1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "opto/adlcVMDeps.hpp"
  29 #include "runtime/handles.hpp"
  30 
  31 // Portions of code courtesy of Clifford Click
  32 
  33 // Optimization - Graph Style
  34 
  35 
  36 // This class defines a Type lattice.  The lattice is used in the constant
  37 // propagation algorithms, and for some type-checking of the iloc code.
  38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  39 // float & double precision constants, sets of data-labels and code-labels.
  40 // The complete lattice is described below.  Subtypes have no relationship to
  41 // up or down in the lattice; that is entirely determined by the behavior of
  42 // the MEET/JOIN functions.
  43 
  44 class Dict;
  45 class Type;
  46 class   TypeD;
  47 class   TypeF;
  48 class   TypeInt;
  49 class   TypeLong;
  50 class   TypeNarrowPtr;
  51 class     TypeNarrowOop;
  52 class     TypeNarrowKlass;
  53 class   TypeAry;
  54 class   TypeTuple;
  55 class   TypeVect;
  56 class     TypeVectS;
  57 class     TypeVectD;
  58 class     TypeVectX;
  59 class     TypeVectY;
  60 class     TypeVectZ;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94     VectorZ,                    // 512bit Vector types
  95 
  96     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  97     RawPtr,                     // Raw (non-oop) pointers
  98     OopPtr,                     // Any and all Java heap entities
  99     InstPtr,                    // Instance pointers (non-array objects)
 100     AryPtr,                     // Array pointers
 101     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 102 
 103     MetadataPtr,                // Generic metadata
 104     KlassPtr,                   // Klass pointers
 105 
 106     Function,                   // Function signature
 107     Abio,                       // Abstract I/O
 108     Return_Address,             // Subroutine return address
 109     Memory,                     // Abstract store
 110     FloatTop,                   // No float value
 111     FloatCon,                   // Floating point constant
 112     FloatBot,                   // Any float value
 113     DoubleTop,                  // No double value
 114     DoubleCon,                  // Double precision constant
 115     DoubleBot,                  // Any double value
 116     Bottom,                     // Bottom of lattice
 117     lastype                     // Bogus ending type (not in lattice)
 118   };
 119 
 120   // Signal values for offsets from a base pointer
 121   enum OFFSET_SIGNALS {
 122     OffsetTop = -2000000000,    // undefined offset
 123     OffsetBot = -2000000001     // any possible offset
 124   };
 125 
 126   // Min and max WIDEN values.
 127   enum WIDEN {
 128     WidenMin = 0,
 129     WidenMax = 3
 130   };
 131 
 132 private:
 133   typedef struct {
 134     TYPES                dual_type;
 135     BasicType            basic_type;
 136     const char*          msg;
 137     bool                 isa_oop;
 138     uint                 ideal_reg;
 139     relocInfo::relocType reloc;
 140   } TypeInfo;
 141 
 142   // Dictionary of types shared among compilations.
 143   static Dict* _shared_type_dict;
 144   static const TypeInfo _type_info[];
 145 
 146   static int uhash( const Type *const t );
 147   // Structural equality check.  Assumes that cmp() has already compared
 148   // the _base types and thus knows it can cast 't' appropriately.
 149   virtual bool eq( const Type *t ) const;
 150 
 151   // Top-level hash-table of types
 152   static Dict *type_dict() {
 153     return Compile::current()->type_dict();
 154   }
 155 
 156   // DUAL operation: reflect around lattice centerline.  Used instead of
 157   // join to ensure my lattice is symmetric up and down.  Dual is computed
 158   // lazily, on demand, and cached in _dual.
 159   const Type *_dual;            // Cached dual value
 160   // Table for efficient dualing of base types
 161   static const TYPES dual_type[lastype];
 162 
 163 #ifdef ASSERT
 164   // One type is interface, the other is oop
 165   virtual bool interface_vs_oop_helper(const Type *t) const;
 166 #endif
 167 
 168   const Type *meet_helper(const Type *t, bool include_speculative) const;
 169 
 170 protected:
 171   // Each class of type is also identified by its base.
 172   const TYPES _base;            // Enum of Types type
 173 
 174   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 175   // ~Type();                   // Use fast deallocation
 176   const Type *hashcons();       // Hash-cons the type
 177   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 178   const Type *join_helper(const Type *t, bool include_speculative) const {
 179     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 180   }
 181 
 182 public:
 183 
 184   inline void* operator new( size_t x ) throw() {
 185     Compile* compile = Compile::current();
 186     compile->set_type_last_size(x);
 187     void *temp = compile->type_arena()->Amalloc_D(x);
 188     compile->set_type_hwm(temp);
 189     return temp;
 190   }
 191   inline void operator delete( void* ptr ) {
 192     Compile* compile = Compile::current();
 193     compile->type_arena()->Afree(ptr,compile->type_last_size());
 194   }
 195 
 196   // Initialize the type system for a particular compilation.
 197   static void Initialize(Compile* compile);
 198 
 199   // Initialize the types shared by all compilations.
 200   static void Initialize_shared(Compile* compile);
 201 
 202   TYPES base() const {
 203     assert(_base > Bad && _base < lastype, "sanity");
 204     return _base;
 205   }
 206 
 207   // Create a new hash-consd type
 208   static const Type *make(enum TYPES);
 209   // Test for equivalence of types
 210   static int cmp( const Type *const t1, const Type *const t2 );
 211   // Test for higher or equal in lattice
 212   // Variant that drops the speculative part of the types
 213   bool higher_equal(const Type *t) const {
 214     return !cmp(meet(t),t->remove_speculative());
 215   }
 216   // Variant that keeps the speculative part of the types
 217   bool higher_equal_speculative(const Type *t) const {
 218     return !cmp(meet_speculative(t),t);
 219   }
 220 
 221   // MEET operation; lower in lattice.
 222   // Variant that drops the speculative part of the types
 223   const Type *meet(const Type *t) const {
 224     return meet_helper(t, false);
 225   }
 226   // Variant that keeps the speculative part of the types
 227   const Type *meet_speculative(const Type *t) const {
 228     return meet_helper(t, true)->cleanup_speculative();
 229   }
 230   // WIDEN: 'widens' for Ints and other range types
 231   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 232   // NARROW: complement for widen, used by pessimistic phases
 233   virtual const Type *narrow( const Type *old ) const { return this; }
 234 
 235   // DUAL operation: reflect around lattice centerline.  Used instead of
 236   // join to ensure my lattice is symmetric up and down.
 237   const Type *dual() const { return _dual; }
 238 
 239   // Compute meet dependent on base type
 240   virtual const Type *xmeet( const Type *t ) const;
 241   virtual const Type *xdual() const;    // Compute dual right now.
 242 
 243   // JOIN operation; higher in lattice.  Done by finding the dual of the
 244   // meet of the dual of the 2 inputs.
 245   // Variant that drops the speculative part of the types
 246   const Type *join(const Type *t) const {
 247     return join_helper(t, false);
 248   }
 249   // Variant that keeps the speculative part of the types
 250   const Type *join_speculative(const Type *t) const {
 251     return join_helper(t, true)->cleanup_speculative();
 252   }
 253 
 254   // Modified version of JOIN adapted to the needs Node::Value.
 255   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 256   // Currently, it also works around limitations involving interface types.
 257   // Variant that drops the speculative part of the types
 258   const Type *filter(const Type *kills) const {
 259     return filter_helper(kills, false);
 260   }
 261   // Variant that keeps the speculative part of the types
 262   const Type *filter_speculative(const Type *kills) const {
 263     return filter_helper(kills, true)->cleanup_speculative();
 264   }
 265 
 266 #ifdef ASSERT
 267   // One type is interface, the other is oop
 268   virtual bool interface_vs_oop(const Type *t) const;
 269 #endif
 270 
 271   // Returns true if this pointer points at memory which contains a
 272   // compressed oop references.
