1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "interpreter/bytecodeTracer.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/arrayOop.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/synchronizer.hpp"
  48 #include "runtime/timer.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "utilities/debug.hpp"
  51 #include <sys/types.h>
  52 
  53 #ifndef PRODUCT
  54 #include "oops/method.hpp"
  55 #endif // !PRODUCT
  56 
  57 #ifdef BUILTIN_SIM
  58 #include "../../../../../../simulator/simulator.hpp"
  59 #endif
  60 
  61 // Size of interpreter code.  Increase if too small.  Interpreter will
  62 // fail with a guarantee ("not enough space for interpreter generation");
  63 // if too small.
  64 // Run with +PrintInterpreter to get the VM to print out the size.
  65 // Max size with JVMTI
  66 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  67 
  68 #define __ _masm->
  69 
  70 //-----------------------------------------------------------------------------
  71 
  72 extern "C" void entry(CodeBuffer*);
  73 
  74 //-----------------------------------------------------------------------------
  75 
  76 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  77   address entry = __ pc();
  78 
  79   __ andr(esp, esp, -16);
  80   __ mov(c_rarg3, esp);
  81   // rmethod
  82   // rlocals
  83   // c_rarg3: first stack arg - wordSize
  84 
  85   // adjust sp
  86   __ sub(sp, c_rarg3, 18 * wordSize);
  87   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  88   __ call_VM(noreg,
  89              CAST_FROM_FN_PTR(address,
  90                               InterpreterRuntime::slow_signature_handler),
  91              rmethod, rlocals, c_rarg3);
  92 
  93   // r0: result handler
  94 
  95   // Stack layout:
  96   // rsp: return address           <- sp
  97   //      1 garbage
  98   //      8 integer args (if static first is unused)
  99   //      1 float/double identifiers
 100   //      8 double args
 101   //        stack args              <- esp
 102   //        garbage
 103   //        expression stack bottom
 104   //        bcp (NULL)
 105   //        ...
 106 
 107   // Restore LR
 108   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 109 
 110   // Do FP first so we can use c_rarg3 as temp
 111   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 112 
 113   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 114     const FloatRegister r = as_FloatRegister(i);
 115 
 116     Label d, done;
 117 
 118     __ tbnz(c_rarg3, i, d);
 119     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 120     __ b(done);
 121     __ bind(d);
 122     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 123     __ bind(done);
 124   }
 125 
 126   // c_rarg0 contains the result from the call of
 127   // InterpreterRuntime::slow_signature_handler so we don't touch it
 128   // here.  It will be loaded with the JNIEnv* later.
 129   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 130   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 131     Register rm = as_Register(i), rn = as_Register(i+1);
 132     __ ldp(rm, rn, Address(sp, i * wordSize));
 133   }
 134 
 135   __ add(sp, sp, 18 * wordSize);
 136   __ ret(lr);
 137 
 138   return entry;
 139 }
 140 
 141 
 142 //
 143 // Various method entries
 144 //
 145 
 146 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 147   // rmethod: Method*
 148   // r13: sender sp
 149   // esp: args
 150 
 151   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
 152 
 153   // These don't need a safepoint check because they aren't virtually
 154   // callable. We won't enter these intrinsics from compiled code.
 155   // If in the future we added an intrinsic which was virtually callable
 156   // we'd have to worry about how to safepoint so that this code is used.
 157 
 158   // mathematical functions inlined by compiler
 159   // (interpreter must provide identical implementation
 160   // in order to avoid monotonicity bugs when switching
 161   // from interpreter to compiler in the middle of some
 162   // computation)
 163   //
 164   // stack:
 165   //        [ arg ] <-- esp
 166   //        [ arg ]
 167   // retaddr in lr
 168 
 169   address entry_point = NULL;
 170   Register continuation = lr;
 171   switch (kind) {
 172   case Interpreter::java_lang_math_abs:
 173     entry_point = __ pc();
 174     __ ldrd(v0, Address(esp));
 175     __ fabsd(v0, v0);
 176     __ mov(sp, r13); // Restore caller's SP
 177     break;
 178   case Interpreter::java_lang_math_sqrt:
 179     entry_point = __ pc();
 180     __ ldrd(v0, Address(esp));
 181     __ fsqrtd(v0, v0);
 182     __ mov(sp, r13);
 183     break;
 184   case Interpreter::java_lang_math_sin :
 185   case Interpreter::java_lang_math_cos :
 186   case Interpreter::java_lang_math_tan :
 187   case Interpreter::java_lang_math_log :
 188   case Interpreter::java_lang_math_log10 :
 189   case Interpreter::java_lang_math_exp :
 190     entry_point = __ pc();
 191     __ ldrd(v0, Address(esp));
 192     __ mov(sp, r13);
 193     __ mov(r19, lr);
 194     continuation = r19;  // The first callee-saved register
 195     generate_transcendental_entry(kind, 1);
 196     break;
 197   case Interpreter::java_lang_math_pow :
 198     entry_point = __ pc();
 199     __ mov(r19, lr);
 200     continuation = r19;
 201     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 202     __ ldrd(v1, Address(esp));
 203     __ mov(sp, r13);
 204     generate_transcendental_entry(kind, 2);
 205     break;
 206   case Interpreter::java_lang_math_fmaD :
 207     if (UseFMA) {
 208       entry_point = __ pc();
 209       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 210       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 211       __ ldrd(v2, Address(esp));
 212       __ fmaddd(v0, v0, v1, v2);
 213       __ mov(sp, r13); // Restore caller's SP
 214     }
 215     break;
 216   case Interpreter::java_lang_math_fmaF :
 217     if (UseFMA) {
 218       entry_point = __ pc();
 219       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 220       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 221       __ ldrs(v2, Address(esp));
 222       __ fmadds(v0, v0, v1, v2);
 223       __ mov(sp, r13); // Restore caller's SP
 224     }
 225     break;
 226   default:
 227     ;
 228   }
 229   if (entry_point) {
 230     __ br(continuation);
 231   }
 232 
 233   return entry_point;
 234 }
 235 
 236   // double trigonometrics and transcendentals
 237   // static jdouble dsin(jdouble x);
 238   // static jdouble dcos(jdouble x);
 239   // static jdouble dtan(jdouble x);
 240   // static jdouble dlog(jdouble x);
 241   // static jdouble dlog10(jdouble x);
 242   // static jdouble dexp(jdouble x);
 243   // static jdouble dpow(jdouble x, jdouble y);
 244 
 245 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 246   address fn;
 247   switch (kind) {
 248   case Interpreter::java_lang_math_sin :
 249     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 250     break;
 251   case Interpreter::java_lang_math_cos :
 252     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 253     break;
 254   case Interpreter::java_lang_math_tan :
 255     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 256     break;
 257   case Interpreter::java_lang_math_log :
 258     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 259     break;
 260   case Interpreter::java_lang_math_log10 :
 261     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 262     break;
 263   case Interpreter::java_lang_math_exp :
 264     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 265     break;
 266   case Interpreter::java_lang_math_pow :
 267     fpargs = 2;
 268     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 269     break;
 270   default:
 271     ShouldNotReachHere();
 272     fn = NULL;  // unreachable
 273   }
 274   const int gpargs = 0, rtype = 3;
 275   __ mov(rscratch1, fn);
 276   __ blrt(rscratch1, gpargs, fpargs, rtype);
 277 }
 278 
 279 // Abstract method entry
 280 // Attempt to execute abstract method. Throw exception
 281 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 282   // rmethod: Method*
 283   // r13: sender SP
 284 
 285   address entry_point = __ pc();
 286 
 287   // abstract method entry
 288 
 289   //  pop return address, reset last_sp to NULL
 290   __ empty_expression_stack();
 291   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 292   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 293 
 294   // throw exception
 295   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 296                              InterpreterRuntime::throw_AbstractMethodError));
 297   // the call_VM checks for exception, so we should never return here.
