1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciValueKlass.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/castnode.hpp"
  29 #include "opto/graphKit.hpp"
  30 #include "opto/rootnode.hpp"
  31 #include "opto/valuetypenode.hpp"
  32 #include "opto/phaseX.hpp"
  33 
  34 // Clones the values type to handle control flow merges involving multiple value types.
  35 // The inputs are replaced by PhiNodes to represent the merged values for the given region.
  36 ValueTypeBaseNode* ValueTypeBaseNode::clone_with_phis(PhaseGVN* gvn, Node* region) {
  37   assert(!has_phi_inputs(region), "already cloned with phis");
  38   ValueTypeBaseNode* vt = clone()->as_ValueTypeBase();
  39 
  40   // Create a PhiNode for merging the oop values
  41   const TypeValueTypePtr* vtptr = value_type_ptr();
  42   PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr);
  43   gvn->set_type(oop, vtptr);
  44   vt->set_oop(oop);
  45 
  46   // Create a PhiNode each for merging the field values
  47   for (uint i = 0; i < vt->field_count(); ++i) {
  48     ciType* type = vt->field_type(i);
  49     Node*  value = vt->field_value(i);
  50     if (type->is_valuetype()) {
  51       // Handle flattened value type fields recursively
  52       value = value->as_ValueType()->clone_with_phis(gvn, region);
  53     } else {
  54       const Type* phi_type = Type::get_const_type(type);
  55       value = PhiNode::make(region, value, phi_type);
  56       gvn->set_type(value, phi_type);
  57     }
  58     vt->set_field_value(i, value);
  59   }
  60   gvn->set_type(vt, vt->bottom_type());
  61   return vt;
  62 }
  63 
  64 // Checks if the inputs of the ValueBaseTypeNode were replaced by PhiNodes
  65 // for the given region (see ValueBaseTypeNode::clone_with_phis).
  66 bool ValueTypeBaseNode::has_phi_inputs(Node* region) {
  67   // Check oop input
  68   bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region;
  69 #ifdef ASSERT
  70   if (result) {
  71     // Check all field value inputs for consistency
  72     for (uint i = Oop; i < field_count(); ++i) {
  73       Node* n = in(i);
  74       if (n->is_ValueTypeBase()) {
  75         assert(n->as_ValueTypeBase()->has_phi_inputs(region), "inconsistent phi inputs");
  76       } else {
  77         assert(n->is_Phi() && n->as_Phi()->region() == region, "inconsistent phi inputs");
  78       }
  79     }
  80   }
  81 #endif
  82   return result;
  83 }
  84 
  85 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
  86 ValueTypeBaseNode* ValueTypeBaseNode::merge_with(PhaseGVN* gvn, const ValueTypeBaseNode* other, int pnum, bool transform) {
  87   // Merge oop inputs
  88   PhiNode* phi = get_oop()->as_Phi();
  89   phi->set_req(pnum, other->get_oop());
  90   if (transform) {
  91     set_oop(gvn->transform(phi));
  92     gvn->record_for_igvn(phi);
  93   }
  94   // Merge field values
  95   for (uint i = 0; i < field_count(); ++i) {
  96     Node* val1 =        field_value(i);
  97     Node* val2 = other->field_value(i);
  98     if (val1->isa_ValueType()) {
  99       val1->as_ValueType()->merge_with(gvn, val2->as_ValueType(), pnum, transform);
 100     } else {
 101       assert(val1->is_Phi(), "must be a phi node");
 102       assert(!val2->is_ValueType(), "inconsistent merge values");
 103       val1->set_req(pnum, val2);
 104     }
 105     if (transform) {
 106       set_field_value(i, gvn->transform(val1));
 107       gvn->record_for_igvn(val1);
 108     }
 109   }
 110   return this;
 111 }
 112 
 113 Node* ValueTypeBaseNode::field_value(uint index) const {
 114   assert(index < field_count(), "index out of bounds");
 115   return in(Values + index);
 116 }
 117 
 118 // Get the value of the field at the given offset.
 119 // If 'recursive' is true, flattened value type fields will be resolved recursively.
 120 Node* ValueTypeBaseNode::field_value_by_offset(int offset, bool recursive) const {
 121   // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the
 122   // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type.
