1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/compiledICHolder.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/vframeArray.hpp"
  37 #include "vmreg_x86.inline.hpp"
  38 #ifdef COMPILER1
  39 #include "c1/c1_Runtime1.hpp"
  40 #endif
  41 #ifdef COMPILER2
  42 #include "opto/runtime.hpp"
  43 #endif
  44 #include "vm_version_x86.hpp"
  45 
  46 #define __ masm->
  47 
  48 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  49 
  50 class RegisterSaver {
  51   // Capture info about frame layout
  52 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  53   enum layout {
  54                 fpu_state_off = 0,
  55                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  56                 st0_off, st0H_off,
  57                 st1_off, st1H_off,
  58                 st2_off, st2H_off,
  59                 st3_off, st3H_off,
  60                 st4_off, st4H_off,
  61                 st5_off, st5H_off,
  62                 st6_off, st6H_off,
  63                 st7_off, st7H_off,
  64                 xmm_off,
  65                 DEF_XMM_OFFS(0),
  66                 DEF_XMM_OFFS(1),
  67                 DEF_XMM_OFFS(2),
  68                 DEF_XMM_OFFS(3),
  69                 DEF_XMM_OFFS(4),
  70                 DEF_XMM_OFFS(5),
  71                 DEF_XMM_OFFS(6),
  72                 DEF_XMM_OFFS(7),
  73                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  74                 rdi_off,
  75                 rsi_off,
  76                 ignore_off,  // extra copy of rbp,
  77                 rsp_off,
  78                 rbx_off,
  79                 rdx_off,
  80                 rcx_off,
  81                 rax_off,
  82                 // The frame sender code expects that rbp will be in the "natural" place and
  83                 // will override any oopMap setting for it. We must therefore force the layout
  84                 // so that it agrees with the frame sender code.
  85                 rbp_off,
  86                 return_off,      // slot for return address
  87                 reg_save_size };
  88   enum { FPU_regs_live = flags_off - fpu_state_end };
  89 
  90   public:
  91 
  92   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  93                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
  94   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
  95 
  96   static int rax_offset() { return rax_off; }
  97   static int rbx_offset() { return rbx_off; }
  98 
  99   // Offsets into the register save area
 100   // Used by deoptimization when it is managing result register
 101   // values on its own
 102 
 103   static int raxOffset(void) { return rax_off; }
 104   static int rdxOffset(void) { return rdx_off; }
 105   static int rbxOffset(void) { return rbx_off; }
 106   static int xmm0Offset(void) { return xmm0_off; }
 107   // This really returns a slot in the fp save area, which one is not important
 108   static int fpResultOffset(void) { return st0_off; }
 109 
 110   // During deoptimization only the result register need to be restored
 111   // all the other values have already been extracted.
 112 
 113   static void restore_result_registers(MacroAssembler* masm);
 114 
 115 };
 116 
 117 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 118                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 119   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 120   int ymm_bytes = num_xmm_regs * 16;
 121   int zmm_bytes = num_xmm_regs * 32;
 122 #ifdef COMPILER2
 123   if (save_vectors) {
 124     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 125     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 126     // Save upper half of YMM registers
 127     int vect_bytes = ymm_bytes;
 128     if (UseAVX > 2) {
 129       // Save upper half of ZMM registers as well
 130       vect_bytes += zmm_bytes;
 131     }
 132     additional_frame_words += vect_bytes / wordSize;
 133   }
 134 #else
 135   assert(!save_vectors, "vectors are generated only by C2");
 136 #endif
 137   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 138   int frame_words = frame_size_in_bytes / wordSize;
 139   *total_frame_words = frame_words;
 140 
 141   assert(FPUStateSizeInWords == 27, "update stack layout");
 142 
 143   // save registers, fpu state, and flags
 144   // We assume caller has already has return address slot on the stack
 145   // We push epb twice in this sequence because we want the real rbp,
 146   // to be under the return like a normal enter and we want to use pusha
 147   // We push by hand instead of pusing push
 148   __ enter();
 149   __ pusha();
 150   __ pushf();
 151   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 152   __ push_FPU_state();          // Save FPU state & init
 153 
 154   if (verify_fpu) {
 155     // Some stubs may have non standard FPU control word settings so
 156     // only check and reset the value when it required to be the
 157     // standard value.  The safepoint blob in particular can be used
 158     // in methods which are using the 24 bit control word for
 159     // optimized float math.
 160 
 161 #ifdef ASSERT
 162     // Make sure the control word has the expected value
 163     Label ok;
 164     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 165     __ jccb(Assembler::equal, ok);
 166     __ stop("corrupted control word detected");
 167     __ bind(ok);
 168 #endif
 169 
 170     // Reset the control word to guard against exceptions being unmasked
 171     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 172     // into the on stack copy and then reload that to make sure that the
 173     // current and future values are correct.
 174     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 175   }
 176 
 177   __ frstor(Address(rsp, 0));
 178   if (!verify_fpu) {
 179     // Set the control word so that exceptions are masked for the
 180     // following code.
 181     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 182   }
 183 
 184   int off = st0_off;
 185   int delta = st1_off - off;
 186 
 187   // Save the FPU registers in de-opt-able form
 188   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 189     __ fstp_d(Address(rsp, off*wordSize));
 190     off += delta;
 191   }
 192 
 193   off = xmm0_off;
 194   delta = xmm1_off - off;
 195   if(UseSSE == 1) {
 196     // Save the XMM state
 197     for (int n = 0; n < num_xmm_regs; n++) {
 198       __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
 199       off += delta;
 200     }
 201   } else if(UseSSE >= 2) {
 202     // Save whole 128bit (16 bytes) XMM registers
 203     for (int n = 0; n < num_xmm_regs; n++) {
 204       __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
 205       off += delta;
 206     }
 207   }
 208 
 209   if (save_vectors) {
 210     __ subptr(rsp, ymm_bytes);
 211     // Save upper half of YMM registers
 212     for (int n = 0; n < num_xmm_regs; n++) {
 213       __ vextractf128_high(Address(rsp, n*16), as_XMMRegister(n));
 214     }
 215     if (UseAVX > 2) {
 216       __ subptr(rsp, zmm_bytes);
 217       // Save upper half of ZMM registers
 218       for (int n = 0; n < num_xmm_regs; n++) {
 219         __ vextractf64x4_high(Address(rsp, n*32), as_XMMRegister(n));
 220       }
 221     }
 222   }
 223   __ vzeroupper();
 224 
 225   // Set an oopmap for the call site.  This oopmap will map all
 226   // oop-registers and debug-info registers as callee-saved.  This
 227   // will allow deoptimization at this safepoint to find all possible
 228   // debug-info recordings, as well as let GC find all oops.
 229 
 230   OopMapSet *oop_maps = new OopMapSet();
 231   OopMap* map =  new OopMap( frame_words, 0 );
 232 
 233 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 234 #define NEXTREG(x) (x)->as_VMReg()->next()
 235 
 236   map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
 240   // rbp, location is known implicitly, no oopMap
 241   map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
 243   // %%% This is really a waste but we'll keep things as they were for now for the upper component
 244   off = st0_off;
 245   delta = st1_off - off;
 246   for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
 247     FloatRegister freg_name = as_FloatRegister(n);
 248     map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
 249     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
 250     off += delta;
 251   }
 252   off = xmm0_off;
 253   delta = xmm1_off - off;
 254   for (int n = 0; n < num_xmm_regs; n++) {
 255     XMMRegister xmm_name = as_XMMRegister(n);
 256     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 257     map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
 258     off += delta;
 259   }
 260 #undef NEXTREG
 261 #undef STACK_OFFSET
 262 
 263   return map;
 264 }
 265 
 266 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 267   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 268   int ymm_bytes = num_xmm_regs * 16;
 269   int zmm_bytes = num_xmm_regs * 32;
 270   // Recover XMM & FPU state
 271   int additional_frame_bytes = 0;
 272 #ifdef COMPILER2
 273   if (restore_vectors) {
 274     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 275     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 276     // Save upper half of YMM registers
 277     additional_frame_bytes = ymm_bytes;
 278     if (UseAVX > 2) {
 279       // Save upper half of ZMM registers as well
 280       additional_frame_bytes += zmm_bytes;
 281     }
 282   }
 283 #else
 284   assert(!restore_vectors, "vectors are generated only by C2");
 285 #endif
 286 
 287   int off = xmm0_off;
 288   int delta = xmm1_off - off;
 289 
 290   __ vzeroupper();
 291 
 292   if (UseSSE == 1) {
 293     // Restore XMM registers
 294     assert(additional_frame_bytes == 0, "");
 295     for (int n = 0; n < num_xmm_regs; n++) {
 296       __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
 297       off += delta;
 298     }
 299   } else if (UseSSE >= 2) {
 300     // Restore whole 128bit (16 bytes) XMM registers. Do this before restoring YMM and
 301     // ZMM because the movdqu instruction zeros the upper part of the XMM register.
 302     for (int n = 0; n < num_xmm_regs; n++) {
 303       __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
 304       off += delta;
 305     }
 306   }
 307 
 308   if (restore_vectors) {
 309     if (UseAVX > 2) {
 310       // Restore upper half of ZMM registers.
 311       for (int n = 0; n < num_xmm_regs; n++) {
 312         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, n*32));
 313       }
 314       __ addptr(rsp, zmm_bytes);
 315     }
 316     // Restore upper half of YMM registers.
 317     for (int n = 0; n < num_xmm_regs; n++) {
 318       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, n*16));
 319     }
 320     __ addptr(rsp, ymm_bytes);
 321   }
 322 
 323   __ pop_FPU_state();
 324   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 325 
 326   __ popf();
 327   __ popa();
 328   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 329   __ pop(rbp);
 330 }
 331 
 332 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 333 
 334   // Just restore result register. Only used by deoptimization. By
 335   // now any callee save register that needs to be restore to a c2
 336   // caller of the deoptee has been extracted into the vframeArray
 337   // and will be stuffed into the c2i adapter we create for later
 338   // restoration so only result registers need to be restored here.
 339   //
 340 
 341   __ frstor(Address(rsp, 0));      // Restore fpu state
 342 
 343   // Recover XMM & FPU state
 344   if( UseSSE == 1 ) {
 345     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 346   } else if( UseSSE >= 2 ) {
 347     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 348   }
 349   __ movptr(rax, Address(rsp, rax_off*wordSize));
 350   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 351   // Pop all of the register save are off the stack except the return address
 352   __ addptr(rsp, return_off * wordSize);
 353 }
 354 
 355 // Is vector's size (in bytes) bigger than a size saved by default?
 356 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 357 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 358 bool SharedRuntime::is_wide_vector(int size) {
 359   return size > 16;
 360 }
 361 
 362 size_t SharedRuntime::trampoline_size() {
 363   return 16;
 364 }
 365 
 366 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 367   __ jump(RuntimeAddress(destination));
 368 }
 369 
 370 // The java_calling_convention describes stack locations as ideal slots on
 371 // a frame with no abi restrictions. Since we must observe abi restrictions
 372 // (like the placement of the register window) the slots must be biased by
 373 // the following value.
 374 static int reg2offset_in(VMReg r) {
 375   // Account for saved rbp, and return address
 376   // This should really be in_preserve_stack_slots
 377   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 378 }
 379 
 380 static int reg2offset_out(VMReg r) {
 381   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 382 }
 383 
 384 // ---------------------------------------------------------------------------
 385 // Read the array of BasicTypes from a signature, and compute where the
 386 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 387 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 388 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 389 // as framesizes are fixed.
 390 // VMRegImpl::stack0 refers to the first slot 0(sp).
 391 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 392 // up to RegisterImpl::number_of_registers) are the 32-bit
 393 // integer registers.
 394 
 395 // Pass first two oop/int args in registers ECX and EDX.
 396 // Pass first two float/double args in registers XMM0 and XMM1.
 397 // Doubles have precedence, so if you pass a mix of floats and doubles
 398 // the doubles will grab the registers before the floats will.
 399 
 400 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 401 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 402 // units regardless of build. Of course for i486 there is no 64 bit build
 403 
 404 
 405 // ---------------------------------------------------------------------------
 406 // The compiled Java calling convention.
 407 // Pass first two oop/int args in registers ECX and EDX.
 408 // Pass first two float/double args in registers XMM0 and XMM1.
 409 // Doubles have precedence, so if you pass a mix of floats and doubles
 410 // the doubles will grab the registers before the floats will.
 411 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 412                                            VMRegPair *regs,
 413                                            int total_args_passed,
 414                                            int is_outgoing) {
 415   uint    stack = 0;          // Starting stack position for args on stack
 416 
 417 
 418   // Pass first two oop/int args in registers ECX and EDX.
