1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/oopFactory.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/fieldStreams.hpp"
  46 #include "oops/klass.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/objArrayOop.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/valueKlass.hpp"
  51 #include "prims/forte.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "prims/methodHandles.hpp"
  54 #include "prims/nativeLookup.hpp"
  55 #include "runtime/arguments.hpp"
  56 #include "runtime/atomic.hpp"
  57 #include "runtime/biasedLocking.hpp"
  58 #include "runtime/compilationPolicy.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/init.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/dtrace.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/hashtable.inline.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/xmlstream.hpp"
  75 #ifdef COMPILER1
  76 #include "c1/c1_Runtime1.hpp"
  77 #endif
  78 
  79 // Shared stub locations
  80 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  81 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  82 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  83 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  84 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  86 address             SharedRuntime::_resolve_static_call_entry;
  87 
  88 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  89 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  90 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  92 
  93 #ifdef COMPILER2
  94 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  95 #endif // COMPILER2
  96 
  97 
  98 //----------------------------generate_stubs-----------------------------------
  99 void SharedRuntime::generate_stubs() {
 100   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 101   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 102   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 103   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 104   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 105   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 106   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 107 
 108 #if defined(COMPILER2) || INCLUDE_JVMCI
 109   // Vectors are generated only by C2 and JVMCI.
 110   bool support_wide = is_wide_vector(MaxVectorSize);
 111   if (support_wide) {
 112     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 113   }
 114 #endif // COMPILER2 || INCLUDE_JVMCI
 115   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 116   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 117 
 118   generate_deopt_blob();
 119 
 120 #ifdef COMPILER2
 121   generate_uncommon_trap_blob();
 122 #endif // COMPILER2
 123 }
 124 
 125 #include <math.h>
 126 
 127 // Implementation of SharedRuntime
 128 
 129 #ifndef PRODUCT
 130 // For statistics
 131 int SharedRuntime::_ic_miss_ctr = 0;
 132 int SharedRuntime::_wrong_method_ctr = 0;
 133 int SharedRuntime::_resolve_static_ctr = 0;
 134 int SharedRuntime::_resolve_virtual_ctr = 0;
 135 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 136 int SharedRuntime::_implicit_null_throws = 0;
 137 int SharedRuntime::_implicit_div0_throws = 0;
 138 int SharedRuntime::_throw_null_ctr = 0;
 139 
 140 int SharedRuntime::_nof_normal_calls = 0;
 141 int SharedRuntime::_nof_optimized_calls = 0;
 142 int SharedRuntime::_nof_inlined_calls = 0;
 143 int SharedRuntime::_nof_megamorphic_calls = 0;
 144 int SharedRuntime::_nof_static_calls = 0;
 145 int SharedRuntime::_nof_inlined_static_calls = 0;
 146 int SharedRuntime::_nof_interface_calls = 0;
 147 int SharedRuntime::_nof_optimized_interface_calls = 0;
 148 int SharedRuntime::_nof_inlined_interface_calls = 0;
 149 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 150 int SharedRuntime::_nof_removable_exceptions = 0;
 151 
 152 int SharedRuntime::_new_instance_ctr=0;
 153 int SharedRuntime::_new_array_ctr=0;
 154 int SharedRuntime::_multi1_ctr=0;
 155 int SharedRuntime::_multi2_ctr=0;
 156 int SharedRuntime::_multi3_ctr=0;
 157 int SharedRuntime::_multi4_ctr=0;
 158 int SharedRuntime::_multi5_ctr=0;
 159 int SharedRuntime::_mon_enter_stub_ctr=0;
 160 int SharedRuntime::_mon_exit_stub_ctr=0;
 161 int SharedRuntime::_mon_enter_ctr=0;
 162 int SharedRuntime::_mon_exit_ctr=0;
 163 int SharedRuntime::_partial_subtype_ctr=0;
 164 int SharedRuntime::_jbyte_array_copy_ctr=0;
 165 int SharedRuntime::_jshort_array_copy_ctr=0;
 166 int SharedRuntime::_jint_array_copy_ctr=0;
 167 int SharedRuntime::_jlong_array_copy_ctr=0;
 168 int SharedRuntime::_oop_array_copy_ctr=0;
 169 int SharedRuntime::_checkcast_array_copy_ctr=0;
 170 int SharedRuntime::_unsafe_array_copy_ctr=0;
 171 int SharedRuntime::_generic_array_copy_ctr=0;
 172 int SharedRuntime::_slow_array_copy_ctr=0;
 173 int SharedRuntime::_find_handler_ctr=0;
 174 int SharedRuntime::_rethrow_ctr=0;
 175 
 176 int     SharedRuntime::_ICmiss_index                    = 0;
 177 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 178 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 179 
 180 
 181 void SharedRuntime::trace_ic_miss(address at) {
 182   for (int i = 0; i < _ICmiss_index; i++) {
 183     if (_ICmiss_at[i] == at) {
 184       _ICmiss_count[i]++;
 185       return;
 186     }
 187   }
 188   int index = _ICmiss_index++;
 189   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 190   _ICmiss_at[index] = at;
 191   _ICmiss_count[index] = 1;
 192 }
 193 
 194 void SharedRuntime::print_ic_miss_histogram() {
 195   if (ICMissHistogram) {
 196     tty->print_cr("IC Miss Histogram:");
 197     int tot_misses = 0;
 198     for (int i = 0; i < _ICmiss_index; i++) {
 199       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 200       tot_misses += _ICmiss_count[i];
 201     }
 202     tty->print_cr("Total IC misses: %7d", tot_misses);
 203   }
 204 }
 205 #endif // PRODUCT
 206 
 207 #if INCLUDE_ALL_GCS
 208 
 209 // G1 write-barrier pre: executed before a pointer store.
 210 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 211   if (orig == NULL) {
 212     assert(false, "should be optimized out");
 213     return;
 214   }
 215   assert(orig->is_oop(true /* ignore mark word */), "Error");
 216   // store the original value that was in the field reference
 217   thread->satb_mark_queue().enqueue(orig);
 218 JRT_END
 219 
 220 // G1 write-barrier post: executed after a pointer store.
 221 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 222   thread->dirty_card_queue().enqueue(card_addr);
 223 JRT_END
 224 
 225 #endif // INCLUDE_ALL_GCS
 226 
 227 
 228 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 229   return x * y;
 230 JRT_END
 231 
 232 
 233 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 234   if (x == min_jlong && y == CONST64(-1)) {
 235     return x;
 236   } else {
 237     return x / y;
 238   }
 239 JRT_END
 240 
 241 
 242 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 243   if (x == min_jlong && y == CONST64(-1)) {
 244     return 0;
 245   } else {
 246     return x % y;
 247   }
 248 JRT_END
 249 
 250 
 251 const juint  float_sign_mask  = 0x7FFFFFFF;
 252 const juint  float_infinity   = 0x7F800000;
 253 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 254 const julong double_infinity  = CONST64(0x7FF0000000000000);
 255 
 256 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 257 #ifdef _WIN64
 258   // 64-bit Windows on amd64 returns the wrong values for
 259   // infinity operands.
 260   union { jfloat f; juint i; } xbits, ybits;
 261   xbits.f = x;
 262   ybits.f = y;
 263   // x Mod Infinity == x unless x is infinity
 264   if (((xbits.i & float_sign_mask) != float_infinity) &&
 265        ((ybits.i & float_sign_mask) == float_infinity) ) {
 266     return x;
 267   }
 268   return ((jfloat)fmod_winx64((double)x, (double)y));
 269 #else
 270   return ((jfloat)fmod((double)x,(double)y));
 271 #endif
 272 JRT_END
 273 
 274 
 275 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 276 #ifdef _WIN64
 277   union { jdouble d; julong l; } xbits, ybits;
 278   xbits.d = x;
 279   ybits.d = y;
 280   // x Mod Infinity == x unless x is infinity
 281   if (((xbits.l & double_sign_mask) != double_infinity) &&
 282        ((ybits.l & double_sign_mask) == double_infinity) ) {
 283     return x;
 284   }
 285   return ((jdouble)fmod_winx64((double)x, (double)y));
 286 #else
 287   return ((jdouble)fmod((double)x,(double)y));
 288 #endif
 289 JRT_END
 290 
 291 #ifdef __SOFTFP__
 292 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 293   return x + y;
 294 JRT_END
 295 
 296 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 297   return x - y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 301   return x * y;
 302 JRT_END
 303 
 304 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 305   return x / y;
 306 JRT_END
 307 
 308 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 309   return x + y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 313   return x - y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 317   return x * y;
 318 JRT_END
 319 
 320 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 321   return x / y;
 322 JRT_END
 323 
 324 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 325   return (jfloat)x;
 326 JRT_END
 327 
 328 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 329   return (jdouble)x;
 330 JRT_END
 331 
 332 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 333   return (jdouble)x;
 334 JRT_END
 335 
 336 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 337   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 341   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 345   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 346 JRT_END
 347 
 348 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 349   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 350 JRT_END
 351 
 352 // Functions to return the opposite of the aeabi functions for nan.
 353 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 354   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 358   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 362   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 366   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 370   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 374   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 378   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 382   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 383 JRT_END
 384 
 385 // Intrinsics make gcc generate code for these.
 386 float  SharedRuntime::fneg(float f)   {
 387   return -f;
 388 }
 389 
 390 double SharedRuntime::dneg(double f)  {
 391   return -f;
 392 }
 393 
 394 #endif // __SOFTFP__
 395 
 396 #if defined(__SOFTFP__) || defined(E500V2)
 397 // Intrinsics make gcc generate code for these.
 398 double SharedRuntime::dabs(double f)  {
 399   return (f <= (double)0.0) ? (double)0.0 - f : f;
 400 }
 401 
 402 #endif
 403 
 404 #if defined(__SOFTFP__) || defined(PPC)
 405 double SharedRuntime::dsqrt(double f) {
 406   return sqrt(f);
 407 }
 408 #endif
 409 
 410 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 411   if (g_isnan(x))
 412     return 0;
 413   if (x >= (jfloat) max_jint)
 414     return max_jint;
 415   if (x <= (jfloat) min_jint)
 416     return min_jint;
 417   return (jint) x;
 418 JRT_END
 419 
 420 
 421 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 422   if (g_isnan(x))
 423     return 0;
 424   if (x >= (jfloat) max_jlong)
 425     return max_jlong;
 426   if (x <= (jfloat) min_jlong)
 427     return min_jlong;
 428   return (jlong) x;
 429 JRT_END
 430 
 431 
 432 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 433   if (g_isnan(x))
 434     return 0;
 435   if (x >= (jdouble) max_jint)
 436     return max_jint;
 437   if (x <= (jdouble) min_jint)
 438     return min_jint;
 439   return (jint) x;
 440 JRT_END
 441 
 442 
 443 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 444   if (g_isnan(x))
 445     return 0;
 446   if (x >= (jdouble) max_jlong)
 447     return max_jlong;
 448   if (x <= (jdouble) min_jlong)
 449     return min_jlong;
 450   return (jlong) x;
 451 JRT_END
 452 
 453 
 454 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 455   return (jfloat)x;
 456 JRT_END
 457 
 458 
 459 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 460   return (jfloat)x;
 461 JRT_END
 462 
 463 
 464 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 465   return (jdouble)x;
 466 JRT_END
 467 
 468 // Exception handling across interpreter/compiler boundaries
 469 //
 470 // exception_handler_for_return_address(...) returns the continuation address.
 471 // The continuation address is the entry point of the exception handler of the
 472 // previous frame depending on the return address.
 473 
 474 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 475   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 476   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 477 
 478   // Reset method handle flag.
 479   thread->set_is_method_handle_return(false);
 480 
 481 #if INCLUDE_JVMCI
 482   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 483   // and other exception handler continuations do not read it
 484   thread->set_exception_pc(NULL);
 485 #endif // INCLUDE_JVMCI
 486 
 487   // The fastest case first
 488   CodeBlob* blob = CodeCache::find_blob(return_address);
 489   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 490   if (nm != NULL) {
 491     // Set flag if return address is a method handle call site.
 492     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 493     // native nmethods don't have exception handlers
 494     assert(!nm->is_native_method(), "no exception handler");
 495     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 496     if (nm->is_deopt_pc(return_address)) {
 497       // If we come here because of a stack overflow, the stack may be
 498       // unguarded. Reguard the stack otherwise if we return to the
 499       // deopt blob and the stack bang causes a stack overflow we
 500       // crash.
