TOP;
1075 
1076   // Not constants?  Don't know squat - even if they are the same
1077   // value!  If they are NaN's they compare to LT instead of EQ.
1078   const TypeF *tf1 = t1->isa_float_constant();
1079   const TypeF *tf2 = t2->isa_float_constant();
1080   if( !tf1 || !tf2 ) return TypeInt::CC;
1081 
1082   // This implements the Java bytecode fcmpl, so unordered returns -1.
1083   if( tf1->is_nan() || tf2->is_nan() )
1084     return TypeInt::CC_LT;
1085 
1086   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1087   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1088   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1089   return TypeInt::CC_EQ;
1090 }
1091 
1092 
1093 //=============================================================================
1094 //------------------------------Value------------------------------------------
1095 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1096 // If both inputs are constants, compare them.
1097 const Type* CmpDNode::Value(PhaseGVN* phase) const {
1098   const Node* in1 = in(1);
1099   const Node* in2 = in(2);
1100   // Either input is TOP ==> the result is TOP
1101   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1102   if( t1 == Type::TOP ) return Type::TOP;
1103   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1104   if( t2 == Type::TOP ) return Type::TOP;
1105 
1106   // Not constants?  Don't know squat - even if they are the same
1107   // value!  If they are NaN's they compare to LT instead of EQ.
1108   const TypeD *td1 = t1->isa_double_constant();
1109   const TypeD *td2 = t2->isa_double_constant();
1110   if( !td1 || !td2 ) return TypeInt::CC;
1111 
1112   // This implements the Java bytecode dcmpl, so unordered returns -1.
1113   if( td1->is_nan() || td2->is_nan() )
1114     return TypeInt::CC_LT;
1115 
1116   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1117   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1118   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1119   return TypeInt::CC_EQ;
1120 }
1121 
1122 //------------------------------Ideal------------------------------------------
1123 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1124   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1125   // Change  (CMPD (F2D (float)) (ConD value))
1126   // To      (CMPF      (float)  (ConF value))
1127   // Valid when 'value' does not lose precision as a float.
1128   // Benefits: eliminates conversion, does not require 24-bit mode
1129 
1130   // NaNs prevent commuting operands.  This transform works regardless of the
1131   // order of ConD and ConvF2D inputs by preserving the original order.
1132   int idx_f2d = 1;              // ConvF2D on left side?
1133   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1134     idx_f2d = 2;                // No, swap to check for reversed args
1135   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1136 
1137   if( ConvertCmpD2CmpF &&
1138       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1139       in(idx_con)->Opcode() == Op_ConD ) {
1140     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1141     double t2_value_as_double = t2->_d;
1142     float  t2_value_as_float  = (float)t2_value_as_double;
1143     if( t2_value_as_double == (double)t2_value_as_float ) {
1144       // Test value can be represented as a float
1145       // Eliminate the conversion to double and create new comparison
1146       Node *new_in1 = in(idx_f2d)->in(1);
1147       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1148       if( idx_f2d != 1 ) {      // Must flip args to match original order
1149         Node *tmp = new_in1;
1150         new_in1 = new_in2;
1151         new_in2 = tmp;
1152       }
1153       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1154         ? new CmpF3Node( new_in1, new_in2 )
1155         : new CmpFNode ( new_in1, new_in2 ) ;
1156       return new_cmp;           // Changed to CmpFNode
1157     }
1158     // Testing value required the precision of a double
1159   }
1160   return NULL;                  // No change
1161 }
1162 
1163 
1164 //=============================================================================
1165 //------------------------------cc2logical-------------------------------------
1166 // Convert a condition code type to a logical type
1167 const Type *BoolTest::cc2logical( const Type *CC ) const {
1168   if( CC == Type::TOP ) return Type::TOP;
1169   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1170   const TypeInt *ti = CC->is_int();
1171   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1172     // Match low order 2 bits
1173     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1174     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1175     return TypeInt::make(tmp);       // Boolean result
1176   }
1177 
1178   if( CC == TypeInt::CC_GE ) {
1179     if( _test == ge ) return TypeInt::ONE;
1180     if( _test == lt ) return TypeInt::ZERO;
1181   }
1182   if( CC == TypeInt::CC_LE ) {
1183     if( _test == le ) return TypeInt::ONE;
1184     if( _test == gt ) return TypeInt::ZERO;
1185   }
1186 
1187   return TypeInt::BOOL;
1188 }
1189 
1190 //------------------------------dump_spec-------------------------------------
1191 // Print special per-node info
1192 void BoolTest::dump_on(outputStream *st) const {
1193   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1194   st->print("%s", msg[_test]);
1195 }
1196 
1197 //=============================================================================
1198 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1199 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1200 
1201 //------------------------------operator==-------------------------------------
1202 uint BoolNode::cmp( const Node &n ) const {
1203   const BoolNode *b = (const BoolNode *)&n; // Cast up
1204   return (_test._test == b->_test._test);
1205 }
1206 
1207 //-------------------------------make_predicate--------------------------------
1208 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1209   if (test_value->is_Con())   return test_value;
1210   if (test_value->is_Bool())  return test_value;
1211   if (test_value->is_CMove() &&
1212       test_value->in(CMoveNode::Condition)->is_Bool()) {
1213     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1214     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1215     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1216     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1217       return bol;
1218     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1219       return phase->transform( bol->negate(phase) );
1220     }
1221     // Else fall through.  The CMove gets in the way of the test.
