1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/compile.hpp"
  36 #include "opto/escape.hpp"
  37 #include "opto/phaseX.hpp"
  38 #include "opto/movenode.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/valuetypenode.hpp"
  41 
  42 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  43   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  44   _in_worklist(C->comp_arena()),
  45   _next_pidx(0),
  46   _collecting(true),
  47   _verify(false),
  48   _compile(C),
  49   _igvn(igvn),
  50   _node_map(C->comp_arena()) {
  51   // Add unknown java object.
  52   add_java_object(C->top(), PointsToNode::GlobalEscape);
  53   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  54   // Add ConP(#NULL) and ConN(#NULL) nodes.
  55   Node* oop_null = igvn->zerocon(T_OBJECT);
  56   assert(oop_null->_idx < nodes_size(), "should be created already");
  57   add_java_object(oop_null, PointsToNode::NoEscape);
  58   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  59   if (UseCompressedOops) {
  60     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  61     assert(noop_null->_idx < nodes_size(), "should be created already");
  62     map_ideal_node(noop_null, null_obj);
  63   }
  64   _pcmp_neq = NULL; // Should be initialized
  65   _pcmp_eq  = NULL;
  66 }
  67 
  68 bool ConnectionGraph::has_candidates(Compile *C) {
  69   // EA brings benefits only when the code has allocations and/or locks which
  70   // are represented by ideal Macro nodes.
  71   int cnt = C->macro_count();
  72   for (int i = 0; i < cnt; i++) {
  73     Node *n = C->macro_node(i);
  74     if (n->is_Allocate())
  75       return true;
  76     if (n->is_Lock()) {
  77       Node* obj = n->as_Lock()->obj_node()->uncast();
  78       if (!(obj->is_Parm() || obj->is_Con()))
  79         return true;
  80     }
  81     if (n->is_CallStaticJava() &&
  82         n->as_CallStaticJava()->is_boxing_method()) {
  83       return true;
  84     }
  85   }
  86   return false;
  87 }
  88 
  89 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  90   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  91   ResourceMark rm;
  92 
  93   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  94   // to create space for them in ConnectionGraph::_nodes[].
  95   Node* oop_null = igvn->zerocon(T_OBJECT);
  96   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  97   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  98   // Perform escape analysis
  99   if (congraph->compute_escape()) {
 100     // There are non escaping objects.
 101     C->set_congraph(congraph);
 102   }
 103   // Cleanup.
 104   if (oop_null->outcnt() == 0)
 105     igvn->hash_delete(oop_null);
 106   if (noop_null->outcnt() == 0)
 107     igvn->hash_delete(noop_null);
 108 }
 109 
 110 bool ConnectionGraph::compute_escape() {
 111   Compile* C = _compile;
 112   PhaseGVN* igvn = _igvn;
 113 
 114   // Worklists used by EA.
 115   Unique_Node_List delayed_worklist;
 116   GrowableArray<Node*> alloc_worklist;
 117   GrowableArray<Node*> ptr_cmp_worklist;
 118   GrowableArray<Node*> storestore_worklist;
 119   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 120   GrowableArray<PointsToNode*>   ptnodes_worklist;
 121   GrowableArray<JavaObjectNode*> java_objects_worklist;
 122   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 123   GrowableArray<FieldNode*>      oop_fields_worklist;
 124   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 125 
 126   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 127 
 128   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 129   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 130   // Initialize worklist
 131   if (C->root() != NULL) {
 132     ideal_nodes.push(C->root());
 133   }
 134   // Processed ideal nodes are unique on ideal_nodes list
 135   // but several ideal nodes are mapped to the phantom_obj.
 136   // To avoid duplicated entries on the following worklists
 137   // add the phantom_obj only once to them.
 138   ptnodes_worklist.append(phantom_obj);
 139   java_objects_worklist.append(phantom_obj);
 140   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 141     Node* n = ideal_nodes.at(next);
 142     // Create PointsTo nodes and add them to Connection Graph. Called
 143     // only once per ideal node since ideal_nodes is Unique_Node list.
 144     add_node_to_connection_graph(n, &delayed_worklist);
 145     PointsToNode* ptn = ptnode_adr(n->_idx);
 146     if (ptn != NULL && ptn != phantom_obj) {
 147       ptnodes_worklist.append(ptn);
 148       if (ptn->is_JavaObject()) {
 149         java_objects_worklist.append(ptn->as_JavaObject());
 150         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 151             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 152           // Only allocations and java static calls results are interesting.
 153           non_escaped_worklist.append(ptn->as_JavaObject());
 154         }
 155       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 156         oop_fields_worklist.append(ptn->as_Field());
 157       }
 158     }
 159     if (n->is_MergeMem()) {
 160       // Collect all MergeMem nodes to add memory slices for
 161       // scalar replaceable objects in split_unique_types().
 162       _mergemem_worklist.append(n->as_MergeMem());
 163     } else if (OptimizePtrCompare && n->is_Cmp() &&
 164                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 165       // Collect compare pointers nodes.
 166       ptr_cmp_worklist.append(n);
 167     } else if (n->is_MemBarStoreStore()) {
 168       // Collect all MemBarStoreStore nodes so that depending on the
 169       // escape status of the associated Allocate node some of them
 170       // may be eliminated.
 171       storestore_worklist.append(n);
 172     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 173                (n->req() > MemBarNode::Precedent)) {
 174       record_for_optimizer(n);
 175 #ifdef ASSERT
 176     } else if (n->is_AddP()) {
 177       // Collect address nodes for graph verification.
 178       addp_worklist.append(n);
 179 #endif
 180     } else if (n->is_ArrayCopy()) {
 181       // Keep a list of ArrayCopy nodes so if one of its input is non
 182       // escaping, we can record a unique type
 183       arraycopy_worklist.append(n->as_ArrayCopy());
 184     }
 185     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 186       Node* m = n->fast_out(i);   // Get user
 187       ideal_nodes.push(m);
 188     }
 189   }
 190   if (non_escaped_worklist.length() == 0) {
 191     _collecting = false;
 192     return false; // Nothing to do.
 193   }
 194   // Add final simple edges to graph.
 195   while(delayed_worklist.size() > 0) {
 196     Node* n = delayed_worklist.pop();
 197     add_final_edges(n);
 198   }
 199   int ptnodes_length = ptnodes_worklist.length();
 200 
 201 #ifdef ASSERT
 202   if (VerifyConnectionGraph) {
 203     // Verify that no new simple edges could be created and all
 204     // local vars has edges.
 205     _verify = true;
 206     for (int next = 0; next < ptnodes_length; ++next) {
 207       PointsToNode* ptn = ptnodes_worklist.at(next);
 208       add_final_edges(ptn->ideal_node());
 209       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 210         ptn->dump();
 211         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 212       }
 213     }
 214     _verify = false;
 215   }
 216 #endif
 217   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 218   // processing, calls to CI to resolve symbols (types, fields, methods)
 219   // referenced in bytecode. During symbol resolution VM may throw
 220   // an exception which CI cleans and converts to compilation failure.
 221   if (C->failing())  return false;
 222 
 223   // 2. Finish Graph construction by propagating references to all
 224   //    java objects through graph.
 225   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 226                                  java_objects_worklist, oop_fields_worklist)) {
 227     // All objects escaped or hit time or iterations limits.
 228     _collecting = false;
 229     return false;
 230   }
 231 
 232   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 233   //    scalar replaceable allocations on alloc_worklist for processing
 234   //    in split_unique_types().
 235   int non_escaped_length = non_escaped_worklist.length();
 236   for (int next = 0; next < non_escaped_length; next++) {
 237     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 238     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 239     Node* n = ptn->ideal_node();
 240     if (n->is_Allocate()) {
 241       n->as_Allocate()->_is_non_escaping = noescape;
 242     }
 243     if (n->is_CallStaticJava()) {
 244       n->as_CallStaticJava()->_is_non_escaping = noescape;
 245     }
 246     if (noescape && ptn->scalar_replaceable()) {
 247       adjust_scalar_replaceable_state(ptn);
 248       if (ptn->scalar_replaceable()) {
 249         alloc_worklist.append(ptn->ideal_node());
 250       }
 251     }
 252   }
 253 
 254 #ifdef ASSERT
 255   if (VerifyConnectionGraph) {
 256     // Verify that graph is complete - no new edges could be added or needed.
 257     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 258                             java_objects_worklist, addp_worklist);
 259   }
 260   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 261   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 262          null_obj->edge_count() == 0 &&
 263          !null_obj->arraycopy_src() &&
 264          !null_obj->arraycopy_dst(), "sanity");
 265 #endif
 266 
 267   _collecting = false;
 268 
 269   } // TracePhase t3("connectionGraph")
 270 
 271   // 4. Optimize ideal graph based on EA information.
 272   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 273   if (has_non_escaping_obj) {
 274     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 275   }
 276 
 277 #ifndef PRODUCT
 278   if (PrintEscapeAnalysis) {
 279     dump(ptnodes_worklist); // Dump ConnectionGraph
 280   }
 281 #endif
 282 
 283   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 284 #ifdef ASSERT
 285   if (VerifyConnectionGraph) {
 286     int alloc_length = alloc_worklist.length();
 287     for (int next = 0; next < alloc_length; ++next) {
 288       Node* n = alloc_worklist.at(next);
 289       PointsToNode* ptn = ptnode_adr(n->_idx);
 290       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 291     }
 292   }
 293 #endif
 294 
 295   // 5. Separate memory graph for scalar replaceable allcations.
 296   if (has_scalar_replaceable_candidates &&
 297       C->AliasLevel() >= 3 && EliminateAllocations) {
 298     // Now use the escape information to create unique types for
 299     // scalar replaceable objects.
 300     split_unique_types(alloc_worklist, arraycopy_worklist);
 301     if (C->failing())  return false;
 302     C->print_method(PHASE_AFTER_EA, 2);
 303 
 304 #ifdef ASSERT
 305   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 306     tty->print("=== No allocations eliminated for ");
 307     C->method()->print_short_name();
 308     if(!EliminateAllocations) {
 309       tty->print(" since EliminateAllocations is off ===");
 310     } else if(!has_scalar_replaceable_candidates) {
 311       tty->print(" since there are no scalar replaceable candidates ===");
 312     } else if(C->AliasLevel() < 3) {
 313       tty->print(" since AliasLevel < 3 ===");
 314     }
 315     tty->cr();
 316 #endif
 317   }
 318   return has_non_escaping_obj;
 319 }
 320 
 321 // Utility function for nodes that load an object
 322 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 323   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 324   // ThreadLocal has RawPtr type.
 325   const Type* t = _igvn->type(n);
 326   if (t->make_ptr() != NULL) {
 327     Node* adr = n->in(MemNode::Address);
 328 #ifdef ASSERT
 329     if (!adr->is_AddP()) {
 330       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 331     } else {
 332       assert((ptnode_adr(adr->_idx) == NULL ||
 333               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 334     }
 335 #endif
 336     add_local_var_and_edge(n, PointsToNode::NoEscape,
 337                            adr, delayed_worklist);
 338   }
 339 }
 340 
 341 // Populate Connection Graph with PointsTo nodes and create simple
 342 // connection graph edges.
 343 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 344   assert(!_verify, "this method should not be called for verification");
 345   PhaseGVN* igvn = _igvn;
 346   uint n_idx = n->_idx;
 347   PointsToNode* n_ptn = ptnode_adr(n_idx);
 348   if (n_ptn != NULL)
 349     return; // No need to redefine PointsTo node during first iteration.
 350 
 351   if (n->is_Call()) {
 352     // Arguments to allocation and locking don't escape.
 353     if (n->is_AbstractLock()) {
 354       // Put Lock and Unlock nodes on IGVN worklist to process them during
 355       // first IGVN optimization when escape information is still available.
 356       record_for_optimizer(n);
 357     } else if (n->is_Allocate()) {
 358       add_call_node(n->as_Call());
 359       record_for_optimizer(n);
 360     } else {
 361       if (n->is_CallStaticJava()) {
 362         const char* name = n->as_CallStaticJava()->_name;
 363         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 364           return; // Skip uncommon traps
 365       }
 366       // Don't mark as processed since call's arguments have to be processed.
 367       delayed_worklist->push(n);
 368       // Check if a call returns an object.
 369       if ((n->as_Call()->returns_pointer() &&
 370            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 371           (n->is_CallStaticJava() &&
 372            n->as_CallStaticJava()->is_boxing_method())) {
 373         add_call_node(n->as_Call());
 374       } else if (n->as_Call()->tf()->returns_value_type_as_fields()) {
 375         bool returns_oop = false;
 376         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !returns_oop; i++) {
 377           ProjNode* pn = n->fast_out(i)->as_Proj();
 378           if (pn->_con >= TypeFunc::Parms && pn->bottom_type()->isa_oopptr()) {
 379             returns_oop = true;
 380           }
 381         }
 382         if (returns_oop) {
 383           add_call_node(n->as_Call());
 384         }
 385       }
 386     }
 387     return;
 388   }
 389   // Put this check here to process call arguments since some call nodes
 390   // point to phantom_obj.
 391   if (n_ptn == phantom_obj || n_ptn == null_obj)
 392     return; // Skip predefined nodes.
 393 
 394   int opcode = n->Opcode();
 395   switch (opcode) {
 396     case Op_AddP: {
 397       Node* base = get_addp_base(n);
 398       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 399       // Field nodes are created for all field types. They are used in
 400       // adjust_scalar_replaceable_state() and split_unique_types().
 401       // Note, non-oop fields will have only base edges in Connection
 402       // Graph because such fields are not used for oop loads and stores.
 403       int offset = address_offset(n, igvn);
 404       add_field(n, PointsToNode::NoEscape, offset);
 405       if (ptn_base == NULL) {
 406         delayed_worklist->push(n); // Process it later.
 407       } else {
 408         n_ptn = ptnode_adr(n_idx);
 409         add_base(n_ptn->as_Field(), ptn_base);
 410       }
 411       break;
 412     }
 413     case Op_CastX2P: {
 414       map_ideal_node(n, phantom_obj);
 415       break;
 416     }
 417     case Op_CastPP:
 418     case Op_CheckCastPP:
 419     case Op_EncodeP:
 420     case Op_DecodeN:
 421     case Op_EncodePKlass:
 422     case Op_DecodeNKlass: {
 423       add_local_var_and_edge(n, PointsToNode::NoEscape,
 424                              n->in(1), delayed_worklist);
 425       break;
 426     }
 427     case Op_CMoveP: {
 428       add_local_var(n, PointsToNode::NoEscape);
 429       // Do not add edges during first iteration because some could be
 430       // not defined yet.
 431       delayed_worklist->push(n);
 432       break;
 433     }
 434     case Op_ConP:
 435     case Op_ConN:
 436     case Op_ConNKlass: {
 437       // assume all oop constants globally escape except for null
 438       PointsToNode::EscapeState es;
 439       const Type* t = igvn->type(n);
 440       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 441         es = PointsToNode::NoEscape;
 442       } else {
 443         es = PointsToNode::GlobalEscape;
 444       }
 445       add_java_object(n, es);
 446       break;
 447     }
 448     case Op_CreateEx: {
 449       // assume that all exception objects globally escape
 450       map_ideal_node(n, phantom_obj);
 451       break;
 452     }
 453     case Op_LoadKlass:
 454     case Op_LoadNKlass: {
 455       // Unknown class is loaded
 456       map_ideal_node(n, phantom_obj);
 457       break;
 458     }
 459     case Op_LoadP:
 460     case Op_LoadN:
 461     case Op_LoadPLocked: {
 462       add_objload_to_connection_graph(n, delayed_worklist);
 463       break;
 464     }
 465     case Op_Parm: {
 466       map_ideal_node(n, phantom_obj);
 467       break;
 468     }
 469     case Op_PartialSubtypeCheck: {
 470       // Produces Null or notNull and is used in only in CmpP so
 471       // phantom_obj could be used.
