1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/convertnode.hpp"
  30 #include "opto/memnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 
  38 //=============================================================================
  39 //------------------------------hash-------------------------------------------
  40 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  41 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  42 // the same value in the presence of edge swapping.
  43 uint MulNode::hash() const {
  44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  45 }
  46 
  47 //------------------------------Identity---------------------------------------
  48 // Multiplying a one preserves the other argument
  49 Node* MulNode::Identity(PhaseGVN* phase) {
  50   register const Type *one = mul_id();  // The multiplicative identity
  51   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  52   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  53 
  54   return this;
  55 }
  56 
  57 //------------------------------Ideal------------------------------------------
  58 // We also canonicalize the Node, moving constants to the right input,
  59 // and flatten expressions (so that 1+x+2 becomes x+3).
  60 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  61   const Type *t1 = phase->type( in(1) );
  62   const Type *t2 = phase->type( in(2) );
  63   Node *progress = NULL;        // Progress flag
  64   // We are OK if right is a constant, or right is a load and
  65   // left is a non-constant.
  66   if( !(t2->singleton() ||
  67         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
  68     if( t1->singleton() ||       // Left input is a constant?
  69         // Otherwise, sort inputs (commutativity) to help value numbering.
  70         (in(1)->_idx > in(2)->_idx) ) {
  71       swap_edges(1, 2);
  72       const Type *t = t1;
  73       t1 = t2;
  74       t2 = t;
  75       progress = this;            // Made progress
  76     }
  77   }
  78 
  79   // If the right input is a constant, and the left input is a product of a
  80   // constant, flatten the expression tree.
  81   uint op = Opcode();
  82   if( t2->singleton() &&        // Right input is a constant?
  83       op != Op_MulF &&          // Float & double cannot reassociate
  84       op != Op_MulD ) {
  85     if( t2 == Type::TOP ) return NULL;
  86     Node *mul1 = in(1);
  87 #ifdef ASSERT
  88     // Check for dead loop
  89     int   op1 = mul1->Opcode();
  90     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
  91         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
  92         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
  93           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
  94       assert(false, "dead loop in MulNode::Ideal");
  95 #endif
  96 
  97     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
  98       // Mul of a constant?
  99       const Type *t12 = phase->type( mul1->in(2) );
 100       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 101         // Compute new constant; check for overflow
 102         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 103         if( tcon01->singleton() ) {
 104           // The Mul of the flattened expression
 105           set_req(1, mul1->in(1));
 106           set_req(2, phase->makecon( tcon01 ));
 107           t2 = tcon01;
 108           progress = this;      // Made progress
 109         }
 110       }
 111     }
 112     // If the right input is a constant, and the left input is an add of a
 113     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 114     const Node *add1 = in(1);
 115     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 116       // Add of a constant?
 117       const Type *t12 = phase->type( add1->in(2) );
 118       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 119         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 120         // Compute new constant; check for overflow
 121         const Type *tcon01 = mul_ring(t2,t12);
 122         if( tcon01->singleton() ) {
 123 
 124         // Convert (X+con1)*con0 into X*con0
 125           Node *mul = clone();    // mul = ()*con0
 126           mul->set_req(1,add1->in(1));  // mul = X*con0
 127           mul = phase->transform(mul);
 128 
 129           Node *add2 = add1->clone();
 130           add2->set_req(1, mul);        // X*con0 + con0*con1
 131           add2->set_req(2, phase->makecon(tcon01) );
 132           progress = add2;
 133         }
 134       }
 135     } // End of is left input an add
 136   } // End of is right input a Mul
 137 
 138   return progress;
 139 }
 140 
 141 //------------------------------Value-----------------------------------------
 142 const Type* MulNode::Value(PhaseGVN* phase) const {
 143   const Type *t1 = phase->type( in(1) );
 144   const Type *t2 = phase->type( in(2) );
 145   // Either input is TOP ==> the result is TOP
 146   if( t1 == Type::TOP ) return Type::TOP;
 147   if( t2 == Type::TOP ) return Type::TOP;
 148 
 149   // Either input is ZERO ==> the result is ZERO.
 150   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 151   int op = Opcode();
 152   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 153     const Type *zero = add_id();        // The multiplicative zero
 154     if( t1->higher_equal( zero ) ) return zero;
 155     if( t2->higher_equal( zero ) ) return zero;
 156   }
 157 
 158   // Code pattern on return from a call that returns an __Value.  Can
 159   // be optimized away if the return value turns out to be an oop.
 160   if (op == Op_AndX &&
 161       in(1) != NULL &&
 162       in(1)->Opcode() == Op_CastP2X &&
 163       in(1)->in(1) != NULL &&
 164       phase->type(in(1)->in(1))->isa_oopptr() &&
 165       t2->isa_intptr_t()->_lo >= 0 &&
 166       t2->isa_intptr_t()->_hi <= MinObjAlignmentInBytesMask) {
 167     return add_id();
 168   }
 169 
 170   // Either input is BOTTOM ==> the result is the local BOTTOM
 171   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 172     return bottom_type();
 173 
 174 #if defined(IA32)
 175   // Can't trust native compilers to properly fold strict double
 176   // multiplication with round-to-zero on this platform.
 177   if (op == Op_MulD && phase->C->method()->is_strict()) {
 178     return TypeD::DOUBLE;
 179   }
 180 #endif
 181 
 182   return mul_ring(t1,t2);            // Local flavor of type multiplication
 183 }
 184 
 185 
 186 //=============================================================================
 187 //------------------------------Ideal------------------------------------------
 188 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 189 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 190   // Swap constant to right
 191   jint con;
 192   if ((con = in(1)->find_int_con(0)) != 0) {
 193     swap_edges(1, 2);
 194     // Finish rest of method to use info in 'con'
 195   } else if ((con = in(2)->find_int_con(0)) == 0) {
 196     return MulNode::Ideal(phase, can_reshape);
 197   }
 198 
 199   // Now we have a constant Node on the right and the constant in con
 200   if( con == 0 ) return NULL;   // By zero is handled by Value call
 201   if( con == 1 ) return NULL;   // By one  is handled by Identity call
 202 
 203   // Check for negative constant; if so negate the final result
 204   bool sign_flip = false;
 205   if( con < 0 ) {
 206     con = -con;
 207     sign_flip = true;
 208   }
 209 
 210   // Get low bit; check for being the only bit
 211   Node *res = NULL;
 212   jint bit1 = con & -con;       // Extract low bit
 213   if( bit1 == con ) {           // Found a power of 2?