1222     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1223   }
1224   Node* cmp = new CmpINode(test_value, phase->intcon(0));
1225   cmp = phase->transform(cmp);
1226   Node* bol = new BoolNode(cmp, BoolTest::ne);
1227   return phase->transform(bol);
1228 }
1229 
1230 //--------------------------------as_int_value---------------------------------
1231 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1232   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1233   Node* cmov = CMoveNode::make(NULL, this,
1234                                phase->intcon(0), phase->intcon(1),
1235                                TypeInt::BOOL);
1236   return phase->transform(cmov);
1237 }
1238 
1239 //----------------------------------negate-------------------------------------
1240 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1241   return new BoolNode(in(1), _test.negate());
1242 }
1243 
1244 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
1245 // overflows and we can prove that C is not in the two resulting ranges.
1246 // This optimization is similar to the one performed by CmpUNode::Value().
1247 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
1248                           int cmp1_op, const TypeInt* cmp2_type) {
1249   // Only optimize eq/ne integer comparison of add/sub
1250   if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1251      (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
1252     // Skip cases were inputs of add/sub are not integers or of bottom type
1253     const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
1254     const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
1255     if ((r0 != NULL) && (r0 != TypeInt::INT) &&
1256         (r1 != NULL) && (r1 != TypeInt::INT) &&
1257         (cmp2_type != TypeInt::INT)) {
1258       // Compute exact (long) type range of add/sub result
1259       jlong lo_long = r0->_lo;
1260       jlong hi_long = r0->_hi;
1261       if (cmp1_op == Op_AddI) {
1262         lo_long += r1->_lo;
1263         hi_long += r1->_hi;
1264       } else {
1265         lo_long -= r1->_hi;
1266         hi_long -= r1->_lo;
1267       }
1268       // Check for over-/underflow by casting to integer
1269       int lo_int = (int)lo_long;
1270       int hi_int = (int)hi_long;
1271       bool underflow = lo_long != (jlong)lo_int;
1272       bool overflow  = hi_long != (jlong)hi_int;
1273       if ((underflow != overflow) && (hi_int < lo_int)) {
1274         // Overflow on one boundary, compute resulting type ranges:
1275         // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
1276         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
1277         const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
1278         const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
1279         // Compare second input of cmp to both type ranges
1280         const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
1281         const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
1282         if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
1283           // The result of the add/sub will never equal cmp2. Replace BoolNode
1284           // by false (0) if it tests for equality and by true (1) otherwise.
1285           return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
1286         }
1287       }
1288     }
1289   }
1290   return NULL;
1291 }
1292 
1293 //------------------------------Ideal------------------------------------------
1294 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1295   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1296   // This moves the constant to the right.  Helps value-numbering.
1297   Node *cmp = in(1);
1298   if( !cmp->is_Sub() ) return NULL;
1299   int cop = cmp->Opcode();
1300   if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL;
1301   Node *cmp1 = cmp->in(1);
1302   Node *cmp2 = cmp->in(2);
1303   if( !cmp1 ) return NULL;
1304 
1305   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1306     return NULL;
1307   }
1308 
1309   // Constant on left?
1310   Node *con = cmp1;
1311   uint op2 = cmp2->Opcode();
1312   // Move constants to the right of compare's to canonicalize.
1313   // Do not muck with Opaque1 nodes, as this indicates a loop
1314   // guard that cannot change shape.
1315   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1316       // Because of NaN's, CmpD and CmpF are not commutative
1317       cop != Op_CmpD && cop != Op_CmpF &&
1318       // Protect against swapping inputs to a compare when it is used by a
1319       // counted loop exit, which requires maintaining the loop-limit as in(2)
1320       !is_counted_loop_exit_test() ) {
1321     // Ok, commute the constant to the right of the cmp node.
1322     // Clone the Node, getting a new Node of the same class
1323     cmp = cmp->clone();
1324     // Swap inputs to the clone
1325     cmp->swap_edges(1, 2);
1326     cmp = phase->transform( cmp );
1327     return new BoolNode( cmp, _test.commute() );
1328   }
1329 
1330   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1331   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1332   // test instead.