 273   bool is_ptr_to_narrowoop() const;
 274   bool is_ptr_to_narrowklass() const;
 275 
 276   bool is_ptr_to_boxing_obj() const;
 277 
 278 
 279   // Convenience access
 280   float getf() const;
 281   double getd() const;
 282 
 283   const TypeInt    *is_int() const;
 284   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 285   const TypeLong   *is_long() const;
 286   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 287   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 288   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 289   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 290   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 291   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 292   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 293   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 294   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 295   const TypeVect   *is_vect() const;             // Vector
 296   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 297   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 298   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 299   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 300   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 301   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 302   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 303   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 304   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 305   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 306   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 307   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 308   const TypeInstPtr  *is_instptr() const;        // Instance
 309   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 310   const TypeAryPtr   *is_aryptr() const;         // Array oop
 311 
 312   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 313   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 314   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 315   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 316 
 317   virtual bool      is_finite() const;           // Has a finite value
 318   virtual bool      is_nan()    const;           // Is not a number (NaN)
 319 
 320   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 321   const TypePtr* make_ptr() const;
 322 
 323   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 324   // Asserts if the underlying type is not an oopptr or narrowoop.
 325   const TypeOopPtr* make_oopptr() const;
 326 
 327   // Returns this compressed pointer or the equivalent compressed version
 328   // of this pointer type.
 329   const TypeNarrowOop* make_narrowoop() const;
 330 
 331   // Returns this compressed klass pointer or the equivalent
 332   // compressed version of this pointer type.
 333   const TypeNarrowKlass* make_narrowklass() const;
 334 
 335   // Special test for register pressure heuristic
 336   bool is_floatingpoint() const;        // True if Float or Double base type
 337 
 338   // Do you have memory, directly or through a tuple?
 339   bool has_memory( ) const;
 340 
 341   // TRUE if type is a singleton
 342   virtual bool singleton(void) const;
 343 
 344   // TRUE if type is above the lattice centerline, and is therefore vacuous
 345   virtual bool empty(void) const;
 346 
 347   // Return a hash for this type.  The hash function is public so ConNode
 348   // (constants) can hash on their constant, which is represented by a Type.
 349   virtual int hash() const;
 350 
 351   // Map ideal registers (machine types) to ideal types
 352   static const Type *mreg2type[];
 353 
 354   // Printing, statistics
 355 #ifndef PRODUCT
 356   void         dump_on(outputStream *st) const;
 357   void         dump() const {
 358     dump_on(tty);
 359   }
 360   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 361   static  void dump_stats();
 362 
 363   static const char* str(const Type* t);
 364 #endif
 365   void typerr(const Type *t) const; // Mixing types error
 366 
 367   // Create basic type
 368   static const Type* get_const_basic_type(BasicType type) {
 369     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 370     return _const_basic_type[type];
 371   }
 372 
 373   // For two instance arrays of same dimension, return the base element types.
 374   // Otherwise or if the arrays have different dimensions, return NULL.
 375   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 376                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 377 
 378   // Mapping to the array element's basic type.
 379   BasicType array_element_basic_type() const;
 380 
 381   // Create standard type for a ciType:
 382   static const Type* get_const_type(ciType* type);
 383 
 384   // Create standard zero value:
 385   static const Type* get_zero_type(BasicType type) {
 386     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 387     return _zero_type[type];
 388   }
 389 
 390   // Report if this is a zero value (not top).
 391   bool is_zero_type() const {
 392     BasicType type = basic_type();
 393     if (type == T_VOID || type >= T_CONFLICT)
 394       return false;
 395     else
 396       return (this == _zero_type[type]);
 397   }
 398 
 399   // Convenience common pre-built types.
 400   static const Type *ABIO;
 401   static const Type *BOTTOM;
 402   static const Type *CONTROL;
 403   static const Type *DOUBLE;
 404   static const Type *FLOAT;
 405   static const Type *HALF;
 406   static const Type *MEMORY;
 407   static const Type *MULTI;
 408   static const Type *RETURN_ADDRESS;
 409   static const Type *TOP;
 410 
 411   // Mapping from compiler type to VM BasicType
 412   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 413   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 414   const char* msg() const            { return _type_info[_base].msg; }
 415   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 416   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 417 
 418   // Mapping from CI type system to compiler type:
 419   static const Type* get_typeflow_type(ciType* type);
 420 
 421   static const Type* make_from_constant(ciConstant constant,
 422                                         bool require_constant = false,
 423                                         int stable_dimension = 0,
 424                                         bool is_narrow = false,
 425                                         bool is_autobox_cache = false);
 426 
 427   static const Type* make_constant_from_field(ciInstance* holder,
 428                                               int off,
 429                                               bool is_unsigned_load,
 430                                               BasicType loadbt);
 431 
 432   static const Type* make_constant_from_field(ciField* field,
 433                                               ciInstance* holder,
 434                                               BasicType loadbt,
 435                                               bool is_unsigned_load);
 436 
 437   static const Type* make_constant_from_array_element(ciArray* array,
 438                                                       int off,
 439                                                       int stable_dimension,
 440                                                       BasicType loadbt,
 441                                                       bool is_unsigned_load);
 442 
 443   // Speculative type helper methods. See TypePtr.
 444   virtual const TypePtr* speculative() const                                  { return NULL; }
 445   virtual ciKlass* speculative_type() const                                   { return NULL; }
 446   virtual ciKlass* speculative_type_not_null() const                          { return NULL; }
 447   virtual bool speculative_maybe_null() const                                 { return true; }
 448   virtual const Type* remove_speculative() const                              { return this; }
 449   virtual const Type* cleanup_speculative() const                             { return this; }
 450   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
 451   virtual bool would_improve_ptr(bool maybe_null) const                       { return !maybe_null; }
 452   const Type* maybe_remove_speculative(bool include_speculative) const;
 453 
 454   virtual bool maybe_null() const { return true; }
 455 
 456 private:
 457   // support arrays
 458   static const BasicType _basic_type[];
 459   static const Type*        _zero_type[T_CONFLICT+1];
 460   static const Type* _const_basic_type[T_CONFLICT+1];
 461 };
 462 
 463 //------------------------------TypeF------------------------------------------
 464 // Class of Float-Constant Types.
 465 class TypeF : public Type {
 466   TypeF( float f ) : Type(FloatCon), _f(f) {};
 467 public:
 468   virtual bool eq( const Type *t ) const;
 469   virtual int  hash() const;             // Type specific hashing
 470   virtual bool singleton(void) const;    // TRUE if type is a singleton
 471   virtual bool empty(void) const;        // TRUE if type is vacuous
 472 public:
 473   const float _f;               // Float constant
 474 
 475   static const TypeF *make(float f);
 476 
 477   virtual bool        is_finite() const;  // Has a finite value
 478   virtual bool        is_nan()    const;  // Is not a number (NaN)
 479 
 480   virtual const Type *xmeet( const Type *t ) const;
 481   virtual const Type *xdual() const;    // Compute dual right now.
 482   // Convenience common pre-built types.
 483   static const TypeF *ZERO; // positive zero only
 484   static const TypeF *ONE;
 485 #ifndef PRODUCT
 486   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 487 #endif
 488 };
 489 
 490 //------------------------------TypeD------------------------------------------
 491 // Class of Double-Constant Types.