 214     res = new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
 215   } else {
 216 
 217     // Check for constant with 2 bits set
 218     jint bit2 = con-bit1;
 219     bit2 = bit2 & -bit2;          // Extract 2nd bit
 220     if( bit2 + bit1 == con ) {    // Found all bits in con?
 221       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
 222       Node *n2 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
 223       res = new AddINode( n2, n1 );
 224 
 225     } else if (is_power_of_2(con+1)) {
 226       // Sleezy: power-of-2 -1.  Next time be generic.
 227       jint temp = (jint) (con + 1);
 228       Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
 229       res = new SubINode( n1, in(1) );
 230     } else {
 231       return MulNode::Ideal(phase, can_reshape);
 232     }
 233   }
 234 
 235   if( sign_flip ) {             // Need to negate result?
 236     res = phase->transform(res);// Transform, before making the zero con
 237     res = new SubINode(phase->intcon(0),res);
 238   }
 239 
 240   return res;                   // Return final result
 241 }
 242 
 243 //------------------------------mul_ring---------------------------------------
 244 // Compute the product type of two integer ranges into this node.
 245 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
 246   const TypeInt *r0 = t0->is_int(); // Handy access
 247   const TypeInt *r1 = t1->is_int();
 248 
 249   // Fetch endpoints of all ranges
 250   int32_t lo0 = r0->_lo;
 251   double a = (double)lo0;
 252   int32_t hi0 = r0->_hi;
 253   double b = (double)hi0;
 254   int32_t lo1 = r1->_lo;
 255   double c = (double)lo1;
 256   int32_t hi1 = r1->_hi;
 257   double d = (double)hi1;
 258 
 259   // Compute all endpoints & check for overflow
 260   int32_t A = java_multiply(lo0, lo1);
 261   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
 262   int32_t B = java_multiply(lo0, hi1);
 263   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
 264   int32_t C = java_multiply(hi0, lo1);
 265   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
 266   int32_t D = java_multiply(hi0, hi1);
 267   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
 268 
 269   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 270   else { lo0 = B; hi0 = A; }
 271   if( C < D ) {
 272     if( C < lo0 ) lo0 = C;
 273     if( D > hi0 ) hi0 = D;
 274   } else {
 275     if( D < lo0 ) lo0 = D;
 276     if( C > hi0 ) hi0 = C;
 277   }
 278   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 279 }
 280 
 281 
 282 //=============================================================================
 283 //------------------------------Ideal------------------------------------------
 284 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 285 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 286   // Swap constant to right
 287   jlong con;
 288   if ((con = in(1)->find_long_con(0)) != 0) {
 289     swap_edges(1, 2);
 290     // Finish rest of method to use info in 'con'
 291   } else if ((con = in(2)->find_long_con(0)) == 0) {
 292     return MulNode::Ideal(phase, can_reshape);
 293   }
 294 
 295   // Now we have a constant Node on the right and the constant in con
 296   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
 297   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
 298 
 299   // Check for negative constant; if so negate the final result
 300   bool sign_flip = false;
 301   if( con < 0 ) {
 302     con = -con;
 303     sign_flip = true;
 304   }
 305 
 306   // Get low bit; check for being the only bit
 307   Node *res = NULL;
 308   jlong bit1 = con & -con;      // Extract low bit
 309   if( bit1 == con ) {           // Found a power of 2?
 310     res = new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
 311   } else {
 312 
 313     // Check for constant with 2 bits set
 314     jlong bit2 = con-bit1;
 315     bit2 = bit2 & -bit2;          // Extract 2nd bit
 316     if( bit2 + bit1 == con ) {    // Found all bits in con?
 317       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
 318       Node *n2 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
 319       res = new AddLNode( n2, n1 );
 320 
 321     } else if (is_power_of_2_long(con+1)) {
 322       // Sleezy: power-of-2 -1.  Next time be generic.
 323       jlong temp = (jlong) (con + 1);
 324       Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
 325       res = new SubLNode( n1, in(1) );
 326     } else {
 327       return MulNode::Ideal(phase, can_reshape);
 328     }
 329   }
 330 
 331   if( sign_flip ) {             // Need to negate result?
 332     res = phase->transform(res);// Transform, before making the zero con
 333     res = new SubLNode(phase->longcon(0),res);
 334   }
 335 
 336   return res;                   // Return final result
 337 }
 338 
 339 //------------------------------mul_ring---------------------------------------
 340 // Compute the product type of two integer ranges into this node.
 341 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
 342   const TypeLong *r0 = t0->is_long(); // Handy access
 343   const TypeLong *r1 = t1->is_long();
 344 
 345   // Fetch endpoints of all ranges
 346   jlong lo0 = r0->_lo;
 347   double a = (double)lo0;
 348   jlong hi0 = r0->_hi;
 349   double b = (double)hi0;
 350   jlong lo1 = r1->_lo;
 351   double c = (double)lo1;
 352   jlong hi1 = r1->_hi;
 353   double d = (double)hi1;
 354 
 355   // Compute all endpoints & check for overflow
 356   jlong A = java_multiply(lo0, lo1);
 357   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
 358   jlong B = java_multiply(lo0, hi1);
 359   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
 360   jlong C = java_multiply(hi0, lo1);
 361   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
 362   jlong D = java_multiply(hi0, hi1);
 363   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
 364 
 365   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 366   else { lo0 = B; hi0 = A; }
 367   if( C < D ) {
 368     if( C < lo0 ) lo0 = C;
 369     if( D > hi0 ) hi0 = D;
 370   } else {
 371     if( D < lo0 ) lo0 = D;
 372     if( C > hi0 ) hi0 = C;
 373   }
 374   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 375 }
 376 
 377 //=============================================================================
 378 //------------------------------mul_ring---------------------------------------
 379 // Compute the product type of two double ranges into this node.
 380 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 381   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 382   return TypeF::make( t0->getf() * t1->getf() );
 383 }
 384 
 385 //=============================================================================
 386 //------------------------------mul_ring---------------------------------------
 387 // Compute the product type of two double ranges into this node.