 298   __ should_not_reach_here();
 299 
 300   return entry_point;
 301 }
 302 
 303 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 304   address entry = __ pc();
 305 
 306 #ifdef ASSERT
 307   {
 308     Label L;
 309     __ ldr(rscratch1, Address(rfp,
 310                        frame::interpreter_frame_monitor_block_top_offset *
 311                        wordSize));
 312     __ mov(rscratch2, sp);
 313     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 314                            // grows negative)
 315     __ br(Assembler::HS, L); // check if frame is complete
 316     __ stop ("interpreter frame not set up");
 317     __ bind(L);
 318   }
 319 #endif // ASSERT
 320   // Restore bcp under the assumption that the current frame is still
 321   // interpreted
 322   __ restore_bcp();
 323 
 324   // expression stack must be empty before entering the VM if an
 325   // exception happened
 326   __ empty_expression_stack();
 327   // throw exception
 328   __ call_VM(noreg,
 329              CAST_FROM_FN_PTR(address,
 330                               InterpreterRuntime::throw_StackOverflowError));
 331   return entry;
 332 }
 333 
 334 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
 335         const char* name) {
 336   address entry = __ pc();
 337   // expression stack must be empty before entering the VM if an
 338   // exception happened
 339   __ empty_expression_stack();
 340   // setup parameters
 341   // ??? convention: expect aberrant index in register r1
 342   __ movw(c_rarg2, r1);
 343   __ mov(c_rarg1, (address)name);
 344   __ call_VM(noreg,
 345              CAST_FROM_FN_PTR(address,
 346                               InterpreterRuntime::
 347                               throw_ArrayIndexOutOfBoundsException),
 348              c_rarg1, c_rarg2);
 349   return entry;
 350 }
 351 
 352 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 353   address entry = __ pc();
 354 
 355   // object is at TOS
 356   __ pop(c_rarg1);
 357 
 358   // expression stack must be empty before entering the VM if an
 359   // exception happened
 360   __ empty_expression_stack();
 361 
 362   __ call_VM(noreg,
 363              CAST_FROM_FN_PTR(address,
 364                               InterpreterRuntime::
 365                               throw_ClassCastException),
 366              c_rarg1);
 367   return entry;
 368 }
 369 
 370 address TemplateInterpreterGenerator::generate_exception_handler_common(
 371         const char* name, const char* message, bool pass_oop) {
 372   assert(!pass_oop || message == NULL, "either oop or message but not both");
 373   address entry = __ pc();
 374   if (pass_oop) {
 375     // object is at TOS
 376     __ pop(c_rarg2);
 377   }
 378   // expression stack must be empty before entering the VM if an
 379   // exception happened
 380   __ empty_expression_stack();
 381   // setup parameters
 382   __ lea(c_rarg1, Address((address)name));
 383   if (pass_oop) {
 384     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 385                                     InterpreterRuntime::
 386                                     create_klass_exception),
 387                c_rarg1, c_rarg2);
 388   } else {
 389     // kind of lame ExternalAddress can't take NULL because
 390     // external_word_Relocation will assert.
 391     if (message != NULL) {
 392       __ lea(c_rarg2, Address((address)message));
 393     } else {
 394       __ mov(c_rarg2, NULL_WORD);
 395     }
 396     __ call_VM(r0,
 397                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 398                c_rarg1, c_rarg2);
 399   }
 400   // throw exception
 401   __ b(address(Interpreter::throw_exception_entry()));
 402   return entry;
 403 }
 404 
 405 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 406   address entry = __ pc();
 407   // NULL last_sp until next java call
 408   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 409   __ dispatch_next(state);
 410   return entry;
 411 }
 412 
 413 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 414   address entry = __ pc();
 415 
 416   // Restore stack bottom in case i2c adjusted stack
 417   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 418   // and NULL it as marker that esp is now tos until next java call
 419   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 420   __ restore_bcp();
 421   __ restore_locals();
 422   __ restore_constant_pool_cache();
 423   __ get_method(rmethod);
 424 
 425   // Pop N words from the stack
 426   __ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
 427   __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 428   __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
 429 
 430   __ add(esp, esp, r1, Assembler::LSL, 3);
 431 
 432   // Restore machine SP
 433   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 434   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 435   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 436   __ ldr(rscratch2,
 437          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 438   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
 439   __ andr(sp, rscratch1, -16);
 440 
 441 #ifndef PRODUCT
 442   // tell the simulator that the method has been reentered
 443   if (NotifySimulator) {
 444     __ notify(Assembler::method_reentry);
 445   }
 446 #endif
 447   __ get_dispatch();
 448   __ dispatch_next(state, step);
 449 
 450   return entry;
 451 }
 452 
 453 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 454                                                                int step) {
 455   address entry = __ pc();
 456   __ restore_bcp();
 457   __ restore_locals();
 458   __ restore_constant_pool_cache();
 459   __ get_method(rmethod);
 460   __ get_dispatch();
 461 
 462   // Calculate stack limit
 463   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 464   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 465   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 466   __ ldr(rscratch2,
 467          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 468   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
 469   __ andr(sp, rscratch1, -16);
 470 
 471   // Restore expression stack pointer
 472   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 473   // NULL last_sp until next java call
 474   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 475 
 476 #if INCLUDE_JVMCI
 477   // Check if we need to take lock at entry of synchronized method.  This can
 478   // only occur on method entry so emit it only for vtos with step 0.
 479   if (UseJVMCICompiler && state == vtos && step == 0) {
 480     Label L;
 481     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 482     __ cbz(rscratch1, L);
 483     // Clear flag.
 484     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 485     // Take lock.
 486     lock_method();
 487     __ bind(L);
 488   } else {
 489 #ifdef ASSERT
 490     if (UseJVMCICompiler) {
 491       Label L;
 492       __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 493       __ cbz(rscratch1, L);
 494       __ stop("unexpected pending monitor in deopt entry");
 495       __ bind(L);
 496     }
 497 #endif
 498   }
 499 #endif
 500   // handle exceptions
 501   {
 502     Label L;
 503     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 504     __ cbz(rscratch1, L);
 505     __ call_VM(noreg,
 506                CAST_FROM_FN_PTR(address,
 507                                 InterpreterRuntime::throw_pending_exception));
 508     __ should_not_reach_here();
 509     __ bind(L);
 510   }
 511 
 512   __ dispatch_next(state, step);
 513   return entry;
 514 }
 515 
 516 address TemplateInterpreterGenerator::generate_result_handler_for(
 517         BasicType type) {
 518     address entry = __ pc();
 519   switch (type) {
 520   case T_BOOLEAN: __ uxtb(r0, r0);        break;
 521   case T_CHAR   : __ uxth(r0, r0);       break;
 522   case T_BYTE   : __ sxtb(r0, r0);        break;
 523   case T_SHORT  : __ sxth(r0, r0);        break;
 524   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 525   case T_LONG   : /* nothing to do */        break;
 526   case T_VOID   : /* nothing to do */        break;
 527   case T_FLOAT  : /* nothing to do */        break;
 528   case T_DOUBLE : /* nothing to do */        break;
 529   case T_OBJECT :
 530     // retrieve result from frame
 531     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 532     // and verify it
 533     __ verify_oop(r0);
 534     break;
 535   default       : ShouldNotReachHere();
 536   }
 537   __ ret(lr);                                  // return from result handler
 538   return entry;
 539 }
 540 
 541 address TemplateInterpreterGenerator::generate_safept_entry_for(
 542         TosState state,
 543         address runtime_entry) {
 544   address entry = __ pc();
 545   __ push(state);
 546   __ call_VM(noreg, runtime_entry);
 547   __ membar(Assembler::AnyAny);
 548   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 549   return entry;
 550 }
 551 
 552 // Helpers for commoning out cases in the various type of method entries.
 553 //
 554 
 555 
 556 // increment invocation count & check for overflow
 557 //
 558 // Note: checking for negative value instead of overflow
 559 //       so we have a 'sticky' overflow test
 560 //
 561 // rmethod: method
 562 //
 563 void TemplateInterpreterGenerator::generate_counter_incr(
 564         Label* overflow,
 565         Label* profile_method,
 566         Label* profile_method_continue) {
 567   Label done;
 568   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 569   if (TieredCompilation) {
 570     int increment = InvocationCounter::count_increment;
 571     Label no_mdo;
 572     if (ProfileInterpreter) {
 573       // Are we profiling?