 492 class TypeD : public Type {
 493   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 494 public:
 495   virtual bool eq( const Type *t ) const;
 496   virtual int  hash() const;             // Type specific hashing
 497   virtual bool singleton(void) const;    // TRUE if type is a singleton
 498   virtual bool empty(void) const;        // TRUE if type is vacuous
 499 public:
 500   const double _d;              // Double constant
 501 
 502   static const TypeD *make(double d);
 503 
 504   virtual bool        is_finite() const;  // Has a finite value
 505   virtual bool        is_nan()    const;  // Is not a number (NaN)
 506 
 507   virtual const Type *xmeet( const Type *t ) const;
 508   virtual const Type *xdual() const;    // Compute dual right now.
 509   // Convenience common pre-built types.
 510   static const TypeD *ZERO; // positive zero only
 511   static const TypeD *ONE;
 512 #ifndef PRODUCT
 513   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 514 #endif
 515 };
 516 
 517 //------------------------------TypeInt----------------------------------------
 518 // Class of integer ranges, the set of integers between a lower bound and an
 519 // upper bound, inclusive.
 520 class TypeInt : public Type {
 521   TypeInt( jint lo, jint hi, int w );
 522 protected:
 523   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 524 
 525 public:
 526   typedef jint NativeType;
 527   virtual bool eq( const Type *t ) const;
 528   virtual int  hash() const;             // Type specific hashing
 529   virtual bool singleton(void) const;    // TRUE if type is a singleton
 530   virtual bool empty(void) const;        // TRUE if type is vacuous
 531   const jint _lo, _hi;          // Lower bound, upper bound
 532   const short _widen;           // Limit on times we widen this sucker
 533 
 534   static const TypeInt *make(jint lo);
 535   // must always specify w
 536   static const TypeInt *make(jint lo, jint hi, int w);
 537 
 538   // Check for single integer
 539   int is_con() const { return _lo==_hi; }
 540   bool is_con(int i) const { return is_con() && _lo == i; }
 541   jint get_con() const { assert( is_con(), "" );  return _lo; }
 542 
 543   virtual bool        is_finite() const;  // Has a finite value
 544 
 545   virtual const Type *xmeet( const Type *t ) const;
 546   virtual const Type *xdual() const;    // Compute dual right now.
 547   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 548   virtual const Type *narrow( const Type *t ) const;
 549   // Do not kill _widen bits.
 550   // Convenience common pre-built types.
 551   static const TypeInt *MINUS_1;
 552   static const TypeInt *ZERO;
 553   static const TypeInt *ONE;
 554   static const TypeInt *BOOL;
 555   static const TypeInt *CC;
 556   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 557   static const TypeInt *CC_GT;  // [1]   == ONE
 558   static const TypeInt *CC_EQ;  // [0]   == ZERO
 559   static const TypeInt *CC_LE;  // [-1,0]
 560   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 561   static const TypeInt *BYTE;
 562   static const TypeInt *UBYTE;
 563   static const TypeInt *CHAR;
 564   static const TypeInt *SHORT;
 565   static const TypeInt *POS;
 566   static const TypeInt *POS1;
 567   static const TypeInt *INT;
 568   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 569   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 570 
 571   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 572 #ifndef PRODUCT
 573   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 574 #endif
 575 };
 576 
 577 
 578 //------------------------------TypeLong---------------------------------------
 579 // Class of long integer ranges, the set of integers between a lower bound and
 580 // an upper bound, inclusive.
 581 class TypeLong : public Type {
 582   TypeLong( jlong lo, jlong hi, int w );
 583 protected:
 584   // Do not kill _widen bits.
 585   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 586 public:
 587   typedef jlong NativeType;
 588   virtual bool eq( const Type *t ) const;
 589   virtual int  hash() const;             // Type specific hashing
 590   virtual bool singleton(void) const;    // TRUE if type is a singleton
 591   virtual bool empty(void) const;        // TRUE if type is vacuous
 592 public:
 593   const jlong _lo, _hi;         // Lower bound, upper bound
 594   const short _widen;           // Limit on times we widen this sucker
 595 
 596   static const TypeLong *make(jlong lo);
 597   // must always specify w
 598   static const TypeLong *make(jlong lo, jlong hi, int w);
 599 
 600   // Check for single integer
 601   int is_con() const { return _lo==_hi; }
 602   bool is_con(int i) const { return is_con() && _lo == i; }
 603   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 604 
 605   // Check for positive 32-bit value.
 606   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 607 
 608   virtual bool        is_finite() const;  // Has a finite value
 609 
 610 
 611   virtual const Type *xmeet( const Type *t ) const;
 612   virtual const Type *xdual() const;    // Compute dual right now.
 613   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 614   virtual const Type *narrow( const Type *t ) const;
 615   // Convenience common pre-built types.
 616   static const TypeLong *MINUS_1;
 617   static const TypeLong *ZERO;
 618   static const TypeLong *ONE;
 619   static const TypeLong *POS;
 620   static const TypeLong *LONG;
 621   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 622   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 623   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 624 
 625   // static convenience methods.
 626   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 627 
 628 #ifndef PRODUCT
 629   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 630 #endif
 631 };
 632 
 633 //------------------------------TypeTuple--------------------------------------
 634 // Class of Tuple Types, essentially type collections for function signatures
 635 // and class layouts.  It happens to also be a fast cache for the HotSpot
 636 // signature types.
 637 class TypeTuple : public Type {
 638   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 639 
 640   const uint          _cnt;              // Count of fields
 641   const Type ** const _fields;           // Array of field types
 642 
 643 public:
 644   virtual bool eq( const Type *t ) const;
 645   virtual int  hash() const;             // Type specific hashing
 646   virtual bool singleton(void) const;    // TRUE if type is a singleton
 647   virtual bool empty(void) const;        // TRUE if type is vacuous
 648 
 649   // Accessors:
 650   uint cnt() const { return _cnt; }
 651   const Type* field_at(uint i) const {
 652     assert(i < _cnt, "oob");
 653     return _fields[i];
 654   }
 655   void set_field_at(uint i, const Type* t) {
 656     assert(i < _cnt, "oob");
 657     _fields[i] = t;
 658   }
 659 
 660   static const TypeTuple *make( uint cnt, const Type **fields );
 661   static const TypeTuple *make_range(ciSignature *sig);
 662   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 663 
 664   // Subroutine call type with space allocated for argument types
 665   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 666   static const Type **fields( uint arg_cnt );
 667 
 668   virtual const Type *xmeet( const Type *t ) const;
 669   virtual const Type *xdual() const;    // Compute dual right now.
 670   // Convenience common pre-built types.
 671   static const TypeTuple *IFBOTH;
 672   static const TypeTuple *IFFALSE;
 673   static const TypeTuple *IFTRUE;
 674   static const TypeTuple *IFNEITHER;
 675   static const TypeTuple *LOOPBODY;
 676   static const TypeTuple *MEMBAR;
 677   static const TypeTuple *STORECONDITIONAL;
 678   static const TypeTuple *START_I2C;
 679   static const TypeTuple *INT_PAIR;
 680   static const TypeTuple *LONG_PAIR;
 681   static const TypeTuple *INT_CC_PAIR;
 682   static const TypeTuple *LONG_CC_PAIR;
 683 #ifndef PRODUCT
 684   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 685 #endif
 686 };
 687 
 688 //------------------------------TypeAry----------------------------------------
 689 // Class of Array Types
 690 class TypeAry : public Type {
 691   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 692       _elem(elem), _size(size), _stable(stable) {}
 693 public:
 694   virtual bool eq( const Type *t ) const;
 695   virtual int  hash() const;             // Type specific hashing
 696   virtual bool singleton(void) const;    // TRUE if type is a singleton
 697   virtual bool empty(void) const;        // TRUE if type is vacuous
 698 
 699 private:
 700   const Type *_elem;            // Element type of array
 701   const TypeInt *_size;         // Elements in array
 702   const bool _stable;           // Are elements @Stable?