 472       map_ideal_node(n, phantom_obj); // Result is unknown
 473       break;
 474     }
 475     case Op_Phi: {
 476       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 477       // ThreadLocal has RawPtr type.
 478       const Type* t = n->as_Phi()->type();
 479       if (t->make_ptr() != NULL) {
 480         add_local_var(n, PointsToNode::NoEscape);
 481         // Do not add edges during first iteration because some could be
 482         // not defined yet.
 483         delayed_worklist->push(n);
 484       }
 485       break;
 486     }
 487     case Op_Proj: {
 488       // we are only interested in the oop result projection from a call
 489       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
 490           (n->in(0)->as_Call()->returns_pointer() || n->bottom_type()->isa_oopptr())) {
 491         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
 492                n->in(0)->as_Call()->tf()->returns_value_type_as_fields(), "what kind of oop return is it?");
 493         add_local_var_and_edge(n, PointsToNode::NoEscape,
 494                                n->in(0), delayed_worklist);
 495       }
 496       break;
 497     }
 498     case Op_Rethrow: // Exception object escapes
 499     case Op_Return: {
 500       if (n->req() > TypeFunc::Parms &&
 501           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 502         // Treat Return value as LocalVar with GlobalEscape escape state.
 503         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 504                                n->in(TypeFunc::Parms), delayed_worklist);
 505       }
 506       break;
 507     }
 508     case Op_CompareAndExchangeP:
 509     case Op_CompareAndExchangeN:
 510     case Op_GetAndSetP:
 511     case Op_GetAndSetN: {
 512       add_objload_to_connection_graph(n, delayed_worklist);
 513       // fallthrough
 514     }
 515     case Op_StoreP:
 516     case Op_StoreN:
 517     case Op_StoreNKlass:
 518     case Op_StorePConditional:
 519     case Op_WeakCompareAndSwapP:
 520     case Op_WeakCompareAndSwapN:
 521     case Op_CompareAndSwapP:
 522     case Op_CompareAndSwapN: {
 523       Node* adr = n->in(MemNode::Address);
 524       const Type *adr_type = igvn->type(adr);
 525       adr_type = adr_type->make_ptr();
 526       if (adr_type == NULL) {
 527         break; // skip dead nodes
 528       }
 529       if (adr_type->isa_oopptr() ||
 530           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 531                         (adr_type == TypeRawPtr::NOTNULL &&
 532                          adr->in(AddPNode::Address)->is_Proj() &&
 533                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 534         delayed_worklist->push(n); // Process it later.
 535 #ifdef ASSERT
 536         assert(adr->is_AddP(), "expecting an AddP");
 537         if (adr_type == TypeRawPtr::NOTNULL) {
 538           // Verify a raw address for a store captured by Initialize node.
 539           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 540           assert(offs != Type::OffsetBot, "offset must be a constant");
 541         }
 542 #endif
 543       } else {
 544         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 545         if (adr->is_BoxLock())
 546           break;
 547         // Stored value escapes in unsafe access.
 548         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 549           // Pointer stores in G1 barriers looks like unsafe access.
 550           // Ignore such stores to be able scalar replace non-escaping
 551           // allocations.
 552           if (UseG1GC && adr->is_AddP()) {
 553             Node* base = get_addp_base(adr);
 554             if (base->Opcode() == Op_LoadP &&
 555                 base->in(MemNode::Address)->is_AddP()) {
 556               adr = base->in(MemNode::Address);
 557               Node* tls = get_addp_base(adr);
 558               if (tls->Opcode() == Op_ThreadLocal) {
 559                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 560                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 561                                      SATBMarkQueue::byte_offset_of_buf())) {
 562                   break; // G1 pre barrier previous oop value store.
 563                 }
 564                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 565                                      DirtyCardQueue::byte_offset_of_buf())) {
 566                   break; // G1 post barrier card address store.
 567                 }
 568               }
 569             }
 570           }
 571           delayed_worklist->push(n); // Process unsafe access later.
 572           break;
 573         }
 574 #ifdef ASSERT
 575         n->dump(1);
 576         assert(false, "not unsafe or G1 barrier raw StoreP");
 577 #endif
 578       }
 579       break;
 580     }
 581     case Op_AryEq:
 582     case Op_HasNegatives:
 583     case Op_StrComp:
 584     case Op_StrEquals:
 585     case Op_StrIndexOf:
 586     case Op_StrIndexOfChar:
 587     case Op_StrInflatedCopy:
 588     case Op_StrCompressedCopy:
 589     case Op_EncodeISOArray: {
 590       add_local_var(n, PointsToNode::ArgEscape);
 591       delayed_worklist->push(n); // Process it later.
 592       break;
 593     }
 594     case Op_ThreadLocal: {
 595       add_java_object(n, PointsToNode::ArgEscape);
 596       break;
 597     }
 598     case Op_ValueTypePtr: {
 599       add_local_var_and_edge(n, PointsToNode::NoEscape,
 600                              n->as_ValueTypeBase()->get_oop(), delayed_worklist);
 601       break;
 602     }
 603     default:
 604       ; // Do nothing for nodes not related to EA.
 605   }
 606   return;
 607 }
 608 
 609 #ifdef ASSERT
 610 #define ELSE_FAIL(name)                               \
 611       /* Should not be called for not pointer type. */  \
 612       n->dump(1);                                       \
 613       assert(false, name);                              \
 614       break;
 615 #else
 616 #define ELSE_FAIL(name) \
 617       break;
 618 #endif
 619 
 620 // Add final simple edges to graph.
 621 void ConnectionGraph::add_final_edges(Node *n) {
 622   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 623 #ifdef ASSERT
 624   if (_verify && n_ptn->is_JavaObject())
 625     return; // This method does not change graph for JavaObject.
 626 #endif
 627 
 628   if (n->is_Call()) {
 629     process_call_arguments(n->as_Call());
 630     return;
 631   }
 632   assert(n->is_Store() || n->is_LoadStore() ||
 633          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 634          "node should be registered already");
 635   int opcode = n->Opcode();
 636   switch (opcode) {
 637     case Op_AddP: {
 638       Node* base = get_addp_base(n);
 639       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 640       assert(ptn_base != NULL, "field's base should be registered");
 641       add_base(n_ptn->as_Field(), ptn_base);
 642       break;
 643     }
 644     case Op_CastPP:
 645     case Op_CheckCastPP:
 646     case Op_EncodeP:
 647     case Op_DecodeN:
 648     case Op_EncodePKlass:
 649     case Op_DecodeNKlass: {
 650       add_local_var_and_edge(n, PointsToNode::NoEscape,
 651                              n->in(1), NULL);
 652       break;
 653     }
 654     case Op_CMoveP: {
 655       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 656         Node* in = n->in(i);
 657         if (in == NULL)
 658           continue;  // ignore NULL
 659         Node* uncast_in = in->uncast();
 660         if (uncast_in->is_top() || uncast_in == n)
 661           continue;  // ignore top or inputs which go back this node
 662         PointsToNode* ptn = ptnode_adr(in->_idx);
 663         assert(ptn != NULL, "node should be registered");
 664         add_edge(n_ptn, ptn);
 665       }
 666       break;
 667     }
 668     case Op_LoadP:
 669     case Op_LoadN:
 670     case Op_LoadPLocked: {
 671       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 672       // ThreadLocal has RawPtr type.
 673       const Type* t = _igvn->type(n);
 674       if (t->make_ptr() != NULL) {
 675         Node* adr = n->in(MemNode::Address);
 676         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 677         break;
 678       }
 679       ELSE_FAIL("Op_LoadP");
 680     }
 681     case Op_Phi: {
 682       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 683       // ThreadLocal has RawPtr type.
 684       const Type* t = n->as_Phi()->type();
 685       if (t->make_ptr() != NULL) {
 686         for (uint i = 1; i < n->req(); i++) {
 687           Node* in = n->in(i);
 688           if (in == NULL)
 689             continue;  // ignore NULL
 690           Node* uncast_in = in->uncast();
 691           if (uncast_in->is_top() || uncast_in == n)
 692             continue;  // ignore top or inputs which go back this node
 693           PointsToNode* ptn = ptnode_adr(in->_idx);
 694           assert(ptn != NULL, "node should be registered");
 695           add_edge(n_ptn, ptn);
 696         }
 697         break;
 698       }
 699       ELSE_FAIL("Op_Phi");
 700     }
 701     case Op_Proj: {
 702       // we are only interested in the oop result projection from a call
 703       if (n->as_Proj()->_con >= TypeFunc::Parms && n->in(0)->is_Call() &&
 704           (n->in(0)->as_Call()->returns_pointer()|| n->bottom_type()->isa_oopptr())) {
 705         assert((n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->as_Call()->returns_pointer()) ||
 706                n->in(0)->as_Call()->tf()->returns_value_type_as_fields(), "what kind of oop return is it?");
 707         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 708         break;
 709       }
 710       ELSE_FAIL("Op_Proj");
 711     }
 712     case Op_Rethrow: // Exception object escapes
 713     case Op_Return: {
 714       if (n->req() > TypeFunc::Parms &&
 715           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 716         // Treat Return value as LocalVar with GlobalEscape escape state.
 717         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 718                                n->in(TypeFunc::Parms), NULL);
 719         break;
 720       }
 721       ELSE_FAIL("Op_Return");
 722     }
 723     case Op_StoreP:
 724     case Op_StoreN:
 725     case Op_StoreNKlass:
 726     case Op_StorePConditional:
 727     case Op_CompareAndExchangeP:
 728     case Op_CompareAndExchangeN:
 729     case Op_CompareAndSwapP:
 730     case Op_CompareAndSwapN:
 731     case Op_WeakCompareAndSwapP:
 732     case Op_WeakCompareAndSwapN:
 733     case Op_GetAndSetP:
 734     case Op_GetAndSetN: {
 735       Node* adr = n->in(MemNode::Address);
 736       const Type *adr_type = _igvn->type(adr);
 737       adr_type = adr_type->make_ptr();
 738 #ifdef ASSERT
 739       if (adr_type == NULL) {
 740         n->dump(1);
 741         assert(adr_type != NULL, "dead node should not be on list");
 742         break;
 743       }
 744 #endif
 745       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 746           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 747         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 748       }
 749       if (adr_type->isa_oopptr() ||
 750           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 751                         (adr_type == TypeRawPtr::NOTNULL &&
 752                          adr->in(AddPNode::Address)->is_Proj() &&
 753                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 754         // Point Address to Value
 755         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 756         assert(adr_ptn != NULL &&
 757                adr_ptn->as_Field()->is_oop(), "node should be registered");
 758         Node *val = n->in(MemNode::ValueIn);
 759         PointsToNode* ptn = ptnode_adr(val->_idx);
 760         assert(ptn != NULL, "node should be registered");
 761         add_edge(adr_ptn, ptn);
 762         break;
 763       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 764         // Stored value escapes in unsafe access.
 765         Node *val = n->in(MemNode::ValueIn);
 766         PointsToNode* ptn = ptnode_adr(val->_idx);
 767         assert(ptn != NULL, "node should be registered");
 768         set_escape_state(ptn, PointsToNode::GlobalEscape);
 769         // Add edge to object for unsafe access with offset.
 770         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 771         assert(adr_ptn != NULL, "node should be registered");
 772         if (adr_ptn->is_Field()) {
 773           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 774           add_edge(adr_ptn, ptn);
 775         }
 776         break;
 777       }
 778       ELSE_FAIL("Op_StoreP");
 779     }
 780     case Op_AryEq:
 781     case Op_HasNegatives:
 782     case Op_StrComp:
 783     case Op_StrEquals:
 784     case Op_StrIndexOf:
 785     case Op_StrIndexOfChar:
 786     case Op_StrInflatedCopy:
 787     case Op_StrCompressedCopy:
 788     case Op_EncodeISOArray: {
 789       // char[]/byte[] arrays passed to string intrinsic do not escape but
 790       // they are not scalar replaceable. Adjust escape state for them.
 791       // Start from in(2) edge since in(1) is memory edge.
 792       for (uint i = 2; i < n->req(); i++) {
 793         Node* adr = n->in(i);
 794         const Type* at = _igvn->type(adr);
 795         if (!adr->is_top() && at->isa_ptr()) {
 796           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 797                  at->isa_ptr() != NULL, "expecting a pointer");
 798           if (adr->is_AddP()) {
 799             adr = get_addp_base(adr);
 800           }
 801           PointsToNode* ptn = ptnode_adr(adr->_idx);
 802           assert(ptn != NULL, "node should be registered");
 803           add_edge(n_ptn, ptn);
 804         }
 805       }
 806       break;
 807     }
 808     case Op_ValueTypePtr: {
 809       add_local_var_and_edge(n, PointsToNode::NoEscape,
 810                              n->as_ValueTypeBase()->get_oop(), NULL);
 811       break;
 812     }
 813     default: {
 814       // This method should be called only for EA specific nodes which may
 815       // miss some edges when they were created.
 816 #ifdef ASSERT
 817       n->dump(1);
 818 #endif
 819       guarantee(false, "unknown node");
 820     }
 821   }
 822   return;
 823 }
 824 
 825 void ConnectionGraph::add_call_node(CallNode* call) {
 826   assert(call->returns_pointer() || call->tf()->returns_value_type_as_fields(), "only for call which returns pointer");
 827   uint call_idx = call->_idx;
 828   if (call->is_Allocate()) {
 829     Node* k = call->in(AllocateNode::KlassNode);
 830     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 831     assert(kt != NULL, "TypeKlassPtr  required.");
 832     ciKlass* cik = kt->klass();
 833     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 834     bool scalar_replaceable = true;
 835     if (call->is_AllocateArray()) {
 836       if (!cik->is_array_klass()) { // StressReflectiveCode
 837         es = PointsToNode::GlobalEscape;
 838       } else {
 839         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 840         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 841           // Not scalar replaceable if the length is not constant or too big.
 842           scalar_replaceable = false;
 843         }
 844       }
 845     } else {  // Allocate instance
 846       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 847           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 848          !cik->is_instance_klass() || // StressReflectiveCode
 849          !cik->as_instance_klass()->can_be_instantiated() ||
 850           cik->as_instance_klass()->has_finalizer()) {
 851         es = PointsToNode::GlobalEscape;
 852       }
 853     }
 854     add_java_object(call, es);
 855     PointsToNode* ptn = ptnode_adr(call_idx);
 856     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 857       ptn->set_scalar_replaceable(false);
 858     }
 859   } else if (call->is_CallStaticJava()) {
 860     // Call nodes could be different types:
 861     //
 862     // 1. CallDynamicJavaNode (what happened during call is unknown):
 863     //
 864     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 865     //
 866     //    - all oop arguments are escaping globally;
 867     //
 868     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 869     //
 870     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 871     //
 872     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 873     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 874     //      during call is returned;
 875     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 876     //      which are returned and does not escape during call;
 877     //
 878     //    - oop arguments escaping status is defined by bytecode analysis;
 879     //
 880     // For a static call, we know exactly what method is being called.
 881     // Use bytecode estimator to record whether the call's return value escapes.