1333   int cmp1_op = cmp1->Opcode();
1334   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1335   if (cmp2_type == NULL)  return NULL;
1336   Node* j_xor = cmp1;
1337   if( cmp2_type == TypeInt::ZERO &&
1338       cmp1_op == Op_XorI &&
1339       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1340       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1341       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1342       (_test._test == BoolTest::eq ||
1343        _test._test == BoolTest::ne) ) {
1344     Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
1345     return new BoolNode( ncmp, _test.negate() );
1346   }
1347 
1348   // Change ((x & m) u<= m) or ((m & x) u<= m) to always true
1349   // Same with ((x & m) u< m+1) and ((m & x) u< m+1)
1350   if (cop == Op_CmpU &&
1351       cmp1->Opcode() == Op_AndI) {
1352     Node* bound = NULL;
1353     if (_test._test == BoolTest::le) {
1354       bound = cmp2;
1355     } else if (_test._test == BoolTest::lt &&
1356                cmp2->Opcode() == Op_AddI &&
1357                cmp2->in(2)->find_int_con(0) == 1) {
1358       bound = cmp2->in(1);
1359     }
1360     if (cmp1->in(2) == bound || cmp1->in(1) == bound) {
1361       return ConINode::make(1);
1362     }
1363   }
1364 
1365   // Change ((x & (m - 1)) u< m) into (m > 0)
1366   // This is the off-by-one variant of the above
1367   if (cop == Op_CmpU &&
1368       _test._test == BoolTest::lt &&
1369       cmp1->Opcode() == Op_AndI) {
1370     Node* l = cmp1->in(1);
1371     Node* r = cmp1->in(2);
1372     for (int repeat = 0; repeat < 2; repeat++) {
1373       bool match = r->Opcode() == Op_AddI && r->in(2)->find_int_con(0) == -1 &&
1374                    r->in(1) == cmp2;
1375       if (match) {
1376         // arraylength known to be non-negative, so a (arraylength != 0) is sufficient,
1377         // but to be compatible with the array range check pattern, use (arraylength u> 0)
1378         Node* ncmp = cmp2->Opcode() == Op_LoadRange
1379                      ? phase->transform(new CmpUNode(cmp2, phase->intcon(0)))
1380                      : phase->transform(new CmpINode(cmp2, phase->intcon(0)));
1381         return new BoolNode(ncmp, BoolTest::gt);
1382       } else {
1383         // commute and try again
1384         l = cmp1->in(2);
1385         r = cmp1->in(1);
1386       }
1387     }
1388   }
1389 
1390   // Change (arraylength <= 0) or (arraylength == 0)
1391   //   into (arraylength u<= 0)
1392   // Also change (arraylength != 0) into (arraylength u> 0)
1393   // The latter version matches the code pattern generated for
1394   // array range checks, which will more likely be optimized later.
1395   if (cop == Op_CmpI &&
1396       cmp1->Opcode() == Op_LoadRange &&
1397       cmp2->find_int_con(-1) == 0) {
1398     if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
1399       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1400       return new BoolNode(ncmp, BoolTest::le);
1401     } else if (_test._test == BoolTest::ne) {
1402       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1403       return new BoolNode(ncmp, BoolTest::gt);
1404     }
1405   }
1406 
1407   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1408   // This is a standard idiom for branching on a boolean value.
1409   Node *c2b = cmp1;
1410   if( cmp2_type == TypeInt::ZERO &&
1411       cmp1_op == Op_Conv2B &&
1412       (_test._test == BoolTest::eq ||
1413        _test._test == BoolTest::ne) ) {
1414     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1415        ? (Node*)new CmpINode(c2b->in(1),cmp2)
1416        : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1417     );
1418     return new BoolNode( ncmp, _test._test );
1419   }
1420 
1421   // Comparing a SubI against a zero is equal to comparing the SubI
1422   // arguments directly.  This only works for eq and ne comparisons
1423   // due to possible integer overflow.
1424   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1425         (cop == Op_CmpI) &&
1426         (cmp1->Opcode() == Op_SubI) &&
1427         ( cmp2_type == TypeInt::ZERO ) ) {
1428     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
1429     return new BoolNode( ncmp, _test._test );
1430   }
1431 
1432   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1433   // most general case because negating 0x80000000 does nothing.  Needed for
1434   // the CmpF3/SubI/CmpI idiom.
1435   if( cop == Op_CmpI &&
1436       cmp1->Opcode() == Op_SubI &&
1437       cmp2_type == TypeInt::ZERO &&
1438       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1439       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1440     Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
1441     return new BoolNode( ncmp, _test.commute() );
1442   }
1443 
1444   // Try to optimize signed integer comparison
1445   return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
1446 
1447   //  The transformation below is not valid for either signed or unsigned
1448   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1449   //  This transformation can be resurrected when we are able to
1450   //  make inferences about the range of values being subtracted from
1451   //  (or added to) relative to the wraparound point.