 574       __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 575       __ cbz(r0, no_mdo);
 576       // Increment counter in the MDO
 577       const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 578                                                 in_bytes(InvocationCounter::counter_offset()));
 579       const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 580       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 581       __ b(done);
 582     }
 583     __ bind(no_mdo);
 584     // Increment counter in MethodCounters
 585     const Address invocation_counter(rscratch2,
 586                   MethodCounters::invocation_counter_offset() +
 587                   InvocationCounter::counter_offset());
 588     __ get_method_counters(rmethod, rscratch2, done);
 589     const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 590     __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 591     __ bind(done);
 592   } else { // not TieredCompilation
 593     const Address backedge_counter(rscratch2,
 594                   MethodCounters::backedge_counter_offset() +
 595                   InvocationCounter::counter_offset());
 596     const Address invocation_counter(rscratch2,
 597                   MethodCounters::invocation_counter_offset() +
 598                   InvocationCounter::counter_offset());
 599 
 600     __ get_method_counters(rmethod, rscratch2, done);
 601 
 602     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 603       __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 604       __ addw(r1, r1, 1);
 605       __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 606     }
 607     // Update standard invocation counters
 608     __ ldrw(r1, invocation_counter);
 609     __ ldrw(r0, backedge_counter);
 610 
 611     __ addw(r1, r1, InvocationCounter::count_increment);
 612     __ andw(r0, r0, InvocationCounter::count_mask_value);
 613 
 614     __ strw(r1, invocation_counter);
 615     __ addw(r0, r0, r1);                // add both counters
 616 
 617     // profile_method is non-null only for interpreted method so
 618     // profile_method != NULL == !native_call
 619 
 620     if (ProfileInterpreter && profile_method != NULL) {
 621       // Test to see if we should create a method data oop
 622       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 623       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
 624       __ cmpw(r0, rscratch2);
 625       __ br(Assembler::LT, *profile_method_continue);
 626 
 627       // if no method data exists, go to profile_method
 628       __ test_method_data_pointer(rscratch2, *profile_method);
 629     }
 630 
 631     {
 632       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 633       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
 634       __ cmpw(r0, rscratch2);
 635       __ br(Assembler::HS, *overflow);
 636     }
 637     __ bind(done);
 638   }
 639 }
 640 
 641 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 642 
 643   // Asm interpreter on entry
 644   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 645   // Everything as it was on entry
 646 
 647   // InterpreterRuntime::frequency_counter_overflow takes two
 648   // arguments, the first (thread) is passed by call_VM, the second
 649   // indicates if the counter overflow occurs at a backwards branch
 650   // (NULL bcp).  We pass zero for it.  The call returns the address
 651   // of the verified entry point for the method or NULL if the
 652   // compilation did not complete (either went background or bailed
 653   // out).
 654   __ mov(c_rarg1, 0);
 655   __ call_VM(noreg,
 656              CAST_FROM_FN_PTR(address,
 657                               InterpreterRuntime::frequency_counter_overflow),
 658              c_rarg1);
 659 
 660   __ b(do_continue);
 661 }
 662 
 663 // See if we've got enough room on the stack for locals plus overhead
 664 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 665 // without going through the signal handler, i.e., reserved and yellow zones
 666 // will not be made usable. The shadow zone must suffice to handle the
 667 // overflow.
 668 // The expression stack grows down incrementally, so the normal guard
 669 // page mechanism will work for that.
 670 //
 671 // NOTE: Since the additional locals are also always pushed (wasn't
 672 // obvious in generate_method_entry) so the guard should work for them
 673 // too.
 674 //
 675 // Args:
 676 //      r3: number of additional locals this frame needs (what we must check)
 677 //      rmethod: Method*
 678 //
 679 // Kills:
 680 //      r0
 681 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 682 
 683   // monitor entry size: see picture of stack set
 684   // (generate_method_entry) and frame_amd64.hpp
 685   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 686 
 687   // total overhead size: entry_size + (saved rbp through expr stack
 688   // bottom).  be sure to change this if you add/subtract anything
 689   // to/from the overhead area
 690   const int overhead_size =
 691     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 692 
 693   const int page_size = os::vm_page_size();
 694 
 695   Label after_frame_check;
 696 
 697   // see if the frame is greater than one page in size. If so,
 698   // then we need to verify there is enough stack space remaining
 699   // for the additional locals.
 700   //
 701   // Note that we use SUBS rather than CMP here because the immediate
 702   // field of this instruction may overflow.  SUBS can cope with this
 703   // because it is a macro that will expand to some number of MOV
 704   // instructions and a register operation.
 705   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 706   __ br(Assembler::LS, after_frame_check);
 707 
 708   // compute rsp as if this were going to be the last frame on
 709   // the stack before the red zone
 710 
 711   // locals + overhead, in bytes
 712   __ mov(r0, overhead_size);
 713   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 714 
 715   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 716   __ ldr(rscratch1, stack_limit);
 717 
 718 #ifdef ASSERT
 719   Label limit_okay;
 720   // Verify that thread stack limit is non-zero.
 721   __ cbnz(rscratch1, limit_okay);
 722   __ stop("stack overflow limit is zero");
 723   __ bind(limit_okay);
 724 #endif
 725 
 726   // Add stack limit to locals.
 727   __ add(r0, r0, rscratch1);
 728 
 729   // Check against the current stack bottom.
 730   __ cmp(sp, r0);
 731   __ br(Assembler::HI, after_frame_check);
 732 
 733   // Remove the incoming args, peeling the machine SP back to where it
 734   // was in the caller.  This is not strictly necessary, but unless we
 735   // do so the stack frame may have a garbage FP; this ensures a
 736   // correct call stack that we can always unwind.  The ANDR should be
 737   // unnecessary because the sender SP in r13 is always aligned, but
 738   // it doesn't hurt.
 739   __ andr(sp, r13, -16);
 740 
 741   // Note: the restored frame is not necessarily interpreted.
 742   // Use the shared runtime version of the StackOverflowError.
 743   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 744   __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
 745 
 746   // all done with frame size check
 747   __ bind(after_frame_check);
 748 }
 749 
 750 // Allocate monitor and lock method (asm interpreter)
 751 //
 752 // Args:
 753 //      rmethod: Method*
 754 //      rlocals: locals
 755 //
 756 // Kills:
 757 //      r0
 758 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 759 //      rscratch1, rscratch2 (scratch regs)
 760 void TemplateInterpreterGenerator::lock_method() {
 761   // synchronize method
 762   const Address access_flags(rmethod, Method::access_flags_offset());
 763   const Address monitor_block_top(
 764         rfp,
 765         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 766   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 767 
 768 #ifdef ASSERT
 769   {
 770     Label L;
 771     __ ldrw(r0, access_flags);
 772     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 773     __ br(Assembler::NE, L);
 774     __ stop("method doesn't need synchronization");
 775     __ bind(L);
 776   }
 777 #endif // ASSERT
 778 
 779   // get synchronization object
 780   {
 781     Label done;
 782     __ ldrw(r0, access_flags);
 783     __ tst(r0, JVM_ACC_STATIC);
 784     // get receiver (assume this is frequent case)
 785     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 786     __ br(Assembler::EQ, done);
 787     __ load_mirror(r0, rmethod);
 788 
 789 #ifdef ASSERT
 790     {
 791       Label L;
 792       __ cbnz(r0, L);
 793       __ stop("synchronization object is NULL");
 794       __ bind(L);
 795     }
 796 #endif // ASSERT
 797 
 798     __ bind(done);
 799   }
 800 
 801   // add space for monitor & lock
 802   __ sub(sp, sp, entry_size); // add space for a monitor entry
 803   __ sub(esp, esp, entry_size);
 804   __ mov(rscratch1, esp);
 805   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 806   // store object
 807   __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
 808   __ mov(c_rarg1, esp); // object address
 809   __ lock_object(c_rarg1);
 810 }
 811 
 812 // Generate a fixed interpreter frame. This is identical setup for
 813 // interpreted methods and for native methods hence the shared code.
 814 //
 815 // Args:
 816 //      lr: return address
 817 //      rmethod: Method*
 818 //      rlocals: pointer to locals
 819 //      rcpool: cp cache
 820 //      stack_pointer: previous sp
 821 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 822   // initialize fixed part of activation frame
 823   if (native_call) {
 824     __ sub(esp, sp, 14 *  wordSize);
 825     __ mov(rbcp, zr);
 826     __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
 827     // add 2 zero-initialized slots for native calls
 828     __ stp(zr, zr, Address(sp, 12 * wordSize));
 829   } else {
 830     __ sub(esp, sp, 12 *  wordSize);
 831     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));      // get ConstMethod
 832     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 833     __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
 834   }
 835 
 836   if (ProfileInterpreter) {
 837     Label method_data_continue;
 838     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 839     __ cbz(rscratch1, method_data_continue);
 840     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 841     __ bind(method_data_continue);
 842     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 843   } else {
 844     __ stp(zr, rmethod, Address(sp, 6 * wordSize));        // save Method* (no mdp)
 845   }
 846 
 847   // Get mirror and store it in the frame as GC root for this Method*
 848   __ load_mirror(rscratch1, rmethod);
 849   __ stp(rscratch1, zr, Address(sp, 4 * wordSize));
 850 
 851   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 852   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 853   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
 854   __ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
 855 
 856   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 857   __ lea(rfp, Address(sp, 10 * wordSize));
 858 
 859   // set sender sp
 860   // leave last_sp as null
 861   __ stp(zr, r13, Address(sp, 8 * wordSize));
 862 
 863   // Move SP out of the way
 864   if (! native_call) {
 865     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 866     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 867     __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 868     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 869     __ andr(sp, rscratch1, -16);
 870   }
 871 }
 872 
 873 // End of helpers
 874 
 875 // Various method entries
 876 //------------------------------------------------------------------------------------------------------------------------
 877 //
 878 //
 879 
 880 // Method entry for java.lang.ref.Reference.get.