 501       bool guard_pages_enabled = thread->stack_guards_enabled();
 502       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 503       if (thread->reserved_stack_activation() != thread->stack_base()) {
 504         thread->set_reserved_stack_activation(thread->stack_base());
 505       }
 506       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 507       return SharedRuntime::deopt_blob()->unpack_with_exception();
 508     } else {
 509       return nm->exception_begin();
 510     }
 511   }
 512 
 513   // Entry code
 514   if (StubRoutines::returns_to_call_stub(return_address)) {
 515     return StubRoutines::catch_exception_entry();
 516   }
 517   // Interpreted code
 518   if (Interpreter::contains(return_address)) {
 519     return Interpreter::rethrow_exception_entry();
 520   }
 521 
 522   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 523   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 524 
 525 #ifndef PRODUCT
 526   { ResourceMark rm;
 527     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 528     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 529     tty->print_cr("b) other problem");
 530   }
 531 #endif // PRODUCT
 532 
 533   ShouldNotReachHere();
 534   return NULL;
 535 }
 536 
 537 
 538 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 539   return raw_exception_handler_for_return_address(thread, return_address);
 540 JRT_END
 541 
 542 
 543 address SharedRuntime::get_poll_stub(address pc) {
 544   address stub;
 545   // Look up the code blob
 546   CodeBlob *cb = CodeCache::find_blob(pc);
 547 
 548   // Should be an nmethod
 549   assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 550 
 551   // Look up the relocation information
 552   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 553     "safepoint polling: type must be poll");
 554 
 555 #ifdef ASSERT
 556   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 557     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 558     Disassembler::decode(cb);
 559     fatal("Only polling locations are used for safepoint");
 560   }
 561 #endif
 562 
 563   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 564   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 565   if (at_poll_return) {
 566     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 567            "polling page return stub not created yet");
 568     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 569   } else if (has_wide_vectors) {
 570     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 571            "polling page vectors safepoint stub not created yet");
 572     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 573   } else {
 574     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 575            "polling page safepoint stub not created yet");
 576     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 577   }
 578   log_debug(safepoint)("... found polling page %s exception at pc = "
 579                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 580                        at_poll_return ? "return" : "loop",
 581                        (intptr_t)pc, (intptr_t)stub);
 582   return stub;
 583 }
 584 
 585 
 586 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 587   assert(caller.is_interpreted_frame(), "");
 588   int args_size = ArgumentSizeComputer(sig).size() + 1;
 589   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 590   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 591   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 592   return result;
 593 }
 594 
 595 
 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 597   if (JvmtiExport::can_post_on_exceptions()) {
 598     vframeStream vfst(thread, true);
 599     methodHandle method = methodHandle(thread, vfst.method());
 600     address bcp = method()->bcp_from(vfst.bci());
 601     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 602   }
 603   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 604 }
 605 
 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 607   Handle h_exception = Exceptions::new_exception(thread, name, message);
 608   throw_and_post_jvmti_exception(thread, h_exception);
 609 }
 610 
 611 // The interpreter code to call this tracing function is only
 612 // called/generated when UL is on for redefine, class and has the right level
 613 // and tags. Since obsolete methods are never compiled, we don't have
 614 // to modify the compilers to generate calls to this function.
 615 //
 616 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 617     JavaThread* thread, Method* method))
 618   if (method->is_obsolete()) {
 619     // We are calling an obsolete method, but this is not necessarily
 620     // an error. Our method could have been redefined just after we
 621     // fetched the Method* from the constant pool.
 622     ResourceMark rm;
 623     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 624   }
 625   return 0;
 626 JRT_END
 627 
 628 // ret_pc points into caller; we are returning caller's exception handler
 629 // for given exception
 630 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 631                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 632   assert(cm != NULL, "must exist");
 633   ResourceMark rm;
 634 
 635 #if INCLUDE_JVMCI
 636   if (cm->is_compiled_by_jvmci()) {
 637     // lookup exception handler for this pc
 638     int catch_pco = ret_pc - cm->code_begin();
 639     ExceptionHandlerTable table(cm);
 640     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 641     if (t != NULL) {
 642       return cm->code_begin() + t->pco();
 643     } else {
 644       // there is no exception handler for this pc => deoptimize
 645       cm->make_not_entrant();
 646 
 647       // Use Deoptimization::deoptimize for all of its side-effects:
 648       // revoking biases of monitors, gathering traps statistics, logging...
 649       // it also patches the return pc but we do not care about that
 650       // since we return a continuation to the deopt_blob below.
 651       JavaThread* thread = JavaThread::current();
 652       RegisterMap reg_map(thread, UseBiasedLocking);
 653       frame runtime_frame = thread->last_frame();
 654       frame caller_frame = runtime_frame.sender(&reg_map);
 655       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 656 
 657       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 658     }
 659   }
 660 #endif // INCLUDE_JVMCI
 661 
 662   nmethod* nm = cm->as_nmethod();
 663   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 664   // determine handler bci, if any
 665   EXCEPTION_MARK;
 666 
 667   int handler_bci = -1;
 668   int scope_depth = 0;
 669   if (!force_unwind) {
 670     int bci = sd->bci();
 671     bool recursive_exception = false;
 672     do {
 673       bool skip_scope_increment = false;
 674       // exception handler lookup
 675       Klass* ek = exception->klass();
 676       methodHandle mh(THREAD, sd->method());
 677       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 678       if (HAS_PENDING_EXCEPTION) {
 679         recursive_exception = true;
 680         // We threw an exception while trying to find the exception handler.
 681         // Transfer the new exception to the exception handle which will
 682         // be set into thread local storage, and do another lookup for an
 683         // exception handler for this exception, this time starting at the
 684         // BCI of the exception handler which caused the exception to be
 685         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 686         // argument to ensure that the correct exception is thrown (4870175).
 687         recursive_exception_occurred = true;
 688         exception = Handle(THREAD, PENDING_EXCEPTION);
 689         CLEAR_PENDING_EXCEPTION;
 690         if (handler_bci >= 0) {
 691           bci = handler_bci;
 692           handler_bci = -1;
 693           skip_scope_increment = true;
 694         }
 695       }
 696       else {
 697         recursive_exception = false;
 698       }
 699       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 700         sd = sd->sender();
 701         if (sd != NULL) {
 702           bci = sd->bci();
 703         }
 704         ++scope_depth;
 705       }
 706     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 707   }
 708 
 709   // found handling method => lookup exception handler
 710   int catch_pco = ret_pc - nm->code_begin();
 711 
 712   ExceptionHandlerTable table(nm);
 713   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 714   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 715     // Allow abbreviated catch tables.  The idea is to allow a method
 716     // to materialize its exceptions without committing to the exact
 717     // routing of exceptions.  In particular this is needed for adding
 718     // a synthetic handler to unlock monitors when inlining
 719     // synchronized methods since the unlock path isn't represented in
 720     // the bytecodes.
 721     t = table.entry_for(catch_pco, -1, 0);
 722   }
 723 
 724 #ifdef COMPILER1
 725   if (t == NULL && nm->is_compiled_by_c1()) {
 726     assert(nm->unwind_handler_begin() != NULL, "");
 727     return nm->unwind_handler_begin();
 728   }
 729 #endif
 730 
 731   if (t == NULL) {
 732     ttyLocker ttyl;
 733     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 734     tty->print_cr("   Exception:");
 735     exception->print();
 736     tty->cr();
 737     tty->print_cr(" Compiled exception table :");
 738     table.print();
 739     nm->print_code();
 740     guarantee(false, "missing exception handler");
 741     return NULL;
 742   }
 743 
 744   return nm->code_begin() + t->pco();
 745 }
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 748   // These errors occur only at call sites
 749   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 750 JRT_END
 751 
 752 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 753   // These errors occur only at call sites
 754   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 755 JRT_END
 756 
 757 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 762   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 763 JRT_END
 764 
 765 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 766   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 767   // cache sites (when the callee activation is not yet set up) so we are at a call site
 768   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 772   throw_StackOverflowError_common(thread, false);
 773 JRT_END
 774 
 775 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 776   throw_StackOverflowError_common(thread, true);
 777 JRT_END
 778 
 779 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 780   // We avoid using the normal exception construction in this case because
 781   // it performs an upcall to Java, and we're already out of stack space.
 782   Thread* THREAD = thread;
 783   Klass* k = SystemDictionary::StackOverflowError_klass();
 784   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 785   if (delayed) {
 786     java_lang_Throwable::set_message(exception_oop,
 787                                      Universe::delayed_stack_overflow_error_message());
 788   }
 789   Handle exception (thread, exception_oop);
 790   if (StackTraceInThrowable) {
 791     java_lang_Throwable::fill_in_stack_trace(exception);
 792   }
 793   // Increment counter for hs_err file reporting
 794   Atomic::inc(&Exceptions::_stack_overflow_errors);
 795   throw_and_post_jvmti_exception(thread, exception);
 796 }
 797 
 798 #if INCLUDE_JVMCI
 799 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 800   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 801   thread->set_jvmci_implicit_exception_pc(pc);
 802   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 803   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 804 }
 805 #endif // INCLUDE_JVMCI
 806 
 807 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 808                                                            address pc,
 809                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 810 {
 811   address target_pc = NULL;
 812 
 813   if (Interpreter::contains(pc)) {
 814 #ifdef CC_INTERP
 815     // C++ interpreter doesn't throw implicit exceptions
 816     ShouldNotReachHere();
 817 #else
 818     switch (exception_kind) {
 819       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 820       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 821       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 822       default:                      ShouldNotReachHere();
 823     }
 824 #endif // !CC_INTERP
 825   } else {
 826     switch (exception_kind) {
 827       case STACK_OVERFLOW: {
 828         // Stack overflow only occurs upon frame setup; the callee is
 829         // going to be unwound. Dispatch to a shared runtime stub
 830         // which will cause the StackOverflowError to be fabricated
 831         // and processed.
 832         // Stack overflow should never occur during deoptimization:
 833         // the compiled method bangs the stack by as much as the
 834         // interpreter would need in case of a deoptimization. The
 835         // deoptimization blob and uncommon trap blob bang the stack
 836         // in a debug VM to verify the correctness of the compiled
 837         // method stack banging.
 838         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 839         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 840         return StubRoutines::throw_StackOverflowError_entry();
 841       }
 842 
 843       case IMPLICIT_NULL: {
 844         if (VtableStubs::contains(pc)) {
 845           // We haven't yet entered the callee frame. Fabricate an
 846           // exception and begin dispatching it in the caller. Since
 847           // the caller was at a call site, it's safe to destroy all
 848           // caller-saved registers, as these entry points do.
 849           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 850 
 851           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 852           if (vt_stub == NULL) return NULL;
 853 
 854           if (vt_stub->is_abstract_method_error(pc)) {
 855             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 856             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 857             return StubRoutines::throw_AbstractMethodError_entry();
 858           } else {
 859             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 860             return StubRoutines::throw_NullPointerException_at_call_entry();
 861           }
 862         } else {
 863           CodeBlob* cb = CodeCache::find_blob(pc);
 864 
 865           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 866           if (cb == NULL) return NULL;
 867 
 868           // Exception happened in CodeCache. Must be either:
 869           // 1. Inline-cache check in C2I handler blob,
 870           // 2. Inline-cache check in nmethod, or
 871           // 3. Implicit null exception in nmethod
 872 
 873           if (!cb->is_compiled()) {
 874             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 875             if (!is_in_blob) {
 876               // Allow normal crash reporting to handle this
 877               return NULL;
 878             }
 879             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 880             // There is no handler here, so we will simply unwind.
 881             return StubRoutines::throw_NullPointerException_at_call_entry();
 882           }
 883 
 884           // Otherwise, it's a compiled method.  Consult its exception handlers.
 885           CompiledMethod* cm = (CompiledMethod*)cb;
 886           if (cm->inlinecache_check_contains(pc)) {
 887             // exception happened inside inline-cache check code
 888             // => the nmethod is not yet active (i.e., the frame
 889             // is not set up yet) => use return address pushed by
 890             // caller => don't push another return address
 891             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 892             return StubRoutines::throw_NullPointerException_at_call_entry();
 893           }
 894 
 895           if (cm->method()->is_method_handle_intrinsic()) {
 896             // exception happened inside MH dispatch code, similar to a vtable stub
 897             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 898             return StubRoutines::throw_NullPointerException_at_call_entry();
 899           }
 900 
 901 #ifndef PRODUCT
 902           _implicit_null_throws++;
 903 #endif
 904 #if INCLUDE_JVMCI
 905           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 906             // If there's no PcDesc then we'll die way down inside of
 907             // deopt instead of just getting normal error reporting,
 908             // so only go there if it will succeed.
 909             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 910           } else {
 911 #endif // INCLUDE_JVMCI
 912           assert (cm->is_nmethod(), "Expect nmethod");
 913           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 914 #if INCLUDE_JVMCI
 915           }
 916 #endif // INCLUDE_JVMCI
 917           // If there's an unexpected fault, target_pc might be NULL,
 918           // in which case we want to fall through into the normal
 919           // error handling code.
 920         }
 921 
 922         break; // fall through
 923       }
 924 
 925 
 926       case IMPLICIT_DIVIDE_BY_ZERO: {
 927         CompiledMethod* cm = CodeCache::find_compiled(pc);
 928         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 929 #ifndef PRODUCT
 930         _implicit_div0_throws++;
 931 #endif
 932 #if INCLUDE_JVMCI
 933         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 934           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 935         } else {
 936 #endif // INCLUDE_JVMCI
 937         target_pc = cm->continuation_for_implicit_exception(pc);
 938 #if INCLUDE_JVMCI
 939         }
 940 #endif // INCLUDE_JVMCI
 941         // If there's an unexpected fault, target_pc might be NULL,
 942         // in which case we want to fall through into the normal
 943         // error handling code.
 944         break; // fall through
 945       }
 946 
 947       default: ShouldNotReachHere();
 948     }
 949 
 950     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 951 
 952     if (exception_kind == IMPLICIT_NULL) {
 953 #ifndef PRODUCT
 954       // for AbortVMOnException flag
 955       Exceptions::debug_check_abort("java.lang.NullPointerException");
 956 #endif //PRODUCT
 957       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 958     } else {
 959 #ifndef PRODUCT
 960       // for AbortVMOnException flag
 961       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 962 #endif //PRODUCT
 963       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 964     }
 965     return target_pc;
 966   }
 967 
 968   ShouldNotReachHere();
 969   return NULL;
 970 }
 971 
 972 
 973 /**
 974  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 975  * installed in the native function entry of all native Java methods before
 976  * they get linked to their actual native methods.