 388 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 389   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 390   // We must be multiplying 2 double constants.
 391   return TypeD::make( t0->getd() * t1->getd() );
 392 }
 393 
 394 //=============================================================================
 395 //------------------------------Value------------------------------------------
 396 const Type* MulHiLNode::Value(PhaseGVN* phase) const {
 397   // Either input is TOP ==> the result is TOP
 398   const Type *t1 = phase->type( in(1) );
 399   const Type *t2 = phase->type( in(2) );
 400   if( t1 == Type::TOP ) return Type::TOP;
 401   if( t2 == Type::TOP ) return Type::TOP;
 402 
 403   // Either input is BOTTOM ==> the result is the local BOTTOM
 404   const Type *bot = bottom_type();
 405   if( (t1 == bot) || (t2 == bot) ||
 406       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 407     return bot;
 408 
 409   // It is not worth trying to constant fold this stuff!
 410   return TypeLong::LONG;
 411 }
 412 
 413 //=============================================================================
 414 //------------------------------mul_ring---------------------------------------
 415 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 416 // For the logical operations the ring's MUL is really a logical AND function.
 417 // This also type-checks the inputs for sanity.  Guaranteed never to
 418 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 419 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 420   const TypeInt *r0 = t0->is_int(); // Handy access
 421   const TypeInt *r1 = t1->is_int();
 422   int widen = MAX2(r0->_widen,r1->_widen);
 423 
 424   // If either input is a constant, might be able to trim cases
 425   if( !r0->is_con() && !r1->is_con() )
 426     return TypeInt::INT;        // No constants to be had
 427 
 428   // Both constants?  Return bits
 429   if( r0->is_con() && r1->is_con() )
 430     return TypeInt::make( r0->get_con() & r1->get_con() );
 431 
 432   if( r0->is_con() && r0->get_con() > 0 )
 433     return TypeInt::make(0, r0->get_con(), widen);
 434 
 435   if( r1->is_con() && r1->get_con() > 0 )
 436     return TypeInt::make(0, r1->get_con(), widen);
 437 
 438   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
 439     return TypeInt::BOOL;
 440   }
 441 
 442   return TypeInt::INT;          // No constants to be had
 443 }
 444 
 445 //------------------------------Identity---------------------------------------
 446 // Masking off the high bits of an unsigned load is not required
 447 Node* AndINode::Identity(PhaseGVN* phase) {
 448 
 449   // x & x => x
 450   if (phase->eqv(in(1), in(2))) return in(1);
 451 
 452   Node* in1 = in(1);
 453   uint op = in1->Opcode();
 454   const TypeInt* t2 = phase->type(in(2))->isa_int();
 455   if (t2 && t2->is_con()) {
 456     int con = t2->get_con();
 457     // Masking off high bits which are always zero is useless.
 458     const TypeInt* t1 = phase->type( in(1) )->isa_int();
 459     if (t1 != NULL && t1->_lo >= 0) {
 460       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
 461       if ((t1_support & con) == t1_support)
 462         return in1;
 463     }
 464     // Masking off the high bits of a unsigned-shift-right is not
 465     // needed either.
 466     if (op == Op_URShiftI) {
 467       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 468       if (t12 && t12->is_con()) {  // Shift is by a constant
 469         int shift = t12->get_con();
 470         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 471         int mask = max_juint >> shift;
 472         if ((mask & con) == mask)  // If AND is useless, skip it
 473           return in1;
 474       }
 475     }
 476   }
 477   return MulNode::Identity(phase);
 478 }
 479 
 480 //------------------------------Ideal------------------------------------------
 481 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 482   // Special case constant AND mask
 483   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 484   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 485   const int mask = t2->get_con();
 486   Node *load = in(1);
 487   uint lop = load->Opcode();
 488 
 489   // Masking bits off of a Character?  Hi bits are already zero.
 490   if( lop == Op_LoadUS &&
 491       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 492     return new AndINode(load,phase->intcon(mask&0xFFFF));
 493 
 494   // Masking bits off of a Short?  Loading a Character does some masking
 495   if (can_reshape &&
 496       load->outcnt() == 1 && load->unique_out() == this) {
 497     if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
 498       Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
 499       ldus = phase->transform(ldus);
 500       return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
 501     }
 502 
 503     // Masking sign bits off of a Byte?  Do an unsigned byte load plus
 504     // an and.
 505     if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
 506       Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
 507       ldub = phase->transform(ldub);
 508       return new AndINode(ldub, phase->intcon(mask));
 509     }
 510   }
 511 
 512   // Masking off sign bits?  Dont make them!
 513   if( lop == Op_RShiftI ) {
 514     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 515     if( t12 && t12->is_con() ) { // Shift is by a constant
 516       int shift = t12->get_con();
 517       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 518       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 519       // If the AND'ing of the 2 masks has no bits, then only original shifted
 520       // bits survive.  NO sign-extension bits survive the maskings.
 521       if( (sign_bits_mask & mask) == 0 ) {
 522         // Use zero-fill shift instead
 523         Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
 524         return new AndINode( zshift, in(2) );
 525       }
 526     }
 527   }
 528 
 529   // Check for 'negate/and-1', a pattern emitted when someone asks for
 530   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 531   // plus 1) and the mask is of the low order bit.  Skip the negate.
 532   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 533       phase->type(load->in(1)) == TypeInt::ZERO )
 534     return new AndINode( load->in(2), in(2) );
 535 
 536   return MulNode::Ideal(phase, can_reshape);
 537 }
 538 
 539 //=============================================================================
 540 //------------------------------mul_ring---------------------------------------
 541 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 542 // For the logical operations the ring's MUL is really a logical AND function.