 123   int index = value_klass()->field_index_by_offset(offset);
 124   int sub_offset = offset - field_offset(index);
 125   Node* value = field_value(index);
 126   if (recursive && value->is_ValueType()) {
 127     // Flattened value type field
 128     ValueTypeNode* vt = value->as_ValueType();
 129     sub_offset += vt->value_klass()->first_field_offset(); // Add header size
 130     return vt->field_value_by_offset(sub_offset);
 131   }
 132   assert(!(recursive && value->is_ValueType()), "should not be a value type");
 133   assert(sub_offset == 0, "offset mismatch");
 134   return value;
 135 }
 136 
 137 void ValueTypeBaseNode::set_field_value(uint index, Node* value) {
 138   assert(index < field_count(), "index out of bounds");
 139   set_req(Values + index, value);
 140 }
 141 
 142 int ValueTypeBaseNode::field_offset(uint index) const {
 143   assert(index < field_count(), "index out of bounds");
 144   return value_klass()->field_offset_by_index(index);
 145 }
 146 
 147 ciType* ValueTypeBaseNode::field_type(uint index) const {
 148   assert(index < field_count(), "index out of bounds");
 149   return value_klass()->field_type_by_index(index);
 150 }
 151 
 152 int ValueTypeBaseNode::make_scalar_in_safepoint(SafePointNode* sfpt, Node* root, PhaseGVN* gvn) {
 153   ciValueKlass* vk = value_klass();
 154   uint nfields = vk->flattened_field_count();
 155   JVMState* jvms = sfpt->jvms();
 156   int start = jvms->debug_start();
 157   int end   = jvms->debug_end();
 158   // Replace safepoint edge by SafePointScalarObjectNode and add field values
 159   assert(jvms != NULL, "missing JVMS");
 160   uint first_ind = (sfpt->req() - jvms->scloff());
 161   const TypeValueTypePtr* res_type = value_type_ptr();
 162   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 163 #ifdef ASSERT
 164                                                                   NULL,
 165 #endif
 166                                                                   first_ind, nfields);
 167   sobj->init_req(0, root);
 168   // Iterate over the value type fields in order of increasing
 169   // offset and add the field values to the safepoint.
 170   for (uint j = 0; j < nfields; ++j) {
 171     int offset = vk->nonstatic_field_at(j)->offset();
 172     Node* value = field_value_by_offset(offset, true /* include flattened value type fields */);
 173     assert(value != NULL, "");
 174     sfpt->add_req(value);
 175   }
 176   jvms->set_endoff(sfpt->req());
 177   if (gvn != NULL) {
 178     sobj = gvn->transform(sobj)->as_SafePointScalarObject();
 179     gvn->igvn_rehash_node_delayed(sfpt);
 180   }
 181   return sfpt->replace_edges_in_range(this, sobj, start, end);
 182 }
 183 
 184 void ValueTypeBaseNode::make_scalar_in_safepoints(Node* root, PhaseGVN* gvn) {
 185   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 186     Node* u = fast_out(i);
 187     if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) {
 188       SafePointNode* sfpt = u->as_SafePoint();
 189       Node* in_oop = get_oop();
 190       const Type* oop_type = in_oop->bottom_type();
 191       assert(Opcode() == Op_ValueTypePtr || TypePtr::NULL_PTR->higher_equal(oop_type), "already heap allocated value type should be linked directly");
 192       int nb = make_scalar_in_safepoint(sfpt, root, gvn);
 193       --i; imax -= nb;
 194     }
 195   }
 196 }
 197 
 198 void ValueTypeBaseNode::make(PhaseGVN* gvn, Node* n, ValueTypeBaseNode* vt, ciValueKlass* base_vk, int base_offset, int base_input, bool in) {
 199   assert(base_offset >= 0, "offset in value type always positive");
 200   for (uint i = 0; i < vt->field_count(); i++) {
 201     ciType* field_type = vt->field_type(i);
 202     int offset = base_offset + vt->field_offset(i);
 203     if (field_type->is_valuetype()) {
 204       ciValueKlass* embedded_vk = field_type->as_value_klass();
 205       ValueTypeNode* embedded_vt = ValueTypeNode::make(*gvn, embedded_vk);
 206       ValueTypeBaseNode::make(gvn, n, embedded_vt, base_vk, offset - vt->value_klass()->first_field_offset(), base_input, in);
 207       vt->set_field_value(i, gvn->transform(embedded_vt));
 208     } else {
 209       int j = 0; int extra = 0;
 210       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 211         ciField* f = base_vk->nonstatic_field_at(j);
 212         if (offset == f->offset()) {
 213           assert(f->type() == field_type, "inconsistent field type");
 214           break;
 215         }
 216         BasicType bt = f->type()->basic_type();
 217         if (bt == T_LONG || bt == T_DOUBLE) {
 218           extra++;
 219         }
 220       }
 221       assert(j != base_vk->nof_nonstatic_fields(), "must find");
 222       Node* parm = NULL;
 223       if (n->is_Start()) {
 224         assert(in, "return from start?");
 225         parm = gvn->transform(new ParmNode(n->as_Start(), base_input + j + extra));
 226       } else {
 227         if (in) {
 228           assert(n->is_Call(), "nothing else here");
 229           parm = n->in(base_input + j + extra);
 230         } else {
 231           parm = gvn->transform(new ProjNode(n->as_Call(), base_input + j + extra));
 232         }
 233       }
 234       vt->set_field_value(i, parm);
 235       // Record all these guys for later GVN.