 977  *
 978  * \note
 979  * This method actually never gets called!  The reason is because
 980  * the interpreter's native entries call NativeLookup::lookup() which
 981  * throws the exception when the lookup fails.  The exception is then
 982  * caught and forwarded on the return from NativeLookup::lookup() call
 983  * before the call to the native function.  This might change in the future.
 984  */
 985 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 986 {
 987   // We return a bad value here to make sure that the exception is
 988   // forwarded before we look at the return value.
 989   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 990 }
 991 JNI_END
 992 
 993 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 994   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 995 }
 996 
 997 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 998 #if INCLUDE_JVMCI
 999   if (!obj->klass()->has_finalizer()) {
1000     return;
1001   }
1002 #endif // INCLUDE_JVMCI
1003   assert(obj->is_oop(), "must be a valid oop");
1004   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1005   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1006 JRT_END
1007 
1008 
1009 jlong SharedRuntime::get_java_tid(Thread* thread) {
1010   if (thread != NULL) {
1011     if (thread->is_Java_thread()) {
1012       oop obj = ((JavaThread*)thread)->threadObj();
1013       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1014     }
1015   }
1016   return 0;
1017 }
1018 
1019 /**
1020  * This function ought to be a void function, but cannot be because
1021  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1022  * 6254741.  Once that is fixed we can remove the dummy return value.
1023  */
1024 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1025   return dtrace_object_alloc_base(Thread::current(), o, size);
1026 }
1027 
1028 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1029   assert(DTraceAllocProbes, "wrong call");
1030   Klass* klass = o->klass();
1031   Symbol* name = klass->name();
1032   HOTSPOT_OBJECT_ALLOC(
1033                    get_java_tid(thread),
1034                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1035   return 0;
1036 }
1037 
1038 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1039     JavaThread* thread, Method* method))
1040   assert(DTraceMethodProbes, "wrong call");
1041   Symbol* kname = method->klass_name();
1042   Symbol* name = method->name();
1043   Symbol* sig = method->signature();
1044   HOTSPOT_METHOD_ENTRY(
1045       get_java_tid(thread),
1046       (char *) kname->bytes(), kname->utf8_length(),
1047       (char *) name->bytes(), name->utf8_length(),
1048       (char *) sig->bytes(), sig->utf8_length());
1049   return 0;
1050 JRT_END
1051 
1052 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1053     JavaThread* thread, Method* method))
1054   assert(DTraceMethodProbes, "wrong call");
1055   Symbol* kname = method->klass_name();
1056   Symbol* name = method->name();
1057   Symbol* sig = method->signature();
1058   HOTSPOT_METHOD_RETURN(
1059       get_java_tid(thread),
1060       (char *) kname->bytes(), kname->utf8_length(),
1061       (char *) name->bytes(), name->utf8_length(),
1062       (char *) sig->bytes(), sig->utf8_length());
1063   return 0;
1064 JRT_END
1065 
1066 
1067 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1068 // for a call current in progress, i.e., arguments has been pushed on stack
1069 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1070 // vtable updates, etc.  Caller frame must be compiled.
1071 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1072   ResourceMark rm(THREAD);
1073 
1074   // last java frame on stack (which includes native call frames)
1075   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1076 
1077   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1078 }
1079 
1080 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1081   CompiledMethod* caller = vfst.nm();
1082 
1083   nmethodLocker caller_lock(caller);
1084 
1085   address pc = vfst.frame_pc();
1086   { // Get call instruction under lock because another thread may be busy patching it.
1087     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1088     return caller->attached_method_before_pc(pc);
1089   }
1090   return NULL;
1091 }
1092 
1093 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1094 // for a call current in progress, i.e., arguments has been pushed on stack
1095 // but callee has not been invoked yet.  Caller frame must be compiled.
1096 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1097                                               vframeStream& vfst,
1098                                               Bytecodes::Code& bc,
1099                                               CallInfo& callinfo, TRAPS) {
1100   Handle receiver;
1101   Handle nullHandle;  //create a handy null handle for exception returns
1102 
1103   assert(!vfst.at_end(), "Java frame must exist");
1104 
1105   // Find caller and bci from vframe
1106   methodHandle caller(THREAD, vfst.method());
1107   int          bci   = vfst.bci();
1108 
1109   Bytecode_invoke bytecode(caller, bci);
1110   int bytecode_index = bytecode.index();
1111   bc = bytecode.invoke_code();
1112 
1113   methodHandle attached_method = extract_attached_method(vfst);
1114   if (attached_method.not_null()) {
1115     methodHandle callee = bytecode.static_target(CHECK_NH);
1116     vmIntrinsics::ID id = callee->intrinsic_id();
1117     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1118     // it attaches statically resolved method to the call site.
1119     if (MethodHandles::is_signature_polymorphic(id) &&
1120         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1121       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1122 
1123       // Adjust invocation mode according to the attached method.
1124       switch (bc) {
1125         case Bytecodes::_invokeinterface:
1126           if (!attached_method->method_holder()->is_interface()) {
1127             bc = Bytecodes::_invokevirtual;
1128           }
1129           break;
1130         case Bytecodes::_invokehandle:
1131           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1132             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1133                                               : Bytecodes::_invokevirtual;
1134           }
1135           break;
1136       }
1137     } else {
1138       assert(ValueTypePassFieldsAsArgs, "invalid use of attached methods");
1139       if (bc != Bytecodes::_invokevirtual) {
1140         // Ignore the attached method in this case to not confuse below code
1141         attached_method = NULL;
1142       }
1143     }
1144   }
1145 
1146   bool has_receiver = bc != Bytecodes::_invokestatic &&
1147                       bc != Bytecodes::_invokedynamic &&
1148                       bc != Bytecodes::_invokehandle;
1149 
1150   // Find receiver for non-static call
1151   if (has_receiver) {
1152     // This register map must be update since we need to find the receiver for
1153     // compiled frames. The receiver might be in a register.
1154     RegisterMap reg_map2(thread);
1155     frame stubFrame   = thread->last_frame();
1156     // Caller-frame is a compiled frame
1157     frame callerFrame = stubFrame.sender(&reg_map2);
1158 
1159     methodHandle callee = attached_method;
1160     if (callee.is_null()) {
1161       callee = bytecode.static_target(CHECK_NH);
1162       if (callee.is_null()) {
1163         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1164       }
1165     }
1166     if (ValueTypePassFieldsAsArgs && callee->method_holder()->is_value()) {
1167       // If the receiver is a value type that is passed as fields, no oop is available.
1168       // Resolve the call without receiver null checking.
1169       assert(bc == Bytecodes::_invokevirtual, "only allowed with invokevirtual");
1170       assert(!attached_method.is_null(), "must have attached method");
1171       constantPoolHandle constants(THREAD, caller->constants());
1172       LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1173       LinkResolver::resolve_virtual_call(callinfo, receiver, NULL, link_info, /*check_null_or_abstract*/ false, CHECK_NH);
1174       return receiver; // is null
1175     } else {
1176       // Retrieve from a compiled argument list
1177       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1178 
1179       if (receiver.is_null()) {
1180         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1181       }
1182     }
1183   }
1184 
1185   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1186 
1187   // Resolve method
1188   if (attached_method.not_null()) {
1189     // Parameterized by attached method.
1190     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1191   } else {
1192     // Parameterized by bytecode.
1193     constantPoolHandle constants(THREAD, caller->constants());
1194     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1195   }
1196 
1197 #ifdef ASSERT
1198   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1199   if (has_receiver) {
1200     assert(receiver.not_null(), "should have thrown exception");
1201     Klass* receiver_klass = receiver->klass();
1202     Klass* rk = NULL;
1203     if (attached_method.not_null()) {
1204       // In case there's resolved method attached, use its holder during the check.
1205       rk = attached_method->method_holder();
1206     } else {
1207       // Klass is already loaded.
1208       constantPoolHandle constants(THREAD, caller->constants());
1209       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1210     }
1211     Klass* static_receiver_klass = rk;
1212     methodHandle callee = callinfo.selected_method();
1213     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1214            "actual receiver must be subclass of static receiver klass");
1215     if (receiver_klass->is_instance_klass()) {
1216       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1217         tty->print_cr("ERROR: Klass not yet initialized!!");
1218         receiver_klass->print();
1219       }
1220       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1221     }
1222   }
1223 #endif
1224 
1225   return receiver;
1226 }
1227 
1228 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1229   ResourceMark rm(THREAD);
1230   // We need first to check if any Java activations (compiled, interpreted)
1231   // exist on the stack since last JavaCall.  If not, we need
1232   // to get the target method from the JavaCall wrapper.
1233   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1234   methodHandle callee_method;
1235   if (vfst.at_end()) {
1236     // No Java frames were found on stack since we did the JavaCall.
1237     // Hence the stack can only contain an entry_frame.  We need to
1238     // find the target method from the stub frame.
1239     RegisterMap reg_map(thread, false);
1240     frame fr = thread->last_frame();
1241     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1242     fr = fr.sender(&reg_map);
1243     assert(fr.is_entry_frame(), "must be");
1244     // fr is now pointing to the entry frame.
1245     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1246   } else {
1247     Bytecodes::Code bc;
1248     CallInfo callinfo;
1249     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1250     callee_method = callinfo.selected_method();
1251   }
1252   assert(callee_method()->is_method(), "must be");
1253   return callee_method;
1254 }
1255 
1256 // Resolves a call.
1257 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1258                                            bool is_virtual,
1259                                            bool is_optimized, TRAPS) {
1260   methodHandle callee_method;
1261   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1262   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1263     int retry_count = 0;
1264     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1265            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1266       // If has a pending exception then there is no need to re-try to
1267       // resolve this method.
1268       // If the method has been redefined, we need to try again.
1269       // Hack: we have no way to update the vtables of arrays, so don't
1270       // require that java.lang.Object has been updated.
1271 
1272       // It is very unlikely that method is redefined more than 100 times
1273       // in the middle of resolve. If it is looping here more than 100 times
1274       // means then there could be a bug here.
1275       guarantee((retry_count++ < 100),
1276                 "Could not resolve to latest version of redefined method");
1277       // method is redefined in the middle of resolve so re-try.
1278       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1279     }
1280   }
1281   return callee_method;
1282 }
1283 
1284 // Resolves a call.  The compilers generate code for calls that go here
1285 // and are patched with the real destination of the call.
1286 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1287                                            bool is_virtual,
1288                                            bool is_optimized, TRAPS) {
1289 
1290   ResourceMark rm(thread);
1291   RegisterMap cbl_map(thread, false);
1292   frame caller_frame = thread->last_frame().sender(&cbl_map);
1293 
1294   CodeBlob* caller_cb = caller_frame.cb();
1295   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1296   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1297 
1298   // make sure caller is not getting deoptimized
1299   // and removed before we are done with it.
1300   // CLEANUP - with lazy deopt shouldn't need this lock
1301   nmethodLocker caller_lock(caller_nm);
1302 
1303   // determine call info & receiver
1304   // note: a) receiver is NULL for static calls
1305   //       b) an exception is thrown if receiver is NULL for non-static calls
1306   CallInfo call_info;
1307   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1308   Handle receiver = find_callee_info(thread, invoke_code,
1309                                      call_info, CHECK_(methodHandle()));
1310   methodHandle callee_method = call_info.selected_method();
1311 
1312   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1313          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1314          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1315          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1316          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1317 
1318   assert(caller_nm->is_alive(), "It should be alive");
1319 
1320 #ifndef PRODUCT
1321   // tracing/debugging/statistics
1322   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1323                 (is_virtual) ? (&_resolve_virtual_ctr) :
1324                                (&_resolve_static_ctr);
1325   Atomic::inc(addr);
1326 
1327   if (TraceCallFixup) {
1328     ResourceMark rm(thread);
1329     tty->print("resolving %s%s (%s) call to",
1330       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1331       Bytecodes::name(invoke_code));
1332     callee_method->print_short_name(tty);
1333     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1334                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1335   }
1336 #endif
1337 
1338   // JSR 292 key invariant:
1339   // If the resolved method is a MethodHandle invoke target, the call
1340   // site must be a MethodHandle call site, because the lambda form might tail-call
1341   // leaving the stack in a state unknown to either caller or callee
1342   // TODO detune for now but we might need it again
1343 //  assert(!callee_method->is_compiled_lambda_form() ||
1344 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1345 
1346   // Compute entry points. This might require generation of C2I converter
1347   // frames, so we cannot be holding any locks here. Furthermore, the
1348   // computation of the entry points is independent of patching the call.  We
1349   // always return the entry-point, but we only patch the stub if the call has
1350   // not been deoptimized.  Return values: For a virtual call this is an
1351   // (cached_oop, destination address) pair. For a static call/optimized
1352   // virtual this is just a destination address.
1353 
1354   StaticCallInfo static_call_info;
1355   CompiledICInfo virtual_call_info;
1356 
1357   // Make sure the callee nmethod does not get deoptimized and removed before
1358   // we are done patching the code.
1359   CompiledMethod* callee = callee_method->code();
1360 
1361   if (callee != NULL) {
1362     assert(callee->is_compiled(), "must be nmethod for patching");
1363   }
1364 
1365   if (callee != NULL && !callee->is_in_use()) {
1366     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1367     callee = NULL;
1368   }
1369   nmethodLocker nl_callee(callee);
1370 #ifdef ASSERT
1371   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1372 #endif
1373 
1374   bool is_nmethod = caller_nm->is_nmethod();
1375 
1376   if (is_virtual) {
1377     Klass* receiver_klass = NULL;
1378     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1379       // If the receiver is a value type that is passed as fields, no oop is available
1380       receiver_klass = callee_method->method_holder();
1381     } else {
1382       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1383       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1384     }
1385     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1386     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1387                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1388                      CHECK_(methodHandle()));
1389   } else {
1390     // static call
1391     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1392   }
1393 
1394   // grab lock, check for deoptimization and potentially patch caller
1395   {
1396     MutexLocker ml_patch(CompiledIC_lock);
1397 
1398     // Lock blocks for safepoint during which both nmethods can change state.
