1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/c2compiler.hpp"
  36 #include "opto/callGenerator.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/countbitsnode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/mathexactnode.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "prims/unsafe.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #ifdef TRACE_HAVE_INTRINSICS
  55 #include "trace/traceMacros.hpp"
  56 #endif
  57 
  58 class LibraryIntrinsic : public InlineCallGenerator {
  59   // Extend the set of intrinsics known to the runtime:
  60  public:
  61  private:
  62   bool             _is_virtual;
  63   bool             _does_virtual_dispatch;
  64   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  65   int8_t           _last_predicate; // Last generated predicate
  66   vmIntrinsics::ID _intrinsic_id;
  67 
  68  public:
  69   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  70     : InlineCallGenerator(m),
  71       _is_virtual(is_virtual),
  72       _does_virtual_dispatch(does_virtual_dispatch),
  73       _predicates_count((int8_t)predicates_count),
  74       _last_predicate((int8_t)-1),
  75       _intrinsic_id(id)
  76   {
  77   }
  78   virtual bool is_intrinsic() const { return true; }
  79   virtual bool is_virtual()   const { return _is_virtual; }
  80   virtual bool is_predicated() const { return _predicates_count > 0; }
  81   virtual int  predicates_count() const { return _predicates_count; }
  82   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  83   virtual JVMState* generate(JVMState* jvms);
  84   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  85   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  86 };
  87 
  88 
  89 // Local helper class for LibraryIntrinsic:
  90 class LibraryCallKit : public GraphKit {
  91  private:
  92   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  93   Node*             _result;        // the result node, if any
  94   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  95 
  96   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  97 
  98  public:
  99   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 100     : GraphKit(jvms),
 101       _intrinsic(intrinsic),
 102       _result(NULL)
 103   {
 104     // Check if this is a root compile.  In that case we don't have a caller.
 105     if (!jvms->has_method()) {
 106       _reexecute_sp = sp();
 107     } else {
 108       // Find out how many arguments the interpreter needs when deoptimizing
 109       // and save the stack pointer value so it can used by uncommon_trap.
 110       // We find the argument count by looking at the declared signature.
 111       bool ignored_will_link;
 112       ciSignature* declared_signature = NULL;
 113       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 114       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 115       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 116     }
 117   }
 118 
 119   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 120 
 121   ciMethod*         caller()    const    { return jvms()->method(); }
 122   int               bci()       const    { return jvms()->bci(); }
 123   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 124   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 125   ciMethod*         callee()    const    { return _intrinsic->method(); }
 126 
 127   bool  try_to_inline(int predicate);
 128   Node* try_to_predicate(int predicate);
 129 
 130   void push_result() {
 131     // Push the result onto the stack.
 132     if (!stopped() && result() != NULL) {
 133       BasicType bt = result()->bottom_type()->basic_type();
 134       push_node(bt, result());
 135     }
 136   }
 137 
 138  private:
 139   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 140     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 141   }
 142 
 143   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 144   void  set_result(RegionNode* region, PhiNode* value);
 145   Node*     result() { return _result; }
 146 
 147   virtual int reexecute_sp() { return _reexecute_sp; }
 148 
 149   // Helper functions to inline natives
 150   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 151   Node* generate_slow_guard(Node* test, RegionNode* region);
 152   Node* generate_fair_guard(Node* test, RegionNode* region);
 153   Node* generate_negative_guard(Node* index, RegionNode* region,
 154                                 // resulting CastII of index:
 155                                 Node* *pos_index = NULL);
 156   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 157                              Node* array_length,
 158                              RegionNode* region);
 159   void  generate_string_range_check(Node* array, Node* offset,
 160                                     Node* length, bool char_count);
 161   Node* generate_current_thread(Node* &tls_output);
 162   Node* load_mirror_from_klass(Node* klass);
 163   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 164                                       RegionNode* region, int null_path,
 165                                       int offset);
 166   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 174                                      RegionNode* region, int null_path) {
 175     int offset = java_lang_Class::array_klass_offset_in_bytes();
 176     return load_klass_from_mirror_common(mirror, never_see_null,
 177                                          region, null_path,
 178                                          offset);
 179   }
 180   Node* generate_access_flags_guard(Node* kls,
 181                                     int modifier_mask, int modifier_bits,
 182                                     RegionNode* region);
 183   Node* generate_interface_guard(Node* kls, RegionNode* region);
 184   Node* generate_array_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, false, false);
 186   }
 187   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 188     return generate_array_guard_common(kls, region, false, true);
 189   }
 190   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 191     return generate_array_guard_common(kls, region, true, false);
 192   }
 193   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 194     return generate_array_guard_common(kls, region, true, true);
 195   }
 196   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 197                                     bool obj_array, bool not_array);
 198   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 199   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 200                                      bool is_virtual = false, bool is_static = false);
 201   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 202     return generate_method_call(method_id, false, true);
 203   }
 204   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 205     return generate_method_call(method_id, true, false);
 206   }
 207   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 208   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 209 
 210   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 214   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 215                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_indexOfChar();
 217   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_toBytesU();
 219   bool inline_string_getCharsU();
 220   bool inline_string_copy(bool compress);
 221   bool inline_string_char_access(bool is_store);
 222   Node* round_double_node(Node* n);
 223   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 224   bool inline_math_native(vmIntrinsics::ID id);
 225   bool inline_math(vmIntrinsics::ID id);
 226   template <typename OverflowOp>
 227   bool inline_math_overflow(Node* arg1, Node* arg2);
 228   void inline_math_mathExact(Node* math, Node* test);
 229   bool inline_math_addExactI(bool is_increment);
 230   bool inline_math_addExactL(bool is_increment);
 231   bool inline_math_multiplyExactI();
 232   bool inline_math_multiplyExactL();
 233   bool inline_math_negateExactI();
 234   bool inline_math_negateExactL();
 235   bool inline_math_subtractExactI(bool is_decrement);
 236   bool inline_math_subtractExactL(bool is_decrement);
 237   bool inline_min_max(vmIntrinsics::ID id);
 238   bool inline_notify(vmIntrinsics::ID id);
 239   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 240   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 241   int classify_unsafe_addr(Node* &base, Node* &offset);
 242   Node* make_unsafe_address(Node* base, Node* offset);
 243   // Helper for inline_unsafe_access.
 244   // Generates the guards that check whether the result of
 245   // Unsafe.getObject should be recorded in an SATB log buffer.
 246   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 247 
 248   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 249   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 250   static bool klass_needs_init_guard(Node* kls);
 251   bool inline_unsafe_allocate();
 252   bool inline_unsafe_newArray(bool uninitialized);
 253   bool inline_unsafe_copyMemory();
 254   bool inline_native_currentThread();
 255 
 256   bool inline_native_time_funcs(address method, const char* funcName);
 257 #ifdef TRACE_HAVE_INTRINSICS
 258   bool inline_native_classID();
 259   bool inline_native_getBufferWriter();
 260 #endif
 261   bool inline_native_isInterrupted();
 262   bool inline_native_Class_query(vmIntrinsics::ID id);
 263   bool inline_native_subtype_check();
 264   bool inline_native_getLength();
 265   bool inline_array_copyOf(bool is_copyOfRange);
 266   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 267   bool inline_preconditions_checkIndex();
 268   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 269   bool inline_native_clone(bool is_virtual);
 270   bool inline_native_Reflection_getCallerClass();
 271   // Helper function for inlining native object hash method
 272   bool inline_native_hashcode(bool is_virtual, bool is_static);
 273   bool inline_native_getClass();
 274 
 275   // Helper functions for inlining arraycopy
 276   bool inline_arraycopy();
 277   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 278                                                 RegionNode* slow_region);
 279   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 280   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 281                                       uint new_idx);
 282 
 283   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 284   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 285   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 286   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 287   bool inline_unsafe_fence(vmIntrinsics::ID id);
 288   bool inline_onspinwait();
 289   bool inline_fp_conversions(vmIntrinsics::ID id);
 290   bool inline_number_methods(vmIntrinsics::ID id);
 291   bool inline_reference_get();
 292   bool inline_Class_cast();
 293   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 294   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 295   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 296   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 297   Node* inline_counterMode_AESCrypt_predicate();
 298   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 299   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 300   bool inline_ghash_processBlocks();
 301   bool inline_sha_implCompress(vmIntrinsics::ID id);
 302   bool inline_digestBase_implCompressMB(int predicate);
 303   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 304                                  bool long_state, address stubAddr, const char *stubName,
 305                                  Node* src_start, Node* ofs, Node* limit);
 306   Node* get_state_from_sha_object(Node *sha_object);
 307   Node* get_state_from_sha5_object(Node *sha_object);
 308   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 309   bool inline_encodeISOArray();
 310   bool inline_updateCRC32();
 311   bool inline_updateBytesCRC32();
 312   bool inline_updateByteBufferCRC32();
 313   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 314   bool inline_updateBytesCRC32C();
 315   bool inline_updateDirectByteBufferCRC32C();
 316   bool inline_updateBytesAdler32();
 317   bool inline_updateByteBufferAdler32();
 318   bool inline_multiplyToLen();
 319   bool inline_hasNegatives();
 320   bool inline_squareToLen();
 321   bool inline_mulAdd();
 322   bool inline_montgomeryMultiply();
 323   bool inline_montgomerySquare();
 324   bool inline_vectorizedMismatch();
 325   bool inline_fma(vmIntrinsics::ID id);
 326 
 327   bool inline_profileBoolean();
 328   bool inline_isCompileConstant();
 329 };
 330 
 331 //---------------------------make_vm_intrinsic----------------------------
 332 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 333   vmIntrinsics::ID id = m->intrinsic_id();
 334   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 335 
 336   if (!m->is_loaded()) {
 337     // Do not attempt to inline unloaded methods.
 338     return NULL;
 339   }
 340 
 341   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 342   bool is_available = false;
 343 
 344   {
 345     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 346     // the compiler must transition to '_thread_in_vm' state because both
 347     // methods access VM-internal data.
 348     VM_ENTRY_MARK;
 349     methodHandle mh(THREAD, m->get_Method());
 350     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 351                    !C->directive()->is_intrinsic_disabled(mh) &&
 352                    !vmIntrinsics::is_disabled_by_flags(mh);
 353 
 354   }
 355 
 356   if (is_available) {
 357     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 358     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 359     return new LibraryIntrinsic(m, is_virtual,
 360                                 vmIntrinsics::predicates_needed(id),
 361                                 vmIntrinsics::does_virtual_dispatch(id),
 362                                 (vmIntrinsics::ID) id);
 363   } else {
 364     return NULL;
 365   }
 366 }
 367 
 368 //----------------------register_library_intrinsics-----------------------
 369 // Initialize this file's data structures, for each Compile instance.
 370 void Compile::register_library_intrinsics() {
 371   // Nothing to do here.
 372 }
 373 
 374 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 375   LibraryCallKit kit(jvms, this);
 376   Compile* C = kit.C;
 377   int nodes = C->unique();
 378 #ifndef PRODUCT
 379   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 380     char buf[1000];
 381     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 382     tty->print_cr("Intrinsic %s", str);
 383   }
 384 #endif
 385   ciMethod* callee = kit.callee();
 386   const int bci    = kit.bci();
 387 
 388   // Try to inline the intrinsic.
 389   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 390       kit.try_to_inline(_last_predicate)) {
 391     if (C->print_intrinsics() || C->print_inlining()) {
 392       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 393     }
 394     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 395     if (C->log()) {
 396       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 397                      vmIntrinsics::name_at(intrinsic_id()),
 398                      (is_virtual() ? " virtual='1'" : ""),
 399                      C->unique() - nodes);
 400     }
 401     // Push the result from the inlined method onto the stack.
 402     kit.push_result();
 403     C->print_inlining_update(this);
 404     return kit.transfer_exceptions_into_jvms();
 405   }
 406 
 407   // The intrinsic bailed out
 408   if (C->print_intrinsics() || C->print_inlining()) {
 409     if (jvms->has_method()) {
 410       // Not a root compile.
 411       const char* msg;
 412       if (callee->intrinsic_candidate()) {
 413         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 414       } else {
 415         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 416                            : "failed to inline (intrinsic), method not annotated";
 417       }
 418       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 419     } else {
 420       // Root compile
 421       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 422                vmIntrinsics::name_at(intrinsic_id()),
 423                (is_virtual() ? " (virtual)" : ""), bci);
 424     }
 425   }
 426   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 427   C->print_inlining_update(this);
 428   return NULL;
 429 }
 430 
 431 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 432   LibraryCallKit kit(jvms, this);
 433   Compile* C = kit.C;
 434   int nodes = C->unique();
 435   _last_predicate = predicate;
 436 #ifndef PRODUCT
 437   assert(is_predicated() && predicate < predicates_count(), "sanity");
 438   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 439     char buf[1000];
 440     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 441     tty->print_cr("Predicate for intrinsic %s", str);
 442   }
 443 #endif
 444   ciMethod* callee = kit.callee();
 445   const int bci    = kit.bci();
 446 
 447   Node* slow_ctl = kit.try_to_predicate(predicate);
 448   if (!kit.failing()) {
 449     if (C->print_intrinsics() || C->print_inlining()) {
 450       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 451     }
 452     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 453     if (C->log()) {
 454       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 455                      vmIntrinsics::name_at(intrinsic_id()),
 456                      (is_virtual() ? " virtual='1'" : ""),
 457                      C->unique() - nodes);
 458     }
 459     return slow_ctl; // Could be NULL if the check folds.
 460   }
 461 
 462   // The intrinsic bailed out
 463   if (C->print_intrinsics() || C->print_inlining()) {
 464     if (jvms->has_method()) {
 465       // Not a root compile.
 466       const char* msg = "failed to generate predicate for intrinsic";
 467       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 468     } else {
 469       // Root compile
 470       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 471                                         vmIntrinsics::name_at(intrinsic_id()),
 472                                         (is_virtual() ? " (virtual)" : ""), bci);
 473     }
 474   }
 475   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 476   return NULL;
 477 }
 478 
 479 bool LibraryCallKit::try_to_inline(int predicate) {
 480   // Handle symbolic names for otherwise undistinguished boolean switches:
 481   const bool is_store       = true;
 482   const bool is_compress    = true;
 483   const bool is_static      = true;
 484   const bool is_volatile    = true;
 485 
 486   if (!jvms()->has_method()) {
 487     // Root JVMState has a null method.
 488     assert(map()->memory()->Opcode() == Op_Parm, "");
 489     // Insert the memory aliasing node
 490     set_all_memory(reset_memory());
 491   }
 492   assert(merged_memory(), "");
 493 
 494 
 495   switch (intrinsic_id()) {
 496   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 497   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 498   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 499 
 500   case vmIntrinsics::_dsin:
 501   case vmIntrinsics::_dcos:
 502   case vmIntrinsics::_dtan:
 503   case vmIntrinsics::_dabs:
 504   case vmIntrinsics::_datan2:
 505   case vmIntrinsics::_dsqrt:
 506   case vmIntrinsics::_dexp:
 507   case vmIntrinsics::_dlog:
 508   case vmIntrinsics::_dlog10:
 509   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 510 
 511   case vmIntrinsics::_min:
 512   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 513 
 514   case vmIntrinsics::_notify:
 515   case vmIntrinsics::_notifyAll:
 516     if (InlineNotify) {
 517       return inline_notify(intrinsic_id());
 518     }
 519     return false;
 520 
 521   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 522   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 523   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 524   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 525   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 526   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 527   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 528   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 529   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 530   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 531   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 532   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 533 
 534   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 535 
 536   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 537   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 538   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 539   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 540 
 541   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 542   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 543   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 544   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 545   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 546   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 547   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 548 
 549   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 550   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 551 
 552   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 553   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 554   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 555   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 556 
 557   case vmIntrinsics::_compressStringC:
 558   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 559   case vmIntrinsics::_inflateStringC:
 560   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 561 
 562   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 563   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 564   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 565   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 566   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 567   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 568   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 569   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 570   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 571 
 572   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 573   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 574   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 575   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 576   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 577   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 578   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 579   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 580   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 581 
 582   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 583   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 584   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 585   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 586   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 587   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 588   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 589   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 590   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 591 
 592   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 593   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 594   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 595   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 596   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 597   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 598   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 599   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 600   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 601 
 602   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 603   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 604   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 605   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 606 
 607   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 608   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 609   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 610   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 611 
 612   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 613   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 614   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 615   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 616   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 617   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 618   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 619   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 620   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 621 
 622   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 623   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 624   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 625   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 626   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 627   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 628   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 629   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 630   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 631 
 632   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 633   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 634   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 635   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 636   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 637   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 638   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 639   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 640   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 641 
 642   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 643   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 644   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 645   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 646   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 647   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 648   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 649   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 650   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 651 
 652   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 653   case vmIntrinsics::_compareAndSwapByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 654   case vmIntrinsics::_compareAndSwapShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 655   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 656   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 657 
 658   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 659   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 660   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 661   case vmIntrinsics::_weakCompareAndSwapObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 662   case vmIntrinsics::_weakCompareAndSwapByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 663   case vmIntrinsics::_weakCompareAndSwapByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 664   case vmIntrinsics::_weakCompareAndSwapByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 665   case vmIntrinsics::_weakCompareAndSwapByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 666   case vmIntrinsics::_weakCompareAndSwapShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 667   case vmIntrinsics::_weakCompareAndSwapShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 668   case vmIntrinsics::_weakCompareAndSwapShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 669   case vmIntrinsics::_weakCompareAndSwapShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 670   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 671   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 672   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 673   case vmIntrinsics::_weakCompareAndSwapIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 674   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 675   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 676   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 677   case vmIntrinsics::_weakCompareAndSwapLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 678 
 679   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 680   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 681   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 682   case vmIntrinsics::_compareAndExchangeByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 683   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 684   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 685   case vmIntrinsics::_compareAndExchangeShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 686   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 687   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 688   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 689   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 690   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 691   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 692   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 693   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 694 
 695   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 696   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 697   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 698   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 699 
 700   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 701   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 702   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 703   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 704   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 705 
 706   case vmIntrinsics::_loadFence:
 707   case vmIntrinsics::_storeFence:
 708   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 709 
 710   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 711 
 712   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 713   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 714 
 715 #ifdef TRACE_HAVE_INTRINSICS
 716   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 717   case vmIntrinsics::_getClassId:               return inline_native_classID();
 718   case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
 719 #endif
 720   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 721   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 722   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 723   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 724   case vmIntrinsics::_getLength:                return inline_native_getLength();
 725   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 726   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 727   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 728   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 729   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 730   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 731 
 732   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 733   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 734 
 735   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 736 
 737   case vmIntrinsics::_isInstance:
 738   case vmIntrinsics::_getModifiers:
 739   case vmIntrinsics::_isInterface:
 740   case vmIntrinsics::_isArray:
 741   case vmIntrinsics::_isPrimitive:
 742   case vmIntrinsics::_getSuperclass:
 743   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 744 
 745   case vmIntrinsics::_floatToRawIntBits:
 746   case vmIntrinsics::_floatToIntBits:
 747   case vmIntrinsics::_intBitsToFloat:
 748   case vmIntrinsics::_doubleToRawLongBits:
 749   case vmIntrinsics::_doubleToLongBits:
 750   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 751 
 752   case vmIntrinsics::_numberOfLeadingZeros_i:
 753   case vmIntrinsics::_numberOfLeadingZeros_l:
 754   case vmIntrinsics::_numberOfTrailingZeros_i:
 755   case vmIntrinsics::_numberOfTrailingZeros_l:
 756   case vmIntrinsics::_bitCount_i:
 757   case vmIntrinsics::_bitCount_l:
 758   case vmIntrinsics::_reverseBytes_i:
 759   case vmIntrinsics::_reverseBytes_l:
 760   case vmIntrinsics::_reverseBytes_s:
 761   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 762 
 763   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 764 
 765   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 766 
 767   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 768 
 769   case vmIntrinsics::_aescrypt_encryptBlock:
 770   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 771 
 772   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 773   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 774     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 775 
 776   case vmIntrinsics::_counterMode_AESCrypt:
 777     return inline_counterMode_AESCrypt(intrinsic_id());
 778 
 779   case vmIntrinsics::_sha_implCompress:
 780   case vmIntrinsics::_sha2_implCompress:
 781   case vmIntrinsics::_sha5_implCompress:
 782     return inline_sha_implCompress(intrinsic_id());
 783 
 784   case vmIntrinsics::_digestBase_implCompressMB:
 785     return inline_digestBase_implCompressMB(predicate);
 786 
 787   case vmIntrinsics::_multiplyToLen:
 788     return inline_multiplyToLen();
 789 
 790   case vmIntrinsics::_squareToLen:
 791     return inline_squareToLen();
 792 
 793   case vmIntrinsics::_mulAdd:
 794     return inline_mulAdd();
 795 
 796   case vmIntrinsics::_montgomeryMultiply:
 797     return inline_montgomeryMultiply();
 798   case vmIntrinsics::_montgomerySquare:
 799     return inline_montgomerySquare();
 800 
 801   case vmIntrinsics::_vectorizedMismatch:
 802     return inline_vectorizedMismatch();
 803 
 804   case vmIntrinsics::_ghash_processBlocks:
 805     return inline_ghash_processBlocks();
 806 
 807   case vmIntrinsics::_encodeISOArray:
 808   case vmIntrinsics::_encodeByteISOArray:
 809     return inline_encodeISOArray();
 810 
 811   case vmIntrinsics::_updateCRC32:
 812     return inline_updateCRC32();
 813   case vmIntrinsics::_updateBytesCRC32:
 814     return inline_updateBytesCRC32();
 815   case vmIntrinsics::_updateByteBufferCRC32:
 816     return inline_updateByteBufferCRC32();
 817 
 818   case vmIntrinsics::_updateBytesCRC32C:
 819     return inline_updateBytesCRC32C();
 820   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 821     return inline_updateDirectByteBufferCRC32C();
 822 
 823   case vmIntrinsics::_updateBytesAdler32:
 824     return inline_updateBytesAdler32();
 825   case vmIntrinsics::_updateByteBufferAdler32:
 826     return inline_updateByteBufferAdler32();
 827 
 828   case vmIntrinsics::_profileBoolean:
 829     return inline_profileBoolean();
 830   case vmIntrinsics::_isCompileConstant:
 831     return inline_isCompileConstant();
 832 
 833   case vmIntrinsics::_hasNegatives:
 834     return inline_hasNegatives();
 835 
 836   case vmIntrinsics::_fmaD:
 837   case vmIntrinsics::_fmaF:
 838     return inline_fma(intrinsic_id());
 839 
 840   default:
 841     // If you get here, it may be that someone has added a new intrinsic
 842     // to the list in vmSymbols.hpp without implementing it here.
 843 #ifndef PRODUCT
 844     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 845       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 846                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 847     }
 848 #endif
 849     return false;
 850   }
 851 }
 852 
 853 Node* LibraryCallKit::try_to_predicate(int predicate) {
 854   if (!jvms()->has_method()) {
 855     // Root JVMState has a null method.
 856     assert(map()->memory()->Opcode() == Op_Parm, "");
 857     // Insert the memory aliasing node
 858     set_all_memory(reset_memory());
 859   }
 860   assert(merged_memory(), "");
 861 
 862   switch (intrinsic_id()) {
 863   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 864     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 865   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 866     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 867   case vmIntrinsics::_counterMode_AESCrypt:
 868     return inline_counterMode_AESCrypt_predicate();
 869   case vmIntrinsics::_digestBase_implCompressMB:
 870     return inline_digestBase_implCompressMB_predicate(predicate);
 871 
 872   default:
 873     // If you get here, it may be that someone has added a new intrinsic
 874     // to the list in vmSymbols.hpp without implementing it here.
 875 #ifndef PRODUCT
 876     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 877       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 878                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 879     }
 880 #endif
 881     Node* slow_ctl = control();
 882     set_control(top()); // No fast path instrinsic
 883     return slow_ctl;
 884   }
 885 }
 886 
 887 //------------------------------set_result-------------------------------
 888 // Helper function for finishing intrinsics.
 889 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 890   record_for_igvn(region);
 891   set_control(_gvn.transform(region));
 892   set_result( _gvn.transform(value));
 893   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 894 }
 895 
 896 //------------------------------generate_guard---------------------------
 897 // Helper function for generating guarded fast-slow graph structures.
 898 // The given 'test', if true, guards a slow path.  If the test fails
 899 // then a fast path can be taken.  (We generally hope it fails.)
 900 // In all cases, GraphKit::control() is updated to the fast path.
 901 // The returned value represents the control for the slow path.
 902 // The return value is never 'top'; it is either a valid control
 903 // or NULL if it is obvious that the slow path can never be taken.
 904 // Also, if region and the slow control are not NULL, the slow edge
 905 // is appended to the region.
 906 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 907   if (stopped()) {
 908     // Already short circuited.
 909     return NULL;
 910   }
 911 
 912   // Build an if node and its projections.
 913   // If test is true we take the slow path, which we assume is uncommon.
 914   if (_gvn.type(test) == TypeInt::ZERO) {
 915     // The slow branch is never taken.  No need to build this guard.
 916     return NULL;
 917   }
 918 
 919   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 920 
 921   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 922   if (if_slow == top()) {
 923     // The slow branch is never taken.  No need to build this guard.
 924     return NULL;
 925   }
 926 
 927   if (region != NULL)
 928     region->add_req(if_slow);
 929 
 930   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 931   set_control(if_fast);
 932 
 933   return if_slow;
 934 }
 935 
 936 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 937   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 938 }
 939 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 940   return generate_guard(test, region, PROB_FAIR);
 941 }
 942 
 943 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 944                                                      Node* *pos_index) {
 945   if (stopped())
 946     return NULL;                // already stopped
 947   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 948     return NULL;                // index is already adequately typed
 949   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 950   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 951   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 952   if (is_neg != NULL && pos_index != NULL) {
 953     // Emulate effect of Parse::adjust_map_after_if.
 954     Node* ccast = new CastIINode(index, TypeInt::POS);
 955     ccast->set_req(0, control());
 956     (*pos_index) = _gvn.transform(ccast);
 957   }
 958   return is_neg;
 959 }
 960 
 961 // Make sure that 'position' is a valid limit index, in [0..length].
