1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/divnode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/opaquenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/superword.hpp"
  42 
  43 //=============================================================================
  44 //------------------------------is_loop_iv-------------------------------------
  45 // Determine if a node is Counted loop induction variable.
  46 // The method is declared in node.hpp.
  47 const Node* Node::is_loop_iv() const {
  48   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  49       this->as_Phi()->region()->is_CountedLoop() &&
  50       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  51     return this;
  52   } else {
  53     return NULL;
  54   }
  55 }
  56 
  57 //=============================================================================
  58 //------------------------------dump_spec--------------------------------------
  59 // Dump special per-node info
  60 #ifndef PRODUCT
  61 void LoopNode::dump_spec(outputStream *st) const {
  62   if (is_inner_loop()) st->print( "inner " );
  63   if (is_partial_peel_loop()) st->print( "partial_peel " );
  64   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  65 }
  66 #endif
  67 
  68 //------------------------------is_valid_counted_loop-------------------------
  69 bool LoopNode::is_valid_counted_loop() const {
  70   if (is_CountedLoop()) {
  71     CountedLoopNode*    l  = as_CountedLoop();
  72     CountedLoopEndNode* le = l->loopexit();
  73     if (le != NULL &&
  74         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  75       Node* phi  = l->phi();
  76       Node* exit = le->proj_out(0 /* false */);
  77       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  78           phi != NULL && phi->is_Phi() &&
  79           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  80           le->loopnode() == l && le->stride_is_con()) {
  81         return true;
  82       }
  83     }
  84   }
  85   return false;
  86 }
  87 
  88 //------------------------------get_early_ctrl---------------------------------
  89 // Compute earliest legal control
  90 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  91   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  92   uint i;
  93   Node *early;
  94   if (n->in(0) && !n->is_expensive()) {
  95     early = n->in(0);
  96     if (!early->is_CFG()) // Might be a non-CFG multi-def
  97       early = get_ctrl(early);        // So treat input as a straight data input
  98     i = 1;
  99   } else {
 100     early = get_ctrl(n->in(1));
 101     i = 2;
 102   }
 103   uint e_d = dom_depth(early);
 104   assert( early, "" );
 105   for (; i < n->req(); i++) {
 106     Node *cin = get_ctrl(n->in(i));
 107     assert( cin, "" );
 108     // Keep deepest dominator depth
 109     uint c_d = dom_depth(cin);
 110     if (c_d > e_d) {           // Deeper guy?
 111       early = cin;              // Keep deepest found so far
 112       e_d = c_d;
 113     } else if (c_d == e_d &&    // Same depth?
 114                early != cin) { // If not equal, must use slower algorithm
 115       // If same depth but not equal, one _must_ dominate the other
 116       // and we want the deeper (i.e., dominated) guy.
 117       Node *n1 = early;
 118       Node *n2 = cin;
 119       while (1) {
 120         n1 = idom(n1);          // Walk up until break cycle
 121         n2 = idom(n2);
 122         if (n1 == cin ||        // Walked early up to cin
 123             dom_depth(n2) < c_d)
 124           break;                // early is deeper; keep him
 125         if (n2 == early ||      // Walked cin up to early
 126             dom_depth(n1) < c_d) {
 127           early = cin;          // cin is deeper; keep him
 128           break;
 129         }
 130       }
 131       e_d = dom_depth(early);   // Reset depth register cache
 132     }
 133   }
 134 
 135   // Return earliest legal location
 136   assert(early == find_non_split_ctrl(early), "unexpected early control");
 137 
 138   if (n->is_expensive() && !_verify_only && !_verify_me) {
 139     assert(n->in(0), "should have control input");
 140     early = get_early_ctrl_for_expensive(n, early);
 141   }
 142 
 143   return early;
 144 }
 145 
 146 //------------------------------get_early_ctrl_for_expensive---------------------------------
 147 // Move node up the dominator tree as high as legal while still beneficial
 148 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 149   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 150   assert(OptimizeExpensiveOps, "optimization off?");
 151 
 152   Node* ctl = n->in(0);
 153   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 154   uint min_dom_depth = dom_depth(earliest);
 155 #ifdef ASSERT
 156   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 157     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 158     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 159   }
 160 #endif
 161   if (dom_depth(ctl) < min_dom_depth) {
 162     return earliest;
 163   }
 164 
 165   while (1) {
 166     Node *next = ctl;
 167     // Moving the node out of a loop on the projection of a If
 168     // confuses loop predication. So once we hit a Loop in a If branch
 169     // that doesn't branch to an UNC, we stop. The code that process
 170     // expensive nodes will notice the loop and skip over it to try to
 171     // move the node further up.
 172     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
 173       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 174         break;
 175       }
 176       next = idom(ctl->in(1)->in(0));
 177     } else if (ctl->is_Proj()) {
 178       // We only move it up along a projection if the projection is
 179       // the single control projection for its parent: same code path,
 180       // if it's a If with UNC or fallthrough of a call.
 181       Node* parent_ctl = ctl->in(0);
 182       if (parent_ctl == NULL) {
 183         break;
 184       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
 185         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 186       } else if (parent_ctl->is_If()) {
 187         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 188           break;
 189         }
 190         assert(idom(ctl) == parent_ctl, "strange");
 191         next = idom(parent_ctl);
 192       } else if (ctl->is_CatchProj()) {
 193         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 194           break;
 195         }
 196         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 197         next = parent_ctl->in(0)->in(0)->in(0);
 198       } else {
 199         // Check if parent control has a single projection (this
 200         // control is the only possible successor of the parent
 201         // control). If so, we can try to move the node above the
 202         // parent control.
 203         int nb_ctl_proj = 0;
 204         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 205           Node *p = parent_ctl->fast_out(i);
 206           if (p->is_Proj() && p->is_CFG()) {
 207             nb_ctl_proj++;
 208             if (nb_ctl_proj > 1) {
 209               break;
 210             }
 211           }
 212         }
 213 
 214         if (nb_ctl_proj > 1) {
 215           break;
 216         }
 217         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
 218         assert(idom(ctl) == parent_ctl, "strange");
 219         next = idom(parent_ctl);
 220       }
 221     } else {
 222       next = idom(ctl);
 223     }
 224     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 225       break;
 226     }
 227     ctl = next;
 228   }
 229 
 230   if (ctl != n->in(0)) {
 231     _igvn.replace_input_of(n, 0, ctl);
 232     _igvn.hash_insert(n);
 233   }
 234 
 235   return ctl;
 236 }
 237 
 238 
 239 //------------------------------set_early_ctrl---------------------------------
 240 // Set earliest legal control
 241 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 242   Node *early = get_early_ctrl(n);
 243 
 244   // Record earliest legal location
 245   set_ctrl(n, early);
 246 }
 247 
 248 //------------------------------set_subtree_ctrl-------------------------------
 249 // set missing _ctrl entries on new nodes
 250 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 251   // Already set?  Get out.
 252   if( _nodes[n->_idx] ) return;
 253   // Recursively set _nodes array to indicate where the Node goes
 254   uint i;
 255   for( i = 0; i < n->req(); ++i ) {
 256     Node *m = n->in(i);
 257     if( m && m != C->root() )
 258       set_subtree_ctrl( m );
 259   }
 260 
 261   // Fixup self
 262   set_early_ctrl( n );
 263 }
 264 
 265 // Create a skeleton strip mined outer loop: a Loop head before the
 266 // inner strip mined loop, a safepoint and an exit condition guarded
 267 // by an opaque node after the inner strip mined loop with a backedge
 268 // to the loop head. The inner strip mined loop is left as it is. Only
 269 // once loop optimizations are over, do we adjust the inner loop exit
 270 // condition to limit its number of iterations, set the outer loop
 271 // exit condition and add Phis to the outer loop head. Some loop
 272 // optimizations that operate on the inner strip mined loop need to be
 273 // aware of the outer strip mined loop: loop unswitching needs to
 274 // clone the outer loop as well as the inner, unrolling needs to only
 275 // clone the inner loop etc. No optimizations need to change the outer
 276 // strip mined loop as it is only a skeleton.