1399 
1400     // Now that we are ready to patch if the Method* was redefined then
1401     // don't update call site and let the caller retry.
1402     // Don't update call site if callee nmethod was unloaded or deoptimized.
1403     // Don't update call site if callee nmethod was replaced by an other nmethod
1404     // which may happen when multiply alive nmethod (tiered compilation)
1405     // will be supported.
1406     if (!callee_method->is_old() &&
1407         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1408 #ifdef ASSERT
1409       // We must not try to patch to jump to an already unloaded method.
1410       if (dest_entry_point != 0) {
1411         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1412         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1413                "should not call unloaded nmethod");
1414       }
1415 #endif
1416       if (is_virtual) {
1417         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1418         if (inline_cache->is_clean()) {
1419           inline_cache->set_to_monomorphic(virtual_call_info);
1420         }
1421       } else {
1422         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1423         if (ssc->is_clean()) ssc->set(static_call_info);
1424       }
1425     }
1426 
1427   } // unlock CompiledIC_lock
1428 
1429   return callee_method;
1430 }
1431 
1432 
1433 // Inline caches exist only in compiled code
1434 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1435 #ifdef ASSERT
1436   RegisterMap reg_map(thread, false);
1437   frame stub_frame = thread->last_frame();
1438   assert(stub_frame.is_runtime_frame(), "sanity check");
1439   frame caller_frame = stub_frame.sender(&reg_map);
1440   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1441 #endif /* ASSERT */
1442 
1443   methodHandle callee_method;
1444   JRT_BLOCK
1445     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1446     // Return Method* through TLS
1447     thread->set_vm_result_2(callee_method());
1448   JRT_BLOCK_END
1449   // return compiled code entry point after potential safepoints
1450   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1451   return callee_method->verified_code_entry();
1452 JRT_END
1453 
1454 
1455 // Handle call site that has been made non-entrant
1456 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1457   // 6243940 We might end up in here if the callee is deoptimized
1458   // as we race to call it.  We don't want to take a safepoint if
1459   // the caller was interpreted because the caller frame will look
1460   // interpreted to the stack walkers and arguments are now
1461   // "compiled" so it is much better to make this transition
1462   // invisible to the stack walking code. The i2c path will
1463   // place the callee method in the callee_target. It is stashed
1464   // there because if we try and find the callee by normal means a
1465   // safepoint is possible and have trouble gc'ing the compiled args.
1466   RegisterMap reg_map(thread, false);
1467   frame stub_frame = thread->last_frame();
1468   assert(stub_frame.is_runtime_frame(), "sanity check");
1469   frame caller_frame = stub_frame.sender(&reg_map);
1470 
1471   if (caller_frame.is_interpreted_frame() ||
1472       caller_frame.is_entry_frame()) {
1473     Method* callee = thread->callee_target();
1474     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1475     thread->set_vm_result_2(callee);
1476     thread->set_callee_target(NULL);
1477     return callee->get_c2i_entry();
1478   }
1479 
1480   // Must be compiled to compiled path which is safe to stackwalk
1481   methodHandle callee_method;
1482   JRT_BLOCK
1483     // Force resolving of caller (if we called from compiled frame)
1484     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1485     thread->set_vm_result_2(callee_method());
1486   JRT_BLOCK_END
1487   // return compiled code entry point after potential safepoints
1488   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1489   return callee_method->verified_code_entry();
1490 JRT_END
1491 
1492 // Handle abstract method call
1493 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1494   return StubRoutines::throw_AbstractMethodError_entry();
1495 JRT_END
1496 
1497 
1498 // resolve a static call and patch code
1499 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1500   methodHandle callee_method;
1501   JRT_BLOCK
1502     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1503     thread->set_vm_result_2(callee_method());
1504   JRT_BLOCK_END
1505   // return compiled code entry point after potential safepoints
1506   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1507   return callee_method->verified_code_entry();
1508 JRT_END
1509 
1510 
1511 // resolve virtual call and update inline cache to monomorphic
1512 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1513   methodHandle callee_method;
1514   JRT_BLOCK
1515     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1516     thread->set_vm_result_2(callee_method());
1517   JRT_BLOCK_END
1518   // return compiled code entry point after potential safepoints
1519   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1520   return callee_method->verified_code_entry();
1521 JRT_END
1522 
1523 
1524 // Resolve a virtual call that can be statically bound (e.g., always
1525 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1526 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1527   methodHandle callee_method;
1528   JRT_BLOCK
1529     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1530     thread->set_vm_result_2(callee_method());
1531   JRT_BLOCK_END
1532   // return compiled code entry point after potential safepoints
1533   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1534   return callee_method->verified_code_entry();
1535 JRT_END
1536 
1537 
1538 
1539 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1540   ResourceMark rm(thread);
1541   CallInfo call_info;
1542   Bytecodes::Code bc;
1543 
1544   // receiver is NULL for static calls. An exception is thrown for NULL
1545   // receivers for non-static calls
1546   Handle receiver = find_callee_info(thread, bc, call_info,
1547                                      CHECK_(methodHandle()));
1548   // Compiler1 can produce virtual call sites that can actually be statically bound
1549   // If we fell thru to below we would think that the site was going megamorphic
1550   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1551   // we'd try and do a vtable dispatch however methods that can be statically bound
1552   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1553   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1554   // plain ic_miss) and the site will be converted to an optimized virtual call site
1555   // never to miss again. I don't believe C2 will produce code like this but if it
1556   // did this would still be the correct thing to do for it too, hence no ifdef.
1557   //
1558   if (call_info.resolved_method()->can_be_statically_bound()) {
1559     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1560     if (TraceCallFixup) {
1561       RegisterMap reg_map(thread, false);
1562       frame caller_frame = thread->last_frame().sender(&reg_map);
1563       ResourceMark rm(thread);
1564       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1565       callee_method->print_short_name(tty);
1566       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1567       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1568     }
1569     return callee_method;
1570   }
1571 
1572   methodHandle callee_method = call_info.selected_method();
1573 
1574   bool should_be_mono = false;
1575 
1576 #ifndef PRODUCT
1577   Atomic::inc(&_ic_miss_ctr);
1578 
1579   // Statistics & Tracing
1580   if (TraceCallFixup) {
1581     ResourceMark rm(thread);
1582     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1583     callee_method->print_short_name(tty);
1584     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1585   }
1586 
1587   if (ICMissHistogram) {
1588     MutexLocker m(VMStatistic_lock);
1589     RegisterMap reg_map(thread, false);
1590     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1591     // produce statistics under the lock
1592     trace_ic_miss(f.pc());
1593   }
1594 #endif
1595 
1596   // install an event collector so that when a vtable stub is created the
1597   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1598   // event can't be posted when the stub is created as locks are held
1599   // - instead the event will be deferred until the event collector goes
1600   // out of scope.
1601   JvmtiDynamicCodeEventCollector event_collector;
1602 
1603   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1604   { MutexLocker ml_patch (CompiledIC_lock);
1605     RegisterMap reg_map(thread, false);
1606     frame caller_frame = thread->last_frame().sender(&reg_map);
1607     CodeBlob* cb = caller_frame.cb();
1608     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1609     if (cb->is_compiled()) {
1610       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1611       bool should_be_mono = false;
1612       if (inline_cache->is_optimized()) {
1613         if (TraceCallFixup) {
1614           ResourceMark rm(thread);
1615           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1616           callee_method->print_short_name(tty);
1617           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1618         }
1619         should_be_mono = true;
1620       } else if (inline_cache->is_icholder_call()) {
1621         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1622         if (ic_oop != NULL) {
1623 
1624           if (receiver()->klass() == ic_oop->holder_klass()) {
1625             // This isn't a real miss. We must have seen that compiled code
1626             // is now available and we want the call site converted to a
1627             // monomorphic compiled call site.
1628             // We can't assert for callee_method->code() != NULL because it
1629             // could have been deoptimized in the meantime
1630             if (TraceCallFixup) {
1631               ResourceMark rm(thread);
1632               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1633               callee_method->print_short_name(tty);
1634               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1635             }
1636             should_be_mono = true;
1637           }
1638         }
1639       }
1640 
1641       if (should_be_mono) {
1642 
1643         // We have a path that was monomorphic but was going interpreted
1644         // and now we have (or had) a compiled entry. We correct the IC
1645         // by using a new icBuffer.
1646         CompiledICInfo info;
1647         Klass* receiver_klass = receiver()->klass();
1648         inline_cache->compute_monomorphic_entry(callee_method,
1649                                                 receiver_klass,
1650                                                 inline_cache->is_optimized(),
1651                                                 false, caller_nm->is_nmethod(),
1652                                                 info, CHECK_(methodHandle()));
1653         inline_cache->set_to_monomorphic(info);
1654       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1655         // Potential change to megamorphic
1656         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1657         if (!successful) {
1658           inline_cache->set_to_clean();
1659         }
1660       } else {
1661         // Either clean or megamorphic
1662       }
1663     } else {
1664       fatal("Unimplemented");
1665     }
1666   } // Release CompiledIC_lock
1667 
1668   return callee_method;
1669 }
1670 
1671 //
1672 // Resets a call-site in compiled code so it will get resolved again.
1673 // This routines handles both virtual call sites, optimized virtual call
1674 // sites, and static call sites. Typically used to change a call sites
1675 // destination from compiled to interpreted.
1676 //
1677 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1678   ResourceMark rm(thread);
1679   RegisterMap reg_map(thread, false);
1680   frame stub_frame = thread->last_frame();
1681   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1682   frame caller = stub_frame.sender(&reg_map);
1683 
1684   // Do nothing if the frame isn't a live compiled frame.
1685   // nmethod could be deoptimized by the time we get here
1686   // so no update to the caller is needed.
1687 
1688   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1689 
1690     address pc = caller.pc();
1691 
1692     // Check for static or virtual call
1693     bool is_static_call = false;
1694     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1695 
1696     // Default call_addr is the location of the "basic" call.
1697     // Determine the address of the call we a reresolving. With
1698     // Inline Caches we will always find a recognizable call.
1699     // With Inline Caches disabled we may or may not find a
1700     // recognizable call. We will always find a call for static
1701     // calls and for optimized virtual calls. For vanilla virtual
1702     // calls it depends on the state of the UseInlineCaches switch.
1703     //
1704     // With Inline Caches disabled we can get here for a virtual call
1705     // for two reasons:
1706     //   1 - calling an abstract method. The vtable for abstract methods
1707     //       will run us thru handle_wrong_method and we will eventually
1708     //       end up in the interpreter to throw the ame.
1709     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1710     //       call and between the time we fetch the entry address and
1711     //       we jump to it the target gets deoptimized. Similar to 1
1712     //       we will wind up in the interprter (thru a c2i with c2).
1713     //
1714     address call_addr = NULL;
1715     {
1716       // Get call instruction under lock because another thread may be
1717       // busy patching it.
1718       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1719       // Location of call instruction
1720       call_addr = caller_nm->call_instruction_address(pc);
1721     }
1722     // Make sure nmethod doesn't get deoptimized and removed until
1723     // this is done with it.
1724     // CLEANUP - with lazy deopt shouldn't need this lock
1725     nmethodLocker nmlock(caller_nm);
1726 
1727     if (call_addr != NULL) {
1728       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1729       int ret = iter.next(); // Get item
1730       if (ret) {
1731         assert(iter.addr() == call_addr, "must find call");
1732         if (iter.type() == relocInfo::static_call_type) {
1733           is_static_call = true;
1734         } else {
1735           assert(iter.type() == relocInfo::virtual_call_type ||
1736                  iter.type() == relocInfo::opt_virtual_call_type
1737                 , "unexpected relocInfo. type");
1738         }
1739       } else {
1740         assert(!UseInlineCaches, "relocation info. must exist for this address");
1741       }
1742 
1743       // Cleaning the inline cache will force a new resolve. This is more robust
1744       // than directly setting it to the new destination, since resolving of calls
1745       // is always done through the same code path. (experience shows that it
1746       // leads to very hard to track down bugs, if an inline cache gets updated
1747       // to a wrong method). It should not be performance critical, since the
1748       // resolve is only done once.
1749 
1750       bool is_nmethod = caller_nm->is_nmethod();
1751       MutexLocker ml(CompiledIC_lock);
1752       if (is_static_call) {
1753         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1754         ssc->set_to_clean();
1755       } else {
1756         // compiled, dispatched call (which used to call an interpreted method)
1757         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1758         inline_cache->set_to_clean();
1759       }
1760     }
1761   }
1762 
1763   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1764 
1765 
1766 #ifndef PRODUCT
1767   Atomic::inc(&_wrong_method_ctr);
1768 
1769   if (TraceCallFixup) {
1770     ResourceMark rm(thread);
1771     tty->print("handle_wrong_method reresolving call to");
1772     callee_method->print_short_name(tty);
1773     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1774   }
1775 #endif
1776 
1777   return callee_method;
1778 }
1779 
1780 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1781   // The faulting unsafe accesses should be changed to throw the error
1782   // synchronously instead. Meanwhile the faulting instruction will be
1783   // skipped over (effectively turning it into a no-op) and an
1784   // asynchronous exception will be raised which the thread will
1785   // handle at a later point. If the instruction is a load it will
1786   // return garbage.