 419   uint reg_arg0 = 9999;
 420   uint reg_arg1 = 9999;
 421 
 422   // Pass first two float/double args in registers XMM0 and XMM1.
 423   // Doubles have precedence, so if you pass a mix of floats and doubles
 424   // the doubles will grab the registers before the floats will.
 425   // CNC - TURNED OFF FOR non-SSE.
 426   //       On Intel we have to round all doubles (and most floats) at
 427   //       call sites by storing to the stack in any case.
 428   // UseSSE=0 ==> Don't Use ==> 9999+0
 429   // UseSSE=1 ==> Floats only ==> 9999+1
 430   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 431   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 432   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 433   uint freg_arg0 = 9999+fargs;
 434   uint freg_arg1 = 9999+fargs;
 435 
 436   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 437   int i;
 438   for( i = 0; i < total_args_passed; i++) {
 439     if( sig_bt[i] == T_DOUBLE ) {
 440       // first 2 doubles go in registers
 441       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 442       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 443       else // Else double is passed low on the stack to be aligned.
 444         stack += 2;
 445     } else if( sig_bt[i] == T_LONG ) {
 446       stack += 2;
 447     }
 448   }
 449   int dstack = 0;             // Separate counter for placing doubles
 450 
 451   // Now pick where all else goes.
 452   for( i = 0; i < total_args_passed; i++) {
 453     // From the type and the argument number (count) compute the location
 454     switch( sig_bt[i] ) {
 455     case T_SHORT:
 456     case T_CHAR:
 457     case T_BYTE:
 458     case T_BOOLEAN:
 459     case T_INT:
 460     case T_ARRAY:
 461     case T_OBJECT:
 462     case T_ADDRESS:
 463       if( reg_arg0 == 9999 )  {
 464         reg_arg0 = i;
 465         regs[i].set1(rcx->as_VMReg());
 466       } else if( reg_arg1 == 9999 )  {
 467         reg_arg1 = i;
 468         regs[i].set1(rdx->as_VMReg());
 469       } else {
 470         regs[i].set1(VMRegImpl::stack2reg(stack++));
 471       }
 472       break;
 473     case T_FLOAT:
 474       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 475         freg_arg0 = i;
 476         regs[i].set1(xmm0->as_VMReg());
 477       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 478         freg_arg1 = i;
 479         regs[i].set1(xmm1->as_VMReg());
 480       } else {
 481         regs[i].set1(VMRegImpl::stack2reg(stack++));
 482       }
 483       break;
 484     case T_LONG:
 485       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 486       regs[i].set2(VMRegImpl::stack2reg(dstack));
 487       dstack += 2;
 488       break;
 489     case T_DOUBLE:
 490       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
 491       if( freg_arg0 == (uint)i ) {
 492         regs[i].set2(xmm0->as_VMReg());
 493       } else if( freg_arg1 == (uint)i ) {
 494         regs[i].set2(xmm1->as_VMReg());
 495       } else {
 496         regs[i].set2(VMRegImpl::stack2reg(dstack));
 497         dstack += 2;
 498       }
 499       break;
 500     case T_VOID: regs[i].set_bad(); break;
 501       break;
 502     default:
 503       ShouldNotReachHere();
 504       break;
 505     }
 506   }
 507 
 508   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 509   return round_to(stack, 2);
 510 }
 511 
 512 const uint SharedRuntime::java_return_convention_max_int = 1;
 513 const uint SharedRuntime::java_return_convention_max_float = 1;
 514 int SharedRuntime::java_return_convention(const BasicType *sig_bt,
 515                                           VMRegPair *regs,
 516                                           int total_args_passed) {
 517   Unimplemented();
 518   return 0;
 519 }
 520 
 521 // Patch the callers callsite with entry to compiled code if it exists.
 522 static void patch_callers_callsite(MacroAssembler *masm) {
 523   Label L;
 524   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 525   __ jcc(Assembler::equal, L);
 526   // Schedule the branch target address early.
 527   // Call into the VM to patch the caller, then jump to compiled callee
 528   // rax, isn't live so capture return address while we easily can
 529   __ movptr(rax, Address(rsp, 0));
 530   __ pusha();
 531   __ pushf();
 532 
 533   if (UseSSE == 1) {
 534     __ subptr(rsp, 2*wordSize);
 535     __ movflt(Address(rsp, 0), xmm0);
 536     __ movflt(Address(rsp, wordSize), xmm1);
 537   }
 538   if (UseSSE >= 2) {
 539     __ subptr(rsp, 4*wordSize);
 540     __ movdbl(Address(rsp, 0), xmm0);
 541     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 542   }
 543 #ifdef COMPILER2
 544   // C2 may leave the stack dirty if not in SSE2+ mode
 545   if (UseSSE >= 2) {
 546     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 547   } else {
 548     __ empty_FPU_stack();
 549   }
 550 #endif /* COMPILER2 */
 551 
 552   // VM needs caller's callsite
 553   __ push(rax);
 554   // VM needs target method
 555   __ push(rbx);
 556   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 557   __ addptr(rsp, 2*wordSize);
 558 
 559   if (UseSSE == 1) {
 560     __ movflt(xmm0, Address(rsp, 0));
 561     __ movflt(xmm1, Address(rsp, wordSize));
 562     __ addptr(rsp, 2*wordSize);
 563   }
 564   if (UseSSE >= 2) {
 565     __ movdbl(xmm0, Address(rsp, 0));
 566     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 567     __ addptr(rsp, 4*wordSize);
 568   }
 569 
 570   __ popf();
 571   __ popa();
 572   __ bind(L);
 573 }
 574 
 575 
 576 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 577   int next_off = st_off - Interpreter::stackElementSize;
 578   __ movdbl(Address(rsp, next_off), r);
 579 }
 580 
 581 static void gen_c2i_adapter(MacroAssembler *masm,
 582                             const GrowableArray<SigEntry>& sig_extended,
 583                             const VMRegPair *regs,
 584                             Label& skip_fixup,
 585                             address start,
 586                             OopMapSet*& oop_maps,
 587                             int& frame_complete,
 588                             int& frame_size_in_words) {
 589   // Before we get into the guts of the C2I adapter, see if we should be here
 590   // at all.  We've come from compiled code and are attempting to jump to the
 591   // interpreter, which means the caller made a static call to get here
 592   // (vcalls always get a compiled target if there is one).  Check for a
 593   // compiled target.  If there is one, we need to patch the caller's call.
 594   patch_callers_callsite(masm);
 595 
 596   __ bind(skip_fixup);
 597 
 598 #ifdef COMPILER2
 599   // C2 may leave the stack dirty if not in SSE2+ mode
 600   if (UseSSE >= 2) {
 601     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 602   } else {
 603     __ empty_FPU_stack();
 604   }
 605 #endif /* COMPILER2 */
 606 
 607   // Since all args are passed on the stack, total_args_passed * interpreter_
 608   // stack_element_size  is the
 609   // space we need.
 610   int extraspace = sig_extended.length() * Interpreter::stackElementSize;
 611 
 612   // Get return address
 613   __ pop(rax);
 614 
 615   // set senderSP value
 616   __ movptr(rsi, rsp);
 617 
 618   __ subptr(rsp, extraspace);
 619 
 620   // Now write the args into the outgoing interpreter space
 621   for (int i = 0; i < sig_extended.length(); i++) {
 622     if (sig_extended.at(i)._bt == T_VOID) {
 623       assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half");
 624       continue;
 625     }
 626 
 627     // st_off points to lowest address on stack.
 628     int st_off = ((sig_extended.length() - 1) - i) * Interpreter::stackElementSize;
 629     int next_off = st_off - Interpreter::stackElementSize;
 630 
 631     // Say 4 args:
 632     // i   st_off
 633     // 0   12 T_LONG
 634     // 1    8 T_VOID
 635     // 2    4 T_OBJECT
 636     // 3    0 T_BOOL
 637     VMReg r_1 = regs[i].first();
 638     VMReg r_2 = regs[i].second();
 639     if (!r_1->is_valid()) {
 640       assert(!r_2->is_valid(), "");
 641       continue;
 642     }
 643 
 644     if (r_1->is_stack()) {
 645       // memory to memory use fpu stack top
 646       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 647 
 648       if (!r_2->is_valid()) {
 649         __ movl(rdi, Address(rsp, ld_off));
 650         __ movptr(Address(rsp, st_off), rdi);
 651       } else {
 652 
 653         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 654         // st_off == MSW, st_off-wordSize == LSW
 655 
 656         __ movptr(rdi, Address(rsp, ld_off));
 657         __ movptr(Address(rsp, next_off), rdi);
 658 #ifndef _LP64
 659         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 660         __ movptr(Address(rsp, st_off), rdi);
 661 #else
 662 #ifdef ASSERT
 663         // Overwrite the unused slot with known junk
 664         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 665         __ movptr(Address(rsp, st_off), rax);
 666 #endif /* ASSERT */
 667 #endif // _LP64
 668       }
 669     } else if (r_1->is_Register()) {
 670       Register r = r_1->as_Register();
 671       if (!r_2->is_valid()) {
 672         __ movl(Address(rsp, st_off), r);
 673       } else {
 674         // long/double in gpr
 675         NOT_LP64(ShouldNotReachHere());
 676         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 677         // T_DOUBLE and T_LONG use two slots in the interpreter
 678         if (sig_extended.at(i)._bt == T_LONG || sig_extended.at(i)._bt == T_DOUBLE) {
 679           // long/double in gpr
 680 #ifdef ASSERT
 681           // Overwrite the unused slot with known junk
 682           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 683           __ movptr(Address(rsp, st_off), rax);
 684 #endif /* ASSERT */
 685           __ movptr(Address(rsp, next_off), r);
 686         } else {
 687           __ movptr(Address(rsp, st_off), r);
 688         }
 689       }
 690     } else {
 691       assert(r_1->is_XMMRegister(), "");
 692       if (!r_2->is_valid()) {
 693         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 694       } else {
 695         assert(sig_extended.at(i)._bt == T_DOUBLE || sig_extended.at(i)._bt == T_LONG, "wrong type");
 696         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 697       }
 698     }
 699   }
 700 
 701   // Schedule the branch target address early.
 702   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 703   // And repush original return address
 704   __ push(rax);
 705   __ jmp(rcx);
 706 }
 707 
 708 
 709 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 710   int next_val_off = ld_off - Interpreter::stackElementSize;
 711   __ movdbl(r, Address(saved_sp, next_val_off));
 712 }
 713 
 714 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 715                         address code_start, address code_end,
 716                         Label& L_ok) {
 717   Label L_fail;
 718   __ lea(temp_reg, ExternalAddress(code_start));
 719   __ cmpptr(pc_reg, temp_reg);
 720   __ jcc(Assembler::belowEqual, L_fail);
 721   __ lea(temp_reg, ExternalAddress(code_end));
 722   __ cmpptr(pc_reg, temp_reg);
 723   __ jcc(Assembler::below, L_ok);
 724   __ bind(L_fail);
 725 }
 726 
 727 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 728                                     int comp_args_on_stack,
 729                                     const GrowableArray<SigEntry>& sig_extended,
 730                                     const VMRegPair *regs) {
 731 
 732   // Note: rsi contains the senderSP on entry. We must preserve it since
 733   // we may do a i2c -> c2i transition if we lose a race where compiled
 734   // code goes non-entrant while we get args ready.
 735 
 736   // Adapters can be frameless because they do not require the caller
 737   // to perform additional cleanup work, such as correcting the stack pointer.
 738   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 739   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 740   // even if a callee has modified the stack pointer.
 741   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 742   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 743   // up via the senderSP register).
 744   // In other words, if *either* the caller or callee is interpreted, we can
 745   // get the stack pointer repaired after a call.
 746   // This is why c2i and i2c adapters cannot be indefinitely composed.
 747   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 748   // both caller and callee would be compiled methods, and neither would
 749   // clean up the stack pointer changes performed by the two adapters.
 750   // If this happens, control eventually transfers back to the compiled
 751   // caller, but with an uncorrected stack, causing delayed havoc.
 752 
 753   // Pick up the return address
 754   __ movptr(rax, Address(rsp, 0));
 755 
 756   if (VerifyAdapterCalls &&
 757       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 758     // So, let's test for cascading c2i/i2c adapters right now.