 543 // This also type-checks the inputs for sanity.  Guaranteed never to
 544 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 545 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 546   const TypeLong *r0 = t0->is_long(); // Handy access
 547   const TypeLong *r1 = t1->is_long();
 548   int widen = MAX2(r0->_widen,r1->_widen);
 549 
 550   // If either input is a constant, might be able to trim cases
 551   if( !r0->is_con() && !r1->is_con() )
 552     return TypeLong::LONG;      // No constants to be had
 553 
 554   // Both constants?  Return bits
 555   if( r0->is_con() && r1->is_con() )
 556     return TypeLong::make( r0->get_con() & r1->get_con() );
 557 
 558   if( r0->is_con() && r0->get_con() > 0 )
 559     return TypeLong::make(CONST64(0), r0->get_con(), widen);
 560 
 561   if( r1->is_con() && r1->get_con() > 0 )
 562     return TypeLong::make(CONST64(0), r1->get_con(), widen);
 563 
 564   return TypeLong::LONG;        // No constants to be had
 565 }
 566 
 567 //------------------------------Identity---------------------------------------
 568 // Masking off the high bits of an unsigned load is not required
 569 Node* AndLNode::Identity(PhaseGVN* phase) {
 570 
 571   // x & x => x
 572   if (phase->eqv(in(1), in(2))) return in(1);
 573 
 574   Node *usr = in(1);
 575   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 576   if( t2 && t2->is_con() ) {
 577     jlong con = t2->get_con();
 578     // Masking off high bits which are always zero is useless.
 579     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 580     if (t1 != NULL && t1->_lo >= 0) {
 581       int bit_count = log2_long(t1->_hi) + 1;
 582       jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
 583       if ((t1_support & con) == t1_support)
 584         return usr;
 585     }
 586     uint lop = usr->Opcode();
 587     // Masking off the high bits of a unsigned-shift-right is not
 588     // needed either.
 589     if( lop == Op_URShiftL ) {
 590       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 591       if( t12 && t12->is_con() ) {  // Shift is by a constant
 592         int shift = t12->get_con();
 593         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 594         jlong mask = max_julong >> shift;
 595         if( (mask&con) == mask )  // If AND is useless, skip it
 596           return usr;
 597       }
 598     }
 599   }
 600   return MulNode::Identity(phase);
 601 }
 602 
 603 //------------------------------Ideal------------------------------------------
 604 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 605   // Special case constant AND mask
 606   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 607   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 608   const jlong mask = t2->get_con();
 609 
 610   Node* in1 = in(1);
 611   uint op = in1->Opcode();
 612 
 613   // Are we masking a long that was converted from an int with a mask
 614   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 615   // convert masks which would cause a sign extension of the integer
 616   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 617   // would be optimized away later in Identity.
 618   if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
 619     Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
 620     andi = phase->transform(andi);
 621     return new ConvI2LNode(andi);
 622   }
 623 
 624   // Masking off sign bits?  Dont make them!
 625   if (op == Op_RShiftL) {
 626     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 627     if( t12 && t12->is_con() ) { // Shift is by a constant
 628       int shift = t12->get_con();
 629       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 630       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
 631       // If the AND'ing of the 2 masks has no bits, then only original shifted
 632       // bits survive.  NO sign-extension bits survive the maskings.
 633       if( (sign_bits_mask & mask) == 0 ) {
 634         // Use zero-fill shift instead
 635         Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
 636         return new AndLNode(zshift, in(2));
 637       }
 638     }
 639   }
 640 
 641   return MulNode::Ideal(phase, can_reshape);
 642 }
 643 
 644 //=============================================================================
 645 
 646 static int getShiftCon(PhaseGVN *phase, Node *shiftNode, int retVal) {
 647   const Type *t = phase->type(shiftNode->in(2));
 648   if (t == Type::TOP) return retVal;       // Right input is dead.
 649   const TypeInt *t2 = t->isa_int();
 650   if (!t2 || !t2->is_con()) return retVal; // Right input is a constant.
 651 
 652   return t2->get_con();
 653 }
 654 
 655 static int maskShiftAmount(PhaseGVN *phase, Node *shiftNode, int nBits) {
 656   int       shift = getShiftCon(phase, shiftNode, 0);
 657   int maskedShift = shift & (nBits - 1);
 658 
 659   if (maskedShift == 0) return 0;         // Let Identity() handle 0 shift count.
 660 
 661   if (shift != maskedShift) {
 662     shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value.
 663     phase->igvn_rehash_node_delayed(shiftNode);
 664   }
 665 
 666   return maskedShift;
 667 }
 668 
 669 //------------------------------Identity---------------------------------------
 670 Node* LShiftINode::Identity(PhaseGVN* phase) {
 671   return ((getShiftCon(phase, this, -1) & (BitsPerJavaInteger - 1)) == 0) ? in(1) : this;
 672 }
 673 
 674 //------------------------------Ideal------------------------------------------
 675 // If the right input is a constant, and the left input is an add of a
 676 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 677 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 678   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
 679   if (con == 0) {
 680     return NULL;
 681   }
 682 
 683   // Left input is an add of a constant?
 684   Node *add1 = in(1);
 685   int add1_op = add1->Opcode();
 686   if( add1_op == Op_AddI ) {    // Left input is an add?
 687     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
 688     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
 689     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 690       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
 691       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
 692       if( con < 16 ) {
 693         // Compute X << con0
 694         Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
 695         // Compute X<<con0 + (con1<<con0)
 696         return new AddINode( lsh, phase->intcon(t12->get_con() << con));
 697       }
 698     }
 699   }
 700 
 701   // Check for "(x>>c0)<<c0" which just masks off low bits
 702   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
 703       add1->in(2) == in(2) )
 704     // Convert to "(x & -(1<<c0))"
 705     return new AndINode(add1->in(1),phase->intcon( -(1<<con)));
 706 
 707   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 708   if( add1_op == Op_AndI ) {
 709     Node *add2 = add1->in(1);
 710     int add2_op = add2->Opcode();
 711     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
 712         add2->in(2) == in(2) ) {
 713       // Convert to "(x & (Y<<c0))"
 714       Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) );
 715       return new AndINode( add2->in(1), y_sh );
 716     }
 717   }
 718 
 719   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
 720   // before shifting them away.
 721   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
 722   if( add1_op == Op_AndI &&
 723       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
 724     return new LShiftINode( add1->in(1), in(2) );
 725 
 726   return NULL;
 727 }
 728 
 729 //------------------------------Value------------------------------------------
 730 // A LShiftINode shifts its input2 left by input1 amount.
 731 const Type* LShiftINode::Value(PhaseGVN* phase) const {
 732   const Type *t1 = phase->type( in(1) );
 733   const Type *t2 = phase->type( in(2) );
 734   // Either input is TOP ==> the result is TOP
 735   if( t1 == Type::TOP ) return Type::TOP;
 736   if( t2 == Type::TOP ) return Type::TOP;
 737 
 738   // Left input is ZERO ==> the result is ZERO.