1787 
1788   // Request an async exception.
1789   thread->set_pending_unsafe_access_error();
1790 
1791   // Return address of next instruction to execute.
1792   return next_pc;
1793 }
1794 
1795 #ifdef ASSERT
1796 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1797                                                                 const BasicType* sig_bt,
1798                                                                 const VMRegPair* regs) {
1799   ResourceMark rm;
1800   const int total_args_passed = method->size_of_parameters();
1801   const VMRegPair*    regs_with_member_name = regs;
1802         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1803 
1804   const int member_arg_pos = total_args_passed - 1;
1805   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1806   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1807 
1808   const bool is_outgoing = method->is_method_handle_intrinsic();
1809   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1810 
1811   for (int i = 0; i < member_arg_pos; i++) {
1812     VMReg a =    regs_with_member_name[i].first();
1813     VMReg b = regs_without_member_name[i].first();
1814     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1815   }
1816   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1817 }
1818 #endif
1819 
1820 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1821   if (destination != entry_point) {
1822     CodeBlob* callee = CodeCache::find_blob(destination);
1823     // callee == cb seems weird. It means calling interpreter thru stub.
1824     if (callee == cb || callee->is_adapter_blob()) {
1825       // static call or optimized virtual
1826       if (TraceCallFixup) {
1827         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1828         moop->print_short_name(tty);
1829         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1830       }
1831       return true;
1832     } else {
1833       if (TraceCallFixup) {
1834         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1835         moop->print_short_name(tty);
1836         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1837       }
1838       // assert is too strong could also be resolve destinations.
1839       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1840     }
1841   } else {
1842     if (TraceCallFixup) {
1843       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1844       moop->print_short_name(tty);
1845       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1846     }
1847   }
1848   return false;
1849 }
1850 
1851 // ---------------------------------------------------------------------------
1852 // We are calling the interpreter via a c2i. Normally this would mean that
1853 // we were called by a compiled method. However we could have lost a race
1854 // where we went int -> i2c -> c2i and so the caller could in fact be
1855 // interpreted. If the caller is compiled we attempt to patch the caller
1856 // so he no longer calls into the interpreter.
1857 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1858   Method* moop(method);
1859 
1860   address entry_point = moop->from_compiled_entry_no_trampoline();
1861 
1862   // It's possible that deoptimization can occur at a call site which hasn't
1863   // been resolved yet, in which case this function will be called from
1864   // an nmethod that has been patched for deopt and we can ignore the
1865   // request for a fixup.
1866   // Also it is possible that we lost a race in that from_compiled_entry
1867   // is now back to the i2c in that case we don't need to patch and if
1868   // we did we'd leap into space because the callsite needs to use
1869   // "to interpreter" stub in order to load up the Method*. Don't
1870   // ask me how I know this...
1871 
1872   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1873   if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1874     return;
1875   }
1876 
1877   // The check above makes sure this is a nmethod.
1878   CompiledMethod* nm = cb->as_compiled_method_or_null();
1879   assert(nm, "must be");
1880 
1881   // Get the return PC for the passed caller PC.
1882   address return_pc = caller_pc + frame::pc_return_offset;
1883 
1884   // There is a benign race here. We could be attempting to patch to a compiled
1885   // entry point at the same time the callee is being deoptimized. If that is
1886   // the case then entry_point may in fact point to a c2i and we'd patch the
1887   // call site with the same old data. clear_code will set code() to NULL
1888   // at the end of it. If we happen to see that NULL then we can skip trying
1889   // to patch. If we hit the window where the callee has a c2i in the
1890   // from_compiled_entry and the NULL isn't present yet then we lose the race
1891   // and patch the code with the same old data. Asi es la vida.
1892 
1893   if (moop->code() == NULL) return;
1894 
1895   if (nm->is_in_use()) {
1896 
1897     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1898     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1899     if (NativeCall::is_call_before(return_pc)) {
1900       ResourceMark mark;
1901       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1902       //
1903       // bug 6281185. We might get here after resolving a call site to a vanilla
1904       // virtual call. Because the resolvee uses the verified entry it may then
1905       // see compiled code and attempt to patch the site by calling us. This would
1906       // then incorrectly convert the call site to optimized and its downhill from
1907       // there. If you're lucky you'll get the assert in the bugid, if not you've
1908       // just made a call site that could be megamorphic into a monomorphic site
1909       // for the rest of its life! Just another racing bug in the life of
1910       // fixup_callers_callsite ...
1911       //
1912       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1913       iter.next();
1914       assert(iter.has_current(), "must have a reloc at java call site");
1915       relocInfo::relocType typ = iter.reloc()->type();
1916       if (typ != relocInfo::static_call_type &&
1917            typ != relocInfo::opt_virtual_call_type &&
1918            typ != relocInfo::static_stub_type) {
1919         return;
1920       }
1921       address destination = call->destination();
1922       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1923         call->set_destination_mt_safe(entry_point);
1924       }
1925     }
1926   }
1927 IRT_END
1928 
1929 
1930 // same as JVM_Arraycopy, but called directly from compiled code
1931 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1932                                                 oopDesc* dest, jint dest_pos,
1933                                                 jint length,
1934                                                 JavaThread* thread)) {
1935 #ifndef PRODUCT
1936   _slow_array_copy_ctr++;
1937 #endif
1938   // Check if we have null pointers
1939   if (src == NULL || dest == NULL) {
1940     THROW(vmSymbols::java_lang_NullPointerException());
1941   }
1942   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1943   // even though the copy_array API also performs dynamic checks to ensure
1944   // that src and dest are truly arrays (and are conformable).
1945   // The copy_array mechanism is awkward and could be removed, but
1946   // the compilers don't call this function except as a last resort,
1947   // so it probably doesn't matter.
1948   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1949                                         (arrayOopDesc*)dest, dest_pos,
1950                                         length, thread);
1951 }
1952 JRT_END
1953 
1954 // The caller of generate_class_cast_message() (or one of its callers)
1955 // must use a ResourceMark in order to correctly free the result.
1956 char* SharedRuntime::generate_class_cast_message(
1957     JavaThread* thread, Klass* caster_klass) {
1958 
1959   // Get target class name from the checkcast instruction
1960   vframeStream vfst(thread, true);
1961   assert(!vfst.at_end(), "Java frame must exist");
1962   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1963   Klass* target_klass = vfst.method()->constants()->klass_at(
1964     cc.index(), thread);
1965   return generate_class_cast_message(caster_klass, target_klass);
1966 }
1967 
1968 // The caller of class_loader_and_module_name() (or one of its callers)
1969 // must use a ResourceMark in order to correctly free the result.
1970 const char* class_loader_and_module_name(Klass* klass) {
1971   const char* delim = "/";
1972   size_t delim_len = strlen(delim);
1973 
1974   const char* fqn = klass->external_name();
1975   // Length of message to return; always include FQN
1976   size_t msglen = strlen(fqn) + 1;
1977 
1978   bool has_cl_name = false;
1979   bool has_mod_name = false;
1980   bool has_version = false;
1981 
1982   // Use class loader name, if exists and not builtin
1983   const char* class_loader_name = "";
1984   ClassLoaderData* cld = klass->class_loader_data();
1985   assert(cld != NULL, "class_loader_data should not be NULL");
1986   if (!cld->is_builtin_class_loader_data()) {
1987     // If not builtin, look for name
1988     oop loader = klass->class_loader();
1989     if (loader != NULL) {
1990       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1991       if (class_loader_name_oop != NULL) {
1992         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1993         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1994           has_cl_name = true;
1995           msglen += strlen(class_loader_name) + delim_len;
1996         }
1997       }
1998     }
1999   }
2000 
2001   const char* module_name = "";
2002   const char* version = "";
2003   Klass* bottom_klass = klass->is_objArray_klass() ?
2004     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
2005   if (bottom_klass->is_instance_klass()) {
2006     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
2007     // Use module name, if exists
2008     if (module->is_named()) {
2009       has_mod_name = true;
2010       module_name = module->name()->as_C_string();
2011       msglen += strlen(module_name);
2012       // Use version if exists and is not a jdk module
2013       if (module->is_non_jdk_module() && module->version() != NULL) {
2014         has_version = true;
2015         version = module->version()->as_C_string();
2016         msglen += strlen("@") + strlen(version);
2017       }
2018     }
2019   } else {
2020     // klass is an array of primitives, so its module is java.base
2021     module_name = JAVA_BASE_NAME;
2022   }
2023 
2024   if (has_cl_name || has_mod_name) {
2025     msglen += delim_len;
2026   }
2027 
2028   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2029 
2030   // Just return the FQN if error in allocating string
2031   if (message == NULL) {
2032     return fqn;
2033   }
2034 
2035   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2036                class_loader_name,
2037                (has_cl_name) ? delim : "",
2038                (has_mod_name) ? module_name : "",
2039                (has_version) ? "@" : "",
2040                (has_version) ? version : "",
2041                (has_cl_name || has_mod_name) ? delim : "",
2042                fqn);
2043   return message;
2044 }
2045 
2046 char* SharedRuntime::generate_class_cast_message(
2047     Klass* caster_klass, Klass* target_klass) {
2048 
2049   const char* caster_name = class_loader_and_module_name(caster_klass);
2050 
2051   const char* target_name = class_loader_and_module_name(target_klass);
2052 
2053   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2054 
2055   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2056   if (message == NULL) {
2057     // Shouldn't happen, but don't cause even more problems if it does
2058     message = const_cast<char*>(caster_klass->external_name());
2059   } else {
2060     jio_snprintf(message,
2061                  msglen,
2062                  "%s cannot be cast to %s",
2063                  caster_name,
2064                  target_name);
2065   }
2066   return message;
2067 }
2068 
2069 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2070   (void) JavaThread::current()->reguard_stack();
2071 JRT_END
2072 
2073 
2074 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2075 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2076   // Disable ObjectSynchronizer::quick_enter() in default config
2077   // on AARCH64 and ARM until JDK-8153107 is resolved.
2078   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2079       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2080       !SafepointSynchronize::is_synchronizing()) {
2081     // Only try quick_enter() if we're not trying to reach a safepoint
2082     // so that the calling thread reaches the safepoint more quickly.
2083     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2084   }
2085   // NO_ASYNC required because an async exception on the state transition destructor
2086   // would leave you with the lock held and it would never be released.
2087   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2088   // and the model is that an exception implies the method failed.
2089   JRT_BLOCK_NO_ASYNC
2090   oop obj(_obj);
2091   if (PrintBiasedLockingStatistics) {
2092     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2093   }
2094   Handle h_obj(THREAD, obj);
2095   if (UseBiasedLocking) {
2096     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2097     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2098   } else {
2099     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2100   }
2101   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2102   JRT_BLOCK_END
2103 JRT_END
2104 
2105 // Handles the uncommon cases of monitor unlocking in compiled code
2106 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2107    oop obj(_obj);
2108   assert(JavaThread::current() == THREAD, "invariant");
2109   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2110   // testing was unable to ever fire the assert that guarded it so I have removed it.
2111   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2112 #undef MIGHT_HAVE_PENDING
2113 #ifdef MIGHT_HAVE_PENDING
2114   // Save and restore any pending_exception around the exception mark.
2115   // While the slow_exit must not throw an exception, we could come into
2116   // this routine with one set.