 881 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 882 #if INCLUDE_ALL_GCS
 883   // Code: _aload_0, _getfield, _areturn
 884   // parameter size = 1
 885   //
 886   // The code that gets generated by this routine is split into 2 parts:
 887   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 888   //    2. The slow path - which is an expansion of the regular method entry.
 889   //
 890   // Notes:-
 891   // * In the G1 code we do not check whether we need to block for
 892   //   a safepoint. If G1 is enabled then we must execute the specialized
 893   //   code for Reference.get (except when the Reference object is null)
 894   //   so that we can log the value in the referent field with an SATB
 895   //   update buffer.
 896   //   If the code for the getfield template is modified so that the
 897   //   G1 pre-barrier code is executed when the current method is
 898   //   Reference.get() then going through the normal method entry
 899   //   will be fine.
 900   // * The G1 code can, however, check the receiver object (the instance
 901   //   of java.lang.Reference) and jump to the slow path if null. If the
 902   //   Reference object is null then we obviously cannot fetch the referent
 903   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 904   //   regular method entry code to generate the NPE.
 905   //
 906   // This code is based on generate_accessor_entry.
 907   //
 908   // rmethod: Method*
 909   // r13: senderSP must preserve for slow path, set SP to it on fast path
 910 
 911   address entry = __ pc();
 912 
 913   const int referent_offset = java_lang_ref_Reference::referent_offset;
 914   guarantee(referent_offset > 0, "referent offset not initialized");
 915 
 916   if (UseG1GC) {
 917     Label slow_path;
 918     const Register local_0 = c_rarg0;
 919     // Check if local 0 != NULL
 920     // If the receiver is null then it is OK to jump to the slow path.
 921     __ ldr(local_0, Address(esp, 0));
 922     __ cbz(local_0, slow_path);
 923 
 924     // Load the value of the referent field.
 925     const Address field_address(local_0, referent_offset);
 926     __ load_heap_oop(local_0, field_address);
 927 
 928     __ mov(r19, r13);   // Move senderSP to a callee-saved register
 929     // Generate the G1 pre-barrier code to log the value of
 930     // the referent field in an SATB buffer.
 931     __ enter(); // g1_write may call runtime
 932     __ g1_write_barrier_pre(noreg /* obj */,
 933                             local_0 /* pre_val */,
 934                             rthread /* thread */,
 935                             rscratch2 /* tmp */,
 936                             true /* tosca_live */,
 937                             true /* expand_call */);
 938     __ leave();
 939     // areturn
 940     __ andr(sp, r19, -16);  // done with stack
 941     __ ret(lr);
 942 
 943     // generate a vanilla interpreter entry as the slow path
 944     __ bind(slow_path);
 945     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 946     return entry;
 947   }
 948 #endif // INCLUDE_ALL_GCS
 949 
 950   // If G1 is not enabled then attempt to go through the accessor entry point
 951   // Reference.get is an accessor
 952   return NULL;
 953 }
 954 
 955 /**
 956  * Method entry for static native methods:
 957  *   int java.util.zip.CRC32.update(int crc, int b)
 958  */
 959 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 960   if (UseCRC32Intrinsics) {
 961     address entry = __ pc();
 962 
 963     // rmethod: Method*
 964     // r13: senderSP must preserved for slow path
 965     // esp: args
 966 
 967     Label slow_path;
 968     // If we need a safepoint check, generate full interpreter entry.
 969     ExternalAddress state(SafepointSynchronize::address_of_state());
 970     unsigned long offset;
 971     __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
 972     __ ldrw(rscratch1, Address(rscratch1, offset));
 973     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
 974     __ cbnz(rscratch1, slow_path);
 975 
 976     // We don't generate local frame and don't align stack because
 977     // we call stub code and there is no safepoint on this path.
 978 
 979     // Load parameters
 980     const Register crc = c_rarg0;  // crc
 981     const Register val = c_rarg1;  // source java byte value
 982     const Register tbl = c_rarg2;  // scratch
 983 
 984     // Arguments are reversed on java expression stack
 985     __ ldrw(val, Address(esp, 0));              // byte value
 986     __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
 987 
 988     __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
 989     __ add(tbl, tbl, offset);
 990 
 991     __ ornw(crc, zr, crc); // ~crc
 992     __ update_byte_crc32(crc, val, tbl);
 993     __ ornw(crc, zr, crc); // ~crc
 994 
 995     // result in c_rarg0
 996 
 997     __ andr(sp, r13, -16);
 998     __ ret(lr);
 999 
1000     // generate a vanilla native entry as the slow path
1001     __ bind(slow_path);
1002     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1003     return entry;
1004   }
1005   return NULL;
1006 }
1007 
1008 /**
1009  * Method entry for static native methods:
1010  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1011  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1012  */
1013 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1014   if (UseCRC32Intrinsics) {
1015     address entry = __ pc();
1016 
1017     // rmethod,: Method*
1018     // r13: senderSP must preserved for slow path
1019 
1020     Label slow_path;
1021     // If we need a safepoint check, generate full interpreter entry.
1022     ExternalAddress state(SafepointSynchronize::address_of_state());
1023     unsigned long offset;
1024     __ adrp(rscratch1, ExternalAddress(SafepointSynchronize::address_of_state()), offset);
1025     __ ldrw(rscratch1, Address(rscratch1, offset));
1026     assert(SafepointSynchronize::_not_synchronized == 0, "rewrite this code");
1027     __ cbnz(rscratch1, slow_path);
1028 
1029     // We don't generate local frame and don't align stack because
1030     // we call stub code and there is no safepoint on this path.
1031 
1032     // Load parameters
1033     const Register crc = c_rarg0;  // crc
1034     const Register buf = c_rarg1;  // source java byte array address
1035     const Register len = c_rarg2;  // length
1036     const Register off = len;      // offset (never overlaps with 'len')
1037 
1038     // Arguments are reversed on java expression stack
1039     // Calculate address of start element
1040     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1041       __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1042       __ ldrw(off, Address(esp, wordSize)); // offset
1043       __ add(buf, buf, off); // + offset
1044       __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1045     } else {
1046       __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1047       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1048       __ ldrw(off, Address(esp, wordSize)); // offset
1049       __ add(buf, buf, off); // + offset
1050       __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1051     }
1052     // Can now load 'len' since we're finished with 'off'
1053     __ ldrw(len, Address(esp, 0x0)); // Length
1054 
1055     __ andr(sp, r13, -16); // Restore the caller's SP
1056 
1057     // We are frameless so we can just jump to the stub.
1058     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1059 
1060     // generate a vanilla native entry as the slow path
1061     __ bind(slow_path);
1062     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1063     return entry;
1064   }
1065   return NULL;
1066 }
1067 
1068 // Not supported
1069 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1070   return NULL;
1071 }
1072 
1073 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1074   // Bang each page in the shadow zone. We can't assume it's been done for
1075   // an interpreter frame with greater than a page of locals, so each page
1076   // needs to be checked.  Only true for non-native.
1077   if (UseStackBanging) {
1078     const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size();
1079     const int start_page = native_call ? n_shadow_pages : 1;
1080     const int page_size = os::vm_page_size();
1081     for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
1082       __ sub(rscratch2, sp, pages*page_size);
1083       __ str(zr, Address(rscratch2));
1084     }
1085   }
1086 }
1087 
1088 
1089 // Interpreter stub for calling a native method. (asm interpreter)
1090 // This sets up a somewhat different looking stack for calling the
1091 // native method than the typical interpreter frame setup.
1092 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1093   // determine code generation flags
1094   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1095 
1096   // r1: Method*
1097   // rscratch1: sender sp
1098 
1099   address entry_point = __ pc();
1100 
1101   const Address constMethod       (rmethod, Method::const_offset());
1102   const Address access_flags      (rmethod, Method::access_flags_offset());
1103   const Address size_of_parameters(r2, ConstMethod::
1104                                        size_of_parameters_offset());
1105 
1106   // get parameter size (always needed)
1107   __ ldr(r2, constMethod);
1108   __ load_unsigned_short(r2, size_of_parameters);
1109 
1110   // Native calls don't need the stack size check since they have no
1111   // expression stack and the arguments are already on the stack and
1112   // we only add a handful of words to the stack.