 739   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 740   // Shift by zero does nothing
 741   if( t2 == TypeInt::ZERO ) return t1;
 742 
 743   // Either input is BOTTOM ==> the result is BOTTOM
 744   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
 745       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 746     return TypeInt::INT;
 747 
 748   const TypeInt *r1 = t1->is_int(); // Handy access
 749   const TypeInt *r2 = t2->is_int(); // Handy access
 750 
 751   if (!r2->is_con())
 752     return TypeInt::INT;
 753 
 754   uint shift = r2->get_con();
 755   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 756   // Shift by a multiple of 32 does nothing:
 757   if (shift == 0)  return t1;
 758 
 759   // If the shift is a constant, shift the bounds of the type,
 760   // unless this could lead to an overflow.
 761   if (!r1->is_con()) {
 762     jint lo = r1->_lo, hi = r1->_hi;
 763     if (((lo << shift) >> shift) == lo &&
 764         ((hi << shift) >> shift) == hi) {
 765       // No overflow.  The range shifts up cleanly.
 766       return TypeInt::make((jint)lo << (jint)shift,
 767                            (jint)hi << (jint)shift,
 768                            MAX2(r1->_widen,r2->_widen));
 769     }
 770     return TypeInt::INT;
 771   }
 772 
 773   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
 774 }
 775 
 776 //=============================================================================
 777 //------------------------------Identity---------------------------------------
 778 Node* LShiftLNode::Identity(PhaseGVN* phase) {
 779   return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
 780 }
 781 
 782 //------------------------------Ideal------------------------------------------
 783 // If the right input is a constant, and the left input is an add of a
 784 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 785 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 786   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
 787   if (con == 0) {
 788     return NULL;
 789   }
 790 
 791   // Left input is an add of a constant?
 792   Node *add1 = in(1);
 793   int add1_op = add1->Opcode();
 794   if( add1_op == Op_AddL ) {    // Left input is an add?
 795     // Avoid dead data cycles from dead loops
 796     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
 797     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
 798     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 799       // Compute X << con0
 800       Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
 801       // Compute X<<con0 + (con1<<con0)
 802       return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
 803     }
 804   }
 805 
 806   // Check for "(x>>c0)<<c0" which just masks off low bits
 807   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
 808       add1->in(2) == in(2) )
 809     // Convert to "(x & -(1<<c0))"
 810     return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
 811 
 812   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 813   if( add1_op == Op_AndL ) {
 814     Node *add2 = add1->in(1);
 815     int add2_op = add2->Opcode();
 816     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
 817         add2->in(2) == in(2) ) {
 818       // Convert to "(x & (Y<<c0))"
 819       Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) );
 820       return new AndLNode( add2->in(1), y_sh );
 821     }
 822   }
 823 
 824   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
 825   // before shifting them away.
 826   const jlong bits_mask = jlong(max_julong >> con);
 827   if( add1_op == Op_AndL &&
 828       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
 829     return new LShiftLNode( add1->in(1), in(2) );
 830 
 831   return NULL;
 832 }
 833 
 834 //------------------------------Value------------------------------------------
 835 // A LShiftLNode shifts its input2 left by input1 amount.
 836 const Type* LShiftLNode::Value(PhaseGVN* phase) const {
 837   const Type *t1 = phase->type( in(1) );
 838   const Type *t2 = phase->type( in(2) );
 839   // Either input is TOP ==> the result is TOP
 840   if( t1 == Type::TOP ) return Type::TOP;
 841   if( t2 == Type::TOP ) return Type::TOP;
 842 
 843   // Left input is ZERO ==> the result is ZERO.
 844   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
 845   // Shift by zero does nothing
 846   if( t2 == TypeInt::ZERO ) return t1;
 847 
 848   // Either input is BOTTOM ==> the result is BOTTOM
 849   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
 850       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 851     return TypeLong::LONG;
 852 
 853   const TypeLong *r1 = t1->is_long(); // Handy access
 854   const TypeInt  *r2 = t2->is_int();  // Handy access
 855 
 856   if (!r2->is_con())
 857     return TypeLong::LONG;
 858 
 859   uint shift = r2->get_con();
 860   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 861   // Shift by a multiple of 64 does nothing:
 862   if (shift == 0)  return t1;
 863 
 864   // If the shift is a constant, shift the bounds of the type,
 865   // unless this could lead to an overflow.
 866   if (!r1->is_con()) {
 867     jlong lo = r1->_lo, hi = r1->_hi;
 868     if (((lo << shift) >> shift) == lo &&
 869         ((hi << shift) >> shift) == hi) {
 870       // No overflow.  The range shifts up cleanly.
 871       return TypeLong::make((jlong)lo << (jint)shift,
 872                             (jlong)hi << (jint)shift,
 873                             MAX2(r1->_widen,r2->_widen));
 874     }
 875     return TypeLong::LONG;
 876   }
 877 
 878   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
 879 }
 880 
 881 //=============================================================================
 882 //------------------------------Identity---------------------------------------
 883 Node* RShiftINode::Identity(PhaseGVN* phase) {
 884   int shift = getShiftCon(phase, this, -1);
 885   if (shift == -1) return this;
 886   if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1);
 887 
 888   // Check for useless sign-masking
 889   if (in(1)->Opcode() == Op_LShiftI &&
 890       in(1)->req() == 3 &&
 891       in(1)->in(2) == in(2)) {
 892     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
 893     // Compute masks for which this shifting doesn't change
 894     int lo = (-1 << (BitsPerJavaInteger - ((uint)shift)-1)); // FFFF8000
 895     int hi = ~lo;               // 00007FFF
 896     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
 897     if (!t11) return this;
 898     // Does actual value fit inside of mask?
 899     if (lo <= t11->_lo && t11->_hi <= hi) {
 900       return in(1)->in(1);      // Then shifting is a nop
 901     }
 902   }
 903 
 904   return this;
 905 }
 906 
 907 //------------------------------Ideal------------------------------------------
 908 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 909   // Inputs may be TOP if they are dead.
 910   const TypeInt *t1 = phase->type(in(1))->isa_int();
 911   if (!t1) return NULL;        // Left input is an integer
 912   const TypeInt *t3;  // type of in(1).in(2)
 913   int shift = maskShiftAmount(phase, this, BitsPerJavaInteger);
 914   if (shift == 0) {
 915     return NULL;
 916   }
 917 
 918   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
 919   // Such expressions arise normally from shift chains like (byte)(x >> 24).