2117   oop pending_excep = NULL;
2118   const char* pending_file;
2119   int pending_line;
2120   if (HAS_PENDING_EXCEPTION) {
2121     pending_excep = PENDING_EXCEPTION;
2122     pending_file  = THREAD->exception_file();
2123     pending_line  = THREAD->exception_line();
2124     CLEAR_PENDING_EXCEPTION;
2125   }
2126 #endif /* MIGHT_HAVE_PENDING */
2127 
2128   {
2129     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2130     EXCEPTION_MARK;
2131     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2132   }
2133 
2134 #ifdef MIGHT_HAVE_PENDING
2135   if (pending_excep != NULL) {
2136     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2137   }
2138 #endif /* MIGHT_HAVE_PENDING */
2139 JRT_END
2140 
2141 #ifndef PRODUCT
2142 
2143 void SharedRuntime::print_statistics() {
2144   ttyLocker ttyl;
2145   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2146 
2147   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2148 
2149   SharedRuntime::print_ic_miss_histogram();
2150 
2151   if (CountRemovableExceptions) {
2152     if (_nof_removable_exceptions > 0) {
2153       Unimplemented(); // this counter is not yet incremented
2154       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2155     }
2156   }
2157 
2158   // Dump the JRT_ENTRY counters
2159   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2160   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2161   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2162   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2163   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2164   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2165   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2166 
2167   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2168   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2169   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2170   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2171   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2172 
2173   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2174   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2175   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2176   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2177   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2178   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2179   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2180   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2181   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2182   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2183   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2184   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2185   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2186   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2187   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2188   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2189 
2190   AdapterHandlerLibrary::print_statistics();
2191 
2192   if (xtty != NULL)  xtty->tail("statistics");
2193 }
2194 
2195 inline double percent(int x, int y) {
2196   return 100.0 * x / MAX2(y, 1);
2197 }
2198 
2199 class MethodArityHistogram {
2200  public:
2201   enum { MAX_ARITY = 256 };
2202  private:
2203   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2204   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2205   static int _max_arity;                      // max. arity seen
2206   static int _max_size;                       // max. arg size seen
2207 
2208   static void add_method_to_histogram(nmethod* nm) {
2209     Method* m = nm->method();
2210     ArgumentCount args(m->signature());
2211     int arity   = args.size() + (m->is_static() ? 0 : 1);
2212     int argsize = m->size_of_parameters();
2213     arity   = MIN2(arity, MAX_ARITY-1);
2214     argsize = MIN2(argsize, MAX_ARITY-1);
2215     int count = nm->method()->compiled_invocation_count();
2216     _arity_histogram[arity]  += count;
2217     _size_histogram[argsize] += count;
2218     _max_arity = MAX2(_max_arity, arity);
2219     _max_size  = MAX2(_max_size, argsize);
2220   }
2221 
2222   void print_histogram_helper(int n, int* histo, const char* name) {
2223     const int N = MIN2(5, n);
2224     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2225     double sum = 0;
2226     double weighted_sum = 0;
2227     int i;
2228     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2229     double rest = sum;
2230     double percent = sum / 100;
2231     for (i = 0; i <= N; i++) {
2232       rest -= histo[i];
2233       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2234     }
2235     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2236     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2237   }
2238 
2239   void print_histogram() {
2240     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2241     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2242     tty->print_cr("\nSame for parameter size (in words):");
2243     print_histogram_helper(_max_size, _size_histogram, "size");
2244     tty->cr();
2245   }
2246 
2247  public:
2248   MethodArityHistogram() {
2249     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2250     _max_arity = _max_size = 0;
2251     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2252     CodeCache::nmethods_do(add_method_to_histogram);
2253     print_histogram();
2254   }
2255 };
2256 
2257 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2258 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2259 int MethodArityHistogram::_max_arity;
2260 int MethodArityHistogram::_max_size;
2261 
2262 void SharedRuntime::print_call_statistics(int comp_total) {
2263   tty->print_cr("Calls from compiled code:");
2264   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2265   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2266   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2267   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2268   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2269   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2270   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2271   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2272   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2273   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2274   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2275   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2276   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2277   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2278   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2279   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2280   tty->cr();
2281   tty->print_cr("Note 1: counter updates are not MT-safe.");
2282   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2283   tty->print_cr("        %% in nested categories are relative to their category");
2284   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2285   tty->cr();
2286 
2287   MethodArityHistogram h;
2288 }
2289 #endif
2290 
2291 
2292 // A simple wrapper class around the calling convention information
2293 // that allows sharing of adapters for the same calling convention.
2294 class AdapterFingerPrint : public CHeapObj<mtCode> {
2295  private:
2296   enum {
2297     _basic_type_bits = 4,
2298     _basic_type_mask = right_n_bits(_basic_type_bits),
2299     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2300     _compact_int_count = 3
2301   };
2302   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2303   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2304 
2305   union {
2306     int  _compact[_compact_int_count];
2307     int* _fingerprint;
2308   } _value;
2309   int _length; // A negative length indicates the fingerprint is in the compact form,
2310                // Otherwise _value._fingerprint is the array.
2311 
2312   // Remap BasicTypes that are handled equivalently by the adapters.
2313   // These are correct for the current system but someday it might be
2314   // necessary to make this mapping platform dependent.
2315   static int adapter_encoding(BasicType in, bool is_valuetype) {
2316     switch (in) {
2317       case T_BOOLEAN:
2318       case T_BYTE:
2319       case T_SHORT:
2320       case T_CHAR: {
2321         if (is_valuetype) {
2322           // Do not widen value type field types
2323           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2324           return in;
2325         } else {
2326           // They are all promoted to T_INT in the calling convention
2327           return T_INT;
2328         }
2329       }
2330 
2331       case T_VALUETYPE: {
2332         // If value types are passed as fields, return 'in' to differentiate
2333         // between a T_VALUETYPE and a T_OBJECT in the signature.
2334         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2335       }
2336       case T_OBJECT:
2337       case T_ARRAY:
2338         // In other words, we assume that any register good enough for
2339         // an int or long is good enough for a managed pointer.
2340 #ifdef _LP64
2341         return T_LONG;
2342 #else
2343         return T_INT;
2344 #endif
2345 
2346       case T_INT:
2347       case T_LONG:
2348       case T_FLOAT:
2349       case T_DOUBLE:
2350       case T_VOID:
2351         return in;
2352 
2353       default:
2354         ShouldNotReachHere();
2355         return T_CONFLICT;
2356     }
2357   }
2358 
2359  public:
2360   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2361     // The fingerprint is based on the BasicType signature encoded
2362     // into an array of ints with eight entries per int.
2363     int* ptr;
2364     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2365     if (len <= _compact_int_count) {
2366       assert(_compact_int_count == 3, "else change next line");
2367       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2368       // Storing the signature encoded as signed chars hits about 98%
2369       // of the time.
2370       _length = -len;
2371       ptr = _value._compact;
2372     } else {
2373       _length = len;
2374       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2375       ptr = _value._fingerprint;
2376     }
2377 
2378     // Now pack the BasicTypes with 8 per int
2379     int sig_index = 0;
2380     BasicType prev_sbt = T_ILLEGAL;
2381     int vt_count = 0;
2382     for (int index = 0; index < len; index++) {
2383       int value = 0;
2384       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2385         int bt = 0;
2386         if (sig_index < total_args_passed) {
2387           BasicType sbt = sig_bt[sig_index++];
2388           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2389             // Found start of value type in signature
2390             vt_count++;
2391           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2392                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2393             // Found end of value type in signature
2394             vt_count--;
2395             assert(vt_count >= 0, "invalid vt_count");
2396           }
2397           bt = adapter_encoding(sbt, vt_count > 0);
2398           prev_sbt = sbt;
2399         }
2400         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2401         value = (value << _basic_type_bits) | bt;
2402       }
2403       ptr[index] = value;
2404     }
2405     assert(vt_count == 0, "invalid vt_count");
2406   }
2407 
2408   ~AdapterFingerPrint() {
2409     if (_length > 0) {
2410       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2411     }
2412   }
2413 
2414   int value(int index) {
2415     if (_length < 0) {
2416       return _value._compact[index];
2417     }
2418     return _value._fingerprint[index];
2419   }
2420   int length() {
2421     if (_length < 0) return -_length;
2422     return _length;
2423   }
2424 
2425   bool is_compact() {
2426     return _length <= 0;
2427   }
2428 
2429   unsigned int compute_hash() {
2430     int hash = 0;
2431     for (int i = 0; i < length(); i++) {
2432       int v = value(i);
2433       hash = (hash << 8) ^ v ^ (hash >> 5);
2434     }
2435     return (unsigned int)hash;
2436   }
2437 
2438   const char* as_string() {
2439     stringStream st;
2440     st.print("0x");
2441     for (int i = 0; i < length(); i++) {
2442       st.print("%08x", value(i));
2443     }
2444     return st.as_string();
2445   }
2446 
2447   bool equals(AdapterFingerPrint* other) {
2448     if (other->_length != _length) {
2449       return false;
2450     }
2451     if (_length < 0) {
2452       assert(_compact_int_count == 3, "else change next line");
2453       return _value._compact[0] == other->_value._compact[0] &&
2454              _value._compact[1] == other->_value._compact[1] &&
2455              _value._compact[2] == other->_value._compact[2];
2456     } else {
2457       for (int i = 0; i < _length; i++) {
2458         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2459           return false;
2460         }
2461       }
2462     }
2463     return true;
2464   }
2465 };
2466 
2467 
2468 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2469 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2470   friend class AdapterHandlerTableIterator;
2471 
2472  private:
2473 
2474 #ifndef PRODUCT
2475   static int _lookups; // number of calls to lookup
2476   static int _buckets; // number of buckets checked
2477   static int _equals;  // number of buckets checked with matching hash
2478   static int _hits;    // number of successful lookups
2479   static int _compact; // number of equals calls with compact signature
2480 #endif
2481 
2482   AdapterHandlerEntry* bucket(int i) {
2483     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2484   }
2485 
2486  public:
2487   AdapterHandlerTable()
2488     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2489 
2490   // Create a new entry suitable for insertion in the table
2491   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, Symbol* sig_extended) {
2492     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2493     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2494     if (DumpSharedSpaces) {
2495       ((CDSAdapterHandlerEntry*)entry)->init();
2496     }
2497     return entry;
2498   }
2499 
2500   // Insert an entry into the table
2501   void add(AdapterHandlerEntry* entry) {
2502     int index = hash_to_index(entry->hash());
2503     add_entry(index, entry);
2504   }
2505 
2506   void free_entry(AdapterHandlerEntry* entry) {
2507     entry->deallocate();
2508     BasicHashtable<mtCode>::free_entry(entry);
2509   }
2510 
2511   // Find a entry with the same fingerprint if it exists
2512   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2513     NOT_PRODUCT(_lookups++);
2514     AdapterFingerPrint fp(total_args_passed, sig_bt);
2515     unsigned int hash = fp.compute_hash();
2516     int index = hash_to_index(hash);
2517     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2518       NOT_PRODUCT(_buckets++);
2519       if (e->hash() == hash) {
2520         NOT_PRODUCT(_equals++);
2521         if (fp.equals(e->fingerprint())) {
2522 #ifndef PRODUCT
2523           if (fp.is_compact()) _compact++;
2524           _hits++;
2525 #endif
2526           return e;
2527         }
2528       }
2529     }
2530     return NULL;
2531   }
2532 
2533 #ifndef PRODUCT
2534   void print_statistics() {
2535     ResourceMark rm;
2536     int longest = 0;
2537     int empty = 0;
2538     int total = 0;
2539     int nonempty = 0;
2540     for (int index = 0; index < table_size(); index++) {
2541       int count = 0;
2542       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2543         count++;
2544       }
2545       if (count != 0) nonempty++;
2546       if (count == 0) empty++;
2547       if (count > longest) longest = count;
2548       total += count;
2549     }
2550     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2551                   empty, longest, total, total / (double)nonempty);
2552     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2553                   _lookups, _buckets, _equals, _hits, _compact);
2554   }
2555 #endif
2556 };
2557 
2558 
2559 #ifndef PRODUCT
2560 
2561 int AdapterHandlerTable::_lookups;
2562 int AdapterHandlerTable::_buckets;
2563 int AdapterHandlerTable::_equals;
2564 int AdapterHandlerTable::_hits;
2565 int AdapterHandlerTable::_compact;
2566 
2567 #endif
2568 
2569 class AdapterHandlerTableIterator : public StackObj {
2570  private:
2571   AdapterHandlerTable* _table;
2572   int _index;
2573   AdapterHandlerEntry* _current;
2574 
2575   void scan() {
2576     while (_index < _table->table_size()) {
2577       AdapterHandlerEntry* a = _table->bucket(_index);
2578       _index++;
2579       if (a != NULL) {
2580         _current = a;
2581         return;
2582       }
2583     }
2584   }
2585 
2586  public:
2587   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2588     scan();
2589   }
2590   bool has_next() {
2591     return _current != NULL;
2592   }
2593   AdapterHandlerEntry* next() {
2594     if (_current != NULL) {
2595       AdapterHandlerEntry* result = _current;
2596       _current = _current->next();
2597       if (_current == NULL) scan();
2598       return result;
2599     } else {
2600       return NULL;
2601     }
2602   }
2603 };
2604 
2605 
2606 // ---------------------------------------------------------------------------
2607 // Implementation of AdapterHandlerLibrary
2608 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2609 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2610 const int AdapterHandlerLibrary_size = 16*K;
2611 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2612 
2613 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2614   // Should be called only when AdapterHandlerLibrary_lock is active.
2615   if (_buffer == NULL) // Initialize lazily
2616       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2617   return _buffer;
2618 }
2619 
2620 extern "C" void unexpected_adapter_call() {
2621   ShouldNotCallThis();
2622 }
2623 
2624 void AdapterHandlerLibrary::initialize() {
2625   if (_adapters != NULL) return;
2626   _adapters = new AdapterHandlerTable();
2627 
2628   // Create a special handler for abstract methods.  Abstract methods
2629   // are never compiled so an i2c entry is somewhat meaningless, but
2630   // throw AbstractMethodError just in case.
2631   // Pass wrong_method_abstract for the c2i transitions to return
2632   // AbstractMethodError for invalid invocations.
2633   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2634   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2635                                                               StubRoutines::throw_AbstractMethodError_entry(),
2636                                                               wrong_method_abstract, wrong_method_abstract);
2637 }
2638 
2639 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2640                                                       address i2c_entry,
2641                                                       address c2i_entry,
2642                                                       address c2i_unverified_entry,
2643                                                       Symbol* sig_extended) {
2644   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, sig_extended);
2645 }
2646 
2647 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2648   AdapterHandlerEntry* entry = get_adapter0(method);
2649   if (method->is_shared()) {
2650     // See comments around Method::link_method()
2651     MutexLocker mu(AdapterHandlerLibrary_lock);
2652     if (method->adapter() == NULL) {
2653       method->update_adapter_trampoline(entry);
2654     }
2655     address trampoline = method->from_compiled_entry();
2656     if (*(int*)trampoline == 0) {
2657       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2658       MacroAssembler _masm(&buffer);
2659       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2660       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2661 
2662       if (PrintInterpreter) {
2663         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2664       }
2665     }
2666   }
2667 
2668   return entry;
2669 }
2670 
2671 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2672   // Use customized signature handler.  Need to lock around updates to
2673   // the AdapterHandlerTable (it is not safe for concurrent readers
2674   // and a single writer: this could be fixed if it becomes a
2675   // problem).