 236       gvn->record_for_igvn(parm);
 237     }
 238   }
 239 }
 240 
 241 void ValueTypeBaseNode::load(PhaseGVN& gvn, Node* mem, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 242   // Initialize the value type by loading its field values from
 243   // memory and adding the values as input edges to the node.
 244   for (uint i = 0; i < field_count(); ++i) {
 245     int offset = holder_offset + field_offset(i);
 246     ciType* ftype = field_type(i);
 247     Node* value = NULL;
 248     if (ftype->is_valuetype()) {
 249       // Recursively load the flattened value type field
 250       value = ValueTypeNode::make(gvn, ftype->as_value_klass(), mem, base, ptr, holder, offset);
 251     } else {
 252       const Type* con_type = NULL;
 253       if (base->is_Con()) {
 254         // If the oop to the value type is constant (static final field), we can
 255         // also treat the fields as constants because the value type is immutable.
 256         const TypeOopPtr* oop_ptr = base->bottom_type()->isa_oopptr();
 257         ciObject* constant_oop = oop_ptr->const_oop();
 258         ciField* field = holder->get_field_by_offset(offset, false);
 259         ciConstant constant = constant_oop->as_instance()->field_value(field);
 260         con_type = Type::make_from_constant(constant, /*require_const=*/ true);
 261       }
 262       if (con_type != NULL) {
 263         // Found a constant field value
 264         value = gvn.makecon(con_type);
 265       } else {
 266         // Load field value from memory
 267         const Type* base_type = gvn.type(base);
 268         const TypePtr* adr_type = NULL;
 269         if (base_type->isa_aryptr()) {
 270           // In the case of a flattened value type array, each field
 271           // has its own slice
 272           adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot);
 273         } else {
 274           ciField* field = holder->get_field_by_offset(offset, false);
 275           adr_type = gvn.C->alias_type(field)->adr_type();
 276         }
 277         Node* adr = gvn.transform(new AddPNode(base, ptr, gvn.MakeConX(offset)));
 278         BasicType bt = type2field[ftype->basic_type()];
 279         value = LoadNode::make(gvn, NULL, mem, adr, adr_type, Type::get_const_type(ftype), bt, MemNode::unordered);
 280       }
 281     }
 282     set_field_value(i, gvn.transform(value));
 283   }
 284 }
 285 
 286 void ValueTypeBaseNode::store_flattened(PhaseGVN* gvn, Node* ctl, MergeMemNode* mem, Node* base, ciValueKlass* holder, int holder_offset) const {
 287   // The value type is embedded into the object without an oop header. Subtract the
 288   // offset of the first field to account for the missing header when storing the values.
 289   holder_offset -= value_klass()->first_field_offset();
 290   store(gvn, ctl, mem, base, holder, holder_offset);
 291 }
 292 
 293 void ValueTypeBaseNode::store(PhaseGVN* gvn, Node* ctl, MergeMemNode* mem, Node* base, ciValueKlass* holder, int holder_offset) const {
 294   if (holder == NULL) {
 295     holder = value_klass();
 296   }
 297   // Write field values to memory
 298   for (uint i = 0; i < field_count(); ++i) {
 299     int offset = holder_offset + field_offset(i);
 300     Node* value = field_value(i);
 301     if (value->is_ValueType()) {
 302       // Recursively store the flattened value type field
 303       value->isa_ValueTypeBase()->store_flattened(gvn, ctl, mem, base, holder, offset);
 304     } else {
 305       const Type* base_type = gvn->type(base);
 306       const TypePtr* adr_type = NULL;
 307       if (base_type->isa_aryptr()) {
 308         // In the case of a flattened value type array, each field has its own slice
 309         adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot);
 310       } else {
 311         ciField* field = holder->get_field_by_offset(offset, false);
 312         adr_type = gvn->C->alias_type(field)->adr_type();
 313       }
 314       Node* adr = gvn->transform(new AddPNode(base, base, gvn->MakeConX(offset)));
 315       BasicType bt = type2field[field_type(i)->basic_type()];
 316       uint alias_idx = gvn->C->get_alias_index(adr_type);
 317       Node* st = StoreNode::make(*gvn, ctl, mem->memory_at(alias_idx), adr, adr_type, value, bt, MemNode::unordered);
 318       mem->set_memory_at(alias_idx, gvn->transform(st));
 319     }
 320   }
 321 }
 322 
 323 // When a call returns multiple values, it has several result
 324 // projections, one per field. Replacing the result of the call by a
 325 // value type node (after late inlining) requires that for each result
 326 // projection, we find the corresponding value type field.