 277 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 278                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 279                                                              Node*& entry_control, Node*& iffalse) {
 280   Node* outer_test = test->clone();
 281   Node* outer_cmp = cmp->clone();
 282   Node* outer_limit = new Opaque5Node(C, outer_cmp->in(2));
 283   outer_cmp->set_req(2, outer_limit);
 284   outer_test->set_req(1, outer_cmp);
 285   Node *orig = iffalse;
 286   iffalse = iffalse->clone();
 287   _igvn.register_new_node_with_optimizer(iffalse);
 288   set_idom(iffalse, idom(orig), dom_depth(orig));
 289 
 290   IfNode *outer_le = new IfNode(iffalse, outer_test, cl_prob, le_fcnt);
 291   Node *outer_ift = new IfTrueNode (outer_le);
 292   Node* outer_iff = orig;
 293   _igvn.replace_input_of(outer_iff, 0, outer_le);
 294 
 295   LoopNode *outer_l = new LoopNode(init_control, outer_ift);
 296   entry_control = outer_l;
 297 
 298   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 299   IdealLoopTree* parent = loop->_parent;
 300   IdealLoopTree* sibling = parent->_child;
 301   if (sibling == loop) {
 302     parent->_child = outer_ilt;
 303   } else {
 304     while (sibling->_next != loop) {
 305       sibling = sibling->_next;
 306     }
 307     sibling->_next = outer_ilt;
 308   }
 309   outer_ilt->_next = loop->_next;
 310   outer_ilt->_parent = parent;
 311   outer_ilt->_child = loop;
 312   outer_ilt->_nest = loop->_nest;
 313   loop->_parent = outer_ilt;
 314   loop->_next = NULL;
 315   loop->_nest++;
 316 
 317   set_loop(iffalse, outer_ilt);
 318   register_new_node(outer_test, iffalse);
 319   register_new_node(outer_cmp, iffalse);
 320   register_new_node(outer_limit, iffalse);
 321   register_control(outer_le, outer_ilt, iffalse);
 322   register_control(outer_ift, outer_ilt, outer_le);
 323   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 324   _igvn.register_new_node_with_optimizer(outer_l);
 325   set_loop(outer_l, outer_ilt);
 326   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 327   outer_l->mark_strip_mined();
 328 
 329   return outer_ilt;
 330 }
 331 
 332 //------------------------------is_counted_loop--------------------------------
 333 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*& loop) {
 334   PhaseGVN *gvn = &_igvn;
 335 
 336   // Counted loop head must be a good RegionNode with only 3 not NULL
 337   // control input edges: Self, Entry, LoopBack.
 338   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
 339     return false;
 340   }
 341   Node *init_control = x->in(LoopNode::EntryControl);
 342   Node *back_control = x->in(LoopNode::LoopBackControl);
 343   if (init_control == NULL || back_control == NULL)    // Partially dead
 344     return false;
 345   // Must also check for TOP when looking for a dead loop
 346   if (init_control->is_top() || back_control->is_top())
 347     return false;
 348 
 349   // Allow funny placement of Safepoint
 350   if (back_control->Opcode() == Op_SafePoint) {
 351     if (LoopStripMiningIter != 0) {
 352       // Leaving the safepoint on the backedge and creating a
 353       // CountedLoop will confuse optimizations. We can't move the
 354       // safepoint around because its jvm state wouldn't match a new
 355       // location. Give up on that loop.
 356       return false;
 357     }
 358     back_control = back_control->in(TypeFunc::Control);
 359   }
 360 
 361   // Controlling test for loop
 362   Node *iftrue = back_control;
 363   uint iftrue_op = iftrue->Opcode();
 364   if (iftrue_op != Op_IfTrue &&
 365       iftrue_op != Op_IfFalse)
 366     // I have a weird back-control.  Probably the loop-exit test is in
 367     // the middle of the loop and I am looking at some trailing control-flow
 368     // merge point.  To fix this I would have to partially peel the loop.
 369     return false; // Obscure back-control
 370 
 371   // Get boolean guarding loop-back test
 372   Node *iff = iftrue->in(0);
 373   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 374     return false;
 375   BoolNode *test = iff->in(1)->as_Bool();
 376   BoolTest::mask bt = test->_test._test;
 377   float cl_prob = iff->as_If()->_prob;
 378   if (iftrue_op == Op_IfFalse) {
 379     bt = BoolTest(bt).negate();
 380     cl_prob = 1.0 - cl_prob;
 381   }
 382   // Get backedge compare
 383   Node *cmp = test->in(1);
 384   int cmp_op = cmp->Opcode();
 385   if (cmp_op != Op_CmpI)
 386     return false;                // Avoid pointer & float compares
 387 
 388   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 389   Node *incr  = cmp->in(1);
 390   Node *limit = cmp->in(2);
 391 
 392   // ---------
 393   // need 'loop()' test to tell if limit is loop invariant
 394   // ---------
 395 
 396   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 397     Node *tmp = incr;            // Then reverse order into the CmpI
 398     incr = limit;
 399     limit = tmp;
 400     bt = BoolTest(bt).commute(); // And commute the exit test
 401   }
 402   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 403     return false;
 404   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 405     return false;
 406 
 407   Node* phi_incr = NULL;
 408   // Trip-counter increment must be commutative & associative.
 409   if (incr->Opcode() == Op_CastII) {
 410     incr = incr->in(1);
 411   }
 412   if (incr->is_Phi()) {
 413     if (incr->as_Phi()->region() != x || incr->req() != 3)
 414       return false; // Not simple trip counter expression
 415     phi_incr = incr;
 416     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 417     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 418       return false;
 419   }
 420 
 421   Node* trunc1 = NULL;
 422   Node* trunc2 = NULL;
 423   const TypeInt* iv_trunc_t = NULL;
 424   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 425     return false; // Funny increment opcode
 426   }
 427   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 428 
 429   // Get merge point
 430   Node *xphi = incr->in(1);
 431   Node *stride = incr->in(2);
 432   if (!stride->is_Con()) {     // Oops, swap these
 433     if (!xphi->is_Con())       // Is the other guy a constant?
 434       return false;             // Nope, unknown stride, bail out
 435     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 436     xphi = stride;
 437     stride = tmp;
 438   }
 439   if (xphi->Opcode() == Op_CastII) {
 440     xphi = xphi->in(1);
 441   }
 442   // Stride must be constant
 443   int stride_con = stride->get_int();
 444   if (stride_con == 0)
 445     return false; // missed some peephole opt
 446 
 447   if (!xphi->is_Phi())
 448     return false; // Too much math on the trip counter
 449   if (phi_incr != NULL && phi_incr != xphi)
 450     return false;
 451   PhiNode *phi = xphi->as_Phi();
 452 
 453   // Phi must be of loop header; backedge must wrap to increment
 454   if (phi->region() != x)
 455     return false;
 456   if ((trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr) ||
 457       (trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1)) {
 458     return false;
 459   }
 460   Node *init_trip = phi->in(LoopNode::EntryControl);
 461 
 462   // If iv trunc type is smaller than int, check for possible wrap.
 463   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 464     assert(trunc1 != NULL, "must have found some truncation");
 465 
 466     // Get a better type for the phi (filtered thru if's)
 467     const TypeInt* phi_ft = filtered_type(phi);
 468 
 469     // Can iv take on a value that will wrap?
 470     //
 471     // Ensure iv's limit is not within "stride" of the wrap value.
 472     //
 473     // Example for "short" type
 474     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 475     //    If the stride is +10, then the last value of the induction
 476     //    variable before the increment (phi_ft->_hi) must be
 477     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 478     //    ensure no truncation occurs after the increment.
 479 
 480     if (stride_con > 0) {
 481       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 482           iv_trunc_t->_lo > phi_ft->_lo) {
 483         return false;  // truncation may occur
 484       }
 485     } else if (stride_con < 0) {
 486       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 487           iv_trunc_t->_hi < phi_ft->_hi) {
 488         return false;  // truncation may occur
 489       }
 490     }
 491     // No possibility of wrap so truncation can be discarded
 492     // Promote iv type to Int
 493   } else {
 494     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 495   }
 496 
 497   // If the condition is inverted and we will be rolling
 498   // through MININT to MAXINT, then bail out.