1452   //
1453   //    // Remove +/-1's if possible.
1454   //    // "X <= Y-1" becomes "X <  Y"
1455   //    // "X+1 <= Y" becomes "X <  Y"
1456   //    // "X <  Y+1" becomes "X <= Y"
1457   //    // "X-1 <  Y" becomes "X <= Y"
1458   //    // Do not this to compares off of the counted-loop-end.  These guys are
1459   //    // checking the trip counter and they want to use the post-incremented
1460   //    // counter.  If they use the PRE-incremented counter, then the counter has
1461   //    // to be incremented in a private block on a loop backedge.
1462   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1463   //      return NULL;
1464   //  #ifndef PRODUCT
1465   //    // Do not do this in a wash GVN pass during verification.
1466   //    // Gets triggered by too many simple optimizations to be bothered with
1467   //    // re-trying it again and again.
1468   //    if( !phase->allow_progress() ) return NULL;
1469   //  #endif
1470   //    // Not valid for unsigned compare because of corner cases in involving zero.
1471   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1472   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1473   //    // "0 <=u Y" is always true).
1474   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1475   //    int cmp2_op = cmp2->Opcode();
1476   //    if( _test._test == BoolTest::le ) {
1477   //      if( cmp1_op == Op_AddI &&
1478   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1479   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1480   //      else if( cmp2_op == Op_AddI &&
1481   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1482   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1483   //    } else if( _test._test == BoolTest::lt ) {
1484   //      if( cmp1_op == Op_AddI &&
1485   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1486   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1487   //      else if( cmp2_op == Op_AddI &&
1488   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1489   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1490   //    }
1491 }
1492 
1493 //------------------------------Value------------------------------------------
1494 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1495 // based on local information.   If the input is constant, do it.
1496 const Type* BoolNode::Value(PhaseGVN* phase) const {
1497   return _test.cc2logical( phase->type( in(1) ) );
1498 }
1499 
1500 #ifndef PRODUCT
1501 //------------------------------dump_spec--------------------------------------
1502 // Dump special per-node info
1503 void BoolNode::dump_spec(outputStream *st) const {
1504   st->print("[");
1505   _test.dump_on(st);
1506   st->print("]");
1507 }
1508 
1509 //-------------------------------related---------------------------------------
1510 // A BoolNode's related nodes are all of its data inputs, and all of its
1511 // outputs until control nodes are hit, which are included. In compact
1512 // representation, inputs till level 3 and immediate outputs are included.
1513 void BoolNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1514   if (compact) {
1515     this->collect_nodes(in_rel, 3, false, true);
1516     this->collect_nodes(out_rel, -1, false, false);
1517   } else {
1518     this->collect_nodes_in_all_data(in_rel, false);
1519     this->collect_nodes_out_all_ctrl_boundary(out_rel);
1520   }
1521 }
1522 #endif
1523 
1524 //----------------------is_counted_loop_exit_test------------------------------
1525 // Returns true if node is used by a counted loop node.
1526 bool BoolNode::is_counted_loop_exit_test() {
1527   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1528     Node* use = fast_out(i);
1529     if (use->is_CountedLoopEnd()) {
1530       return true;
1531     }
1532   }
1533   return false;
1534 }
1535 
1536 //=============================================================================
1537 //------------------------------Value------------------------------------------
1538 // Compute sqrt
1539 const Type* SqrtDNode::Value(PhaseGVN* phase) const {
1540   const Type *t1 = phase->type( in(1) );
1541   if( t1 == Type::TOP ) return Type::TOP;
1542   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1543   double d = t1->getd();
1544   if( d < 0.0 ) return Type::DOUBLE;
1545   return TypeD::make( sqrt( d ) );
1546 }
1547 
1548 //=============================================================================
1549 //------------------------------Value------------------------------------------
1550 // Compute tan
1551 const Type* TanDNode::Value(PhaseGVN* phase) const {
1552   const Type *t1 = phase->type( in(1) );
1553   if( t1 == Type::TOP ) return Type::TOP;
1554   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1555   double d = t1->getd();
1556   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
1557 }
1558 
1559 //=============================================================================
1560 //------------------------------Value------------------------------------------
1561 // Compute log10
1562 const Type* Log10DNode::Value(PhaseGVN* phase) const {
1563   const Type *t1 = phase->type( in(1) );
1564   if( t1 == Type::TOP ) return Type::TOP;
1565   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1566   double d = t1->getd();
1567   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
1568 }