 327 void ValueTypeBaseNode::replace_call_results(Node* call, Compile* C) {
 328   ciValueKlass* vk = value_klass();
 329   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 330     ProjNode *pn = call->fast_out(i)->as_Proj();
 331     uint con = pn->_con;
 332     if (con >= TypeFunc::Parms+1) {
 333       uint field_nb = con - (TypeFunc::Parms+1);
 334       int extra = 0;
 335       for (uint j = 0; j < field_nb - extra; j++) {
 336         ciField* f = vk->nonstatic_field_at(j);
 337         BasicType bt = f->type()->basic_type();
 338         if (bt == T_LONG || bt == T_DOUBLE) {
 339           extra++;
 340         }
 341       }
 342       ciField* f = vk->nonstatic_field_at(field_nb - extra);
 343       Node* field = field_value_by_offset(f->offset(), true);
 344 
 345       C->gvn_replace_by(pn, field);
 346       C->initial_gvn()->hash_delete(pn);
 347       pn->set_req(0, C->top());
 348       --i; --imax;
 349     }
 350   }
 351 }
 352 
 353 Node* ValueTypeBaseNode::allocate(const Type* type, Node*& ctl, Node*& mem, Node*& io, Node* frameptr, Node*& ex_ctl, Node*& ex_mem, Node*& ex_io, JVMState* jvms, PhaseIterGVN *igvn) {
 354   ciValueKlass* vk = type->is_valuetypeptr()->value_type()->value_klass();
 355   Node* initial_mem = mem;
 356   uint last = igvn->C->unique();
 357   MergeMemNode* all_mem = MergeMemNode::make(mem);
 358   jint lhelper = vk->layout_helper();
 359   assert(lhelper != Klass::_lh_neutral_value, "unsupported");
 360 
 361   AllocateNode* alloc = new AllocateNode(igvn->C,
 362                                          AllocateNode::alloc_type(Type::TOP),
 363                                          ctl,
 364                                          mem,
 365                                          io,
 366                                          igvn->MakeConX(Klass::layout_helper_size_in_bytes(lhelper)),
 367                                          igvn->makecon(TypeKlassPtr::make(vk)),
 368                                          igvn->intcon(0),
 369                                          NULL);
 370   alloc->set_req(TypeFunc::FramePtr, frameptr);
 371   igvn->C->add_safepoint_edges(alloc, jvms);
 372   Node* n = igvn->transform(alloc);
 373   assert(n == alloc, "node shouldn't go away");
 374 
 375   ctl = igvn->transform(new ProjNode(alloc, TypeFunc::Control));
 376   mem = igvn->transform(new ProjNode(alloc, TypeFunc::Memory, true));
 377   all_mem->set_memory_at(Compile::AliasIdxRaw, mem);
 378         
 379   io = igvn->transform(new ProjNode(alloc, TypeFunc::I_O, true));
 380   Node* catc = igvn->transform(new CatchNode(ctl, io, 2));
 381   Node* norm = igvn->transform(new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci));
 382   Node* excp = igvn->transform(new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci));
 383 
 384   ex_ctl = excp;
 385   ex_mem = igvn->transform(all_mem);
 386   ex_io = io;
 387 
 388   ctl = norm;
 389   mem = igvn->transform(new ProjNode(alloc, TypeFunc::Memory));
 390   io = igvn->transform(new ProjNode(alloc, TypeFunc::I_O, false));
 391   Node* rawoop = igvn->transform(new ProjNode(alloc, TypeFunc::Parms));
 392 
 393   MemBarNode* membar = MemBarNode::make(igvn->C, Op_Initialize, Compile::AliasIdxRaw, rawoop);
 394   membar->set_req(TypeFunc::Control, ctl);
 395 
 396   InitializeNode* init = membar->as_Initialize();
 397 