 882     ciMethod* meth = call->as_CallJava()->method();
 883     if (meth == NULL) {
 884       const char* name = call->as_CallStaticJava()->_name;
 885       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 886       // Returns a newly allocated unescaped object.
 887       add_java_object(call, PointsToNode::NoEscape);
 888       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 889     } else if (meth->is_boxing_method()) {
 890       // Returns boxing object
 891       PointsToNode::EscapeState es;
 892       vmIntrinsics::ID intr = meth->intrinsic_id();
 893       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 894         // It does not escape if object is always allocated.
 895         es = PointsToNode::NoEscape;
 896       } else {
 897         // It escapes globally if object could be loaded from cache.
 898         es = PointsToNode::GlobalEscape;
 899       }
 900       add_java_object(call, es);
 901     } else {
 902       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 903       call_analyzer->copy_dependencies(_compile->dependencies());
 904       if (call_analyzer->is_return_allocated()) {
 905         // Returns a newly allocated unescaped object, simply
 906         // update dependency information.
 907         // Mark it as NoEscape so that objects referenced by
 908         // it's fields will be marked as NoEscape at least.
 909         add_java_object(call, PointsToNode::NoEscape);
 910         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 911       } else {
 912         // Determine whether any arguments are returned.
 913         const TypeTuple* d = call->tf()->domain_cc();
 914         bool ret_arg = false;
 915         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 916           if (d->field_at(i)->isa_ptr() != NULL &&
 917               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 918             ret_arg = true;
 919             break;
 920           }
 921         }
 922         if (ret_arg) {
 923           add_local_var(call, PointsToNode::ArgEscape);
 924         } else {
 925           // Returns unknown object.
 926           map_ideal_node(call, phantom_obj);
 927         }
 928       }
 929     }
 930   } else {
 931     // An other type of call, assume the worst case:
 932     // returned value is unknown and globally escapes.
 933     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 934     map_ideal_node(call, phantom_obj);
 935   }
 936 }
 937 
 938 void ConnectionGraph::process_call_arguments(CallNode *call) {
 939     bool is_arraycopy = false;
 940     switch (call->Opcode()) {
 941 #ifdef ASSERT
 942     case Op_Allocate:
 943     case Op_AllocateArray:
 944     case Op_Lock:
 945     case Op_Unlock:
 946       assert(false, "should be done already");
 947       break;
 948 #endif
 949     case Op_ArrayCopy:
 950     case Op_CallLeafNoFP:
 951       // Most array copies are ArrayCopy nodes at this point but there
 952       // are still a few direct calls to the copy subroutines (See
 953       // PhaseStringOpts::copy_string())
 954       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 955         call->as_CallLeaf()->is_call_to_arraycopystub();
 956       // fall through
 957     case Op_CallLeaf: {
 958       // Stub calls, objects do not escape but they are not scale replaceable.
 959       // Adjust escape state for outgoing arguments.
 960       const TypeTuple * d = call->tf()->domain_sig();
 961       bool src_has_oops = false;
 962       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 963         const Type* at = d->field_at(i);
 964         Node *arg = call->in(i);
 965         if (arg == NULL) {
 966           continue;
 967         }
 968         const Type *aat = _igvn->type(arg);
 969         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 970           continue;
 971         if (arg->is_AddP()) {
 972           //
 973           // The inline_native_clone() case when the arraycopy stub is called
 974           // after the allocation before Initialize and CheckCastPP nodes.
 975           // Or normal arraycopy for object arrays case.
 976           //
 977           // Set AddP's base (Allocate) as not scalar replaceable since
 978           // pointer to the base (with offset) is passed as argument.
 979           //
 980           arg = get_addp_base(arg);
 981         }
 982         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 983         assert(arg_ptn != NULL, "should be registered");
 984         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 985         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 986           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 987                  aat->isa_ptr() != NULL, "expecting an Ptr");
 988           bool arg_has_oops = aat->isa_oopptr() &&
 989                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 990                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 991           if (i == TypeFunc::Parms) {
 992             src_has_oops = arg_has_oops;
 993           }
 994           //
 995           // src or dst could be j.l.Object when other is basic type array:
 996           //
 997           //   arraycopy(char[],0,Object*,0,size);
 998           //   arraycopy(Object*,0,char[],0,size);
 999           //
1000           // Don't add edges in such cases.
1001           //
1002           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
1003                                        arg_has_oops && (i > TypeFunc::Parms);
1004 #ifdef ASSERT
1005           if (!(is_arraycopy ||
1006                 (call->as_CallLeaf()->_name != NULL &&
1007                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
1008                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
1009                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
1010                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
1011                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
1012                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
1013                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
1014                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
1015                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
1016                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
1017                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
1018                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
1019                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1020                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1021                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1022                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1023                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1024                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1025                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1026                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1027                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1028                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1029                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1030                  ))) {
1031             call->dump();
1032             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1033           }
1034 #endif
1035           // Always process arraycopy's destination object since
1036           // we need to add all possible edges to references in
1037           // source object.
1038           if (arg_esc >= PointsToNode::ArgEscape &&
1039               !arg_is_arraycopy_dest) {
1040             continue;
1041           }
1042           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1043           if (call->is_ArrayCopy()) {
1044             ArrayCopyNode* ac = call->as_ArrayCopy();
1045             if (ac->is_clonebasic() ||
1046                 ac->is_arraycopy_validated() ||
1047                 ac->is_copyof_validated() ||
1048                 ac->is_copyofrange_validated()) {
1049               es = PointsToNode::NoEscape;
1050             }
1051           }
1052           set_escape_state(arg_ptn, es);
1053           if (arg_is_arraycopy_dest) {
1054             Node* src = call->in(TypeFunc::Parms);
1055             if (src->is_AddP()) {
1056               src = get_addp_base(src);
1057             }
1058             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1059             assert(src_ptn != NULL, "should be registered");
1060             if (arg_ptn != src_ptn) {
1061               // Special arraycopy edge:
1062               // A destination object's field can't have the source object
1063               // as base since objects escape states are not related.
1064               // Only escape state of destination object's fields affects
1065               // escape state of fields in source object.
1066               add_arraycopy(call, es, src_ptn, arg_ptn);
1067             }
1068           }
1069         }
1070       }
1071       break;
1072     }
1073     case Op_CallStaticJava: {
1074       // For a static call, we know exactly what method is being called.
1075       // Use bytecode estimator to record the call's escape affects
1076 #ifdef ASSERT
1077       const char* name = call->as_CallStaticJava()->_name;
1078       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1079 #endif
1080       ciMethod* meth = call->as_CallJava()->method();
1081       if ((meth != NULL) && meth->is_boxing_method()) {
1082         break; // Boxing methods do not modify any oops.
1083       }
1084       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1085       // fall-through if not a Java method or no analyzer information
1086       if (call_analyzer != NULL) {
1087         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1088         const TypeTuple* d = call->tf()->domain_cc();
1089         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1090           const Type* at = d->field_at(i);
1091           int k = i - TypeFunc::Parms;
1092           Node* arg = call->in(i);
1093           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1094           if (at->isa_ptr() != NULL &&
1095               call_analyzer->is_arg_returned(k)) {
1096             // The call returns arguments.
1097             if (call_ptn != NULL) { // Is call's result used?
1098               assert(call_ptn->is_LocalVar(), "node should be registered");
1099               assert(arg_ptn != NULL, "node should be registered");
1100               add_edge(call_ptn, arg_ptn);
1101             }
1102           }
1103           if (at->isa_oopptr() != NULL &&
1104               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1105             if (!call_analyzer->is_arg_stack(k)) {
1106               // The argument global escapes
1107               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1108             } else {
1109               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1110               if (!call_analyzer->is_arg_local(k)) {
1111                 // The argument itself doesn't escape, but any fields might
1112                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1113               }
1114             }
1115           }
1116         }
1117         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1118           // The call returns arguments.
1119           assert(call_ptn->edge_count() > 0, "sanity");
1120           if (!call_analyzer->is_return_local()) {
1121             // Returns also unknown object.
1122             add_edge(call_ptn, phantom_obj);
1123           }
1124         }
1125         break;
1126       }
1127     }
1128     default: {
1129       // Fall-through here if not a Java method or no analyzer information
1130       // or some other type of call, assume the worst case: all arguments
1131       // globally escape.
1132       const TypeTuple* d = call->tf()->domain_cc();
1133       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1134         const Type* at = d->field_at(i);
1135         if (at->isa_oopptr() != NULL) {
1136           Node* arg = call->in(i);
1137           if (arg->is_AddP()) {
1138             arg = get_addp_base(arg);
1139           }
1140           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1141           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1142         }
1143       }
1144     }
1145   }
1146 }
1147 
1148 
1149 // Finish Graph construction.
1150 bool ConnectionGraph::complete_connection_graph(
1151                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1152                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1153                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1154                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1155   // Normally only 1-3 passes needed to build Connection Graph depending
1156   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1157   // Set limit to 20 to catch situation when something did go wrong and
1158   // bailout Escape Analysis.
1159   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1160 #define CG_BUILD_ITER_LIMIT 20
1161 
1162   // Propagate GlobalEscape and ArgEscape escape states and check that
1163   // we still have non-escaping objects. The method pushs on _worklist
1164   // Field nodes which reference phantom_object.
1165   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1166     return false; // Nothing to do.
1167   }
1168   // Now propagate references to all JavaObject nodes.
1169   int java_objects_length = java_objects_worklist.length();
1170   elapsedTimer time;
1171   bool timeout = false;
1172   int new_edges = 1;
1173   int iterations = 0;
1174   do {
1175     while ((new_edges > 0) &&
1176            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1177       double start_time = time.seconds();
1178       time.start();
1179       new_edges = 0;
1180       // Propagate references to phantom_object for nodes pushed on _worklist
1181       // by find_non_escaped_objects() and find_field_value().
1182       new_edges += add_java_object_edges(phantom_obj, false);
1183       for (int next = 0; next < java_objects_length; ++next) {
1184         JavaObjectNode* ptn = java_objects_worklist.at(next);
1185         new_edges += add_java_object_edges(ptn, true);
1186 
1187 #define SAMPLE_SIZE 4
1188         if ((next % SAMPLE_SIZE) == 0) {
1189           // Each 4 iterations calculate how much time it will take
1190           // to complete graph construction.
1191           time.stop();
1192           // Poll for requests from shutdown mechanism to quiesce compiler
1193           // because Connection graph construction may take long time.
1194           CompileBroker::maybe_block();
1195           double stop_time = time.seconds();
1196           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1197           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1198           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1199             timeout = true;
1200             break; // Timeout
1201           }
1202           start_time = stop_time;
1203           time.start();
1204         }
1205 #undef SAMPLE_SIZE
1206 
1207       }
1208       if (timeout) break;
1209       if (new_edges > 0) {
1210         // Update escape states on each iteration if graph was updated.
1211         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1212           return false; // Nothing to do.
1213         }
1214       }
1215       time.stop();
1216       if (time.seconds() >= EscapeAnalysisTimeout) {
1217         timeout = true;
1218         break;
1219       }
1220     }
1221     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1222       time.start();
1223       // Find fields which have unknown value.
1224       int fields_length = oop_fields_worklist.length();
1225       for (int next = 0; next < fields_length; next++) {
1226         FieldNode* field = oop_fields_worklist.at(next);
1227         if (field->edge_count() == 0) {
1228           new_edges += find_field_value(field);
1229           // This code may added new edges to phantom_object.
1230           // Need an other cycle to propagate references to phantom_object.
1231         }
1232       }
1233       time.stop();
1234       if (time.seconds() >= EscapeAnalysisTimeout) {
1235         timeout = true;
1236         break;
1237       }
1238     } else {
1239       new_edges = 0; // Bailout
1240     }
1241   } while (new_edges > 0);
1242 
1243   // Bailout if passed limits.
1244   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1245     Compile* C = _compile;
1246     if (C->log() != NULL) {
1247       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1248       C->log()->text("%s", timeout ? "time" : "iterations");
1249       C->log()->end_elem(" limit'");
1250     }
1251     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1252            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1253     // Possible infinite build_connection_graph loop,
1254     // bailout (no changes to ideal graph were made).
1255     return false;
1256   }
1257 #ifdef ASSERT
1258   if (Verbose && PrintEscapeAnalysis) {
1259     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1260                   iterations, nodes_size(), ptnodes_worklist.length());
1261   }
1262 #endif
1263 
1264 #undef CG_BUILD_ITER_LIMIT
1265 
1266   // Find fields initialized by NULL for non-escaping Allocations.
1267   int non_escaped_length = non_escaped_worklist.length();
1268   for (int next = 0; next < non_escaped_length; next++) {
1269     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1270     PointsToNode::EscapeState es = ptn->escape_state();
1271     assert(es <= PointsToNode::ArgEscape, "sanity");
1272     if (es == PointsToNode::NoEscape) {
1273       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1274         // Adding references to NULL object does not change escape states
1275         // since it does not escape. Also no fields are added to NULL object.
1276         add_java_object_edges(null_obj, false);
1277       }
1278     }
1279     Node* n = ptn->ideal_node();
1280     if (n->is_Allocate()) {
1281       // The object allocated by this Allocate node will never be
1282       // seen by an other thread. Mark it so that when it is
1283       // expanded no MemBarStoreStore is added.
1284       InitializeNode* ini = n->as_Allocate()->initialization();
1285       if (ini != NULL)
1286         ini->set_does_not_escape();
1287     }
1288   }
1289   return true; // Finished graph construction.
1290 }
1291 
1292 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1293 // and check that we still have non-escaping java objects.
1294 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1295                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1296   GrowableArray<PointsToNode*> escape_worklist;
1297   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1298   int ptnodes_length = ptnodes_worklist.length();
1299   for (int next = 0; next < ptnodes_length; ++next) {
1300     PointsToNode* ptn = ptnodes_worklist.at(next);
1301     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1302         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1303       escape_worklist.push(ptn);
1304     }
1305   }
1306   // Set escape states to referenced nodes (edges list).
1307   while (escape_worklist.length() > 0) {
1308     PointsToNode* ptn = escape_worklist.pop();
1309     PointsToNode::EscapeState es  = ptn->escape_state();
1310     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1311     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1312         es >= PointsToNode::ArgEscape) {
1313       // GlobalEscape or ArgEscape state of field means it has unknown value.
1314       if (add_edge(ptn, phantom_obj)) {
1315         // New edge was added
1316         add_field_uses_to_worklist(ptn->as_Field());
1317       }
1318     }
1319     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1320       PointsToNode* e = i.get();
1321       if (e->is_Arraycopy()) {
1322         assert(ptn->arraycopy_dst(), "sanity");
1323         // Propagate only fields escape state through arraycopy edge.
1324         if (e->fields_escape_state() < field_es) {
1325           set_fields_escape_state(e, field_es);
1326           escape_worklist.push(e);
1327         }
1328       } else if (es >= field_es) {
1329         // fields_escape_state is also set to 'es' if it is less than 'es'.
1330         if (e->escape_state() < es) {
1331           set_escape_state(e, es);
1332           escape_worklist.push(e);
1333         }
1334       } else {
1335         // Propagate field escape state.
1336         bool es_changed = false;
1337         if (e->fields_escape_state() < field_es) {
1338           set_fields_escape_state(e, field_es);
1339           es_changed = true;
1340         }
1341         if ((e->escape_state() < field_es) &&
1342             e->is_Field() && ptn->is_JavaObject() &&
1343             e->as_Field()->is_oop()) {
1344           // Change escape state of referenced fields.