 703   friend class TypeAryPtr;
 704 
 705 public:
 706   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 707 
 708   virtual const Type *xmeet( const Type *t ) const;
 709   virtual const Type *xdual() const;    // Compute dual right now.
 710   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 711   virtual const Type* remove_speculative() const;
 712   virtual const Type* cleanup_speculative() const;
 713 #ifdef ASSERT
 714   // One type is interface, the other is oop
 715   virtual bool interface_vs_oop(const Type *t) const;
 716 #endif
 717 #ifndef PRODUCT
 718   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 719 #endif
 720 };
 721 
 722 //------------------------------TypeVect---------------------------------------
 723 // Class of Vector Types
 724 class TypeVect : public Type {
 725   const Type*   _elem;  // Vector's element type
 726   const uint  _length;  // Elements in vector (power of 2)
 727 
 728 protected:
 729   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 730     _elem(elem), _length(length) {}
 731 
 732 public:
 733   const Type* element_type() const { return _elem; }
 734   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 735   uint length() const { return _length; }
 736   uint length_in_bytes() const {
 737    return _length * type2aelembytes(element_basic_type());
 738   }
 739 
 740   virtual bool eq(const Type *t) const;
 741   virtual int  hash() const;             // Type specific hashing
 742   virtual bool singleton(void) const;    // TRUE if type is a singleton
 743   virtual bool empty(void) const;        // TRUE if type is vacuous
 744 
 745   static const TypeVect *make(const BasicType elem_bt, uint length) {
 746     // Use bottom primitive type.
 747     return make(get_const_basic_type(elem_bt), length);
 748   }
 749   // Used directly by Replicate nodes to construct singleton vector.
 750   static const TypeVect *make(const Type* elem, uint length);
 751 
 752   virtual const Type *xmeet( const Type *t) const;
 753   virtual const Type *xdual() const;     // Compute dual right now.
 754 
 755   static const TypeVect *VECTS;
 756   static const TypeVect *VECTD;
 757   static const TypeVect *VECTX;
 758   static const TypeVect *VECTY;
 759   static const TypeVect *VECTZ;
 760 
 761 #ifndef PRODUCT
 762   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 763 #endif
 764 };
 765 
 766 class TypeVectS : public TypeVect {
 767   friend class TypeVect;
 768   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 769 };
 770 
 771 class TypeVectD : public TypeVect {
 772   friend class TypeVect;
 773   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 774 };
 775 
 776 class TypeVectX : public TypeVect {
 777   friend class TypeVect;
 778   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 779 };
 780 
 781 class TypeVectY : public TypeVect {
 782   friend class TypeVect;
 783   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 784 };
 785 
 786 class TypeVectZ : public TypeVect {
 787   friend class TypeVect;
 788   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 789 };
 790 
 791 //------------------------------TypePtr----------------------------------------
 792 // Class of machine Pointer Types: raw data, instances or arrays.
 793 // If the _base enum is AnyPtr, then this refers to all of the above.
 794 // Otherwise the _base will indicate which subset of pointers is affected,
 795 // and the class will be inherited from.
 796 class TypePtr : public Type {
 797   friend class TypeNarrowPtr;
 798 public:
 799   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 800 protected:
 801   TypePtr(TYPES t, PTR ptr, int offset,
 802           const TypePtr* speculative = NULL,
 803           int inline_depth = InlineDepthBottom) :
 804     Type(t), _ptr(ptr), _offset(offset), _speculative(speculative),
 805     _inline_depth(inline_depth) {}
 806   static const PTR ptr_meet[lastPTR][lastPTR];
 807   static const PTR ptr_dual[lastPTR];
 808   static const char * const ptr_msg[lastPTR];
 809 
 810   enum {
 811     InlineDepthBottom = INT_MAX,
 812     InlineDepthTop = -InlineDepthBottom
 813   };
 814 
 815   // Extra type information profiling gave us. We propagate it the
 816   // same way the rest of the type info is propagated. If we want to
 817   // use it, then we have to emit a guard: this part of the type is
 818   // not something we know but something we speculate about the type.
 819   const TypePtr*   _speculative;
 820   // For speculative types, we record at what inlining depth the
 821   // profiling point that provided the data is. We want to favor
 822   // profile data coming from outer scopes which are likely better for
 823   // the current compilation.
 824   int _inline_depth;
 825 
 826   // utility methods to work on the speculative part of the type
 827   const TypePtr* dual_speculative() const;
 828   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 829   bool eq_speculative(const TypePtr* other) const;
 830   int hash_speculative() const;
 831   const TypePtr* add_offset_speculative(intptr_t offset) const;
 832 #ifndef PRODUCT
 833   void dump_speculative(outputStream *st) const;
 834 #endif
 835 
 836   // utility methods to work on the inline depth of the type
 837   int dual_inline_depth() const;
 838   int meet_inline_depth(int depth) const;
 839 #ifndef PRODUCT
 840   void dump_inline_depth(outputStream *st) const;
 841 #endif
 842 
 843 public:
 844   const int _offset;            // Offset into oop, with TOP & BOT
 845   const PTR _ptr;               // Pointer equivalence class
 846 
 847   const int offset() const { return _offset; }
 848   const PTR ptr()    const { return _ptr; }
 849 
 850   static const TypePtr *make(TYPES t, PTR ptr, int offset,
 851                              const TypePtr* speculative = NULL,
 852                              int inline_depth = InlineDepthBottom);
 853 
 854   // Return a 'ptr' version of this type
 855   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 856 
 857   virtual intptr_t get_con() const;
 858 
 859   int xadd_offset( intptr_t offset ) const;
 860   virtual const TypePtr *add_offset( intptr_t offset ) const;
 861   virtual bool eq(const Type *t) const;
 862   virtual int  hash() const;             // Type specific hashing
 863 
 864   virtual bool singleton(void) const;    // TRUE if type is a singleton
 865   virtual bool empty(void) const;        // TRUE if type is vacuous
 866   virtual const Type *xmeet( const Type *t ) const;
 867   virtual const Type *xmeet_helper( const Type *t ) const;
 868   int meet_offset( int offset ) const;
 869   int dual_offset( ) const;
 870   virtual const Type *xdual() const;    // Compute dual right now.
 871 
 872   // meet, dual and join over pointer equivalence sets
 873   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 874   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 875 
 876   // This is textually confusing unless one recalls that
 877   // join(t) == dual()->meet(t->dual())->dual().
 878   PTR join_ptr( const PTR in_ptr ) const {
 879     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 880   }
 881 
 882   // Speculative type helper methods.
 883   virtual const TypePtr* speculative() const { return _speculative; }
 884   int inline_depth() const                   { return _inline_depth; }
 885   virtual ciKlass* speculative_type() const;
 886   virtual ciKlass* speculative_type_not_null() const;
 887   virtual bool speculative_maybe_null() const;
 888   virtual const Type* remove_speculative() const;
 889   virtual const Type* cleanup_speculative() const;
 890   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
 891   virtual bool would_improve_ptr(bool maybe_null) const;
 892   virtual const TypePtr* with_inline_depth(int depth) const;
 893 
 894   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
 895 
 896   // Tests for relation to centerline of type lattice:
 897   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 898   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 899   // Convenience common pre-built types.
 900   static const TypePtr *NULL_PTR;
 901   static const TypePtr *NOTNULL;
 902   static const TypePtr *BOTTOM;
 903 #ifndef PRODUCT
 904   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 905 #endif
 906 };
 907 
 908 //------------------------------TypeRawPtr-------------------------------------
 909 // Class of raw pointers, pointers to things other than Oops.  Examples
 910 // include the stack pointer, top of heap, card-marking area, handles, etc.