 759     //  assert(Interpreter::contains($return_addr) ||
 760     //         StubRoutines::contains($return_addr),
 761     //         "i2c adapter must return to an interpreter frame");
 762     __ block_comment("verify_i2c { ");
 763     Label L_ok;
 764     if (Interpreter::code() != NULL)
 765       range_check(masm, rax, rdi,
 766                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 767                   L_ok);
 768     if (StubRoutines::code1() != NULL)
 769       range_check(masm, rax, rdi,
 770                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 771                   L_ok);
 772     if (StubRoutines::code2() != NULL)
 773       range_check(masm, rax, rdi,
 774                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 775                   L_ok);
 776     const char* msg = "i2c adapter must return to an interpreter frame";
 777     __ block_comment(msg);
 778     __ stop(msg);
 779     __ bind(L_ok);
 780     __ block_comment("} verify_i2ce ");
 781   }
 782 
 783   // Must preserve original SP for loading incoming arguments because
 784   // we need to align the outgoing SP for compiled code.
 785   __ movptr(rdi, rsp);
 786 
 787   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 788   // in registers, we will occasionally have no stack args.
 789   int comp_words_on_stack = 0;
 790   if (comp_args_on_stack) {
 791     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 792     // registers are below.  By subtracting stack0, we either get a negative
 793     // number (all values in registers) or the maximum stack slot accessed.
 794     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 795     // Convert 4-byte stack slots to words.
 796     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 797     // Round up to miminum stack alignment, in wordSize
 798     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 799     __ subptr(rsp, comp_words_on_stack * wordSize);
 800   }
 801 
 802   // Align the outgoing SP
 803   __ andptr(rsp, -(StackAlignmentInBytes));
 804 
 805   // push the return address on the stack (note that pushing, rather
 806   // than storing it, yields the correct frame alignment for the callee)
 807   __ push(rax);
 808 
 809   // Put saved SP in another register
 810   const Register saved_sp = rax;
 811   __ movptr(saved_sp, rdi);
 812 
 813 
 814   // Will jump to the compiled code just as if compiled code was doing it.
 815   // Pre-load the register-jump target early, to schedule it better.
 816   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 817 
 818   // Now generate the shuffle code.  Pick up all register args and move the
 819   // rest through the floating point stack top.
 820   for (int i = 0; i < sig_extended.length(); i++) {
 821     if (sig_extended.at(i)._bt == T_VOID) {
 822       // Longs and doubles are passed in native word order, but misaligned
 823       // in the 32-bit build.
 824       assert(i > 0 && (sig_extended.at(i-1)._bt == T_LONG || sig_extended.at(i-1)._bt == T_DOUBLE), "missing half");
 825       continue;
 826     }
 827 
 828     // Pick up 0, 1 or 2 words from SP+offset.
 829 
 830     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 831             "scrambled load targets?");
 832     // Load in argument order going down.
 833     int ld_off = (sig_extended.length() - i) * Interpreter::stackElementSize;
 834     // Point to interpreter value (vs. tag)
 835     int next_off = ld_off - Interpreter::stackElementSize;
 836     //
 837     //
 838     //
 839     VMReg r_1 = regs[i].first();
 840     VMReg r_2 = regs[i].second();
 841     if (!r_1->is_valid()) {
 842       assert(!r_2->is_valid(), "");
 843       continue;
 844     }
 845     if (r_1->is_stack()) {
 846       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 847       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 848 
 849       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 850       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 851       // we be generated.
 852       if (!r_2->is_valid()) {
 853         // __ fld_s(Address(saved_sp, ld_off));
 854         // __ fstp_s(Address(rsp, st_off));
 855         __ movl(rsi, Address(saved_sp, ld_off));
 856         __ movptr(Address(rsp, st_off), rsi);
 857       } else {
 858         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 859         // are accessed as negative so LSW is at LOW address
 860 
 861         // ld_off is MSW so get LSW
 862         // st_off is LSW (i.e. reg.first())
 863         // __ fld_d(Address(saved_sp, next_off));
 864         // __ fstp_d(Address(rsp, st_off));
 865         //
 866         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 867         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 868         // So we must adjust where to pick up the data to match the interpreter.
 869         //
 870         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 871         // are accessed as negative so LSW is at LOW address
 872 
 873         // ld_off is MSW so get LSW
 874         const int offset = (NOT_LP64(true ||) sig_extended.at(i)._bt==T_LONG||sig_extended.at(i)._bt==T_DOUBLE)?
 875                            next_off : ld_off;
 876         __ movptr(rsi, Address(saved_sp, offset));
 877         __ movptr(Address(rsp, st_off), rsi);
 878 #ifndef _LP64
 879         __ movptr(rsi, Address(saved_sp, ld_off));
 880         __ movptr(Address(rsp, st_off + wordSize), rsi);
 881 #endif // _LP64
 882       }
 883     } else if (r_1->is_Register()) {  // Register argument
 884       Register r = r_1->as_Register();
 885       assert(r != rax, "must be different");
 886       if (r_2->is_valid()) {
 887         //
 888         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 889         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 890         // So we must adjust where to pick up the data to match the interpreter.
 891 
 892         const int offset = (NOT_LP64(true ||) sig_extended.at(i)._bt==T_LONG||sig_extended.at(i)._bt==T_DOUBLE)?
 893                            next_off : ld_off;
 894 
 895         // this can be a misaligned move
 896         __ movptr(r, Address(saved_sp, offset));
 897 #ifndef _LP64
 898         assert(r_2->as_Register() != rax, "need another temporary register");
 899         // Remember r_1 is low address (and LSB on x86)
 900         // So r_2 gets loaded from high address regardless of the platform
 901         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 902 #endif // _LP64
 903       } else {
 904         __ movl(r, Address(saved_sp, ld_off));
 905       }
 906     } else {
 907       assert(r_1->is_XMMRegister(), "");
 908       if (!r_2->is_valid()) {
 909         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 910       } else {
 911         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 912       }
 913     }
 914   }
 915 
 916   // 6243940 We might end up in handle_wrong_method if
 917   // the callee is deoptimized as we race thru here. If that
 918   // happens we don't want to take a safepoint because the
 919   // caller frame will look interpreted and arguments are now
 920   // "compiled" so it is much better to make this transition
 921   // invisible to the stack walking code. Unfortunately if
 922   // we try and find the callee by normal means a safepoint
 923   // is possible. So we stash the desired callee in the thread
 924   // and the vm will find there should this case occur.
 925 
 926   __ get_thread(rax);
 927   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 928 
 929   // move Method* to rax, in case we end up in an c2i adapter.
 930   // the c2i adapters expect Method* in rax, (c2) because c2's
 931   // resolve stubs return the result (the method) in rax,.
 932   // I'd love to fix this.
 933   __ mov(rax, rbx);
 934 
 935   __ jmp(rdi);
 936 }
 937 
 938 // ---------------------------------------------------------------
 939 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 940                                                             int comp_args_on_stack,
 941                                                             const GrowableArray<SigEntry>& sig_extended,
 942                                                             const VMRegPair *regs,
 943                                                             AdapterFingerPrint* fingerprint,
 944                                                             AdapterBlob*& new_adapter) {
 945   address i2c_entry = __ pc();
 946 
 947   gen_i2c_adapter(masm, comp_args_on_stack, sig_extended, regs);
 948 
 949   // -------------------------------------------------------------------------
 950   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 951   // to the interpreter.  The args start out packed in the compiled layout.  They
 952   // need to be unpacked into the interpreter layout.  This will almost always
 953   // require some stack space.  We grow the current (compiled) stack, then repack
 954   // the args.  We  finally end in a jump to the generic interpreter entry point.
 955   // On exit from the interpreter, the interpreter will restore our SP (lest the
 956   // compiled code, which relys solely on SP and not EBP, get sick).
 957 
 958   address c2i_unverified_entry = __ pc();
 959   Label skip_fixup;
 960 
 961   Register holder = rax;
 962   Register receiver = rcx;
 963   Register temp = rbx;
 964 
 965   {
 966 
 967     Label missed;
 968     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 969     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 970     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 971     __ jcc(Assembler::notEqual, missed);
 972     // Method might have been compiled since the call site was patched to
 973     // interpreted if that is the case treat it as a miss so we can get
 974     // the call site corrected.
 975     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 976     __ jcc(Assembler::equal, skip_fixup);
 977 
 978     __ bind(missed);
 979     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 980   }
 981 
 982   address c2i_entry = __ pc();
 983 
 984   OopMapSet* oop_maps = NULL;
 985   int frame_complete = CodeOffsets::frame_never_safe;
 986   int frame_size_in_words = 0;
 987   gen_c2i_adapter(masm, sig_extended, regs, skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words);
 988 
 989   __ flush();
 990   new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps);
 991   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 992 }
 993 
 994 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 995                                          VMRegPair *regs,
 996                                          VMRegPair *regs2,
 997                                          int total_args_passed) {
 998   assert(regs2 == NULL, "not needed on x86");
 999 // We return the amount of VMRegImpl stack slots we need to reserve for all
1000 // the arguments NOT counting out_preserve_stack_slots.
1001 
1002   uint    stack = 0;        // All arguments on stack
1003 
1004   for( int i = 0; i < total_args_passed; i++) {
1005     // From the type and the argument number (count) compute the location
1006     switch( sig_bt[i] ) {
1007     case T_BOOLEAN:
1008     case T_CHAR:
1009     case T_FLOAT:
1010     case T_BYTE:
1011     case T_SHORT:
1012     case T_INT:
1013     case T_OBJECT:
1014     case T_ARRAY:
1015     case T_ADDRESS:
1016     case T_METADATA:
1017       regs[i].set1(VMRegImpl::stack2reg(stack++));
1018       break;
1019     case T_LONG:
1020     case T_DOUBLE: // The stack numbering is reversed from Java
1021       // Since C arguments do not get reversed, the ordering for
1022       // doubles on the stack must be opposite the Java convention
1023       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
1024       regs[i].set2(VMRegImpl::stack2reg(stack));
1025       stack += 2;
1026       break;
1027     case T_VOID: regs[i].set_bad(); break;
1028     default:
1029       ShouldNotReachHere();
1030       break;
1031     }
1032   }
1033   return stack;
1034 }
1035 
1036 // A simple move of integer like type
1037 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1038   if (src.first()->is_stack()) {
1039     if (dst.first()->is_stack()) {
1040       // stack to stack
1041       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1042       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1043       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1044       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1045     } else {
1046       // stack to reg
1047       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1048     }
1049   } else if (dst.first()->is_stack()) {
1050     // reg to stack
1051     // no need to sign extend on 64bit
1052     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1053   } else {
1054     if (dst.first() != src.first()) {
1055       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1056     }
1057   }
1058 }
1059 
1060 // An oop arg. Must pass a handle not the oop itself
1061 static void object_move(MacroAssembler* masm,
1062                         OopMap* map,
1063                         int oop_handle_offset,
1064                         int framesize_in_slots,
1065                         VMRegPair src,
1066                         VMRegPair dst,
1067                         bool is_receiver,
1068                         int* receiver_offset) {
1069 
1070   // Because of the calling conventions we know that src can be a
1071   // register or a stack location. dst can only be a stack location.
1072 
1073   assert(dst.first()->is_stack(), "must be stack");
1074   // must pass a handle. First figure out the location we use as a handle
1075 
1076   if (src.first()->is_stack()) {
1077     // Oop is already on the stack as an argument
1078     Register rHandle = rax;
1079     Label nil;
1080     __ xorptr(rHandle, rHandle);
1081     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1082     __ jcc(Assembler::equal, nil);
1083     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1084     __ bind(nil);
1085     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1086 
1087     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1088     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1089     if (is_receiver) {
1090       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1091     }
1092   } else {
1093     // Oop is in an a register we must store it to the space we reserve
1094     // on the stack for oop_handles
1095     const Register rOop = src.first()->as_Register();
1096     const Register rHandle = rax;
1097     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1098     int offset = oop_slot*VMRegImpl::stack_slot_size;
1099     Label skip;
1100     __ movptr(Address(rsp, offset), rOop);
1101     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1102     __ xorptr(rHandle, rHandle);
1103     __ cmpptr(rOop, (int32_t)NULL_WORD);
1104     __ jcc(Assembler::equal, skip);
1105     __ lea(rHandle, Address(rsp, offset));
1106     __ bind(skip);
1107     // Store the handle parameter
1108     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1109     if (is_receiver) {
1110       *receiver_offset = offset;
1111     }
1112   }
1113 }
1114 
1115 // A float arg may have to do float reg int reg conversion
1116 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1117   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1118 
1119   // Because of the calling convention we know that src is either a stack location
1120   // or an xmm register. dst can only be a stack location.
1121 
1122   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1123 
1124   if (src.first()->is_stack()) {
1125     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1126     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1127   } else {
1128     // reg to stack
1129     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1130   }
1131 }
1132 
1133 // A long move
1134 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1135 
1136   // The only legal possibility for a long_move VMRegPair is:
1137   // 1: two stack slots (possibly unaligned)
1138   // as neither the java  or C calling convention will use registers
1139   // for longs.