1113 
1114   // rmethod: Method*
1115   // r2: size of parameters
1116   // rscratch1: sender sp
1117 
1118   // for natives the size of locals is zero
1119 
1120   // compute beginning of parameters (rlocals)
1121   __ add(rlocals, esp, r2, ext::uxtx, 3);
1122   __ add(rlocals, rlocals, -wordSize);
1123 
1124   // Pull SP back to minimum size: this avoids holes in the stack
1125   __ andr(sp, esp, -16);
1126 
1127   // initialize fixed part of activation frame
1128   generate_fixed_frame(true);
1129 #ifndef PRODUCT
1130   // tell the simulator that a method has been entered
1131   if (NotifySimulator) {
1132     __ notify(Assembler::method_entry);
1133   }
1134 #endif
1135 
1136   // make sure method is native & not abstract
1137 #ifdef ASSERT
1138   __ ldrw(r0, access_flags);
1139   {
1140     Label L;
1141     __ tst(r0, JVM_ACC_NATIVE);
1142     __ br(Assembler::NE, L);
1143     __ stop("tried to execute non-native method as native");
1144     __ bind(L);
1145   }
1146   {
1147     Label L;
1148     __ tst(r0, JVM_ACC_ABSTRACT);
1149     __ br(Assembler::EQ, L);
1150     __ stop("tried to execute abstract method in interpreter");
1151     __ bind(L);
1152   }
1153 #endif
1154 
1155   // Since at this point in the method invocation the exception
1156   // handler would try to exit the monitor of synchronized methods
1157   // which hasn't been entered yet, we set the thread local variable
1158   // _do_not_unlock_if_synchronized to true. The remove_activation
1159   // will check this flag.
1160 
1161    const Address do_not_unlock_if_synchronized(rthread,
1162         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1163   __ mov(rscratch2, true);
1164   __ strb(rscratch2, do_not_unlock_if_synchronized);
1165 
1166   // increment invocation count & check for overflow
1167   Label invocation_counter_overflow;
1168   if (inc_counter) {
1169     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1170   }
1171 
1172   Label continue_after_compile;
1173   __ bind(continue_after_compile);
1174 
1175   bang_stack_shadow_pages(true);
1176 
1177   // reset the _do_not_unlock_if_synchronized flag
1178   __ strb(zr, do_not_unlock_if_synchronized);
1179 
1180   // check for synchronized methods
1181   // Must happen AFTER invocation_counter check and stack overflow check,
1182   // so method is not locked if overflows.
1183   if (synchronized) {
1184     lock_method();
1185   } else {
1186     // no synchronization necessary
1187 #ifdef ASSERT
1188     {
1189       Label L;
1190       __ ldrw(r0, access_flags);
1191       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1192       __ br(Assembler::EQ, L);
1193       __ stop("method needs synchronization");
1194       __ bind(L);
1195     }
1196 #endif
1197   }
1198 
1199   // start execution
1200 #ifdef ASSERT
1201   {
1202     Label L;
1203     const Address monitor_block_top(rfp,
1204                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1205     __ ldr(rscratch1, monitor_block_top);
1206     __ cmp(esp, rscratch1);
1207     __ br(Assembler::EQ, L);
1208     __ stop("broken stack frame setup in interpreter");
1209     __ bind(L);
1210   }
1211 #endif
1212 
1213   // jvmti support
1214   __ notify_method_entry();
1215 
1216   // work registers
1217   const Register t = r17;
1218   const Register result_handler = r19;
1219 
1220   // allocate space for parameters
1221   __ ldr(t, Address(rmethod, Method::const_offset()));
1222   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1223 
1224   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1225   __ andr(sp, rscratch1, -16);
1226   __ mov(esp, rscratch1);
1227 
1228   // get signature handler
1229   {
1230     Label L;
1231     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1232     __ cbnz(t, L);
1233     __ call_VM(noreg,
1234                CAST_FROM_FN_PTR(address,
1235                                 InterpreterRuntime::prepare_native_call),
1236                rmethod);
1237     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1238     __ bind(L);
1239   }
1240 
1241   // call signature handler
1242   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1243          "adjust this code");
1244   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1245          "adjust this code");
1246   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1247           "adjust this code");
1248 
1249   // The generated handlers do not touch rmethod (the method).
1250   // However, large signatures cannot be cached and are generated
1251   // each time here.  The slow-path generator can do a GC on return,
1252   // so we must reload it after the call.
1253   __ blr(t);
1254   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1255 
1256 
1257   // result handler is in r0
1258   // set result handler
1259   __ mov(result_handler, r0);
1260   // pass mirror handle if static call
1261   {
1262     Label L;
1263     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1264     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1265     // get mirror
1266     __ load_mirror(t, rmethod);
1267     // copy mirror into activation frame
1268     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1269     // pass handle to mirror
1270     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1271     __ bind(L);
1272   }
1273 
1274   // get native function entry point in r10
1275   {
1276     Label L;
1277     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1278     address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1279     __ mov(rscratch2, unsatisfied);
1280     __ ldr(rscratch2, rscratch2);
1281     __ cmp(r10, rscratch2);
1282     __ br(Assembler::NE, L);
1283     __ call_VM(noreg,
1284                CAST_FROM_FN_PTR(address,
1285                                 InterpreterRuntime::prepare_native_call),
1286                rmethod);
1287     __ get_method(rmethod);
1288     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1289     __ bind(L);
1290   }
1291 
1292   // pass JNIEnv
1293   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1294 
1295   // It is enough that the pc() points into the right code
1296   // segment. It does not have to be the correct return pc.
1297   __ set_last_Java_frame(esp, rfp, (address)NULL, rscratch1);
1298 
1299   // change thread state
1300 #ifdef ASSERT
1301   {
1302     Label L;
1303     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1304     __ cmp(t, _thread_in_Java);
1305     __ br(Assembler::EQ, L);
1306     __ stop("Wrong thread state in native stub");
1307     __ bind(L);
1308   }
1309 #endif
1310 
1311   // Change state to native
1312   __ mov(rscratch1, _thread_in_native);
1313   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1314   __ stlrw(rscratch1, rscratch2);
1315 
1316   // Call the native method.
1317   __ blrt(r10, rscratch1);
1318   __ maybe_isb();
1319   __ get_method(rmethod);
1320   // result potentially in r0 or v0
1321 
1322   // make room for the pushes we're about to do
1323   __ sub(rscratch1, esp, 4 * wordSize);
1324   __ andr(sp, rscratch1, -16);
1325 
1326   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1327   // in order to extract the result of a method call. If the order of these
1328   // pushes change or anything else is added to the stack then the code in
1329   // interpreter_frame_result must also change.
1330   __ push(dtos);
1331   __ push(ltos);
1332 
1333   // change thread state
1334   __ mov(rscratch1, _thread_in_native_trans);
1335   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1336   __ stlrw(rscratch1, rscratch2);
1337 
1338   if (os::is_MP()) {
1339     if (UseMembar) {
1340       // Force this write out before the read below
1341       __ dsb(Assembler::SY);
1342     } else {
1343       // Write serialization page so VM thread can do a pseudo remote membar.
1344       // We use the current thread pointer to calculate a thread specific
1345       // offset to write to within the page. This minimizes bus traffic
1346       // due to cache line collision.
1347       __ serialize_memory(rthread, rscratch2);
1348     }
1349   }
1350 
1351   // check for safepoint operation in progress and/or pending suspend requests
1352   {
1353     Label Continue;
1354     {
1355       unsigned long offset;
1356       __ adrp(rscratch2, SafepointSynchronize::address_of_state(), offset);
1357       __ ldrw(rscratch2, Address(rscratch2, offset));
1358     }
1359     assert(SafepointSynchronize::_not_synchronized == 0,
1360            "SafepointSynchronize::_not_synchronized");
1361     Label L;
1362     __ cbnz(rscratch2, L);
1363     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1364     __ cbz(rscratch2, Continue);
1365     __ bind(L);
1366 
1367     // Don't use call_VM as it will see a possible pending exception
1368     // and forward it and never return here preventing us from
1369     // clearing _last_native_pc down below. So we do a runtime call by
1370     // hand.