 499   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 500       // Odd stride
 501       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 502       // Count down loop rolls through MAXINT
 503       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 504       // Count up loop rolls through MININT
 505       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 506     return false; // Bail out
 507   }
 508 
 509   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 510   const TypeInt* limit_t = gvn->type(limit)->is_int();
 511 
 512   if (stride_con > 0) {
 513     jlong init_p = (jlong)init_t->_lo + stride_con;
 514     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 515       return false; // cyclic loop or this loop trips only once
 516   } else {
 517     jlong init_p = (jlong)init_t->_hi + stride_con;
 518     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 519       return false; // cyclic loop or this loop trips only once
 520   }
 521 
 522   if (phi_incr != NULL) {
 523     // check if there is a possiblity of IV overflowing after the first increment
 524     if (stride_con > 0) {
 525       if (init_t->_hi > max_jint - stride_con) {
 526         return false;
 527       }
 528     } else {
 529       if (init_t->_lo < min_jint - stride_con) {
 530         return false;
 531       }
 532     }
 533   }
 534 
 535   // =================================================
 536   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 537   //
 538   assert(x->Opcode() == Op_Loop, "regular loops only");
 539   C->print_method(PHASE_BEFORE_CLOOPS, 3);
 540 
 541   Node *hook = new Node(6);
 542 
 543   // ===================================================
 544   // Generate loop limit check to avoid integer overflow
 545   // in cases like next (cyclic loops):
 546   //
 547   // for (i=0; i <= max_jint; i++) {}
 548   // for (i=0; i <  max_jint; i+=2) {}
 549   //
 550   //
 551   // Limit check predicate depends on the loop test:
 552   //
 553   // for(;i != limit; i++)       --> limit <= (max_jint)
 554   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 555   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 556   //
 557 
 558   // Check if limit is excluded to do more precise int overflow check.
 559   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 560   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 561 
 562   // If compare points directly to the phi we need to adjust
 563   // the compare so that it points to the incr. Limit have
 564   // to be adjusted to keep trip count the same and the
 565   // adjusted limit should be checked for int overflow.
 566   if (phi_incr != NULL) {
 567     stride_m  += stride_con;
 568   }
 569 
 570   if (limit->is_Con()) {
 571     int limit_con = limit->get_int();
 572     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 573         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 574       // Bailout: it could be integer overflow.
 575       return false;
 576     }
 577   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 578              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 579       // Limit's type may satisfy the condition, for example,
 580       // when it is an array length.
 581   } else {
 582     // Generate loop's limit check.
 583     // Loop limit check predicate should be near the loop.
 584     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 585     if (!limit_check_proj) {
 586       // The limit check predicate is not generated if this method trapped here before.
 587 #ifdef ASSERT
 588       if (TraceLoopLimitCheck) {
 589         tty->print("missing loop limit check:");
 590         loop->dump_head();
 591         x->dump(1);
 592       }
 593 #endif
 594       return false;
 595     }
 596 
 597     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 598     Node* cmp_limit;
 599     Node* bol;
 600 
 601     if (stride_con > 0) {
 602       cmp_limit = new CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 603       bol = new BoolNode(cmp_limit, BoolTest::le);
 604     } else {
 605       cmp_limit = new CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 606       bol = new BoolNode(cmp_limit, BoolTest::ge);
 607     }
 608     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 609     bol = _igvn.register_new_node_with_optimizer(bol);
 610     set_subtree_ctrl(bol);
 611 
 612     // Replace condition in original predicate but preserve Opaque node
 613     // so that previous predicates could be found.
 614     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 615            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 616     Node* opq = check_iff->in(1)->in(1);
 617     _igvn.replace_input_of(opq, 1, bol);
 618     // Update ctrl.
 619     set_ctrl(opq, check_iff->in(0));
 620     set_ctrl(check_iff->in(1), check_iff->in(0));
 621 
 622 #ifndef PRODUCT
 623     // report that the loop predication has been actually performed
 624     // for this loop
 625     if (TraceLoopLimitCheck) {
 626       tty->print_cr("Counted Loop Limit Check generated:");
 627       debug_only( bol->dump(2); )
 628     }
 629 #endif
 630   }
 631 
 632   if (phi_incr != NULL) {
 633     // If compare points directly to the phi we need to adjust
 634     // the compare so that it points to the incr. Limit have
 635     // to be adjusted to keep trip count the same and we
 636     // should avoid int overflow.
 637     //
 638     //   i = init; do {} while(i++ < limit);
 639     // is converted to
 640     //   i = init; do {} while(++i < limit+1);
 641     //
 642     limit = gvn->transform(new AddINode(limit, stride));
 643   }
 644 
 645   // Now we need to canonicalize loop condition.
 646   if (bt == BoolTest::ne) {
 647     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 648     // 'ne' can be replaced with 'lt' only when init < limit.
 649     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 650       bt = BoolTest::lt;
 651     // 'ne' can be replaced with 'gt' only when init > limit.
 652     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 653       bt = BoolTest::gt;
 654   }
 655 
 656   if (incl_limit) {
 657     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 658     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 659     //
 660     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 661     limit = gvn->transform(new AddINode(limit, one));
 662     if (bt == BoolTest::le)
 663       bt = BoolTest::lt;
 664     else if (bt == BoolTest::ge)
 665       bt = BoolTest::gt;
 666     else
 667       ShouldNotReachHere();
 668   }
 669   set_subtree_ctrl( limit );
 670 
 671   if (LoopStripMiningIter == 0) {
 672     // Check for SafePoint on backedge and remove
 673     Node *sfpt = x->in(LoopNode::LoopBackControl);
 674     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 675       lazy_replace( sfpt, iftrue );
 676       if (loop->_safepts != NULL) {
 677         loop->_safepts->yank(sfpt);
 678       }
 679       loop->_tail = iftrue;
 680     }
 681   }
 682 
 683   // Build a canonical trip test.
 684   // Clone code, as old values may be in use.
 685   incr = incr->clone();
 686   incr->set_req(1,phi);
 687   incr->set_req(2,stride);
 688   incr = _igvn.register_new_node_with_optimizer(incr);
 689   set_early_ctrl( incr );
 690   _igvn.rehash_node_delayed(phi);
 691   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 692 
 693   // If phi type is more restrictive than Int, raise to
 694   // Int to prevent (almost) infinite recursion in igvn
 695   // which can only handle integer types for constants or minint..maxint.
 696   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 697     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 698     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 699     nphi = _igvn.register_new_node_with_optimizer(nphi);
 700     set_ctrl(nphi, get_ctrl(phi));
 701     _igvn.replace_node(phi, nphi);
 702     phi = nphi->as_Phi();
 703   }
 704   cmp = cmp->clone();
 705   cmp->set_req(1,incr);
 706   cmp->set_req(2,limit);
 707   cmp = _igvn.register_new_node_with_optimizer(cmp);
 708   set_ctrl(cmp, iff->in(0));
 709 
 710   test = test->clone()->as_Bool();
 711   (*(BoolTest*)&test->_test)._test = bt;
 712   test->set_req(1,cmp);
 713   _igvn.register_new_node_with_optimizer(test);
 714   set_ctrl(test, iff->in(0));
 715 
 716   // Replace the old IfNode with a new LoopEndNode
 717   Node *lex = _igvn.register_new_node_with_optimizer(new CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 718   IfNode *le = lex->as_If();
 719   uint dd = dom_depth(iff);
 720   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 721   set_loop(le, loop);
 722 
 723   // Get the loop-exit control
 724   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 725 
 726   // Need to swap loop-exit and loop-back control?
 727   if (iftrue_op == Op_IfFalse) {
 728     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
 729     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
 730 
 731     loop->_tail = back_control = ift2;
 732     set_loop(ift2, loop);
 733     set_loop(iff2, get_loop(iffalse));
 734 
 735     // Lazy update of 'get_ctrl' mechanism.