 911 class TypeRawPtr : public TypePtr {
 912 protected:
 913   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 914 public:
 915   virtual bool eq( const Type *t ) const;
 916   virtual int  hash() const;     // Type specific hashing
 917 
 918   const address _bits;          // Constant value, if applicable
 919 
 920   static const TypeRawPtr *make( PTR ptr );
 921   static const TypeRawPtr *make( address bits );
 922 
 923   // Return a 'ptr' version of this type
 924   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 925 
 926   virtual intptr_t get_con() const;
 927 
 928   virtual const TypePtr *add_offset( intptr_t offset ) const;
 929 
 930   virtual const Type *xmeet( const Type *t ) const;
 931   virtual const Type *xdual() const;    // Compute dual right now.
 932   // Convenience common pre-built types.
 933   static const TypeRawPtr *BOTTOM;
 934   static const TypeRawPtr *NOTNULL;
 935 #ifndef PRODUCT
 936   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 937 #endif
 938 };
 939 
 940 //------------------------------TypeOopPtr-------------------------------------
 941 // Some kind of oop (Java pointer), either instance or array.
 942 class TypeOopPtr : public TypePtr {
 943 protected:
 944   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
 945              const TypePtr* speculative, int inline_depth);
 946 public:
 947   virtual bool eq( const Type *t ) const;
 948   virtual int  hash() const;             // Type specific hashing
 949   virtual bool singleton(void) const;    // TRUE if type is a singleton
 950   enum {
 951    InstanceTop = -1,   // undefined instance
 952    InstanceBot = 0     // any possible instance
 953   };
 954 protected:
 955 
 956   // Oop is NULL, unless this is a constant oop.
 957   ciObject*     _const_oop;   // Constant oop
 958   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 959   ciKlass*      _klass;       // Klass object
 960   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 961   bool          _klass_is_exact;
 962   bool          _is_ptr_to_narrowoop;
 963   bool          _is_ptr_to_narrowklass;
 964   bool          _is_ptr_to_boxed_value;
 965 
 966   // If not InstanceTop or InstanceBot, indicates that this is
 967   // a particular instance of this type which is distinct.
 968   // This is the node index of the allocation node creating this instance.
 969   int           _instance_id;
 970 
 971   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 972 
 973   int dual_instance_id() const;
 974   int meet_instance_id(int uid) const;
 975 
 976   // Do not allow interface-vs.-noninterface joins to collapse to top.
 977   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 978 
 979 public:
 980   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 981   // Respects UseUniqueSubclasses.
 982   // If the klass is final, the resulting type will be exact.
 983   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 984     return make_from_klass_common(klass, true, false);
 985   }
 986   // Same as before, but will produce an exact type, even if
 987   // the klass is not final, as long as it has exactly one implementation.
 988   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 989     return make_from_klass_common(klass, true, true);
 990   }
 991   // Same as before, but does not respects UseUniqueSubclasses.
 992   // Use this only for creating array element types.
 993   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 994     return make_from_klass_common(klass, false, false);
 995   }
 996   // Creates a singleton type given an object.
 997   // If the object cannot be rendered as a constant,
 998   // may return a non-singleton type.
 999   // If require_constant, produce a NULL if a singleton is not possible.
1000   static const TypeOopPtr* make_from_constant(ciObject* o,
1001                                               bool require_constant = false);
1002 
1003   // Make a generic (unclassed) pointer to an oop.
1004   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1005                                 const TypePtr* speculative = NULL,
1006                                 int inline_depth = InlineDepthBottom);
1007 
1008   ciObject* const_oop()    const { return _const_oop; }
1009   virtual ciKlass* klass() const { return _klass;     }
1010   bool klass_is_exact()    const { return _klass_is_exact; }
1011 
1012   // Returns true if this pointer points at memory which contains a
1013   // compressed oop references.
1014   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1015   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1016   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1017   bool is_known_instance()       const { return _instance_id > 0; }
1018   int  instance_id()             const { return _instance_id; }
1019   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1020 
1021   virtual intptr_t get_con() const;
1022 
1023   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1024 
1025   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1026 
1027   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1028 
1029   // corresponding pointer to klass, for a given instance
1030   const TypeKlassPtr* as_klass_type() const;
1031 
1032   virtual const TypePtr *add_offset( intptr_t offset ) const;
1033 
1034   // Speculative type helper methods.
1035   virtual const Type* remove_speculative() const;
1036   virtual const Type* cleanup_speculative() const;
1037   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1038   virtual const TypePtr* with_inline_depth(int depth) const;
1039 
1040   virtual const Type *xdual() const;    // Compute dual right now.
1041   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1042   virtual const Type *xmeet_helper(const Type *t) const;
1043 
1044   // Convenience common pre-built type.
1045   static const TypeOopPtr *BOTTOM;
1046 #ifndef PRODUCT
1047   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1048 #endif
1049 };
1050 
1051 //------------------------------TypeInstPtr------------------------------------
1052 // Class of Java object pointers, pointing either to non-array Java instances
1053 // or to a Klass* (including array klasses).
1054 class TypeInstPtr : public TypeOopPtr {
1055   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
1056               const TypePtr* speculative, int inline_depth);
1057   virtual bool eq( const Type *t ) const;
1058   virtual int  hash() const;             // Type specific hashing
1059 
1060   ciSymbol*  _name;        // class name
1061 
1062  public:
1063   ciSymbol* name()         const { return _name; }
1064 
1065   bool  is_loaded() const { return _klass->is_loaded(); }
1066 
1067   // Make a pointer to a constant oop.
1068   static const TypeInstPtr *make(ciObject* o) {
1069     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
1070   }
1071   // Make a pointer to a constant oop with offset.
1072   static const TypeInstPtr *make(ciObject* o, int offset) {
1073     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1074   }
1075 
1076   // Make a pointer to some value of type klass.
1077   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1078     return make(ptr, klass, false, NULL, 0, InstanceBot);
1079   }
1080 
1081   // Make a pointer to some non-polymorphic value of exactly type klass.
1082   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1083     return make(ptr, klass, true, NULL, 0, InstanceBot);
1084   }
1085 
1086   // Make a pointer to some value of type klass with offset.
1087   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1088     return make(ptr, klass, false, NULL, offset, InstanceBot);
1089   }
1090 
1091   // Make a pointer to an oop.
1092   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
1093                                  int instance_id = InstanceBot,
1094                                  const TypePtr* speculative = NULL,
1095                                  int inline_depth = InlineDepthBottom);
1096 
1097   /** Create constant type for a constant boxed value */
1098   const Type* get_const_boxed_value() const;
1099 
1100   // If this is a java.lang.Class constant, return the type for it or NULL.
1101   // Pass to Type::get_const_type to turn it to a type, which will usually
1102   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1103   ciType* java_mirror_type() const;
1104 
1105   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1106 
1107   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1108 
1109   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1110 
1111   virtual const TypePtr *add_offset( intptr_t offset ) const;
1112 
1113   // Speculative type helper methods.
1114   virtual const Type* remove_speculative() const;
1115   virtual const TypePtr* with_inline_depth(int depth) const;
1116 
1117   // the core of the computation of the meet of 2 types
1118   virtual const Type *xmeet_helper(const Type *t) const;
1119   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1120   virtual const Type *xdual() const;    // Compute dual right now.
1121 
1122   // Convenience common pre-built types.