1345           set_escape_state(e, field_es);
1346           es_changed = true;
1347         } else if (e->escape_state() < es) {
1348           set_escape_state(e, es);
1349           es_changed = true;
1350         }
1351         if (es_changed) {
1352           escape_worklist.push(e);
1353         }
1354       }
1355     }
1356   }
1357   // Remove escaped objects from non_escaped list.
1358   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1359     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1360     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1361       non_escaped_worklist.delete_at(next);
1362     }
1363     if (ptn->escape_state() == PointsToNode::NoEscape) {
1364       // Find fields in non-escaped allocations which have unknown value.
1365       find_init_values(ptn, phantom_obj, NULL);
1366     }
1367   }
1368   return (non_escaped_worklist.length() > 0);
1369 }
1370 
1371 // Add all references to JavaObject node by walking over all uses.
1372 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1373   int new_edges = 0;
1374   if (populate_worklist) {
1375     // Populate _worklist by uses of jobj's uses.
1376     for (UseIterator i(jobj); i.has_next(); i.next()) {
1377       PointsToNode* use = i.get();
1378       if (use->is_Arraycopy())
1379         continue;
1380       add_uses_to_worklist(use);
1381       if (use->is_Field() && use->as_Field()->is_oop()) {
1382         // Put on worklist all field's uses (loads) and
1383         // related field nodes (same base and offset).
1384         add_field_uses_to_worklist(use->as_Field());
1385       }
1386     }
1387   }
1388   for (int l = 0; l < _worklist.length(); l++) {
1389     PointsToNode* use = _worklist.at(l);
1390     if (PointsToNode::is_base_use(use)) {
1391       // Add reference from jobj to field and from field to jobj (field's base).
1392       use = PointsToNode::get_use_node(use)->as_Field();
1393       if (add_base(use->as_Field(), jobj)) {
1394         new_edges++;
1395       }
1396       continue;
1397     }
1398     assert(!use->is_JavaObject(), "sanity");
1399     if (use->is_Arraycopy()) {
1400       if (jobj == null_obj) // NULL object does not have field edges
1401         continue;
1402       // Added edge from Arraycopy node to arraycopy's source java object
1403       if (add_edge(use, jobj)) {
1404         jobj->set_arraycopy_src();
1405         new_edges++;
1406       }
1407       // and stop here.
1408       continue;
1409     }
1410     if (!add_edge(use, jobj))
1411       continue; // No new edge added, there was such edge already.
1412     new_edges++;
1413     if (use->is_LocalVar()) {
1414       add_uses_to_worklist(use);
1415       if (use->arraycopy_dst()) {
1416         for (EdgeIterator i(use); i.has_next(); i.next()) {
1417           PointsToNode* e = i.get();
1418           if (e->is_Arraycopy()) {
1419             if (jobj == null_obj) // NULL object does not have field edges
1420               continue;
1421             // Add edge from arraycopy's destination java object to Arraycopy node.
1422             if (add_edge(jobj, e)) {
1423               new_edges++;
1424               jobj->set_arraycopy_dst();
1425             }
1426           }
1427         }
1428       }
1429     } else {
1430       // Added new edge to stored in field values.
1431       // Put on worklist all field's uses (loads) and
1432       // related field nodes (same base and offset).
1433       add_field_uses_to_worklist(use->as_Field());
1434     }
1435   }
1436   _worklist.clear();
1437   _in_worklist.Reset();
1438   return new_edges;
1439 }
1440 
1441 // Put on worklist all related field nodes.
1442 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1443   assert(field->is_oop(), "sanity");
1444   int offset = field->offset();
1445   add_uses_to_worklist(field);
1446   // Loop over all bases of this field and push on worklist Field nodes
1447   // with the same offset and base (since they may reference the same field).
1448   for (BaseIterator i(field); i.has_next(); i.next()) {
1449     PointsToNode* base = i.get();
1450     add_fields_to_worklist(field, base);
1451     // Check if the base was source object of arraycopy and go over arraycopy's
1452     // destination objects since values stored to a field of source object are
1453     // accessable by uses (loads) of fields of destination objects.
1454     if (base->arraycopy_src()) {
1455       for (UseIterator j(base); j.has_next(); j.next()) {
1456         PointsToNode* arycp = j.get();
1457         if (arycp->is_Arraycopy()) {
1458           for (UseIterator k(arycp); k.has_next(); k.next()) {
1459             PointsToNode* abase = k.get();
1460             if (abase->arraycopy_dst() && abase != base) {
1461               // Look for the same arraycopy reference.
1462               add_fields_to_worklist(field, abase);
1463             }
1464           }
1465         }
1466       }
1467     }
1468   }
1469 }
1470 
1471 // Put on worklist all related field nodes.
1472 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1473   int offset = field->offset();
1474   if (base->is_LocalVar()) {
1475     for (UseIterator j(base); j.has_next(); j.next()) {
1476       PointsToNode* f = j.get();
1477       if (PointsToNode::is_base_use(f)) { // Field
1478         f = PointsToNode::get_use_node(f);
1479         if (f == field || !f->as_Field()->is_oop())
1480           continue;
1481         int offs = f->as_Field()->offset();
1482         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1483           add_to_worklist(f);
1484         }
1485       }
1486     }
1487   } else {
1488     assert(base->is_JavaObject(), "sanity");
1489     if (// Skip phantom_object since it is only used to indicate that
1490         // this field's content globally escapes.
1491         (base != phantom_obj) &&
1492         // NULL object node does not have fields.
1493         (base != null_obj)) {
1494       for (EdgeIterator i(base); i.has_next(); i.next()) {
1495         PointsToNode* f = i.get();
1496         // Skip arraycopy edge since store to destination object field
1497         // does not update value in source object field.
1498         if (f->is_Arraycopy()) {
1499           assert(base->arraycopy_dst(), "sanity");
1500           continue;
1501         }
1502         if (f == field || !f->as_Field()->is_oop())
1503           continue;
1504         int offs = f->as_Field()->offset();
1505         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1506           add_to_worklist(f);
1507         }
1508       }
1509     }
1510   }
1511 }
1512 
1513 // Find fields which have unknown value.
1514 int ConnectionGraph::find_field_value(FieldNode* field) {
1515   // Escaped fields should have init value already.
1516   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1517   int new_edges = 0;
1518   for (BaseIterator i(field); i.has_next(); i.next()) {
1519     PointsToNode* base = i.get();
1520     if (base->is_JavaObject()) {
1521       // Skip Allocate's fields which will be processed later.
1522       if (base->ideal_node()->is_Allocate())
1523         return 0;
1524       assert(base == null_obj, "only NULL ptr base expected here");
1525     }
1526   }
1527   if (add_edge(field, phantom_obj)) {
1528     // New edge was added
1529     new_edges++;
1530     add_field_uses_to_worklist(field);
1531   }
1532   return new_edges;
1533 }
1534 
1535 // Find fields initializing values for allocations.
1536 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1537   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1538   int new_edges = 0;
1539   Node* alloc = pta->ideal_node();
1540   if (init_val == phantom_obj) {
1541     // Do nothing for Allocate nodes since its fields values are
1542     // "known" unless they are initialized by arraycopy/clone.
1543     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1544       return 0;
1545     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1546 #ifdef ASSERT
1547     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1548       const char* name = alloc->as_CallStaticJava()->_name;
1549       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1550     }
1551 #endif
1552     // Non-escaped allocation returned from Java or runtime call have
1553     // unknown values in fields.
1554     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1555       PointsToNode* field = i.get();
1556       if (field->is_Field() && field->as_Field()->is_oop()) {
1557         if (add_edge(field, phantom_obj)) {
1558           // New edge was added
1559           new_edges++;
1560           add_field_uses_to_worklist(field->as_Field());
1561         }
1562       }
1563     }
1564     return new_edges;
1565   }
1566   assert(init_val == null_obj, "sanity");
1567   // Do nothing for Call nodes since its fields values are unknown.
1568   if (!alloc->is_Allocate())
1569     return 0;
1570 
1571   InitializeNode* ini = alloc->as_Allocate()->initialization();
1572   bool visited_bottom_offset = false;
1573   GrowableArray<int> offsets_worklist;
1574 
1575   // Check if an oop field's initializing value is recorded and add
1576   // a corresponding NULL if field's value if it is not recorded.
1577   // Connection Graph does not record a default initialization by NULL
1578   // captured by Initialize node.
1579   //
1580   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1581     PointsToNode* field = i.get(); // Field (AddP)
1582     if (!field->is_Field() || !field->as_Field()->is_oop())
1583       continue; // Not oop field
1584     int offset = field->as_Field()->offset();
1585     if (offset == Type::OffsetBot) {
1586       if (!visited_bottom_offset) {
1587         // OffsetBot is used to reference array's element,
1588         // always add reference to NULL to all Field nodes since we don't
1589         // known which element is referenced.
1590         if (add_edge(field, null_obj)) {
1591           // New edge was added
1592           new_edges++;
1593           add_field_uses_to_worklist(field->as_Field());
1594           visited_bottom_offset = true;
1595         }
1596       }
1597     } else {
1598       // Check only oop fields.
1599       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1600       if (adr_type->isa_rawptr()) {
1601 #ifdef ASSERT
1602         // Raw pointers are used for initializing stores so skip it
1603         // since it should be recorded already
1604         Node* base = get_addp_base(field->ideal_node());
1605         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1606                (base->in(0) == alloc),"unexpected pointer type");
1607 #endif
1608         continue;
1609       }
1610       if (!offsets_worklist.contains(offset)) {
1611         offsets_worklist.append(offset);
1612         Node* value = NULL;
1613         if (ini != NULL) {
1614           // StoreP::memory_type() == T_ADDRESS
1615           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1616           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1617           // Make sure initializing store has the same type as this AddP.
1618           // This AddP may reference non existing field because it is on a
1619           // dead branch of bimorphic call which is not eliminated yet.
1620           if (store != NULL && store->is_Store() &&
1621               store->as_Store()->memory_type() == ft) {
1622             value = store->in(MemNode::ValueIn);
1623 #ifdef ASSERT
1624             if (VerifyConnectionGraph) {
1625               // Verify that AddP already points to all objects the value points to.
1626               PointsToNode* val = ptnode_adr(value->_idx);
1627               assert((val != NULL), "should be processed already");
1628               PointsToNode* missed_obj = NULL;
1629               if (val->is_JavaObject()) {
1630                 if (!field->points_to(val->as_JavaObject())) {
1631                   missed_obj = val;
1632                 }
1633               } else {
1634                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1635                   tty->print_cr("----------init store has invalid value -----");
1636                   store->dump();
1637                   val->dump();
1638                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1639                 }
1640                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1641                   PointsToNode* obj = j.get();
1642                   if (obj->is_JavaObject()) {
1643                     if (!field->points_to(obj->as_JavaObject())) {
1644                       missed_obj = obj;
1645                       break;
1646                     }
1647                   }
1648                 }
1649               }
1650               if (missed_obj != NULL) {
1651                 tty->print_cr("----------field---------------------------------");
1652                 field->dump();
1653                 tty->print_cr("----------missed referernce to object-----------");
1654                 missed_obj->dump();
1655                 tty->print_cr("----------object referernced by init store -----");
1656                 store->dump();
1657                 val->dump();
1658                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1659               }
1660             }
1661 #endif
1662           } else {
1663             // There could be initializing stores which follow allocation.
1664             // For example, a volatile field store is not collected
1665             // by Initialize node.
1666             //
1667             // Need to check for dependent loads to separate such stores from
1668             // stores which follow loads. For now, add initial value NULL so
1669             // that compare pointers optimization works correctly.
1670           }
1671         }
1672         if (value == NULL) {
1673           // A field's initializing value was not recorded. Add NULL.
1674           if (add_edge(field, null_obj)) {
1675             // New edge was added
1676             new_edges++;
1677             add_field_uses_to_worklist(field->as_Field());
1678           }
1679         }
1680       }
1681     }
1682   }
1683   return new_edges;
1684 }
1685 
1686 // Adjust scalar_replaceable state after Connection Graph is built.
1687 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1688   // Search for non-escaping objects which are not scalar replaceable
1689   // and mark them to propagate the state to referenced objects.
1690 
1691   // 1. An object is not scalar replaceable if the field into which it is
1692   // stored has unknown offset (stored into unknown element of an array).
1693   //
1694   for (UseIterator i(jobj); i.has_next(); i.next()) {
1695     PointsToNode* use = i.get();
1696     if (use->is_Arraycopy()) {
1697       continue;
1698     }
1699     if (use->is_Field()) {
1700       FieldNode* field = use->as_Field();
1701       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1702       if (field->offset() == Type::OffsetBot) {
1703         jobj->set_scalar_replaceable(false);
1704         return;
1705       }
1706       // 2. An object is not scalar replaceable if the field into which it is
1707       // stored has multiple bases one of which is null.
1708       if (field->base_count() > 1) {
1709         for (BaseIterator i(field); i.has_next(); i.next()) {
1710           PointsToNode* base = i.get();
1711           if (base == null_obj) {
1712             jobj->set_scalar_replaceable(false);
1713             return;
1714           }
1715         }
1716       }
1717     }
1718     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1719     // 3. An object is not scalar replaceable if it is merged with other objects.
1720     for (EdgeIterator j(use); j.has_next(); j.next()) {
1721       PointsToNode* ptn = j.get();
1722       if (ptn->is_JavaObject() && ptn != jobj) {
1723         // Mark all objects.
1724         jobj->set_scalar_replaceable(false);
1725          ptn->set_scalar_replaceable(false);
1726       }
1727     }
1728     if (!jobj->scalar_replaceable()) {
1729       return;
1730     }
1731   }
1732 
1733   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1734     if (j.get()->is_Arraycopy()) {
1735       continue;
1736     }
1737 
1738     // Non-escaping object node should point only to field nodes.
1739     FieldNode* field = j.get()->as_Field();
1740     int offset = field->as_Field()->offset();
1741 
1742     // 4. An object is not scalar replaceable if it has a field with unknown
1743     // offset (array's element is accessed in loop).
1744     if (offset == Type::OffsetBot) {
1745       jobj->set_scalar_replaceable(false);
1746       return;
1747     }
1748     // 5. Currently an object is not scalar replaceable if a LoadStore node
1749     // access its field since the field value is unknown after it.
1750     //
1751     Node* n = field->ideal_node();
1752     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1753       if (n->fast_out(i)->is_LoadStore()) {
1754         jobj->set_scalar_replaceable(false);
1755         return;
1756       }
1757     }
1758 
1759     // 6. Or the address may point to more then one object. This may produce
1760     // the false positive result (set not scalar replaceable)
1761     // since the flow-insensitive escape analysis can't separate
1762     // the case when stores overwrite the field's value from the case
1763     // when stores happened on different control branches.
1764     //
1765     // Note: it will disable scalar replacement in some cases:
1766     //
1767     //    Point p[] = new Point[1];
1768     //    p[0] = new Point(); // Will be not scalar replaced
1769     //
1770     // but it will save us from incorrect optimizations in next cases:
1771     //
1772     //    Point p[] = new Point[1];
1773     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1774     //
1775     if (field->base_count() > 1) {
1776       for (BaseIterator i(field); i.has_next(); i.next()) {
1777         PointsToNode* base = i.get();
1778         // Don't take into account LocalVar nodes which
1779         // may point to only one object which should be also
1780         // this field's base by now.
1781         if (base->is_JavaObject() && base != jobj) {
1782           // Mark all bases.