1140 
1141   if (src.first()->is_stack() && dst.first()->is_stack()) {
1142     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1143     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1144     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1145     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1146     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1147   } else {
1148     ShouldNotReachHere();
1149   }
1150 }
1151 
1152 // A double move
1153 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1154 
1155   // The only legal possibilities for a double_move VMRegPair are:
1156   // The painful thing here is that like long_move a VMRegPair might be
1157 
1158   // Because of the calling convention we know that src is either
1159   //   1: a single physical register (xmm registers only)
1160   //   2: two stack slots (possibly unaligned)
1161   // dst can only be a pair of stack slots.
1162 
1163   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1164 
1165   if (src.first()->is_stack()) {
1166     // source is all stack
1167     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1168     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1169     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1170     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1171   } else {
1172     // reg to stack
1173     // No worries about stack alignment
1174     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1175   }
1176 }
1177 
1178 
1179 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1180   // We always ignore the frame_slots arg and just use the space just below frame pointer
1181   // which by this time is free to use
1182   switch (ret_type) {
1183   case T_FLOAT:
1184     __ fstp_s(Address(rbp, -wordSize));
1185     break;
1186   case T_DOUBLE:
1187     __ fstp_d(Address(rbp, -2*wordSize));
1188     break;
1189   case T_VOID:  break;
1190   case T_LONG:
1191     __ movptr(Address(rbp, -wordSize), rax);
1192     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1193     break;
1194   default: {
1195     __ movptr(Address(rbp, -wordSize), rax);
1196     }
1197   }
1198 }
1199 
1200 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1201   // We always ignore the frame_slots arg and just use the space just below frame pointer
1202   // which by this time is free to use
1203   switch (ret_type) {
1204   case T_FLOAT:
1205     __ fld_s(Address(rbp, -wordSize));
1206     break;
1207   case T_DOUBLE:
1208     __ fld_d(Address(rbp, -2*wordSize));
1209     break;
1210   case T_LONG:
1211     __ movptr(rax, Address(rbp, -wordSize));
1212     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1213     break;
1214   case T_VOID:  break;
1215   default: {
1216     __ movptr(rax, Address(rbp, -wordSize));
1217     }
1218   }
1219 }
1220 
1221 
1222 static void save_or_restore_arguments(MacroAssembler* masm,
1223                                       const int stack_slots,
1224                                       const int total_in_args,
1225                                       const int arg_save_area,
1226                                       OopMap* map,
1227                                       VMRegPair* in_regs,
1228                                       BasicType* in_sig_bt) {
1229   // if map is non-NULL then the code should store the values,
1230   // otherwise it should load them.
1231   int handle_index = 0;
1232   // Save down double word first
1233   for ( int i = 0; i < total_in_args; i++) {
1234     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1235       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1236       int offset = slot * VMRegImpl::stack_slot_size;
1237       handle_index += 2;
1238       assert(handle_index <= stack_slots, "overflow");
1239       if (map != NULL) {
1240         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1241       } else {
1242         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1243       }
1244     }
1245     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1246       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1247       int offset = slot * VMRegImpl::stack_slot_size;
1248       handle_index += 2;
1249       assert(handle_index <= stack_slots, "overflow");
1250       if (map != NULL) {
1251         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1252         if (in_regs[i].second()->is_Register()) {
1253           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1254         }
1255       } else {
1256         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1257         if (in_regs[i].second()->is_Register()) {
1258           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1259         }
1260       }
1261     }
1262   }
1263   // Save or restore single word registers
1264   for ( int i = 0; i < total_in_args; i++) {
1265     if (in_regs[i].first()->is_Register()) {
1266       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1267       int offset = slot * VMRegImpl::stack_slot_size;
1268       assert(handle_index <= stack_slots, "overflow");
1269       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1270         map->set_oop(VMRegImpl::stack2reg(slot));;
1271       }
1272 
1273       // Value is in an input register pass we must flush it to the stack
1274       const Register reg = in_regs[i].first()->as_Register();
1275       switch (in_sig_bt[i]) {
1276         case T_ARRAY:
1277           if (map != NULL) {
1278             __ movptr(Address(rsp, offset), reg);
1279           } else {
1280             __ movptr(reg, Address(rsp, offset));
1281           }
1282           break;
1283         case T_BOOLEAN:
1284         case T_CHAR:
1285         case T_BYTE:
1286         case T_SHORT:
1287         case T_INT:
1288           if (map != NULL) {
1289             __ movl(Address(rsp, offset), reg);
1290           } else {
1291             __ movl(reg, Address(rsp, offset));
1292           }
1293           break;
1294         case T_OBJECT:
1295         default: ShouldNotReachHere();
1296       }
1297     } else if (in_regs[i].first()->is_XMMRegister()) {
1298       if (in_sig_bt[i] == T_FLOAT) {
1299         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1300         int offset = slot * VMRegImpl::stack_slot_size;
1301         assert(handle_index <= stack_slots, "overflow");
1302         if (map != NULL) {
1303           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1304         } else {
1305           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1306         }
1307       }
1308     } else if (in_regs[i].first()->is_stack()) {
1309       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1310         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1311         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1312       }
1313     }
1314   }
1315 }
1316 
1317 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1318 // keeps a new JNI critical region from starting until a GC has been
1319 // forced.  Save down any oops in registers and describe them in an
1320 // OopMap.
1321 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1322                                                Register thread,
1323                                                int stack_slots,
1324                                                int total_c_args,
1325                                                int total_in_args,
1326                                                int arg_save_area,
1327                                                OopMapSet* oop_maps,
1328                                                VMRegPair* in_regs,
1329                                                BasicType* in_sig_bt) {
1330   __ block_comment("check GCLocker::needs_gc");
1331   Label cont;
1332   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1333   __ jcc(Assembler::equal, cont);
1334 
1335   // Save down any incoming oops and call into the runtime to halt for a GC
1336 
1337   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1338 
1339   save_or_restore_arguments(masm, stack_slots, total_in_args,
1340                             arg_save_area, map, in_regs, in_sig_bt);
1341 
1342   address the_pc = __ pc();
1343   oop_maps->add_gc_map( __ offset(), map);
1344   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1345 
1346   __ block_comment("block_for_jni_critical");
1347   __ push(thread);
1348   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1349   __ increment(rsp, wordSize);
1350 
1351   __ get_thread(thread);
1352   __ reset_last_Java_frame(thread, false);
1353 
1354   save_or_restore_arguments(masm, stack_slots, total_in_args,
1355                             arg_save_area, NULL, in_regs, in_sig_bt);
1356 
1357   __ bind(cont);
1358 #ifdef ASSERT
1359   if (StressCriticalJNINatives) {
1360     // Stress register saving
1361     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1362     save_or_restore_arguments(masm, stack_slots, total_in_args,
1363                               arg_save_area, map, in_regs, in_sig_bt);
1364     // Destroy argument registers
1365     for (int i = 0; i < total_in_args - 1; i++) {
1366       if (in_regs[i].first()->is_Register()) {
1367         const Register reg = in_regs[i].first()->as_Register();
1368         __ xorptr(reg, reg);
1369       } else if (in_regs[i].first()->is_XMMRegister()) {
1370         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1371       } else if (in_regs[i].first()->is_FloatRegister()) {
1372         ShouldNotReachHere();
1373       } else if (in_regs[i].first()->is_stack()) {
1374         // Nothing to do
1375       } else {
1376         ShouldNotReachHere();
1377       }
1378       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1379         i++;
1380       }
1381     }
1382 
1383     save_or_restore_arguments(masm, stack_slots, total_in_args,
1384                               arg_save_area, NULL, in_regs, in_sig_bt);
1385   }
1386 #endif
1387 }
1388 
1389 // Unpack an array argument into a pointer to the body and the length
1390 // if the array is non-null, otherwise pass 0 for both.
1391 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1392   Register tmp_reg = rax;
1393   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1394          "possible collision");
1395   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1396          "possible collision");
1397 
1398   // Pass the length, ptr pair
1399   Label is_null, done;
1400   VMRegPair tmp(tmp_reg->as_VMReg());
1401   if (reg.first()->is_stack()) {
1402     // Load the arg up from the stack
1403     simple_move32(masm, reg, tmp);
1404     reg = tmp;
1405   }
1406   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1407   __ jccb(Assembler::equal, is_null);
1408   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1409   simple_move32(masm, tmp, body_arg);
1410   // load the length relative to the body.
1411   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1412                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1413   simple_move32(masm, tmp, length_arg);
1414   __ jmpb(done);
1415   __ bind(is_null);
1416   // Pass zeros
1417   __ xorptr(tmp_reg, tmp_reg);
1418   simple_move32(masm, tmp, body_arg);
1419   simple_move32(masm, tmp, length_arg);
1420   __ bind(done);
1421 }
1422 
1423 static void verify_oop_args(MacroAssembler* masm,
1424                             methodHandle method,
1425                             const BasicType* sig_bt,
1426                             const VMRegPair* regs) {
1427   Register temp_reg = rbx;  // not part of any compiled calling seq
1428   if (VerifyOops) {
1429     for (int i = 0; i < method->size_of_parameters(); i++) {
1430       if (sig_bt[i] == T_OBJECT ||
1431           sig_bt[i] == T_ARRAY) {
1432         VMReg r = regs[i].first();
1433         assert(r->is_valid(), "bad oop arg");
1434         if (r->is_stack()) {
1435           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1436           __ verify_oop(temp_reg);
1437         } else {
1438           __ verify_oop(r->as_Register());
1439         }
1440       }
1441     }
1442   }
1443 }
1444 
1445 static void gen_special_dispatch(MacroAssembler* masm,
1446                                  methodHandle method,
1447                                  const BasicType* sig_bt,
1448                                  const VMRegPair* regs) {
1449   verify_oop_args(masm, method, sig_bt, regs);
1450   vmIntrinsics::ID iid = method->intrinsic_id();
1451 
1452   // Now write the args into the outgoing interpreter space
1453   bool     has_receiver   = false;
1454   Register receiver_reg   = noreg;
1455   int      member_arg_pos = -1;
1456   Register member_reg     = noreg;
1457   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1458   if (ref_kind != 0) {
1459     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1460     member_reg = rbx;  // known to be free at this point
1461     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1462   } else if (iid == vmIntrinsics::_invokeBasic) {
1463     has_receiver = true;
1464   } else {
1465     fatal("unexpected intrinsic id %d", iid);
1466   }
1467 
1468   if (member_reg != noreg) {
1469     // Load the member_arg into register, if necessary.
1470     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1471     VMReg r = regs[member_arg_pos].first();
1472     if (r->is_stack()) {
1473       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1474     } else {
1475       // no data motion is needed
1476       member_reg = r->as_Register();
1477     }
1478   }
1479 
1480   if (has_receiver) {
1481     // Make sure the receiver is loaded into a register.
1482     assert(method->size_of_parameters() > 0, "oob");
1483     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1484     VMReg r = regs[0].first();
1485     assert(r->is_valid(), "bad receiver arg");
1486     if (r->is_stack()) {
1487       // Porting note:  This assumes that compiled calling conventions always
1488       // pass the receiver oop in a register.  If this is not true on some
1489       // platform, pick a temp and load the receiver from stack.
1490       fatal("receiver always in a register");
1491       receiver_reg = rcx;  // known to be free at this point
1492       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1493     } else {
1494       // no data motion is needed
1495       receiver_reg = r->as_Register();
1496     }
1497   }
1498 
1499   // Figure out which address we are really jumping to:
1500   MethodHandles::generate_method_handle_dispatch(masm, iid,
1501                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1502 }
1503 
1504 // ---------------------------------------------------------------------------
1505 // Generate a native wrapper for a given method.  The method takes arguments
1506 // in the Java compiled code convention, marshals them to the native
1507 // convention (handlizes oops, etc), transitions to native, makes the call,
1508 // returns to java state (possibly blocking), unhandlizes any result and
1509 // returns.
1510 //
1511 // Critical native functions are a shorthand for the use of
1512 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1513 // functions.  The wrapper is expected to unpack the arguments before
1514 // passing them to the callee and perform checks before and after the
1515 // native call to ensure that they GCLocker
1516 // lock_critical/unlock_critical semantics are followed.  Some other
1517 // parts of JNI setup are skipped like the tear down of the JNI handle
1518 // block and the check for pending exceptions it's impossible for them
1519 // to be thrown.