 962 // There are two equivalent plans for checking this:
 963 //   A. (offset + copyLength)  unsigned<=  arrayLength
 964 //   B. offset  <=  (arrayLength - copyLength)
 965 // We require that all of the values above, except for the sum and
 966 // difference, are already known to be non-negative.
 967 // Plan A is robust in the face of overflow, if offset and copyLength
 968 // are both hugely positive.
 969 //
 970 // Plan B is less direct and intuitive, but it does not overflow at
 971 // all, since the difference of two non-negatives is always
 972 // representable.  Whenever Java methods must perform the equivalent
 973 // check they generally use Plan B instead of Plan A.
 974 // For the moment we use Plan A.
 975 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 976                                                   Node* subseq_length,
 977                                                   Node* array_length,
 978                                                   RegionNode* region) {
 979   if (stopped())
 980     return NULL;                // already stopped
 981   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 982   if (zero_offset && subseq_length->eqv_uncast(array_length))
 983     return NULL;                // common case of whole-array copy
 984   Node* last = subseq_length;
 985   if (!zero_offset)             // last += offset
 986     last = _gvn.transform(new AddINode(last, offset));
 987   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 988   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 989   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 990   return is_over;
 991 }
 992 
 993 // Emit range checks for the given String.value byte array
 994 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 995   if (stopped()) {
 996     return; // already stopped
 997   }
 998   RegionNode* bailout = new RegionNode(1);
 999   record_for_igvn(bailout);
1000   if (char_count) {
1001     // Convert char count to byte count
1002     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1003   }
1004 
1005   // Offset and count must not be negative
1006   generate_negative_guard(offset, bailout);
1007   generate_negative_guard(count, bailout);
1008   // Offset + count must not exceed length of array
1009   generate_limit_guard(offset, count, load_array_length(array), bailout);
1010 
1011   if (bailout->req() > 1) {
1012     PreserveJVMState pjvms(this);
1013     set_control(_gvn.transform(bailout));
1014     uncommon_trap(Deoptimization::Reason_intrinsic,
1015                   Deoptimization::Action_maybe_recompile);
1016   }
1017 }
1018 
1019 //--------------------------generate_current_thread--------------------
1020 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1021   ciKlass*    thread_klass = env()->Thread_klass();
1022   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1023   Node* thread = _gvn.transform(new ThreadLocalNode());
1024   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1025   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1026   tls_output = thread;
1027   return threadObj;
1028 }
1029 
1030 
1031 //------------------------------make_string_method_node------------------------
1032 // Helper method for String intrinsic functions. This version is called with
1033 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1034 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1035 // containing the lengths of str1 and str2.
1036 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1037   Node* result = NULL;
1038   switch (opcode) {
1039   case Op_StrIndexOf:
1040     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1041                                 str1_start, cnt1, str2_start, cnt2, ae);
1042     break;
1043   case Op_StrComp:
1044     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1045                              str1_start, cnt1, str2_start, cnt2, ae);
1046     break;
1047   case Op_StrEquals:
1048     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1049     // Use the constant length if there is one because optimized match rule may exist.
1050     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1051                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1052     break;
1053   default:
1054     ShouldNotReachHere();
1055     return NULL;
1056   }
1057 
1058   // All these intrinsics have checks.
1059   C->set_has_split_ifs(true); // Has chance for split-if optimization
1060 
1061   return _gvn.transform(result);
1062 }
1063 
1064 //------------------------------inline_string_compareTo------------------------
1065 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1066   Node* arg1 = argument(0);
1067   Node* arg2 = argument(1);
1068 
1069   // Get start addr and length of first argument
1070   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1071   Node* arg1_cnt    = load_array_length(arg1);
1072 
1073   // Get start addr and length of second argument
1074   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1075   Node* arg2_cnt    = load_array_length(arg2);
1076 
1077   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1078   set_result(result);
1079   return true;
1080 }
1081 
1082 //------------------------------inline_string_equals------------------------
1083 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1084   Node* arg1 = argument(0);
1085   Node* arg2 = argument(1);
1086 
1087   // paths (plus control) merge
1088   RegionNode* region = new RegionNode(3);
1089   Node* phi = new PhiNode(region, TypeInt::BOOL);
1090 
1091   if (!stopped()) {
1092     // Get start addr and length of first argument
1093     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1094     Node* arg1_cnt    = load_array_length(arg1);
1095 
1096     // Get start addr and length of second argument
1097     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1098     Node* arg2_cnt    = load_array_length(arg2);
1099 
1100     // Check for arg1_cnt != arg2_cnt
1101     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1102     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1103     Node* if_ne = generate_slow_guard(bol, NULL);
1104     if (if_ne != NULL) {
1105       phi->init_req(2, intcon(0));
1106       region->init_req(2, if_ne);
1107     }
1108 
1109     // Check for count == 0 is done by assembler code for StrEquals.
1110 
1111     if (!stopped()) {
1112       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1113       phi->init_req(1, equals);
1114       region->init_req(1, control());
1115     }
1116   }
1117 
1118   // post merge
1119   set_control(_gvn.transform(region));
1120   record_for_igvn(region);
1121 
1122   set_result(_gvn.transform(phi));
1123   return true;
1124 }
1125 
1126 //------------------------------inline_array_equals----------------------------
1127 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1128   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1129   Node* arg1 = argument(0);
1130   Node* arg2 = argument(1);
1131 
1132   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1133   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1134   return true;
1135 }
1136 
1137 //------------------------------inline_hasNegatives------------------------------
1138 bool LibraryCallKit::inline_hasNegatives() {
1139   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1140     return false;
1141   }
1142 
1143   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1144   // no receiver since it is static method
1145   Node* ba         = argument(0);
1146   Node* offset     = argument(1);
1147   Node* len        = argument(2);
1148 
1149   // Range checks
1150   generate_string_range_check(ba, offset, len, false);
1151   if (stopped()) {
1152     return true;
1153   }
1154   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1155   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1156   set_result(_gvn.transform(result));
1157   return true;
1158 }
1159 
1160 bool LibraryCallKit::inline_preconditions_checkIndex() {
1161   Node* index = argument(0);
1162   Node* length = argument(1);
1163   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1164     return false;
1165   }
1166 
1167   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1168   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1169 
1170   {
1171     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1172     uncommon_trap(Deoptimization::Reason_intrinsic,
1173                   Deoptimization::Action_make_not_entrant);
1174   }
1175 
1176   if (stopped()) {
1177     return false;
1178   }
1179 
1180   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1181   BoolTest::mask btest = BoolTest::lt;
1182   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1183   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1184   _gvn.set_type(rc, rc->Value(&_gvn));
1185   if (!rc_bool->is_Con()) {
1186     record_for_igvn(rc);
1187   }
1188   set_control(_gvn.transform(new IfTrueNode(rc)));
1189   {
1190     PreserveJVMState pjvms(this);
1191     set_control(_gvn.transform(new IfFalseNode(rc)));
1192     uncommon_trap(Deoptimization::Reason_range_check,
1193                   Deoptimization::Action_make_not_entrant);
1194   }
1195 
1196   if (stopped()) {
1197     return false;
1198   }
1199 
1200   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1201   result->set_req(0, control());
1202   result = _gvn.transform(result);
1203   set_result(result);
1204   replace_in_map(index, result);
1205   return true;
1206 }
1207 
1208 //------------------------------inline_string_indexOf------------------------
1209 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1210   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1211     return false;
1212   }
1213   Node* src = argument(0);
1214   Node* tgt = argument(1);
1215 
1216   // Make the merge point
1217   RegionNode* result_rgn = new RegionNode(4);
1218   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1219 
1220   // Get start addr and length of source string
1221   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1222   Node* src_count = load_array_length(src);
1223 
1224   // Get start addr and length of substring
1225   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1226   Node* tgt_count = load_array_length(tgt);
1227 
1228   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1229     // Divide src size by 2 if String is UTF16 encoded
1230     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1231   }
1232   if (ae == StrIntrinsicNode::UU) {
1233     // Divide substring size by 2 if String is UTF16 encoded
1234     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1235   }
1236 
1237   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1238   if (result != NULL) {
1239     result_phi->init_req(3, result);
1240     result_rgn->init_req(3, control());
1241   }
1242   set_control(_gvn.transform(result_rgn));
1243   record_for_igvn(result_rgn);
1244   set_result(_gvn.transform(result_phi));
1245 
1246   return true;
1247 }
1248 
1249 //-----------------------------inline_string_indexOf-----------------------
1250 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1251   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1252     return false;
1253   }
1254   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1255     return false;
1256   }
1257   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1258   Node* src         = argument(0); // byte[]
1259   Node* src_count   = argument(1); // char count
1260   Node* tgt         = argument(2); // byte[]
1261   Node* tgt_count   = argument(3); // char count
1262   Node* from_index  = argument(4); // char index
1263 
1264   // Multiply byte array index by 2 if String is UTF16 encoded
1265   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1266   src_count = _gvn.transform(new SubINode(src_count, from_index));
1267   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1268   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1269 
1270   // Range checks
1271   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1272   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1273   if (stopped()) {
1274     return true;
1275   }
1276 
1277   RegionNode* region = new RegionNode(5);
1278   Node* phi = new PhiNode(region, TypeInt::INT);
1279 
1280   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1281   if (result != NULL) {
1282     // The result is index relative to from_index if substring was found, -1 otherwise.
1283     // Generate code which will fold into cmove.
1284     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1285     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1286 
1287     Node* if_lt = generate_slow_guard(bol, NULL);
1288     if (if_lt != NULL) {
1289       // result == -1
1290       phi->init_req(3, result);
1291       region->init_req(3, if_lt);
1292     }
1293     if (!stopped()) {
1294       result = _gvn.transform(new AddINode(result, from_index));
1295       phi->init_req(4, result);
1296       region->init_req(4, control());
1297     }
1298   }
1299 
1300   set_control(_gvn.transform(region));
1301   record_for_igvn(region);
1302   set_result(_gvn.transform(phi));
1303 
1304   return true;
1305 }
1306 
1307 // Create StrIndexOfNode with fast path checks
1308 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1309                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1310   // Check for substr count > string count
1311   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1312   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1313   Node* if_gt = generate_slow_guard(bol, NULL);
1314   if (if_gt != NULL) {
1315     phi->init_req(1, intcon(-1));
1316     region->init_req(1, if_gt);
1317   }
1318   if (!stopped()) {
1319     // Check for substr count == 0
1320     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1321     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1322     Node* if_zero = generate_slow_guard(bol, NULL);
1323     if (if_zero != NULL) {
1324       phi->init_req(2, intcon(0));
1325       region->init_req(2, if_zero);
1326     }
1327   }
1328   if (!stopped()) {
1329     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1330   }
1331   return NULL;
1332 }
1333 
1334 //-----------------------------inline_string_indexOfChar-----------------------
1335 bool LibraryCallKit::inline_string_indexOfChar() {
1336   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1337     return false;
1338   }
1339   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1340     return false;
1341   }
1342   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1343   Node* src         = argument(0); // byte[]
1344   Node* tgt         = argument(1); // tgt is int ch
1345   Node* from_index  = argument(2);
1346   Node* max         = argument(3);
1347 
1348   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1349   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1350   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1351 
1352   // Range checks
1353   generate_string_range_check(src, src_offset, src_count, true);
1354   if (stopped()) {
1355     return true;
1356   }
1357 
1358   RegionNode* region = new RegionNode(3);
1359   Node* phi = new PhiNode(region, TypeInt::INT);
1360 
1361   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1362   C->set_has_split_ifs(true); // Has chance for split-if optimization
1363   _gvn.transform(result);
1364 
1365   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1366   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1367 
1368   Node* if_lt = generate_slow_guard(bol, NULL);
1369   if (if_lt != NULL) {
1370     // result == -1
1371     phi->init_req(2, result);
1372     region->init_req(2, if_lt);
1373   }
1374   if (!stopped()) {
1375     result = _gvn.transform(new AddINode(result, from_index));
1376     phi->init_req(1, result);
1377     region->init_req(1, control());
1378   }
1379   set_control(_gvn.transform(region));
1380   record_for_igvn(region);
1381   set_result(_gvn.transform(phi));
1382 
1383   return true;
1384 }
1385 //---------------------------inline_string_copy---------------------
1386 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1387 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1388 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1389 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1390 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1391 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1392 bool LibraryCallKit::inline_string_copy(bool compress) {
1393   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1394     return false;
1395   }
1396   int nargs = 5;  // 2 oops, 3 ints
1397   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1398 
1399   Node* src         = argument(0);
1400   Node* src_offset  = argument(1);
1401   Node* dst         = argument(2);
1402   Node* dst_offset  = argument(3);
1403   Node* length      = argument(4);
1404 
1405   // Check for allocation before we add nodes that would confuse
1406   // tightly_coupled_allocation()
1407   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1408 
1409   // Figure out the size and type of the elements we will be copying.
1410   const Type* src_type = src->Value(&_gvn);
1411   const Type* dst_type = dst->Value(&_gvn);
1412   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1413   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1414   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1415          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1416          "Unsupported array types for inline_string_copy");
1417 
1418   // Convert char[] offsets to byte[] offsets
1419   bool convert_src = (compress && src_elem == T_BYTE);
1420   bool convert_dst = (!compress && dst_elem == T_BYTE);
1421   if (convert_src) {
1422     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1423   } else if (convert_dst) {
1424     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1425   }
1426 
1427   // Range checks
1428   generate_string_range_check(src, src_offset, length, convert_src);
1429   generate_string_range_check(dst, dst_offset, length, convert_dst);
1430   if (stopped()) {
1431     return true;
1432   }
1433 
1434   Node* src_start = array_element_address(src, src_offset, src_elem);
1435   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1436   // 'src_start' points to src array + scaled offset
1437   // 'dst_start' points to dst array + scaled offset
1438   Node* count = NULL;
1439   if (compress) {
1440     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1441   } else {
1442     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1443   }
1444 
1445   if (alloc != NULL) {
1446     if (alloc->maybe_set_complete(&_gvn)) {
1447       // "You break it, you buy it."
1448       InitializeNode* init = alloc->initialization();
1449       assert(init->is_complete(), "we just did this");
1450       init->set_complete_with_arraycopy();
1451       assert(dst->is_CheckCastPP(), "sanity");
1452       assert(dst->in(0)->in(0) == init, "dest pinned");
1453     }
1454     // Do not let stores that initialize this object be reordered with
1455     // a subsequent store that would make this object accessible by
1456     // other threads.
1457     // Record what AllocateNode this StoreStore protects so that
1458     // escape analysis can go from the MemBarStoreStoreNode to the
1459     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1460     // based on the escape status of the AllocateNode.
1461     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1462   }
1463   if (compress) {
1464     set_result(_gvn.transform(count));
1465   }
1466   return true;
1467 }
1468 
1469 #ifdef _LP64
1470 #define XTOP ,top() /*additional argument*/
1471 #else  //_LP64
1472 #define XTOP        /*no additional argument*/
1473 #endif //_LP64
1474 
1475 //------------------------inline_string_toBytesU--------------------------
1476 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1477 bool LibraryCallKit::inline_string_toBytesU() {
1478   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1479     return false;
1480   }
1481   // Get the arguments.
1482   Node* value     = argument(0);
1483   Node* offset    = argument(1);
1484   Node* length    = argument(2);
1485 
1486   Node* newcopy = NULL;
1487 
1488   // Set the original stack and the reexecute bit for the interpreter to reexecute
1489   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1490   { PreserveReexecuteState preexecs(this);
1491     jvms()->set_should_reexecute(true);
1492 
1493     // Check if a null path was taken unconditionally.
1494     value = null_check(value);
1495 
1496     RegionNode* bailout = new RegionNode(1);
1497     record_for_igvn(bailout);
1498 
1499     // Range checks
1500     generate_negative_guard(offset, bailout);
1501     generate_negative_guard(length, bailout);
1502     generate_limit_guard(offset, length, load_array_length(value), bailout);
1503     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1504     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1505 
1506     if (bailout->req() > 1) {
1507       PreserveJVMState pjvms(this);
1508       set_control(_gvn.transform(bailout));
1509       uncommon_trap(Deoptimization::Reason_intrinsic,
1510                     Deoptimization::Action_maybe_recompile);
1511     }
1512     if (stopped()) {
1513       return true;
1514     }
1515 
1516     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1517     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1518     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1519     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1520 
1521     // Calculate starting addresses.
1522     Node* src_start = array_element_address(value, offset, T_CHAR);
1523     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1524 
1525     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1526     const TypeInt* toffset = gvn().type(offset)->is_int();
1527     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1528 
1529     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1530     const char* copyfunc_name = "arraycopy";
1531     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1532     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1533                       OptoRuntime::fast_arraycopy_Type(),
1534                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1535                       src_start, dst_start, ConvI2X(length) XTOP);
1536     // Do not let reads from the cloned object float above the arraycopy.
1537     if (alloc != NULL) {
1538       if (alloc->maybe_set_complete(&_gvn)) {
1539         // "You break it, you buy it."
1540         InitializeNode* init = alloc->initialization();
1541         assert(init->is_complete(), "we just did this");
1542         init->set_complete_with_arraycopy();
1543         assert(newcopy->is_CheckCastPP(), "sanity");
1544         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1545       }
1546       // Do not let stores that initialize this object be reordered with
1547       // a subsequent store that would make this object accessible by
1548       // other threads.
1549       // Record what AllocateNode this StoreStore protects so that
1550       // escape analysis can go from the MemBarStoreStoreNode to the
1551       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1552       // based on the escape status of the AllocateNode.
1553       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1554     } else {
1555       insert_mem_bar(Op_MemBarCPUOrder);
1556     }
1557   } // original reexecute is set back here
1558 
1559   C->set_has_split_ifs(true); // Has chance for split-if optimization
1560   if (!stopped()) {
1561     set_result(newcopy);
1562   }
1563   return true;
1564 }
1565 
1566 //------------------------inline_string_getCharsU--------------------------
1567 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1568 bool LibraryCallKit::inline_string_getCharsU() {
1569   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1570     return false;
1571   }
1572 
1573   // Get the arguments.
1574   Node* src       = argument(0);
1575   Node* src_begin = argument(1);
1576   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1577   Node* dst       = argument(3);
1578   Node* dst_begin = argument(4);
1579 
1580   // Check for allocation before we add nodes that would confuse
1581   // tightly_coupled_allocation()
1582   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1583 
1584   // Check if a null path was taken unconditionally.
1585   src = null_check(src);
1586   dst = null_check(dst);
1587   if (stopped()) {
1588     return true;
1589   }
1590 
1591   // Get length and convert char[] offset to byte[] offset
1592   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1593   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1594 
1595   // Range checks
1596   generate_string_range_check(src, src_begin, length, true);
1597   generate_string_range_check(dst, dst_begin, length, false);
1598   if (stopped()) {
1599     return true;
1600   }
1601 
1602   if (!stopped()) {
1603     // Calculate starting addresses.
1604     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1605     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1606 
1607     // Check if array addresses are aligned to HeapWordSize
1608     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1609     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1610     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1611                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1612 
1613     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1614     const char* copyfunc_name = "arraycopy";
1615     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1616     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1617                       OptoRuntime::fast_arraycopy_Type(),
1618                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1619                       src_start, dst_start, ConvI2X(length) XTOP);
1620     // Do not let reads from the cloned object float above the arraycopy.
1621     if (alloc != NULL) {
1622       if (alloc->maybe_set_complete(&_gvn)) {
1623         // "You break it, you buy it."
1624         InitializeNode* init = alloc->initialization();
1625         assert(init->is_complete(), "we just did this");
1626         init->set_complete_with_arraycopy();
1627         assert(dst->is_CheckCastPP(), "sanity");
1628         assert(dst->in(0)->in(0) == init, "dest pinned");
1629       }
1630       // Do not let stores that initialize this object be reordered with
1631       // a subsequent store that would make this object accessible by
1632       // other threads.
1633       // Record what AllocateNode this StoreStore protects so that
1634       // escape analysis can go from the MemBarStoreStoreNode to the
1635       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1636       // based on the escape status of the AllocateNode.
1637       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1638     } else {
1639       insert_mem_bar(Op_MemBarCPUOrder);
1640     }
1641   }
1642 
1643   C->set_has_split_ifs(true); // Has chance for split-if optimization
1644   return true;
1645 }
1646 
1647 //----------------------inline_string_char_access----------------------------
1648 // Store/Load char to/from byte[] array.
1649 // static void StringUTF16.putChar(byte[] val, int index, int c)
1650 // static char StringUTF16.getChar(byte[] val, int index)
1651 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1652   Node* value  = argument(0);
1653   Node* index  = argument(1);
1654   Node* ch = is_store ? argument(2) : NULL;
1655 
1656   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1657   // correctly requires matched array shapes.
1658   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1659           "sanity: byte[] and char[] bases agree");
1660   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1661           "sanity: byte[] and char[] scales agree");
1662 
1663   // Bail when getChar over constants is requested: constant folding would
1664   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1665   // Java method would constant fold nicely instead.
1666   if (!is_store && value->is_Con() && index->is_Con()) {
1667     return false;
1668   }
1669 
1670   Node* adr = array_element_address(value, index, T_CHAR);
1671   if (is_store) {
1672     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1673                            false, false, true /* mismatched */);
1674   } else {
1675     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1676                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1677     set_result(ch);
1678   }
1679   return true;
1680 }
1681 
1682 //--------------------------round_double_node--------------------------------
1683 // Round a double node if necessary.
1684 Node* LibraryCallKit::round_double_node(Node* n) {
1685   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1686     n = _gvn.transform(new RoundDoubleNode(0, n));
1687   return n;
1688 }
1689 
1690 //------------------------------inline_math-----------------------------------
1691 // public static double Math.abs(double)
1692 // public static double Math.sqrt(double)
1693 // public static double Math.log(double)
1694 // public static double Math.log10(double)
1695 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1696   Node* arg = round_double_node(argument(0));
1697   Node* n = NULL;
1698   switch (id) {
1699   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1700   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1701   default:  fatal_unexpected_iid(id);  break;
1702   }
1703   set_result(_gvn.transform(n));
1704   return true;
1705 }
1706 
1707 //------------------------------runtime_math-----------------------------
1708 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1709   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1710          "must be (DD)D or (D)D type");
1711 
1712   // Inputs
1713   Node* a = round_double_node(argument(0));
1714   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1715 
1716   const TypePtr* no_memory_effects = NULL;
1717   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1718                                  no_memory_effects,
1719                                  a, top(), b, b ? top() : NULL);
1720   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1721 #ifdef ASSERT
1722   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1723   assert(value_top == top(), "second value must be top");
1724 #endif
1725 
1726   set_result(value);
1727   return true;
1728 }
1729 
1730 //------------------------------inline_math_native-----------------------------
1731 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1732 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1733   switch (id) {
1734     // These intrinsics are not properly supported on all hardware
1735   case vmIntrinsics::_dsin:
1736     return StubRoutines::dsin() != NULL ?
1737       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1738       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1739   case vmIntrinsics::_dcos:
1740     return StubRoutines::dcos() != NULL ?
1741       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1742       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1743   case vmIntrinsics::_dtan:
1744     return StubRoutines::dtan() != NULL ?
1745       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1746       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1747   case vmIntrinsics::_dlog:
1748     return StubRoutines::dlog() != NULL ?
1749       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1750       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1751   case vmIntrinsics::_dlog10:
1752     return StubRoutines::dlog10() != NULL ?
1753       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1754       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1755 
1756     // These intrinsics are supported on all hardware
1757   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1758   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1759 
1760   case vmIntrinsics::_dexp:
1761     return StubRoutines::dexp() != NULL ?
1762       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1763       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1764   case vmIntrinsics::_dpow:
1765     return StubRoutines::dpow() != NULL ?
1766       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1767       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1768 #undef FN_PTR
1769 
1770    // These intrinsics are not yet correctly implemented
1771   case vmIntrinsics::_datan2:
1772     return false;
1773 
1774   default:
1775     fatal_unexpected_iid(id);
1776     return false;
1777   }
1778 }
1779 
1780 static bool is_simple_name(Node* n) {
1781   return (n->req() == 1         // constant
1782           || (n->is_Type() && n->as_Type()->type()->singleton())
1783           || n->is_Proj()       // parameter or return value
1784           || n->is_Phi()        // local of some sort
1785           );
1786 }
1787 
1788 //----------------------------inline_notify-----------------------------------*
1789 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1790   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1791   address func;
1792   if (id == vmIntrinsics::_notify) {
1793     func = OptoRuntime::monitor_notify_Java();
1794   } else {
1795     func = OptoRuntime::monitor_notifyAll_Java();
1796   }
1797   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1798   make_slow_call_ex(call, env()->Throwable_klass(), false);
1799   return true;
1800 }
1801 
1802 
1803 //----------------------------inline_min_max-----------------------------------
1804 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1805   set_result(generate_min_max(id, argument(0), argument(1)));
1806   return true;
1807 }
1808 
1809 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1810   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1811   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1812   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1813   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1814 
1815   {
1816     PreserveJVMState pjvms(this);
1817     PreserveReexecuteState preexecs(this);
1818     jvms()->set_should_reexecute(true);
1819 
1820     set_control(slow_path);
1821     set_i_o(i_o());
1822 
1823     uncommon_trap(Deoptimization::Reason_intrinsic,
1824                   Deoptimization::Action_none);
1825   }
1826 
1827   set_control(fast_path);
1828   set_result(math);
1829 }
1830 
1831 template <typename OverflowOp>
1832 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1833   typedef typename OverflowOp::MathOp MathOp;
1834 
1835   MathOp* mathOp = new MathOp(arg1, arg2);
1836   Node* operation = _gvn.transform( mathOp );
1837   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1838   inline_math_mathExact(operation, ofcheck);
1839   return true;
1840 }
1841 
1842 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1843   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1844 }
1845 
1846 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1847   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1848 }
1849 
1850 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1851   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1852 }
1853 
1854 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1855   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1856 }
1857 
1858 bool LibraryCallKit::inline_math_negateExactI() {
1859   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1860 }
1861 
1862 bool LibraryCallKit::inline_math_negateExactL() {
1863   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1864 }
1865 
1866 bool LibraryCallKit::inline_math_multiplyExactI() {
1867   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1868 }
1869 
1870 bool LibraryCallKit::inline_math_multiplyExactL() {
1871   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1872 }
1873 
1874 Node*
1875 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1876   // These are the candidate return value:
1877   Node* xvalue = x0;
1878   Node* yvalue = y0;
1879 
1880   if (xvalue == yvalue) {
1881     return xvalue;
1882   }
1883 
1884   bool want_max = (id == vmIntrinsics::_max);
1885 
1886   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1887   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1888   if (txvalue == NULL || tyvalue == NULL)  return top();
1889   // This is not really necessary, but it is consistent with a
1890   // hypothetical MaxINode::Value method:
1891   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1892 
1893   // %%% This folding logic should (ideally) be in a different place.