1783           jobj->set_scalar_replaceable(false);
1784           base->set_scalar_replaceable(false);
1785         }
1786       }
1787     }
1788   }
1789 }
1790 
1791 #ifdef ASSERT
1792 void ConnectionGraph::verify_connection_graph(
1793                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1794                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1795                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1796                          GrowableArray<Node*>& addp_worklist) {
1797   // Verify that graph is complete - no new edges could be added.
1798   int java_objects_length = java_objects_worklist.length();
1799   int non_escaped_length  = non_escaped_worklist.length();
1800   int new_edges = 0;
1801   for (int next = 0; next < java_objects_length; ++next) {
1802     JavaObjectNode* ptn = java_objects_worklist.at(next);
1803     new_edges += add_java_object_edges(ptn, true);
1804   }
1805   assert(new_edges == 0, "graph was not complete");
1806   // Verify that escape state is final.
1807   int length = non_escaped_worklist.length();
1808   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1809   assert((non_escaped_length == non_escaped_worklist.length()) &&
1810          (non_escaped_length == length) &&
1811          (_worklist.length() == 0), "escape state was not final");
1812 
1813   // Verify fields information.
1814   int addp_length = addp_worklist.length();
1815   for (int next = 0; next < addp_length; ++next ) {
1816     Node* n = addp_worklist.at(next);
1817     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1818     if (field->is_oop()) {
1819       // Verify that field has all bases
1820       Node* base = get_addp_base(n);
1821       PointsToNode* ptn = ptnode_adr(base->_idx);
1822       if (ptn->is_JavaObject()) {
1823         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1824       } else {
1825         assert(ptn->is_LocalVar(), "sanity");
1826         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1827           PointsToNode* e = i.get();
1828           if (e->is_JavaObject()) {
1829             assert(field->has_base(e->as_JavaObject()), "sanity");
1830           }
1831         }
1832       }
1833       // Verify that all fields have initializing values.
1834       if (field->edge_count() == 0) {
1835         tty->print_cr("----------field does not have references----------");
1836         field->dump();
1837         for (BaseIterator i(field); i.has_next(); i.next()) {
1838           PointsToNode* base = i.get();
1839           tty->print_cr("----------field has next base---------------------");
1840           base->dump();
1841           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1842             tty->print_cr("----------base has fields-------------------------");
1843             for (EdgeIterator j(base); j.has_next(); j.next()) {
1844               j.get()->dump();
1845             }
1846             tty->print_cr("----------base has references---------------------");
1847             for (UseIterator j(base); j.has_next(); j.next()) {
1848               j.get()->dump();
1849             }
1850           }
1851         }
1852         for (UseIterator i(field); i.has_next(); i.next()) {
1853           i.get()->dump();
1854         }
1855         assert(field->edge_count() > 0, "sanity");
1856       }
1857     }
1858   }
1859 }
1860 #endif
1861 
1862 // Optimize ideal graph.
1863 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1864                                            GrowableArray<Node*>& storestore_worklist) {
1865   Compile* C = _compile;
1866   PhaseIterGVN* igvn = _igvn;
1867   if (EliminateLocks) {
1868     // Mark locks before changing ideal graph.
1869     int cnt = C->macro_count();
1870     for( int i=0; i < cnt; i++ ) {
1871       Node *n = C->macro_node(i);
1872       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1873         AbstractLockNode* alock = n->as_AbstractLock();
1874         if (!alock->is_non_esc_obj()) {
1875           if (not_global_escape(alock->obj_node())) {
1876             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1877             // The lock could be marked eliminated by lock coarsening
1878             // code during first IGVN before EA. Replace coarsened flag
1879             // to eliminate all associated locks/unlocks.
1880 #ifdef ASSERT
1881             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1882 #endif
1883             alock->set_non_esc_obj();
1884           }
1885         }
1886       }
1887     }
1888   }
1889 
1890   if (OptimizePtrCompare) {
1891     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1892     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1893     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1894     // Optimize objects compare.
1895     while (ptr_cmp_worklist.length() != 0) {
1896       Node *n = ptr_cmp_worklist.pop();
1897       Node *res = optimize_ptr_compare(n);
1898       if (res != NULL) {
1899 #ifndef PRODUCT
1900         if (PrintOptimizePtrCompare) {
1901           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1902           if (Verbose) {
1903             n->dump(1);
1904           }
1905         }
1906 #endif
1907         igvn->replace_node(n, res);
1908       }
1909     }
1910     // cleanup
1911     if (_pcmp_neq->outcnt() == 0)
1912       igvn->hash_delete(_pcmp_neq);
1913     if (_pcmp_eq->outcnt()  == 0)
1914       igvn->hash_delete(_pcmp_eq);
1915   }
1916 
1917   // For MemBarStoreStore nodes added in library_call.cpp, check
1918   // escape status of associated AllocateNode and optimize out
1919   // MemBarStoreStore node if the allocated object never escapes.
1920   while (storestore_worklist.length() != 0) {
1921     Node *n = storestore_worklist.pop();
1922     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1923     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1924     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1925     if (not_global_escape(alloc)) {
1926       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1927       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1928       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1929       igvn->register_new_node_with_optimizer(mb);
1930       igvn->replace_node(storestore, mb);
1931     }
1932   }
1933 }
1934 
1935 // Optimize objects compare.
1936 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1937   assert(OptimizePtrCompare, "sanity");
1938   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1939   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1940   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1941   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1942   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1943   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1944 
1945   // Check simple cases first.
1946   if (jobj1 != NULL) {
1947     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1948       if (jobj1 == jobj2) {
1949         // Comparing the same not escaping object.
1950         return _pcmp_eq;
1951       }
1952       Node* obj = jobj1->ideal_node();
1953       // Comparing not escaping allocation.
1954       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1955           !ptn2->points_to(jobj1)) {
1956         return _pcmp_neq; // This includes nullness check.
1957       }
1958     }
1959   }
1960   if (jobj2 != NULL) {
1961     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1962       Node* obj = jobj2->ideal_node();
1963       // Comparing not escaping allocation.
1964       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1965           !ptn1->points_to(jobj2)) {
1966         return _pcmp_neq; // This includes nullness check.
1967       }
1968     }
1969   }
1970   if (jobj1 != NULL && jobj1 != phantom_obj &&
1971       jobj2 != NULL && jobj2 != phantom_obj &&
1972       jobj1->ideal_node()->is_Con() &&
1973       jobj2->ideal_node()->is_Con()) {
1974     // Klass or String constants compare. Need to be careful with
1975     // compressed pointers - compare types of ConN and ConP instead of nodes.
1976     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1977     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1978     if (t1->make_ptr() == t2->make_ptr()) {
1979       return _pcmp_eq;
1980     } else {
1981       return _pcmp_neq;
1982     }
1983   }
1984   if (ptn1->meet(ptn2)) {
1985     return NULL; // Sets are not disjoint
1986   }
1987 
1988   // Sets are disjoint.
1989   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1990   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1991   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1992   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1993   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1994       set2_has_unknown_ptr && set1_has_null_ptr) {
1995     // Check nullness of unknown object.
1996     return NULL;
1997   }
1998 
1999   // Disjointness by itself is not sufficient since
2000   // alias analysis is not complete for escaped objects.
2001   // Disjoint sets are definitely unrelated only when
2002   // at least one set has only not escaping allocations.
2003   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
2004     if (ptn1->non_escaping_allocation()) {
2005       return _pcmp_neq;
2006     }
2007   }
2008   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2009     if (ptn2->non_escaping_allocation()) {
2010       return _pcmp_neq;
2011     }
2012   }
2013   return NULL;
2014 }
2015 
2016 // Connection Graph constuction functions.
2017 
2018 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2019   PointsToNode* ptadr = _nodes.at(n->_idx);
2020   if (ptadr != NULL) {
2021     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2022     return;
2023   }
2024   Compile* C = _compile;
2025   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2026   _nodes.at_put(n->_idx, ptadr);
2027 }
2028 
2029 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2030   PointsToNode* ptadr = _nodes.at(n->_idx);
2031   if (ptadr != NULL) {
2032     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2033     return;
2034   }
2035   Compile* C = _compile;
2036   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2037   _nodes.at_put(n->_idx, ptadr);
2038 }
2039 
2040 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2041   PointsToNode* ptadr = _nodes.at(n->_idx);
2042   if (ptadr != NULL) {
2043     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2044     return;
2045   }
2046   bool unsafe = false;
2047   bool is_oop = is_oop_field(n, offset, &unsafe);
2048   if (unsafe) {
2049     es = PointsToNode::GlobalEscape;
2050   }
2051   Compile* C = _compile;
2052   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2053   _nodes.at_put(n->_idx, field);
2054 }
2055 
2056 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2057                                     PointsToNode* src, PointsToNode* dst) {
2058   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2059   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2060   PointsToNode* ptadr = _nodes.at(n->_idx);
2061   if (ptadr != NULL) {
2062     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2063     return;
2064   }
2065   Compile* C = _compile;
2066   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2067   _nodes.at_put(n->_idx, ptadr);
2068   // Add edge from arraycopy node to source object.
2069   (void)add_edge(ptadr, src);
2070   src->set_arraycopy_src();
2071   // Add edge from destination object to arraycopy node.
2072   (void)add_edge(dst, ptadr);
2073   dst->set_arraycopy_dst();
2074 }
2075 
2076 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2077   const Type* adr_type = n->as_AddP()->bottom_type();
2078   int field_offset = adr_type->isa_aryptr() ? adr_type->isa_aryptr()->field_offset().get() : Type::OffsetBot;
2079   BasicType bt = T_INT;
2080   if (offset == Type::OffsetBot && field_offset == Type::OffsetBot) {
2081     // Check only oop fields.
2082     if (!adr_type->isa_aryptr() ||
2083         (adr_type->isa_aryptr()->klass() == NULL) ||
2084          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2085       // OffsetBot is used to reference array's element. Ignore first AddP.
2086       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2087         bt = T_OBJECT;
2088       }
2089     }
2090   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2091     if (adr_type->isa_instptr() || adr_type->isa_valuetypeptr()) {
2092       ciField* field = _compile->alias_type(adr_type->is_ptr())->field();
2093       if (field != NULL) {
2094         bt = field->layout_type();
2095       } else {
2096         // Check for unsafe oop field access
2097         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2098             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2099             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2100           bt = T_OBJECT;
2101           (*unsafe) = true;
2102         }
2103       }
2104     } else if (adr_type->isa_aryptr()) {
2105       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2106         // Ignore array length load.
2107       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2108         // Ignore first AddP.
2109       } else {
2110         const Type* elemtype = adr_type->isa_aryptr()->elem();
2111         if (elemtype->isa_valuetype()) {
2112           assert(field_offset != Type::OffsetBot, "invalid field offset");
2113           ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
2114           field_offset += vk->first_field_offset();
2115           bt = vk->get_field_by_offset(field_offset, false)->layout_type();
2116         } else {
2117           bt = elemtype->array_element_basic_type();
2118         }
2119       }
2120     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2121       // Allocation initialization, ThreadLocal field access, unsafe access
2122       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2123           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2124           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2125         bt = T_OBJECT;
2126       }
2127     }
2128   }
2129   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2130 }
2131 
2132 // Returns unique pointed java object or NULL.
2133 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2134   assert(!_collecting, "should not call when contructed graph");
2135   // If the node was created after the escape computation we can't answer.
2136   uint idx = n->_idx;
2137   if (idx >= nodes_size()) {
2138     return NULL;
2139   }
2140   PointsToNode* ptn = ptnode_adr(idx);
2141   if (ptn->is_JavaObject()) {
2142     return ptn->as_JavaObject();
2143   }
2144   assert(ptn->is_LocalVar(), "sanity");
2145   // Check all java objects it points to.
2146   JavaObjectNode* jobj = NULL;
2147   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2148     PointsToNode* e = i.get();
2149     if (e->is_JavaObject()) {
2150       if (jobj == NULL) {
2151         jobj = e->as_JavaObject();
2152       } else if (jobj != e) {
2153         return NULL;
2154       }
2155     }
2156   }
2157   return jobj;
2158 }
2159 
2160 // Return true if this node points only to non-escaping allocations.
2161 bool PointsToNode::non_escaping_allocation() {
2162   if (is_JavaObject()) {
2163     Node* n = ideal_node();
2164     if (n->is_Allocate() || n->is_CallStaticJava()) {
2165       return (escape_state() == PointsToNode::NoEscape);
2166     } else {
2167       return false;
2168     }
2169   }
2170   assert(is_LocalVar(), "sanity");
2171   // Check all java objects it points to.
2172   for (EdgeIterator i(this); i.has_next(); i.next()) {
2173     PointsToNode* e = i.get();
2174     if (e->is_JavaObject()) {
2175       Node* n = e->ideal_node();
2176       if ((e->escape_state() != PointsToNode::NoEscape) ||
2177           !(n->is_Allocate() || n->is_CallStaticJava())) {
2178         return false;
2179       }
2180     }
2181   }
2182   return true;
2183 }
2184 
2185 // Return true if we know the node does not escape globally.
2186 bool ConnectionGraph::not_global_escape(Node *n) {
2187   assert(!_collecting, "should not call during graph construction");
2188   // If the node was created after the escape computation we can't answer.
2189   uint idx = n->_idx;
2190   if (idx >= nodes_size()) {
2191     return false;
2192   }
2193   PointsToNode* ptn = ptnode_adr(idx);
2194   PointsToNode::EscapeState es = ptn->escape_state();
2195   // If we have already computed a value, return it.
2196   if (es >= PointsToNode::GlobalEscape)
2197     return false;
2198   if (ptn->is_JavaObject()) {
2199     return true; // (es < PointsToNode::GlobalEscape);
2200   }
2201   assert(ptn->is_LocalVar(), "sanity");
2202   // Check all java objects it points to.
2203   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2204     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2205       return false;
2206   }
2207   return true;
2208 }
2209 
2210 
2211 // Helper functions
2212 
2213 // Return true if this node points to specified node or nodes it points to.
2214 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2215   if (is_JavaObject()) {
2216     return (this == ptn);
2217   }
2218   assert(is_LocalVar() || is_Field(), "sanity");
2219   for (EdgeIterator i(this); i.has_next(); i.next()) {
2220     if (i.get() == ptn)
2221       return true;
2222   }
2223   return false;
2224 }
2225 
2226 // Return true if one node points to an other.
2227 bool PointsToNode::meet(PointsToNode* ptn) {
2228   if (this == ptn) {
2229     return true;
2230   } else if (ptn->is_JavaObject()) {
2231     return this->points_to(ptn->as_JavaObject());
2232   } else if (this->is_JavaObject()) {
2233     return ptn->points_to(this->as_JavaObject());
2234   }
2235   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2236   int ptn_count =  ptn->edge_count();
2237   for (EdgeIterator i(this); i.has_next(); i.next()) {
2238     PointsToNode* this_e = i.get();
2239     for (int j = 0; j < ptn_count; j++) {
2240       if (this_e == ptn->edge(j))
2241         return true;
2242     }
2243   }
2244   return false;
2245 }
2246 
2247 #ifdef ASSERT
2248 // Return true if bases point to this java object.