 736     lazy_replace(iffalse, iff2);
 737     lazy_replace(iftrue,  ift2);
 738 
 739     // Swap names
 740     iffalse = iff2;
 741     iftrue  = ift2;
 742   } else {
 743     _igvn.rehash_node_delayed(iffalse);
 744     _igvn.rehash_node_delayed(iftrue);
 745     iffalse->set_req_X( 0, le, &_igvn );
 746     iftrue ->set_req_X( 0, le, &_igvn );
 747   }
 748 
 749   set_idom(iftrue,  le, dd+1);
 750   set_idom(iffalse, le, dd+1);
 751   assert(iff->outcnt() == 0, "should be dead now");
 752   lazy_replace( iff, le ); // fix 'get_ctrl'
 753 
 754   Node *sfpt2 = le->in(0);
 755 
 756   Node* entry_control = init_control;
 757   bool strip_mine_loop = LoopStripMiningIter > 1 && loop->_child == NULL &&
 758     sfpt2->Opcode() == Op_SafePoint && !loop->_has_call;
 759   IdealLoopTree* outer_ilt = NULL;
 760   if (strip_mine_loop) {
 761     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
 762                                               cl_prob, le->_fcnt, entry_control,
 763                                               iffalse);
 764   }
 765 
 766   // Now setup a new CountedLoopNode to replace the existing LoopNode
 767   CountedLoopNode *l = new CountedLoopNode(entry_control, back_control);
 768   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 769   // The following assert is approximately true, and defines the intention
 770   // of can_be_counted_loop.  It fails, however, because phase->type
 771   // is not yet initialized for this loop and its parts.
 772   //assert(l->can_be_counted_loop(this), "sanity");
 773   _igvn.register_new_node_with_optimizer(l);
 774   set_loop(l, loop);
 775   loop->_head = l;
 776   // Fix all data nodes placed at the old loop head.
 777   // Uses the lazy-update mechanism of 'get_ctrl'.
 778   lazy_replace( x, l );
 779   set_idom(l, entry_control, dom_depth(entry_control) + 1);
 780 
 781   if (LoopStripMiningIter == 0 || strip_mine_loop) {
 782     // Check for immediately preceding SafePoint and remove
 783     if (sfpt2->Opcode() == Op_SafePoint && (LoopStripMiningIter != 0 || is_deleteable_safept(sfpt2))) {
 784       if (strip_mine_loop) {
 785         Node* outer_le = outer_ilt->_tail->in(0);
 786         Node* outer_limit = outer_le->in(1)->in(1)->in(2);
 787         assert(outer_limit->Opcode() == Op_Opaque5, "where's the opaque node?");
 788         Node* sfpt = sfpt2->clone();
 789         sfpt->set_req(0, iffalse);
 790         outer_le->set_req(0, sfpt);
 791         outer_limit->set_req(0, sfpt);
 792         register_control(sfpt, outer_ilt, iffalse);
 793         set_idom(outer_le, sfpt, dom_depth(sfpt));
 794       }
 795       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 796       if (loop->_safepts != NULL) {
 797         loop->_safepts->yank(sfpt2);
 798       }
 799     }
 800   }
 801 
 802   // Free up intermediate goo
 803   _igvn.remove_dead_node(hook);
 804 
 805 #ifdef ASSERT
 806   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 807   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
 808 #endif
 809 #ifndef PRODUCT
 810   if (TraceLoopOpts) {
 811     tty->print("Counted      ");
 812     loop->dump_head();
 813   }
 814 #endif
 815 
 816   C->print_method(PHASE_AFTER_CLOOPS, 3);
 817 
 818   // Capture bounds of the loop in the induction variable Phi before
 819   // subsequent transformation (iteration splitting) obscures the
 820   // bounds
 821   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
 822 
 823   if (strip_mine_loop) {
 824     l->mark_strip_mined();
 825     l->verify_strip_mined(1);
 826     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
 827     loop = outer_ilt;
 828   }
 829 
 830   return true;
 831 }
 832 
 833 //----------------------exact_limit-------------------------------------------
 834 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 835   assert(loop->_head->is_CountedLoop(), "");
 836   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 837   assert(cl->is_valid_counted_loop(), "");
 838 
 839   if (ABS(cl->stride_con()) == 1 ||
 840       cl->limit()->Opcode() == Op_LoopLimit) {
 841     // Old code has exact limit (it could be incorrect in case of int overflow).
 842     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 843     return cl->limit();
 844   }
 845   Node *limit = NULL;
 846 #ifdef ASSERT
 847   BoolTest::mask bt = cl->loopexit()->test_trip();
 848   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 849 #endif
 850   if (cl->has_exact_trip_count()) {
 851     // Simple case: loop has constant boundaries.
 852     // Use jlongs to avoid integer overflow.
 853     int stride_con = cl->stride_con();
 854     jlong  init_con = cl->init_trip()->get_int();
 855     jlong limit_con = cl->limit()->get_int();
 856     julong trip_cnt = cl->trip_count();
 857     jlong final_con = init_con + trip_cnt*stride_con;
 858     int final_int = (int)final_con;
 859     // The final value should be in integer range since the loop
 860     // is counted and the limit was checked for overflow.
 861     assert(final_con == (jlong)final_int, "final value should be integer");
 862     limit = _igvn.intcon(final_int);
 863   } else {
 864     // Create new LoopLimit node to get exact limit (final iv value).
 865     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 866     register_new_node(limit, cl->in(LoopNode::EntryControl));
 867   }
 868   assert(limit != NULL, "sanity");
 869   return limit;
 870 }
 871 
 872 //------------------------------Ideal------------------------------------------
 873 // Return a node which is more "ideal" than the current node.
 874 // Attempt to convert into a counted-loop.
 875 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 876   if (!can_be_counted_loop(phase) && !is_strip_mined()) {
 877     phase->C->set_major_progress();
 878   }
 879   return RegionNode::Ideal(phase, can_reshape);
 880 }
 881 
 882 void LoopNode::verify_strip_mined(int expect_opaq) const {
 883 #ifdef ASSERT
 884   if (is_strip_mined()) {
 885     const LoopNode* outer = NULL;
 886     const CountedLoopNode* inner = NULL;
 887     if (is_CountedLoop()) {
 888       inner = as_CountedLoop();
 889       outer = inner->in(LoopNode::EntryControl)->as_Loop();
 890     } else {
 891       outer = this;
 892       inner = outer->unique_ctrl_out()->as_CountedLoop();
 893     }
 894     assert(outer->Opcode() == Op_Loop, "no counted loop here");
 895     assert(outer->is_strip_mined(), "incorrect outer loop");
 896     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
 897     Node* outer_le = outer_tail->in(0);
 898     assert(outer_le->Opcode() == Op_If, "tail of outer loop should be an If");
 899     Node* sfpt = outer_le->in(0);
 900     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
 901     Node* inner_out = sfpt->in(0);
 902     if (inner_out->outcnt() != 1) {
 903       ResourceMark rm;
 904       Unique_Node_List wq;
 905 
 906       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 907         Node* u = inner_out->fast_out(i);
 908         if (u == sfpt) {
 909           continue;
 910         }
 911         wq.clear();
 912         wq.push(u);
 913         bool found_sfpt = false;
 914         for (uint next = 0; next < wq.size() && !found_sfpt; next++) {
 915           Node *n = wq.at(next);
 916           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !found_sfpt; i++) {
 917             Node* u = n->fast_out(i);
 918             if (u == sfpt) {
 919               found_sfpt = true;
 920             }
 921             if (!u->is_CFG()) {
 922               wq.push(u);
 923             }
 924           }
 925         }
 926         assert(found_sfpt, "no node in loop that's not input to safepoint");
 927       }
 928     }
 929     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
 930     assert(cle == inner->loopexit(), "mismatch");
 931     Node* cmp = outer_le->in(1)->in(1);
 932     bool has_opaque = cmp->in(2)->Opcode() == Op_Opaque5;
 933     assert(cmp->in(1) == inner->incr(), "strange exit condition");
 934     if (has_opaque) {
 935       assert(expect_opaq == 1 || expect_opaq == -1, "unexpected opaque node");
 936       assert(outer->outcnt() == 2, "only phis");
 937     } else {
 938       assert(expect_opaq == 0 || expect_opaq == -1, "no opaque node?");
 939       uint phis = 0;
 940       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
 941         Node* u = inner->fast_out(i);
 942         if (u->is_Phi()) {
 943           phis++;
 944         }
 945       }
 946       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
 947         Node* u = outer->fast_out(i);
 948         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
 949       }
 950       uint stores = 0;
 951       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 952         Node* u = inner_out->fast_out(i);
 953         if (u->is_Store()) {
 954           stores++;
 955         }
 956       }
 957       assert(outer->outcnt() >= phis + 2 && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
 958     }
 959     assert(sfpt->outcnt() == 1 + (has_opaque ? 1 : 0), "no data node");
 960     assert(outer_tail->outcnt() == 1 || !has_opaque, "no data node");
 961   }
 962 #endif
 963 }
 964 
 965 //=============================================================================
 966 //------------------------------Ideal------------------------------------------
 967 // Return a node which is more "ideal" than the current node.