1371     //
1372     __ mov(c_rarg0, rthread);
1373     __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1374     __ blrt(rscratch2, 1, 0, 0);
1375     __ maybe_isb();
1376     __ get_method(rmethod);
1377     __ reinit_heapbase();
1378     __ bind(Continue);
1379   }
1380 
1381   // change thread state
1382   __ mov(rscratch1, _thread_in_Java);
1383   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1384   __ stlrw(rscratch1, rscratch2);
1385 
1386   // reset_last_Java_frame
1387   __ reset_last_Java_frame(true);
1388 
1389   if (CheckJNICalls) {
1390     // clear_pending_jni_exception_check
1391     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1392   }
1393 
1394   // reset handle block
1395   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1396   __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
1397 
1398   // If result is an oop unbox and store it in frame where gc will see it
1399   // and result handler will pick it up
1400 
1401   {
1402     Label no_oop, store_result;
1403     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1404     __ cmp(t, result_handler);
1405     __ br(Assembler::NE, no_oop);
1406     // retrieve result
1407     __ pop(ltos);
1408     __ cbz(r0, store_result);
1409     __ ldr(r0, Address(r0, 0));
1410     __ bind(store_result);
1411     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1412     // keep stack depth as expected by pushing oop which will eventually be discarded
1413     __ push(ltos);
1414     __ bind(no_oop);
1415   }
1416 
1417   {
1418     Label no_reguard;
1419     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1420     __ ldrw(rscratch1, Address(rscratch1));
1421     __ cmp(rscratch1, JavaThread::stack_guard_yellow_reserved_disabled);
1422     __ br(Assembler::NE, no_reguard);
1423 
1424     __ pusha(); // XXX only save smashed registers
1425     __ mov(c_rarg0, rthread);
1426     __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1427     __ blrt(rscratch2, 0, 0, 0);
1428     __ popa(); // XXX only restore smashed registers
1429     __ bind(no_reguard);
1430   }
1431 
1432   // The method register is junk from after the thread_in_native transition
1433   // until here.  Also can't call_VM until the bcp has been
1434   // restored.  Need bcp for throwing exception below so get it now.
1435   __ get_method(rmethod);
1436 
1437   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1438   // rbcp == code_base()
1439   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1440   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1441   // handle exceptions (exception handling will handle unlocking!)
1442   {
1443     Label L;
1444     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1445     __ cbz(rscratch1, L);
1446     // Note: At some point we may want to unify this with the code
1447     // used in call_VM_base(); i.e., we should use the
1448     // StubRoutines::forward_exception code. For now this doesn't work
1449     // here because the rsp is not correctly set at this point.
1450     __ MacroAssembler::call_VM(noreg,
1451                                CAST_FROM_FN_PTR(address,
1452                                InterpreterRuntime::throw_pending_exception));
1453     __ should_not_reach_here();
1454     __ bind(L);
1455   }
1456 
1457   // do unlocking if necessary
1458   {
1459     Label L;
1460     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1461     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1462     // the code below should be shared with interpreter macro
1463     // assembler implementation
1464     {
1465       Label unlock;
1466       // BasicObjectLock will be first in list, since this is a
1467       // synchronized method. However, need to check that the object
1468       // has not been unlocked by an explicit monitorexit bytecode.
1469 
1470       // monitor expect in c_rarg1 for slow unlock path
1471       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1472                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1473                                           wordSize - sizeof(BasicObjectLock))));
1474 
1475       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1476       __ cbnz(t, unlock);
1477 
1478       // Entry already unlocked, need to throw exception
1479       __ MacroAssembler::call_VM(noreg,
1480                                  CAST_FROM_FN_PTR(address,
1481                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1482       __ should_not_reach_here();
1483 
1484       __ bind(unlock);
1485       __ unlock_object(c_rarg1);
1486     }
1487     __ bind(L);
1488   }
1489 
1490   // jvmti support
1491   // Note: This must happen _after_ handling/throwing any exceptions since
1492   //       the exception handler code notifies the runtime of method exits
1493   //       too. If this happens before, method entry/exit notifications are
1494   //       not properly paired (was bug - gri 11/22/99).
1495   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1496 
1497   // restore potential result in r0:d0, call result handler to
1498   // restore potential result in ST0 & handle result
1499 
1500   __ pop(ltos);
1501   __ pop(dtos);
1502 
1503   __ blr(result_handler);
1504 
1505   // remove activation
1506   __ ldr(esp, Address(rfp,
1507                     frame::interpreter_frame_sender_sp_offset *
1508                     wordSize)); // get sender sp
1509   // remove frame anchor
1510   __ leave();
1511 
1512   // resture sender sp
1513   __ mov(sp, esp);
1514 
1515   __ ret(lr);
1516 
1517   if (inc_counter) {
1518     // Handle overflow of counter and compile method
1519     __ bind(invocation_counter_overflow);
1520     generate_counter_overflow(continue_after_compile);
1521   }
1522 
1523   return entry_point;
1524 }
1525 
1526 //
1527 // Generic interpreted method entry to (asm) interpreter
1528 //
1529 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1530   // determine code generation flags
1531   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1532 
1533   // rscratch1: sender sp
1534   address entry_point = __ pc();
1535 
1536   const Address constMethod(rmethod, Method::const_offset());
1537   const Address access_flags(rmethod, Method::access_flags_offset());
1538   const Address size_of_parameters(r3,
1539                                    ConstMethod::size_of_parameters_offset());
1540   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1541 
1542   // get parameter size (always needed)
1543   // need to load the const method first
1544   __ ldr(r3, constMethod);
1545   __ load_unsigned_short(r2, size_of_parameters);
1546 
1547   // r2: size of parameters
1548 
1549   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1550   __ sub(r3, r3, r2); // r3 = no. of additional locals
1551 
1552   // see if we've got enough room on the stack for locals plus overhead.
1553   generate_stack_overflow_check();
1554 
1555   // compute beginning of parameters (rlocals)
1556   __ add(rlocals, esp, r2, ext::uxtx, 3);
1557   __ sub(rlocals, rlocals, wordSize);
1558 
1559   // Make room for locals
1560   __ sub(rscratch1, esp, r3, ext::uxtx, 3);
1561   __ andr(sp, rscratch1, -16);
1562 
1563   // r3 - # of additional locals
1564   // allocate space for locals
1565   // explicitly initialize locals
1566   {
1567     Label exit, loop;
1568     __ ands(zr, r3, r3);
1569     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1570     __ bind(loop);
1571     __ str(zr, Address(__ post(rscratch1, wordSize)));
1572     __ sub(r3, r3, 1); // until everything initialized
1573     __ cbnz(r3, loop);
1574     __ bind(exit);
1575   }
1576 
1577   // And the base dispatch table
1578   __ get_dispatch();
1579 
1580   // initialize fixed part of activation frame
1581   generate_fixed_frame(false);
1582 #ifndef PRODUCT
1583   // tell the simulator that a method has been entered
1584   if (NotifySimulator) {
1585     __ notify(Assembler::method_entry);
1586   }
1587 #endif
1588   // make sure method is not native & not abstract
1589 #ifdef ASSERT
1590   __ ldrw(r0, access_flags);
1591   {
1592     Label L;
1593     __ tst(r0, JVM_ACC_NATIVE);
1594     __ br(Assembler::EQ, L);
1595     __ stop("tried to execute native method as non-native");
1596     __ bind(L);
1597   }
1598  {
1599     Label L;
1600     __ tst(r0, JVM_ACC_ABSTRACT);
1601     __ br(Assembler::EQ, L);
1602     __ stop("tried to execute abstract method in interpreter");
1603     __ bind(L);
1604   }
1605 #endif
1606 
1607   // Since at this point in the method invocation the exception
1608   // handler would try to exit the monitor of synchronized methods
1609   // which hasn't been entered yet, we set the thread local variable
1610   // _do_not_unlock_if_synchronized to true. The remove_activation
1611   // will check this flag.
1612 
1613    const Address do_not_unlock_if_synchronized(rthread,
1614         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1615   __ mov(rscratch2, true);
1616   __ strb(rscratch2, do_not_unlock_if_synchronized);
1617 
1618   // increment invocation count & check for overflow
1619   Label invocation_counter_overflow;
1620   Label profile_method;
1621   Label profile_method_continue;
1622   if (inc_counter) {
1623     generate_counter_incr(&invocation_counter_overflow,
1624                           &profile_method,
1625                           &profile_method_continue);
1626     if (ProfileInterpreter) {
1627       __ bind(profile_method_continue);
1628     }
1629   }
1630 
1631   Label continue_after_compile;
1632   __ bind(continue_after_compile);
1633 
1634   bang_stack_shadow_pages(false);
1635 
1636   // reset the _do_not_unlock_if_synchronized flag
1637   __ strb(zr, do_not_unlock_if_synchronized);
1638 
1639   // check for synchronized methods
1640   // Must happen AFTER invocation_counter check and stack overflow check,
1641   // so method is not locked if overflows.