1520 //
1521 // They are roughly structured like this:
1522 //    if (GCLocker::needs_gc())
1523 //      SharedRuntime::block_for_jni_critical();
1524 //    tranistion to thread_in_native
1525 //    unpack arrray arguments and call native entry point
1526 //    check for safepoint in progress
1527 //    check if any thread suspend flags are set
1528 //      call into JVM and possible unlock the JNI critical
1529 //      if a GC was suppressed while in the critical native.
1530 //    transition back to thread_in_Java
1531 //    return to caller
1532 //
1533 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1534                                                 const methodHandle& method,
1535                                                 int compile_id,
1536                                                 BasicType* in_sig_bt,
1537                                                 VMRegPair* in_regs,
1538                                                 BasicType ret_type) {
1539   if (method->is_method_handle_intrinsic()) {
1540     vmIntrinsics::ID iid = method->intrinsic_id();
1541     intptr_t start = (intptr_t)__ pc();
1542     int vep_offset = ((intptr_t)__ pc()) - start;
1543     gen_special_dispatch(masm,
1544                          method,
1545                          in_sig_bt,
1546                          in_regs);
1547     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1548     __ flush();
1549     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1550     return nmethod::new_native_nmethod(method,
1551                                        compile_id,
1552                                        masm->code(),
1553                                        vep_offset,
1554                                        frame_complete,
1555                                        stack_slots / VMRegImpl::slots_per_word,
1556                                        in_ByteSize(-1),
1557                                        in_ByteSize(-1),
1558                                        (OopMapSet*)NULL);
1559   }
1560   bool is_critical_native = true;
1561   address native_func = method->critical_native_function();
1562   if (native_func == NULL) {
1563     native_func = method->native_function();
1564     is_critical_native = false;
1565   }
1566   assert(native_func != NULL, "must have function");
1567 
1568   // An OopMap for lock (and class if static)
1569   OopMapSet *oop_maps = new OopMapSet();
1570 
1571   // We have received a description of where all the java arg are located
1572   // on entry to the wrapper. We need to convert these args to where
1573   // the jni function will expect them. To figure out where they go
1574   // we convert the java signature to a C signature by inserting
1575   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1576 
1577   const int total_in_args = method->size_of_parameters();
1578   int total_c_args = total_in_args;
1579   if (!is_critical_native) {
1580     total_c_args += 1;
1581     if (method->is_static()) {
1582       total_c_args++;
1583     }
1584   } else {
1585     for (int i = 0; i < total_in_args; i++) {
1586       if (in_sig_bt[i] == T_ARRAY) {
1587         total_c_args++;
1588       }
1589     }
1590   }
1591 
1592   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1593   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1594   BasicType* in_elem_bt = NULL;
1595 
1596   int argc = 0;
1597   if (!is_critical_native) {
1598     out_sig_bt[argc++] = T_ADDRESS;
1599     if (method->is_static()) {
1600       out_sig_bt[argc++] = T_OBJECT;
1601     }
1602 
1603     for (int i = 0; i < total_in_args ; i++ ) {
1604       out_sig_bt[argc++] = in_sig_bt[i];
1605     }
1606   } else {
1607     Thread* THREAD = Thread::current();
1608     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1609     SignatureStream ss(method->signature());
1610     for (int i = 0; i < total_in_args ; i++ ) {
1611       if (in_sig_bt[i] == T_ARRAY) {
1612         // Arrays are passed as int, elem* pair
1613         out_sig_bt[argc++] = T_INT;
1614         out_sig_bt[argc++] = T_ADDRESS;
1615         Symbol* atype = ss.as_symbol(CHECK_NULL);
1616         const char* at = atype->as_C_string();
1617         if (strlen(at) == 2) {
1618           assert(at[0] == '[', "must be");
1619           switch (at[1]) {
1620             case 'B': in_elem_bt[i]  = T_BYTE; break;
1621             case 'C': in_elem_bt[i]  = T_CHAR; break;
1622             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1623             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1624             case 'I': in_elem_bt[i]  = T_INT; break;
1625             case 'J': in_elem_bt[i]  = T_LONG; break;
1626             case 'S': in_elem_bt[i]  = T_SHORT; break;
1627             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1628             default: ShouldNotReachHere();
1629           }
1630         }
1631       } else {
1632         out_sig_bt[argc++] = in_sig_bt[i];
1633         in_elem_bt[i] = T_VOID;
1634       }
1635       if (in_sig_bt[i] != T_VOID) {
1636         assert(in_sig_bt[i] == ss.type(), "must match");
1637         ss.next();
1638       }
1639     }
1640   }
1641 
1642   // Now figure out where the args must be stored and how much stack space
1643   // they require.
1644   int out_arg_slots;
1645   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1646 
1647   // Compute framesize for the wrapper.  We need to handlize all oops in
1648   // registers a max of 2 on x86.
1649 
1650   // Calculate the total number of stack slots we will need.
1651 
1652   // First count the abi requirement plus all of the outgoing args
1653   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1654 
1655   // Now the space for the inbound oop handle area
1656   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1657   if (is_critical_native) {
1658     // Critical natives may have to call out so they need a save area
1659     // for register arguments.
1660     int double_slots = 0;
1661     int single_slots = 0;
1662     for ( int i = 0; i < total_in_args; i++) {
1663       if (in_regs[i].first()->is_Register()) {
1664         const Register reg = in_regs[i].first()->as_Register();
1665         switch (in_sig_bt[i]) {
1666           case T_ARRAY:  // critical array (uses 2 slots on LP64)
1667           case T_BOOLEAN:
1668           case T_BYTE:
1669           case T_SHORT:
1670           case T_CHAR:
1671           case T_INT:  single_slots++; break;
1672           case T_LONG: double_slots++; break;
1673           default:  ShouldNotReachHere();
1674         }
1675       } else if (in_regs[i].first()->is_XMMRegister()) {
1676         switch (in_sig_bt[i]) {
1677           case T_FLOAT:  single_slots++; break;
1678           case T_DOUBLE: double_slots++; break;
1679           default:  ShouldNotReachHere();
1680         }
1681       } else if (in_regs[i].first()->is_FloatRegister()) {
1682         ShouldNotReachHere();
1683       }
1684     }
1685     total_save_slots = double_slots * 2 + single_slots;
1686     // align the save area
1687     if (double_slots != 0) {
1688       stack_slots = round_to(stack_slots, 2);
1689     }
1690   }
1691 
1692   int oop_handle_offset = stack_slots;
1693   stack_slots += total_save_slots;
1694 
1695   // Now any space we need for handlizing a klass if static method
1696 
1697   int klass_slot_offset = 0;
1698   int klass_offset = -1;
1699   int lock_slot_offset = 0;
1700   bool is_static = false;
1701 
1702   if (method->is_static()) {
1703     klass_slot_offset = stack_slots;
1704     stack_slots += VMRegImpl::slots_per_word;
1705     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1706     is_static = true;
1707   }
1708 
1709   // Plus a lock if needed
1710 
1711   if (method->is_synchronized()) {
1712     lock_slot_offset = stack_slots;
1713     stack_slots += VMRegImpl::slots_per_word;
1714   }
1715 
1716   // Now a place (+2) to save return values or temp during shuffling
1717   // + 2 for return address (which we own) and saved rbp,
1718   stack_slots += 4;
1719 
1720   // Ok The space we have allocated will look like:
1721   //
1722   //
1723   // FP-> |                     |
1724   //      |---------------------|
1725   //      | 2 slots for moves   |
1726   //      |---------------------|
1727   //      | lock box (if sync)  |
1728   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1729   //      | klass (if static)   |
1730   //      |---------------------| <- klass_slot_offset
1731   //      | oopHandle area      |
1732   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1733   //      | outbound memory     |
1734   //      | based arguments     |
1735   //      |                     |
1736   //      |---------------------|
1737   //      |                     |
1738   // SP-> | out_preserved_slots |
1739   //
1740   //
1741   // ****************************************************************************
1742   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1743   // arguments off of the stack after the jni call. Before the call we can use
1744   // instructions that are SP relative. After the jni call we switch to FP
1745   // relative instructions instead of re-adjusting the stack on windows.
1746   // ****************************************************************************
1747 
1748 
1749   // Now compute actual number of stack words we need rounding to make
1750   // stack properly aligned.
1751   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1752 
1753   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1754 
1755   intptr_t start = (intptr_t)__ pc();
1756 
1757   // First thing make an ic check to see if we should even be here
1758 
1759   // We are free to use all registers as temps without saving them and
1760   // restoring them except rbp. rbp is the only callee save register
1761   // as far as the interpreter and the compiler(s) are concerned.
1762 
1763 
1764   const Register ic_reg = rax;
1765   const Register receiver = rcx;
1766   Label hit;
1767   Label exception_pending;
1768 
1769   __ verify_oop(receiver);
1770   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1771   __ jcc(Assembler::equal, hit);
1772 
1773   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1774 
1775   // verified entry must be aligned for code patching.
1776   // and the first 5 bytes must be in the same cache line
1777   // if we align at 8 then we will be sure 5 bytes are in the same line
1778   __ align(8);
1779 
1780   __ bind(hit);
1781 
1782   int vep_offset = ((intptr_t)__ pc()) - start;
1783 
1784 #ifdef COMPILER1
1785   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1786   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1787     inline_check_hashcode_from_object_header(masm, method, rcx /*obj_reg*/, rax /*result*/);
1788    }
1789 #endif // COMPILER1
1790 
1791   // The instruction at the verified entry point must be 5 bytes or longer
1792   // because it can be patched on the fly by make_non_entrant. The stack bang
1793   // instruction fits that requirement.
1794 
1795   // Generate stack overflow check
1796 
1797   if (UseStackBanging) {
1798     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
1799   } else {
1800     // need a 5 byte instruction to allow MT safe patching to non-entrant
1801     __ fat_nop();
1802   }
1803 
1804   // Generate a new frame for the wrapper.
1805   __ enter();
1806   // -2 because return address is already present and so is saved rbp
1807   __ subptr(rsp, stack_size - 2*wordSize);
1808 
1809   // Frame is now completed as far as size and linkage.
1810   int frame_complete = ((intptr_t)__ pc()) - start;
1811 
1812   if (UseRTMLocking) {
1813     // Abort RTM transaction before calling JNI
1814     // because critical section will be large and will be
1815     // aborted anyway. Also nmethod could be deoptimized.
1816     __ xabort(0);
1817   }
1818 
1819   // Calculate the difference between rsp and rbp,. We need to know it
1820   // after the native call because on windows Java Natives will pop
1821   // the arguments and it is painful to do rsp relative addressing
1822   // in a platform independent way. So after the call we switch to
1823   // rbp, relative addressing.
1824 
1825   int fp_adjustment = stack_size - 2*wordSize;
1826 
1827 #ifdef COMPILER2
1828   // C2 may leave the stack dirty if not in SSE2+ mode
1829   if (UseSSE >= 2) {
1830     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1831   } else {
1832     __ empty_FPU_stack();
1833   }
1834 #endif /* COMPILER2 */
1835 
1836   // Compute the rbp, offset for any slots used after the jni call
1837 
1838   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1839 
1840   // We use rdi as a thread pointer because it is callee save and
1841   // if we load it once it is usable thru the entire wrapper
1842   const Register thread = rdi;
1843 
1844   // We use rsi as the oop handle for the receiver/klass
1845   // It is callee save so it survives the call to native
1846 
1847   const Register oop_handle_reg = rsi;
1848 
1849   __ get_thread(thread);
1850 
1851   if (is_critical_native) {
1852     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1853                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1854   }
1855 
1856   //
1857   // We immediately shuffle the arguments so that any vm call we have to
1858   // make from here on out (sync slow path, jvmti, etc.) we will have
1859   // captured the oops from our caller and have a valid oopMap for
1860   // them.
1861 
1862   // -----------------
1863   // The Grand Shuffle
1864   //
1865   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1866   // and, if static, the class mirror instead of a receiver.  This pretty much
1867   // guarantees that register layout will not match (and x86 doesn't use reg
1868   // parms though amd does).  Since the native abi doesn't use register args
1869   // and the java conventions does we don't have to worry about collisions.
1870   // All of our moved are reg->stack or stack->stack.
1871   // We ignore the extra arguments during the shuffle and handle them at the
1872   // last moment. The shuffle is described by the two calling convention
1873   // vectors we have in our possession. We simply walk the java vector to
1874   // get the source locations and the c vector to get the destinations.
1875 
1876   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1877 
1878   // Record rsp-based slot for receiver on stack for non-static methods
1879   int receiver_offset = -1;
1880 
1881   // This is a trick. We double the stack slots so we can claim
1882   // the oops in the caller's frame. Since we are sure to have
1883   // more args than the caller doubling is enough to make
1884   // sure we can capture all the incoming oop args from the
1885   // caller.