2249 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2250   for (BaseIterator i(this); i.has_next(); i.next()) {
2251     if (i.get() == jobj)
2252       return true;
2253   }
2254   return false;
2255 }
2256 #endif
2257 
2258 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2259   const Type *adr_type = phase->type(adr);
2260   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2261       adr->in(AddPNode::Address)->is_Proj() &&
2262       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2263     // We are computing a raw address for a store captured by an Initialize
2264     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2265     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2266     assert(offs != Type::OffsetBot ||
2267            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2268            "offset must be a constant or it is initialization of array");
2269     return offs;
2270   }
2271   const TypePtr *t_ptr = adr_type->isa_ptr();
2272   assert(t_ptr != NULL, "must be a pointer type");
2273   return t_ptr->offset();
2274 }
2275 
2276 Node* ConnectionGraph::get_addp_base(Node *addp) {
2277   assert(addp->is_AddP(), "must be AddP");
2278   //
2279   // AddP cases for Base and Address inputs:
2280   // case #1. Direct object's field reference:
2281   //     Allocate
2282   //       |
2283   //     Proj #5 ( oop result )
2284   //       |
2285   //     CheckCastPP (cast to instance type)
2286   //      | |
2287   //     AddP  ( base == address )
2288   //
2289   // case #2. Indirect object's field reference:
2290   //      Phi
2291   //       |
2292   //     CastPP (cast to instance type)
2293   //      | |
2294   //     AddP  ( base == address )
2295   //
2296   // case #3. Raw object's field reference for Initialize node:
2297   //      Allocate
2298   //        |
2299   //      Proj #5 ( oop result )
2300   //  top   |
2301   //     \  |
2302   //     AddP  ( base == top )
2303   //
2304   // case #4. Array's element reference:
2305   //   {CheckCastPP | CastPP}
2306   //     |  | |
2307   //     |  AddP ( array's element offset )
2308   //     |  |
2309   //     AddP ( array's offset )
2310   //
2311   // case #5. Raw object's field reference for arraycopy stub call:
2312   //          The inline_native_clone() case when the arraycopy stub is called
2313   //          after the allocation before Initialize and CheckCastPP nodes.
2314   //      Allocate
2315   //        |
2316   //      Proj #5 ( oop result )
2317   //       | |
2318   //       AddP  ( base == address )
2319   //
2320   // case #6. Constant Pool, ThreadLocal, CastX2P or
2321   //          Raw object's field reference:
2322   //      {ConP, ThreadLocal, CastX2P, raw Load}
2323   //  top   |
2324   //     \  |
2325   //     AddP  ( base == top )
2326   //
2327   // case #7. Klass's field reference.
2328   //      LoadKlass
2329   //       | |
2330   //       AddP  ( base == address )
2331   //
2332   // case #8. narrow Klass's field reference.
2333   //      LoadNKlass
2334   //       |
2335   //      DecodeN
2336   //       | |
2337   //       AddP  ( base == address )
2338   //
2339   Node *base = addp->in(AddPNode::Base);
2340   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2341     base = addp->in(AddPNode::Address);
2342     while (base->is_AddP()) {
2343       // Case #6 (unsafe access) may have several chained AddP nodes.
2344       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2345       base = base->in(AddPNode::Address);
2346     }
2347     Node* uncast_base = base->uncast();
2348     int opcode = uncast_base->Opcode();
2349     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2350            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2351            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2352            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2353   }
2354   return base;
2355 }
2356 
2357 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2358   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2359   Node* addp2 = addp->raw_out(0);
2360   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2361       addp2->in(AddPNode::Base) == n &&
2362       addp2->in(AddPNode::Address) == addp) {
2363     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2364     //
2365     // Find array's offset to push it on worklist first and
2366     // as result process an array's element offset first (pushed second)
2367     // to avoid CastPP for the array's offset.
2368     // Otherwise the inserted CastPP (LocalVar) will point to what
2369     // the AddP (Field) points to. Which would be wrong since
2370     // the algorithm expects the CastPP has the same point as
2371     // as AddP's base CheckCastPP (LocalVar).
2372     //
2373     //    ArrayAllocation
2374     //     |
2375     //    CheckCastPP
2376     //     |
2377     //    memProj (from ArrayAllocation CheckCastPP)
2378     //     |  ||
2379     //     |  ||   Int (element index)
2380     //     |  ||    |   ConI (log(element size))
2381     //     |  ||    |   /
2382     //     |  ||   LShift
2383     //     |  ||  /
2384     //     |  AddP (array's element offset)
2385     //     |  |
2386     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2387     //     | / /
2388     //     AddP (array's offset)
2389     //      |
2390     //     Load/Store (memory operation on array's element)
2391     //
2392     return addp2;
2393   }
2394   return NULL;
2395 }
2396 
2397 //
2398 // Adjust the type and inputs of an AddP which computes the
2399 // address of a field of an instance
2400 //
2401 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2402   PhaseGVN* igvn = _igvn;
2403   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2404   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2405   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2406   if (t == NULL) {
2407     // We are computing a raw address for a store captured by an Initialize
2408     // compute an appropriate address type (cases #3 and #5).
2409     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2410     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2411     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2412     assert(offs != Type::OffsetBot, "offset must be a constant");
2413     t = base_t->add_offset(offs)->is_oopptr();
2414   }
2415   int inst_id = base_t->instance_id();
2416   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2417                              "old type must be non-instance or match new type");
2418 
2419   // The type 't' could be subclass of 'base_t'.
2420   // As result t->offset() could be large then base_t's size and it will
2421   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2422   // constructor verifies correctness of the offset.
2423   //
2424   // It could happened on subclass's branch (from the type profiling
2425   // inlining) which was not eliminated during parsing since the exactness
2426   // of the allocation type was not propagated to the subclass type check.
2427   //
2428   // Or the type 't' could be not related to 'base_t' at all.
2429   // It could happened when CHA type is different from MDO type on a dead path
2430   // (for example, from instanceof check) which is not collapsed during parsing.
2431   //
2432   // Do nothing for such AddP node and don't process its users since
2433   // this code branch will go away.
2434   //
2435   if (!t->is_known_instance() &&
2436       !base_t->klass()->is_subtype_of(t->klass())) {
2437      return false; // bail out
2438   }
2439   const TypePtr* tinst = base_t->add_offset(t->offset());
2440   if (tinst->isa_aryptr() && t->isa_aryptr()) {
2441     // In the case of a flattened value type array, each field has its
2442     // own slice so we need to keep track of the field being accessed.
2443     tinst = tinst->is_aryptr()->with_field_offset(t->is_aryptr()->field_offset().get());
2444   }
2445 
2446   // Do NOT remove the next line: ensure a new alias index is allocated
2447   // for the instance type. Note: C++ will not remove it since the call
2448   // has side effect.
2449   int alias_idx = _compile->get_alias_index(tinst);
2450   igvn->set_type(addp, tinst);
2451   // record the allocation in the node map
2452   set_map(addp, get_map(base->_idx));
2453   // Set addp's Base and Address to 'base'.
2454   Node *abase = addp->in(AddPNode::Base);
2455   Node *adr   = addp->in(AddPNode::Address);
2456   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2457       adr->in(0)->_idx == (uint)inst_id) {
2458     // Skip AddP cases #3 and #5.
2459   } else {
2460     assert(!abase->is_top(), "sanity"); // AddP case #3
2461     if (abase != base) {
2462       igvn->hash_delete(addp);
2463       addp->set_req(AddPNode::Base, base);
2464       if (abase == adr) {
2465         addp->set_req(AddPNode::Address, base);
2466       } else {
2467         // AddP case #4 (adr is array's element offset AddP node)
2468 #ifdef ASSERT
2469         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2470         assert(adr->is_AddP() && atype != NULL &&
2471                atype->instance_id() == inst_id, "array's element offset should be processed first");
2472 #endif
2473       }
2474       igvn->hash_insert(addp);
2475     }
2476   }
2477   // Put on IGVN worklist since at least addp's type was changed above.
2478   record_for_optimizer(addp);
2479   return true;
2480 }
2481 
2482 //
2483 // Create a new version of orig_phi if necessary. Returns either the newly
2484 // created phi or an existing phi.  Sets create_new to indicate whether a new
2485 // phi was created.  Cache the last newly created phi in the node map.
2486 //
2487 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2488   Compile *C = _compile;
2489   PhaseGVN* igvn = _igvn;
2490   new_created = false;
2491   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2492   // nothing to do if orig_phi is bottom memory or matches alias_idx
2493   if (phi_alias_idx == alias_idx) {
2494     return orig_phi;
2495   }
2496   // Have we recently created a Phi for this alias index?
2497   PhiNode *result = get_map_phi(orig_phi->_idx);
2498   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2499     return result;
2500   }
2501   // Previous check may fail when the same wide memory Phi was split into Phis
2502   // for different memory slices. Search all Phis for this region.
2503   if (result != NULL) {
2504     Node* region = orig_phi->in(0);
2505     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2506       Node* phi = region->fast_out(i);
2507       if (phi->is_Phi() &&
2508           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2509         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2510         return phi->as_Phi();
2511       }
2512     }
2513   }
2514   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2515     if (C->do_escape_analysis() == true && !C->failing()) {
2516       // Retry compilation without escape analysis.
2517       // If this is the first failure, the sentinel string will "stick"
2518       // to the Compile object, and the C2Compiler will see it and retry.
2519       C->record_failure(C2Compiler::retry_no_escape_analysis());
2520     }
2521     return NULL;
2522   }
2523   orig_phi_worklist.append_if_missing(orig_phi);
2524   const TypePtr *atype = C->get_adr_type(alias_idx);
2525   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2526   C->copy_node_notes_to(result, orig_phi);
2527   igvn->set_type(result, result->bottom_type());
2528   record_for_optimizer(result);
2529   set_map(orig_phi, result);
2530   new_created = true;
2531   return result;
2532 }
2533 
2534 //
2535 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2536 // specified alias index.
2537 //
2538 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2539   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2540   Compile *C = _compile;
2541   PhaseGVN* igvn = _igvn;
2542   bool new_phi_created;
2543   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2544   if (!new_phi_created) {
2545     return result;
2546   }
2547   GrowableArray<PhiNode *>  phi_list;
2548   GrowableArray<uint>  cur_input;
2549   PhiNode *phi = orig_phi;
2550   uint idx = 1;
2551   bool finished = false;
2552   while(!finished) {
2553     while (idx < phi->req()) {
2554       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2555       if (mem != NULL && mem->is_Phi()) {
2556         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2557         if (new_phi_created) {
2558           // found an phi for which we created a new split, push current one on worklist and begin
2559           // processing new one
2560           phi_list.push(phi);
2561           cur_input.push(idx);
2562           phi = mem->as_Phi();
2563           result = newphi;
2564           idx = 1;
2565           continue;
2566         } else {
2567           mem = newphi;
2568         }
2569       }
2570       if (C->failing()) {
2571         return NULL;
2572       }
2573       result->set_req(idx++, mem);
2574     }
2575 #ifdef ASSERT
2576     // verify that the new Phi has an input for each input of the original
2577     assert( phi->req() == result->req(), "must have same number of inputs.");
2578     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2579 #endif
2580     // Check if all new phi's inputs have specified alias index.
2581     // Otherwise use old phi.
2582     for (uint i = 1; i < phi->req(); i++) {
2583       Node* in = result->in(i);
2584       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2585     }
2586     // we have finished processing a Phi, see if there are any more to do
2587     finished = (phi_list.length() == 0 );
2588     if (!finished) {
2589       phi = phi_list.pop();
2590       idx = cur_input.pop();
2591       PhiNode *prev_result = get_map_phi(phi->_idx);
2592       prev_result->set_req(idx++, result);
2593       result = prev_result;
2594     }
2595   }
2596   return result;
2597 }
2598 
2599 //
2600 // The next methods are derived from methods in MemNode.
2601 //
2602 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2603   Node *mem = mmem;
2604   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2605   // means an array I have not precisely typed yet.  Do not do any
2606   // alias stuff with it any time soon.
2607   if (toop->base() != Type::AnyPtr &&
2608       !(toop->klass() != NULL &&
2609         toop->klass()->is_java_lang_Object() &&
2610         toop->offset() == Type::OffsetBot)) {
2611     mem = mmem->memory_at(alias_idx);
2612     // Update input if it is progress over what we have now
2613   }
2614   return mem;
2615 }
2616 
2617 //
2618 // Move memory users to their memory slices.
2619 //
2620 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2621   Compile* C = _compile;
2622   PhaseGVN* igvn = _igvn;
2623   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2624   assert(tp != NULL, "ptr type");
2625   int alias_idx = C->get_alias_index(tp);
2626   int general_idx = C->get_general_index(alias_idx);
2627 
2628   // Move users first
2629   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2630     Node* use = n->fast_out(i);
2631     if (use->is_MergeMem()) {
2632       MergeMemNode* mmem = use->as_MergeMem();
2633       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2634       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2635         continue; // Nothing to do
2636       }
2637       // Replace previous general reference to mem node.
2638       uint orig_uniq = C->unique();
2639       Node* m = find_inst_mem(n, general_idx, orig_phis);
2640       assert(orig_uniq == C->unique(), "no new nodes");
2641       mmem->set_memory_at(general_idx, m);
2642       --imax;
2643       --i;
2644     } else if (use->is_MemBar()) {
2645       assert(!use->is_Initialize(), "initializing stores should not be moved");
2646       if (use->req() > MemBarNode::Precedent &&
2647           use->in(MemBarNode::Precedent) == n) {
2648         // Don't move related membars.
2649         record_for_optimizer(use);
2650         continue;
2651       }
2652       tp = use->as_MemBar()->adr_type()->isa_ptr();
2653       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2654           alias_idx == general_idx) {
2655         continue; // Nothing to do
2656       }
2657       // Move to general memory slice.
2658       uint orig_uniq = C->unique();
2659       Node* m = find_inst_mem(n, general_idx, orig_phis);
2660       assert(orig_uniq == C->unique(), "no new nodes");
2661       igvn->hash_delete(use);
2662       imax -= use->replace_edge(n, m);
2663       igvn->hash_insert(use);
2664       record_for_optimizer(use);
2665       --i;
2666 #ifdef ASSERT
2667     } else if (use->is_Mem()) {
2668       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2669         // Don't move related cardmark.
2670         continue;
2671       }
2672       // Memory nodes should have new memory input.
2673       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2674       assert(tp != NULL, "ptr type");
2675       int idx = C->get_alias_index(tp);
2676       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2677              "Following memory nodes should have new memory input or be on the same memory slice");
2678     } else if (use->is_Phi()) {
2679       // Phi nodes should be split and moved already.
2680       tp = use->as_Phi()->adr_type()->isa_ptr();
2681       assert(tp != NULL, "ptr type");
2682       int idx = C->get_alias_index(tp);
2683       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2684     } else {
2685       use->dump();
2686       assert(false, "should not be here");
2687 #endif
2688     }
2689   }
2690 }
2691 
2692 //
2693 // Search memory chain of "mem" to find a MemNode whose address
2694 // is the specified alias index.
2695 //
2696 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2697   if (orig_mem == NULL)
2698     return orig_mem;
2699   Compile* C = _compile;
2700   PhaseGVN* igvn = _igvn;
2701   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2702   bool is_instance = (toop != NULL) && toop->is_known_instance();
2703   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2704   Node *prev = NULL;
2705   Node *result = orig_mem;
2706   while (prev != result) {
2707     prev = result;
2708     if (result == start_mem)
2709       break;  // hit one of our sentinels
2710     if (result->is_Mem()) {
2711       const Type *at = igvn->type(result->in(MemNode::Address));
2712       if (at == Type::TOP)
2713         break; // Dead
2714       assert (at->isa_ptr() != NULL, "pointer type required.");
2715       int idx = C->get_alias_index(at->is_ptr());
2716       if (idx == alias_idx)
2717         break; // Found
2718       if (!is_instance && (at->isa_oopptr() == NULL ||
2719                            !at->is_oopptr()->is_known_instance())) {
2720         break; // Do not skip store to general memory slice.