1642   if (synchronized) {
1643     // Allocate monitor and lock method
1644     lock_method();
1645   } else {
1646     // no synchronization necessary
1647 #ifdef ASSERT
1648     {
1649       Label L;
1650       __ ldrw(r0, access_flags);
1651       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1652       __ br(Assembler::EQ, L);
1653       __ stop("method needs synchronization");
1654       __ bind(L);
1655     }
1656 #endif
1657   }
1658 
1659   // start execution
1660 #ifdef ASSERT
1661   {
1662     Label L;
1663      const Address monitor_block_top (rfp,
1664                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1665     __ ldr(rscratch1, monitor_block_top);
1666     __ cmp(esp, rscratch1);
1667     __ br(Assembler::EQ, L);
1668     __ stop("broken stack frame setup in interpreter");
1669     __ bind(L);
1670   }
1671 #endif
1672 
1673   // jvmti support
1674   __ notify_method_entry();
1675 
1676   __ dispatch_next(vtos);
1677 
1678   // invocation counter overflow
1679   if (inc_counter) {
1680     if (ProfileInterpreter) {
1681       // We have decided to profile this method in the interpreter
1682       __ bind(profile_method);
1683       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1684       __ set_method_data_pointer_for_bcp();
1685       // don't think we need this
1686       __ get_method(r1);
1687       __ b(profile_method_continue);
1688     }
1689     // Handle overflow of counter and compile method
1690     __ bind(invocation_counter_overflow);
1691     generate_counter_overflow(continue_after_compile);
1692   }
1693 
1694   return entry_point;
1695 }
1696 
1697 //-----------------------------------------------------------------------------
1698 // Exceptions
1699 
1700 void TemplateInterpreterGenerator::generate_throw_exception() {
1701   // Entry point in previous activation (i.e., if the caller was
1702   // interpreted)
1703   Interpreter::_rethrow_exception_entry = __ pc();
1704   // Restore sp to interpreter_frame_last_sp even though we are going
1705   // to empty the expression stack for the exception processing.
1706   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1707   // r0: exception
1708   // r3: return address/pc that threw exception
1709   __ restore_bcp();    // rbcp points to call/send
1710   __ restore_locals();
1711   __ restore_constant_pool_cache();
1712   __ reinit_heapbase();  // restore rheapbase as heapbase.
1713   __ get_dispatch();
1714 
1715 #ifndef PRODUCT
1716   // tell the simulator that the caller method has been reentered
1717   if (NotifySimulator) {
1718     __ get_method(rmethod);
1719     __ notify(Assembler::method_reentry);
1720   }
1721 #endif
1722   // Entry point for exceptions thrown within interpreter code
1723   Interpreter::_throw_exception_entry = __ pc();
1724   // If we came here via a NullPointerException on the receiver of a
1725   // method, rmethod may be corrupt.
1726   __ get_method(rmethod);
1727   // expression stack is undefined here
1728   // r0: exception
1729   // rbcp: exception bcp
1730   __ verify_oop(r0);
1731   __ mov(c_rarg1, r0);
1732 
1733   // expression stack must be empty before entering the VM in case of
1734   // an exception
1735   __ empty_expression_stack();
1736   // find exception handler address and preserve exception oop
1737   __ call_VM(r3,
1738              CAST_FROM_FN_PTR(address,
1739                           InterpreterRuntime::exception_handler_for_exception),
1740              c_rarg1);
1741 
1742   // Calculate stack limit
1743   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1744   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1745   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1746   __ ldr(rscratch2,
1747          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1748   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
1749   __ andr(sp, rscratch1, -16);
1750 
1751   // r0: exception handler entry point
1752   // r3: preserved exception oop
1753   // rbcp: bcp for exception handler
1754   __ push_ptr(r3); // push exception which is now the only value on the stack
1755   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1756 
1757   // If the exception is not handled in the current frame the frame is
1758   // removed and the exception is rethrown (i.e. exception
1759   // continuation is _rethrow_exception).
1760   //
1761   // Note: At this point the bci is still the bxi for the instruction
1762   // which caused the exception and the expression stack is
1763   // empty. Thus, for any VM calls at this point, GC will find a legal
1764   // oop map (with empty expression stack).
1765 
1766   //
1767   // JVMTI PopFrame support
1768   //
1769 
1770   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1771   __ empty_expression_stack();
1772   // Set the popframe_processing bit in pending_popframe_condition
1773   // indicating that we are currently handling popframe, so that
1774   // call_VMs that may happen later do not trigger new popframe
1775   // handling cycles.
1776   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1777   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1778   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1779 
1780   {
1781     // Check to see whether we are returning to a deoptimized frame.
1782     // (The PopFrame call ensures that the caller of the popped frame is
1783     // either interpreted or compiled and deoptimizes it if compiled.)
1784     // In this case, we can't call dispatch_next() after the frame is
1785     // popped, but instead must save the incoming arguments and restore
1786     // them after deoptimization has occurred.
1787     //
1788     // Note that we don't compare the return PC against the
1789     // deoptimization blob's unpack entry because of the presence of
1790     // adapter frames in C2.
1791     Label caller_not_deoptimized;
1792     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1793     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1794                                InterpreterRuntime::interpreter_contains), c_rarg1);
1795     __ cbnz(r0, caller_not_deoptimized);
1796 
1797     // Compute size of arguments for saving when returning to
1798     // deoptimized caller
1799     __ get_method(r0);
1800     __ ldr(r0, Address(r0, Method::const_offset()));
1801     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1802                                                     size_of_parameters_offset())));
1803     __ lsl(r0, r0, Interpreter::logStackElementSize);
1804     __ restore_locals(); // XXX do we need this?
1805     __ sub(rlocals, rlocals, r0);
1806     __ add(rlocals, rlocals, wordSize);
1807     // Save these arguments
1808     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1809                                            Deoptimization::
1810                                            popframe_preserve_args),
1811                           rthread, r0, rlocals);
1812 
1813     __ remove_activation(vtos,
1814                          /* throw_monitor_exception */ false,
1815                          /* install_monitor_exception */ false,
1816                          /* notify_jvmdi */ false);
1817 
1818     // Inform deoptimization that it is responsible for restoring
1819     // these arguments
1820     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1821     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1822 
1823     // Continue in deoptimization handler
1824     __ ret(lr);
1825 
1826     __ bind(caller_not_deoptimized);
1827   }
1828 
1829   __ remove_activation(vtos,
1830                        /* throw_monitor_exception */ false,
1831                        /* install_monitor_exception */ false,
1832                        /* notify_jvmdi */ false);
1833 
1834   // Restore the last_sp and null it out
1835   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1836   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1837 
1838   __ restore_bcp();
1839   __ restore_locals();
1840   __ restore_constant_pool_cache();
1841   __ get_method(rmethod);
1842 
1843   // The method data pointer was incremented already during
1844   // call profiling. We have to restore the mdp for the current bcp.