2676 
2677   ResourceMark rm;
2678 
2679   NOT_PRODUCT(int insts_size = 0);
2680   AdapterBlob* new_adapter = NULL;
2681   AdapterHandlerEntry* entry = NULL;
2682   AdapterFingerPrint* fingerprint = NULL;
2683   {
2684     MutexLocker mu(AdapterHandlerLibrary_lock);
2685     // make sure data structure is initialized
2686     initialize();
2687 
2688     if (method->is_abstract()) {
2689       return _abstract_method_handler;
2690     }
2691 
2692     // Fill in the signature array, for the calling-convention call.
2693     GrowableArray<SigEntry> sig_extended;
2694     {
2695       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2696       Thread* THREAD = Thread::current();
2697       Klass* holder = method->method_holder();
2698       GrowableArray<BasicType> sig_bt_tmp;
2699 
2700       int i = 0;
2701       if (!method->is_static()) {  // Pass in receiver first
2702         if (ValueTypePassFieldsAsArgs && holder->is_value()) {
2703           ValueKlass* vk = ValueKlass::cast(holder);
2704           if (vk == SystemDictionary::___Value_klass()) {
2705             // If the holder of the method is __Value, we must pass a
2706             // reference. FIXME: this shouldn't be T_OBJECT as a value
2707             // type reference is not necessarily an oop. Ideally we
2708             // would use T_VALUETYPE but we can't because T_VALUETYPE
2709             // is used here as a marker right before the list of
2710             // fields for the value type.
2711             sig_extended.push(SigEntry(T_OBJECT));
2712           } else {
2713             const Array<SigEntry>* sig_vk = vk->extended_sig();
2714             sig_extended.appendAll(sig_vk);
2715           }
2716         } else {
2717           sig_extended.push(SigEntry(T_OBJECT));
2718         }
2719       }
2720       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2721         if (ValueTypePassFieldsAsArgs && ss.type() == T_VALUETYPE) {
2722           Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2723                                  Handle(THREAD, holder->protection_domain()),
2724                                  SignatureStream::ReturnNull, THREAD);
2725           assert(k != NULL && !HAS_PENDING_EXCEPTION, "can resolve klass?");
2726           ValueKlass* vk = ValueKlass::cast(k);
2727           if (vk == SystemDictionary::___Value_klass()) {
2728             assert(method->is_compiled_lambda_form() || method->is_method_handle_intrinsic(),
2729                    "should not use __Value for a value type argument");
2730             sig_extended.push(SigEntry(T_OBJECT));
2731           } else {
2732             const Array<SigEntry>* sig_vk = vk->extended_sig();
2733             sig_extended.appendAll(sig_vk);
2734           }
2735         } else {
2736           sig_extended.push(SigEntry(ss.type()));
2737           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2738             sig_extended.push(SigEntry(T_VOID));
2739           }
2740         }
2741       }
2742     }
2743 
2744     int total_args_passed_cc = ValueTypePassFieldsAsArgs ? SigEntry::count_fields(sig_extended) : sig_extended.length();
2745     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2746     SigEntry::fill_sig_bt(sig_extended, sig_bt_cc, total_args_passed_cc, ValueTypePassFieldsAsArgs);
2747 
2748     int total_args_passed_fp = sig_extended.length();
2749     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2750     for (int i = 0; i < sig_extended.length(); i++) {
2751       sig_bt_fp[i] = sig_extended.at(i)._bt;
2752     }
2753 
2754     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2755 
2756     // Lookup method signature's fingerprint
2757     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2758 
2759 #ifdef ASSERT
2760     AdapterHandlerEntry* shared_entry = NULL;
2761     // Start adapter sharing verification only after the VM is booted.
2762     if (VerifyAdapterSharing && (entry != NULL)) {
2763       shared_entry = entry;
2764       entry = NULL;
2765     }
2766 #endif
2767 
2768     if (entry != NULL) {
2769       return entry;
2770     }
2771 
2772     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2773     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2774 
2775     // Make a C heap allocated version of the fingerprint to store in the adapter
2776     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2777 
2778     // StubRoutines::code2() is initialized after this function can be called. As a result,
2779     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2780     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2781     // stub that ensure that an I2C stub is called from an interpreter frame.
2782     bool contains_all_checks = StubRoutines::code2() != NULL;
2783 
2784     // Create I2C & C2I handlers
2785     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2786     if (buf != NULL) {
2787       CodeBuffer buffer(buf);
2788       short buffer_locs[20];
2789       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2790                                              sizeof(buffer_locs)/sizeof(relocInfo));
2791 
2792       MacroAssembler _masm(&buffer);
2793       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2794                                                      comp_args_on_stack,
2795                                                      sig_extended,
2796                                                      regs,
2797                                                      fingerprint,
2798                                                      new_adapter);
2799 #ifdef ASSERT
2800       if (VerifyAdapterSharing) {
2801         if (shared_entry != NULL) {
2802           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2803           // Release the one just created and return the original
2804           _adapters->free_entry(entry);
2805           return shared_entry;
2806         } else  {
2807           entry->save_code(buf->code_begin(), buffer.insts_size());
2808         }
2809       }
2810 #endif
2811 
2812       NOT_PRODUCT(insts_size = buffer.insts_size());
2813     }
2814     if (new_adapter == NULL) {
2815       // CodeCache is full, disable compilation
2816       // Ought to log this but compile log is only per compile thread
2817       // and we're some non descript Java thread.
2818       return NULL; // Out of CodeCache space
2819     }
2820     entry->relocate(new_adapter->content_begin());
2821 #ifndef PRODUCT
2822     // debugging suppport
2823     if (PrintAdapterHandlers || PrintStubCode) {
2824       ttyLocker ttyl;
2825       entry->print_adapter_on(tty);
2826       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2827                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2828                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2829       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2830       if (Verbose || PrintStubCode) {
2831         address first_pc = entry->base_address();
2832         if (first_pc != NULL) {
2833           Disassembler::decode(first_pc, first_pc + insts_size);
2834           tty->cr();
2835         }
2836       }
2837     }
2838 #endif
2839     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2840     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2841     if (contains_all_checks || !VerifyAdapterCalls) {
2842       _adapters->add(entry);
2843     }
2844   }
2845   // Outside of the lock
2846   if (new_adapter != NULL) {
2847     char blob_id[256];
2848     jio_snprintf(blob_id,
2849                  sizeof(blob_id),
2850                  "%s(%s)@" PTR_FORMAT,
2851                  new_adapter->name(),
2852                  fingerprint->as_string(),
2853                  new_adapter->content_begin());
2854     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2855 
2856     if (JvmtiExport::should_post_dynamic_code_generated()) {
2857       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2858     }
2859   }
2860   return entry;
2861 }
2862 
2863 address AdapterHandlerEntry::base_address() {
2864   address base = _i2c_entry;
2865   if (base == NULL)  base = _c2i_entry;
2866   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2867   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2868   return base;
2869 }
2870 
2871 void AdapterHandlerEntry::relocate(address new_base) {
2872   address old_base = base_address();
2873   assert(old_base != NULL, "");
2874   ptrdiff_t delta = new_base - old_base;
2875   if (_i2c_entry != NULL)
2876     _i2c_entry += delta;
2877   if (_c2i_entry != NULL)
2878     _c2i_entry += delta;
2879   if (_c2i_unverified_entry != NULL)
2880     _c2i_unverified_entry += delta;
2881   assert(base_address() == new_base, "");
2882 }
2883 
2884 
2885 void AdapterHandlerEntry::deallocate() {
2886   delete _fingerprint;
2887 #ifdef ASSERT
2888   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2889 #endif
2890 }
2891 
2892 
2893 #ifdef ASSERT
2894 // Capture the code before relocation so that it can be compared
2895 // against other versions.  If the code is captured after relocation
2896 // then relative instructions won't be equivalent.
2897 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2898   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2899   _saved_code_length = length;
2900   memcpy(_saved_code, buffer, length);
2901 }
2902 
2903 
2904 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2905   if (length != _saved_code_length) {
2906     return false;
2907   }
2908 
2909   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2910 }
2911 #endif
2912 
2913 
2914 /**
2915  * Create a native wrapper for this native method.  The wrapper converts the
2916  * Java-compiled calling convention to the native convention, handles
2917  * arguments, and transitions to native.  On return from the native we transition
2918  * back to java blocking if a safepoint is in progress.
2919  */
2920 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2921   ResourceMark rm;
2922   nmethod* nm = NULL;
2923 
2924   assert(method->is_native(), "must be native");
2925   assert(method->is_method_handle_intrinsic() ||
2926          method->has_native_function(), "must have something valid to call!");
2927 
2928   {
2929     // Perform the work while holding the lock, but perform any printing outside the lock
2930     MutexLocker mu(AdapterHandlerLibrary_lock);
2931     // See if somebody beat us to it
2932     if (method->code() != NULL) {
2933       return;
2934     }
2935 
2936     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2937     assert(compile_id > 0, "Must generate native wrapper");
2938 
2939 
2940     ResourceMark rm;
2941     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2942     if (buf != NULL) {
2943       CodeBuffer buffer(buf);
2944       double locs_buf[20];
2945       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2946       MacroAssembler _masm(&buffer);
2947 
2948       // Fill in the signature array, for the calling-convention call.
2949       const int total_args_passed = method->size_of_parameters();
2950 
2951       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2952       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2953       int i=0;
2954       if (!method->is_static())  // Pass in receiver first
2955         sig_bt[i++] = T_OBJECT;
2956       SignatureStream ss(method->signature());
2957       for (; !ss.at_return_type(); ss.next()) {
2958         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2959         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2960           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2961       }
2962       assert(i == total_args_passed, "");
2963       BasicType ret_type = ss.type();
2964 
2965       // Now get the compiled-Java layout as input (or output) arguments.
2966       // NOTE: Stubs for compiled entry points of method handle intrinsics
2967       // are just trampolines so the argument registers must be outgoing ones.
2968       const bool is_outgoing = method->is_method_handle_intrinsic();
2969       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2970 
2971       // Generate the compiled-to-native wrapper code
2972       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2973 
2974       if (nm != NULL) {
2975         method->set_code(method, nm);
2976 
2977         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2978         if (directive->PrintAssemblyOption) {
2979           nm->print_code();
2980         }
2981         DirectivesStack::release(directive);
2982       }
2983     }
2984   } // Unlock AdapterHandlerLibrary_lock
2985 
2986 
2987   // Install the generated code.
2988   if (nm != NULL) {
2989     const char *msg = method->is_static() ? "(static)" : "";
2990     CompileTask::print_ul(nm, msg);
2991     if (PrintCompilation) {
2992       ttyLocker ttyl;
2993       CompileTask::print(tty, nm, msg);
2994     }
2995     nm->post_compiled_method_load_event();
2996   }
2997 }
2998 
2999 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3000   assert(thread == JavaThread::current(), "must be");
3001   // The code is about to enter a JNI lazy critical native method and
3002   // _needs_gc is true, so if this thread is already in a critical
3003   // section then just return, otherwise this thread should block
3004   // until needs_gc has been cleared.
3005   if (thread->in_critical()) {
3006     return;
3007   }
3008   // Lock and unlock a critical section to give the system a chance to block
3009   GCLocker::lock_critical(thread);
3010   GCLocker::unlock_critical(thread);
3011 JRT_END
3012 
3013 // -------------------------------------------------------------------------
3014 // Java-Java calling convention
3015 // (what you use when Java calls Java)
3016 
3017 //------------------------------name_for_receiver----------------------------------
3018 // For a given signature, return the VMReg for parameter 0.
3019 VMReg SharedRuntime::name_for_receiver() {
3020   VMRegPair regs;
3021   BasicType sig_bt = T_OBJECT;
3022   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3023   // Return argument 0 register.  In the LP64 build pointers
3024   // take 2 registers, but the VM wants only the 'main' name.
3025   return regs.first();
3026 }
3027 
3028 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3029   // This method is returning a data structure allocating as a
3030   // ResourceObject, so do not put any ResourceMarks in here.
3031   char *s = sig->as_C_string();
3032   int len = (int)strlen(s);
3033   s++; len--;                   // Skip opening paren
3034 
3035   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3036   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3037   int cnt = 0;
3038   if (has_receiver) {
3039     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3040   }
3041 
3042   while (*s != ')') {          // Find closing right paren
3043     switch (*s++) {            // Switch on signature character
3044     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3045     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3046     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3047     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3048     case 'I': sig_bt[cnt++] = T_INT;     break;
3049     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3050     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3051     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3052     case 'V': sig_bt[cnt++] = T_VOID;    break;
3053     case 'Q':
3054     case 'L':                   // Oop
3055       while (*s++ != ';');   // Skip signature
3056       sig_bt[cnt++] = T_OBJECT;
3057       break;
3058     case '[': {                 // Array
3059       do {                      // Skip optional size
3060         while (*s >= '0' && *s <= '9') s++;
3061       } while (*s++ == '[');   // Nested arrays?
3062       // Skip element type
3063       if (s[-1] == 'L' || s[-1] == 'Q')
3064         while (*s++ != ';'); // Skip signature
3065       sig_bt[cnt++] = T_ARRAY;
3066       break;
3067     }
3068     default : ShouldNotReachHere();
3069     }
3070   }
3071 
3072   if (has_appendix) {
3073     sig_bt[cnt++] = T_OBJECT;
3074   }
3075 
3076   assert(cnt < 256, "grow table size");
3077 
3078   int comp_args_on_stack;
3079   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3080 
3081   // the calling convention doesn't count out_preserve_stack_slots so
3082   // we must add that in to get "true" stack offsets.