1894   // Some should be inside IfNode, and there to be a more reliable
1895   // transformation of ?: style patterns into cmoves.  We also want
1896   // more powerful optimizations around cmove and min/max.
1897 
1898   // Try to find a dominating comparison of these guys.
1899   // It can simplify the index computation for Arrays.copyOf
1900   // and similar uses of System.arraycopy.
1901   // First, compute the normalized version of CmpI(x, y).
1902   int   cmp_op = Op_CmpI;
1903   Node* xkey = xvalue;
1904   Node* ykey = yvalue;
1905   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1906   if (ideal_cmpxy->is_Cmp()) {
1907     // E.g., if we have CmpI(length - offset, count),
1908     // it might idealize to CmpI(length, count + offset)
1909     cmp_op = ideal_cmpxy->Opcode();
1910     xkey = ideal_cmpxy->in(1);
1911     ykey = ideal_cmpxy->in(2);
1912   }
1913 
1914   // Start by locating any relevant comparisons.
1915   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1916   Node* cmpxy = NULL;
1917   Node* cmpyx = NULL;
1918   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1919     Node* cmp = start_from->fast_out(k);
1920     if (cmp->outcnt() > 0 &&            // must have prior uses
1921         cmp->in(0) == NULL &&           // must be context-independent
1922         cmp->Opcode() == cmp_op) {      // right kind of compare
1923       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1924       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1925     }
1926   }
1927 
1928   const int NCMPS = 2;
1929   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1930   int cmpn;
1931   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1932     if (cmps[cmpn] != NULL)  break;     // find a result
1933   }
1934   if (cmpn < NCMPS) {
1935     // Look for a dominating test that tells us the min and max.
1936     int depth = 0;                // Limit search depth for speed
1937     Node* dom = control();
1938     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1939       if (++depth >= 100)  break;
1940       Node* ifproj = dom;
1941       if (!ifproj->is_Proj())  continue;
1942       Node* iff = ifproj->in(0);
1943       if (!iff->is_If())  continue;
1944       Node* bol = iff->in(1);
1945       if (!bol->is_Bool())  continue;
1946       Node* cmp = bol->in(1);
1947       if (cmp == NULL)  continue;
1948       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1949         if (cmps[cmpn] == cmp)  break;
1950       if (cmpn == NCMPS)  continue;
1951       BoolTest::mask btest = bol->as_Bool()->_test._test;
1952       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1953       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1954       // At this point, we know that 'x btest y' is true.
1955       switch (btest) {
1956       case BoolTest::eq:
1957         // They are proven equal, so we can collapse the min/max.
1958         // Either value is the answer.  Choose the simpler.
1959         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1960           return yvalue;
1961         return xvalue;
1962       case BoolTest::lt:          // x < y
1963       case BoolTest::le:          // x <= y
1964         return (want_max ? yvalue : xvalue);
1965       case BoolTest::gt:          // x > y
1966       case BoolTest::ge:          // x >= y
1967         return (want_max ? xvalue : yvalue);
1968       }
1969     }
1970   }
1971 
1972   // We failed to find a dominating test.
1973   // Let's pick a test that might GVN with prior tests.
1974   Node*          best_bol   = NULL;
1975   BoolTest::mask best_btest = BoolTest::illegal;
1976   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1977     Node* cmp = cmps[cmpn];
1978     if (cmp == NULL)  continue;
1979     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1980       Node* bol = cmp->fast_out(j);
1981       if (!bol->is_Bool())  continue;
1982       BoolTest::mask btest = bol->as_Bool()->_test._test;
1983       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1984       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1985       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1986         best_bol   = bol->as_Bool();
1987         best_btest = btest;
1988       }
1989     }
1990   }
1991 
1992   Node* answer_if_true  = NULL;
1993   Node* answer_if_false = NULL;
1994   switch (best_btest) {
1995   default:
1996     if (cmpxy == NULL)
1997       cmpxy = ideal_cmpxy;
1998     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
1999     // and fall through:
2000   case BoolTest::lt:          // x < y
2001   case BoolTest::le:          // x <= y
2002     answer_if_true  = (want_max ? yvalue : xvalue);
2003     answer_if_false = (want_max ? xvalue : yvalue);
2004     break;
2005   case BoolTest::gt:          // x > y
2006   case BoolTest::ge:          // x >= y
2007     answer_if_true  = (want_max ? xvalue : yvalue);
2008     answer_if_false = (want_max ? yvalue : xvalue);
2009     break;
2010   }
2011 
2012   jint hi, lo;
2013   if (want_max) {
2014     // We can sharpen the minimum.
2015     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2016     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2017   } else {
2018     // We can sharpen the maximum.
2019     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2020     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2021   }
2022 
2023   // Use a flow-free graph structure, to avoid creating excess control edges
2024   // which could hinder other optimizations.
2025   // Since Math.min/max is often used with arraycopy, we want
2026   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2027   Node* cmov = CMoveNode::make(NULL, best_bol,
2028                                answer_if_false, answer_if_true,
2029                                TypeInt::make(lo, hi, widen));
2030 
2031   return _gvn.transform(cmov);
2032 
2033   /*
2034   // This is not as desirable as it may seem, since Min and Max
2035   // nodes do not have a full set of optimizations.
2036   // And they would interfere, anyway, with 'if' optimizations
2037   // and with CMoveI canonical forms.
2038   switch (id) {
2039   case vmIntrinsics::_min:
2040     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2041   case vmIntrinsics::_max:
2042     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2043   default:
2044     ShouldNotReachHere();
2045   }
2046   */
2047 }
2048 
2049 inline int
2050 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2051   const TypePtr* base_type = TypePtr::NULL_PTR;
2052   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2053   if (base_type == NULL) {
2054     // Unknown type.
2055     return Type::AnyPtr;
2056   } else if (base_type == TypePtr::NULL_PTR) {
2057     // Since this is a NULL+long form, we have to switch to a rawptr.
2058     base   = _gvn.transform(new CastX2PNode(offset));
2059     offset = MakeConX(0);
2060     return Type::RawPtr;
2061   } else if (base_type->base() == Type::RawPtr) {
2062     return Type::RawPtr;
2063   } else if (base_type->isa_oopptr()) {
2064     // Base is never null => always a heap address.
2065     if (base_type->ptr() == TypePtr::NotNull) {
2066       return Type::OopPtr;
2067     }
2068     // Offset is small => always a heap address.
2069     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2070     if (offset_type != NULL &&
2071         base_type->offset() == 0 &&     // (should always be?)
2072         offset_type->_lo >= 0 &&
2073         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2074       return Type::OopPtr;
2075     }
2076     // Otherwise, it might either be oop+off or NULL+addr.
2077     return Type::AnyPtr;
2078   } else {
2079     // No information:
2080     return Type::AnyPtr;
2081   }
2082 }
2083 
2084 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2085   int kind = classify_unsafe_addr(base, offset);
2086   if (kind == Type::RawPtr) {
2087     return basic_plus_adr(top(), base, offset);
2088   } else {
2089     return basic_plus_adr(base, offset);
2090   }
2091 }
2092 
2093 //--------------------------inline_number_methods-----------------------------
2094 // inline int     Integer.numberOfLeadingZeros(int)
2095 // inline int        Long.numberOfLeadingZeros(long)
2096 //
2097 // inline int     Integer.numberOfTrailingZeros(int)
2098 // inline int        Long.numberOfTrailingZeros(long)
2099 //
2100 // inline int     Integer.bitCount(int)
2101 // inline int        Long.bitCount(long)
2102 //
2103 // inline char  Character.reverseBytes(char)
2104 // inline short     Short.reverseBytes(short)
2105 // inline int     Integer.reverseBytes(int)
2106 // inline long       Long.reverseBytes(long)
2107 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2108   Node* arg = argument(0);
2109   Node* n = NULL;
2110   switch (id) {
2111   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2112   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2113   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2114   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2115   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2116   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2117   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2118   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2119   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2120   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2121   default:  fatal_unexpected_iid(id);  break;
2122   }
2123   set_result(_gvn.transform(n));
2124   return true;
2125 }
2126 
2127 //----------------------------inline_unsafe_access----------------------------
2128 
2129 // Helper that guards and inserts a pre-barrier.
2130 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2131                                         Node* pre_val, bool need_mem_bar) {
2132   // We could be accessing the referent field of a reference object. If so, when G1
2133   // is enabled, we need to log the value in the referent field in an SATB buffer.
2134   // This routine performs some compile time filters and generates suitable
2135   // runtime filters that guard the pre-barrier code.
2136   // Also add memory barrier for non volatile load from the referent field
2137   // to prevent commoning of loads across safepoint.
2138   if (!UseG1GC && !need_mem_bar)
2139     return;
2140 
2141   // Some compile time checks.
2142 
2143   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2144   const TypeX* otype = offset->find_intptr_t_type();
2145   if (otype != NULL && otype->is_con() &&
2146       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2147     // Constant offset but not the reference_offset so just return
2148     return;
2149   }
2150 
2151   // We only need to generate the runtime guards for instances.
2152   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2153   if (btype != NULL) {
2154     if (btype->isa_aryptr()) {
2155       // Array type so nothing to do
2156       return;
2157     }
2158 
2159     const TypeInstPtr* itype = btype->isa_instptr();
2160     if (itype != NULL) {
2161       // Can the klass of base_oop be statically determined to be
2162       // _not_ a sub-class of Reference and _not_ Object?
2163       ciKlass* klass = itype->klass();
2164       if ( klass->is_loaded() &&
2165           !klass->is_subtype_of(env()->Reference_klass()) &&
2166           !env()->Object_klass()->is_subtype_of(klass)) {
2167         return;
2168       }
2169     }
2170   }
2171 
2172   // The compile time filters did not reject base_oop/offset so
2173   // we need to generate the following runtime filters
2174   //
2175   // if (offset == java_lang_ref_Reference::_reference_offset) {
2176   //   if (instance_of(base, java.lang.ref.Reference)) {
2177   //     pre_barrier(_, pre_val, ...);
2178   //   }
2179   // }
2180 
2181   float likely   = PROB_LIKELY(  0.999);
2182   float unlikely = PROB_UNLIKELY(0.999);
2183 
2184   IdealKit ideal(this);
2185 #define __ ideal.
2186 
2187   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2188 
2189   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2190       // Update graphKit memory and control from IdealKit.
2191       sync_kit(ideal);
2192 
2193       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2194       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2195 
2196       // Update IdealKit memory and control from graphKit.
2197       __ sync_kit(this);
2198 
2199       Node* one = __ ConI(1);
2200       // is_instof == 0 if base_oop == NULL
2201       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2202 
2203         // Update graphKit from IdeakKit.
2204         sync_kit(ideal);
2205 
2206         // Use the pre-barrier to record the value in the referent field
2207         pre_barrier(false /* do_load */,
2208                     __ ctrl(),
2209                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2210                     pre_val /* pre_val */,
2211                     T_OBJECT);
2212         if (need_mem_bar) {
2213           // Add memory barrier to prevent commoning reads from this field
2214           // across safepoint since GC can change its value.
2215           insert_mem_bar(Op_MemBarCPUOrder);
2216         }
2217         // Update IdealKit from graphKit.
2218         __ sync_kit(this);
2219 
2220       } __ end_if(); // _ref_type != ref_none
2221   } __ end_if(); // offset == referent_offset
2222 
2223   // Final sync IdealKit and GraphKit.
2224   final_sync(ideal);
2225 #undef __
2226 }
2227 
2228 
2229 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2230   // Attempt to infer a sharper value type from the offset and base type.
2231   ciKlass* sharpened_klass = NULL;
2232 
2233   // See if it is an instance field, with an object type.
2234   if (alias_type->field() != NULL) {
2235     if (alias_type->field()->type()->is_klass()) {
2236       sharpened_klass = alias_type->field()->type()->as_klass();
2237     }
2238   }
2239 
2240   // See if it is a narrow oop array.
2241   if (adr_type->isa_aryptr()) {
2242     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2243       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2244       if (elem_type != NULL) {
2245         sharpened_klass = elem_type->klass();
2246       }
2247     }
2248   }
2249 
2250   // The sharpened class might be unloaded if there is no class loader
2251   // contraint in place.
2252   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2253     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2254 
2255 #ifndef PRODUCT
2256     if (C->print_intrinsics() || C->print_inlining()) {
2257       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2258       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2259     }
2260 #endif
2261     // Sharpen the value type.
2262     return tjp;
2263   }
2264   return NULL;
2265 }
2266 
2267 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2268   if (callee()->is_static())  return false;  // caller must have the capability!
2269   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2270   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2271   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2272 
2273 #ifndef PRODUCT
2274   {
2275     ResourceMark rm;
2276     // Check the signatures.
2277     ciSignature* sig = callee()->signature();
2278 #ifdef ASSERT
2279     if (!is_store) {
2280       // Object getObject(Object base, int/long offset), etc.
2281       BasicType rtype = sig->return_type()->basic_type();
2282       assert(rtype == type, "getter must return the expected value");
2283       assert(sig->count() == 2, "oop getter has 2 arguments");
2284       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2285       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2286     } else {
2287       // void putObject(Object base, int/long offset, Object x), etc.
2288       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2289       assert(sig->count() == 3, "oop putter has 3 arguments");
2290       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2291       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2292       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2293       assert(vtype == type, "putter must accept the expected value");
2294     }
2295 #endif // ASSERT
2296  }
2297 #endif //PRODUCT
2298 
2299   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2300 
2301   Node* receiver = argument(0);  // type: oop
2302 
2303   // Build address expression.
2304   Node* adr;
2305   Node* heap_base_oop = top();
2306   Node* offset = top();
2307   Node* val;
2308 
2309   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2310   Node* base = argument(1);  // type: oop
2311   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2312   offset = argument(2);  // type: long
2313   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2314   // to be plain byte offsets, which are also the same as those accepted
2315   // by oopDesc::field_base.
2316   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2317          "fieldOffset must be byte-scaled");
2318   // 32-bit machines ignore the high half!
2319   offset = ConvL2X(offset);
2320   adr = make_unsafe_address(base, offset);
2321   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2322     heap_base_oop = base;
2323   } else if (type == T_OBJECT) {
2324     return false; // off-heap oop accesses are not supported
2325   }
2326 
2327   // Can base be NULL? Otherwise, always on-heap access.
2328   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2329 
2330   val = is_store ? argument(4) : NULL;
2331 
2332   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2333 
2334   // Try to categorize the address.
2335   Compile::AliasType* alias_type = C->alias_type(adr_type);
2336   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2337 
2338   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2339       alias_type->adr_type() == TypeAryPtr::RANGE) {
2340     return false; // not supported
2341   }
2342 
2343   bool mismatched = false;
2344   BasicType bt = alias_type->basic_type();
2345   if (bt != T_ILLEGAL) {
2346     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2347     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2348       // Alias type doesn't differentiate between byte[] and boolean[]).
2349       // Use address type to get the element type.
2350       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2351     }
2352     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2353       // accessing an array field with getObject is not a mismatch
2354       bt = T_OBJECT;
2355     }
2356     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2357       // Don't intrinsify mismatched object accesses
2358       return false;
2359     }
2360     mismatched = (bt != type);
2361   } else if (alias_type->adr_type()->isa_oopptr()) {
2362     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2363   }
2364 
2365   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2366 
2367   // First guess at the value type.
2368   const Type *value_type = Type::get_const_basic_type(type);
2369 
2370   // We will need memory barriers unless we can determine a unique
2371   // alias category for this reference.  (Note:  If for some reason
2372   // the barriers get omitted and the unsafe reference begins to "pollute"
2373   // the alias analysis of the rest of the graph, either Compile::can_alias
2374   // or Compile::must_alias will throw a diagnostic assert.)
2375   bool need_mem_bar;
2376   switch (kind) {
2377       case Relaxed:
2378           need_mem_bar = mismatched & !adr_type->isa_aryptr();
2379           break;
2380       case Opaque:
2381           // Opaque uses CPUOrder membars for protection against code movement.
2382       case Acquire:
2383       case Release:
2384       case Volatile:
2385           need_mem_bar = true;
2386           break;
2387       default:
2388           ShouldNotReachHere();
2389   }
2390 
2391   // Some accesses require access atomicity for all types, notably longs and doubles.
2392   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2393   bool requires_atomic_access = false;
2394   switch (kind) {
2395       case Relaxed:
2396           requires_atomic_access = AlwaysAtomicAccesses;
2397           break;
2398       case Opaque:
2399           // Opaque accesses are atomic.
2400       case Acquire:
2401       case Release:
2402       case Volatile:
2403           requires_atomic_access = true;
2404           break;
2405       default:
2406           ShouldNotReachHere();
2407   }
2408 
2409   // Figure out the memory ordering.
2410   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2411   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2412 
2413   // If we are reading the value of the referent field of a Reference
2414   // object (either by using Unsafe directly or through reflection)
2415   // then, if G1 is enabled, we need to record the referent in an
2416   // SATB log buffer using the pre-barrier mechanism.
2417   // Also we need to add memory barrier to prevent commoning reads
2418   // from this field across safepoint since GC can change its value.
2419   bool need_read_barrier = !is_store &&
2420                            offset != top() && heap_base_oop != top();
2421 
2422   if (!is_store && type == T_OBJECT) {
2423     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2424     if (tjp != NULL) {
2425       value_type = tjp;
2426     }
2427   }
2428 
2429   receiver = null_check(receiver);
2430   if (stopped()) {
2431     return true;
2432   }
2433   // Heap pointers get a null-check from the interpreter,
2434   // as a courtesy.  However, this is not guaranteed by Unsafe,
2435   // and it is not possible to fully distinguish unintended nulls
2436   // from intended ones in this API.
2437 
2438   // We need to emit leading and trailing CPU membars (see below) in
2439   // addition to memory membars for special access modes. This is a little
2440   // too strong, but avoids the need to insert per-alias-type
2441   // volatile membars (for stores; compare Parse::do_put_xxx), which
2442   // we cannot do effectively here because we probably only have a
2443   // rough approximation of type.
2444 
2445   switch(kind) {
2446     case Relaxed:
2447     case Opaque:
2448     case Acquire:
2449       break;
2450     case Release:
2451     case Volatile:
2452       if (is_store) {
2453         insert_mem_bar(Op_MemBarRelease);
2454       } else {
2455         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2456           insert_mem_bar(Op_MemBarVolatile);
2457         }
2458       }
2459       break;
2460     default:
2461       ShouldNotReachHere();
2462   }
2463 
2464   // Memory barrier to prevent normal and 'unsafe' accesses from
2465   // bypassing each other.  Happens after null checks, so the
2466   // exception paths do not take memory state from the memory barrier,
2467   // so there's no problems making a strong assert about mixing users
2468   // of safe & unsafe memory.
2469   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2470 
2471   if (!is_store) {
2472     Node* p = NULL;
2473     // Try to constant fold a load from a constant field
2474     ciField* field = alias_type->field();
2475     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2476       // final or stable field
2477       p = make_constant_from_field(field, heap_base_oop);
2478     }
2479     if (p == NULL) {
2480       // To be valid, unsafe loads may depend on other conditions than
2481       // the one that guards them: pin the Load node
2482       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2483       // load value
2484       switch (type) {
2485       case T_BOOLEAN:
2486       {
2487         // Normalize the value returned by getBoolean in the following cases
2488         if (mismatched ||
2489             heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2490             (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2491                                                                  //   and the unsafe access is made to large offset
2492                                                                  //   (i.e., larger than the maximum offset necessary for any
2493                                                                  //   field access)
2494             ) {
2495           IdealKit ideal = IdealKit(this);
2496 #define __ ideal.
2497           IdealVariable normalized_result(ideal);
2498           __ declarations_done();
2499           __ set(normalized_result, p);
2500           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2501           __ set(normalized_result, ideal.ConI(1));
2502           ideal.end_if();
2503           final_sync(ideal);
2504           p = __ value(normalized_result);
2505 #undef __
2506         }
2507       }
2508       case T_CHAR:
2509       case T_BYTE:
2510       case T_SHORT:
2511       case T_INT:
2512       case T_LONG:
2513       case T_FLOAT:
2514       case T_DOUBLE:
2515         break;
2516       case T_OBJECT:
2517         if (need_read_barrier) {
2518           // We do not require a mem bar inside pre_barrier if need_mem_bar
2519           // is set: the barriers would be emitted by us.
2520           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2521         }
2522         break;
2523       case T_ADDRESS:
2524         // Cast to an int type.
2525         p = _gvn.transform(new CastP2XNode(NULL, p));
2526         p = ConvX2UL(p);
2527         break;
2528       default:
2529         fatal("unexpected type %d: %s", type, type2name(type));
2530         break;
2531       }
2532     }
2533     // The load node has the control of the preceding MemBarCPUOrder.  All
2534     // following nodes will have the control of the MemBarCPUOrder inserted at
2535     // the end of this method.  So, pushing the load onto the stack at a later
2536     // point is fine.
2537     set_result(p);
2538   } else {
2539     // place effect of store into memory
2540     switch (type) {
2541     case T_DOUBLE:
2542       val = dstore_rounding(val);
2543       break;
2544     case T_ADDRESS:
2545       // Repackage the long as a pointer.
2546       val = ConvL2X(val);
2547       val = _gvn.transform(new CastX2PNode(val));
2548       break;
2549     }
2550 
2551     if (type == T_OBJECT) {
2552       store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2553     } else {
2554       store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2555     }
2556   }
2557 
2558   switch(kind) {
2559     case Relaxed:
2560     case Opaque:
2561     case Release:
2562       break;
2563     case Acquire:
2564     case Volatile:
2565       if (!is_store) {
2566         insert_mem_bar(Op_MemBarAcquire);
2567       } else {
2568         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2569           insert_mem_bar(Op_MemBarVolatile);
2570         }
2571       }
2572       break;
2573     default:
2574       ShouldNotReachHere();
2575   }
2576 
2577   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2578 
2579   return true;
2580 }
2581 
2582 //----------------------------inline_unsafe_load_store----------------------------
2583 // This method serves a couple of different customers (depending on LoadStoreKind):
2584 //
2585 // LS_cmp_swap:
2586 //
2587 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2588 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2589 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2590 //
2591 // LS_cmp_swap_weak:
2592 //
2593 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2594 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2595 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2596 //
2597 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2598 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2599 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2600 //
2601 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2602 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2603 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2604 //
2605 // LS_cmp_exchange:
2606 //
2607 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2608 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2609 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2610 //
2611 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2612 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2613 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2614 //
2615 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2616 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2617 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2618 //
2619 // LS_get_add:
2620 //
2621 //   int  getAndAddInt( Object o, long offset, int  delta)
2622 //   long getAndAddLong(Object o, long offset, long delta)
2623 //
2624 // LS_get_set:
2625 //
2626 //   int    getAndSet(Object o, long offset, int    newValue)
2627 //   long   getAndSet(Object o, long offset, long   newValue)
2628 //   Object getAndSet(Object o, long offset, Object newValue)
2629 //
2630 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2631   // This basic scheme here is the same as inline_unsafe_access, but
2632   // differs in enough details that combining them would make the code
2633   // overly confusing.  (This is a true fact! I originally combined
2634   // them, but even I was confused by it!) As much code/comments as
2635   // possible are retained from inline_unsafe_access though to make
2636   // the correspondences clearer. - dl
2637 
2638   if (callee()->is_static())  return false;  // caller must have the capability!
2639 
2640 #ifndef PRODUCT
2641   BasicType rtype;
2642   {
2643     ResourceMark rm;
2644     // Check the signatures.
2645     ciSignature* sig = callee()->signature();
2646     rtype = sig->return_type()->basic_type();
2647     switch(kind) {
2648       case LS_get_add:
2649       case LS_get_set: {
2650       // Check the signatures.
2651 #ifdef ASSERT
2652       assert(rtype == type, "get and set must return the expected type");
2653       assert(sig->count() == 3, "get and set has 3 arguments");
2654       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2655       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2656       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2657       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2658 #endif // ASSERT
2659         break;
2660       }
2661       case LS_cmp_swap:
2662       case LS_cmp_swap_weak: {
2663       // Check the signatures.
2664 #ifdef ASSERT
2665       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2666       assert(sig->count() == 4, "CAS has 4 arguments");
2667       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2668       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2669 #endif // ASSERT
2670         break;
2671       }
2672       case LS_cmp_exchange: {
2673       // Check the signatures.
2674 #ifdef ASSERT
2675       assert(rtype == type, "CAS must return the expected type");
2676       assert(sig->count() == 4, "CAS has 4 arguments");
2677       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2678       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2679 #endif // ASSERT
2680         break;
2681       }
2682       default:
2683         ShouldNotReachHere();
2684     }
2685   }
2686 #endif //PRODUCT
2687 
2688   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2689 
2690   // Get arguments:
2691   Node* receiver = NULL;
2692   Node* base     = NULL;
2693   Node* offset   = NULL;
2694   Node* oldval   = NULL;
2695   Node* newval   = NULL;
2696   switch(kind) {
2697     case LS_cmp_swap:
2698     case LS_cmp_swap_weak:
2699     case LS_cmp_exchange: {
2700       const bool two_slot_type = type2size[type] == 2;
2701       receiver = argument(0);  // type: oop
2702       base     = argument(1);  // type: oop
2703       offset   = argument(2);  // type: long
2704       oldval   = argument(4);  // type: oop, int, or long
2705       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2706       break;
2707     }
2708     case LS_get_add:
2709     case LS_get_set: {
2710       receiver = argument(0);  // type: oop
2711       base     = argument(1);  // type: oop
2712       offset   = argument(2);  // type: long
2713       oldval   = NULL;
2714       newval   = argument(4);  // type: oop, int, or long
2715       break;
2716     }
2717     default:
2718       ShouldNotReachHere();
2719   }
2720 
2721   // Build field offset expression.
2722   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2723   // to be plain byte offsets, which are also the same as those accepted
2724   // by oopDesc::field_base.