 920   const Node *mask = in(1);
 921   if( mask->Opcode() == Op_AndI &&
 922       (t3 = phase->type(mask->in(2))->isa_int()) &&
 923       t3->is_con() ) {
 924     Node *x = mask->in(1);
 925     jint maskbits = t3->get_con();
 926     // Convert to "(x >> shift) & (mask >> shift)"
 927     Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
 928     return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
 929   }
 930 
 931   // Check for "(short[i] <<16)>>16" which simply sign-extends
 932   const Node *shl = in(1);
 933   if( shl->Opcode() != Op_LShiftI ) return NULL;
 934 
 935   if( shift == 16 &&
 936       (t3 = phase->type(shl->in(2))->isa_int()) &&
 937       t3->is_con(16) ) {
 938     Node *ld = shl->in(1);
 939     if( ld->Opcode() == Op_LoadS ) {
 940       // Sign extension is just useless here.  Return a RShiftI of zero instead
 941       // returning 'ld' directly.  We cannot return an old Node directly as
 942       // that is the job of 'Identity' calls and Identity calls only work on
 943       // direct inputs ('ld' is an extra Node removed from 'this').  The
 944       // combined optimization requires Identity only return direct inputs.
 945       set_req(1, ld);
 946       set_req(2, phase->intcon(0));
 947       return this;
 948     }
 949     else if( can_reshape &&
 950              ld->Opcode() == Op_LoadUS &&
 951              ld->outcnt() == 1 && ld->unique_out() == shl)
 952       // Replace zero-extension-load with sign-extension-load
 953       return ld->as_Load()->convert_to_signed_load(*phase);
 954   }
 955 
 956   // Check for "(byte[i] <<24)>>24" which simply sign-extends
 957   if( shift == 24 &&
 958       (t3 = phase->type(shl->in(2))->isa_int()) &&
 959       t3->is_con(24) ) {
 960     Node *ld = shl->in(1);
 961     if( ld->Opcode() == Op_LoadB ) {
 962       // Sign extension is just useless here
 963       set_req(1, ld);
 964       set_req(2, phase->intcon(0));
 965       return this;
 966     }
 967   }
 968 
 969   return NULL;
 970 }
 971 
 972 //------------------------------Value------------------------------------------
 973 // A RShiftINode shifts its input2 right by input1 amount.
 974 const Type* RShiftINode::Value(PhaseGVN* phase) const {
 975   const Type *t1 = phase->type( in(1) );
 976   const Type *t2 = phase->type( in(2) );
 977   // Either input is TOP ==> the result is TOP
 978   if( t1 == Type::TOP ) return Type::TOP;
 979   if( t2 == Type::TOP ) return Type::TOP;
 980 
 981   // Left input is ZERO ==> the result is ZERO.
 982   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 983   // Shift by zero does nothing
 984   if( t2 == TypeInt::ZERO ) return t1;
 985 
 986   // Either input is BOTTOM ==> the result is BOTTOM
 987   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
 988     return TypeInt::INT;
 989 
 990   if (t2 == TypeInt::INT)
 991     return TypeInt::INT;
 992 
 993   const TypeInt *r1 = t1->is_int(); // Handy access
 994   const TypeInt *r2 = t2->is_int(); // Handy access
 995 
 996   // If the shift is a constant, just shift the bounds of the type.
 997   // For example, if the shift is 31, we just propagate sign bits.
 998   if (r2->is_con()) {
 999     uint shift = r2->get_con();
1000     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1001     // Shift by a multiple of 32 does nothing:
1002     if (shift == 0)  return t1;
1003     // Calculate reasonably aggressive bounds for the result.
1004     // This is necessary if we are to correctly type things
1005     // like (x<<24>>24) == ((byte)x).
1006     jint lo = (jint)r1->_lo >> (jint)shift;
1007     jint hi = (jint)r1->_hi >> (jint)shift;
1008     assert(lo <= hi, "must have valid bounds");
1009     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1010 #ifdef ASSERT
1011     // Make sure we get the sign-capture idiom correct.
1012     if (shift == BitsPerJavaInteger-1) {
1013       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1014       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1015     }
1016 #endif
1017     return ti;
1018   }
1019 
1020   if( !r1->is_con() || !r2->is_con() )
1021     return TypeInt::INT;
1022 
1023   // Signed shift right
1024   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1025 }
1026 
1027 //=============================================================================
1028 //------------------------------Identity---------------------------------------
1029 Node* RShiftLNode::Identity(PhaseGVN* phase) {
1030   const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int.
1031   return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1032 }
1033 
1034 //------------------------------Value------------------------------------------
1035 // A RShiftLNode shifts its input2 right by input1 amount.
1036 const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1037   const Type *t1 = phase->type( in(1) );
1038   const Type *t2 = phase->type( in(2) );
1039   // Either input is TOP ==> the result is TOP
1040   if( t1 == Type::TOP ) return Type::TOP;
1041   if( t2 == Type::TOP ) return Type::TOP;
1042 
1043   // Left input is ZERO ==> the result is ZERO.
1044   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1045   // Shift by zero does nothing
1046   if( t2 == TypeInt::ZERO ) return t1;
1047 
1048   // Either input is BOTTOM ==> the result is BOTTOM
1049   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1050     return TypeLong::LONG;
1051 
1052   if (t2 == TypeInt::INT)
1053     return TypeLong::LONG;
1054 
1055   const TypeLong *r1 = t1->is_long(); // Handy access
1056   const TypeInt  *r2 = t2->is_int (); // Handy access
1057 
1058   // If the shift is a constant, just shift the bounds of the type.
1059   // For example, if the shift is 63, we just propagate sign bits.
1060   if (r2->is_con()) {
1061     uint shift = r2->get_con();
1062     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1063     // Shift by a multiple of 64 does nothing:
1064     if (shift == 0)  return t1;
1065     // Calculate reasonably aggressive bounds for the result.
1066     // This is necessary if we are to correctly type things
1067     // like (x<<24>>24) == ((byte)x).
1068     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1069     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1070     assert(lo <= hi, "must have valid bounds");
1071     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1072     #ifdef ASSERT
1073     // Make sure we get the sign-capture idiom correct.