 398   const TypeOopPtr* oop_type = type->is_oopptr();
 399   MergeMemNode* minit_in = MergeMemNode::make(mem);
 400   init->set_req(InitializeNode::Memory, minit_in);
 401   n = igvn->transform(membar);
 402   assert(n == membar, "node shouldn't go away");
 403   ctl = igvn->transform(new ProjNode(membar, TypeFunc::Control));
 404   mem = igvn->transform(new ProjNode(membar, TypeFunc::Memory));
 405 
 406   MergeMemNode* out_mem_merge = MergeMemNode::make(initial_mem);
 407   for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
 408     ciField* field = vk->nonstatic_field_at(i);
 409     if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
 410       continue;
 411     int fieldidx = igvn->C->alias_type(field)->index();
 412     minit_in->set_memory_at(fieldidx, initial_mem);
 413     out_mem_merge->set_memory_at(fieldidx, mem);
 414   }
 415 
 416   n = igvn->transform(minit_in);
 417   assert(n == minit_in, "node shouldn't go away");
 418   out_mem_merge->set_memory_at(Compile::AliasIdxRaw, mem);
 419  
 420   Node* javaoop = igvn->transform(new CheckCastPPNode(ctl, rawoop, oop_type));
 421   mem = igvn->transform(out_mem_merge);
 422 
 423   return javaoop;
 424 }
 425 
 426 ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) {
 427   // Create a new ValueTypeNode with uninitialized values and NULL oop
 428   const TypeValueType* type = TypeValueType::make(klass);
 429   return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE));
 430 }
 431 
 432 Node* ValueTypeNode::make_default(PhaseGVN& gvn, ciValueKlass* vk) {
 433   // TODO re-use constant oop of pre-allocated default value type here?
 434   // Create a new ValueTypeNode with default values
 435   ValueTypeNode* vt = ValueTypeNode::make(gvn, vk);
 436   for (uint i = 0; i < vt->field_count(); ++i) {
 437     ciType* field_type = vt->field_type(i);
 438     Node* value = NULL;
 439     if (field_type->is_valuetype()) {
 440       value = ValueTypeNode::make_default(gvn, field_type->as_value_klass());
 441     } else {
 442       value = gvn.zerocon(field_type->basic_type());
 443     }
 444     vt->set_field_value(i, value);
 445   }
 446   return gvn.transform(vt);
 447 }
 448 
 449 Node* ValueTypeNode::make(PhaseGVN& gvn, Node* mem, Node* oop) {
 450   // Create and initialize a ValueTypeNode by loading all field
 451   // values from a heap-allocated version and also save the oop.
 452   const TypeValueType* type = gvn.type(oop)->is_valuetypeptr()->value_type();
 453   ValueTypeNode* vt = new ValueTypeNode(type, oop);
 454   vt->load(gvn, mem, oop, oop, type->value_klass());
 455   assert(vt->is_allocated(&gvn), "value type should be allocated");
 456   assert(oop->is_Con() || oop->is_CheckCastPP() || oop->Opcode() == Op_ValueTypePtr || vt->is_loaded(&gvn, type) == oop, "value type should be loaded");
 457   return gvn.transform(vt);
 458 }
 459 
 460 Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* vk, Node* mem, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
 461   // Create and initialize a ValueTypeNode by loading all field values from
 462   // a flattened value type field at 'holder_offset' or from a value type array.
 463   ValueTypeNode* vt = make(gvn, vk);
 464   // The value type is flattened into the object without an oop header. Subtract the
 465   // offset of the first field to account for the missing header when loading the values.