1123   static const TypeInstPtr *NOTNULL;
1124   static const TypeInstPtr *BOTTOM;
1125   static const TypeInstPtr *MIRROR;
1126   static const TypeInstPtr *MARK;
1127   static const TypeInstPtr *KLASS;
1128 #ifndef PRODUCT
1129   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1130 #endif
1131 };
1132 
1133 //------------------------------TypeAryPtr-------------------------------------
1134 // Class of Java array pointers
1135 class TypeAryPtr : public TypeOopPtr {
1136   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1137               int offset, int instance_id, bool is_autobox_cache,
1138               const TypePtr* speculative, int inline_depth)
1139     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1140     _ary(ary),
1141     _is_autobox_cache(is_autobox_cache)
1142  {
1143 #ifdef ASSERT
1144     if (k != NULL) {
1145       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1146       ciKlass* ck = compute_klass(true);
1147       if (k != ck) {
1148         this->dump(); tty->cr();
1149         tty->print(" k: ");
1150         k->print(); tty->cr();
1151         tty->print("ck: ");
1152         if (ck != NULL) ck->print();
1153         else tty->print("<NULL>");
1154         tty->cr();
1155         assert(false, "unexpected TypeAryPtr::_klass");
1156       }
1157     }
1158 #endif
1159   }
1160   virtual bool eq( const Type *t ) const;
1161   virtual int hash() const;     // Type specific hashing
1162   const TypeAry *_ary;          // Array we point into
1163   const bool     _is_autobox_cache;
1164 
1165   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1166 
1167 public:
1168   // Accessors
1169   ciKlass* klass() const;
1170   const TypeAry* ary() const  { return _ary; }
1171   const Type*    elem() const { return _ary->_elem; }
1172   const TypeInt* size() const { return _ary->_size; }
1173   bool      is_stable() const { return _ary->_stable; }
1174 
1175   bool is_autobox_cache() const { return _is_autobox_cache; }
1176 
1177   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1178                                 int instance_id = InstanceBot,
1179                                 const TypePtr* speculative = NULL,
1180                                 int inline_depth = InlineDepthBottom);
1181   // Constant pointer to array
1182   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1183                                 int instance_id = InstanceBot,
1184                                 const TypePtr* speculative = NULL,
1185                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1186 
1187   // Return a 'ptr' version of this type
1188   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1189 
1190   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1191 
1192   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1193 
1194   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1195   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1196 
1197   virtual bool empty(void) const;        // TRUE if type is vacuous
1198   virtual const TypePtr *add_offset( intptr_t offset ) const;
1199 
1200   // Speculative type helper methods.
1201   virtual const Type* remove_speculative() const;
1202   virtual const TypePtr* with_inline_depth(int depth) const;
1203 
1204   // the core of the computation of the meet of 2 types
1205   virtual const Type *xmeet_helper(const Type *t) const;
1206   virtual const Type *xdual() const;    // Compute dual right now.
1207 
1208   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1209   int stable_dimension() const;
1210 
1211   const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1212 
1213   // Convenience common pre-built types.
1214   static const TypeAryPtr *RANGE;
1215   static const TypeAryPtr *OOPS;
1216   static const TypeAryPtr *NARROWOOPS;
1217   static const TypeAryPtr *BYTES;
1218   static const TypeAryPtr *SHORTS;
1219   static const TypeAryPtr *CHARS;
1220   static const TypeAryPtr *INTS;
1221   static const TypeAryPtr *LONGS;
1222   static const TypeAryPtr *FLOATS;
1223   static const TypeAryPtr *DOUBLES;
1224   // selects one of the above:
1225   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1226     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1227     return _array_body_type[elem];
1228   }
1229   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1230   // sharpen the type of an int which is used as an array size
1231 #ifdef ASSERT
1232   // One type is interface, the other is oop
1233   virtual bool interface_vs_oop(const Type *t) const;
1234 #endif
1235 #ifndef PRODUCT
1236   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1237 #endif
1238 };
1239 
1240 //------------------------------TypeMetadataPtr-------------------------------------
1241 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1242 class TypeMetadataPtr : public TypePtr {
1243 protected:
1244   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1245   // Do not allow interface-vs.-noninterface joins to collapse to top.
1246   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1247 public:
1248   virtual bool eq( const Type *t ) const;
1249   virtual int  hash() const;             // Type specific hashing
1250   virtual bool singleton(void) const;    // TRUE if type is a singleton
1251 
1252 private:
1253   ciMetadata*   _metadata;
1254 
1255 public:
1256   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1257 
1258   static const TypeMetadataPtr* make(ciMethod* m);
1259   static const TypeMetadataPtr* make(ciMethodData* m);
1260 
1261   ciMetadata* metadata() const { return _metadata; }
1262 
1263   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1264 
1265   virtual const TypePtr *add_offset( intptr_t offset ) const;
1266 
1267   virtual const Type *xmeet( const Type *t ) const;
1268   virtual const Type *xdual() const;    // Compute dual right now.
1269 
1270   virtual intptr_t get_con() const;
1271 
1272   // Convenience common pre-built types.
1273   static const TypeMetadataPtr *BOTTOM;
1274 
1275 #ifndef PRODUCT
1276   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1277 #endif
1278 };
1279 
1280 //------------------------------TypeKlassPtr-----------------------------------
1281 // Class of Java Klass pointers
1282 class TypeKlassPtr : public TypePtr {
1283   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1284 
1285 protected:
1286   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1287  public:
1288   virtual bool eq( const Type *t ) const;
1289   virtual int hash() const;             // Type specific hashing
1290   virtual bool singleton(void) const;    // TRUE if type is a singleton
1291  private:
1292 
1293   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1294 
1295   ciKlass* _klass;
1296 
1297   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1298   bool          _klass_is_exact;
1299 
1300 public:
1301   ciSymbol* name()  const { return klass()->name(); }
1302 
1303   ciKlass* klass() const { return  _klass; }
1304   bool klass_is_exact()    const { return _klass_is_exact; }
1305 
1306   bool  is_loaded() const { return klass()->is_loaded(); }
1307 
1308   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1309   // Respects UseUniqueSubclasses.
1310   // If the klass is final, the resulting type will be exact.
1311   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1312     return make_from_klass_common(klass, true, false);
1313   }
1314   // Same as before, but will produce an exact type, even if
1315   // the klass is not final, as long as it has exactly one implementation.
1316   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1317     return make_from_klass_common(klass, true, true);
1318   }
1319   // Same as before, but does not respects UseUniqueSubclasses.
1320   // Use this only for creating array element types.
1321   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1322     return make_from_klass_common(klass, false, false);
1323   }
1324 
1325   // Make a generic (unclassed) pointer to metadata.
1326   static const TypeKlassPtr* make(PTR ptr, int offset);
1327 
1328   // ptr to klass 'k'
1329   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1330   // ptr to klass 'k' with offset
1331   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1332   // ptr to klass 'k' or sub-klass
1333   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1334 
1335   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1336 
1337   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1338 
1339   // corresponding pointer to instance, for a given class
1340   const TypeOopPtr* as_instance_type() const;
1341 
1342   virtual const TypePtr *add_offset( intptr_t offset ) const;
1343   virtual const Type    *xmeet( const Type *t ) const;
1344   virtual const Type    *xdual() const;      // Compute dual right now.
1345 
1346   virtual intptr_t get_con() const;
1347 
1348   // Convenience common pre-built types.
1349   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1350   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1351 #ifndef PRODUCT
1352   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1353 #endif
1354 };
1355 
1356 class TypeNarrowPtr : public Type {
1357 protected:
1358   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1359 
1360   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1361                                                   Type(t) {
1362     assert(ptrtype->offset() == 0 ||
1363            ptrtype->offset() == OffsetBot ||
1364            ptrtype->offset() == OffsetTop, "no real offsets");
1365   }
1366 
1367   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1368   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1369   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1370   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1371   // Do not allow interface-vs.-noninterface joins to collapse to top.