1074     if (shift == (2*BitsPerJavaInteger)-1) {
1075       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1076       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1077     }
1078     #endif
1079     return tl;
1080   }
1081 
1082   return TypeLong::LONG;                // Give up
1083 }
1084 
1085 //=============================================================================
1086 //------------------------------Identity---------------------------------------
1087 Node* URShiftINode::Identity(PhaseGVN* phase) {
1088   int shift = getShiftCon(phase, this, -1);
1089   if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1);
1090 
1091   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1092   // Happens during new-array length computation.
1093   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1094   Node *add = in(1);
1095   if (add->Opcode() == Op_AddI) {
1096     const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1097     if (t2 && t2->is_con(wordSize - 1) &&
1098         add->in(1)->Opcode() == Op_LShiftI) {
1099       // Check that shift_counts are LogBytesPerWord.
1100       Node          *lshift_count   = add->in(1)->in(2);
1101       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1102       if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1103           t_lshift_count == phase->type(in(2))) {
1104         Node          *x   = add->in(1)->in(1);
1105         const TypeInt *t_x = phase->type(x)->isa_int();
1106         if (t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1107           return x;
1108         }
1109       }
1110     }
1111   }
1112 
1113   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1114 }
1115 
1116 //------------------------------Ideal------------------------------------------
1117 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1118   int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1119   if (con == 0) {
1120     return NULL;
1121   }
1122 
1123   // We'll be wanting the right-shift amount as a mask of that many bits
1124   const int mask = right_n_bits(BitsPerJavaInteger - con);
1125 
1126   int in1_op = in(1)->Opcode();
1127 
1128   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1129   if( in1_op == Op_URShiftI ) {
1130     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1131     if( t12 && t12->is_con() ) { // Right input is a constant
1132       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1133       const int con2 = t12->get_con() & 31; // Shift count is always masked
1134       const int con3 = con+con2;
1135       if( con3 < 32 )           // Only merge shifts if total is < 32
1136         return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1137     }
1138   }
1139 
1140   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1141   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1142   // If Q is "X << z" the rounding is useless.  Look for patterns like
1143   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1144   Node *add = in(1);
1145   const TypeInt *t2 = phase->type(in(2))->isa_int();
1146   if (in1_op == Op_AddI) {
1147     Node *lshl = add->in(1);
1148     if( lshl->Opcode() == Op_LShiftI &&
1149         phase->type(lshl->in(2)) == t2 ) {
1150       Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1151       Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1152       return new AndINode( sum, phase->intcon(mask) );
1153     }
1154   }
1155 
1156   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1157   // This shortens the mask.  Also, if we are extracting a high byte and
1158   // storing it to a buffer, the mask will be removed completely.
1159   Node *andi = in(1);
1160   if( in1_op == Op_AndI ) {
1161     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1162     if( t3 && t3->is_con() ) { // Right input is a constant
1163       jint mask2 = t3->get_con();
1164       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1165       Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1166       return new AndINode(newshr, phase->intcon(mask2));
1167       // The negative values are easier to materialize than positive ones.
1168       // A typical case from address arithmetic is ((x & ~15) >> 4).
1169       // It's better to change that to ((x >> 4) & ~0) versus
1170       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1171     }
1172   }
1173 
1174   // Check for "(X << z ) >>> z" which simply zero-extends
1175   Node *shl = in(1);
1176   if( in1_op == Op_LShiftI &&
1177       phase->type(shl->in(2)) == t2 )
1178     return new AndINode( shl->in(1), phase->intcon(mask) );
1179 
1180   return NULL;
1181 }
1182 
1183 //------------------------------Value------------------------------------------
1184 // A URShiftINode shifts its input2 right by input1 amount.
1185 const Type* URShiftINode::Value(PhaseGVN* phase) const {
1186   // (This is a near clone of RShiftINode::Value.)
1187   const Type *t1 = phase->type( in(1) );
1188   const Type *t2 = phase->type( in(2) );
1189   // Either input is TOP ==> the result is TOP
1190   if( t1 == Type::TOP ) return Type::TOP;
1191   if( t2 == Type::TOP ) return Type::TOP;
1192 
1193   // Left input is ZERO ==> the result is ZERO.
1194   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1195   // Shift by zero does nothing
1196   if( t2 == TypeInt::ZERO ) return t1;
1197 
1198   // Either input is BOTTOM ==> the result is BOTTOM
1199   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1200     return TypeInt::INT;
1201 
1202   if (t2 == TypeInt::INT)
1203     return TypeInt::INT;
1204 
1205   const TypeInt *r1 = t1->is_int();     // Handy access
1206   const TypeInt *r2 = t2->is_int();     // Handy access
1207 
1208   if (r2->is_con()) {
1209     uint shift = r2->get_con();
1210     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1211     // Shift by a multiple of 32 does nothing:
1212     if (shift == 0)  return t1;
1213     // Calculate reasonably aggressive bounds for the result.
1214     jint lo = (juint)r1->_lo >> (juint)shift;
1215     jint hi = (juint)r1->_hi >> (juint)shift;
1216     if (r1->_hi >= 0 && r1->_lo < 0) {
1217       // If the type has both negative and positive values,
1218       // there are two separate sub-domains to worry about:
1219       // The positive half and the negative half.
1220       jint neg_lo = lo;
1221       jint neg_hi = (juint)-1 >> (juint)shift;
1222       jint pos_lo = (juint) 0 >> (juint)shift;
1223       jint pos_hi = hi;
1224       lo = MIN2(neg_lo, pos_lo);  // == 0
1225       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1226     }
1227     assert(lo <= hi, "must have valid bounds");
1228     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1229     #ifdef ASSERT
1230     // Make sure we get the sign-capture idiom correct.