2721       }
2722       result = result->in(MemNode::Memory);
2723     }
2724     if (!is_instance)
2725       continue;  // don't search further for non-instance types
2726     // skip over a call which does not affect this memory slice
2727     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2728       Node *proj_in = result->in(0);
2729       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2730         break;  // hit one of our sentinels
2731       } else if (proj_in->is_Call()) {
2732         // ArrayCopy node processed here as well
2733         CallNode *call = proj_in->as_Call();
2734         if (!call->may_modify(toop, igvn)) {
2735           result = call->in(TypeFunc::Memory);
2736         }
2737       } else if (proj_in->is_Initialize()) {
2738         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2739         // Stop if this is the initialization for the object instance which
2740         // which contains this memory slice, otherwise skip over it.
2741         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2742           result = proj_in->in(TypeFunc::Memory);
2743         }
2744       } else if (proj_in->is_MemBar()) {
2745         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2746             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2747             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2748           // clone
2749           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2750           if (ac->may_modify(toop, igvn)) {
2751             break;
2752           }
2753         }
2754         result = proj_in->in(TypeFunc::Memory);
2755       }
2756     } else if (result->is_MergeMem()) {
2757       MergeMemNode *mmem = result->as_MergeMem();
2758       result = step_through_mergemem(mmem, alias_idx, toop);
2759       if (result == mmem->base_memory()) {
2760         // Didn't find instance memory, search through general slice recursively.
2761         result = mmem->memory_at(C->get_general_index(alias_idx));
2762         result = find_inst_mem(result, alias_idx, orig_phis);
2763         if (C->failing()) {
2764           return NULL;
2765         }
2766         mmem->set_memory_at(alias_idx, result);
2767       }
2768     } else if (result->is_Phi() &&
2769                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2770       Node *un = result->as_Phi()->unique_input(igvn);
2771       if (un != NULL) {
2772         orig_phis.append_if_missing(result->as_Phi());
2773         result = un;
2774       } else {
2775         break;
2776       }
2777     } else if (result->is_ClearArray()) {
2778       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2779         // Can not bypass initialization of the instance
2780         // we are looking for.
2781         break;
2782       }
2783       // Otherwise skip it (the call updated 'result' value).
2784     } else if (result->Opcode() == Op_SCMemProj) {
2785       Node* mem = result->in(0);
2786       Node* adr = NULL;
2787       if (mem->is_LoadStore()) {
2788         adr = mem->in(MemNode::Address);
2789       } else {
2790         assert(mem->Opcode() == Op_EncodeISOArray ||
2791                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2792         adr = mem->in(3); // Memory edge corresponds to destination array
2793       }
2794       const Type *at = igvn->type(adr);
2795       if (at != Type::TOP) {
2796         assert(at->isa_ptr() != NULL, "pointer type required.");
2797         int idx = C->get_alias_index(at->is_ptr());
2798         if (idx == alias_idx) {
2799           // Assert in debug mode
2800           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2801           break; // In product mode return SCMemProj node
2802         }
2803       }
2804       result = mem->in(MemNode::Memory);
2805     } else if (result->Opcode() == Op_StrInflatedCopy) {
2806       Node* adr = result->in(3); // Memory edge corresponds to destination array
2807       const Type *at = igvn->type(adr);
2808       if (at != Type::TOP) {
2809         assert(at->isa_ptr() != NULL, "pointer type required.");
2810         int idx = C->get_alias_index(at->is_ptr());
2811         if (idx == alias_idx) {
2812           // Assert in debug mode
2813           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2814           break; // In product mode return SCMemProj node
2815         }
2816       }
2817       result = result->in(MemNode::Memory);
2818     }
2819   }
2820   if (result->is_Phi()) {
2821     PhiNode *mphi = result->as_Phi();
2822     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2823     const TypePtr *t = mphi->adr_type();
2824     if (!is_instance) {
2825       // Push all non-instance Phis on the orig_phis worklist to update inputs
2826       // during Phase 4 if needed.
2827       orig_phis.append_if_missing(mphi);
2828     } else if (C->get_alias_index(t) != alias_idx) {
2829       // Create a new Phi with the specified alias index type.
2830       result = split_memory_phi(mphi, alias_idx, orig_phis);
2831     }
2832   }
2833   // the result is either MemNode, PhiNode, InitializeNode.
2834   return result;
2835 }
2836 
2837 //
2838 //  Convert the types of unescaped object to instance types where possible,
2839 //  propagate the new type information through the graph, and update memory
2840 //  edges and MergeMem inputs to reflect the new type.
2841 //
2842 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2843 //  The processing is done in 4 phases:
2844 //
2845 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2846 //            types for the CheckCastPP for allocations where possible.
2847 //            Propagate the new types through users as follows:
2848 //               casts and Phi:  push users on alloc_worklist
2849 //               AddP:  cast Base and Address inputs to the instance type
2850 //                      push any AddP users on alloc_worklist and push any memnode
2851 //                      users onto memnode_worklist.
2852 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2853 //            search the Memory chain for a store with the appropriate type
2854 //            address type.  If a Phi is found, create a new version with
2855 //            the appropriate memory slices from each of the Phi inputs.
2856 //            For stores, process the users as follows:
2857 //               MemNode:  push on memnode_worklist
2858 //               MergeMem: push on mergemem_worklist
2859 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2860 //            moving the first node encountered of each  instance type to the
2861 //            the input corresponding to its alias index.
2862 //            appropriate memory slice.
2863 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2864 //
2865 // In the following example, the CheckCastPP nodes are the cast of allocation
2866 // results and the allocation of node 29 is unescaped and eligible to be an
2867 // instance type.
2868 //
2869 // We start with:
2870 //
2871 //     7 Parm #memory
2872 //    10  ConI  "12"
2873 //    19  CheckCastPP   "Foo"
2874 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2875 //    29  CheckCastPP   "Foo"
2876 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2877 //
2878 //    40  StoreP  25   7  20   ... alias_index=4
2879 //    50  StoreP  35  40  30   ... alias_index=4
2880 //    60  StoreP  45  50  20   ... alias_index=4
2881 //    70  LoadP    _  60  30   ... alias_index=4
2882 //    80  Phi     75  50  60   Memory alias_index=4
2883 //    90  LoadP    _  80  30   ... alias_index=4
2884 //   100  LoadP    _  80  20   ... alias_index=4
2885 //
2886 //
2887 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2888 // and creating a new alias index for node 30.  This gives:
2889 //
2890 //     7 Parm #memory
2891 //    10  ConI  "12"
2892 //    19  CheckCastPP   "Foo"
2893 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2894 //    29  CheckCastPP   "Foo"  iid=24
2895 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2896 //
2897 //    40  StoreP  25   7  20   ... alias_index=4
2898 //    50  StoreP  35  40  30   ... alias_index=6
2899 //    60  StoreP  45  50  20   ... alias_index=4
2900 //    70  LoadP    _  60  30   ... alias_index=6
2901 //    80  Phi     75  50  60   Memory alias_index=4
2902 //    90  LoadP    _  80  30   ... alias_index=6
2903 //   100  LoadP    _  80  20   ... alias_index=4
2904 //
2905 // In phase 2, new memory inputs are computed for the loads and stores,
2906 // And a new version of the phi is created.  In phase 4, the inputs to
2907 // node 80 are updated and then the memory nodes are updated with the
2908 // values computed in phase 2.  This results in:
2909 //
2910 //     7 Parm #memory
2911 //    10  ConI  "12"
2912 //    19  CheckCastPP   "Foo"
2913 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2914 //    29  CheckCastPP   "Foo"  iid=24
2915 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2916 //
2917 //    40  StoreP  25  7   20   ... alias_index=4
2918 //    50  StoreP  35  7   30   ... alias_index=6
2919 //    60  StoreP  45  40  20   ... alias_index=4
2920 //    70  LoadP    _  50  30   ... alias_index=6
2921 //    80  Phi     75  40  60   Memory alias_index=4
2922 //   120  Phi     75  50  50   Memory alias_index=6
2923 //    90  LoadP    _ 120  30   ... alias_index=6
2924 //   100  LoadP    _  80  20   ... alias_index=4
2925 //
2926 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2927   GrowableArray<Node *>  memnode_worklist;
2928   GrowableArray<PhiNode *>  orig_phis;
2929   PhaseIterGVN  *igvn = _igvn;
2930   uint new_index_start = (uint) _compile->num_alias_types();
2931   Arena* arena = Thread::current()->resource_area();
2932   VectorSet visited(arena);
2933   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2934   uint unique_old = _compile->unique();
2935 
2936   //  Phase 1:  Process possible allocations from alloc_worklist.
2937   //  Create instance types for the CheckCastPP for allocations where possible.
2938   //
2939   // (Note: don't forget to change the order of the second AddP node on
2940   //  the alloc_worklist if the order of the worklist processing is changed,
2941   //  see the comment in find_second_addp().)
2942   //
2943   while (alloc_worklist.length() != 0) {
2944     Node *n = alloc_worklist.pop();
2945     uint ni = n->_idx;
2946     if (n->is_Call()) {
2947       CallNode *alloc = n->as_Call();
2948       // copy escape information to call node
2949       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2950       PointsToNode::EscapeState es = ptn->escape_state();
2951       // We have an allocation or call which returns a Java object,
2952       // see if it is unescaped.
2953       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2954         continue;
2955       // Find CheckCastPP for the allocate or for the return value of a call
2956       n = alloc->result_cast();
2957       if (n == NULL) {            // No uses except Initialize node
2958         if (alloc->is_Allocate()) {
2959           // Set the scalar_replaceable flag for allocation
2960           // so it could be eliminated if it has no uses.
2961           alloc->as_Allocate()->_is_scalar_replaceable = true;
2962         }
2963         if (alloc->is_CallStaticJava()) {
2964           // Set the scalar_replaceable flag for boxing method
2965           // so it could be eliminated if it has no uses.
2966           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2967         }
2968         continue;
2969       }
2970       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2971         assert(!alloc->is_Allocate(), "allocation should have unique type");
2972         continue;
2973       }
2974 
2975       // The inline code for Object.clone() casts the allocation result to
2976       // java.lang.Object and then to the actual type of the allocated
2977       // object. Detect this case and use the second cast.
2978       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2979       // the allocation result is cast to java.lang.Object and then
2980       // to the actual Array type.
2981       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2982           && (alloc->is_AllocateArray() ||
2983               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2984         Node *cast2 = NULL;
2985         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2986           Node *use = n->fast_out(i);
2987           if (use->is_CheckCastPP()) {
2988             cast2 = use;
2989             break;
2990           }
2991         }
2992         if (cast2 != NULL) {
2993           n = cast2;
2994         } else {
2995           // Non-scalar replaceable if the allocation type is unknown statically
2996           // (reflection allocation), the object can't be restored during
2997           // deoptimization without precise type.
2998           continue;
2999         }
3000       }
3001 
3002       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3003       if (t == NULL)
3004         continue;  // not a TypeOopPtr
3005       if (!t->klass_is_exact())
3006         continue; // not an unique type
3007 
3008       if (alloc->is_Allocate()) {
3009         // Set the scalar_replaceable flag for allocation
3010         // so it could be eliminated.
3011         alloc->as_Allocate()->_is_scalar_replaceable = true;
3012       }
3013       if (alloc->is_CallStaticJava()) {
3014         // Set the scalar_replaceable flag for boxing method
3015         // so it could be eliminated.
3016         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3017       }
3018       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3019       // in order for an object to be scalar-replaceable, it must be:
3020       //   - a direct allocation (not a call returning an object)
3021       //   - non-escaping
3022       //   - eligible to be a unique type
3023       //   - not determined to be ineligible by escape analysis
3024       set_map(alloc, n);
3025       set_map(n, alloc);
3026       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3027       igvn->hash_delete(n);
3028       igvn->set_type(n,  tinst);
3029       n->raise_bottom_type(tinst);
3030       igvn->hash_insert(n);
3031       record_for_optimizer(n);
3032       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr() || t->isa_valuetypeptr())) {
3033 
3034         // First, put on the worklist all Field edges from Connection Graph
3035         // which is more accurate than putting immediate users from Ideal Graph.
3036         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3037           PointsToNode* tgt = e.get();
3038           if (tgt->is_Arraycopy()) {
3039             continue;
3040           }
3041           Node* use = tgt->ideal_node();
3042           assert(tgt->is_Field() && use->is_AddP(),
3043                  "only AddP nodes are Field edges in CG");
3044           if (use->outcnt() > 0) { // Don't process dead nodes
3045             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3046             if (addp2 != NULL) {
3047               assert(alloc->is_AllocateArray(),"array allocation was expected");
3048               alloc_worklist.append_if_missing(addp2);
3049             }
3050             alloc_worklist.append_if_missing(use);
3051           }
3052         }
3053 
3054         // An allocation may have an Initialize which has raw stores. Scan
3055         // the users of the raw allocation result and push AddP users
3056         // on alloc_worklist.
3057         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
3058         assert (raw_result != NULL, "must have an allocation result");
3059         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3060           Node *use = raw_result->fast_out(i);
3061           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3062             Node* addp2 = find_second_addp(use, raw_result);
3063             if (addp2 != NULL) {
3064               assert(alloc->is_AllocateArray(),"array allocation was expected");
3065               alloc_worklist.append_if_missing(addp2);
3066             }
3067             alloc_worklist.append_if_missing(use);
3068           } else if (use->is_MemBar()) {
3069             memnode_worklist.append_if_missing(use);
3070           }
3071         }
3072       }
3073     } else if (n->is_AddP()) {
3074       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3075       if (jobj == NULL || jobj == phantom_obj) {
3076 #ifdef ASSERT
3077         ptnode_adr(get_addp_base(n)->_idx)->dump();
3078         ptnode_adr(n->_idx)->dump();
3079         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3080 #endif
3081         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3082         return;
3083       }
3084       Node *base = get_map(jobj->idx());  // CheckCastPP node
3085       if (!split_AddP(n, base)) continue; // wrong type from dead path
3086     } else if (n->is_Phi() ||
3087                n->is_CheckCastPP() ||
3088                n->is_EncodeP() ||
3089                n->is_DecodeN() ||
3090                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3091       if (visited.test_set(n->_idx)) {
3092         assert(n->is_Phi(), "loops only through Phi's");
3093         continue;  // already processed
3094       }
3095       JavaObjectNode* jobj = unique_java_object(n);
3096       if (jobj == NULL || jobj == phantom_obj) {
3097 #ifdef ASSERT
3098         ptnode_adr(n->_idx)->dump();
3099         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3100 #endif
3101         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3102         return;
3103       } else {
3104         Node *val = get_map(jobj->idx());   // CheckCastPP node
3105         TypeNode *tn = n->as_Type();
3106         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3107         assert(tinst != NULL && tinst->is_known_instance() &&
3108                tinst->instance_id() == jobj->idx() , "instance type expected.");
3109 
3110         const Type *tn_type = igvn->type(tn);
3111         const TypeOopPtr *tn_t;
3112         if (tn_type->isa_narrowoop()) {
3113           tn_t = tn_type->make_ptr()->isa_oopptr();
3114         } else {
3115           tn_t = tn_type->isa_oopptr();
3116         }
3117         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3118           if (tn_type->isa_narrowoop()) {
3119             tn_type = tinst->make_narrowoop();
3120           } else {
3121             tn_type = tinst;
3122           }
3123           igvn->hash_delete(tn);
3124           igvn->set_type(tn, tn_type);
3125           tn->set_type(tn_type);
3126           igvn->hash_insert(tn);
3127           record_for_optimizer(n);
3128         } else {
3129           assert(tn_type == TypePtr::NULL_PTR ||
3130                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3131                  "unexpected type");
3132           continue; // Skip dead path with different type
3133         }
3134       }
3135     } else {
3136       debug_only(n->dump();)
3137       assert(false, "EA: unexpected node");
3138       continue;
3139     }
3140     // push allocation's users on appropriate worklist
3141     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3142       Node *use = n->fast_out(i);
3143       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3144         // Load/store to instance's field
3145         memnode_worklist.append_if_missing(use);
3146       } else if (use->is_MemBar()) {
3147         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3148           memnode_worklist.append_if_missing(use);
3149         }
3150       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3151         Node* addp2 = find_second_addp(use, n);
3152         if (addp2 != NULL) {
3153           alloc_worklist.append_if_missing(addp2);
3154         }
3155         alloc_worklist.append_if_missing(use);
3156       } else if (use->is_Phi() ||
3157                  use->is_CheckCastPP() ||
3158                  use->is_EncodeNarrowPtr() ||
3159                  use->is_DecodeNarrowPtr() ||
3160                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3161         alloc_worklist.append_if_missing(use);
3162 #ifdef ASSERT
3163       } else if (use->is_Mem()) {
3164         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3165       } else if (use->is_MergeMem()) {
3166         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3167       } else if (use->is_SafePoint()) {
3168         // Look for MergeMem nodes for calls which reference unique allocation
3169         // (through CheckCastPP nodes) even for debug info.