3083 
3084   if (comp_args_on_stack) {
3085     for (int i = 0; i < cnt; i++) {
3086       VMReg reg1 = regs[i].first();
3087       if (reg1->is_stack()) {
3088         // Yuck
3089         reg1 = reg1->bias(out_preserve_stack_slots());
3090       }
3091       VMReg reg2 = regs[i].second();
3092       if (reg2->is_stack()) {
3093         // Yuck
3094         reg2 = reg2->bias(out_preserve_stack_slots());
3095       }
3096       regs[i].set_pair(reg2, reg1);
3097     }
3098   }
3099 
3100   // results
3101   *arg_size = cnt;
3102   return regs;
3103 }
3104 
3105 // OSR Migration Code
3106 //
3107 // This code is used convert interpreter frames into compiled frames.  It is
3108 // called from very start of a compiled OSR nmethod.  A temp array is
3109 // allocated to hold the interesting bits of the interpreter frame.  All
3110 // active locks are inflated to allow them to move.  The displaced headers and
3111 // active interpreter locals are copied into the temp buffer.  Then we return
3112 // back to the compiled code.  The compiled code then pops the current
3113 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3114 // copies the interpreter locals and displaced headers where it wants.
3115 // Finally it calls back to free the temp buffer.
3116 //
3117 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3118 
3119 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3120 
3121   //
3122   // This code is dependent on the memory layout of the interpreter local
3123   // array and the monitors. On all of our platforms the layout is identical
3124   // so this code is shared. If some platform lays the their arrays out
3125   // differently then this code could move to platform specific code or
3126   // the code here could be modified to copy items one at a time using
3127   // frame accessor methods and be platform independent.
3128 
3129   frame fr = thread->last_frame();
3130   assert(fr.is_interpreted_frame(), "");
3131   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3132 
3133   // Figure out how many monitors are active.
3134   int active_monitor_count = 0;
3135   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3136        kptr < fr.interpreter_frame_monitor_begin();
3137        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3138     if (kptr->obj() != NULL) active_monitor_count++;
3139   }
3140 
3141   // QQQ we could place number of active monitors in the array so that compiled code
3142   // could double check it.
3143 
3144   Method* moop = fr.interpreter_frame_method();
3145   int max_locals = moop->max_locals();
3146   // Allocate temp buffer, 1 word per local & 2 per active monitor
3147   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3148   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3149 
3150   // Copy the locals.  Order is preserved so that loading of longs works.
3151   // Since there's no GC I can copy the oops blindly.
3152   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3153   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3154                        (HeapWord*)&buf[0],
3155                        max_locals);
3156 
3157   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3158   int i = max_locals;
3159   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3160        kptr2 < fr.interpreter_frame_monitor_begin();
3161        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3162     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3163       BasicLock *lock = kptr2->lock();
3164       // Inflate so the displaced header becomes position-independent
3165       if (lock->displaced_header()->is_unlocked())
3166         ObjectSynchronizer::inflate_helper(kptr2->obj());
3167       // Now the displaced header is free to move
3168       buf[i++] = (intptr_t)lock->displaced_header();
3169       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3170     }
3171   }
3172   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3173 
3174   return buf;
3175 JRT_END
3176 
3177 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3178   FREE_C_HEAP_ARRAY(intptr_t, buf);
3179 JRT_END
3180 
3181 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3182   AdapterHandlerTableIterator iter(_adapters);
3183   while (iter.has_next()) {
3184     AdapterHandlerEntry* a = iter.next();
3185     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3186   }
3187   return false;
3188 }
3189 
3190 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3191   AdapterHandlerTableIterator iter(_adapters);
3192   while (iter.has_next()) {
3193     AdapterHandlerEntry* a = iter.next();
3194     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3195       st->print("Adapter for signature: ");
3196       a->print_adapter_on(tty);
3197       return;
3198     }
3199   }
3200   assert(false, "Should have found handler");
3201 }
3202 
3203 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3204   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3205                p2i(this), fingerprint()->as_string(),
3206                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3207 
3208 }
3209 
3210 #if INCLUDE_CDS
3211 
3212 void CDSAdapterHandlerEntry::init() {
3213   assert(DumpSharedSpaces, "used during dump time only");
3214   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3215   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3216 };
3217 
3218 #endif // INCLUDE_CDS
3219 
3220 
3221 #ifndef PRODUCT
3222 
3223 void AdapterHandlerLibrary::print_statistics() {
3224   _adapters->print_statistics();
3225 }
3226 
3227 #endif /* PRODUCT */
3228 
3229 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3230   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3231   thread->enable_stack_reserved_zone();
3232   thread->set_reserved_stack_activation(thread->stack_base());
3233 JRT_END
3234 
3235 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3236   frame activation;
3237   CompiledMethod* nm = NULL;
3238   int count = 1;
3239 
3240   assert(fr.is_java_frame(), "Must start on Java frame");
3241 
3242   while (true) {
3243     Method* method = NULL;
3244     if (fr.is_interpreted_frame()) {
3245       method = fr.interpreter_frame_method();
3246     } else {
3247       CodeBlob* cb = fr.cb();
3248       if (cb != NULL && cb->is_compiled()) {
3249         nm = cb->as_compiled_method();
3250         method = nm->method();
3251       }
3252     }
3253     if ((method != NULL) && method->has_reserved_stack_access()) {
3254       ResourceMark rm(thread);
3255       activation = fr;
3256       warning("Potentially dangerous stack overflow in "
3257               "ReservedStackAccess annotated method %s [%d]",
3258               method->name_and_sig_as_C_string(), count++);
3259       EventReservedStackActivation event;
3260       if (event.should_commit()) {
3261         event.set_method(method);
3262         event.commit();
3263       }
3264     }
3265     if (fr.is_first_java_frame()) {
3266       break;
3267     } else {
3268       fr = fr.java_sender();
3269     }
3270   }
3271   return activation;
3272 }
3273 
3274 // We are at a compiled code to interpreter call. We need backing
3275 // buffers for all value type arguments. Allocate an object array to
3276 // hold them (convenient because once we're done with it we don't have
3277 // to worry about freeing it).
3278 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3279 {
3280   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3281   ResourceMark rm;
3282   JavaThread* THREAD = thread;
3283   methodHandle callee(callee_method);
3284 
3285   int nb_slots = 0;
3286   bool has_value_receiver = !callee->is_static() && callee->method_holder()->is_value();
3287   if (has_value_receiver) {
3288     nb_slots++;
3289   }
3290   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3291   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3292   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3293     if (ss.type() == T_VALUETYPE) {
3294       nb_slots++;
3295     }
3296   }
3297   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3298   objArrayHandle array(THREAD, array_oop);
3299   int i = 0;
3300   if (has_value_receiver) {
3301     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3302     oop res = vk->allocate_instance(CHECK);
3303     array->obj_at_put(i, res);
3304     i++;
3305   }
3306   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3307     if (ss.type() == T_VALUETYPE) {
3308       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3309       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3310       ValueKlass* vk = ValueKlass::cast(k);
3311       oop res = vk->allocate_instance(CHECK);
3312       array->obj_at_put(i, res);
3313       i++;
3314     }
3315   }
3316   thread->set_vm_result(array());
3317   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3318 }
3319 JRT_END
3320 
3321 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3322 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3323 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3324 {
3325   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3326   assert(array->is_oop(), "should be oop");
3327   for (int i = 0; i < array->length(); ++i) {
3328     instanceOop valueOop = (instanceOop)array->obj_at(i);
3329     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3330     if (vk->contains_oops()) {
3331       const address dst_oop_addr = ((address) (void*) valueOop);
3332       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3333       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3334       while (map != end) {
3335         address doop_address = dst_oop_addr + map->offset();
3336         oopDesc::bs()->write_ref_array((HeapWord*) doop_address, map->count());
3337         map++;
3338       }
3339     }
3340   }
3341 }
3342 JRT_END
3343 
3344 // We're returning from an interpreted method: load each field into a
3345 // register following the calling convention
3346 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3347 {
3348   assert(res->klass()->is_value(), "only value types here");
3349   ResourceMark rm;
3350   RegisterMap reg_map(thread);
3351   frame stubFrame = thread->last_frame();
3352   frame callerFrame = stubFrame.sender(&reg_map);
3353   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3354 
3355   ValueKlass* vk = ValueKlass::cast(res->klass());
3356 
3357   const Array<SigEntry>* sig_vk = vk->extended_sig() ;
3358   const Array<VMRegPair>* regs = vk->return_regs();
3359 
3360   if (regs == NULL) {
3361     // The fields of the value klass don't fit in registers, bail out
3362     return;
3363   }
3364 
3365   int j = 1;
3366   for (int i = 0; i < sig_vk->length(); i++) {
3367     BasicType bt = sig_vk->at(i)._bt;
3368     if (bt == T_VALUETYPE) {
3369       continue;
3370     }
3371     if (bt == T_VOID) {
3372       if (sig_vk->at(i-1)._bt == T_LONG ||
3373           sig_vk->at(i-1)._bt == T_DOUBLE) {
3374         j++;
3375       }
3376       continue;
3377     }
3378     int off = sig_vk->at(i)._offset;
3379     VMRegPair pair = regs->at(j);
3380     address loc = reg_map.location(pair.first());
3381     switch(bt) {
3382     case T_BOOLEAN:
3383       *(intptr_t*)loc = *(jboolean*)((address)res + off);
3384       break;
3385     case T_CHAR:
3386       *(intptr_t*)loc = *(jchar*)((address)res + off);
3387       break;
3388     case T_BYTE:
3389       *(intptr_t*)loc = *(jbyte*)((address)res + off);
3390       break;
3391     case T_SHORT:
3392       *(intptr_t*)loc = *(jshort*)((address)res + off);
3393       break;
3394     case T_INT: {
3395       jint v = *(jint*)((address)res + off);
3396       *(intptr_t*)loc = v;
3397       break;
3398     }
3399     case T_LONG:
3400 #ifdef _LP64
3401       *(intptr_t*)loc = *(jlong*)((address)res + off);
3402 #else
3403       Unimplemented();
3404 #endif
3405       break;
3406     case T_OBJECT:
3407     case T_ARRAY: {
3408       oop v = NULL;
3409       if (!UseCompressedOops) {
3410         oop* p = (oop*)((address)res + off);
3411         v = oopDesc::load_heap_oop(p);
3412       } else {
3413         narrowOop* p = (narrowOop*)((address)res + off);
3414         v = oopDesc::load_decode_heap_oop(p);
3415       }
3416       *(oop*)loc = v;
3417       break;
3418     }
3419     case T_FLOAT:
3420       *(jfloat*)loc = *(jfloat*)((address)res + off);
3421       break;
3422     case T_DOUBLE:
3423       *(jdouble*)loc = *(jdouble*)((address)res + off);
3424       break;
3425     default:
3426       ShouldNotReachHere();
3427     }
3428     j++;
3429   }
3430   assert(j == regs->length(), "missed a field?");
3431 
3432 #ifdef ASSERT
3433   VMRegPair pair = regs->at(0);
3434   address loc = reg_map.location(pair.first());
3435   assert(*(oopDesc**)loc == res, "overwritten object");
3436 #endif
3437 
3438   thread->set_vm_result(res);
3439 }
3440 JRT_END
3441 
3442 // We've returned to an interpreted method, the interpreter needs a
3443 // reference to a value type instance. Allocate it and initialize it
3444 // from field's values in registers.
3445 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3446 {
3447   ResourceMark rm;
3448   RegisterMap reg_map(thread);
3449   frame stubFrame = thread->last_frame();
3450   frame callerFrame = stubFrame.sender(&reg_map);
3451 
3452 #ifdef ASSERT
3453   ValueKlass* verif_vk = ValueKlass::returned_value_type(reg_map);
3454 #endif
3455 
3456   if (!is_set_nth_bit(res, 0)) {
3457     // We're not returning with value type fields in registers (the
3458     // calling convention didn't allow it for this value klass)
3459     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3460     thread->set_vm_result((oopDesc*)res);
3461     assert(verif_vk == NULL, "broken calling convention");
3462     return;
3463   }
3464 
3465   clear_nth_bit(res, 0);
3466   ValueKlass* vk = (ValueKlass*)res;
3467   assert(verif_vk == vk, "broken calling convention");
3468   assert(Metaspace::contains((void*)res), "should be klass");
3469 
3470   // Allocate handles for every oop fields so they are safe in case of
3471   // a safepoint when allocating
3472   GrowableArray<Handle> handles;
3473   vk->save_oop_fields(reg_map, handles);
3474 
3475   // It's unsafe to safepoint until we are here
3476 
3477   Handle new_vt;
3478   JRT_BLOCK;
3479   {
3480     Thread* THREAD = thread;
3481     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3482     new_vt = Handle(thread, vt);
3483 
3484 #ifdef ASSERT
3485     javaVFrame* vf = javaVFrame::cast(vframe::new_vframe(&callerFrame, &reg_map, thread));
3486     Method* m = vf->method();
3487     int bci = vf->bci();
3488     Bytecode_invoke inv(m, bci);
3489 
3490     methodHandle callee = inv.static_target(thread);
3491     assert(!thread->has_pending_exception(), "call resolution should work");
3492     ValueKlass* verif_vk2 = callee->returned_value_type(thread);
3493     assert(verif_vk == verif_vk2 || verif_vk2 == SystemDictionary::___Value_klass(), "Bad value klass");
3494 #endif
3495   }
3496   JRT_BLOCK_END;
3497 
3498   thread->set_vm_result(new_vt());
3499 }
3500 JRT_END
3501