 968 // Attempt to convert into a counted-loop.
 969 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 970   return RegionNode::Ideal(phase, can_reshape);
 971 }
 972 
 973 //------------------------------dump_spec--------------------------------------
 974 // Dump special per-node info
 975 #ifndef PRODUCT
 976 void CountedLoopNode::dump_spec(outputStream *st) const {
 977   LoopNode::dump_spec(st);
 978   if (stride_is_con()) {
 979     st->print("stride: %d ",stride_con());
 980   }
 981   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 982   if (is_main_loop()) st->print("main of N%d", _idx);
 983   if (is_post_loop()) st->print("post of N%d", _main_idx);
 984 }
 985 #endif
 986 
 987 //=============================================================================
 988 int CountedLoopEndNode::stride_con() const {
 989   return stride()->bottom_type()->is_int()->get_con();
 990 }
 991 
 992 //=============================================================================
 993 //------------------------------Value-----------------------------------------
 994 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
 995   const Type* init_t   = phase->type(in(Init));
 996   const Type* limit_t  = phase->type(in(Limit));
 997   const Type* stride_t = phase->type(in(Stride));
 998   // Either input is TOP ==> the result is TOP
 999   if (init_t   == Type::TOP) return Type::TOP;
1000   if (limit_t  == Type::TOP) return Type::TOP;
1001   if (stride_t == Type::TOP) return Type::TOP;
1002 
1003   int stride_con = stride_t->is_int()->get_con();
1004   if (stride_con == 1)
1005     return NULL;  // Identity
1006 
1007   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
1008     // Use jlongs to avoid integer overflow.
1009     jlong init_con   =  init_t->is_int()->get_con();
1010     jlong limit_con  = limit_t->is_int()->get_con();
1011     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
1012     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
1013     jlong final_con  = init_con + stride_con*trip_count;
1014     int final_int = (int)final_con;
1015     // The final value should be in integer range since the loop
1016     // is counted and the limit was checked for overflow.
1017     assert(final_con == (jlong)final_int, "final value should be integer");
1018     return TypeInt::make(final_int);
1019   }
1020 
1021   return bottom_type(); // TypeInt::INT
1022 }
1023 
1024 //------------------------------Ideal------------------------------------------
1025 // Return a node which is more "ideal" than the current node.
1026 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1027   if (phase->type(in(Init))   == Type::TOP ||
1028       phase->type(in(Limit))  == Type::TOP ||
1029       phase->type(in(Stride)) == Type::TOP)
1030     return NULL;  // Dead
1031 
1032   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1033   if (stride_con == 1)
1034     return NULL;  // Identity
1035 
1036   if (in(Init)->is_Con() && in(Limit)->is_Con())
1037     return NULL;  // Value
1038 
1039   // Delay following optimizations until all loop optimizations
1040   // done to keep Ideal graph simple.
1041   if (!can_reshape || phase->C->major_progress())
1042     return NULL;
1043 
1044   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
1045   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
1046   int stride_p;
1047   jlong lim, ini;
1048   julong max;
1049   if (stride_con > 0) {
1050     stride_p = stride_con;
1051     lim = limit_t->_hi;
1052     ini = init_t->_lo;
1053     max = (julong)max_jint;
1054   } else {
1055     stride_p = -stride_con;
1056     lim = init_t->_hi;
1057     ini = limit_t->_lo;
1058     max = (julong)min_jint;
1059   }
1060   julong range = lim - ini + stride_p;
1061   if (range <= max) {
1062     // Convert to integer expression if it is not overflow.
1063     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
1064     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
1065     Node *bias  = phase->transform(new AddINode(range, stride_m));
1066     Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
1067     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
1068     return new AddINode(span, in(Init)); // exact limit
1069   }
1070 
1071   if (is_power_of_2(stride_p) ||                // divisor is 2^n
1072       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
1073     // Convert to long expression to avoid integer overflow
1074     // and let igvn optimizer convert this division.
1075     //
1076     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
1077     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
1078     Node* stride   = phase->longcon(stride_con);
1079     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
1080 
1081     Node *range = phase->transform(new SubLNode(limit, init));
1082     Node *bias  = phase->transform(new AddLNode(range, stride_m));
1083     Node *span;
1084     if (stride_con > 0 && is_power_of_2(stride_p)) {
1085       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
1086       // and avoid generating rounding for division. Zero trip guard should
1087       // guarantee that init < limit but sometimes the guard is missing and
1088       // we can get situation when init > limit. Note, for the empty loop
1089       // optimization zero trip guard is generated explicitly which leaves
1090       // only RCE predicate where exact limit is used and the predicate
1091       // will simply fail forcing recompilation.
1092       Node* neg_stride   = phase->longcon(-stride_con);
1093       span = phase->transform(new AndLNode(bias, neg_stride));
1094     } else {
1095       Node *trip  = phase->transform(new DivLNode(0, bias, stride));
1096       span = phase->transform(new MulLNode(trip, stride));
1097     }
1098     // Convert back to int
1099     Node *span_int = phase->transform(new ConvL2INode(span));
1100     return new AddINode(span_int, in(Init)); // exact limit
1101   }
1102 
1103   return NULL;    // No progress
1104 }
1105 
1106 //------------------------------Identity---------------------------------------
1107 // If stride == 1 return limit node.
1108 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
1109   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1110   if (stride_con == 1 || stride_con == -1)
1111     return in(Limit);
1112   return this;
1113 }
1114 
1115 //=============================================================================
1116 //----------------------match_incr_with_optional_truncation--------------------
1117 // Match increment with optional truncation:
1118 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
1119 // Return NULL for failure. Success returns the increment node.
1120 Node* CountedLoopNode::match_incr_with_optional_truncation(
1121                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
1122   // Quick cutouts:
1123   if (expr == NULL || expr->req() != 3)  return NULL;
1124 
1125   Node *t1 = NULL;
1126   Node *t2 = NULL;
1127   const TypeInt* trunc_t = TypeInt::INT;
1128   Node* n1 = expr;
1129   int   n1op = n1->Opcode();
1130 
1131   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
1132   if (n1op == Op_AndI &&
1133       n1->in(2)->is_Con() &&
1134       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
1135     // %%% This check should match any mask of 2**K-1.
1136     t1 = n1;
1137     n1 = t1->in(1);
1138     n1op = n1->Opcode();
1139     trunc_t = TypeInt::CHAR;
1140   } else if (n1op == Op_RShiftI &&
1141              n1->in(1) != NULL &&
1142              n1->in(1)->Opcode() == Op_LShiftI &&
1143              n1->in(2) == n1->in(1)->in(2) &&
1144              n1->in(2)->is_Con()) {
1145     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
1146     // %%% This check should match any shift in [1..31].