2725   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2726   // 32-bit machines ignore the high half of long offsets
2727   offset = ConvL2X(offset);
2728   Node* adr = make_unsafe_address(base, offset);
2729   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2730 
2731   Compile::AliasType* alias_type = C->alias_type(adr_type);
2732   BasicType bt = alias_type->basic_type();
2733   if (bt != T_ILLEGAL &&
2734       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2735     // Don't intrinsify mismatched object accesses.
2736     return false;
2737   }
2738 
2739   // For CAS, unlike inline_unsafe_access, there seems no point in
2740   // trying to refine types. Just use the coarse types here.
2741   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2742   const Type *value_type = Type::get_const_basic_type(type);
2743 
2744   switch (kind) {
2745     case LS_get_set:
2746     case LS_cmp_exchange: {
2747       if (type == T_OBJECT) {
2748         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2749         if (tjp != NULL) {
2750           value_type = tjp;
2751         }
2752       }
2753       break;
2754     }
2755     case LS_cmp_swap:
2756     case LS_cmp_swap_weak:
2757     case LS_get_add:
2758       break;
2759     default:
2760       ShouldNotReachHere();
2761   }
2762 
2763   // Null check receiver.
2764   receiver = null_check(receiver);
2765   if (stopped()) {
2766     return true;
2767   }
2768 
2769   int alias_idx = C->get_alias_index(adr_type);
2770 
2771   // Memory-model-wise, a LoadStore acts like a little synchronized
2772   // block, so needs barriers on each side.  These don't translate
2773   // into actual barriers on most machines, but we still need rest of
2774   // compiler to respect ordering.
2775 
2776   switch (access_kind) {
2777     case Relaxed:
2778     case Acquire:
2779       break;
2780     case Release:
2781       insert_mem_bar(Op_MemBarRelease);
2782       break;
2783     case Volatile:
2784       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2785         insert_mem_bar(Op_MemBarVolatile);
2786       } else {
2787         insert_mem_bar(Op_MemBarRelease);
2788       }
2789       break;
2790     default:
2791       ShouldNotReachHere();
2792   }
2793   insert_mem_bar(Op_MemBarCPUOrder);
2794 
2795   // Figure out the memory ordering.
2796   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2797 
2798   // 4984716: MemBars must be inserted before this
2799   //          memory node in order to avoid a false
2800   //          dependency which will confuse the scheduler.
2801   Node *mem = memory(alias_idx);
2802 
2803   // For now, we handle only those cases that actually exist: ints,
2804   // longs, and Object. Adding others should be straightforward.
2805   Node* load_store = NULL;
2806   switch(type) {
2807   case T_BYTE:
2808     switch(kind) {
2809       case LS_get_add:
2810         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2811         break;
2812       case LS_get_set:
2813         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2814         break;
2815       case LS_cmp_swap_weak:
2816         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2817         break;
2818       case LS_cmp_swap:
2819         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2820         break;
2821       case LS_cmp_exchange:
2822         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2823         break;
2824       default:
2825         ShouldNotReachHere();
2826     }
2827     break;
2828   case T_SHORT:
2829     switch(kind) {
2830       case LS_get_add:
2831         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2832         break;
2833       case LS_get_set:
2834         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2835         break;
2836       case LS_cmp_swap_weak:
2837         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2838         break;
2839       case LS_cmp_swap:
2840         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2841         break;
2842       case LS_cmp_exchange:
2843         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2844         break;
2845       default:
2846         ShouldNotReachHere();
2847     }
2848     break;
2849   case T_INT:
2850     switch(kind) {
2851       case LS_get_add:
2852         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2853         break;
2854       case LS_get_set:
2855         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2856         break;
2857       case LS_cmp_swap_weak:
2858         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2859         break;
2860       case LS_cmp_swap:
2861         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2862         break;
2863       case LS_cmp_exchange:
2864         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2865         break;
2866       default:
2867         ShouldNotReachHere();
2868     }
2869     break;
2870   case T_LONG:
2871     switch(kind) {
2872       case LS_get_add:
2873         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2874         break;
2875       case LS_get_set:
2876         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2877         break;
2878       case LS_cmp_swap_weak:
2879         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2880         break;
2881       case LS_cmp_swap:
2882         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2883         break;
2884       case LS_cmp_exchange:
2885         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2886         break;
2887       default:
2888         ShouldNotReachHere();
2889     }
2890     break;
2891   case T_OBJECT:
2892     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2893     // could be delayed during Parse (for example, in adjust_map_after_if()).
2894     // Execute transformation here to avoid barrier generation in such case.
2895     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2896       newval = _gvn.makecon(TypePtr::NULL_PTR);
2897 
2898     // Reference stores need a store barrier.
2899     switch(kind) {
2900       case LS_get_set: {
2901         // If pre-barrier must execute before the oop store, old value will require do_load here.
2902         if (!can_move_pre_barrier()) {
2903           pre_barrier(true /* do_load*/,
2904                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2905                       NULL /* pre_val*/,
2906                       T_OBJECT);
2907         } // Else move pre_barrier to use load_store value, see below.
2908         break;
2909       }
2910       case LS_cmp_swap_weak:
2911       case LS_cmp_swap:
2912       case LS_cmp_exchange: {
2913         // Same as for newval above:
2914         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2915           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2916         }
2917         // The only known value which might get overwritten is oldval.
2918         pre_barrier(false /* do_load */,
2919                     control(), NULL, NULL, max_juint, NULL, NULL,
2920                     oldval /* pre_val */,
2921                     T_OBJECT);
2922         break;
2923       }
2924       default:
2925         ShouldNotReachHere();
2926     }
2927 
2928 #ifdef _LP64
2929     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2930       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2931 
2932       switch(kind) {
2933         case LS_get_set:
2934           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2935           break;
2936         case LS_cmp_swap_weak: {
2937           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2938           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2939           break;
2940         }
2941         case LS_cmp_swap: {
2942           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2943           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2944           break;
2945         }
2946         case LS_cmp_exchange: {
2947           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2948           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2949           break;
2950         }
2951         default:
2952           ShouldNotReachHere();
2953       }
2954     } else
2955 #endif
2956     switch (kind) {
2957       case LS_get_set:
2958         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2959         break;
2960       case LS_cmp_swap_weak:
2961         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2962         break;
2963       case LS_cmp_swap:
2964         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2965         break;
2966       case LS_cmp_exchange:
2967         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2968         break;
2969       default:
2970         ShouldNotReachHere();
2971     }
2972 
2973     // Emit the post barrier only when the actual store happened. This makes sense
2974     // to check only for LS_cmp_* that can fail to set the value.
2975     // LS_cmp_exchange does not produce any branches by default, so there is no
2976     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
2977     // CompareAndExchange and move branches here, it would make sense to conditionalize
2978     // post_barriers for LS_cmp_exchange as well.
2979     //
2980     // CAS success path is marked more likely since we anticipate this is a performance
2981     // critical path, while CAS failure path can use the penalty for going through unlikely
2982     // path as backoff. Which is still better than doing a store barrier there.
2983     switch (kind) {
2984       case LS_get_set:
2985       case LS_cmp_exchange: {
2986         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2987         break;
2988       }
2989       case LS_cmp_swap_weak:
2990       case LS_cmp_swap: {
2991         IdealKit ideal(this);
2992         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2993           sync_kit(ideal);
2994           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2995           ideal.sync_kit(this);
2996         } ideal.end_if();
2997         final_sync(ideal);
2998         break;
2999       }
3000       default:
3001         ShouldNotReachHere();
3002     }
3003     break;
3004   default:
3005     fatal("unexpected type %d: %s", type, type2name(type));
3006     break;
3007   }
3008 
3009   // SCMemProjNodes represent the memory state of a LoadStore. Their
3010   // main role is to prevent LoadStore nodes from being optimized away
3011   // when their results aren't used.
3012   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3013   set_memory(proj, alias_idx);
3014 
3015   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3016 #ifdef _LP64
3017     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3018       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3019     }
3020 #endif
3021     if (can_move_pre_barrier() && kind == LS_get_set) {
3022       // Don't need to load pre_val. The old value is returned by load_store.
3023       // The pre_barrier can execute after the xchg as long as no safepoint
3024       // gets inserted between them.
3025       pre_barrier(false /* do_load */,
3026                   control(), NULL, NULL, max_juint, NULL, NULL,
3027                   load_store /* pre_val */,
3028                   T_OBJECT);
3029     }
3030   }
3031 
3032   // Add the trailing membar surrounding the access
3033   insert_mem_bar(Op_MemBarCPUOrder);
3034 
3035   switch (access_kind) {
3036     case Relaxed:
3037     case Release:
3038       break; // do nothing
3039     case Acquire:
3040     case Volatile:
3041       insert_mem_bar(Op_MemBarAcquire);
3042       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3043       break;
3044     default:
3045       ShouldNotReachHere();
3046   }
3047 
3048   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3049   set_result(load_store);
3050   return true;
3051 }
3052 
3053 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3054   MemNode::MemOrd mo = MemNode::unset;
3055   switch(kind) {
3056     case Opaque:
3057     case Relaxed:  mo = MemNode::unordered; break;
3058     case Acquire:  mo = MemNode::acquire;   break;
3059     case Release:  mo = MemNode::release;   break;
3060     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3061     default:
3062       ShouldNotReachHere();
3063   }
3064   guarantee(mo != MemNode::unset, "Should select memory ordering");
3065   return mo;
3066 }
3067 
3068 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3069   MemNode::MemOrd mo = MemNode::unset;
3070   switch(kind) {
3071     case Opaque:
3072     case Relaxed:  mo = MemNode::unordered; break;
3073     case Acquire:  mo = MemNode::acquire;   break;
3074     case Release:  mo = MemNode::release;   break;
3075     case Volatile: mo = MemNode::seqcst;    break;
3076     default:
3077       ShouldNotReachHere();
3078   }
3079   guarantee(mo != MemNode::unset, "Should select memory ordering");
3080   return mo;
3081 }
3082 
3083 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3084   // Regardless of form, don't allow previous ld/st to move down,
3085   // then issue acquire, release, or volatile mem_bar.
3086   insert_mem_bar(Op_MemBarCPUOrder);
3087   switch(id) {
3088     case vmIntrinsics::_loadFence:
3089       insert_mem_bar(Op_LoadFence);
3090       return true;
3091     case vmIntrinsics::_storeFence:
3092       insert_mem_bar(Op_StoreFence);
3093       return true;
3094     case vmIntrinsics::_fullFence:
3095       insert_mem_bar(Op_MemBarVolatile);
3096       return true;
3097     default:
3098       fatal_unexpected_iid(id);
3099       return false;
3100   }
3101 }
3102 
3103 bool LibraryCallKit::inline_onspinwait() {
3104   insert_mem_bar(Op_OnSpinWait);
3105   return true;
3106 }
3107 
3108 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3109   if (!kls->is_Con()) {
3110     return true;
3111   }
3112   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3113   if (klsptr == NULL) {
3114     return true;
3115   }
3116   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3117   // don't need a guard for a klass that is already initialized
3118   return !ik->is_initialized();
3119 }
3120 
3121 //----------------------------inline_unsafe_allocate---------------------------
3122 // public native Object Unsafe.allocateInstance(Class<?> cls);
3123 bool LibraryCallKit::inline_unsafe_allocate() {
3124   if (callee()->is_static())  return false;  // caller must have the capability!
3125 
3126   null_check_receiver();  // null-check, then ignore
3127   Node* cls = null_check(argument(1));
3128   if (stopped())  return true;
3129 
3130   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3131   kls = null_check(kls);
3132   if (stopped())  return true;  // argument was like int.class
3133 
3134   Node* test = NULL;
3135   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3136     // Note:  The argument might still be an illegal value like
3137     // Serializable.class or Object[].class.   The runtime will handle it.
3138     // But we must make an explicit check for initialization.
3139     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3140     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3141     // can generate code to load it as unsigned byte.
3142     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3143     Node* bits = intcon(InstanceKlass::fully_initialized);
3144     test = _gvn.transform(new SubINode(inst, bits));
3145     // The 'test' is non-zero if we need to take a slow path.
3146   }
3147 
3148   Node* obj = new_instance(kls, test);
3149   set_result(obj);
3150   return true;
3151 }
3152 
3153 //------------------------inline_native_time_funcs--------------
3154 // inline code for System.currentTimeMillis() and System.nanoTime()
3155 // these have the same type and signature
3156 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3157   const TypeFunc* tf = OptoRuntime::void_long_Type();
3158   const TypePtr* no_memory_effects = NULL;
3159   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3160   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3161 #ifdef ASSERT
3162   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3163   assert(value_top == top(), "second value must be top");
3164 #endif
3165   set_result(value);
3166   return true;
3167 }
3168 
3169 #ifdef TRACE_HAVE_INTRINSICS
3170 
3171 /*
3172 * oop -> myklass
3173 * myklass->trace_id |= USED
3174 * return myklass->trace_id & ~0x3
3175 */
3176 bool LibraryCallKit::inline_native_classID() {
3177   Node* cls = null_check(argument(0), T_OBJECT);
3178   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3179   kls = null_check(kls, T_OBJECT);
3180 
3181   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3182   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3183   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3184 
3185   Node* clsused = longcon(0x01l); // set the class bit
3186   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3187   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3188   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3189 
3190 #ifdef TRACE_ID_META_BITS
3191   Node* mbits = longcon(~TRACE_ID_META_BITS);
3192   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3193 #endif
3194 #ifdef TRACE_ID_CLASS_SHIFT
3195   Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3196   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3197 #endif
3198 
3199   set_result(tvalue);
3200   return true;
3201 
3202 }
3203 
3204 bool LibraryCallKit::inline_native_getBufferWriter() {
3205   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3206 
3207   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3208                                   in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3209                                   );
3210 
3211   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3212 
3213   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3214   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3215 
3216   IfNode* iff_jobj_null =
3217     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3218 
3219   enum { _normal_path = 1,
3220          _null_path = 2,
3221          PATH_LIMIT };
3222 
3223   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3224   PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3225 
3226   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3227   result_rgn->init_req(_null_path, jobj_is_null);
3228   result_val->init_req(_null_path, null());
3229 
3230   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3231   result_rgn->init_req(_normal_path, jobj_is_not_null);
3232 
3233   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3234   result_val->init_req(_normal_path, res);
3235 
3236   set_result(result_rgn, result_val);
3237 
3238   return true;
3239 }
3240 
3241 #endif
3242 
3243 //------------------------inline_native_currentThread------------------
3244 bool LibraryCallKit::inline_native_currentThread() {
3245   Node* junk = NULL;
3246   set_result(generate_current_thread(junk));
3247   return true;
3248 }
3249 
3250 //------------------------inline_native_isInterrupted------------------
3251 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3252 bool LibraryCallKit::inline_native_isInterrupted() {
3253   // Add a fast path to t.isInterrupted(clear_int):
3254   //   (t == Thread.current() &&
3255   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3256   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3257   // So, in the common case that the interrupt bit is false,
3258   // we avoid making a call into the VM.  Even if the interrupt bit
3259   // is true, if the clear_int argument is false, we avoid the VM call.
3260   // However, if the receiver is not currentThread, we must call the VM,
3261   // because there must be some locking done around the operation.
3262 
3263   // We only go to the fast case code if we pass two guards.
3264   // Paths which do not pass are accumulated in the slow_region.
3265 
3266   enum {
3267     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3268     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3269     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3270     PATH_LIMIT
3271   };
3272 
3273   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3274   // out of the function.
3275   insert_mem_bar(Op_MemBarCPUOrder);
3276 
3277   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3278   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3279 
3280   RegionNode* slow_region = new RegionNode(1);
3281   record_for_igvn(slow_region);
3282 
3283   // (a) Receiving thread must be the current thread.
3284   Node* rec_thr = argument(0);
3285   Node* tls_ptr = NULL;
3286   Node* cur_thr = generate_current_thread(tls_ptr);
3287   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3288   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3289 
3290   generate_slow_guard(bol_thr, slow_region);
3291 
3292   // (b) Interrupt bit on TLS must be false.
3293   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3294   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3295   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3296 
3297   // Set the control input on the field _interrupted read to prevent it floating up.
3298   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3299   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3300   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3301 
3302   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3303 
3304   // First fast path:  if (!TLS._interrupted) return false;
3305   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3306   result_rgn->init_req(no_int_result_path, false_bit);
3307   result_val->init_req(no_int_result_path, intcon(0));
3308 
3309   // drop through to next case
3310   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3311 
3312 #ifndef _WINDOWS
3313   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3314   Node* clr_arg = argument(1);
3315   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3316   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3317   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3318 
3319   // Second fast path:  ... else if (!clear_int) return true;
3320   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3321   result_rgn->init_req(no_clear_result_path, false_arg);
3322   result_val->init_req(no_clear_result_path, intcon(1));
3323 
3324   // drop through to next case
3325   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3326 #else
3327   // To return true on Windows you must read the _interrupted field
3328   // and check the event state i.e. take the slow path.
3329 #endif // _WINDOWS
3330 
3331   // (d) Otherwise, go to the slow path.
3332   slow_region->add_req(control());
3333   set_control( _gvn.transform(slow_region));
3334 
3335   if (stopped()) {
3336     // There is no slow path.
3337     result_rgn->init_req(slow_result_path, top());
3338     result_val->init_req(slow_result_path, top());
3339   } else {
3340     // non-virtual because it is a private non-static
3341     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3342 
3343     Node* slow_val = set_results_for_java_call(slow_call);
3344     // this->control() comes from set_results_for_java_call
3345 
3346     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3347     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3348 
3349     // These two phis are pre-filled with copies of of the fast IO and Memory
3350     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3351     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3352 
3353     result_rgn->init_req(slow_result_path, control());
3354     result_io ->init_req(slow_result_path, i_o());
3355     result_mem->init_req(slow_result_path, reset_memory());
3356     result_val->init_req(slow_result_path, slow_val);
3357 
3358     set_all_memory(_gvn.transform(result_mem));
3359     set_i_o(       _gvn.transform(result_io));
3360   }
3361 
3362   C->set_has_split_ifs(true); // Has chance for split-if optimization
3363   set_result(result_rgn, result_val);
3364   return true;
3365 }
3366 
3367 //---------------------------load_mirror_from_klass----------------------------
3368 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3369 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3370   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3371   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3372 }
3373 
3374 //-----------------------load_klass_from_mirror_common-------------------------
3375 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3376 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3377 // and branch to the given path on the region.
3378 // If never_see_null, take an uncommon trap on null, so we can optimistically
3379 // compile for the non-null case.
3380 // If the region is NULL, force never_see_null = true.
3381 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3382                                                     bool never_see_null,
3383                                                     RegionNode* region,
3384                                                     int null_path,
3385                                                     int offset) {
3386   if (region == NULL)  never_see_null = true;
3387   Node* p = basic_plus_adr(mirror, offset);
3388   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3389   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3390   Node* null_ctl = top();
3391   kls = null_check_oop(kls, &null_ctl, never_see_null);
3392   if (region != NULL) {
3393     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3394     region->init_req(null_path, null_ctl);
3395   } else {
3396     assert(null_ctl == top(), "no loose ends");
3397   }
3398   return kls;
3399 }
3400 
3401 //--------------------(inline_native_Class_query helpers)---------------------
3402 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3403 // Fall through if (mods & mask) == bits, take the guard otherwise.
3404 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3405   // Branch around if the given klass has the given modifier bit set.
3406   // Like generate_guard, adds a new path onto the region.
3407   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3408   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3409   Node* mask = intcon(modifier_mask);
3410   Node* bits = intcon(modifier_bits);
3411   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3412   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3413   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3414   return generate_fair_guard(bol, region);
3415 }
3416 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3417   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3418 }
3419 
3420 //-------------------------inline_native_Class_query-------------------
3421 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3422   const Type* return_type = TypeInt::BOOL;
3423   Node* prim_return_value = top();  // what happens if it's a primitive class?
3424   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3425   bool expect_prim = false;     // most of these guys expect to work on refs
3426 
3427   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3428 
3429   Node* mirror = argument(0);
3430   Node* obj    = top();
3431 
3432   switch (id) {
3433   case vmIntrinsics::_isInstance:
3434     // nothing is an instance of a primitive type
3435     prim_return_value = intcon(0);
3436     obj = argument(1);
3437     break;
3438   case vmIntrinsics::_getModifiers:
3439     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3440     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3441     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3442     break;
3443   case vmIntrinsics::_isInterface:
3444     prim_return_value = intcon(0);
3445     break;
3446   case vmIntrinsics::_isArray:
3447     prim_return_value = intcon(0);
3448     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3449     break;
3450   case vmIntrinsics::_isPrimitive:
3451     prim_return_value = intcon(1);
3452     expect_prim = true;  // obviously
3453     break;
3454   case vmIntrinsics::_getSuperclass:
3455     prim_return_value = null();
3456     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3457     break;
3458   case vmIntrinsics::_getClassAccessFlags:
3459     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3460     return_type = TypeInt::INT;  // not bool!  6297094
3461     break;
3462   default:
3463     fatal_unexpected_iid(id);
3464     break;
3465   }
3466 
3467   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3468   if (mirror_con == NULL)  return false;  // cannot happen?
3469 
3470 #ifndef PRODUCT
3471   if (C->print_intrinsics() || C->print_inlining()) {
3472     ciType* k = mirror_con->java_mirror_type();
3473     if (k) {
3474       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3475       k->print_name();
3476       tty->cr();
3477     }
3478   }
3479 #endif
3480 
3481   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3482   RegionNode* region = new RegionNode(PATH_LIMIT);
3483   record_for_igvn(region);
3484   PhiNode* phi = new PhiNode(region, return_type);
3485 
3486   // The mirror will never be null of Reflection.getClassAccessFlags, however
3487   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3488   // if it is. See bug 4774291.
3489 
3490   // For Reflection.getClassAccessFlags(), the null check occurs in
3491   // the wrong place; see inline_unsafe_access(), above, for a similar
3492   // situation.
3493   mirror = null_check(mirror);
3494   // If mirror or obj is dead, only null-path is taken.
3495   if (stopped())  return true;
3496 
3497   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3498 
3499   // Now load the mirror's klass metaobject, and null-check it.
3500   // Side-effects region with the control path if the klass is null.
3501   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3502   // If kls is null, we have a primitive mirror.
3503   phi->init_req(_prim_path, prim_return_value);
3504   if (stopped()) { set_result(region, phi); return true; }
3505   bool safe_for_replace = (region->in(_prim_path) == top());
3506 
3507   Node* p;  // handy temp
3508   Node* null_ctl;
3509 
3510   // Now that we have the non-null klass, we can perform the real query.
3511   // For constant classes, the query will constant-fold in LoadNode::Value.
3512   Node* query_value = top();
3513   switch (id) {
3514   case vmIntrinsics::_isInstance:
3515     // nothing is an instance of a primitive type
3516     query_value = gen_instanceof(obj, kls, safe_for_replace);
3517     break;
3518 
3519   case vmIntrinsics::_getModifiers:
3520     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3521     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3522     break;
3523 
3524   case vmIntrinsics::_isInterface:
3525     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3526     if (generate_interface_guard(kls, region) != NULL)
3527       // A guard was added.  If the guard is taken, it was an interface.
3528       phi->add_req(intcon(1));
3529     // If we fall through, it's a plain class.
3530     query_value = intcon(0);
3531     break;
3532 
3533   case vmIntrinsics::_isArray:
3534     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3535     if (generate_array_guard(kls, region) != NULL)
3536       // A guard was added.  If the guard is taken, it was an array.
3537       phi->add_req(intcon(1));
3538     // If we fall through, it's a plain class.
3539     query_value = intcon(0);
3540     break;
3541 
3542   case vmIntrinsics::_isPrimitive:
3543     query_value = intcon(0); // "normal" path produces false
3544     break;
3545 
3546   case vmIntrinsics::_getSuperclass:
3547     // The rules here are somewhat unfortunate, but we can still do better
3548     // with random logic than with a JNI call.
3549     // Interfaces store null or Object as _super, but must report null.
3550     // Arrays store an intermediate super as _super, but must report Object.
3551     // Other types can report the actual _super.
3552     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3553     if (generate_interface_guard(kls, region) != NULL)
3554       // A guard was added.  If the guard is taken, it was an interface.
3555       phi->add_req(null());
3556     if (generate_array_guard(kls, region) != NULL)
3557       // A guard was added.  If the guard is taken, it was an array.
3558       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3559     // If we fall through, it's a plain class.  Get its _super.
3560     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3561     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3562     null_ctl = top();
3563     kls = null_check_oop(kls, &null_ctl);
3564     if (null_ctl != top()) {
3565       // If the guard is taken, Object.superClass is null (both klass and mirror).
3566       region->add_req(null_ctl);
3567       phi   ->add_req(null());
3568     }
3569     if (!stopped()) {
3570       query_value = load_mirror_from_klass(kls);
3571     }
3572     break;
3573 
3574   case vmIntrinsics::_getClassAccessFlags:
3575     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3576     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3577     break;
3578 
3579   default:
3580     fatal_unexpected_iid(id);
3581     break;
3582   }
3583 
3584   // Fall-through is the normal case of a query to a real class.
3585   phi->init_req(1, query_value);
3586   region->init_req(1, control());
3587 
3588   C->set_has_split_ifs(true); // Has chance for split-if optimization
3589   set_result(region, phi);
3590   return true;
3591 }
3592 
3593 //-------------------------inline_Class_cast-------------------
3594 bool LibraryCallKit::inline_Class_cast() {
3595   Node* mirror = argument(0); // Class
3596   Node* obj    = argument(1);
3597   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3598   if (mirror_con == NULL) {
3599     return false;  // dead path (mirror->is_top()).
3600   }
3601   if (obj == NULL || obj->is_top()) {
3602     return false;  // dead path
3603   }
3604   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3605 
3606   // First, see if Class.cast() can be folded statically.
3607   // java_mirror_type() returns non-null for compile-time Class constants.
3608   ciType* tm = mirror_con->java_mirror_type();
3609   if (tm != NULL && tm->is_klass() &&
3610       tp != NULL && tp->klass() != NULL) {
3611     if (!tp->klass()->is_loaded()) {
3612       // Don't use intrinsic when class is not loaded.
3613       return false;
3614     } else {
3615       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3616       if (static_res == Compile::SSC_always_true) {
3617         // isInstance() is true - fold the code.