1231     if (shift == BitsPerJavaInteger-1) {
1232       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1233       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1234     }
1235     #endif
1236     return ti;
1237   }
1238 
1239   //
1240   // Do not support shifted oops in info for GC
1241   //
1242   // else if( t1->base() == Type::InstPtr ) {
1243   //
1244   //   const TypeInstPtr *o = t1->is_instptr();
1245   //   if( t1->singleton() )
1246   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1247   // }
1248   // else if( t1->base() == Type::KlassPtr ) {
1249   //   const TypeKlassPtr *o = t1->is_klassptr();
1250   //   if( t1->singleton() )
1251   //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1252   // }
1253 
1254   return TypeInt::INT;
1255 }
1256 
1257 //=============================================================================
1258 //------------------------------Identity---------------------------------------
1259 Node* URShiftLNode::Identity(PhaseGVN* phase) {
1260   return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1261 }
1262 
1263 //------------------------------Ideal------------------------------------------
1264 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1265   int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1266   if (con == 0) {
1267     return NULL;
1268   }
1269 
1270   // We'll be wanting the right-shift amount as a mask of that many bits
1271   const jlong mask = jlong(max_julong >> con);
1272 
1273   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1274   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1275   // If Q is "X << z" the rounding is useless.  Look for patterns like
1276   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1277   Node *add = in(1);
1278   const TypeInt *t2 = phase->type(in(2))->isa_int();
1279   if (add->Opcode() == Op_AddL) {
1280     Node *lshl = add->in(1);
1281     if( lshl->Opcode() == Op_LShiftL &&
1282         phase->type(lshl->in(2)) == t2 ) {
1283       Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1284       Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1285       return new AndLNode( sum, phase->longcon(mask) );
1286     }
1287   }
1288 
1289   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1290   // This shortens the mask.  Also, if we are extracting a high byte and
1291   // storing it to a buffer, the mask will be removed completely.
1292   Node *andi = in(1);
1293   if( andi->Opcode() == Op_AndL ) {
1294     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1295     if( t3 && t3->is_con() ) { // Right input is a constant
1296       jlong mask2 = t3->get_con();
1297       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1298       Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1299       return new AndLNode(newshr, phase->longcon(mask2));
1300     }
1301   }
1302 
1303   // Check for "(X << z ) >>> z" which simply zero-extends
1304   Node *shl = in(1);
1305   if( shl->Opcode() == Op_LShiftL &&
1306       phase->type(shl->in(2)) == t2 )
1307     return new AndLNode( shl->in(1), phase->longcon(mask) );
1308 
1309   return NULL;
1310 }
1311 
1312 //------------------------------Value------------------------------------------
1313 // A URShiftINode shifts its input2 right by input1 amount.
1314 const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1315   // (This is a near clone of RShiftLNode::Value.)
1316   const Type *t1 = phase->type( in(1) );
1317   const Type *t2 = phase->type( in(2) );
1318   // Either input is TOP ==> the result is TOP
1319   if( t1 == Type::TOP ) return Type::TOP;
1320   if( t2 == Type::TOP ) return Type::TOP;
1321 
1322   // Left input is ZERO ==> the result is ZERO.
1323   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1324   // Shift by zero does nothing
1325   if( t2 == TypeInt::ZERO ) return t1;
1326 
1327   // Either input is BOTTOM ==> the result is BOTTOM
1328   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1329     return TypeLong::LONG;
1330 
1331   if (t2 == TypeInt::INT)
1332     return TypeLong::LONG;
1333 
1334   const TypeLong *r1 = t1->is_long(); // Handy access
1335   const TypeInt  *r2 = t2->is_int (); // Handy access
1336 
1337   if (r2->is_con()) {
1338     uint shift = r2->get_con();
1339     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1340     // Shift by a multiple of 64 does nothing:
1341     if (shift == 0)  return t1;
1342     // Calculate reasonably aggressive bounds for the result.
1343     jlong lo = (julong)r1->_lo >> (juint)shift;
1344     jlong hi = (julong)r1->_hi >> (juint)shift;
1345     if (r1->_hi >= 0 && r1->_lo < 0) {
1346       // If the type has both negative and positive values,
1347       // there are two separate sub-domains to worry about:
1348       // The positive half and the negative half.
1349       jlong neg_lo = lo;
1350       jlong neg_hi = (julong)-1 >> (juint)shift;
1351       jlong pos_lo = (julong) 0 >> (juint)shift;
1352       jlong pos_hi = hi;
1353       //lo = MIN2(neg_lo, pos_lo);  // == 0
1354       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1355       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1356       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1357     }
1358     assert(lo <= hi, "must have valid bounds");
1359     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1360     #ifdef ASSERT
1361     // Make sure we get the sign-capture idiom correct.
1362     if (shift == BitsPerJavaLong - 1) {
1363       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1364       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1365     }
1366     #endif
1367     return tl;
1368   }
1369 
1370   return TypeLong::LONG;                // Give up
1371 }
1372 
1373 //=============================================================================
1374 //------------------------------Value------------------------------------------
1375 const Type* FmaDNode::Value(PhaseGVN* phase) const {
1376   const Type *t1 = phase->type(in(1));
1377   if (t1 == Type::TOP) return Type::TOP;
1378   if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1379   const Type *t2 = phase->type(in(2));
1380   if (t2 == Type::TOP) return Type::TOP;
1381   if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1382   const Type *t3 = phase->type(in(3));
1383   if (t3 == Type::TOP) return Type::TOP;
1384   if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1385 #ifndef __STDC_IEC_559__
1386   return Type::DOUBLE;
1387 #else
1388   double d1 = t1->getd();
1389   double d2 = t2->getd();
1390   double d3 = t3->getd();
1391   return TypeD::make(fma(d1, d2, d3));
1392 #endif
1393 }
1394 
1395 //=============================================================================
1396 //------------------------------Value------------------------------------------
1397 const Type* FmaFNode::Value(PhaseGVN* phase) const {
1398   const Type *t1 = phase->type(in(1));
1399   if (t1 == Type::TOP) return Type::TOP;
1400   if (t1->base() != Type::FloatCon) return Type::FLOAT;
1401   const Type *t2 = phase->type(in(2));
1402   if (t2 == Type::TOP) return Type::TOP;
1403   if (t2->base() != Type::FloatCon) return Type::FLOAT;
1404   const Type *t3 = phase->type(in(3));
1405   if (t3 == Type::TOP) return Type::TOP;
1406   if (t3->base() != Type::FloatCon) return Type::FLOAT;
1407 #ifndef __STDC_IEC_559__
1408   return Type::FLOAT;
1409 #else
1410   float f1 = t1->getf();
1411   float f2 = t2->getf();
1412   float f3 = t3->getf();
1413   return TypeF::make(fma(f1, f2, f3));
1414 #endif
1415 }