1147     if (shift == 16 || shift == 8) {
1148       t1 = n1;
1149       t2 = t1->in(1);
1150       n1 = t2->in(1);
1151       n1op = n1->Opcode();
1152       if (shift == 16) {
1153         trunc_t = TypeInt::SHORT;
1154       } else if (shift == 8) {
1155         trunc_t = TypeInt::BYTE;
1156       }
1157     }
1158   }
1159 
1160   // If (maybe after stripping) it is an AddI, we won:
1161   if (n1op == Op_AddI) {
1162     *trunc1 = t1;
1163     *trunc2 = t2;
1164     *trunc_type = trunc_t;
1165     return n1;
1166   }
1167 
1168   // failed
1169   return NULL;
1170 }
1171 
1172 LoopNode* CountedLoopNode::skip_strip_mined(int expect_opaq) {
1173   if (is_strip_mined()) {
1174     verify_strip_mined(expect_opaq);
1175     return in(EntryControl)->as_Loop();
1176   }
1177   return this;
1178 }
1179 
1180 LoopNode* CountedLoopNode::outer_loop() const {
1181   assert(is_strip_mined(), "not a strip mined loop");
1182   Node* c = in(EntryControl);
1183   if (c == NULL || c->is_top() || c->Opcode() != Op_Loop) {
1184     return NULL;
1185   }
1186   LoopNode* l = c->as_Loop();
1187   assert(l->is_strip_mined(), "where's the outer loop?");
1188   return l;
1189 }
1190 
1191 IfTrueNode* LoopNode::outer_loop_tail() const {
1192   assert(is_strip_mined() && Opcode() == Op_Loop, "not a strip mined loop");
1193   Node* c = in(LoopBackControl);
1194   if (c == NULL || c->is_top()) {
1195     return NULL;
1196   }
1197   return c->as_IfTrue();
1198 }
1199 
1200 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
1201   LoopNode* l = outer_loop();
1202   if (l == NULL) {
1203     return NULL;
1204   }
1205   return l->outer_loop_tail();
1206 }
1207 
1208 IfNode* LoopNode::outer_loop_end() const {
1209   IfTrueNode* proj = outer_loop_tail();
1210   if (proj == NULL) {
1211     return NULL;
1212   }
1213   Node* c = proj->in(0);
1214   if (c == NULL || c->is_top() || c->outcnt() != 2) {
1215     return NULL;
1216   }
1217   assert(c->Opcode() == Op_If, "broken outer loop");
1218   return c->as_If();
1219 }
1220 
1221 IfNode* CountedLoopNode::outer_loop_end() const {
1222   LoopNode* l = outer_loop();
1223   if (l == NULL) {
1224     return NULL;
1225   }
1226   return l->outer_loop_end();
1227 }
1228 
1229 IfFalseNode* LoopNode::outer_loop_exit() const {
1230   IfNode* le = outer_loop_end();
1231   if (le == NULL) {
1232     return NULL;
1233   }
1234   Node* c = le->proj_out(false);
1235   if (c == NULL) {
1236     return NULL;
1237   }
1238   return c->as_IfFalse();
1239 }
1240 
1241 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
1242   LoopNode* l = outer_loop();
1243   if (l == NULL) {
1244     return NULL;
1245   }
1246   return l->outer_loop_exit();
1247 }
1248 
1249 SafePointNode* LoopNode::outer_safepoint() const {
1250   IfNode* le = outer_loop_end();
1251   if (le == NULL) {
1252     return NULL;
1253   }
1254   Node* c = le->in(0);
1255   if (c == NULL || c->is_top()) {
1256     return NULL;
1257   }
1258   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
1259   return c->as_SafePoint();
1260 }
1261 
1262 SafePointNode* CountedLoopNode::outer_safepoint() const {
1263   LoopNode* l = outer_loop();
1264   if (l == NULL) {
1265     return NULL;
1266   }
1267   return l->outer_safepoint();
1268 }
1269 
1270 BoolNode* LoopNode::outer_bol() const {
1271   IfNode* le = outer_loop_end();
1272   if (le == NULL) {
1273     return NULL;
1274   }
1275   Node* n = le->in(1);
1276   if (n == NULL || n->is_top()) {
1277     return NULL;
1278   }
1279   return n->as_Bool();
1280 }
1281 
1282 BoolNode* CountedLoopNode::outer_bol() const {
1283   LoopNode* l = outer_loop();
1284   if (l == NULL) {
1285     return NULL;
1286   }
1287   return l->outer_bol();
1288 }
1289 
1290 CmpINode* LoopNode::outer_cmp() const {
1291   Node* bol = outer_bol();
1292   if (bol == NULL) {
1293     return NULL;
1294   }
1295   Node* n = bol->in(1);
1296   if (n == NULL || n->is_top()) {
1297     return NULL;
1298   }
1299   assert(n->Opcode() == Op_CmpI, "broken strip mined loop");
1300   return (CmpINode*)n;
1301 }
1302 
1303 CmpINode* CountedLoopNode::outer_cmp() const {
1304   LoopNode* l = outer_loop();
1305   if (l == NULL) {
1306     return NULL;
1307   }
1308   return l->outer_cmp();
1309 }
1310 
1311 Opaque5Node* LoopNode::outer_opaq() const {
1312   Node* cmp = outer_cmp();
1313   if (cmp == NULL) {
1314     return NULL;
1315   }
1316   Node* n = cmp->in(2);
1317   if (n == NULL || n->is_top()) {
1318     return NULL;
1319   }
1320   assert(n->Opcode() == Op_Opaque5, "broken strip mined loop");
1321   return (Opaque5Node*)n;
1322 }
1323 
1324 Opaque5Node* CountedLoopNode::outer_opaq() const {
1325   LoopNode* l = outer_loop();
1326   if (l == NULL) {
1327     return NULL;
1328   }
1329   return l->outer_opaq();
1330 }
1331 
1332 //------------------------------filtered_type--------------------------------
1333 // Return a type based on condition control flow
1334 // A successful return will be a type that is restricted due
1335 // to a series of dominating if-tests, such as:
1336 //    if (i < 10) {
1337 //       if (i > 0) {
1338 //          here: "i" type is [1..10)
1339 //       }
1340 //    }
1341 // or a control flow merge
1342 //    if (i < 10) {
1343 //       do {
1344 //          phi( , ) -- at top of loop type is [min_int..10)
1345 //         i = ?
1346 //       } while ( i < 10)
1347 //
1348 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1349   assert(n && n->bottom_type()->is_int(), "must be int");
1350   const TypeInt* filtered_t = NULL;
1351   if (!n->is_Phi()) {
1352     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1353     filtered_t = filtered_type_from_dominators(n, n_ctrl);
1354 
1355   } else {
1356     Node* phi    = n->as_Phi();
1357     Node* region = phi->in(0);
1358     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1359     if (region && region != C->top()) {
1360       for (uint i = 1; i < phi->req(); i++) {
1361         Node* val   = phi->in(i);
1362         Node* use_c = region->in(i);
1363         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1364         if (val_t != NULL) {
1365           if (filtered_t == NULL) {
1366             filtered_t = val_t;
1367           } else {
1368             filtered_t = filtered_t->meet(val_t)->is_int();
1369           }
1370         }
1371       }
1372     }
1373   }
1374   const TypeInt* n_t = _igvn.type(n)->is_int();
1375   if (filtered_t != NULL) {
1376     n_t = n_t->join(filtered_t)->is_int();
1377   }
1378   return n_t;
1379 }
1380 
1381 
1382 //------------------------------filtered_type_from_dominators--------------------------------
1383 // Return a possibly more restrictive type for val based on condition control flow of dominators
1384 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1385   if (val->is_Con()) {
1386      return val->bottom_type()->is_int();
1387   }
1388   uint if_limit = 10; // Max number of dominating if's visited
1389   const TypeInt* rtn_t = NULL;
1390 
1391   if (use_ctrl && use_ctrl != C->top()) {
1392     Node* val_ctrl = get_ctrl(val);
1393     uint val_dom_depth = dom_depth(val_ctrl);
1394     Node* pred = use_ctrl;
1395     uint if_cnt = 0;
1396     while (if_cnt < if_limit) {
1397       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1398         if_cnt++;
1399         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1400         if (if_t != NULL) {
1401           if (rtn_t == NULL) {
1402             rtn_t = if_t;
1403           } else {
1404             rtn_t = rtn_t->join(if_t)->is_int();
1405           }
1406         }
1407       }
1408       pred = idom(pred);
1409       if (pred == NULL || pred == C->top()) {
1410         break;
1411       }
1412       // Stop if going beyond definition block of val
1413       if (dom_depth(pred) < val_dom_depth) {
1414         break;
1415       }
1416     }
1417   }
1418   return rtn_t;
1419 }
1420 
1421 
1422 //------------------------------dump_spec--------------------------------------
1423 // Dump special per-node info
1424 #ifndef PRODUCT
1425 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1426   if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
1427     BoolTest bt( test_trip()); // Added this for g++.
1428 
1429     st->print("[");
1430     bt.dump_on(st);
1431     st->print("]");
1432   }
1433   st->print(" ");
1434   IfNode::dump_spec(st);
1435 }
1436 #endif
1437 
1438 //=============================================================================
1439 //------------------------------is_member--------------------------------------
1440 // Is 'l' a member of 'this'?