3618         set_result(obj);
3619         return true;
3620       } else if (static_res == Compile::SSC_always_false) {
3621         // Don't use intrinsic, have to throw ClassCastException.
3622         // If the reference is null, the non-intrinsic bytecode will
3623         // be optimized appropriately.
3624         return false;
3625       }
3626     }
3627   }
3628 
3629   // Bailout intrinsic and do normal inlining if exception path is frequent.
3630   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3631     return false;
3632   }
3633 
3634   // Generate dynamic checks.
3635   // Class.cast() is java implementation of _checkcast bytecode.
3636   // Do checkcast (Parse::do_checkcast()) optimizations here.
3637 
3638   mirror = null_check(mirror);
3639   // If mirror is dead, only null-path is taken.
3640   if (stopped()) {
3641     return true;
3642   }
3643 
3644   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3645   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3646   RegionNode* region = new RegionNode(PATH_LIMIT);
3647   record_for_igvn(region);
3648 
3649   // Now load the mirror's klass metaobject, and null-check it.
3650   // If kls is null, we have a primitive mirror and
3651   // nothing is an instance of a primitive type.
3652   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3653 
3654   Node* res = top();
3655   if (!stopped()) {
3656     Node* bad_type_ctrl = top();
3657     // Do checkcast optimizations.
3658     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3659     region->init_req(_bad_type_path, bad_type_ctrl);
3660   }
3661   if (region->in(_prim_path) != top() ||
3662       region->in(_bad_type_path) != top()) {
3663     // Let Interpreter throw ClassCastException.
3664     PreserveJVMState pjvms(this);
3665     set_control(_gvn.transform(region));
3666     uncommon_trap(Deoptimization::Reason_intrinsic,
3667                   Deoptimization::Action_maybe_recompile);
3668   }
3669   if (!stopped()) {
3670     set_result(res);
3671   }
3672   return true;
3673 }
3674 
3675 
3676 //--------------------------inline_native_subtype_check------------------------
3677 // This intrinsic takes the JNI calls out of the heart of
3678 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3679 bool LibraryCallKit::inline_native_subtype_check() {
3680   // Pull both arguments off the stack.
3681   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3682   args[0] = argument(0);
3683   args[1] = argument(1);
3684   Node* klasses[2];             // corresponding Klasses: superk, subk
3685   klasses[0] = klasses[1] = top();
3686 
3687   enum {
3688     // A full decision tree on {superc is prim, subc is prim}:
3689     _prim_0_path = 1,           // {P,N} => false
3690                                 // {P,P} & superc!=subc => false
3691     _prim_same_path,            // {P,P} & superc==subc => true
3692     _prim_1_path,               // {N,P} => false
3693     _ref_subtype_path,          // {N,N} & subtype check wins => true
3694     _both_ref_path,             // {N,N} & subtype check loses => false
3695     PATH_LIMIT
3696   };
3697 
3698   RegionNode* region = new RegionNode(PATH_LIMIT);
3699   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3700   record_for_igvn(region);
3701 
3702   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3703   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3704   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3705 
3706   // First null-check both mirrors and load each mirror's klass metaobject.
3707   int which_arg;
3708   for (which_arg = 0; which_arg <= 1; which_arg++) {
3709     Node* arg = args[which_arg];
3710     arg = null_check(arg);
3711     if (stopped())  break;
3712     args[which_arg] = arg;
3713 
3714     Node* p = basic_plus_adr(arg, class_klass_offset);
3715     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3716     klasses[which_arg] = _gvn.transform(kls);
3717   }
3718 
3719   // Having loaded both klasses, test each for null.
3720   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3721   for (which_arg = 0; which_arg <= 1; which_arg++) {
3722     Node* kls = klasses[which_arg];
3723     Node* null_ctl = top();
3724     kls = null_check_oop(kls, &null_ctl, never_see_null);
3725     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3726     region->init_req(prim_path, null_ctl);
3727     if (stopped())  break;
3728     klasses[which_arg] = kls;
3729   }
3730 
3731   if (!stopped()) {
3732     // now we have two reference types, in klasses[0..1]
3733     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3734     Node* superk = klasses[0];  // the receiver
3735     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3736     // now we have a successful reference subtype check
3737     region->set_req(_ref_subtype_path, control());
3738   }
3739 
3740   // If both operands are primitive (both klasses null), then
3741   // we must return true when they are identical primitives.
3742   // It is convenient to test this after the first null klass check.
3743   set_control(region->in(_prim_0_path)); // go back to first null check
3744   if (!stopped()) {
3745     // Since superc is primitive, make a guard for the superc==subc case.
3746     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3747     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3748     generate_guard(bol_eq, region, PROB_FAIR);
3749     if (region->req() == PATH_LIMIT+1) {
3750       // A guard was added.  If the added guard is taken, superc==subc.
3751       region->swap_edges(PATH_LIMIT, _prim_same_path);
3752       region->del_req(PATH_LIMIT);
3753     }
3754     region->set_req(_prim_0_path, control()); // Not equal after all.
3755   }
3756 
3757   // these are the only paths that produce 'true':
3758   phi->set_req(_prim_same_path,   intcon(1));
3759   phi->set_req(_ref_subtype_path, intcon(1));
3760 
3761   // pull together the cases:
3762   assert(region->req() == PATH_LIMIT, "sane region");
3763   for (uint i = 1; i < region->req(); i++) {
3764     Node* ctl = region->in(i);
3765     if (ctl == NULL || ctl == top()) {
3766       region->set_req(i, top());
3767       phi   ->set_req(i, top());
3768     } else if (phi->in(i) == NULL) {
3769       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3770     }
3771   }
3772 
3773   set_control(_gvn.transform(region));
3774   set_result(_gvn.transform(phi));
3775   return true;
3776 }
3777 
3778 //---------------------generate_array_guard_common------------------------
3779 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3780                                                   bool obj_array, bool not_array) {
3781 
3782   if (stopped()) {
3783     return NULL;
3784   }
3785 
3786   // If obj_array/non_array==false/false:
3787   // Branch around if the given klass is in fact an array (either obj or prim).
3788   // If obj_array/non_array==false/true:
3789   // Branch around if the given klass is not an array klass of any kind.
3790   // If obj_array/non_array==true/true:
3791   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3792   // If obj_array/non_array==true/false:
3793   // Branch around if the kls is an oop array (Object[] or subtype)
3794   //
3795   // Like generate_guard, adds a new path onto the region.
3796   jint  layout_con = 0;
3797   Node* layout_val = get_layout_helper(kls, layout_con);
3798   if (layout_val == NULL) {
3799     bool query = (obj_array
3800                   ? Klass::layout_helper_is_objArray(layout_con)
3801                   : Klass::layout_helper_is_array(layout_con));
3802     if (query == not_array) {
3803       return NULL;                       // never a branch
3804     } else {                             // always a branch
3805       Node* always_branch = control();
3806       if (region != NULL)
3807         region->add_req(always_branch);
3808       set_control(top());
3809       return always_branch;
3810     }
3811   }
3812   // Now test the correct condition.
3813   jint  nval = (obj_array
3814                 ? (jint)(Klass::_lh_array_tag_type_value
3815                    <<    Klass::_lh_array_tag_shift)
3816                 : Klass::_lh_neutral_value);
3817   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3818   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3819   // invert the test if we are looking for a non-array
3820   if (not_array)  btest = BoolTest(btest).negate();
3821   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3822   return generate_fair_guard(bol, region);
3823 }
3824 
3825 
3826 //-----------------------inline_native_newArray--------------------------
3827 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3828 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3829 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3830   Node* mirror;
3831   Node* count_val;
3832   if (uninitialized) {
3833     mirror    = argument(1);
3834     count_val = argument(2);
3835   } else {
3836     mirror    = argument(0);
3837     count_val = argument(1);
3838   }
3839 
3840   mirror = null_check(mirror);
3841   // If mirror or obj is dead, only null-path is taken.
3842   if (stopped())  return true;
3843 
3844   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3845   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3846   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3847   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3848   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3849 
3850   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3851   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3852                                                   result_reg, _slow_path);
3853   Node* normal_ctl   = control();
3854   Node* no_array_ctl = result_reg->in(_slow_path);
3855 
3856   // Generate code for the slow case.  We make a call to newArray().
3857   set_control(no_array_ctl);
3858   if (!stopped()) {
3859     // Either the input type is void.class, or else the
3860     // array klass has not yet been cached.  Either the
3861     // ensuing call will throw an exception, or else it
3862     // will cache the array klass for next time.
3863     PreserveJVMState pjvms(this);
3864     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3865     Node* slow_result = set_results_for_java_call(slow_call);
3866     // this->control() comes from set_results_for_java_call
3867     result_reg->set_req(_slow_path, control());
3868     result_val->set_req(_slow_path, slow_result);
3869     result_io ->set_req(_slow_path, i_o());
3870     result_mem->set_req(_slow_path, reset_memory());
3871   }
3872 
3873   set_control(normal_ctl);
3874   if (!stopped()) {
3875     // Normal case:  The array type has been cached in the java.lang.Class.
3876     // The following call works fine even if the array type is polymorphic.
3877     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3878     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3879     result_reg->init_req(_normal_path, control());
3880     result_val->init_req(_normal_path, obj);
3881     result_io ->init_req(_normal_path, i_o());
3882     result_mem->init_req(_normal_path, reset_memory());
3883 
3884     if (uninitialized) {
3885       // Mark the allocation so that zeroing is skipped
3886       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3887       alloc->maybe_set_complete(&_gvn);
3888     }
3889   }
3890 
3891   // Return the combined state.
3892   set_i_o(        _gvn.transform(result_io)  );
3893   set_all_memory( _gvn.transform(result_mem));
3894 
3895   C->set_has_split_ifs(true); // Has chance for split-if optimization
3896   set_result(result_reg, result_val);
3897   return true;
3898 }
3899 
3900 //----------------------inline_native_getLength--------------------------
3901 // public static native int java.lang.reflect.Array.getLength(Object array);
3902 bool LibraryCallKit::inline_native_getLength() {
3903   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3904 
3905   Node* array = null_check(argument(0));
3906   // If array is dead, only null-path is taken.
3907   if (stopped())  return true;
3908 
3909   // Deoptimize if it is a non-array.
3910   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3911 
3912   if (non_array != NULL) {
3913     PreserveJVMState pjvms(this);
3914     set_control(non_array);
3915     uncommon_trap(Deoptimization::Reason_intrinsic,
3916                   Deoptimization::Action_maybe_recompile);
3917   }
3918 
3919   // If control is dead, only non-array-path is taken.
3920   if (stopped())  return true;
3921 
3922   // The works fine even if the array type is polymorphic.
3923   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3924   Node* result = load_array_length(array);
3925 
3926   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3927   set_result(result);
3928   return true;
3929 }
3930 
3931 //------------------------inline_array_copyOf----------------------------
3932 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3933 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3934 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3935   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3936 
3937   // Get the arguments.
3938   Node* original          = argument(0);
3939   Node* start             = is_copyOfRange? argument(1): intcon(0);
3940   Node* end               = is_copyOfRange? argument(2): argument(1);
3941   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3942 
3943   Node* newcopy = NULL;
3944 
3945   // Set the original stack and the reexecute bit for the interpreter to reexecute
3946   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3947   { PreserveReexecuteState preexecs(this);
3948     jvms()->set_should_reexecute(true);
3949 
3950     array_type_mirror = null_check(array_type_mirror);
3951     original          = null_check(original);
3952 
3953     // Check if a null path was taken unconditionally.
3954     if (stopped())  return true;
3955 
3956     Node* orig_length = load_array_length(original);
3957 
3958     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3959     klass_node = null_check(klass_node);
3960 
3961     RegionNode* bailout = new RegionNode(1);
3962     record_for_igvn(bailout);
3963 
3964     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3965     // Bail out if that is so.
3966     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3967     if (not_objArray != NULL) {
3968       // Improve the klass node's type from the new optimistic assumption:
3969       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3970       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3971       Node* cast = new CastPPNode(klass_node, akls);
3972       cast->init_req(0, control());
3973       klass_node = _gvn.transform(cast);
3974     }
3975 
3976     // Bail out if either start or end is negative.
3977     generate_negative_guard(start, bailout, &start);
3978     generate_negative_guard(end,   bailout, &end);
3979 
3980     Node* length = end;
3981     if (_gvn.type(start) != TypeInt::ZERO) {
3982       length = _gvn.transform(new SubINode(end, start));
3983     }
3984 
3985     // Bail out if length is negative.
3986     // Without this the new_array would throw
3987     // NegativeArraySizeException but IllegalArgumentException is what
3988     // should be thrown
3989     generate_negative_guard(length, bailout, &length);
3990 
3991     if (bailout->req() > 1) {
3992       PreserveJVMState pjvms(this);
3993       set_control(_gvn.transform(bailout));
3994       uncommon_trap(Deoptimization::Reason_intrinsic,
3995                     Deoptimization::Action_maybe_recompile);
3996     }
3997 
3998     if (!stopped()) {
3999       // How many elements will we copy from the original?
4000       // The answer is MinI(orig_length - start, length).
4001       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4002       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4003 
4004       // Generate a direct call to the right arraycopy function(s).
4005       // We know the copy is disjoint but we might not know if the
4006       // oop stores need checking.
4007       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4008       // This will fail a store-check if x contains any non-nulls.
4009 
4010       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4011       // loads/stores but it is legal only if we're sure the
4012       // Arrays.copyOf would succeed. So we need all input arguments
4013       // to the copyOf to be validated, including that the copy to the
4014       // new array won't trigger an ArrayStoreException. That subtype
4015       // check can be optimized if we know something on the type of
4016       // the input array from type speculation.
4017       if (_gvn.type(klass_node)->singleton()) {
4018         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4019         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4020 
4021         int test = C->static_subtype_check(superk, subk);
4022         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4023           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4024           if (t_original->speculative_type() != NULL) {
4025             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4026           }
4027         }
4028       }
4029 
4030       bool validated = false;
4031       // Reason_class_check rather than Reason_intrinsic because we
4032       // want to intrinsify even if this traps.
4033       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4034         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4035                                                    klass_node);
4036 
4037         if (not_subtype_ctrl != top()) {
4038           PreserveJVMState pjvms(this);
4039           set_control(not_subtype_ctrl);
4040           uncommon_trap(Deoptimization::Reason_class_check,
4041                         Deoptimization::Action_make_not_entrant);
4042           assert(stopped(), "Should be stopped");
4043         }
4044         validated = true;
4045       }
4046 
4047       if (!stopped()) {
4048         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4049 
4050         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4051                                                 load_object_klass(original), klass_node);
4052         if (!is_copyOfRange) {
4053           ac->set_copyof(validated);
4054         } else {
4055           ac->set_copyofrange(validated);
4056         }
4057         Node* n = _gvn.transform(ac);
4058         if (n == ac) {
4059           ac->connect_outputs(this);
4060         } else {
4061           assert(validated, "shouldn't transform if all arguments not validated");
4062           set_all_memory(n);
4063         }
4064       }
4065     }
4066   } // original reexecute is set back here
4067 
4068   C->set_has_split_ifs(true); // Has chance for split-if optimization
4069   if (!stopped()) {
4070     set_result(newcopy);
4071   }
4072   return true;
4073 }
4074 
4075 
4076 //----------------------generate_virtual_guard---------------------------
4077 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4078 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4079                                              RegionNode* slow_region) {
4080   ciMethod* method = callee();
4081   int vtable_index = method->vtable_index();
4082   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4083          "bad index %d", vtable_index);
4084   // Get the Method* out of the appropriate vtable entry.
4085   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4086                      vtable_index*vtableEntry::size_in_bytes() +
4087                      vtableEntry::method_offset_in_bytes();
4088   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4089   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4090 
4091   // Compare the target method with the expected method (e.g., Object.hashCode).
4092   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4093 
4094   Node* native_call = makecon(native_call_addr);
4095   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4096   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4097 
4098   return generate_slow_guard(test_native, slow_region);
4099 }
4100 
4101 //-----------------------generate_method_call----------------------------
4102 // Use generate_method_call to make a slow-call to the real
4103 // method if the fast path fails.  An alternative would be to
4104 // use a stub like OptoRuntime::slow_arraycopy_Java.
4105 // This only works for expanding the current library call,
4106 // not another intrinsic.  (E.g., don't use this for making an
4107 // arraycopy call inside of the copyOf intrinsic.)
4108 CallJavaNode*
4109 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4110   // When compiling the intrinsic method itself, do not use this technique.
4111   guarantee(callee() != C->method(), "cannot make slow-call to self");
4112 
4113   ciMethod* method = callee();
4114   // ensure the JVMS we have will be correct for this call
4115   guarantee(method_id == method->intrinsic_id(), "must match");
4116 
4117   const TypeFunc* tf = TypeFunc::make(method);
4118   CallJavaNode* slow_call;
4119   if (is_static) {
4120     assert(!is_virtual, "");
4121     slow_call = new CallStaticJavaNode(C, tf,
4122                            SharedRuntime::get_resolve_static_call_stub(),
4123                            method, bci());
4124   } else if (is_virtual) {
4125     null_check_receiver();
4126     int vtable_index = Method::invalid_vtable_index;
4127     if (UseInlineCaches) {
4128       // Suppress the vtable call
4129     } else {
4130       // hashCode and clone are not a miranda methods,
4131       // so the vtable index is fixed.
4132       // No need to use the linkResolver to get it.
4133        vtable_index = method->vtable_index();
4134        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4135               "bad index %d", vtable_index);
4136     }
4137     slow_call = new CallDynamicJavaNode(tf,
4138                           SharedRuntime::get_resolve_virtual_call_stub(),
4139                           method, vtable_index, bci());
4140   } else {  // neither virtual nor static:  opt_virtual
4141     null_check_receiver();
4142     slow_call = new CallStaticJavaNode(C, tf,
4143                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4144                                 method, bci());
4145     slow_call->set_optimized_virtual(true);
4146   }
4147   set_arguments_for_java_call(slow_call);
4148   set_edges_for_java_call(slow_call);
4149   return slow_call;
4150 }
4151 
4152 
4153 /**
4154  * Build special case code for calls to hashCode on an object. This call may
4155  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4156  * slightly different code.
4157  */
4158 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4159   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4160   assert(!(is_virtual && is_static), "either virtual, special, or static");
4161 
4162   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4163 
4164   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4165   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4166   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4167   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4168   Node* obj = NULL;
4169   if (!is_static) {
4170     // Check for hashing null object
4171     obj = null_check_receiver();
4172     if (stopped())  return true;        // unconditionally null
4173     result_reg->init_req(_null_path, top());
4174     result_val->init_req(_null_path, top());
4175   } else {
4176     // Do a null check, and return zero if null.
4177     // System.identityHashCode(null) == 0
4178     obj = argument(0);
4179     Node* null_ctl = top();
4180     obj = null_check_oop(obj, &null_ctl);
4181     result_reg->init_req(_null_path, null_ctl);
4182     result_val->init_req(_null_path, _gvn.intcon(0));
4183   }
4184 
4185   // Unconditionally null?  Then return right away.
4186   if (stopped()) {
4187     set_control( result_reg->in(_null_path));
4188     if (!stopped())
4189       set_result(result_val->in(_null_path));
4190     return true;
4191   }
4192 
4193   // We only go to the fast case code if we pass a number of guards.  The
4194   // paths which do not pass are accumulated in the slow_region.
4195   RegionNode* slow_region = new RegionNode(1);
4196   record_for_igvn(slow_region);
4197 
4198   // If this is a virtual call, we generate a funny guard.  We pull out
4199   // the vtable entry corresponding to hashCode() from the target object.
4200   // If the target method which we are calling happens to be the native
4201   // Object hashCode() method, we pass the guard.  We do not need this
4202   // guard for non-virtual calls -- the caller is known to be the native
4203   // Object hashCode().
4204   if (is_virtual) {
4205     // After null check, get the object's klass.
4206     Node* obj_klass = load_object_klass(obj);
4207     generate_virtual_guard(obj_klass, slow_region);
4208   }
4209 
4210   // Get the header out of the object, use LoadMarkNode when available
4211   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4212   // The control of the load must be NULL. Otherwise, the load can move before
4213   // the null check after castPP removal.
4214   Node* no_ctrl = NULL;
4215   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4216 
4217   // Test the header to see if it is unlocked.
4218   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4219   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4220   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4221   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4222   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4223 
4224   generate_slow_guard(test_unlocked, slow_region);
4225 
4226   // Get the hash value and check to see that it has been properly assigned.
4227   // We depend on hash_mask being at most 32 bits and avoid the use of
4228   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4229   // vm: see markOop.hpp.
4230   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4231   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4232   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4233   // This hack lets the hash bits live anywhere in the mark object now, as long
4234   // as the shift drops the relevant bits into the low 32 bits.  Note that
4235   // Java spec says that HashCode is an int so there's no point in capturing
4236   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4237   hshifted_header      = ConvX2I(hshifted_header);
4238   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4239 
4240   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4241   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4242   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4243 
4244   generate_slow_guard(test_assigned, slow_region);
4245 
4246   Node* init_mem = reset_memory();
4247   // fill in the rest of the null path:
4248   result_io ->init_req(_null_path, i_o());
4249   result_mem->init_req(_null_path, init_mem);
4250 
4251   result_val->init_req(_fast_path, hash_val);
4252   result_reg->init_req(_fast_path, control());
4253   result_io ->init_req(_fast_path, i_o());
4254   result_mem->init_req(_fast_path, init_mem);
4255 
4256   // Generate code for the slow case.  We make a call to hashCode().
4257   set_control(_gvn.transform(slow_region));
4258   if (!stopped()) {
4259     // No need for PreserveJVMState, because we're using up the present state.
4260     set_all_memory(init_mem);
4261     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4262     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4263     Node* slow_result = set_results_for_java_call(slow_call);
4264     // this->control() comes from set_results_for_java_call
4265     result_reg->init_req(_slow_path, control());
4266     result_val->init_req(_slow_path, slow_result);
4267     result_io  ->set_req(_slow_path, i_o());
4268     result_mem ->set_req(_slow_path, reset_memory());
4269   }
4270 
4271   // Return the combined state.
4272   set_i_o(        _gvn.transform(result_io)  );
4273   set_all_memory( _gvn.transform(result_mem));
4274 
4275   set_result(result_reg, result_val);
4276   return true;
4277 }
4278 
4279 //---------------------------inline_native_getClass----------------------------
4280 // public final native Class<?> java.lang.Object.getClass();
4281 //
4282 // Build special case code for calls to getClass on an object.
4283 bool LibraryCallKit::inline_native_getClass() {
4284   Node* obj = null_check_receiver();
4285   if (stopped())  return true;
4286   set_result(load_mirror_from_klass(load_object_klass(obj)));
4287   return true;
4288 }
4289 
4290 //-----------------inline_native_Reflection_getCallerClass---------------------
4291 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4292 //
4293 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4294 //
4295 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4296 // in that it must skip particular security frames and checks for
4297 // caller sensitive methods.
4298 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4299 #ifndef PRODUCT
4300   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4301     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4302   }
4303 #endif
4304 
4305   if (!jvms()->has_method()) {
4306 #ifndef PRODUCT
4307     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4308       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4309     }
4310 #endif
4311     return false;
4312   }
4313 
4314   // Walk back up the JVM state to find the caller at the required
4315   // depth.
4316   JVMState* caller_jvms = jvms();
4317 
4318   // Cf. JVM_GetCallerClass
4319   // NOTE: Start the loop at depth 1 because the current JVM state does
4320   // not include the Reflection.getCallerClass() frame.
4321   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4322     ciMethod* m = caller_jvms->method();
4323     switch (n) {
4324     case 0:
4325       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4326       break;
4327     case 1:
4328       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4329       if (!m->caller_sensitive()) {
4330 #ifndef PRODUCT
4331         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4332           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4333         }
4334 #endif
4335         return false;  // bail-out; let JVM_GetCallerClass do the work
4336       }
4337       break;
4338     default:
4339       if (!m->is_ignored_by_security_stack_walk()) {
4340         // We have reached the desired frame; return the holder class.
4341         // Acquire method holder as java.lang.Class and push as constant.
4342         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4343         ciInstance* caller_mirror = caller_klass->java_mirror();
4344         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4345 
4346 #ifndef PRODUCT
4347         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4348           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4349           tty->print_cr("  JVM state at this point:");
4350           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4351             ciMethod* m = jvms()->of_depth(i)->method();
4352             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4353           }
4354         }
4355 #endif
4356         return true;
4357       }
4358       break;
4359     }
4360   }
4361 
4362 #ifndef PRODUCT
4363   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4364     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4365     tty->print_cr("  JVM state at this point:");
4366     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4367       ciMethod* m = jvms()->of_depth(i)->method();
4368       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4369     }
4370   }
4371 #endif
4372 
4373   return false;  // bail-out; let JVM_GetCallerClass do the work
4374 }
4375 
4376 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4377   Node* arg = argument(0);
4378   Node* result = NULL;
4379 
4380   switch (id) {
4381   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4382   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4383   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4384   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4385 
4386   case vmIntrinsics::_doubleToLongBits: {
4387     // two paths (plus control) merge in a wood
4388     RegionNode *r = new RegionNode(3);
4389     Node *phi = new PhiNode(r, TypeLong::LONG);
4390 
4391     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4392     // Build the boolean node
4393     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4394 
4395     // Branch either way.
4396     // NaN case is less traveled, which makes all the difference.
4397     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4398     Node *opt_isnan = _gvn.transform(ifisnan);
4399     assert( opt_isnan->is_If(), "Expect an IfNode");
4400     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4401     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4402 
4403     set_control(iftrue);
4404 
4405     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4406     Node *slow_result = longcon(nan_bits); // return NaN
4407     phi->init_req(1, _gvn.transform( slow_result ));
4408     r->init_req(1, iftrue);
4409 
4410     // Else fall through
4411     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4412     set_control(iffalse);
4413 
4414     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4415     r->init_req(2, iffalse);
4416 
4417     // Post merge
4418     set_control(_gvn.transform(r));
4419     record_for_igvn(r);
4420 
4421     C->set_has_split_ifs(true); // Has chance for split-if optimization
4422     result = phi;
4423     assert(result->bottom_type()->isa_long(), "must be");
4424     break;
4425   }
4426 
4427   case vmIntrinsics::_floatToIntBits: {
4428     // two paths (plus control) merge in a wood
4429     RegionNode *r = new RegionNode(3);
4430     Node *phi = new PhiNode(r, TypeInt::INT);
4431 
4432     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4433     // Build the boolean node
4434     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4435 
4436     // Branch either way.