1886   //
1887   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1888 
1889   // Mark location of rbp,
1890   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1891 
1892   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1893   // Are free to temporaries if we have to do  stack to steck moves.
1894   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1895 
1896   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
1897     switch (in_sig_bt[i]) {
1898       case T_ARRAY:
1899         if (is_critical_native) {
1900           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1901           c_arg++;
1902           break;
1903         }
1904       case T_OBJECT:
1905         assert(!is_critical_native, "no oop arguments");
1906         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1907                     ((i == 0) && (!is_static)),
1908                     &receiver_offset);
1909         break;
1910       case T_VOID:
1911         break;
1912 
1913       case T_FLOAT:
1914         float_move(masm, in_regs[i], out_regs[c_arg]);
1915           break;
1916 
1917       case T_DOUBLE:
1918         assert( i + 1 < total_in_args &&
1919                 in_sig_bt[i + 1] == T_VOID &&
1920                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1921         double_move(masm, in_regs[i], out_regs[c_arg]);
1922         break;
1923 
1924       case T_LONG :
1925         long_move(masm, in_regs[i], out_regs[c_arg]);
1926         break;
1927 
1928       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1929 
1930       default:
1931         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1932     }
1933   }
1934 
1935   // Pre-load a static method's oop into rsi.  Used both by locking code and
1936   // the normal JNI call code.
1937   if (method->is_static() && !is_critical_native) {
1938 
1939     //  load opp into a register
1940     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
1941 
1942     // Now handlize the static class mirror it's known not-null.
1943     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1944     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1945 
1946     // Now get the handle
1947     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1948     // store the klass handle as second argument
1949     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1950   }
1951 
1952   // Change state to native (we save the return address in the thread, since it might not
1953   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1954   // points into the right code segment. It does not have to be the correct return pc.
1955   // We use the same pc/oopMap repeatedly when we call out
1956 
1957   intptr_t the_pc = (intptr_t) __ pc();
1958   oop_maps->add_gc_map(the_pc - start, map);
1959 
1960   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1961 
1962 
1963   // We have all of the arguments setup at this point. We must not touch any register
1964   // argument registers at this point (what if we save/restore them there are no oop?
1965 
1966   {
1967     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1968     __ mov_metadata(rax, method());
1969     __ call_VM_leaf(
1970          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1971          thread, rax);
1972   }
1973 
1974   // RedefineClasses() tracing support for obsolete method entry
1975   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1976     __ mov_metadata(rax, method());
1977     __ call_VM_leaf(
1978          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1979          thread, rax);
1980   }
1981 
1982   // These are register definitions we need for locking/unlocking
1983   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1984   const Register obj_reg  = rcx;  // Will contain the oop
1985   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1986 
1987   Label slow_path_lock;
1988   Label lock_done;
1989 
1990   // Lock a synchronized method
1991   if (method->is_synchronized()) {
1992     assert(!is_critical_native, "unhandled");
1993 
1994 
1995     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1996 
1997     // Get the handle (the 2nd argument)
1998     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1999 
2000     // Get address of the box
2001 
2002     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
2003 
2004     // Load the oop from the handle
2005     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2006 
2007     if (UseBiasedLocking) {
2008       // Note that oop_handle_reg is trashed during this call
2009       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
2010     }
2011 
2012     // Load immediate 1 into swap_reg %rax,
2013     __ movptr(swap_reg, 1);
2014 
2015     // Load (object->mark() | 1) into swap_reg %rax,
2016     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2017 
2018     // Save (object->mark() | 1) into BasicLock's displaced header
2019     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2020 
2021     if (os::is_MP()) {
2022       __ lock();
2023     }
2024 
2025     // src -> dest iff dest == rax, else rax, <- dest
2026     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2027     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2028     __ jcc(Assembler::equal, lock_done);
2029 
2030     // Test if the oopMark is an obvious stack pointer, i.e.,
2031     //  1) (mark & 3) == 0, and
2032     //  2) rsp <= mark < mark + os::pagesize()
2033     // These 3 tests can be done by evaluating the following
2034     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2035     // assuming both stack pointer and pagesize have their
2036     // least significant 2 bits clear.
2037     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2038 
2039     __ subptr(swap_reg, rsp);
2040     __ andptr(swap_reg, 3 - os::vm_page_size());
2041 
2042     // Save the test result, for recursive case, the result is zero
2043     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2044     __ jcc(Assembler::notEqual, slow_path_lock);
2045     // Slow path will re-enter here
2046     __ bind(lock_done);
2047 
2048     if (UseBiasedLocking) {
2049       // Re-fetch oop_handle_reg as we trashed it above
2050       __ movptr(oop_handle_reg, Address(rsp, wordSize));
2051     }
2052   }
2053 
2054 
2055   // Finally just about ready to make the JNI call
2056 
2057 
2058   // get JNIEnv* which is first argument to native
2059   if (!is_critical_native) {
2060     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2061     __ movptr(Address(rsp, 0), rdx);
2062   }
2063 
2064   // Now set thread in native
2065   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2066 
2067   __ call(RuntimeAddress(native_func));
2068 
2069   // Verify or restore cpu control state after JNI call
2070   __ restore_cpu_control_state_after_jni();
2071 
2072   // WARNING - on Windows Java Natives use pascal calling convention and pop the
2073   // arguments off of the stack. We could just re-adjust the stack pointer here
2074   // and continue to do SP relative addressing but we instead switch to FP
2075   // relative addressing.
2076 
2077   // Unpack native results.
2078   switch (ret_type) {
2079   case T_BOOLEAN: __ c2bool(rax);            break;
2080   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2081   case T_BYTE   : __ sign_extend_byte (rax); break;
2082   case T_SHORT  : __ sign_extend_short(rax); break;
2083   case T_INT    : /* nothing to do */        break;
2084   case T_DOUBLE :
2085   case T_FLOAT  :
2086     // Result is in st0 we'll save as needed
2087     break;
2088   case T_ARRAY:                 // Really a handle
2089   case T_OBJECT:                // Really a handle
2090       break; // can't de-handlize until after safepoint check
2091   case T_VOID: break;
2092   case T_LONG: break;
2093   default       : ShouldNotReachHere();
2094   }
2095 
2096   // Switch thread to "native transition" state before reading the synchronization state.
2097   // This additional state is necessary because reading and testing the synchronization
2098   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2099   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2100   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2101   //     Thread A is resumed to finish this native method, but doesn't block here since it
2102   //     didn't see any synchronization is progress, and escapes.
2103   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2104 
2105   if(os::is_MP()) {
2106     if (UseMembar) {
2107       // Force this write out before the read below
2108       __ membar(Assembler::Membar_mask_bits(
2109            Assembler::LoadLoad | Assembler::LoadStore |
2110            Assembler::StoreLoad | Assembler::StoreStore));
2111     } else {
2112       // Write serialization page so VM thread can do a pseudo remote membar.
2113       // We use the current thread pointer to calculate a thread specific
2114       // offset to write to within the page. This minimizes bus traffic
2115       // due to cache line collision.
2116       __ serialize_memory(thread, rcx);
2117     }
2118   }
2119 
2120   if (AlwaysRestoreFPU) {
2121     // Make sure the control word is correct.
2122     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2123   }
2124 
2125   Label after_transition;
2126 
2127   // check for safepoint operation in progress and/or pending suspend requests
2128   { Label Continue;
2129 
2130     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2131              SafepointSynchronize::_not_synchronized);
2132 
2133     Label L;
2134     __ jcc(Assembler::notEqual, L);
2135     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2136     __ jcc(Assembler::equal, Continue);
2137     __ bind(L);
2138 
2139     // Don't use call_VM as it will see a possible pending exception and forward it
2140     // and never return here preventing us from clearing _last_native_pc down below.
2141     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2142     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2143     // by hand.
2144     //
2145     __ vzeroupper();
2146 
2147     save_native_result(masm, ret_type, stack_slots);
2148     __ push(thread);
2149     if (!is_critical_native) {
2150       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2151                                               JavaThread::check_special_condition_for_native_trans)));
2152     } else {
2153       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2154                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
2155     }
2156     __ increment(rsp, wordSize);
2157     // Restore any method result value
2158     restore_native_result(masm, ret_type, stack_slots);
2159 
2160     if (is_critical_native) {
2161       // The call above performed the transition to thread_in_Java so
2162       // skip the transition logic below.
2163       __ jmpb(after_transition);
2164     }
2165 
2166     __ bind(Continue);
2167   }
2168 
2169   // change thread state
2170   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2171   __ bind(after_transition);
2172 
2173   Label reguard;
2174   Label reguard_done;
2175   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2176   __ jcc(Assembler::equal, reguard);
2177 
2178   // slow path reguard  re-enters here
2179   __ bind(reguard_done);
2180 
2181   // Handle possible exception (will unlock if necessary)
2182 
2183   // native result if any is live
2184 
2185   // Unlock
2186   Label slow_path_unlock;
2187   Label unlock_done;
2188   if (method->is_synchronized()) {
2189 
2190     Label done;
2191 
2192     // Get locked oop from the handle we passed to jni
2193     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2194 
2195     if (UseBiasedLocking) {
2196       __ biased_locking_exit(obj_reg, rbx, done);
2197     }
2198 
2199     // Simple recursive lock?
2200 
2201     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2202     __ jcc(Assembler::equal, done);
2203 
2204     // Must save rax, if if it is live now because cmpxchg must use it
2205     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2206       save_native_result(masm, ret_type, stack_slots);
2207     }
2208 
2209     //  get old displaced header
2210     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2211 
2212     // get address of the stack lock
2213     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2214 
2215     // Atomic swap old header if oop still contains the stack lock
2216     if (os::is_MP()) {
2217     __ lock();
2218     }
2219 
2220     // src -> dest iff dest == rax, else rax, <- dest
2221     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2222     __ cmpxchgptr(rbx, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2223     __ jcc(Assembler::notEqual, slow_path_unlock);
2224 
2225     // slow path re-enters here
2226     __ bind(unlock_done);
2227     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2228       restore_native_result(masm, ret_type, stack_slots);
2229     }
2230 
2231     __ bind(done);
2232 
2233   }
2234 
2235   {
2236     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2237     // Tell dtrace about this method exit
2238     save_native_result(masm, ret_type, stack_slots);
2239     __ mov_metadata(rax, method());
2240     __ call_VM_leaf(
2241          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2242          thread, rax);
2243     restore_native_result(masm, ret_type, stack_slots);
2244   }
2245 
2246   // We can finally stop using that last_Java_frame we setup ages ago
2247 
2248   __ reset_last_Java_frame(thread, false);
2249 
2250   // Unbox oop result, e.g. JNIHandles::resolve value.
2251   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2252     __ resolve_jobject(rax /* value */,
2253                        thread /* thread */,
2254                        rcx /* tmp */);
2255   }
2256 
2257   if (CheckJNICalls) {
2258     // clear_pending_jni_exception_check
2259     __ movptr(Address(thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2260   }
2261 
2262   if (!is_critical_native) {
2263     // reset handle block
2264     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2265     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2266 
2267     // Any exception pending?