 466   holder_offset -= vk->first_field_offset();
 467   vt->load(gvn, mem, obj, ptr, holder, holder_offset);
 468   assert(vt->is_loaded(&gvn, vt->type()->isa_valuetype()) != obj, "holder oop should not be used as flattened value type oop");
 469   return gvn.transform(vt)->as_ValueType();
 470 }
 471 
 472 Node* ValueTypeNode::make(PhaseGVN& gvn, Node* n, ciValueKlass* vk, int base_input, bool in) {
 473   ValueTypeNode* vt = ValueTypeNode::make(gvn, vk);
 474   ValueTypeBaseNode::make(&gvn, n, vt, vk, 0, base_input, in);
 475   return gvn.transform(vt);
 476 }
 477 
 478 Node* ValueTypeNode::is_loaded(PhaseGVN* phase, const TypeValueType* t, Node* base, int holder_offset) {
 479   if (field_count() == 0) {
 480     assert(t->value_klass() == phase->C->env()->___Value_klass(), "unexpected value type klass");
 481     assert(is_allocated(phase), "must be allocated");
 482     return get_oop();
 483   }
 484   for (uint i = 0; i < field_count(); ++i) {
 485     int offset = holder_offset + field_offset(i);
 486     Node* value = field_value(i);
 487     if (value->isa_DecodeN()) {
 488       // Skip DecodeN
 489       value = value->in(1);
 490     }
 491     if (value->isa_Load()) {
 492       // Check if base and offset of field load matches value type layout
 493       intptr_t loffset = 0;
 494       Node* lbase = AddPNode::Ideal_base_and_offset(value->in(MemNode::Address), phase, loffset);
 495       if (lbase == NULL || (lbase != base && base != NULL) || loffset != offset) {
 496         return NULL;
 497       } else if (base == NULL) {
 498         // Set base and check if pointer type matches
 499         base = lbase;
 500         const TypeValueTypePtr* vtptr = phase->type(base)->isa_valuetypeptr();
 501         if (vtptr == NULL || !vtptr->value_type()->eq(t)) {
 502           return NULL;
 503         }
 504       }
 505     } else if (value->isa_ValueType()) {
 506       // Check value type field load recursively
 507       ValueTypeNode* vt = value->as_ValueType();
 508       base = vt->is_loaded(phase, t, base, offset - vt->value_klass()->first_field_offset());
 509       if (base == NULL) {
 510         return NULL;
 511       }
 512     } else {
 513       return NULL;
 514     }
 515   }
 516   return base;
 517 }
 518 
 519 void ValueTypeNode::store_flattened(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 520   // The value type is embedded into the object without an oop header. Subtract the
 521   // offset of the first field to account for the missing header when storing the values.
 522   holder_offset -= value_klass()->first_field_offset();
 523   store(kit, base, ptr, holder, holder_offset);
 524 }
 525 
 526 void ValueTypeNode::store(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 527   // Write field values to memory
 528   for (uint i = 0; i < field_count(); ++i) {
 529     int offset = holder_offset + field_offset(i);
 530     Node* value = field_value(i);
 531     if (value->is_ValueType()) {
 532       // Recursively store the flattened value type field
 533       value->isa_ValueType()->store_flattened(kit, base, ptr, holder, offset);
 534     } else {
 535       const Type* base_type = kit->gvn().type(base);
 536       const TypePtr* adr_type = NULL;
 537       if (base_type->isa_aryptr()) {
 538         // In the case of a flattened value type array, each field has its own slice
 539         adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot);
 540       } else {
 541         ciField* field = holder->get_field_by_offset(offset, false);
 542         adr_type = kit->C->alias_type(field)->adr_type();
 543       }
 544       Node* adr = kit->basic_plus_adr(base, ptr, offset);
 545       BasicType bt = type2field[field_type(i)->basic_type()];
 546       if (is_java_primitive(bt)) {
 547         kit->store_to_memory(kit->control(), adr, value, bt, adr_type, MemNode::unordered);
 548       } else {
 549         const TypeOopPtr* ft = TypeOopPtr::make_from_klass(field_type(i)->as_klass());
 550         assert(adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 551         bool is_array = base_type->isa_aryptr() != NULL;
 552         kit->store_oop(kit->control(), base, adr, adr_type, value, ft, bt, is_array, MemNode::unordered);
 553       }
 554     }
 555   }
 556 }
 557 
 558 Node* ValueTypeNode::allocate(GraphKit* kit) {
 559   Node* in_oop = get_oop();
 560   Node* null_ctl = kit->top();
 561   // Check if value type is already allocated
 562   Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl);
 563   if (null_ctl->is_top()) {
 564     // Value type is allocated
 565     return not_null_oop;
 566   }
 567   // Not able to prove that value type is allocated.
 568   // Emit runtime check that may be folded later.