4437     // NaN case is less traveled, which makes all the difference.
4438     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4439     Node *opt_isnan = _gvn.transform(ifisnan);
4440     assert( opt_isnan->is_If(), "Expect an IfNode");
4441     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4442     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4443 
4444     set_control(iftrue);
4445 
4446     static const jint nan_bits = 0x7fc00000;
4447     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4448     phi->init_req(1, _gvn.transform( slow_result ));
4449     r->init_req(1, iftrue);
4450 
4451     // Else fall through
4452     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4453     set_control(iffalse);
4454 
4455     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4456     r->init_req(2, iffalse);
4457 
4458     // Post merge
4459     set_control(_gvn.transform(r));
4460     record_for_igvn(r);
4461 
4462     C->set_has_split_ifs(true); // Has chance for split-if optimization
4463     result = phi;
4464     assert(result->bottom_type()->isa_int(), "must be");
4465     break;
4466   }
4467 
4468   default:
4469     fatal_unexpected_iid(id);
4470     break;
4471   }
4472   set_result(_gvn.transform(result));
4473   return true;
4474 }
4475 
4476 //----------------------inline_unsafe_copyMemory-------------------------
4477 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4478 bool LibraryCallKit::inline_unsafe_copyMemory() {
4479   if (callee()->is_static())  return false;  // caller must have the capability!
4480   null_check_receiver();  // null-check receiver
4481   if (stopped())  return true;
4482 
4483   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4484 
4485   Node* src_ptr =         argument(1);   // type: oop
4486   Node* src_off = ConvL2X(argument(2));  // type: long
4487   Node* dst_ptr =         argument(4);   // type: oop
4488   Node* dst_off = ConvL2X(argument(5));  // type: long
4489   Node* size    = ConvL2X(argument(7));  // type: long
4490 
4491   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4492          "fieldOffset must be byte-scaled");
4493 
4494   Node* src = make_unsafe_address(src_ptr, src_off);
4495   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4496 
4497   // Conservatively insert a memory barrier on all memory slices.
4498   // Do not let writes of the copy source or destination float below the copy.
4499   insert_mem_bar(Op_MemBarCPUOrder);
4500 
4501   // Call it.  Note that the length argument is not scaled.
4502   make_runtime_call(RC_LEAF|RC_NO_FP,
4503                     OptoRuntime::fast_arraycopy_Type(),
4504                     StubRoutines::unsafe_arraycopy(),
4505                     "unsafe_arraycopy",
4506                     TypeRawPtr::BOTTOM,
4507                     src, dst, size XTOP);
4508 
4509   // Do not let reads of the copy destination float above the copy.
4510   insert_mem_bar(Op_MemBarCPUOrder);
4511 
4512   return true;
4513 }
4514 
4515 //------------------------clone_coping-----------------------------------
4516 // Helper function for inline_native_clone.
4517 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4518   assert(obj_size != NULL, "");
4519   Node* raw_obj = alloc_obj->in(1);
4520   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4521 
4522   AllocateNode* alloc = NULL;
4523   if (ReduceBulkZeroing) {
4524     // We will be completely responsible for initializing this object -
4525     // mark Initialize node as complete.
4526     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4527     // The object was just allocated - there should be no any stores!
4528     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4529     // Mark as complete_with_arraycopy so that on AllocateNode
4530     // expansion, we know this AllocateNode is initialized by an array
4531     // copy and a StoreStore barrier exists after the array copy.
4532     alloc->initialization()->set_complete_with_arraycopy();
4533   }
4534 
4535   // Copy the fastest available way.
4536   // TODO: generate fields copies for small objects instead.
4537   Node* src  = obj;
4538   Node* dest = alloc_obj;
4539   Node* size = _gvn.transform(obj_size);
4540 
4541   // Exclude the header but include array length to copy by 8 bytes words.
4542   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4543   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4544                             instanceOopDesc::base_offset_in_bytes();
4545   // base_off:
4546   // 8  - 32-bit VM
4547   // 12 - 64-bit VM, compressed klass
4548   // 16 - 64-bit VM, normal klass
4549   if (base_off % BytesPerLong != 0) {
4550     assert(UseCompressedClassPointers, "");
4551     if (is_array) {
4552       // Exclude length to copy by 8 bytes words.
4553       base_off += sizeof(int);
4554     } else {
4555       // Include klass to copy by 8 bytes words.
4556       base_off = instanceOopDesc::klass_offset_in_bytes();
4557     }
4558     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4559   }
4560   src  = basic_plus_adr(src,  base_off);
4561   dest = basic_plus_adr(dest, base_off);
4562 
4563   // Compute the length also, if needed:
4564   Node* countx = size;
4565   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4566   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4567 
4568   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4569 
4570   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4571   ac->set_clonebasic();
4572   Node* n = _gvn.transform(ac);
4573   if (n == ac) {
4574     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4575   } else {
4576     set_all_memory(n);
4577   }
4578 
4579   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4580   if (card_mark) {
4581     assert(!is_array, "");
4582     // Put in store barrier for any and all oops we are sticking
4583     // into this object.  (We could avoid this if we could prove
4584     // that the object type contains no oop fields at all.)
4585     Node* no_particular_value = NULL;
4586     Node* no_particular_field = NULL;
4587     int raw_adr_idx = Compile::AliasIdxRaw;
4588     post_barrier(control(),
4589                  memory(raw_adr_type),
4590                  alloc_obj,
4591                  no_particular_field,
4592                  raw_adr_idx,
4593                  no_particular_value,
4594                  T_OBJECT,
4595                  false);
4596   }
4597 
4598   // Do not let reads from the cloned object float above the arraycopy.
4599   if (alloc != NULL) {
4600     // Do not let stores that initialize this object be reordered with
4601     // a subsequent store that would make this object accessible by
4602     // other threads.
4603     // Record what AllocateNode this StoreStore protects so that
4604     // escape analysis can go from the MemBarStoreStoreNode to the
4605     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4606     // based on the escape status of the AllocateNode.
4607     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4608   } else {
4609     insert_mem_bar(Op_MemBarCPUOrder);
4610   }
4611 }
4612 
4613 //------------------------inline_native_clone----------------------------
4614 // protected native Object java.lang.Object.clone();
4615 //
4616 // Here are the simple edge cases:
4617 //  null receiver => normal trap
4618 //  virtual and clone was overridden => slow path to out-of-line clone
4619 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4620 //
4621 // The general case has two steps, allocation and copying.
4622 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4623 //
4624 // Copying also has two cases, oop arrays and everything else.
4625 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4626 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4627 //
4628 // These steps fold up nicely if and when the cloned object's klass
4629 // can be sharply typed as an object array, a type array, or an instance.
4630 //
4631 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4632   PhiNode* result_val;
4633 
4634   // Set the reexecute bit for the interpreter to reexecute
4635   // the bytecode that invokes Object.clone if deoptimization happens.
4636   { PreserveReexecuteState preexecs(this);
4637     jvms()->set_should_reexecute(true);
4638 
4639     Node* obj = null_check_receiver();
4640     if (stopped())  return true;
4641 
4642     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4643 
4644     // If we are going to clone an instance, we need its exact type to
4645     // know the number and types of fields to convert the clone to
4646     // loads/stores. Maybe a speculative type can help us.
4647     if (!obj_type->klass_is_exact() &&
4648         obj_type->speculative_type() != NULL &&
4649         obj_type->speculative_type()->is_instance_klass()) {
4650       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4651       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4652           !spec_ik->has_injected_fields()) {
4653         ciKlass* k = obj_type->klass();
4654         if (!k->is_instance_klass() ||
4655             k->as_instance_klass()->is_interface() ||
4656             k->as_instance_klass()->has_subklass()) {
4657           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4658         }
4659       }
4660     }
4661 
4662     Node* obj_klass = load_object_klass(obj);
4663     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4664     const TypeOopPtr*   toop   = ((tklass != NULL)
4665                                 ? tklass->as_instance_type()
4666                                 : TypeInstPtr::NOTNULL);
4667 
4668     // Conservatively insert a memory barrier on all memory slices.
4669     // Do not let writes into the original float below the clone.
4670     insert_mem_bar(Op_MemBarCPUOrder);
4671 
4672     // paths into result_reg:
4673     enum {
4674       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4675       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4676       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4677       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4678       PATH_LIMIT
4679     };
4680     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4681     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4682     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4683     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4684     record_for_igvn(result_reg);
4685 
4686     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4687     int raw_adr_idx = Compile::AliasIdxRaw;
4688 
4689     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4690     if (array_ctl != NULL) {
4691       // It's an array.
4692       PreserveJVMState pjvms(this);
4693       set_control(array_ctl);
4694       Node* obj_length = load_array_length(obj);
4695       Node* obj_size  = NULL;
4696       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4697 
4698       if (!use_ReduceInitialCardMarks()) {
4699         // If it is an oop array, it requires very special treatment,
4700         // because card marking is required on each card of the array.
4701         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4702         if (is_obja != NULL) {
4703           PreserveJVMState pjvms2(this);
4704           set_control(is_obja);
4705           // Generate a direct call to the right arraycopy function(s).
4706           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4707           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4708           ac->set_cloneoop();
4709           Node* n = _gvn.transform(ac);
4710           assert(n == ac, "cannot disappear");
4711           ac->connect_outputs(this);
4712 
4713           result_reg->init_req(_objArray_path, control());
4714           result_val->init_req(_objArray_path, alloc_obj);
4715           result_i_o ->set_req(_objArray_path, i_o());
4716           result_mem ->set_req(_objArray_path, reset_memory());
4717         }
4718       }
4719       // Otherwise, there are no card marks to worry about.
4720       // (We can dispense with card marks if we know the allocation
4721       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4722       //  causes the non-eden paths to take compensating steps to
4723       //  simulate a fresh allocation, so that no further
4724       //  card marks are required in compiled code to initialize
4725       //  the object.)
4726 
4727       if (!stopped()) {
4728         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4729 
4730         // Present the results of the copy.
4731         result_reg->init_req(_array_path, control());
4732         result_val->init_req(_array_path, alloc_obj);
4733         result_i_o ->set_req(_array_path, i_o());
4734         result_mem ->set_req(_array_path, reset_memory());
4735       }
4736     }
4737 
4738     // We only go to the instance fast case code if we pass a number of guards.
4739     // The paths which do not pass are accumulated in the slow_region.
4740     RegionNode* slow_region = new RegionNode(1);
4741     record_for_igvn(slow_region);
4742     if (!stopped()) {
4743       // It's an instance (we did array above).  Make the slow-path tests.
4744       // If this is a virtual call, we generate a funny guard.  We grab
4745       // the vtable entry corresponding to clone() from the target object.
4746       // If the target method which we are calling happens to be the
4747       // Object clone() method, we pass the guard.  We do not need this
4748       // guard for non-virtual calls; the caller is known to be the native
4749       // Object clone().
4750       if (is_virtual) {
4751         generate_virtual_guard(obj_klass, slow_region);
4752       }
4753 
4754       // The object must be easily cloneable and must not have a finalizer.
4755       // Both of these conditions may be checked in a single test.
4756       // We could optimize the test further, but we don't care.
4757       generate_access_flags_guard(obj_klass,
4758                                   // Test both conditions:
4759                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4760                                   // Must be cloneable but not finalizer:
4761                                   JVM_ACC_IS_CLONEABLE_FAST,
4762                                   slow_region);
4763     }
4764 
4765     if (!stopped()) {
4766       // It's an instance, and it passed the slow-path tests.
4767       PreserveJVMState pjvms(this);
4768       Node* obj_size  = NULL;
4769       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4770       // is reexecuted if deoptimization occurs and there could be problems when merging
4771       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4772       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4773 
4774       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4775 
4776       // Present the results of the slow call.
4777       result_reg->init_req(_instance_path, control());
4778       result_val->init_req(_instance_path, alloc_obj);
4779       result_i_o ->set_req(_instance_path, i_o());
4780       result_mem ->set_req(_instance_path, reset_memory());
4781     }
4782 
4783     // Generate code for the slow case.  We make a call to clone().
4784     set_control(_gvn.transform(slow_region));
4785     if (!stopped()) {
4786       PreserveJVMState pjvms(this);
4787       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4788       Node* slow_result = set_results_for_java_call(slow_call);
4789       // this->control() comes from set_results_for_java_call
4790       result_reg->init_req(_slow_path, control());
4791       result_val->init_req(_slow_path, slow_result);
4792       result_i_o ->set_req(_slow_path, i_o());
4793       result_mem ->set_req(_slow_path, reset_memory());
4794     }
4795 
4796     // Return the combined state.
4797     set_control(    _gvn.transform(result_reg));
4798     set_i_o(        _gvn.transform(result_i_o));
4799     set_all_memory( _gvn.transform(result_mem));
4800   } // original reexecute is set back here
4801 
4802   set_result(_gvn.transform(result_val));
4803   return true;
4804 }
4805 
4806 // If we have a tighly coupled allocation, the arraycopy may take care
4807 // of the array initialization. If one of the guards we insert between
4808 // the allocation and the arraycopy causes a deoptimization, an
4809 // unitialized array will escape the compiled method. To prevent that
4810 // we set the JVM state for uncommon traps between the allocation and
4811 // the arraycopy to the state before the allocation so, in case of
4812 // deoptimization, we'll reexecute the allocation and the
4813 // initialization.
4814 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4815   if (alloc != NULL) {
4816     ciMethod* trap_method = alloc->jvms()->method();
4817     int trap_bci = alloc->jvms()->bci();
4818 
4819     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4820           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4821       // Make sure there's no store between the allocation and the
4822       // arraycopy otherwise visible side effects could be rexecuted
4823       // in case of deoptimization and cause incorrect execution.
4824       bool no_interfering_store = true;
4825       Node* mem = alloc->in(TypeFunc::Memory);
4826       if (mem->is_MergeMem()) {
4827         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4828           Node* n = mms.memory();
4829           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4830             assert(n->is_Store(), "what else?");
4831             no_interfering_store = false;
4832             break;
4833           }
4834         }
4835       } else {
4836         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4837           Node* n = mms.memory();
4838           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4839             assert(n->is_Store(), "what else?");
4840             no_interfering_store = false;
4841             break;
4842           }
4843         }
4844       }
4845 
4846       if (no_interfering_store) {
4847         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4848         uint size = alloc->req();
4849         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4850         old_jvms->set_map(sfpt);
4851         for (uint i = 0; i < size; i++) {
4852           sfpt->init_req(i, alloc->in(i));
4853         }
4854         // re-push array length for deoptimization
4855         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4856         old_jvms->set_sp(old_jvms->sp()+1);
4857         old_jvms->set_monoff(old_jvms->monoff()+1);
4858         old_jvms->set_scloff(old_jvms->scloff()+1);
4859         old_jvms->set_endoff(old_jvms->endoff()+1);
4860         old_jvms->set_should_reexecute(true);
4861 
4862         sfpt->set_i_o(map()->i_o());
4863         sfpt->set_memory(map()->memory());
4864         sfpt->set_control(map()->control());
4865 
4866         JVMState* saved_jvms = jvms();
4867         saved_reexecute_sp = _reexecute_sp;
4868 
4869         set_jvms(sfpt->jvms());
4870         _reexecute_sp = jvms()->sp();
4871 
4872         return saved_jvms;
4873       }
4874     }
4875   }
4876   return NULL;
4877 }
4878 
4879 // In case of a deoptimization, we restart execution at the
4880 // allocation, allocating a new array. We would leave an uninitialized
4881 // array in the heap that GCs wouldn't expect. Move the allocation
4882 // after the traps so we don't allocate the array if we
4883 // deoptimize. This is possible because tightly_coupled_allocation()
4884 // guarantees there's no observer of the allocated array at this point
4885 // and the control flow is simple enough.
4886 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4887                                                     int saved_reexecute_sp, uint new_idx) {
4888   if (saved_jvms != NULL && !stopped()) {
4889     assert(alloc != NULL, "only with a tightly coupled allocation");
4890     // restore JVM state to the state at the arraycopy
4891     saved_jvms->map()->set_control(map()->control());
4892     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4893     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4894     // If we've improved the types of some nodes (null check) while
4895     // emitting the guards, propagate them to the current state
4896     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4897     set_jvms(saved_jvms);
4898     _reexecute_sp = saved_reexecute_sp;
4899 
4900     // Remove the allocation from above the guards
4901     CallProjections callprojs;
4902     alloc->extract_projections(&callprojs, true);
4903     InitializeNode* init = alloc->initialization();
4904     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4905     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4906     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4907     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4908 
4909     // move the allocation here (after the guards)
4910     _gvn.hash_delete(alloc);
4911     alloc->set_req(TypeFunc::Control, control());
4912     alloc->set_req(TypeFunc::I_O, i_o());
4913     Node *mem = reset_memory();
4914     set_all_memory(mem);
4915     alloc->set_req(TypeFunc::Memory, mem);
4916     set_control(init->proj_out(TypeFunc::Control));
4917     set_i_o(callprojs.fallthrough_ioproj);
4918 
4919     // Update memory as done in GraphKit::set_output_for_allocation()
4920     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4921     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4922     if (ary_type->isa_aryptr() && length_type != NULL) {
4923       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4924     }
4925     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4926     int            elemidx  = C->get_alias_index(telemref);
4927     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4928     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4929 
4930     Node* allocx = _gvn.transform(alloc);
4931     assert(allocx == alloc, "where has the allocation gone?");
4932     assert(dest->is_CheckCastPP(), "not an allocation result?");
4933 
4934     _gvn.hash_delete(dest);
4935     dest->set_req(0, control());
4936     Node* destx = _gvn.transform(dest);
4937     assert(destx == dest, "where has the allocation result gone?");
4938   }
4939 }
4940 
4941 
4942 //------------------------------inline_arraycopy-----------------------
4943 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4944 //                                                      Object dest, int destPos,
4945 //                                                      int length);
4946 bool LibraryCallKit::inline_arraycopy() {
4947   // Get the arguments.
4948   Node* src         = argument(0);  // type: oop
4949   Node* src_offset  = argument(1);  // type: int
4950   Node* dest        = argument(2);  // type: oop
4951   Node* dest_offset = argument(3);  // type: int
4952   Node* length      = argument(4);  // type: int
4953 
4954   uint new_idx = C->unique();
4955 
4956   // Check for allocation before we add nodes that would confuse
4957   // tightly_coupled_allocation()
4958   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4959 
4960   int saved_reexecute_sp = -1;
4961   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4962   // See arraycopy_restore_alloc_state() comment
4963   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4964   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4965   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4966   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4967 
4968   // The following tests must be performed
4969   // (1) src and dest are arrays.
4970   // (2) src and dest arrays must have elements of the same BasicType
4971   // (3) src and dest must not be null.
4972   // (4) src_offset must not be negative.
4973   // (5) dest_offset must not be negative.
4974   // (6) length must not be negative.
4975   // (7) src_offset + length must not exceed length of src.
4976   // (8) dest_offset + length must not exceed length of dest.
4977   // (9) each element of an oop array must be assignable
4978 
4979   // (3) src and dest must not be null.
4980   // always do this here because we need the JVM state for uncommon traps
4981   Node* null_ctl = top();
4982   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4983   assert(null_ctl->is_top(), "no null control here");
4984   dest = null_check(dest, T_ARRAY);
4985 
4986   if (!can_emit_guards) {
4987     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4988     // guards but the arraycopy node could still take advantage of a
4989     // tightly allocated allocation. tightly_coupled_allocation() is
4990     // called again to make sure it takes the null check above into
4991     // account: the null check is mandatory and if it caused an
4992     // uncommon trap to be emitted then the allocation can't be
4993     // considered tightly coupled in this context.
4994     alloc = tightly_coupled_allocation(dest, NULL);
4995   }
4996 
4997   bool validated = false;
4998 
4999   const Type* src_type  = _gvn.type(src);
5000   const Type* dest_type = _gvn.type(dest);
5001   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5002   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5003 
5004   // Do we have the type of src?
5005   bool has_src = (top_src != NULL && top_src->klass() != NULL);
5006   // Do we have the type of dest?
5007   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5008   // Is the type for src from speculation?
5009   bool src_spec = false;
5010   // Is the type for dest from speculation?
5011   bool dest_spec = false;
5012 
5013   if ((!has_src || !has_dest) && can_emit_guards) {
5014     // We don't have sufficient type information, let's see if
5015     // speculative types can help. We need to have types for both src
5016     // and dest so that it pays off.
5017 
5018     // Do we already have or could we have type information for src
5019     bool could_have_src = has_src;
5020     // Do we already have or could we have type information for dest
5021     bool could_have_dest = has_dest;
5022 
5023     ciKlass* src_k = NULL;
5024     if (!has_src) {
5025       src_k = src_type->speculative_type_not_null();
5026       if (src_k != NULL && src_k->is_array_klass()) {
5027         could_have_src = true;
5028       }
5029     }
5030 
5031     ciKlass* dest_k = NULL;
5032     if (!has_dest) {
5033       dest_k = dest_type->speculative_type_not_null();
5034       if (dest_k != NULL && dest_k->is_array_klass()) {
5035         could_have_dest = true;
5036       }
5037     }
5038 
5039     if (could_have_src && could_have_dest) {
5040       // This is going to pay off so emit the required guards
5041       if (!has_src) {
5042         src = maybe_cast_profiled_obj(src, src_k, true);
5043         src_type  = _gvn.type(src);
5044         top_src  = src_type->isa_aryptr();
5045         has_src = (top_src != NULL && top_src->klass() != NULL);
5046         src_spec = true;
5047       }
5048       if (!has_dest) {
5049         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5050         dest_type  = _gvn.type(dest);
5051         top_dest  = dest_type->isa_aryptr();
5052         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5053         dest_spec = true;
5054       }
5055     }
5056   }
5057 
5058   if (has_src && has_dest && can_emit_guards) {
5059     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5060     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5061     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5062     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5063 
5064     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5065       // If both arrays are object arrays then having the exact types
5066       // for both will remove the need for a subtype check at runtime
5067       // before the call and may make it possible to pick a faster copy
5068       // routine (without a subtype check on every element)
5069       // Do we have the exact type of src?
5070       bool could_have_src = src_spec;
5071       // Do we have the exact type of dest?
5072       bool could_have_dest = dest_spec;
5073       ciKlass* src_k = top_src->klass();
5074       ciKlass* dest_k = top_dest->klass();
5075       if (!src_spec) {
5076         src_k = src_type->speculative_type_not_null();
5077         if (src_k != NULL && src_k->is_array_klass()) {
5078           could_have_src = true;
5079         }
5080       }
5081       if (!dest_spec) {
5082         dest_k = dest_type->speculative_type_not_null();
5083         if (dest_k != NULL && dest_k->is_array_klass()) {
5084           could_have_dest = true;
5085         }
5086       }
5087       if (could_have_src && could_have_dest) {
5088         // If we can have both exact types, emit the missing guards
5089         if (could_have_src && !src_spec) {
5090           src = maybe_cast_profiled_obj(src, src_k, true);
5091         }
5092         if (could_have_dest && !dest_spec) {
5093           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5094         }
5095       }
5096     }
5097   }
5098 
5099   ciMethod* trap_method = method();
5100   int trap_bci = bci();
5101   if (saved_jvms != NULL) {
5102     trap_method = alloc->jvms()->method();
5103     trap_bci = alloc->jvms()->bci();
5104   }
5105 
5106   bool negative_length_guard_generated = false;
5107 
5108   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5109       can_emit_guards &&
5110       !src->is_top() && !dest->is_top()) {
5111     // validate arguments: enables transformation the ArrayCopyNode
5112     validated = true;
5113 
5114     RegionNode* slow_region = new RegionNode(1);
5115     record_for_igvn(slow_region);
5116 
5117     // (1) src and dest are arrays.
5118     generate_non_array_guard(load_object_klass(src), slow_region);
5119     generate_non_array_guard(load_object_klass(dest), slow_region);
5120 
5121     // (2) src and dest arrays must have elements of the same BasicType
5122     // done at macro expansion or at Ideal transformation time
5123 
5124     // (4) src_offset must not be negative.
5125     generate_negative_guard(src_offset, slow_region);
5126 
5127     // (5) dest_offset must not be negative.
5128     generate_negative_guard(dest_offset, slow_region);
5129 
5130     // (7) src_offset + length must not exceed length of src.
5131     generate_limit_guard(src_offset, length,
5132                          load_array_length(src),
5133                          slow_region);
5134 
5135     // (8) dest_offset + length must not exceed length of dest.
5136     generate_limit_guard(dest_offset, length,
5137                          load_array_length(dest),
5138                          slow_region);
5139 
5140     // (6) length must not be negative.
5141     // This is also checked in generate_arraycopy() during macro expansion, but
5142     // we also have to check it here for the case where the ArrayCopyNode will
5143     // be eliminated by Escape Analysis.
5144     if (EliminateAllocations) {
5145       generate_negative_guard(length, slow_region);
5146       negative_length_guard_generated = true;
5147     }
5148 
5149     // (9) each element of an oop array must be assignable
5150     Node* src_klass  = load_object_klass(src);
5151     Node* dest_klass = load_object_klass(dest);
5152     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5153 
5154     if (not_subtype_ctrl != top()) {
5155       PreserveJVMState pjvms(this);
5156       set_control(not_subtype_ctrl);
5157       uncommon_trap(Deoptimization::Reason_intrinsic,
5158                     Deoptimization::Action_make_not_entrant);
5159       assert(stopped(), "Should be stopped");
5160     }
5161     {
5162       PreserveJVMState pjvms(this);
5163       set_control(_gvn.transform(slow_region));
5164       uncommon_trap(Deoptimization::Reason_intrinsic,
5165                     Deoptimization::Action_make_not_entrant);
5166       assert(stopped(), "Should be stopped");
5167     }
5168   }
5169 
5170   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5171 
5172   if (stopped()) {
5173     return true;
5174   }
5175 
5176   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5177                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5178                                           // so the compiler has a chance to eliminate them: during macro expansion,
5179                                           // we have to set their control (CastPP nodes are eliminated).