1441 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
1442   while( l->_nest > _nest ) l = l->_parent;
1443   return l == this;
1444 }
1445 
1446 //------------------------------set_nest---------------------------------------
1447 // Set loop tree nesting depth.  Accumulate _has_call bits.
1448 int IdealLoopTree::set_nest( uint depth ) {
1449   _nest = depth;
1450   int bits = _has_call;
1451   if( _child ) bits |= _child->set_nest(depth+1);
1452   if( bits ) _has_call = 1;
1453   if( _next  ) bits |= _next ->set_nest(depth  );
1454   return bits;
1455 }
1456 
1457 //------------------------------split_fall_in----------------------------------
1458 // Split out multiple fall-in edges from the loop header.  Move them to a
1459 // private RegionNode before the loop.  This becomes the loop landing pad.
1460 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1461   PhaseIterGVN &igvn = phase->_igvn;
1462   uint i;
1463 
1464   // Make a new RegionNode to be the landing pad.
1465   Node *landing_pad = new RegionNode( fall_in_cnt+1 );
1466   phase->set_loop(landing_pad,_parent);
1467   // Gather all the fall-in control paths into the landing pad
1468   uint icnt = fall_in_cnt;
1469   uint oreq = _head->req();
1470   for( i = oreq-1; i>0; i-- )
1471     if( !phase->is_member( this, _head->in(i) ) )
1472       landing_pad->set_req(icnt--,_head->in(i));
1473 
1474   // Peel off PhiNode edges as well
1475   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1476     Node *oj = _head->fast_out(j);
1477     if( oj->is_Phi() ) {
1478       PhiNode* old_phi = oj->as_Phi();
1479       assert( old_phi->region() == _head, "" );
1480       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1481       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1482       uint icnt = fall_in_cnt;
1483       for( i = oreq-1; i>0; i-- ) {
1484         if( !phase->is_member( this, _head->in(i) ) ) {
1485           p->init_req(icnt--, old_phi->in(i));
1486           // Go ahead and clean out old edges from old phi
1487           old_phi->del_req(i);
1488         }
1489       }
1490       // Search for CSE's here, because ZKM.jar does a lot of
1491       // loop hackery and we need to be a little incremental
1492       // with the CSE to avoid O(N^2) node blow-up.
1493       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1494       if( p2 ) {                // Found CSE
1495         p->destruct();          // Recover useless new node
1496         p = p2;                 // Use old node
1497       } else {
1498         igvn.register_new_node_with_optimizer(p, old_phi);
1499       }
1500       // Make old Phi refer to new Phi.
1501       old_phi->add_req(p);
1502       // Check for the special case of making the old phi useless and
1503       // disappear it.  In JavaGrande I have a case where this useless
1504       // Phi is the loop limit and prevents recognizing a CountedLoop
1505       // which in turn prevents removing an empty loop.
1506       Node *id_old_phi = old_phi->Identity( &igvn );
1507       if( id_old_phi != old_phi ) { // Found a simple identity?
1508         // Note that I cannot call 'replace_node' here, because
1509         // that will yank the edge from old_phi to the Region and
1510         // I'm mid-iteration over the Region's uses.
1511         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1512           Node* use = old_phi->last_out(i);
1513           igvn.rehash_node_delayed(use);
1514           uint uses_found = 0;
1515           for (uint j = 0; j < use->len(); j++) {
1516             if (use->in(j) == old_phi) {
1517               if (j < use->req()) use->set_req (j, id_old_phi);
1518               else                use->set_prec(j, id_old_phi);
1519               uses_found++;
1520             }
1521           }
1522           i -= uses_found;    // we deleted 1 or more copies of this edge
1523         }
1524       }
1525       igvn._worklist.push(old_phi);
1526     }
1527   }
1528   // Finally clean out the fall-in edges from the RegionNode
1529   for( i = oreq-1; i>0; i-- ) {
1530     if( !phase->is_member( this, _head->in(i) ) ) {
1531       _head->del_req(i);
1532     }
1533   }
1534   igvn.rehash_node_delayed(_head);
1535   // Transform landing pad
1536   igvn.register_new_node_with_optimizer(landing_pad, _head);
1537   // Insert landing pad into the header
1538   _head->add_req(landing_pad);
1539 }
1540 
1541 //------------------------------split_outer_loop-------------------------------
1542 // Split out the outermost loop from this shared header.
1543 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1544   PhaseIterGVN &igvn = phase->_igvn;
1545 
1546   // Find index of outermost loop; it should also be my tail.
1547   uint outer_idx = 1;
1548   while( _head->in(outer_idx) != _tail ) outer_idx++;
1549 
1550   // Make a LoopNode for the outermost loop.
1551   Node *ctl = _head->in(LoopNode::EntryControl);
1552   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
1553   outer = igvn.register_new_node_with_optimizer(outer, _head);
1554   phase->set_created_loop_node();
1555 
1556   // Outermost loop falls into '_head' loop
1557   _head->set_req(LoopNode::EntryControl, outer);
1558   _head->del_req(outer_idx);
1559   // Split all the Phis up between '_head' loop and 'outer' loop.
1560   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1561     Node *out = _head->fast_out(j);
1562     if( out->is_Phi() ) {
1563       PhiNode *old_phi = out->as_Phi();
1564       assert( old_phi->region() == _head, "" );
1565       Node *phi = PhiNode::make_blank(outer, old_phi);
1566       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1567       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1568       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1569       // Make old Phi point to new Phi on the fall-in path
1570       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1571       old_phi->del_req(outer_idx);
1572     }
1573   }
1574 
1575   // Use the new loop head instead of the old shared one
1576   _head = outer;
1577   phase->set_loop(_head, this);
1578 }
1579 
1580 //------------------------------fix_parent-------------------------------------
1581 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1582   loop->_parent = parent;
1583   if( loop->_child ) fix_parent( loop->_child, loop   );
1584   if( loop->_next  ) fix_parent( loop->_next , parent );
1585 }
1586 
1587 //------------------------------estimate_path_freq-----------------------------
1588 static float estimate_path_freq( Node *n ) {
1589   // Try to extract some path frequency info
1590   IfNode *iff;
1591   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1592     uint nop = n->Opcode();
1593     if( nop == Op_SafePoint ) {   // Skip any safepoint
1594       n = n->in(0);
1595       continue;
1596     }
1597     if( nop == Op_CatchProj ) {   // Get count from a prior call
1598       // Assume call does not always throw exceptions: means the call-site
1599       // count is also the frequency of the fall-through path.
1600       assert( n->is_CatchProj(), "" );
1601       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1602         return 0.0f;            // Assume call exception path is rare
1603       Node *call = n->in(0)->in(0)->in(0);
1604       assert( call->is_Call(), "expect a call here" );
1605       const JVMState *jvms = ((CallNode*)call)->jvms();
1606       ciMethodData* methodData = jvms->method()->method_data();
1607       if (!methodData->is_mature())  return 0.0f; // No call-site data
1608       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1609       if ((data == NULL) || !data->is_CounterData()) {
1610         // no call profile available, try call's control input
1611         n = n->in(0);
1612         continue;
1613       }
1614       return data->as_CounterData()->count()/FreqCountInvocations;
1615     }
1616     // See if there's a gating IF test
1617     Node *n_c = n->in(0);
1618     if( !n_c->is_If() ) break;       // No estimate available
1619     iff = n_c->as_If();
1620     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1621       // Compute how much count comes on this path
1622       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1623     // Have no count info.  Skip dull uncommon-trap like branches.
1624     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1625         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1626       break;
1627     // Skip through never-taken branch; look for a real loop exit.
1628     n = iff->in(0);
1629   }
1630   return 0.0f;                  // No estimate available
1631 }
1632 
1633 //------------------------------merge_many_backedges---------------------------
1634 // Merge all the backedges from the shared header into a private Region.
1635 // Feed that region as the one backedge to this loop.