 569   assert(!is_allocated(&kit->gvn()), "should not be allocated");
 570   const TypeValueTypePtr* vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 571   RegionNode* region = new RegionNode(3);
 572   PhiNode* oop = new PhiNode(region, vtptr_type);
 573   PhiNode* io  = new PhiNode(region, Type::ABIO);
 574   PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 575 
 576   // Oop is non-NULL, use it
 577   region->init_req(1, kit->control());
 578   oop   ->init_req(1, not_null_oop);
 579   io    ->init_req(1, kit->i_o());
 580   mem   ->init_req(1, kit->merged_memory());
 581 
 582   // Oop is NULL, allocate value type
 583   kit->set_control(null_ctl);
 584   kit->kill_dead_locals();
 585   ciValueKlass* vk = value_klass();
 586   Node* klass_node = kit->makecon(TypeKlassPtr::make(vk));
 587   Node* alloc_oop  = kit->new_instance(klass_node, NULL, NULL, false, this);
 588   // Write field values to memory
 589   store(kit, alloc_oop, alloc_oop, vk);
 590   region->init_req(2, kit->control());
 591   oop   ->init_req(2, alloc_oop);
 592   io    ->init_req(2, kit->i_o());
 593   mem   ->init_req(2, kit->merged_memory());
 594 
 595   // Update GraphKit
 596   kit->set_control(kit->gvn().transform(region));
 597   kit->set_i_o(kit->gvn().transform(io));
 598   kit->set_all_memory(kit->gvn().transform(mem));
 599   kit->record_for_igvn(region);
 600   kit->record_for_igvn(oop);
 601   kit->record_for_igvn(io);
 602   kit->record_for_igvn(mem);
 603 
 604   // Use cloned ValueTypeNode to propagate oop from now on
 605   Node* res_oop = kit->gvn().transform(oop);
 606   ValueTypeNode* vt = clone()->as_ValueType();
 607   vt->set_oop(res_oop);
 608   kit->replace_in_map(this, kit->gvn().transform(vt));
 609   return res_oop;
 610 }
 611 
 612 bool ValueTypeNode::is_allocated(PhaseGVN* phase) const {
 613   const Type* oop_type = phase->type(get_oop());
 614   return oop_type->meet(TypePtr::NULL_PTR) != oop_type;
 615 }
 616 
 617 void ValueTypeNode::pass_klass(Node* n, uint pos, const GraphKit& kit) {
 618   ciValueKlass* vk = value_klass();
 619   const TypeKlassPtr* tk = TypeKlassPtr::make(vk);
 620   intptr_t bits = tk->get_con();
 621   set_nth_bit(bits, 0);
 622   Node* klass_tagged = kit.MakeConX(bits);
 623   n->init_req(pos, klass_tagged);
 624 }
 625 
 626 uint ValueTypeNode::pass_fields(Node* n, int base_input, const GraphKit& kit, ciValueKlass* base_vk, int base_offset) {
 627   ciValueKlass* vk = value_klass();
 628   if (base_vk == NULL) {
 629     base_vk = vk;
 630   }
 631   uint edges = 0;
 632   for (uint i = 0; i < field_count(); i++) {
 633     ciType* f_type = field_type(i);
 634     int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0);
 635     Node* arg = field_value(i);
 636     if (f_type->is_valuetype()) {
 637       ciValueKlass* embedded_vk = f_type->as_value_klass();
 638       edges += arg->as_ValueType()->pass_fields(n, base_input, kit, base_vk, offset);
 639     } else {
 640       int j = 0; int extra = 0;
 641       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 642         ciField* f = base_vk->nonstatic_field_at(j);
 643         if (offset == f->offset()) {
 644           assert(f->type() == f_type, "inconsistent field type");
 645           break;
 646         }
 647         BasicType bt = f->type()->basic_type();
 648         if (bt == T_LONG || bt == T_DOUBLE) {
 649           extra++;
 650         }
 651       }
 652       n->init_req(base_input + j + extra, arg);
 653       edges++;
 654       BasicType bt = f_type->basic_type();
 655       if (bt == T_LONG || bt == T_DOUBLE) {
 656         n->init_req(base_input + j + extra + 1, kit.top());
 657         edges++;
 658       }
 659     }
 660   }
 661   return edges;
 662 }
 663 
 664 Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 665   if (!is_allocated(phase)) {
 666     // Check if this value type is loaded from memory
 667     Node* base = is_loaded(phase, type()->is_valuetype());
 668     if (base != NULL) {
 669       // Save the oop
 670       set_oop(base);
 671       assert(is_allocated(phase), "should now be allocated");
 672       return this;
 673     }
 674   }
 675 
 676   if (can_reshape) {
 677     PhaseIterGVN* igvn = phase->is_IterGVN();
 678     if (is_allocated(igvn)) {
 679       // Value type is heap allocated, search for safepoint uses
 680       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 681         Node* out = fast_out(i);
 682         if (out->is_SafePoint()) {
 683           // Let SafePointNode::Ideal() take care of re-wiring the
 684           // safepoint to the oop input instead of the value type node.
 685           igvn->rehash_node_delayed(out);
 686         }
 687       }
 688     }
 689   }
 690   return NULL;
 691 }
 692 
 693 // Search for multiple allocations of this value type
 694 // and try to replace them by dominating allocations.