5180                                           load_object_klass(src), load_object_klass(dest),
5181                                           load_array_length(src), load_array_length(dest));
5182 
5183   ac->set_arraycopy(validated);
5184 
5185   Node* n = _gvn.transform(ac);
5186   if (n == ac) {
5187     ac->connect_outputs(this);
5188   } else {
5189     assert(validated, "shouldn't transform if all arguments not validated");
5190     set_all_memory(n);
5191   }
5192 
5193   return true;
5194 }
5195 
5196 
5197 // Helper function which determines if an arraycopy immediately follows
5198 // an allocation, with no intervening tests or other escapes for the object.
5199 AllocateArrayNode*
5200 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5201                                            RegionNode* slow_region) {
5202   if (stopped())             return NULL;  // no fast path
5203   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5204 
5205   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5206   if (alloc == NULL)  return NULL;
5207 
5208   Node* rawmem = memory(Compile::AliasIdxRaw);
5209   // Is the allocation's memory state untouched?
5210   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5211     // Bail out if there have been raw-memory effects since the allocation.
5212     // (Example:  There might have been a call or safepoint.)
5213     return NULL;
5214   }
5215   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5216   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5217     return NULL;
5218   }
5219 
5220   // There must be no unexpected observers of this allocation.
5221   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5222     Node* obs = ptr->fast_out(i);
5223     if (obs != this->map()) {
5224       return NULL;
5225     }
5226   }
5227 
5228   // This arraycopy must unconditionally follow the allocation of the ptr.
5229   Node* alloc_ctl = ptr->in(0);
5230   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5231 
5232   Node* ctl = control();
5233   while (ctl != alloc_ctl) {
5234     // There may be guards which feed into the slow_region.
5235     // Any other control flow means that we might not get a chance
5236     // to finish initializing the allocated object.
5237     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5238       IfNode* iff = ctl->in(0)->as_If();
5239       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5240       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5241       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5242         ctl = iff->in(0);       // This test feeds the known slow_region.
5243         continue;
5244       }
5245       // One more try:  Various low-level checks bottom out in
5246       // uncommon traps.  If the debug-info of the trap omits
5247       // any reference to the allocation, as we've already
5248       // observed, then there can be no objection to the trap.
5249       bool found_trap = false;
5250       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5251         Node* obs = not_ctl->fast_out(j);
5252         if (obs->in(0) == not_ctl && obs->is_Call() &&
5253             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5254           found_trap = true; break;
5255         }
5256       }
5257       if (found_trap) {
5258         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5259         continue;
5260       }
5261     }
5262     return NULL;
5263   }
5264 
5265   // If we get this far, we have an allocation which immediately
5266   // precedes the arraycopy, and we can take over zeroing the new object.
5267   // The arraycopy will finish the initialization, and provide
5268   // a new control state to which we will anchor the destination pointer.
5269 
5270   return alloc;
5271 }
5272 
5273 //-------------inline_encodeISOArray-----------------------------------
5274 // encode char[] to byte[] in ISO_8859_1
5275 bool LibraryCallKit::inline_encodeISOArray() {
5276   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5277   // no receiver since it is static method
5278   Node *src         = argument(0);
5279   Node *src_offset  = argument(1);
5280   Node *dst         = argument(2);
5281   Node *dst_offset  = argument(3);
5282   Node *length      = argument(4);
5283 
5284   const Type* src_type = src->Value(&_gvn);
5285   const Type* dst_type = dst->Value(&_gvn);
5286   const TypeAryPtr* top_src = src_type->isa_aryptr();
5287   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5288   if (top_src  == NULL || top_src->klass()  == NULL ||
5289       top_dest == NULL || top_dest->klass() == NULL) {
5290     // failed array check
5291     return false;
5292   }
5293 
5294   // Figure out the size and type of the elements we will be copying.
5295   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5296   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5297   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5298     return false;
5299   }
5300 
5301   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5302   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5303   // 'src_start' points to src array + scaled offset
5304   // 'dst_start' points to dst array + scaled offset
5305 
5306   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5307   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5308   enc = _gvn.transform(enc);
5309   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5310   set_memory(res_mem, mtype);
5311   set_result(enc);
5312   return true;
5313 }
5314 
5315 //-------------inline_multiplyToLen-----------------------------------
5316 bool LibraryCallKit::inline_multiplyToLen() {
5317   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5318 
5319   address stubAddr = StubRoutines::multiplyToLen();
5320   if (stubAddr == NULL) {
5321     return false; // Intrinsic's stub is not implemented on this platform
5322   }
5323   const char* stubName = "multiplyToLen";
5324 
5325   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5326 
5327   // no receiver because it is a static method
5328   Node* x    = argument(0);
5329   Node* xlen = argument(1);
5330   Node* y    = argument(2);
5331   Node* ylen = argument(3);
5332   Node* z    = argument(4);
5333 
5334   const Type* x_type = x->Value(&_gvn);
5335   const Type* y_type = y->Value(&_gvn);
5336   const TypeAryPtr* top_x = x_type->isa_aryptr();
5337   const TypeAryPtr* top_y = y_type->isa_aryptr();
5338   if (top_x  == NULL || top_x->klass()  == NULL ||
5339       top_y == NULL || top_y->klass() == NULL) {
5340     // failed array check
5341     return false;
5342   }
5343 
5344   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5345   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5346   if (x_elem != T_INT || y_elem != T_INT) {
5347     return false;
5348   }
5349 
5350   // Set the original stack and the reexecute bit for the interpreter to reexecute
5351   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5352   // on the return from z array allocation in runtime.
5353   { PreserveReexecuteState preexecs(this);
5354     jvms()->set_should_reexecute(true);
5355 
5356     Node* x_start = array_element_address(x, intcon(0), x_elem);
5357     Node* y_start = array_element_address(y, intcon(0), y_elem);
5358     // 'x_start' points to x array + scaled xlen
5359     // 'y_start' points to y array + scaled ylen
5360 
5361     // Allocate the result array
5362     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5363     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5364     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5365 
5366     IdealKit ideal(this);
5367 
5368 #define __ ideal.
5369      Node* one = __ ConI(1);
5370      Node* zero = __ ConI(0);
5371      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5372      __ set(need_alloc, zero);
5373      __ set(z_alloc, z);
5374      __ if_then(z, BoolTest::eq, null()); {
5375        __ increment (need_alloc, one);
5376      } __ else_(); {
5377        // Update graphKit memory and control from IdealKit.
5378        sync_kit(ideal);
5379        Node* zlen_arg = load_array_length(z);
5380        // Update IdealKit memory and control from graphKit.
5381        __ sync_kit(this);
5382        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5383          __ increment (need_alloc, one);
5384        } __ end_if();
5385      } __ end_if();
5386 
5387      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5388        // Update graphKit memory and control from IdealKit.
5389        sync_kit(ideal);
5390        Node * narr = new_array(klass_node, zlen, 1);
5391        // Update IdealKit memory and control from graphKit.
5392        __ sync_kit(this);
5393        __ set(z_alloc, narr);
5394      } __ end_if();
5395 
5396      sync_kit(ideal);
5397      z = __ value(z_alloc);
5398      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5399      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5400      // Final sync IdealKit and GraphKit.
5401      final_sync(ideal);
5402 #undef __
5403 
5404     Node* z_start = array_element_address(z, intcon(0), T_INT);
5405 
5406     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5407                                    OptoRuntime::multiplyToLen_Type(),
5408                                    stubAddr, stubName, TypePtr::BOTTOM,
5409                                    x_start, xlen, y_start, ylen, z_start, zlen);
5410   } // original reexecute is set back here
5411 
5412   C->set_has_split_ifs(true); // Has chance for split-if optimization
5413   set_result(z);
5414   return true;
5415 }
5416 
5417 //-------------inline_squareToLen------------------------------------
5418 bool LibraryCallKit::inline_squareToLen() {
5419   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5420 
5421   address stubAddr = StubRoutines::squareToLen();
5422   if (stubAddr == NULL) {
5423     return false; // Intrinsic's stub is not implemented on this platform
5424   }
5425   const char* stubName = "squareToLen";
5426 
5427   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5428 
5429   Node* x    = argument(0);
5430   Node* len  = argument(1);
5431   Node* z    = argument(2);
5432   Node* zlen = argument(3);
5433 
5434   const Type* x_type = x->Value(&_gvn);
5435   const Type* z_type = z->Value(&_gvn);
5436   const TypeAryPtr* top_x = x_type->isa_aryptr();
5437   const TypeAryPtr* top_z = z_type->isa_aryptr();
5438   if (top_x  == NULL || top_x->klass()  == NULL ||
5439       top_z  == NULL || top_z->klass()  == NULL) {
5440     // failed array check
5441     return false;
5442   }
5443 
5444   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5445   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5446   if (x_elem != T_INT || z_elem != T_INT) {
5447     return false;
5448   }
5449 
5450 
5451   Node* x_start = array_element_address(x, intcon(0), x_elem);
5452   Node* z_start = array_element_address(z, intcon(0), z_elem);
5453 
5454   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5455                                   OptoRuntime::squareToLen_Type(),
5456                                   stubAddr, stubName, TypePtr::BOTTOM,
5457                                   x_start, len, z_start, zlen);
5458 
5459   set_result(z);
5460   return true;
5461 }
5462 
5463 //-------------inline_mulAdd------------------------------------------
5464 bool LibraryCallKit::inline_mulAdd() {
5465   assert(UseMulAddIntrinsic, "not implemented on this platform");
5466 
5467   address stubAddr = StubRoutines::mulAdd();
5468   if (stubAddr == NULL) {
5469     return false; // Intrinsic's stub is not implemented on this platform
5470   }
5471   const char* stubName = "mulAdd";
5472 
5473   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5474 
5475   Node* out      = argument(0);
5476   Node* in       = argument(1);
5477   Node* offset   = argument(2);
5478   Node* len      = argument(3);
5479   Node* k        = argument(4);
5480 
5481   const Type* out_type = out->Value(&_gvn);
5482   const Type* in_type = in->Value(&_gvn);
5483   const TypeAryPtr* top_out = out_type->isa_aryptr();
5484   const TypeAryPtr* top_in = in_type->isa_aryptr();
5485   if (top_out  == NULL || top_out->klass()  == NULL ||
5486       top_in == NULL || top_in->klass() == NULL) {
5487     // failed array check
5488     return false;
5489   }
5490 
5491   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5492   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5493   if (out_elem != T_INT || in_elem != T_INT) {
5494     return false;
5495   }
5496 
5497   Node* outlen = load_array_length(out);
5498   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5499   Node* out_start = array_element_address(out, intcon(0), out_elem);
5500   Node* in_start = array_element_address(in, intcon(0), in_elem);
5501 
5502   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5503                                   OptoRuntime::mulAdd_Type(),
5504                                   stubAddr, stubName, TypePtr::BOTTOM,
5505                                   out_start,in_start, new_offset, len, k);
5506   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5507   set_result(result);
5508   return true;
5509 }
5510 
5511 //-------------inline_montgomeryMultiply-----------------------------------
5512 bool LibraryCallKit::inline_montgomeryMultiply() {
5513   address stubAddr = StubRoutines::montgomeryMultiply();
5514   if (stubAddr == NULL) {
5515     return false; // Intrinsic's stub is not implemented on this platform
5516   }
5517 
5518   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5519   const char* stubName = "montgomery_multiply";
5520 
5521   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5522 
5523   Node* a    = argument(0);
5524   Node* b    = argument(1);
5525   Node* n    = argument(2);
5526   Node* len  = argument(3);
5527   Node* inv  = argument(4);
5528   Node* m    = argument(6);
5529 
5530   const Type* a_type = a->Value(&_gvn);
5531   const TypeAryPtr* top_a = a_type->isa_aryptr();
5532   const Type* b_type = b->Value(&_gvn);
5533   const TypeAryPtr* top_b = b_type->isa_aryptr();
5534   const Type* n_type = a->Value(&_gvn);
5535   const TypeAryPtr* top_n = n_type->isa_aryptr();
5536   const Type* m_type = a->Value(&_gvn);
5537   const TypeAryPtr* top_m = m_type->isa_aryptr();
5538   if (top_a  == NULL || top_a->klass()  == NULL ||
5539       top_b == NULL || top_b->klass()  == NULL ||
5540       top_n == NULL || top_n->klass()  == NULL ||
5541       top_m == NULL || top_m->klass()  == NULL) {
5542     // failed array check
5543     return false;
5544   }
5545 
5546   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5547   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5548   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5549   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5550   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5551     return false;
5552   }
5553 
5554   // Make the call
5555   {
5556     Node* a_start = array_element_address(a, intcon(0), a_elem);
5557     Node* b_start = array_element_address(b, intcon(0), b_elem);
5558     Node* n_start = array_element_address(n, intcon(0), n_elem);
5559     Node* m_start = array_element_address(m, intcon(0), m_elem);
5560 
5561     Node* call = make_runtime_call(RC_LEAF,
5562                                    OptoRuntime::montgomeryMultiply_Type(),
5563                                    stubAddr, stubName, TypePtr::BOTTOM,
5564                                    a_start, b_start, n_start, len, inv, top(),
5565                                    m_start);
5566     set_result(m);
5567   }
5568 
5569   return true;
5570 }
5571 
5572 bool LibraryCallKit::inline_montgomerySquare() {
5573   address stubAddr = StubRoutines::montgomerySquare();
5574   if (stubAddr == NULL) {
5575     return false; // Intrinsic's stub is not implemented on this platform
5576   }
5577 
5578   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5579   const char* stubName = "montgomery_square";
5580 
5581   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5582 
5583   Node* a    = argument(0);
5584   Node* n    = argument(1);
5585   Node* len  = argument(2);
5586   Node* inv  = argument(3);
5587   Node* m    = argument(5);
5588 
5589   const Type* a_type = a->Value(&_gvn);
5590   const TypeAryPtr* top_a = a_type->isa_aryptr();
5591   const Type* n_type = a->Value(&_gvn);
5592   const TypeAryPtr* top_n = n_type->isa_aryptr();
5593   const Type* m_type = a->Value(&_gvn);
5594   const TypeAryPtr* top_m = m_type->isa_aryptr();
5595   if (top_a  == NULL || top_a->klass()  == NULL ||
5596       top_n == NULL || top_n->klass()  == NULL ||
5597       top_m == NULL || top_m->klass()  == NULL) {
5598     // failed array check
5599     return false;
5600   }
5601 
5602   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5603   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5604   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5605   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5606     return false;
5607   }
5608 
5609   // Make the call
5610   {
5611     Node* a_start = array_element_address(a, intcon(0), a_elem);
5612     Node* n_start = array_element_address(n, intcon(0), n_elem);
5613     Node* m_start = array_element_address(m, intcon(0), m_elem);
5614 
5615     Node* call = make_runtime_call(RC_LEAF,
5616                                    OptoRuntime::montgomerySquare_Type(),
5617                                    stubAddr, stubName, TypePtr::BOTTOM,
5618                                    a_start, n_start, len, inv, top(),
5619                                    m_start);
5620     set_result(m);
5621   }
5622 
5623   return true;
5624 }
5625 
5626 //-------------inline_vectorizedMismatch------------------------------
5627 bool LibraryCallKit::inline_vectorizedMismatch() {
5628   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5629 
5630   address stubAddr = StubRoutines::vectorizedMismatch();
5631   if (stubAddr == NULL) {
5632     return false; // Intrinsic's stub is not implemented on this platform
5633   }
5634   const char* stubName = "vectorizedMismatch";
5635   int size_l = callee()->signature()->size();
5636   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5637 
5638   Node* obja = argument(0);
5639   Node* aoffset = argument(1);
5640   Node* objb = argument(3);
5641   Node* boffset = argument(4);
5642   Node* length = argument(6);
5643   Node* scale = argument(7);
5644 
5645   const Type* a_type = obja->Value(&_gvn);
5646   const Type* b_type = objb->Value(&_gvn);
5647   const TypeAryPtr* top_a = a_type->isa_aryptr();
5648   const TypeAryPtr* top_b = b_type->isa_aryptr();
5649   if (top_a == NULL || top_a->klass() == NULL ||
5650     top_b == NULL || top_b->klass() == NULL) {
5651     // failed array check
5652     return false;
5653   }
5654 
5655   Node* call;
5656   jvms()->set_should_reexecute(true);
5657 
5658   Node* obja_adr = make_unsafe_address(obja, aoffset);
5659   Node* objb_adr = make_unsafe_address(objb, boffset);
5660 
5661   call = make_runtime_call(RC_LEAF,
5662     OptoRuntime::vectorizedMismatch_Type(),
5663     stubAddr, stubName, TypePtr::BOTTOM,
5664     obja_adr, objb_adr, length, scale);
5665 
5666   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5667   set_result(result);
5668   return true;
5669 }
5670 
5671 /**
5672  * Calculate CRC32 for byte.
5673  * int java.util.zip.CRC32.update(int crc, int b)
5674  */
5675 bool LibraryCallKit::inline_updateCRC32() {
5676   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5677   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5678   // no receiver since it is static method
5679   Node* crc  = argument(0); // type: int
5680   Node* b    = argument(1); // type: int
5681 
5682   /*
5683    *    int c = ~ crc;
5684    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5685    *    b = b ^ (c >>> 8);
5686    *    crc = ~b;
5687    */
5688 
5689   Node* M1 = intcon(-1);
5690   crc = _gvn.transform(new XorINode(crc, M1));
5691   Node* result = _gvn.transform(new XorINode(crc, b));
5692   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5693 
5694   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5695   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5696   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5697   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5698 
5699   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5700   result = _gvn.transform(new XorINode(crc, result));
5701   result = _gvn.transform(new XorINode(result, M1));
5702   set_result(result);
5703   return true;
5704 }
5705 
5706 /**
5707  * Calculate CRC32 for byte[] array.
5708  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5709  */
5710 bool LibraryCallKit::inline_updateBytesCRC32() {
5711   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5712   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5713   // no receiver since it is static method
5714   Node* crc     = argument(0); // type: int
5715   Node* src     = argument(1); // type: oop
5716   Node* offset  = argument(2); // type: int
5717   Node* length  = argument(3); // type: int
5718 
5719   const Type* src_type = src->Value(&_gvn);
5720   const TypeAryPtr* top_src = src_type->isa_aryptr();
5721   if (top_src  == NULL || top_src->klass()  == NULL) {
5722     // failed array check
5723     return false;
5724   }
5725 
5726   // Figure out the size and type of the elements we will be copying.
5727   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5728   if (src_elem != T_BYTE) {
5729     return false;
5730   }
5731 
5732   // 'src_start' points to src array + scaled offset
5733   Node* src_start = array_element_address(src, offset, src_elem);
5734 
5735   // We assume that range check is done by caller.
5736   // TODO: generate range check (offset+length < src.length) in debug VM.
5737 
5738   // Call the stub.
5739   address stubAddr = StubRoutines::updateBytesCRC32();
5740   const char *stubName = "updateBytesCRC32";
5741 
5742   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5743                                  stubAddr, stubName, TypePtr::BOTTOM,
5744                                  crc, src_start, length);
5745   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5746   set_result(result);
5747   return true;
5748 }
5749 
5750 /**
5751  * Calculate CRC32 for ByteBuffer.
5752  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5753  */
5754 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5755   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5756   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5757   // no receiver since it is static method
5758   Node* crc     = argument(0); // type: int
5759   Node* src     = argument(1); // type: long
5760   Node* offset  = argument(3); // type: int
5761   Node* length  = argument(4); // type: int
5762 
5763   src = ConvL2X(src);  // adjust Java long to machine word
5764   Node* base = _gvn.transform(new CastX2PNode(src));
5765   offset = ConvI2X(offset);
5766 
5767   // 'src_start' points to src array + scaled offset
5768   Node* src_start = basic_plus_adr(top(), base, offset);
5769 
5770   // Call the stub.
5771   address stubAddr = StubRoutines::updateBytesCRC32();
5772   const char *stubName = "updateBytesCRC32";
5773 
5774   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5775                                  stubAddr, stubName, TypePtr::BOTTOM,
5776                                  crc, src_start, length);
5777   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5778   set_result(result);
5779   return true;
5780 }
5781 
5782 //------------------------------get_table_from_crc32c_class-----------------------
5783 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5784   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5785   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5786 
5787   return table;
5788 }
5789 
5790 //------------------------------inline_updateBytesCRC32C-----------------------
5791 //
5792 // Calculate CRC32C for byte[] array.
5793 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5794 //
5795 bool LibraryCallKit::inline_updateBytesCRC32C() {
5796   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5797   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5798   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5799   // no receiver since it is a static method
5800   Node* crc     = argument(0); // type: int
5801   Node* src     = argument(1); // type: oop
5802   Node* offset  = argument(2); // type: int
5803   Node* end     = argument(3); // type: int
5804 
5805   Node* length = _gvn.transform(new SubINode(end, offset));
5806 
5807   const Type* src_type = src->Value(&_gvn);
5808   const TypeAryPtr* top_src = src_type->isa_aryptr();
5809   if (top_src  == NULL || top_src->klass()  == NULL) {
5810     // failed array check
5811     return false;
5812   }
5813 
5814   // Figure out the size and type of the elements we will be copying.
5815   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5816   if (src_elem != T_BYTE) {
5817     return false;
5818   }
5819 
5820   // 'src_start' points to src array + scaled offset
5821   Node* src_start = array_element_address(src, offset, src_elem);
5822 
5823   // static final int[] byteTable in class CRC32C
5824   Node* table = get_table_from_crc32c_class(callee()->holder());
5825   Node* table_start = array_element_address(table, intcon(0), T_INT);
5826 
5827   // We assume that range check is done by caller.
5828   // TODO: generate range check (offset+length < src.length) in debug VM.
5829 
5830   // Call the stub.
5831   address stubAddr = StubRoutines::updateBytesCRC32C();
5832   const char *stubName = "updateBytesCRC32C";
5833 
5834   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5835                                  stubAddr, stubName, TypePtr::BOTTOM,
5836                                  crc, src_start, length, table_start);
5837   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5838   set_result(result);
5839   return true;
5840 }
5841 
5842 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5843 //
5844 // Calculate CRC32C for DirectByteBuffer.
5845 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5846 //
5847 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5848   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5849   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5850   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5851   // no receiver since it is a static method
5852   Node* crc     = argument(0); // type: int
5853   Node* src     = argument(1); // type: long
5854   Node* offset  = argument(3); // type: int
5855   Node* end     = argument(4); // type: int
5856 
5857   Node* length = _gvn.transform(new SubINode(end, offset));
5858 
5859   src = ConvL2X(src);  // adjust Java long to machine word
5860   Node* base = _gvn.transform(new CastX2PNode(src));
5861   offset = ConvI2X(offset);
5862 
5863   // 'src_start' points to src array + scaled offset
5864   Node* src_start = basic_plus_adr(top(), base, offset);
5865 
5866   // static final int[] byteTable in class CRC32C
5867   Node* table = get_table_from_crc32c_class(callee()->holder());
5868   Node* table_start = array_element_address(table, intcon(0), T_INT);
5869 
5870   // Call the stub.
5871   address stubAddr = StubRoutines::updateBytesCRC32C();
5872   const char *stubName = "updateBytesCRC32C";
5873 
5874   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5875                                  stubAddr, stubName, TypePtr::BOTTOM,
5876                                  crc, src_start, length, table_start);
5877   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5878   set_result(result);
5879   return true;
5880 }
5881 
5882 //------------------------------inline_updateBytesAdler32----------------------
5883 //
5884 // Calculate Adler32 checksum for byte[] array.
5885 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5886 //
5887 bool LibraryCallKit::inline_updateBytesAdler32() {
5888   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5889   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5890   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5891   // no receiver since it is static method
5892   Node* crc     = argument(0); // type: int
5893   Node* src     = argument(1); // type: oop
5894   Node* offset  = argument(2); // type: int
5895   Node* length  = argument(3); // type: int
5896 
5897   const Type* src_type = src->Value(&_gvn);
5898   const TypeAryPtr* top_src = src_type->isa_aryptr();
5899   if (top_src  == NULL || top_src->klass()  == NULL) {
5900     // failed array check
5901     return false;
5902   }
5903 
5904   // Figure out the size and type of the elements we will be copying.
5905   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5906   if (src_elem != T_BYTE) {
5907     return false;
5908   }
5909 
5910   // 'src_start' points to src array + scaled offset
5911   Node* src_start = array_element_address(src, offset, src_elem);
5912 
5913   // We assume that range check is done by caller.
5914   // TODO: generate range check (offset+length < src.length) in debug VM.
5915 
5916   // Call the stub.
5917   address stubAddr = StubRoutines::updateBytesAdler32();
5918   const char *stubName = "updateBytesAdler32";
5919 
5920   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5921                                  stubAddr, stubName, TypePtr::BOTTOM,
5922                                  crc, src_start, length);
5923   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5924   set_result(result);
5925   return true;
5926 }
5927 
5928 //------------------------------inline_updateByteBufferAdler32---------------
5929 //
5930 // Calculate Adler32 checksum for DirectByteBuffer.
5931 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5932 //
5933 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5934   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5935   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5936   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5937   // no receiver since it is static method
5938   Node* crc     = argument(0); // type: int
5939   Node* src     = argument(1); // type: long
5940   Node* offset  = argument(3); // type: int
5941   Node* length  = argument(4); // type: int
5942 
5943   src = ConvL2X(src);  // adjust Java long to machine word
5944   Node* base = _gvn.transform(new CastX2PNode(src));
5945   offset = ConvI2X(offset);
5946 
5947   // 'src_start' points to src array + scaled offset
5948   Node* src_start = basic_plus_adr(top(), base, offset);
5949 
5950   // Call the stub.
5951   address stubAddr = StubRoutines::updateBytesAdler32();
5952   const char *stubName = "updateBytesAdler32";
5953 
5954   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5955                                  stubAddr, stubName, TypePtr::BOTTOM,
5956                                  crc, src_start, length);
5957 
5958   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5959   set_result(result);
5960   return true;
5961 }
5962 
5963 //----------------------------inline_reference_get----------------------------
5964 // public T java.lang.ref.Reference.get();
5965 bool LibraryCallKit::inline_reference_get() {
5966   const int referent_offset = java_lang_ref_Reference::referent_offset;
5967   guarantee(referent_offset > 0, "should have already been set");
5968 
5969   // Get the argument:
5970   Node* reference_obj = null_check_receiver();
5971   if (stopped()) return true;
5972 
5973   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5974 
5975   ciInstanceKlass* klass = env()->Object_klass();
5976   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5977 
5978   Node* no_ctrl = NULL;
5979   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5980 
5981   // Use the pre-barrier to record the value in the referent field
5982   pre_barrier(false /* do_load */,
5983               control(),
5984               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5985               result /* pre_val */,
5986               T_OBJECT);
5987 
5988   // Add memory barrier to prevent commoning reads from this field
5989   // across safepoint since GC can change its value.