2268     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2269     __ jcc(Assembler::notEqual, exception_pending);
2270   }
2271 
2272   // no exception, we're almost done
2273 
2274   // check that only result value is on FPU stack
2275   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2276 
2277   // Fixup floating pointer results so that result looks like a return from a compiled method
2278   if (ret_type == T_FLOAT) {
2279     if (UseSSE >= 1) {
2280       // Pop st0 and store as float and reload into xmm register
2281       __ fstp_s(Address(rbp, -4));
2282       __ movflt(xmm0, Address(rbp, -4));
2283     }
2284   } else if (ret_type == T_DOUBLE) {
2285     if (UseSSE >= 2) {
2286       // Pop st0 and store as double and reload into xmm register
2287       __ fstp_d(Address(rbp, -8));
2288       __ movdbl(xmm0, Address(rbp, -8));
2289     }
2290   }
2291 
2292   // Return
2293 
2294   __ leave();
2295   __ ret(0);
2296 
2297   // Unexpected paths are out of line and go here
2298 
2299   // Slow path locking & unlocking
2300   if (method->is_synchronized()) {
2301 
2302     // BEGIN Slow path lock
2303 
2304     __ bind(slow_path_lock);
2305 
2306     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2307     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2308     __ push(thread);
2309     __ push(lock_reg);
2310     __ push(obj_reg);
2311     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2312     __ addptr(rsp, 3*wordSize);
2313 
2314 #ifdef ASSERT
2315     { Label L;
2316     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2317     __ jcc(Assembler::equal, L);
2318     __ stop("no pending exception allowed on exit from monitorenter");
2319     __ bind(L);
2320     }
2321 #endif
2322     __ jmp(lock_done);
2323 
2324     // END Slow path lock
2325 
2326     // BEGIN Slow path unlock
2327     __ bind(slow_path_unlock);
2328     __ vzeroupper();
2329     // Slow path unlock
2330 
2331     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2332       save_native_result(masm, ret_type, stack_slots);
2333     }
2334     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2335 
2336     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2337     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2338 
2339 
2340     // should be a peal
2341     // +wordSize because of the push above
2342     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2343     __ push(thread);
2344     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2345     __ push(rax);
2346 
2347     __ push(obj_reg);
2348     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2349     __ addptr(rsp, 3*wordSize);
2350 #ifdef ASSERT
2351     {
2352       Label L;
2353       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2354       __ jcc(Assembler::equal, L);
2355       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2356       __ bind(L);
2357     }
2358 #endif /* ASSERT */
2359 
2360     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2361 
2362     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2363       restore_native_result(masm, ret_type, stack_slots);
2364     }
2365     __ jmp(unlock_done);
2366     // END Slow path unlock
2367 
2368   }
2369 
2370   // SLOW PATH Reguard the stack if needed
2371 
2372   __ bind(reguard);
2373   __ vzeroupper();
2374   save_native_result(masm, ret_type, stack_slots);
2375   {
2376     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2377   }
2378   restore_native_result(masm, ret_type, stack_slots);
2379   __ jmp(reguard_done);
2380 
2381 
2382   // BEGIN EXCEPTION PROCESSING
2383 
2384   if (!is_critical_native) {
2385     // Forward  the exception
2386     __ bind(exception_pending);
2387 
2388     // remove possible return value from FPU register stack
2389     __ empty_FPU_stack();
2390 
2391     // pop our frame
2392     __ leave();
2393     // and forward the exception
2394     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2395   }
2396 
2397   __ flush();
2398 
2399   nmethod *nm = nmethod::new_native_nmethod(method,
2400                                             compile_id,
2401                                             masm->code(),
2402                                             vep_offset,
2403                                             frame_complete,
2404                                             stack_slots / VMRegImpl::slots_per_word,
2405                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2406                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2407                                             oop_maps);
2408 
2409   if (is_critical_native) {
2410     nm->set_lazy_critical_native(true);
2411   }
2412 
2413   return nm;
2414 
2415 }
2416 
2417 // this function returns the adjust size (in number of words) to a c2i adapter
2418 // activation for use during deoptimization
2419 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2420   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2421 }
2422 
2423 
2424 uint SharedRuntime::out_preserve_stack_slots() {
2425   return 0;
2426 }
2427 
2428 //------------------------------generate_deopt_blob----------------------------
2429 void SharedRuntime::generate_deopt_blob() {
2430   // allocate space for the code
2431   ResourceMark rm;
2432   // setup code generation tools
2433   // note: the buffer code size must account for StackShadowPages=50
2434   CodeBuffer   buffer("deopt_blob", 1536, 1024);
2435   MacroAssembler* masm = new MacroAssembler(&buffer);
2436   int frame_size_in_words;
2437   OopMap* map = NULL;
2438   // Account for the extra args we place on the stack
2439   // by the time we call fetch_unroll_info
2440   const int additional_words = 2; // deopt kind, thread
2441 
2442   OopMapSet *oop_maps = new OopMapSet();
2443 
2444   // -------------
2445   // This code enters when returning to a de-optimized nmethod.  A return
2446   // address has been pushed on the the stack, and return values are in
2447   // registers.
2448   // If we are doing a normal deopt then we were called from the patched
2449   // nmethod from the point we returned to the nmethod. So the return
2450   // address on the stack is wrong by NativeCall::instruction_size
2451   // We will adjust the value to it looks like we have the original return
2452   // address on the stack (like when we eagerly deoptimized).
2453   // In the case of an exception pending with deoptimized then we enter
2454   // with a return address on the stack that points after the call we patched
2455   // into the exception handler. We have the following register state:
2456   //    rax,: exception
2457   //    rbx,: exception handler
2458   //    rdx: throwing pc
2459   // So in this case we simply jam rdx into the useless return address and
2460   // the stack looks just like we want.
2461   //
2462   // At this point we need to de-opt.  We save the argument return
2463   // registers.  We call the first C routine, fetch_unroll_info().  This
2464   // routine captures the return values and returns a structure which
2465   // describes the current frame size and the sizes of all replacement frames.
2466   // The current frame is compiled code and may contain many inlined
2467   // functions, each with their own JVM state.  We pop the current frame, then
2468   // push all the new frames.  Then we call the C routine unpack_frames() to
2469   // populate these frames.  Finally unpack_frames() returns us the new target
2470   // address.  Notice that callee-save registers are BLOWN here; they have
2471   // already been captured in the vframeArray at the time the return PC was
2472   // patched.
2473   address start = __ pc();
2474   Label cont;
2475 
2476   // Prolog for non exception case!
2477 
2478   // Save everything in sight.
2479 
2480   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2481   // Normal deoptimization
2482   __ push(Deoptimization::Unpack_deopt);
2483   __ jmp(cont);
2484 
2485   int reexecute_offset = __ pc() - start;
2486 
2487   // Reexecute case
2488   // return address is the pc describes what bci to do re-execute at
2489 
2490   // No need to update map as each call to save_live_registers will produce identical oopmap
2491   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2492 
2493   __ push(Deoptimization::Unpack_reexecute);
2494   __ jmp(cont);
2495 
2496   int exception_offset = __ pc() - start;
2497 
2498   // Prolog for exception case
2499 
2500   // all registers are dead at this entry point, except for rax, and
2501   // rdx which contain the exception oop and exception pc
2502   // respectively.  Set them in TLS and fall thru to the
2503   // unpack_with_exception_in_tls entry point.
2504 
2505   __ get_thread(rdi);
2506   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2507   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2508 
2509   int exception_in_tls_offset = __ pc() - start;
2510 
2511   // new implementation because exception oop is now passed in JavaThread
2512 
2513   // Prolog for exception case
2514   // All registers must be preserved because they might be used by LinearScan
2515   // Exceptiop oop and throwing PC are passed in JavaThread
2516   // tos: stack at point of call to method that threw the exception (i.e. only
2517   // args are on the stack, no return address)
2518 
2519   // make room on stack for the return address
2520   // It will be patched later with the throwing pc. The correct value is not
2521   // available now because loading it from memory would destroy registers.
2522   __ push(0);
2523 
2524   // Save everything in sight.
2525 
2526   // No need to update map as each call to save_live_registers will produce identical oopmap
2527   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2528 
2529   // Now it is safe to overwrite any register
2530 
2531   // store the correct deoptimization type
2532   __ push(Deoptimization::Unpack_exception);
2533 
2534   // load throwing pc from JavaThread and patch it as the return address
2535   // of the current frame. Then clear the field in JavaThread
2536   __ get_thread(rdi);
2537   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2538   __ movptr(Address(rbp, wordSize), rdx);
2539   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2540 
2541 #ifdef ASSERT
2542   // verify that there is really an exception oop in JavaThread
2543   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2544   __ verify_oop(rax);
2545 
2546   // verify that there is no pending exception
2547   Label no_pending_exception;
2548   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2549   __ testptr(rax, rax);
2550   __ jcc(Assembler::zero, no_pending_exception);
2551   __ stop("must not have pending exception here");
2552   __ bind(no_pending_exception);
2553 #endif
2554 
2555   __ bind(cont);
2556 
2557   // Compiled code leaves the floating point stack dirty, empty it.
2558   __ empty_FPU_stack();
2559 
2560 
2561   // Call C code.  Need thread and this frame, but NOT official VM entry
2562   // crud.  We cannot block on this call, no GC can happen.
2563   __ get_thread(rcx);
2564   __ push(rcx);
2565   // fetch_unroll_info needs to call last_java_frame()
2566   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2567 
2568   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2569 
2570   // Need to have an oopmap that tells fetch_unroll_info where to
2571   // find any register it might need.
2572 
2573   oop_maps->add_gc_map( __ pc()-start, map);
2574 
2575   // Discard args to fetch_unroll_info
2576   __ pop(rcx);
2577   __ pop(rcx);
2578 
2579   __ get_thread(rcx);
2580   __ reset_last_Java_frame(rcx, false);
2581 
2582   // Load UnrollBlock into EDI
2583   __ mov(rdi, rax);
2584 
2585   // Move the unpack kind to a safe place in the UnrollBlock because
2586   // we are very short of registers
2587 
2588   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2589   // retrieve the deopt kind from the UnrollBlock.
2590   __ movl(rax, unpack_kind);
2591 
2592    Label noException;
2593   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2594   __ jcc(Assembler::notEqual, noException);
2595   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2596   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2597   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2598   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2599 
2600   __ verify_oop(rax);
2601 
2602   // Overwrite the result registers with the exception results.
2603   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2604   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2605 
2606   __ bind(noException);
2607 
2608   // Stack is back to only having register save data on the stack.
2609   // Now restore the result registers. Everything else is either dead or captured
2610   // in the vframeArray.
2611 
2612   RegisterSaver::restore_result_registers(masm);
2613 
2614   // Non standard control word may be leaked out through a safepoint blob, and we can
2615   // deopt at a poll point with the non standard control word. However, we should make
2616   // sure the control word is correct after restore_result_registers.
2617   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2618 
2619   // All of the register save area has been popped of the stack. Only the
2620   // return address remains.
2621 
2622   // Pop all the frames we must move/replace.
2623   //
2624   // Frame picture (youngest to oldest)
2625   // 1: self-frame (no frame link)
2626   // 2: deopting frame  (no frame link)
2627   // 3: caller of deopting frame (could be compiled/interpreted).
2628   //
2629   // Note: by leaving the return address of self-frame on the stack
2630   // and using the size of frame 2 to adjust the stack
2631   // when we are done the return to frame 3 will still be on the stack.
2632 
2633   // Pop deoptimized frame
2634   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2635 
2636   // sp should be pointing at the return address to the caller (3)
2637 
2638   // Pick up the initial fp we should save
2639   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2640   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2641 
2642 #ifdef ASSERT
2643   // Compilers generate code that bang the stack by as much as the
2644   // interpreter would need. So this stack banging should never
2645   // trigger a fault. Verify that it does not on non product builds.
2646   if (UseStackBanging) {
2647     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2648     __ bang_stack_size(rbx, rcx);
2649   }
2650 #endif
2651 
2652   // Load array of frame pcs into ECX
2653   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2654 
2655   __ pop(rsi); // trash the old pc
2656 
2657   // Load array of frame sizes into ESI
2658   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2659 
2660   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2661 
2662   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2663   __ movl(counter, rbx);
2664 
2665   // Now adjust the caller's stack to make up for the extra locals
2666   // but record the original sp so that we can save it in the skeletal interpreter
2667   // frame and the stack walking of interpreter_sender will get the unextended sp
2668   // value and not the "real" sp value.
2669 
2670   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2671   __ movptr(sp_temp, rsp);
2672   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2673   __ subptr(rsp, rbx);
2674 
2675   // Push interpreter frames in a loop
2676   Label loop;
2677   __ bind(loop);
2678   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2679   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2680   __ pushptr(Address(rcx, 0));          // save return address
2681   __ enter();                           // save old & set new rbp,
2682   __ subptr(rsp, rbx);                  // Prolog!
2683   __ movptr(rbx, sp_temp);              // sender's sp
2684   // This value is corrected by layout_activation_impl
2685   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2686   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2687   __ movptr(sp_temp, rsp);              // pass to next frame
2688   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2689   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2690   __ decrementl(counter);             // decrement counter
2691   __ jcc(Assembler::notZero, loop);
2692   __ pushptr(Address(rcx, 0));          // save final return address
2693 
2694   // Re-push self-frame
2695   __ enter();                           // save old & set new rbp,
2696 
2697   //  Return address and rbp, are in place
2698   // We'll push additional args later. Just allocate a full sized
2699   // register save area
2700   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2701 
2702   // Restore frame locals after moving the frame
2703   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2704   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2705   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2706   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2707   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2708 
2709   // Set up the args to unpack_frame
2710 
2711   __ pushl(unpack_kind);                     // get the unpack_kind value
2712   __ get_thread(rcx);
2713   __ push(rcx);
2714 
2715   // set last_Java_sp, last_Java_fp
2716   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2717 
2718   // Call C code.  Need thread but NOT official VM entry
2719   // crud.  We cannot block on this call, no GC can happen.  Call should
2720   // restore return values to their stack-slots with the new SP.