1372   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1373 public:
1374   virtual bool eq( const Type *t ) const;
1375   virtual int  hash() const;             // Type specific hashing
1376   virtual bool singleton(void) const;    // TRUE if type is a singleton
1377 
1378   virtual const Type *xmeet( const Type *t ) const;
1379   virtual const Type *xdual() const;    // Compute dual right now.
1380 
1381   virtual intptr_t get_con() const;
1382 
1383   virtual bool empty(void) const;        // TRUE if type is vacuous
1384 
1385   // returns the equivalent ptr type for this compressed pointer
1386   const TypePtr *get_ptrtype() const {
1387     return _ptrtype;
1388   }
1389 
1390 #ifndef PRODUCT
1391   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1392 #endif
1393 };
1394 
1395 //------------------------------TypeNarrowOop----------------------------------
1396 // A compressed reference to some kind of Oop.  This type wraps around
1397 // a preexisting TypeOopPtr and forwards most of it's operations to
1398 // the underlying type.  It's only real purpose is to track the
1399 // oopness of the compressed oop value when we expose the conversion
1400 // between the normal and the compressed form.
1401 class TypeNarrowOop : public TypeNarrowPtr {
1402 protected:
1403   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1404   }
1405 
1406   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1407     return t->isa_narrowoop();
1408   }
1409 
1410   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1411     return t->is_narrowoop();
1412   }
1413 
1414   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1415     return new TypeNarrowOop(t);
1416   }
1417 
1418   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1419     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1420   }
1421 
1422 public:
1423 
1424   static const TypeNarrowOop *make( const TypePtr* type);
1425 
1426   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1427     return make(TypeOopPtr::make_from_constant(con, require_constant));
1428   }
1429 
1430   static const TypeNarrowOop *BOTTOM;
1431   static const TypeNarrowOop *NULL_PTR;
1432 
1433   virtual const Type* remove_speculative() const;
1434   virtual const Type* cleanup_speculative() const;
1435 
1436 #ifndef PRODUCT
1437   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1438 #endif
1439 };
1440 
1441 //------------------------------TypeNarrowKlass----------------------------------
1442 // A compressed reference to klass pointer.  This type wraps around a
1443 // preexisting TypeKlassPtr and forwards most of it's operations to
1444 // the underlying type.
1445 class TypeNarrowKlass : public TypeNarrowPtr {
1446 protected:
1447   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1448   }
1449 
1450   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1451     return t->isa_narrowklass();
1452   }
1453 
1454   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1455     return t->is_narrowklass();
1456   }
1457 
1458   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1459     return new TypeNarrowKlass(t);
1460   }
1461 
1462   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1463     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1464   }
1465 
1466 public:
1467   static const TypeNarrowKlass *make( const TypePtr* type);
1468 
1469   // static const TypeNarrowKlass *BOTTOM;
1470   static const TypeNarrowKlass *NULL_PTR;
1471 
1472 #ifndef PRODUCT
1473   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1474 #endif
1475 };
1476 
1477 //------------------------------TypeFunc---------------------------------------
1478 // Class of Array Types
1479 class TypeFunc : public Type {
1480   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1481   virtual bool eq( const Type *t ) const;
1482   virtual int  hash() const;             // Type specific hashing
1483   virtual bool singleton(void) const;    // TRUE if type is a singleton
1484   virtual bool empty(void) const;        // TRUE if type is vacuous
1485 
1486   const TypeTuple* const _domain;     // Domain of inputs
1487   const TypeTuple* const _range;      // Range of results
1488 
1489 public:
1490   // Constants are shared among ADLC and VM
1491   enum { Control    = AdlcVMDeps::Control,
1492          I_O        = AdlcVMDeps::I_O,
1493          Memory     = AdlcVMDeps::Memory,
1494          FramePtr   = AdlcVMDeps::FramePtr,
1495          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1496          Parms      = AdlcVMDeps::Parms
1497   };
1498 
1499 
1500   // Accessors:
1501   const TypeTuple* domain() const { return _domain; }
1502   const TypeTuple* range()  const { return _range; }
1503 
1504   static const TypeFunc *make(ciMethod* method);
1505   static const TypeFunc *make(ciSignature signature, const Type* extra);
1506   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1507 
1508   virtual const Type *xmeet( const Type *t ) const;
1509   virtual const Type *xdual() const;    // Compute dual right now.
1510 
1511   BasicType return_type() const;
1512 
1513 #ifndef PRODUCT
1514   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1515 #endif
1516   // Convenience common pre-built types.
1517 };
1518 
1519 //------------------------------accessors--------------------------------------
1520 inline bool Type::is_ptr_to_narrowoop() const {
1521 #ifdef _LP64
1522   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1523 #else
1524   return false;
1525 #endif
1526 }
1527 
1528 inline bool Type::is_ptr_to_narrowklass() const {
1529 #ifdef _LP64
1530   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1531 #else
1532   return false;
1533 #endif
1534 }
1535 
1536 inline float Type::getf() const {
1537   assert( _base == FloatCon, "Not a FloatCon" );
1538   return ((TypeF*)this)->_f;
1539 }
1540 
1541 inline double Type::getd() const {
1542   assert( _base == DoubleCon, "Not a DoubleCon" );
1543   return ((TypeD*)this)->_d;
1544 }
1545 
1546 inline const TypeInt *Type::is_int() const {
1547   assert( _base == Int, "Not an Int" );
1548   return (TypeInt*)this;
1549 }
1550 
1551 inline const TypeInt *Type::isa_int() const {
1552   return ( _base == Int ? (TypeInt*)this : NULL);
1553 }
1554 
1555 inline const TypeLong *Type::is_long() const {
1556   assert( _base == Long, "Not a Long" );
1557   return (TypeLong*)this;
1558 }
1559 
1560 inline const TypeLong *Type::isa_long() const {
1561   return ( _base == Long ? (TypeLong*)this : NULL);
1562 }
1563 
1564 inline const TypeF *Type::isa_float() const {
1565   return ((_base == FloatTop ||
1566            _base == FloatCon ||
1567            _base == FloatBot) ? (TypeF*)this : NULL);
1568 }
1569 
1570 inline const TypeF *Type::is_float_constant() const {
1571   assert( _base == FloatCon, "Not a Float" );
1572   return (TypeF*)this;
1573 }
1574 
1575 inline const TypeF *Type::isa_float_constant() const {
1576   return ( _base == FloatCon ? (TypeF*)this : NULL);
1577 }
1578 
1579 inline const TypeD *Type::isa_double() const {
1580   return ((_base == DoubleTop ||
1581            _base == DoubleCon ||
1582            _base == DoubleBot) ? (TypeD*)this : NULL);
1583 }
1584 
1585 inline const TypeD *Type::is_double_constant() const {
1586   assert( _base == DoubleCon, "Not a Double" );
1587   return (TypeD*)this;
1588 }
1589 
1590 inline const TypeD *Type::isa_double_constant() const {
1591   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1592 }
1593 
1594 inline const TypeTuple *Type::is_tuple() const {
1595   assert( _base == Tuple, "Not a Tuple" );
1596   return (TypeTuple*)this;
1597 }
1598 
1599 inline const TypeAry *Type::is_ary() const {
1600   assert( _base == Array , "Not an Array" );
1601   return (TypeAry*)this;
1602 }
1603 
1604 inline const TypeVect *Type::is_vect() const {
1605   assert( _base >= VectorS && _base <= VectorZ, "Not a Vector" );