5990   insert_mem_bar(Op_MemBarCPUOrder);
5991 
5992   set_result(result);
5993   return true;
5994 }
5995 
5996 
5997 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5998                                               bool is_exact=true, bool is_static=false,
5999                                               ciInstanceKlass * fromKls=NULL) {
6000   if (fromKls == NULL) {
6001     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6002     assert(tinst != NULL, "obj is null");
6003     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6004     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6005     fromKls = tinst->klass()->as_instance_klass();
6006   } else {
6007     assert(is_static, "only for static field access");
6008   }
6009   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6010                                               ciSymbol::make(fieldTypeString),
6011                                               is_static);
6012 
6013   assert (field != NULL, "undefined field");
6014   if (field == NULL) return (Node *) NULL;
6015 
6016   if (is_static) {
6017     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6018     fromObj = makecon(tip);
6019   }
6020 
6021   // Next code  copied from Parse::do_get_xxx():
6022 
6023   // Compute address and memory type.
6024   int offset  = field->offset_in_bytes();
6025   bool is_vol = field->is_volatile();
6026   ciType* field_klass = field->type();
6027   assert(field_klass->is_loaded(), "should be loaded");
6028   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6029   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6030   BasicType bt = field->layout_type();
6031 
6032   // Build the resultant type of the load
6033   const Type *type;
6034   if (bt == T_OBJECT) {
6035     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6036   } else {
6037     type = Type::get_const_basic_type(bt);
6038   }
6039 
6040   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6041     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6042   }
6043   // Build the load.
6044   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6045   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6046   // If reference is volatile, prevent following memory ops from
6047   // floating up past the volatile read.  Also prevents commoning
6048   // another volatile read.
6049   if (is_vol) {
6050     // Memory barrier includes bogus read of value to force load BEFORE membar
6051     insert_mem_bar(Op_MemBarAcquire, loadedField);
6052   }
6053   return loadedField;
6054 }
6055 
6056 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6057                                                  bool is_exact = true, bool is_static = false,
6058                                                  ciInstanceKlass * fromKls = NULL) {
6059   if (fromKls == NULL) {
6060     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6061     assert(tinst != NULL, "obj is null");
6062     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6063     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6064     fromKls = tinst->klass()->as_instance_klass();
6065   }
6066   else {
6067     assert(is_static, "only for static field access");
6068   }
6069   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6070     ciSymbol::make(fieldTypeString),
6071     is_static);
6072 
6073   assert(field != NULL, "undefined field");
6074   assert(!field->is_volatile(), "not defined for volatile fields");
6075 
6076   if (is_static) {
6077     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6078     fromObj = makecon(tip);
6079   }
6080 
6081   // Next code  copied from Parse::do_get_xxx():
6082 
6083   // Compute address and memory type.
6084   int offset = field->offset_in_bytes();
6085   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6086 
6087   return adr;
6088 }
6089 
6090 //------------------------------inline_aescrypt_Block-----------------------
6091 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6092   address stubAddr = NULL;
6093   const char *stubName;
6094   assert(UseAES, "need AES instruction support");
6095 
6096   switch(id) {
6097   case vmIntrinsics::_aescrypt_encryptBlock:
6098     stubAddr = StubRoutines::aescrypt_encryptBlock();
6099     stubName = "aescrypt_encryptBlock";
6100     break;
6101   case vmIntrinsics::_aescrypt_decryptBlock:
6102     stubAddr = StubRoutines::aescrypt_decryptBlock();
6103     stubName = "aescrypt_decryptBlock";
6104     break;
6105   }
6106   if (stubAddr == NULL) return false;
6107 
6108   Node* aescrypt_object = argument(0);
6109   Node* src             = argument(1);
6110   Node* src_offset      = argument(2);
6111   Node* dest            = argument(3);
6112   Node* dest_offset     = argument(4);
6113 
6114   // (1) src and dest are arrays.
6115   const Type* src_type = src->Value(&_gvn);
6116   const Type* dest_type = dest->Value(&_gvn);
6117   const TypeAryPtr* top_src = src_type->isa_aryptr();
6118   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6119   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6120 
6121   // for the quick and dirty code we will skip all the checks.
6122   // we are just trying to get the call to be generated.
6123   Node* src_start  = src;
6124   Node* dest_start = dest;
6125   if (src_offset != NULL || dest_offset != NULL) {
6126     assert(src_offset != NULL && dest_offset != NULL, "");
6127     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6128     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6129   }
6130 
6131   // now need to get the start of its expanded key array
6132   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6133   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6134   if (k_start == NULL) return false;
6135 
6136   if (Matcher::pass_original_key_for_aes()) {
6137     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6138     // compatibility issues between Java key expansion and SPARC crypto instructions
6139     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6140     if (original_k_start == NULL) return false;
6141 
6142     // Call the stub.
6143     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6144                       stubAddr, stubName, TypePtr::BOTTOM,
6145                       src_start, dest_start, k_start, original_k_start);
6146   } else {
6147     // Call the stub.
6148     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6149                       stubAddr, stubName, TypePtr::BOTTOM,
6150                       src_start, dest_start, k_start);
6151   }
6152 
6153   return true;
6154 }
6155 
6156 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6157 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6158   address stubAddr = NULL;
6159   const char *stubName = NULL;
6160 
6161   assert(UseAES, "need AES instruction support");
6162 
6163   switch(id) {
6164   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6165     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6166     stubName = "cipherBlockChaining_encryptAESCrypt";
6167     break;
6168   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6169     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6170     stubName = "cipherBlockChaining_decryptAESCrypt";
6171     break;
6172   }
6173   if (stubAddr == NULL) return false;
6174 
6175   Node* cipherBlockChaining_object = argument(0);
6176   Node* src                        = argument(1);
6177   Node* src_offset                 = argument(2);
6178   Node* len                        = argument(3);
6179   Node* dest                       = argument(4);
6180   Node* dest_offset                = argument(5);
6181 
6182   // (1) src and dest are arrays.
6183   const Type* src_type = src->Value(&_gvn);
6184   const Type* dest_type = dest->Value(&_gvn);
6185   const TypeAryPtr* top_src = src_type->isa_aryptr();
6186   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6187   assert (top_src  != NULL && top_src->klass()  != NULL
6188           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6189 
6190   // checks are the responsibility of the caller
6191   Node* src_start  = src;
6192   Node* dest_start = dest;
6193   if (src_offset != NULL || dest_offset != NULL) {
6194     assert(src_offset != NULL && dest_offset != NULL, "");
6195     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6196     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6197   }
6198 
6199   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6200   // (because of the predicated logic executed earlier).
6201   // so we cast it here safely.
6202   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6203 
6204   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6205   if (embeddedCipherObj == NULL) return false;
6206 
6207   // cast it to what we know it will be at runtime
6208   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6209   assert(tinst != NULL, "CBC obj is null");
6210   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6211   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6212   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6213 
6214   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6215   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6216   const TypeOopPtr* xtype = aklass->as_instance_type();
6217   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6218   aescrypt_object = _gvn.transform(aescrypt_object);
6219 
6220   // we need to get the start of the aescrypt_object's expanded key array
6221   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6222   if (k_start == NULL) return false;
6223 
6224   // similarly, get the start address of the r vector
6225   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6226   if (objRvec == NULL) return false;
6227   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6228 
6229   Node* cbcCrypt;
6230   if (Matcher::pass_original_key_for_aes()) {
6231     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6232     // compatibility issues between Java key expansion and SPARC crypto instructions
6233     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6234     if (original_k_start == NULL) return false;
6235 
6236     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6237     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6238                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6239                                  stubAddr, stubName, TypePtr::BOTTOM,
6240                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6241   } else {
6242     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6243     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6244                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6245                                  stubAddr, stubName, TypePtr::BOTTOM,
6246                                  src_start, dest_start, k_start, r_start, len);
6247   }
6248 
6249   // return cipher length (int)
6250   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6251   set_result(retvalue);
6252   return true;
6253 }
6254 
6255 //------------------------------inline_counterMode_AESCrypt-----------------------
6256 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6257   assert(UseAES, "need AES instruction support");
6258   if (!UseAESCTRIntrinsics) return false;
6259 
6260   address stubAddr = NULL;
6261   const char *stubName = NULL;
6262   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6263     stubAddr = StubRoutines::counterMode_AESCrypt();
6264     stubName = "counterMode_AESCrypt";
6265   }
6266   if (stubAddr == NULL) return false;
6267 
6268   Node* counterMode_object = argument(0);
6269   Node* src = argument(1);
6270   Node* src_offset = argument(2);
6271   Node* len = argument(3);
6272   Node* dest = argument(4);
6273   Node* dest_offset = argument(5);
6274 
6275   // (1) src and dest are arrays.
6276   const Type* src_type = src->Value(&_gvn);
6277   const Type* dest_type = dest->Value(&_gvn);
6278   const TypeAryPtr* top_src = src_type->isa_aryptr();
6279   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6280   assert(top_src != NULL && top_src->klass() != NULL &&
6281          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6282 
6283   // checks are the responsibility of the caller
6284   Node* src_start = src;
6285   Node* dest_start = dest;
6286   if (src_offset != NULL || dest_offset != NULL) {
6287     assert(src_offset != NULL && dest_offset != NULL, "");
6288     src_start = array_element_address(src, src_offset, T_BYTE);
6289     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6290   }
6291 
6292   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6293   // (because of the predicated logic executed earlier).
6294   // so we cast it here safely.
6295   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6296   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6297   if (embeddedCipherObj == NULL) return false;
6298   // cast it to what we know it will be at runtime
6299   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6300   assert(tinst != NULL, "CTR obj is null");
6301   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6302   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6303   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6304   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6305   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6306   const TypeOopPtr* xtype = aklass->as_instance_type();
6307   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6308   aescrypt_object = _gvn.transform(aescrypt_object);
6309   // we need to get the start of the aescrypt_object's expanded key array
6310   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6311   if (k_start == NULL) return false;
6312   // similarly, get the start address of the r vector
6313   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6314   if (obj_counter == NULL) return false;
6315   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6316 
6317   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6318   if (saved_encCounter == NULL) return false;
6319   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6320   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6321 
6322   Node* ctrCrypt;
6323   if (Matcher::pass_original_key_for_aes()) {
6324     // no SPARC version for AES/CTR intrinsics now.
6325     return false;
6326   }
6327   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6328   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6329                                OptoRuntime::counterMode_aescrypt_Type(),
6330                                stubAddr, stubName, TypePtr::BOTTOM,
6331                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6332 
6333   // return cipher length (int)
6334   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6335   set_result(retvalue);
6336   return true;
6337 }
6338 
6339 //------------------------------get_key_start_from_aescrypt_object-----------------------
6340 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6341 #if defined(PPC64) || defined(S390)
6342   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6343   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6344   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6345   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6346   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6347   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6348   if (objSessionK == NULL) {
6349     return (Node *) NULL;
6350   }
6351   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6352 #else
6353   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6354 #endif // PPC64
6355   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6356   if (objAESCryptKey == NULL) return (Node *) NULL;
6357 
6358   // now have the array, need to get the start address of the K array
6359   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6360   return k_start;
6361 }
6362 
6363 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6364 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6365   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6366   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6367   if (objAESCryptKey == NULL) return (Node *) NULL;
6368 
6369   // now have the array, need to get the start address of the lastKey array
6370   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6371   return original_k_start;
6372 }
6373 
6374 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6375 // Return node representing slow path of predicate check.
6376 // the pseudo code we want to emulate with this predicate is:
6377 // for encryption:
6378 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6379 // for decryption:
6380 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6381 //    note cipher==plain is more conservative than the original java code but that's OK
6382 //
6383 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6384   // The receiver was checked for NULL already.
6385   Node* objCBC = argument(0);
6386 
6387   // Load embeddedCipher field of CipherBlockChaining object.
6388   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6389 
6390   // get AESCrypt klass for instanceOf check
6391   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6392   // will have same classloader as CipherBlockChaining object
6393   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6394   assert(tinst != NULL, "CBCobj is null");
6395   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6396 
6397   // we want to do an instanceof comparison against the AESCrypt class
6398   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6399   if (!klass_AESCrypt->is_loaded()) {
6400     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6401     Node* ctrl = control();
6402     set_control(top()); // no regular fast path
6403     return ctrl;
6404   }
6405   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6406 
6407   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6408   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6409   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6410 
6411   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6412 
6413   // for encryption, we are done
6414   if (!decrypting)
6415     return instof_false;  // even if it is NULL
6416 
6417   // for decryption, we need to add a further check to avoid
6418   // taking the intrinsic path when cipher and plain are the same
6419   // see the original java code for why.
6420   RegionNode* region = new RegionNode(3);
6421   region->init_req(1, instof_false);
6422   Node* src = argument(1);
6423   Node* dest = argument(4);
6424   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6425   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6426   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6427   region->init_req(2, src_dest_conjoint);
6428 
6429   record_for_igvn(region);
6430   return _gvn.transform(region);
6431 }
6432 
6433 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6434 // Return node representing slow path of predicate check.
6435 // the pseudo code we want to emulate with this predicate is:
6436 // for encryption:
6437 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6438 // for decryption:
6439 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6440 //    note cipher==plain is more conservative than the original java code but that's OK
6441 //
6442 
6443 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6444   // The receiver was checked for NULL already.
6445   Node* objCTR = argument(0);
6446 
6447   // Load embeddedCipher field of CipherBlockChaining object.
6448   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6449 
6450   // get AESCrypt klass for instanceOf check
6451   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6452   // will have same classloader as CipherBlockChaining object
6453   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6454   assert(tinst != NULL, "CTRobj is null");
6455   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6456 
6457   // we want to do an instanceof comparison against the AESCrypt class
6458   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6459   if (!klass_AESCrypt->is_loaded()) {
6460     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6461     Node* ctrl = control();
6462     set_control(top()); // no regular fast path
6463     return ctrl;
6464   }
6465 
6466   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6467   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6468   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6469   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6470   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6471 
6472   return instof_false; // even if it is NULL
6473 }
6474 
6475 //------------------------------inline_ghash_processBlocks
6476 bool LibraryCallKit::inline_ghash_processBlocks() {
6477   address stubAddr;
6478   const char *stubName;
6479   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6480 
6481   stubAddr = StubRoutines::ghash_processBlocks();
6482   stubName = "ghash_processBlocks";
6483 
6484   Node* data           = argument(0);
6485   Node* offset         = argument(1);
6486   Node* len            = argument(2);
6487   Node* state          = argument(3);
6488   Node* subkeyH        = argument(4);
6489 
6490   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6491   assert(state_start, "state is NULL");
6492   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6493   assert(subkeyH_start, "subkeyH is NULL");
6494   Node* data_start  = array_element_address(data, offset, T_BYTE);
6495   assert(data_start, "data is NULL");
6496 
6497   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6498                                   OptoRuntime::ghash_processBlocks_Type(),
6499                                   stubAddr, stubName, TypePtr::BOTTOM,
6500                                   state_start, subkeyH_start, data_start, len);
6501   return true;
6502 }
6503 
6504 //------------------------------inline_sha_implCompress-----------------------
6505 //
6506 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6507 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6508 //
6509 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6510 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6511 //
6512 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6513 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6514 //
6515 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6516   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6517 
6518   Node* sha_obj = argument(0);
6519   Node* src     = argument(1); // type oop
6520   Node* ofs     = argument(2); // type int
6521 
6522   const Type* src_type = src->Value(&_gvn);
6523   const TypeAryPtr* top_src = src_type->isa_aryptr();
6524   if (top_src  == NULL || top_src->klass()  == NULL) {
6525     // failed array check
6526     return false;
6527   }
6528   // Figure out the size and type of the elements we will be copying.
6529   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6530   if (src_elem != T_BYTE) {
6531     return false;
6532   }
6533   // 'src_start' points to src array + offset
6534   Node* src_start = array_element_address(src, ofs, src_elem);
6535   Node* state = NULL;
6536   address stubAddr;
6537   const char *stubName;
6538 
6539   switch(id) {
6540   case vmIntrinsics::_sha_implCompress:
6541     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6542     state = get_state_from_sha_object(sha_obj);
6543     stubAddr = StubRoutines::sha1_implCompress();
6544     stubName = "sha1_implCompress";
6545     break;
6546   case vmIntrinsics::_sha2_implCompress:
6547     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6548     state = get_state_from_sha_object(sha_obj);
6549     stubAddr = StubRoutines::sha256_implCompress();
6550     stubName = "sha256_implCompress";
6551     break;
6552   case vmIntrinsics::_sha5_implCompress:
6553     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6554     state = get_state_from_sha5_object(sha_obj);
6555     stubAddr = StubRoutines::sha512_implCompress();
6556     stubName = "sha512_implCompress";
6557     break;
6558   default:
6559     fatal_unexpected_iid(id);
6560     return false;
6561   }
6562   if (state == NULL) return false;
6563 
6564   // Call the stub.
6565   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6566                                  stubAddr, stubName, TypePtr::BOTTOM,
6567                                  src_start, state);
6568 
6569   return true;
6570 }
6571 
6572 //------------------------------inline_digestBase_implCompressMB-----------------------
6573 //
6574 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6575 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6576 //
6577 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6578   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6579          "need SHA1/SHA256/SHA512 instruction support");
6580   assert((uint)predicate < 3, "sanity");
6581   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6582 
6583   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6584   Node* src            = argument(1); // byte[] array
6585   Node* ofs            = argument(2); // type int
6586   Node* limit          = argument(3); // type int
6587 
6588   const Type* src_type = src->Value(&_gvn);
6589   const TypeAryPtr* top_src = src_type->isa_aryptr();
6590   if (top_src  == NULL || top_src->klass()  == NULL) {
6591     // failed array check
6592     return false;
6593   }
6594   // Figure out the size and type of the elements we will be copying.
6595   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6596   if (src_elem != T_BYTE) {
6597     return false;
6598   }
6599   // 'src_start' points to src array + offset
6600   Node* src_start = array_element_address(src, ofs, src_elem);
6601 
6602   const char* klass_SHA_name = NULL;
6603   const char* stub_name = NULL;
6604   address     stub_addr = NULL;
6605   bool        long_state = false;
6606 
6607   switch (predicate) {
6608   case 0:
6609     if (UseSHA1Intrinsics) {
6610       klass_SHA_name = "sun/security/provider/SHA";
6611       stub_name = "sha1_implCompressMB";
6612       stub_addr = StubRoutines::sha1_implCompressMB();
6613     }
6614     break;
6615   case 1:
6616     if (UseSHA256Intrinsics) {
6617       klass_SHA_name = "sun/security/provider/SHA2";
6618       stub_name = "sha256_implCompressMB";
6619       stub_addr = StubRoutines::sha256_implCompressMB();
6620     }
6621     break;
6622   case 2:
6623     if (UseSHA512Intrinsics) {
6624       klass_SHA_name = "sun/security/provider/SHA5";
6625       stub_name = "sha512_implCompressMB";
6626       stub_addr = StubRoutines::sha512_implCompressMB();
6627       long_state = true;
6628     }
6629     break;
6630   default:
6631     fatal("unknown SHA intrinsic predicate: %d", predicate);
6632   }
6633   if (klass_SHA_name != NULL) {
6634     // get DigestBase klass to lookup for SHA klass
6635     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6636     assert(tinst != NULL, "digestBase_obj is not instance???");
6637     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6638 
6639     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6640     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6641     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6642     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6643   }
6644   return false;
6645 }
6646 //------------------------------inline_sha_implCompressMB-----------------------
6647 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6648                                                bool long_state, address stubAddr, const char *stubName,
6649                                                Node* src_start, Node* ofs, Node* limit) {
6650   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6651   const TypeOopPtr* xtype = aklass->as_instance_type();
6652   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6653   sha_obj = _gvn.transform(sha_obj);
6654 
6655   Node* state;
6656   if (long_state) {
6657     state = get_state_from_sha5_object(sha_obj);
6658   } else {
6659     state = get_state_from_sha_object(sha_obj);
6660   }
6661   if (state == NULL) return false;
6662 
6663   // Call the stub.
6664   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6665                                  OptoRuntime::digestBase_implCompressMB_Type(),
6666                                  stubAddr, stubName, TypePtr::BOTTOM,
6667                                  src_start, state, ofs, limit);
6668   // return ofs (int)
6669   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6670   set_result(result);
6671 
6672   return true;
6673 }
6674 
6675 //------------------------------get_state_from_sha_object-----------------------
6676 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6677   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6678   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6679   if (sha_state == NULL) return (Node *) NULL;
6680 
6681   // now have the array, need to get the start address of the state array
6682   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6683   return state;
6684 }
6685 
6686 //------------------------------get_state_from_sha5_object-----------------------
6687 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6688   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6689   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6690   if (sha_state == NULL) return (Node *) NULL;
6691 
6692   // now have the array, need to get the start address of the state array
6693   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6694   return state;
6695 }
6696 
6697 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6698 // Return node representing slow path of predicate check.
6699 // the pseudo code we want to emulate with this predicate is:
6700 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6701 //
6702 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6703   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6704          "need SHA1/SHA256/SHA512 instruction support");
6705   assert((uint)predicate < 3, "sanity");
6706 
6707   // The receiver was checked for NULL already.
6708   Node* digestBaseObj = argument(0);
6709 
6710   // get DigestBase klass for instanceOf check
6711   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6712   assert(tinst != NULL, "digestBaseObj is null");
6713   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6714 
6715   const char* klass_SHA_name = NULL;
6716   switch (predicate) {
6717   case 0:
6718     if (UseSHA1Intrinsics) {
6719       // we want to do an instanceof comparison against the SHA class
6720       klass_SHA_name = "sun/security/provider/SHA";
6721     }
6722     break;
6723   case 1:
6724     if (UseSHA256Intrinsics) {
6725       // we want to do an instanceof comparison against the SHA2 class
6726       klass_SHA_name = "sun/security/provider/SHA2";
6727     }
6728     break;
6729   case 2:
6730     if (UseSHA512Intrinsics) {
6731       // we want to do an instanceof comparison against the SHA5 class
6732       klass_SHA_name = "sun/security/provider/SHA5";
6733     }
6734     break;
6735   default:
6736     fatal("unknown SHA intrinsic predicate: %d", predicate);
6737   }
6738 
6739   ciKlass* klass_SHA = NULL;
6740   if (klass_SHA_name != NULL) {
6741     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6742   }
6743   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6744     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6745     Node* ctrl = control();
6746     set_control(top()); // no intrinsic path
6747     return ctrl;
6748   }
6749   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6750 
6751   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6752   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6753   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6754   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6755 
6756   return instof_false;  // even if it is NULL
6757 }
6758 
6759 //-------------inline_fma-----------------------------------
6760 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6761   Node *a = NULL;
6762   Node *b = NULL;
6763   Node *c = NULL;
6764   Node* result = NULL;
6765   switch (id) {
6766   case vmIntrinsics::_fmaD:
6767     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6768     // no receiver since it is static method
6769     a = round_double_node(argument(0));
6770     b = round_double_node(argument(2));
6771     c = round_double_node(argument(4));
6772     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6773     break;
6774   case vmIntrinsics::_fmaF:
6775     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6776     a = argument(0);
6777     b = argument(1);
6778     c = argument(2);
6779     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6780     break;
6781   default:
6782     fatal_unexpected_iid(id);  break;
6783   }
6784   set_result(result);
6785   return true;
6786 }
6787 
6788 bool LibraryCallKit::inline_profileBoolean() {
6789   Node* counts = argument(1);
6790   const TypeAryPtr* ary = NULL;
6791   ciArray* aobj = NULL;
6792   if (counts->is_Con()
6793       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6794       && (aobj = ary->const_oop()->as_array()) != NULL
6795       && (aobj->length() == 2)) {
6796     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6797     jint false_cnt = aobj->element_value(0).as_int();
6798     jint  true_cnt = aobj->element_value(1).as_int();
6799 
6800     if (C->log() != NULL) {
6801       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6802                      false_cnt, true_cnt);
6803     }
6804 
6805     if (false_cnt + true_cnt == 0) {
6806       // According to profile, never executed.
6807       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6808                           Deoptimization::Action_reinterpret);
6809       return true;
6810     }
6811 
6812     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6813     // is a number of each value occurrences.
6814     Node* result = argument(0);
6815     if (false_cnt == 0 || true_cnt == 0) {
6816       // According to profile, one value has been never seen.
6817       int expected_val = (false_cnt == 0) ? 1 : 0;
6818 
6819       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6820       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6821 
6822       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6823       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6824       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6825 
6826       { // Slow path: uncommon trap for never seen value and then reexecute
6827         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6828         // the value has been seen at least once.
6829         PreserveJVMState pjvms(this);
6830         PreserveReexecuteState preexecs(this);
6831         jvms()->set_should_reexecute(true);
6832 
6833         set_control(slow_path);
6834         set_i_o(i_o());
6835 
6836         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6837                             Deoptimization::Action_reinterpret);
6838       }
6839       // The guard for never seen value enables sharpening of the result and
6840       // returning a constant. It allows to eliminate branches on the same value
6841       // later on.
6842       set_control(fast_path);
6843       result = intcon(expected_val);
6844     }
6845     // Stop profiling.
6846     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6847     // By replacing method body with profile data (represented as ProfileBooleanNode
6848     // on IR level) we effectively disable profiling.
6849     // It enables full speed execution once optimized code is generated.
6850     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6851     C->record_for_igvn(profile);
6852     set_result(profile);
6853     return true;
6854   } else {
6855     // Continue profiling.
6856     // Profile data isn't available at the moment. So, execute method's bytecode version.
6857     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6858     // is compiled and counters aren't available since corresponding MethodHandle
6859     // isn't a compile-time constant.
6860     return false;
6861   }
6862 }
6863 
6864 bool LibraryCallKit::inline_isCompileConstant() {
6865   Node* n = argument(0);
6866   set_result(n->is_Con() ? intcon(1) : intcon(0));
6867   return true;
6868 }