2721   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2722   // Set an oopmap for the call site
2723   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2724 
2725   // rax, contains the return result type
2726   __ push(rax);
2727 
2728   __ get_thread(rcx);
2729   __ reset_last_Java_frame(rcx, false);
2730 
2731   // Collect return values
2732   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2733   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2734 
2735   // Clear floating point stack before returning to interpreter
2736   __ empty_FPU_stack();
2737 
2738   // Check if we should push the float or double return value.
2739   Label results_done, yes_double_value;
2740   __ cmpl(Address(rsp, 0), T_DOUBLE);
2741   __ jcc (Assembler::zero, yes_double_value);
2742   __ cmpl(Address(rsp, 0), T_FLOAT);
2743   __ jcc (Assembler::notZero, results_done);
2744 
2745   // return float value as expected by interpreter
2746   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2747   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2748   __ jmp(results_done);
2749 
2750   // return double value as expected by interpreter
2751   __ bind(yes_double_value);
2752   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2753   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2754 
2755   __ bind(results_done);
2756 
2757   // Pop self-frame.
2758   __ leave();                              // Epilog!
2759 
2760   // Jump to interpreter
2761   __ ret(0);
2762 
2763   // -------------
2764   // make sure all code is generated
2765   masm->flush();
2766 
2767   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2768   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2769 }
2770 
2771 
2772 #ifdef COMPILER2
2773 //------------------------------generate_uncommon_trap_blob--------------------
2774 void SharedRuntime::generate_uncommon_trap_blob() {
2775   // allocate space for the code
2776   ResourceMark rm;
2777   // setup code generation tools
2778   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2779   MacroAssembler* masm = new MacroAssembler(&buffer);
2780 
2781   enum frame_layout {
2782     arg0_off,      // thread                     sp + 0 // Arg location for
2783     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2784     arg2_off,      // exec_mode                  sp + 2
2785     // The frame sender code expects that rbp will be in the "natural" place and
2786     // will override any oopMap setting for it. We must therefore force the layout
2787     // so that it agrees with the frame sender code.
2788     rbp_off,       // callee saved register      sp + 3
2789     return_off,    // slot for return address    sp + 4
2790     framesize
2791   };
2792 
2793   address start = __ pc();
2794 
2795   if (UseRTMLocking) {
2796     // Abort RTM transaction before possible nmethod deoptimization.
2797     __ xabort(0);
2798   }
2799 
2800   // Push self-frame.
2801   __ subptr(rsp, return_off*wordSize);     // Epilog!
2802 
2803   // rbp, is an implicitly saved callee saved register (i.e. the calling
2804   // convention will save restore it in prolog/epilog) Other than that
2805   // there are no callee save registers no that adapter frames are gone.
2806   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2807 
2808   // Clear the floating point exception stack
2809   __ empty_FPU_stack();
2810 
2811   // set last_Java_sp
2812   __ get_thread(rdx);
2813   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2814 
2815   // Call C code.  Need thread but NOT official VM entry
2816   // crud.  We cannot block on this call, no GC can happen.  Call should
2817   // capture callee-saved registers as well as return values.
2818   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2819   // argument already in ECX
2820   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2821   __ movl(Address(rsp, arg2_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2822   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2823 
2824   // Set an oopmap for the call site
2825   OopMapSet *oop_maps = new OopMapSet();
2826   OopMap* map =  new OopMap( framesize, 0 );
2827   // No oopMap for rbp, it is known implicitly
2828 
2829   oop_maps->add_gc_map( __ pc()-start, map);
2830 
2831   __ get_thread(rcx);
2832 
2833   __ reset_last_Java_frame(rcx, false);
2834 
2835   // Load UnrollBlock into EDI
2836   __ movptr(rdi, rax);
2837 
2838 #ifdef ASSERT
2839   { Label L;
2840     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
2841             (int32_t)Deoptimization::Unpack_uncommon_trap);
2842     __ jcc(Assembler::equal, L);
2843     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
2844     __ bind(L);
2845   }
2846 #endif
2847 
2848   // Pop all the frames we must move/replace.
2849   //
2850   // Frame picture (youngest to oldest)
2851   // 1: self-frame (no frame link)
2852   // 2: deopting frame  (no frame link)
2853   // 3: caller of deopting frame (could be compiled/interpreted).
2854 
2855   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2856   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2857 
2858   // Pop deoptimized frame
2859   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2860   __ addptr(rsp, rcx);
2861 
2862   // sp should be pointing at the return address to the caller (3)
2863 
2864   // Pick up the initial fp we should save
2865   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2866   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2867 
2868 #ifdef ASSERT
2869   // Compilers generate code that bang the stack by as much as the
2870   // interpreter would need. So this stack banging should never
2871   // trigger a fault. Verify that it does not on non product builds.
2872   if (UseStackBanging) {
2873     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2874     __ bang_stack_size(rbx, rcx);
2875   }
2876 #endif
2877 
2878   // Load array of frame pcs into ECX
2879   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2880 
2881   __ pop(rsi); // trash the pc
2882 
2883   // Load array of frame sizes into ESI
2884   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2885 
2886   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2887 
2888   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2889   __ movl(counter, rbx);
2890 
2891   // Now adjust the caller's stack to make up for the extra locals
2892   // but record the original sp so that we can save it in the skeletal interpreter
2893   // frame and the stack walking of interpreter_sender will get the unextended sp
2894   // value and not the "real" sp value.
2895 
2896   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2897   __ movptr(sp_temp, rsp);
2898   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2899   __ subptr(rsp, rbx);
2900 
2901   // Push interpreter frames in a loop
2902   Label loop;
2903   __ bind(loop);
2904   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2905   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2906   __ pushptr(Address(rcx, 0));          // save return address
2907   __ enter();                           // save old & set new rbp,
2908   __ subptr(rsp, rbx);                  // Prolog!
2909   __ movptr(rbx, sp_temp);              // sender's sp
2910   // This value is corrected by layout_activation_impl
2911   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2912   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2913   __ movptr(sp_temp, rsp);              // pass to next frame
2914   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2915   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2916   __ decrementl(counter);             // decrement counter
2917   __ jcc(Assembler::notZero, loop);
2918   __ pushptr(Address(rcx, 0));            // save final return address
2919 
2920   // Re-push self-frame
2921   __ enter();                           // save old & set new rbp,
2922   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2923 
2924 
2925   // set last_Java_sp, last_Java_fp
2926   __ get_thread(rdi);
2927   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2928 
2929   // Call C code.  Need thread but NOT official VM entry
2930   // crud.  We cannot block on this call, no GC can happen.  Call should
2931   // restore return values to their stack-slots with the new SP.
2932   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2933   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2934   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2935   // Set an oopmap for the call site
2936   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2937 
2938   __ get_thread(rdi);
2939   __ reset_last_Java_frame(rdi, true);
2940 
2941   // Pop self-frame.
2942   __ leave();     // Epilog!
2943 
2944   // Jump to interpreter
2945   __ ret(0);
2946 
2947   // -------------
2948   // make sure all code is generated
2949   masm->flush();
2950 
2951    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2952 }
2953 #endif // COMPILER2
2954 
2955 //------------------------------generate_handler_blob------
2956 //
2957 // Generate a special Compile2Runtime blob that saves all registers,
2958 // setup oopmap, and calls safepoint code to stop the compiled code for
2959 // a safepoint.
2960 //
2961 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2962 
2963   // Account for thread arg in our frame
2964   const int additional_words = 1;
2965   int frame_size_in_words;
2966 
2967   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2968 
2969   ResourceMark rm;
2970   OopMapSet *oop_maps = new OopMapSet();
2971   OopMap* map;
2972 
2973   // allocate space for the code
2974   // setup code generation tools
2975   CodeBuffer   buffer("handler_blob", 1024, 512);
2976   MacroAssembler* masm = new MacroAssembler(&buffer);
2977 
2978   const Register java_thread = rdi; // callee-saved for VC++
2979   address start   = __ pc();
2980   address call_pc = NULL;
2981   bool cause_return = (poll_type == POLL_AT_RETURN);
2982   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2983 
2984   if (UseRTMLocking) {
2985     // Abort RTM transaction before calling runtime
2986     // because critical section will be large and will be
2987     // aborted anyway. Also nmethod could be deoptimized.
2988     __ xabort(0);
2989   }
2990 
2991   // If cause_return is true we are at a poll_return and there is
2992   // the return address on the stack to the caller on the nmethod
2993   // that is safepoint. We can leave this return on the stack and
2994   // effectively complete the return and safepoint in the caller.
2995   // Otherwise we push space for a return address that the safepoint
2996   // handler will install later to make the stack walking sensible.
2997   if (!cause_return)
2998     __ push(rbx);  // Make room for return address (or push it again)
2999 
3000   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
3001 
3002   // The following is basically a call_VM. However, we need the precise
3003   // address of the call in order to generate an oopmap. Hence, we do all the
3004   // work ourselves.
3005 
3006   // Push thread argument and setup last_Java_sp
3007   __ get_thread(java_thread);
3008   __ push(java_thread);
3009   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
3010 
3011   // if this was not a poll_return then we need to correct the return address now.
3012   if (!cause_return) {
3013     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
3014     __ movptr(Address(rbp, wordSize), rax);
3015   }
3016 
3017   // do the call
3018   __ call(RuntimeAddress(call_ptr));
3019 
3020   // Set an oopmap for the call site.  This oopmap will map all
3021   // oop-registers and debug-info registers as callee-saved.  This
3022   // will allow deoptimization at this safepoint to find all possible
3023   // debug-info recordings, as well as let GC find all oops.
3024 
3025   oop_maps->add_gc_map( __ pc() - start, map);
3026 
3027   // Discard arg
3028   __ pop(rcx);
3029 
3030   Label noException;
3031 
3032   // Clear last_Java_sp again
3033   __ get_thread(java_thread);
3034   __ reset_last_Java_frame(java_thread, false);
3035 
3036   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3037   __ jcc(Assembler::equal, noException);
3038 
3039   // Exception pending
3040   RegisterSaver::restore_live_registers(masm, save_vectors);
3041 
3042   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3043 
3044   __ bind(noException);
3045 
3046   // Normal exit, register restoring and exit
3047   RegisterSaver::restore_live_registers(masm, save_vectors);
3048 
3049   __ ret(0);
3050 
3051   // make sure all code is generated
3052   masm->flush();
3053 
3054   // Fill-out other meta info
3055   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3056 }
3057 
3058 //
3059 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3060 //
3061 // Generate a stub that calls into vm to find out the proper destination
3062 // of a java call. All the argument registers are live at this point
3063 // but since this is generic code we don't know what they are and the caller
3064 // must do any gc of the args.
3065 //
3066 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3067   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3068 
3069   // allocate space for the code
3070   ResourceMark rm;
3071 
3072   CodeBuffer buffer(name, 1000, 512);
3073   MacroAssembler* masm                = new MacroAssembler(&buffer);
3074 
3075   int frame_size_words;
3076   enum frame_layout {
3077                 thread_off,
3078                 extra_words };
3079 
3080   OopMapSet *oop_maps = new OopMapSet();
3081   OopMap* map = NULL;
3082 
3083   int start = __ offset();
3084 
3085   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3086 
3087   int frame_complete = __ offset();
3088 
3089   const Register thread = rdi;
3090   __ get_thread(rdi);
3091 
3092   __ push(thread);
3093   __ set_last_Java_frame(thread, noreg, rbp, NULL);
3094 
3095   __ call(RuntimeAddress(destination));
3096 
3097 
3098   // Set an oopmap for the call site.
3099   // We need this not only for callee-saved registers, but also for volatile
3100   // registers that the compiler might be keeping live across a safepoint.
3101 
3102   oop_maps->add_gc_map( __ offset() - start, map);
3103 
3104   // rax, contains the address we are going to jump to assuming no exception got installed
3105 
3106   __ addptr(rsp, wordSize);
3107 
3108   // clear last_Java_sp
3109   __ reset_last_Java_frame(thread, true);
3110   // check for pending exceptions
3111   Label pending;
3112   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3113   __ jcc(Assembler::notEqual, pending);
3114 
3115   // get the returned Method*
3116   __ get_vm_result_2(rbx, thread);
3117   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3118 
3119   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3120 
3121   RegisterSaver::restore_live_registers(masm);
3122 
3123   // We are back the the original state on entry and ready to go.
3124 
3125   __ jmp(rax);
3126 
3127   // Pending exception after the safepoint
3128 
3129   __ bind(pending);
3130 
3131   RegisterSaver::restore_live_registers(masm);
3132 
3133   // exception pending => remove activation and forward to exception handler
3134 
3135   __ get_thread(thread);
3136   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3137   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3138   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3139 
3140   // -------------
3141   // make sure all code is generated
3142   masm->flush();
3143 
3144   // return the  blob
3145   // frame_size_words or bytes??
3146   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3147 }