3170         Node* m = use->in(TypeFunc::Memory);
3171         if (m->is_MergeMem()) {
3172           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3173         }
3174       } else if (use->Opcode() == Op_EncodeISOArray) {
3175         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3176           // EncodeISOArray overwrites destination array
3177           memnode_worklist.append_if_missing(use);
3178         }
3179       } else if (use->Opcode() == Op_Return) {
3180         Node* klass = use->in(TypeFunc::Parms);
3181         const TypeKlassPtr* tkls = igvn->type(klass)->isa_klassptr();
3182         ciValueKlass* vk = tkls->klass()->as_value_klass();
3183         assert(_compile->tf()->returns_value_type_as_fields(), "must return a value type");
3184         assert(vk->contains_oops(), "returned value type must contain a reference field");
3185       } else {
3186         uint op = use->Opcode();
3187         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3188             (use->in(MemNode::Memory) == n)) {
3189           // They overwrite memory edge corresponding to destination array,
3190           memnode_worklist.append_if_missing(use);
3191         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3192               op == Op_CastP2X || op == Op_StoreCM ||
3193               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3194               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3195               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3196               op == Op_ValueType)) {
3197           n->dump();
3198           use->dump();
3199           assert(false, "EA: missing allocation reference path");
3200         }
3201 #endif
3202       }
3203     }
3204 
3205   }
3206 
3207   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3208   // type, record it in the ArrayCopy node so we know what memory this
3209   // node uses/modified.
3210   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3211     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3212     Node* dest = ac->in(ArrayCopyNode::Dest);
3213     if (dest->is_AddP()) {
3214       dest = get_addp_base(dest);
3215     }
3216     JavaObjectNode* jobj = unique_java_object(dest);
3217     if (jobj != NULL) {
3218       Node *base = get_map(jobj->idx());
3219       if (base != NULL) {
3220         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3221         ac->_dest_type = base_t;
3222       }
3223     }
3224     Node* src = ac->in(ArrayCopyNode::Src);
3225     if (src->is_AddP()) {
3226       src = get_addp_base(src);
3227     }
3228     jobj = unique_java_object(src);
3229     if (jobj != NULL) {
3230       Node* base = get_map(jobj->idx());
3231       if (base != NULL) {
3232         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3233         ac->_src_type = base_t;
3234       }
3235     }
3236   }
3237 
3238   // New alias types were created in split_AddP().
3239   uint new_index_end = (uint) _compile->num_alias_types();
3240   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3241 
3242   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3243   //            compute new values for Memory inputs  (the Memory inputs are not
3244   //            actually updated until phase 4.)
3245   if (memnode_worklist.length() == 0)
3246     return;  // nothing to do
3247   while (memnode_worklist.length() != 0) {
3248     Node *n = memnode_worklist.pop();
3249     if (visited.test_set(n->_idx))
3250       continue;
3251     if (n->is_Phi() || n->is_ClearArray()) {
3252       // we don't need to do anything, but the users must be pushed
3253     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3254       // we don't need to do anything, but the users must be pushed
3255       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3256       if (n == NULL)
3257         continue;
3258     } else if (n->Opcode() == Op_StrCompressedCopy ||
3259                n->Opcode() == Op_EncodeISOArray) {
3260       // get the memory projection
3261       n = n->find_out_with(Op_SCMemProj);
3262       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3263     } else {
3264       assert(n->is_Mem(), "memory node required.");
3265       Node *addr = n->in(MemNode::Address);
3266       const Type *addr_t = igvn->type(addr);
3267       if (addr_t == Type::TOP)
3268         continue;
3269       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3270       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3271       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3272       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3273       if (_compile->failing()) {
3274         return;
3275       }
3276       if (mem != n->in(MemNode::Memory)) {
3277         // We delay the memory edge update since we need old one in
3278         // MergeMem code below when instances memory slices are separated.
3279         set_map(n, mem);
3280       }
3281       if (n->is_Load()) {
3282         continue;  // don't push users
3283       } else if (n->is_LoadStore()) {
3284         // get the memory projection
3285         n = n->find_out_with(Op_SCMemProj);
3286         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3287       }
3288     }
3289     // push user on appropriate worklist
3290     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3291       Node *use = n->fast_out(i);
3292       if (use->is_Phi() || use->is_ClearArray()) {
3293         memnode_worklist.append_if_missing(use);
3294       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3295         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3296           continue;
3297         memnode_worklist.append_if_missing(use);
3298       } else if (use->is_MemBar()) {
3299         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3300           memnode_worklist.append_if_missing(use);
3301         }
3302 #ifdef ASSERT
3303       } else if(use->is_Mem()) {
3304         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3305       } else if (use->is_MergeMem()) {
3306         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3307       } else if (use->Opcode() == Op_EncodeISOArray) {
3308         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3309           // EncodeISOArray overwrites destination array
3310           memnode_worklist.append_if_missing(use);
3311         }
3312       } else {
3313         uint op = use->Opcode();
3314         if ((use->in(MemNode::Memory) == n) &&
3315             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3316           // They overwrite memory edge corresponding to destination array,
3317           memnode_worklist.append_if_missing(use);
3318         } else if (!(op == Op_StoreCM ||
3319               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3320                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3321               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3322               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3323               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3324           n->dump();
3325           use->dump();
3326           assert(false, "EA: missing memory path");
3327         }
3328 #endif
3329       }
3330     }
3331   }
3332 
3333   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3334   //            Walk each memory slice moving the first node encountered of each
3335   //            instance type to the input corresponding to its alias index.
3336   uint length = _mergemem_worklist.length();
3337   for( uint next = 0; next < length; ++next ) {
3338     MergeMemNode* nmm = _mergemem_worklist.at(next);
3339     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3340     // Note: we don't want to use MergeMemStream here because we only want to
3341     // scan inputs which exist at the start, not ones we add during processing.
3342     // Note 2: MergeMem may already contains instance memory slices added
3343     // during find_inst_mem() call when memory nodes were processed above.
3344     igvn->hash_delete(nmm);
3345     uint nslices = MIN2(nmm->req(), new_index_start);
3346     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3347       Node* mem = nmm->in(i);
3348       Node* cur = NULL;
3349       if (mem == NULL || mem->is_top())
3350         continue;
3351       // First, update mergemem by moving memory nodes to corresponding slices
3352       // if their type became more precise since this mergemem was created.
3353       while (mem->is_Mem()) {
3354         const Type *at = igvn->type(mem->in(MemNode::Address));
3355         if (at != Type::TOP) {
3356           assert (at->isa_ptr() != NULL, "pointer type required.");
3357           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3358           if (idx == i) {
3359             if (cur == NULL)
3360               cur = mem;
3361           } else {
3362             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3363               nmm->set_memory_at(idx, mem);
3364             }
3365           }
3366         }
3367         mem = mem->in(MemNode::Memory);
3368       }
3369       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3370       // Find any instance of the current type if we haven't encountered
3371       // already a memory slice of the instance along the memory chain.
3372       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3373         if((uint)_compile->get_general_index(ni) == i) {
3374           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3375           if (nmm->is_empty_memory(m)) {
3376             Node* result = find_inst_mem(mem, ni, orig_phis);
3377             if (_compile->failing()) {
3378               return;
3379             }
3380             nmm->set_memory_at(ni, result);
3381           }
3382         }
3383       }
3384     }
3385     // Find the rest of instances values
3386     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3387       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3388       Node* result = step_through_mergemem(nmm, ni, tinst);
3389       if (result == nmm->base_memory()) {
3390         // Didn't find instance memory, search through general slice recursively.
3391         result = nmm->memory_at(_compile->get_general_index(ni));
3392         result = find_inst_mem(result, ni, orig_phis);
3393         if (_compile->failing()) {
3394           return;
3395         }
3396         nmm->set_memory_at(ni, result);
3397       }
3398     }
3399     igvn->hash_insert(nmm);
3400     record_for_optimizer(nmm);
3401   }
3402 
3403   //  Phase 4:  Update the inputs of non-instance memory Phis and
3404   //            the Memory input of memnodes
3405   // First update the inputs of any non-instance Phi's from
3406   // which we split out an instance Phi.  Note we don't have
3407   // to recursively process Phi's encountered on the input memory
3408   // chains as is done in split_memory_phi() since they will
3409   // also be processed here.
3410   for (int j = 0; j < orig_phis.length(); j++) {
3411     PhiNode *phi = orig_phis.at(j);
3412     int alias_idx = _compile->get_alias_index(phi->adr_type());
3413     igvn->hash_delete(phi);
3414     for (uint i = 1; i < phi->req(); i++) {
3415       Node *mem = phi->in(i);
3416       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3417       if (_compile->failing()) {
3418         return;
3419       }
3420       if (mem != new_mem) {
3421         phi->set_req(i, new_mem);
3422       }
3423     }
3424     igvn->hash_insert(phi);
3425     record_for_optimizer(phi);
3426   }
3427 
3428   // Update the memory inputs of MemNodes with the value we computed
3429   // in Phase 2 and move stores memory users to corresponding memory slices.
3430   // Disable memory split verification code until the fix for 6984348.
3431   // Currently it produces false negative results since it does not cover all cases.
3432 #if 0 // ifdef ASSERT
3433   visited.Reset();
3434   Node_Stack old_mems(arena, _compile->unique() >> 2);
3435 #endif
3436   for (uint i = 0; i < ideal_nodes.size(); i++) {
3437     Node*    n = ideal_nodes.at(i);
3438     Node* nmem = get_map(n->_idx);
3439     assert(nmem != NULL, "sanity");
3440     if (n->is_Mem()) {
3441 #if 0 // ifdef ASSERT
3442       Node* old_mem = n->in(MemNode::Memory);
3443       if (!visited.test_set(old_mem->_idx)) {
3444         old_mems.push(old_mem, old_mem->outcnt());
3445       }
3446 #endif
3447       assert(n->in(MemNode::Memory) != nmem, "sanity");
3448       if (!n->is_Load()) {
3449         // Move memory users of a store first.
3450         move_inst_mem(n, orig_phis);
3451       }
3452       // Now update memory input
3453       igvn->hash_delete(n);
3454       n->set_req(MemNode::Memory, nmem);
3455       igvn->hash_insert(n);
3456       record_for_optimizer(n);
3457     } else {
3458       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3459              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3460     }
3461   }
3462 #if 0 // ifdef ASSERT
3463   // Verify that memory was split correctly
3464   while (old_mems.is_nonempty()) {
3465     Node* old_mem = old_mems.node();
3466     uint  old_cnt = old_mems.index();
3467     old_mems.pop();
3468     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3469   }
3470 #endif
3471 }
3472 
3473 #ifndef PRODUCT
3474 static const char *node_type_names[] = {
3475   "UnknownType",
3476   "JavaObject",
3477   "LocalVar",
3478   "Field",
3479   "Arraycopy"
3480 };
3481 
3482 static const char *esc_names[] = {
3483   "UnknownEscape",
3484   "NoEscape",
3485   "ArgEscape",
3486   "GlobalEscape"
3487 };
3488 
3489 void PointsToNode::dump(bool print_state) const {
3490   NodeType nt = node_type();
3491   tty->print("%s ", node_type_names[(int) nt]);
3492   if (print_state) {
3493     EscapeState es = escape_state();
3494     EscapeState fields_es = fields_escape_state();
3495     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3496     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3497       tty->print("NSR ");
3498   }
3499   if (is_Field()) {
3500     FieldNode* f = (FieldNode*)this;
3501     if (f->is_oop())
3502       tty->print("oop ");
3503     if (f->offset() > 0)
3504       tty->print("+%d ", f->offset());
3505     tty->print("(");
3506     for (BaseIterator i(f); i.has_next(); i.next()) {
3507       PointsToNode* b = i.get();
3508       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3509     }
3510     tty->print(" )");
3511   }
3512   tty->print("[");
3513   for (EdgeIterator i(this); i.has_next(); i.next()) {
3514     PointsToNode* e = i.get();
3515     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3516   }
3517   tty->print(" [");
3518   for (UseIterator i(this); i.has_next(); i.next()) {
3519     PointsToNode* u = i.get();
3520     bool is_base = false;
3521     if (PointsToNode::is_base_use(u)) {
3522       is_base = true;
3523       u = PointsToNode::get_use_node(u)->as_Field();
3524     }
3525     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3526   }
3527   tty->print(" ]]  ");
3528   if (_node == NULL)
3529     tty->print_cr("<null>");
3530   else
3531     _node->dump();
3532 }
3533 
3534 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3535   bool first = true;
3536   int ptnodes_length = ptnodes_worklist.length();
3537   for (int i = 0; i < ptnodes_length; i++) {
3538     PointsToNode *ptn = ptnodes_worklist.at(i);
3539     if (ptn == NULL || !ptn->is_JavaObject())
3540       continue;
3541     PointsToNode::EscapeState es = ptn->escape_state();
3542     if ((es != PointsToNode::NoEscape) && !Verbose) {
3543       continue;
3544     }
3545     Node* n = ptn->ideal_node();
3546     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3547                              n->as_CallStaticJava()->is_boxing_method())) {
3548       if (first) {
3549         tty->cr();
3550         tty->print("======== Connection graph for ");
3551         _compile->method()->print_short_name();
3552         tty->cr();
3553         first = false;
3554       }
3555       ptn->dump();
3556       // Print all locals and fields which reference this allocation
3557       for (UseIterator j(ptn); j.has_next(); j.next()) {
3558         PointsToNode* use = j.get();
3559         if (use->is_LocalVar()) {
3560           use->dump(Verbose);
3561         } else if (Verbose) {
3562           use->dump();
3563         }
3564       }
3565       tty->cr();
3566     }
3567   }
3568 }
3569 #endif