1606   return (TypeVect*)this;
1607 }
1608 
1609 inline const TypeVect *Type::isa_vect() const {
1610   return (_base >= VectorS && _base <= VectorZ) ? (TypeVect*)this : NULL;
1611 }
1612 
1613 inline const TypePtr *Type::is_ptr() const {
1614   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1615   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1616   return (TypePtr*)this;
1617 }
1618 
1619 inline const TypePtr *Type::isa_ptr() const {
1620   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1621   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1622 }
1623 
1624 inline const TypeOopPtr *Type::is_oopptr() const {
1625   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1626   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1627   return (TypeOopPtr*)this;
1628 }
1629 
1630 inline const TypeOopPtr *Type::isa_oopptr() const {
1631   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1632   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1633 }
1634 
1635 inline const TypeRawPtr *Type::isa_rawptr() const {
1636   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1637 }
1638 
1639 inline const TypeRawPtr *Type::is_rawptr() const {
1640   assert( _base == RawPtr, "Not a raw pointer" );
1641   return (TypeRawPtr*)this;
1642 }
1643 
1644 inline const TypeInstPtr *Type::isa_instptr() const {
1645   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1646 }
1647 
1648 inline const TypeInstPtr *Type::is_instptr() const {
1649   assert( _base == InstPtr, "Not an object pointer" );
1650   return (TypeInstPtr*)this;
1651 }
1652 
1653 inline const TypeAryPtr *Type::isa_aryptr() const {
1654   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1655 }
1656 
1657 inline const TypeAryPtr *Type::is_aryptr() const {
1658   assert( _base == AryPtr, "Not an array pointer" );
1659   return (TypeAryPtr*)this;
1660 }
1661 
1662 inline const TypeNarrowOop *Type::is_narrowoop() const {
1663   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1664   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1665   return (TypeNarrowOop*)this;
1666 }
1667 
1668 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1669   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1670   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1671 }
1672 
1673 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1674   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1675   return (TypeNarrowKlass*)this;
1676 }
1677 
1678 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1679   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1680 }
1681 
1682 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1683   // MetadataPtr is the first and CPCachePtr the last
1684   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1685   return (TypeMetadataPtr*)this;
1686 }
1687 
1688 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1689   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1690 }
1691 
1692 inline const TypeKlassPtr *Type::isa_klassptr() const {
1693   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1694 }
1695 
1696 inline const TypeKlassPtr *Type::is_klassptr() const {
1697   assert( _base == KlassPtr, "Not a klass pointer" );
1698   return (TypeKlassPtr*)this;
1699 }
1700 
1701 inline const TypePtr* Type::make_ptr() const {
1702   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1703                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1704                                                        isa_ptr());
1705 }
1706 
1707 inline const TypeOopPtr* Type::make_oopptr() const {
1708   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1709 }
1710 
1711 inline const TypeNarrowOop* Type::make_narrowoop() const {
1712   return (_base == NarrowOop) ? is_narrowoop() :
1713                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1714 }
1715 
1716 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1717   return (_base == NarrowKlass) ? is_narrowklass() :
1718                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1719 }
1720 
1721 inline bool Type::is_floatingpoint() const {
1722   if( (_base == FloatCon)  || (_base == FloatBot) ||
1723       (_base == DoubleCon) || (_base == DoubleBot) )
1724     return true;
1725   return false;
1726 }
1727 
1728 inline bool Type::is_ptr_to_boxing_obj() const {
1729   const TypeInstPtr* tp = isa_instptr();
1730   return (tp != NULL) && (tp->offset() == 0) &&
1731          tp->klass()->is_instance_klass()  &&
1732          tp->klass()->as_instance_klass()->is_box_klass();
1733 }
1734 
1735 
1736 // ===============================================================
1737 // Things that need to be 64-bits in the 64-bit build but
1738 // 32-bits in the 32-bit build.  Done this way to get full
1739 // optimization AND strong typing.
1740 #ifdef _LP64
1741 
1742 // For type queries and asserts
1743 #define is_intptr_t  is_long
1744 #define isa_intptr_t isa_long
1745 #define find_intptr_t_type find_long_type
1746 #define find_intptr_t_con  find_long_con
1747 #define TypeX        TypeLong
1748 #define Type_X       Type::Long
1749 #define TypeX_X      TypeLong::LONG
1750 #define TypeX_ZERO   TypeLong::ZERO
1751 // For 'ideal_reg' machine registers
1752 #define Op_RegX      Op_RegL
1753 // For phase->intcon variants
1754 #define MakeConX     longcon
1755 #define ConXNode     ConLNode
1756 // For array index arithmetic
1757 #define MulXNode     MulLNode
1758 #define AndXNode     AndLNode
1759 #define OrXNode      OrLNode
1760 #define CmpXNode     CmpLNode
1761 #define SubXNode     SubLNode
1762 #define LShiftXNode  LShiftLNode
1763 // For object size computation:
1764 #define AddXNode     AddLNode
1765 #define RShiftXNode  RShiftLNode
1766 // For card marks and hashcodes
1767 #define URShiftXNode URShiftLNode
1768 // UseOptoBiasInlining
1769 #define XorXNode     XorLNode
1770 #define StoreXConditionalNode StoreLConditionalNode
1771 // Opcodes
1772 #define Op_LShiftX   Op_LShiftL
1773 #define Op_AndX      Op_AndL
1774 #define Op_AddX      Op_AddL
1775 #define Op_SubX      Op_SubL
1776 #define Op_XorX      Op_XorL
1777 #define Op_URShiftX  Op_URShiftL
1778 // conversions
1779 #define ConvI2X(x)   ConvI2L(x)
1780 #define ConvL2X(x)   (x)
1781 #define ConvX2I(x)   ConvL2I(x)
1782 #define ConvX2L(x)   (x)
1783 #define ConvX2UL(x)  (x)
1784 
1785 #else
1786 
1787 // For type queries and asserts
1788 #define is_intptr_t  is_int
1789 #define isa_intptr_t isa_int
1790 #define find_intptr_t_type find_int_type
1791 #define find_intptr_t_con  find_int_con
1792 #define TypeX        TypeInt
1793 #define Type_X       Type::Int
1794 #define TypeX_X      TypeInt::INT
1795 #define TypeX_ZERO   TypeInt::ZERO
1796 // For 'ideal_reg' machine registers
1797 #define Op_RegX      Op_RegI
1798 // For phase->intcon variants
1799 #define MakeConX     intcon
1800 #define ConXNode     ConINode
1801 // For array index arithmetic
1802 #define MulXNode     MulINode
1803 #define AndXNode     AndINode
1804 #define OrXNode      OrINode
1805 #define CmpXNode     CmpINode
1806 #define SubXNode     SubINode
1807 #define LShiftXNode  LShiftINode
1808 // For object size computation:
1809 #define AddXNode     AddINode
1810 #define RShiftXNode  RShiftINode
1811 // For card marks and hashcodes
1812 #define URShiftXNode URShiftINode
1813 // UseOptoBiasInlining
1814 #define XorXNode     XorINode
1815 #define StoreXConditionalNode StoreIConditionalNode
1816 // Opcodes
1817 #define Op_LShiftX   Op_LShiftI
1818 #define Op_AndX      Op_AndI
1819 #define Op_AddX      Op_AddI
1820 #define Op_SubX      Op_SubI
1821 #define Op_XorX      Op_XorI
1822 #define Op_URShiftX  Op_URShiftI
1823 // conversions
1824 #define ConvI2X(x)   (x)
1825 #define ConvL2X(x)   ConvL2I(x)
1826 #define ConvX2I(x)   (x)
1827 #define ConvX2L(x)   ConvI2L(x)
1828 #define ConvX2UL(x)  ConvI2UL(x)
1829 
1830 #endif
1831 
1832 #endif // SHARE_VM_OPTO_TYPE_HPP