 695 void ValueTypeNode::remove_redundant_allocations(PhaseIterGVN* igvn, PhaseIdealLoop* phase) {
 696   assert(EliminateAllocations, "allocation elimination should be enabled");
 697   Node_List dead_allocations;
 698   // Search for allocations of this value type
 699   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 700     Node* out1 = fast_out(i);
 701     if (out1->is_Allocate() && out1->in(AllocateNode::ValueNode) == this) {
 702       AllocateNode* alloc = out1->as_Allocate();
 703       Node* res_dom = NULL;
 704       if (is_allocated(igvn)) {
 705         // The value type is already allocated but still connected to an AllocateNode.
 706         // This can happen with late inlining when we first allocate a value type argument
 707         // but later decide to inline the call with the callee code also allocating.
 708         res_dom = get_oop();
 709       } else {
 710         // Search for a dominating allocation of the same value type
 711         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
 712           Node* out2 = fast_out(j);
 713           if (alloc != out2 && out2->is_Allocate() && out2->in(AllocateNode::ValueNode) == this &&
 714               phase->is_dominator(out2, alloc)) {
 715             AllocateNode* alloc_dom =  out2->as_Allocate();
 716             assert(alloc->in(AllocateNode::KlassNode) == alloc_dom->in(AllocateNode::KlassNode), "klasses should match");
 717             res_dom = alloc_dom->result_cast();
 718             break;
 719           }
 720         }
 721       }
 722       if (res_dom != NULL) {
 723         // Found a dominating allocation
 724         Node* res = alloc->result_cast();
 725         assert(res != NULL, "value type allocation should not be dead");
 726         // Move users to dominating allocation
 727         igvn->replace_node(res, res_dom);
 728         // The dominated allocation is now dead, remove the
 729         // value type node connection and adjust the iterator.
 730         dead_allocations.push(alloc);
 731         igvn->replace_input_of(alloc, AllocateNode::ValueNode, NULL);
 732         --i; --imax;
 733 #ifdef ASSERT
 734         if (PrintEliminateAllocations) {
 735           tty->print("++++ Eliminated: %d Allocate ", alloc->_idx);
 736           dump_spec(tty);
 737           tty->cr();
 738         }
 739 #endif
 740       }
 741     }
 742   }
 743 
 744   // Remove dead value type allocations by replacing the projection nodes
 745   for (uint i = 0; i < dead_allocations.size(); ++i) {
 746     CallProjections projs;
 747     AllocateNode* alloc = dead_allocations.at(i)->as_Allocate();
 748     alloc->extract_projections(&projs, true);
 749     // Use lazy_replace to avoid corrupting the dominator tree of PhaseIdealLoop
 750     phase->lazy_replace(projs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
 751     phase->lazy_replace(projs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
 752     phase->lazy_replace(projs.catchall_memproj, phase->C->top());
 753     phase->lazy_replace(projs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
 754     phase->lazy_replace(projs.catchall_ioproj, phase->C->top());
 755     phase->lazy_replace(projs.catchall_catchproj, phase->C->top());
 756     phase->lazy_replace(projs.resproj, phase->C->top());
 757   }
 758 }
 759 
 760 
 761 #ifndef PRODUCT
 762 
 763 void ValueTypeNode::dump_spec(outputStream* st) const {
 764   TypeNode::dump_spec(st);
 765 }
 766 
 767 #endif
 768 
 769 ValueTypePtrNode* ValueTypePtrNode::make(PhaseGVN* gvn, CheckCastPPNode* cast) {
 770   ciValueKlass* vk = cast->type()->is_valuetypeptr()->value_type()->value_klass();
 771   ValueTypePtrNode* vt = new ValueTypePtrNode(vk, gvn->C);
 772   assert(cast->in(1)->is_Proj(), "bad graph shape");
 773   ValueTypeBaseNode::make(gvn, cast->in(1)->in(0), vt, vk, 0, TypeFunc::Parms+1, false);
 774   return vt;
 775 }
 776 
 777 ValueTypePtrNode* ValueTypePtrNode::make(PhaseGVN& gvn, Node* mem, Node* oop) {
 778   // Create and initialize a ValueTypePtrNode by loading all field
 779   // values from a heap-allocated version and also save the oop.
 780   ciValueKlass* vk = gvn.type(oop)->is_valuetypeptr()->value_type()->value_klass();
 781   ValueTypePtrNode* vtptr = new ValueTypePtrNode(vk, gvn.C);
 782   vtptr->set_oop(oop);
 783   vtptr->load(gvn, mem, oop, oop, vk);
 784   return vtptr;
 785 }