1845   if (ProfileInterpreter) {
1846     __ set_method_data_pointer_for_bcp();
1847   }
1848 
1849   // Clear the popframe condition flag
1850   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1851   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1852 
1853 #if INCLUDE_JVMTI
1854   {
1855     Label L_done;
1856 
1857     __ ldrb(rscratch1, Address(rbcp, 0));
1858     __ cmpw(r1, Bytecodes::_invokestatic);
1859     __ br(Assembler::EQ, L_done);
1860 
1861     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1862     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1863 
1864     __ ldr(c_rarg0, Address(rlocals, 0));
1865     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1866 
1867     __ cbz(r0, L_done);
1868 
1869     __ str(r0, Address(esp, 0));
1870     __ bind(L_done);
1871   }
1872 #endif // INCLUDE_JVMTI
1873 
1874   // Restore machine SP
1875   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1876   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1877   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1878   __ ldr(rscratch2,
1879          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1880   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
1881   __ andr(sp, rscratch1, -16);
1882 
1883   __ dispatch_next(vtos);
1884   // end of PopFrame support
1885 
1886   Interpreter::_remove_activation_entry = __ pc();
1887 
1888   // preserve exception over this code sequence
1889   __ pop_ptr(r0);
1890   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1891   // remove the activation (without doing throws on illegalMonitorExceptions)
1892   __ remove_activation(vtos, false, true, false);
1893   // restore exception
1894   // restore exception
1895   __ get_vm_result(r0, rthread);
1896 
1897   // In between activations - previous activation type unknown yet
1898   // compute continuation point - the continuation point expects the
1899   // following registers set up:
1900   //
1901   // r0: exception
1902   // lr: return address/pc that threw exception
1903   // rsp: expression stack of caller
1904   // rfp: fp of caller
1905   // FIXME: There's no point saving LR here because VM calls don't trash it
1906   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1907   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1908                           SharedRuntime::exception_handler_for_return_address),
1909                         rthread, lr);
1910   __ mov(r1, r0);                               // save exception handler
1911   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1912   // We might be returning to a deopt handler that expects r3 to
1913   // contain the exception pc
1914   __ mov(r3, lr);
1915   // Note that an "issuing PC" is actually the next PC after the call
1916   __ br(r1);                                    // jump to exception
1917                                                 // handler of caller
1918 }
1919 
1920 
1921 //
1922 // JVMTI ForceEarlyReturn support
1923 //
1924 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1925   address entry = __ pc();
1926 
1927   __ restore_bcp();
1928   __ restore_locals();
1929   __ empty_expression_stack();
1930   __ load_earlyret_value(state);
1931 
1932   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1933   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1934 
1935   // Clear the earlyret state
1936   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1937   __ str(zr, cond_addr);
1938 
1939   __ remove_activation(state,
1940                        false, /* throw_monitor_exception */
1941                        false, /* install_monitor_exception */
1942                        true); /* notify_jvmdi */
1943   __ ret(lr);
1944 
1945   return entry;
1946 } // end of ForceEarlyReturn support
1947 
1948 
1949 
1950 //-----------------------------------------------------------------------------
1951 // Helper for vtos entry point generation
1952 
1953 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1954                                                          address& bep,
1955                                                          address& cep,
1956                                                          address& sep,
1957                                                          address& aep,
1958                                                          address& iep,
1959                                                          address& lep,
1960                                                          address& fep,
1961                                                          address& dep,
1962                                                          address& vep) {
1963   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1964   Label L;
1965   aep = __ pc();  __ push_ptr();  __ b(L);
1966   fep = __ pc();  __ push_f();    __ b(L);
1967   dep = __ pc();  __ push_d();    __ b(L);
1968   lep = __ pc();  __ push_l();    __ b(L);
1969   bep = cep = sep =
1970   iep = __ pc();  __ push_i();
1971   vep = __ pc();
1972   __ bind(L);
1973   generate_and_dispatch(t);
1974 }
1975 
1976 //-----------------------------------------------------------------------------
1977 
1978 // Non-product code
1979 #ifndef PRODUCT
1980 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1981   address entry = __ pc();
1982 
1983   __ push(lr);
1984   __ push(state);
1985   __ push(RegSet::range(r0, r15), sp);
1986   __ mov(c_rarg2, r0);  // Pass itos
1987   __ call_VM(noreg,
1988              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
1989              c_rarg1, c_rarg2, c_rarg3);
1990   __ pop(RegSet::range(r0, r15), sp);
1991   __ pop(state);
1992   __ pop(lr);
1993   __ ret(lr);                                   // return from result handler
1994 
1995   return entry;
1996 }
1997 
1998 void TemplateInterpreterGenerator::count_bytecode() {
1999   Register rscratch3 = r0;
2000   __ push(rscratch1);
2001   __ push(rscratch2);
2002   __ push(rscratch3);
2003   __ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
2004   __ atomic_add(noreg, 1, rscratch3);
2005   __ pop(rscratch3);
2006   __ pop(rscratch2);
2007   __ pop(rscratch1);
2008 }
2009 
2010 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
2011 
2012 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
2013 
2014 
2015 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2016   // Call a little run-time stub to avoid blow-up for each bytecode.
2017   // The run-time runtime saves the right registers, depending on
2018   // the tosca in-state for the given template.
2019 
2020   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2021          "entry must have been generated");
2022   __ bl(Interpreter::trace_code(t->tos_in()));
2023   __ reinit_heapbase();
2024 }
2025 
2026 
2027 void TemplateInterpreterGenerator::stop_interpreter_at() {
2028   Label L;
2029   __ push(rscratch1);
2030   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2031   __ ldr(rscratch1, Address(rscratch1));
2032   __ mov(rscratch2, StopInterpreterAt);
2033   __ cmpw(rscratch1, rscratch2);
2034   __ br(Assembler::NE, L);
2035   __ brk(0);
2036   __ bind(L);
2037   __ pop(rscratch1);
2038 }
2039 
2040 #ifdef BUILTIN_SIM
2041 
2042 #include <sys/mman.h>
2043 #include <unistd.h>
2044 
2045 extern "C" {
2046   static int PAGESIZE = getpagesize();
2047   int is_mapped_address(u_int64_t address)
2048   {
2049     address = (address & ~((u_int64_t)PAGESIZE - 1));
2050     if (msync((void *)address, PAGESIZE, MS_ASYNC) == 0) {
2051       return true;
2052     }
2053     if (errno != ENOMEM) {
2054       return true;
2055     }
2056     return false;
2057   }
2058 
2059   void bccheck1(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2060   {
2061     if (method != 0) {
2062       method[0] = '\0';
2063     }
2064     if (bcidx != 0) {
2065       *bcidx = -2;
2066     }
2067     if (decode != 0) {
2068       decode[0] = 0;
2069     }
2070 
2071     if (framesize != 0) {
2072       *framesize = -1;
2073     }
2074 
2075     if (Interpreter::contains((address)pc)) {
2076       AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2077       Method* meth;
2078       address bcp;
2079       if (fp) {
2080 #define FRAME_SLOT_METHOD 3
2081 #define FRAME_SLOT_BCP 7
2082         meth = (Method*)sim->getMemory()->loadU64(fp - (FRAME_SLOT_METHOD << 3));
2083         bcp = (address)sim->getMemory()->loadU64(fp - (FRAME_SLOT_BCP << 3));
2084 #undef FRAME_SLOT_METHOD
2085 #undef FRAME_SLOT_BCP
2086       } else {
2087         meth = (Method*)sim->getCPUState().xreg(RMETHOD, 0);
2088         bcp = (address)sim->getCPUState().xreg(RBCP, 0);
2089       }
2090       if (meth->is_native()) {
2091         return;
2092       }
2093       if(method && meth->is_method()) {
2094         ResourceMark rm;
2095         method[0] = 'I';
2096         method[1] = ' ';
2097         meth->name_and_sig_as_C_string(method + 2, 398);
2098       }
2099       if (bcidx) {
2100         if (meth->contains(bcp)) {
2101           *bcidx = meth->bci_from(bcp);
2102         } else {
2103           *bcidx = -2;
2104         }
2105       }
2106       if (decode) {
2107         if (!BytecodeTracer::closure()) {
2108           BytecodeTracer::set_closure(BytecodeTracer::std_closure());
2109         }
2110         stringStream str(decode, 400);
2111         BytecodeTracer::trace(meth, bcp, &str);
2112       }
2113     } else {
2114       if (method) {
2115         CodeBlob *cb = CodeCache::find_blob((address)pc);
2116         if (cb != NULL) {
2117           if (cb->is_nmethod()) {
2118             ResourceMark rm;
2119             nmethod* nm = (nmethod*)cb;
2120             method[0] = 'C';
2121             method[1] = ' ';
2122             nm->method()->name_and_sig_as_C_string(method + 2, 398);
2123           } else if (cb->is_adapter_blob()) {
2124             strcpy(method, "B adapter blob");
2125           } else if (cb->is_runtime_stub()) {
2126             strcpy(method, "B runtime stub");
2127           } else if (cb->is_exception_stub()) {
2128             strcpy(method, "B exception stub");
2129           } else if (cb->is_deoptimization_stub()) {
2130             strcpy(method, "B deoptimization stub");
2131           } else if (cb->is_safepoint_stub()) {
2132             strcpy(method, "B safepoint stub");
2133           } else if (cb->is_uncommon_trap_stub()) {
2134             strcpy(method, "B uncommon trap stub");
2135           } else if (cb->contains((address)StubRoutines::call_stub())) {
2136             strcpy(method, "B call stub");
2137           } else {
2138             strcpy(method, "B unknown blob : ");
2139             strcat(method, cb->name());
2140           }
2141           if (framesize != NULL) {
2142             *framesize = cb->frame_size();
2143           }
2144         }
2145       }
2146     }
2147   }
2148 
2149 
2150   JNIEXPORT void bccheck(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2151   {
2152     bccheck1(pc, fp, method, bcidx, framesize, decode);
2153   }
2154 }
2155 
2156 #endif // BUILTIN_SIM
2157 #endif // !PRODUCT