1636 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1637   uint i;
1638 
1639   // Scan for the top 2 hottest backedges
1640   float hotcnt = 0.0f;
1641   float warmcnt = 0.0f;
1642   uint hot_idx = 0;
1643   // Loop starts at 2 because slot 1 is the fall-in path
1644   for( i = 2; i < _head->req(); i++ ) {
1645     float cnt = estimate_path_freq(_head->in(i));
1646     if( cnt > hotcnt ) {       // Grab hottest path
1647       warmcnt = hotcnt;
1648       hotcnt = cnt;
1649       hot_idx = i;
1650     } else if( cnt > warmcnt ) { // And 2nd hottest path
1651       warmcnt = cnt;
1652     }
1653   }
1654 
1655   // See if the hottest backedge is worthy of being an inner loop
1656   // by being much hotter than the next hottest backedge.
1657   if( hotcnt <= 0.0001 ||
1658       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1659 
1660   // Peel out the backedges into a private merge point; peel
1661   // them all except optionally hot_idx.
1662   PhaseIterGVN &igvn = phase->_igvn;
1663 
1664   Node *hot_tail = NULL;
1665   // Make a Region for the merge point
1666   Node *r = new RegionNode(1);
1667   for( i = 2; i < _head->req(); i++ ) {
1668     if( i != hot_idx )
1669       r->add_req( _head->in(i) );
1670     else hot_tail = _head->in(i);
1671   }
1672   igvn.register_new_node_with_optimizer(r, _head);
1673   // Plug region into end of loop _head, followed by hot_tail
1674   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1675   igvn.replace_input_of(_head, 2, r);
1676   if( hot_idx ) _head->add_req(hot_tail);
1677 
1678   // Split all the Phis up between '_head' loop and the Region 'r'
1679   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1680     Node *out = _head->fast_out(j);
1681     if( out->is_Phi() ) {
1682       PhiNode* n = out->as_Phi();
1683       igvn.hash_delete(n);      // Delete from hash before hacking edges
1684       Node *hot_phi = NULL;
1685       Node *phi = new PhiNode(r, n->type(), n->adr_type());
1686       // Check all inputs for the ones to peel out
1687       uint j = 1;
1688       for( uint i = 2; i < n->req(); i++ ) {
1689         if( i != hot_idx )
1690           phi->set_req( j++, n->in(i) );
1691         else hot_phi = n->in(i);
1692       }
1693       // Register the phi but do not transform until whole place transforms
1694       igvn.register_new_node_with_optimizer(phi, n);
1695       // Add the merge phi to the old Phi
1696       while( n->req() > 3 ) n->del_req( n->req()-1 );
1697       igvn.replace_input_of(n, 2, phi);
1698       if( hot_idx ) n->add_req(hot_phi);
1699     }
1700   }
1701 
1702 
1703   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1704   // of self loop tree.  Turn self into a loop headed by _head and with
1705   // tail being the new merge point.
1706   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1707   phase->set_loop(_tail,ilt);   // Adjust tail
1708   _tail = r;                    // Self's tail is new merge point
1709   phase->set_loop(r,this);
1710   ilt->_child = _child;         // New guy has my children
1711   _child = ilt;                 // Self has new guy as only child
1712   ilt->_parent = this;          // new guy has self for parent
1713   ilt->_nest = _nest;           // Same nesting depth (for now)
1714 
1715   // Starting with 'ilt', look for child loop trees using the same shared
1716   // header.  Flatten these out; they will no longer be loops in the end.
1717   IdealLoopTree **pilt = &_child;
1718   while( ilt ) {
1719     if( ilt->_head == _head ) {
1720       uint i;
1721       for( i = 2; i < _head->req(); i++ )
1722         if( _head->in(i) == ilt->_tail )
1723           break;                // Still a loop
1724       if( i == _head->req() ) { // No longer a loop
1725         // Flatten ilt.  Hang ilt's "_next" list from the end of
1726         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1727         IdealLoopTree **cp = &ilt->_child;
1728         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1729         *cp = ilt->_next;       // Hang next list at end of child list
1730         *pilt = ilt->_child;    // Move child up to replace ilt
1731         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1732         ilt = ilt->_child;      // Repeat using new ilt
1733         continue;               // do not advance over ilt->_child
1734       }
1735       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1736       phase->set_loop(_head,ilt);
1737     }
1738     pilt = &ilt->_child;        // Advance to next
1739     ilt = *pilt;
1740   }
1741 
1742   if( _child ) fix_parent( _child, this );
1743 }
1744 
1745 //------------------------------beautify_loops---------------------------------
1746 // Split shared headers and insert loop landing pads.
1747 // Insert a LoopNode to replace the RegionNode.
1748 // Return TRUE if loop tree is structurally changed.
1749 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1750   bool result = false;
1751   // Cache parts in locals for easy
1752   PhaseIterGVN &igvn = phase->_igvn;
1753 
1754   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1755 
1756   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1757   int fall_in_cnt = 0;
1758   for( uint i = 1; i < _head->req(); i++ )
1759     if( !phase->is_member( this, _head->in(i) ) )
1760       fall_in_cnt++;
1761   assert( fall_in_cnt, "at least 1 fall-in path" );
1762   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1763     split_fall_in( phase, fall_in_cnt );
1764 
1765   // Swap inputs to the _head and all Phis to move the fall-in edge to
1766   // the left.
1767   fall_in_cnt = 1;
1768   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1769     fall_in_cnt++;
1770   if( fall_in_cnt > 1 ) {
1771     // Since I am just swapping inputs I do not need to update def-use info
1772     Node *tmp = _head->in(1);
1773     igvn.rehash_node_delayed(_head);
1774     _head->set_req( 1, _head->in(fall_in_cnt) );
1775     _head->set_req( fall_in_cnt, tmp );
1776     // Swap also all Phis
1777     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1778       Node* phi = _head->fast_out(i);
1779       if( phi->is_Phi() ) {
1780         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
1781         tmp = phi->in(1);
1782         phi->set_req( 1, phi->in(fall_in_cnt) );
1783         phi->set_req( fall_in_cnt, tmp );
1784       }
1785     }
1786   }
1787   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1788   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1789 
1790   // If I am a shared header (multiple backedges), peel off the many
1791   // backedges into a private merge point and use the merge point as
1792   // the one true backedge.
1793   if( _head->req() > 3 ) {
1794     // Merge the many backedges into a single backedge but leave
1795     // the hottest backedge as separate edge for the following peel.
1796     merge_many_backedges( phase );
1797     result = true;
1798   }
1799 
1800   // If I have one hot backedge, peel off myself loop.
1801   // I better be the outermost loop.
1802   if (_head->req() > 3 && !_irreducible) {
1803     split_outer_loop( phase );
1804     result = true;
1805 
1806   } else if (!_head->is_Loop() && !_irreducible) {
1807     // Make a new LoopNode to replace the old loop head
1808     Node *l = new LoopNode( _head->in(1), _head->in(2) );
1809     l = igvn.register_new_node_with_optimizer(l, _head);
1810     phase->set_created_loop_node();
1811     // Go ahead and replace _head
1812     phase->_igvn.replace_node( _head, l );
1813     _head = l;
1814     phase->set_loop(_head, this);
1815   }
1816 
1817   // Now recursively beautify nested loops
1818   if( _child ) result |= _child->beautify_loops( phase );
1819   if( _next  ) result |= _next ->beautify_loops( phase );
1820   return result;
1821 }
1822 
1823 //------------------------------allpaths_check_safepts----------------------------
1824 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1825 // encountered.  Helper for check_safepts.
1826 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1827   assert(stack.size() == 0, "empty stack");
1828   stack.push(_tail);
1829   visited.Clear();
1830   visited.set(_tail->_idx);
1831   while (stack.size() > 0) {
1832     Node* n = stack.pop();
1833     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1834       // Terminate this path
1835     } else if (n->Opcode() == Op_SafePoint) {
1836       if (_phase->get_loop(n) != this) {
1837         if (_required_safept == NULL) _required_safept = new Node_List();
1838         _required_safept->push(n);  // save the one closest to the tail
1839       }
1840       // Terminate this path
1841     } else {
1842       uint start = n->is_Region() ? 1 : 0;
1843       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1844       for (uint i = start; i < end; i++) {
1845         Node* in = n->in(i);
1846         assert(in->is_CFG(), "must be");
1847         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1848           stack.push(in);
1849         }
1850       }
1851     }
1852   }
1853 }
1854 
1855 //------------------------------check_safepts----------------------------
1856 // Given dominators, try to find loops with calls that must always be
1857 // executed (call dominates loop tail).  These loops do not need non-call
1858 // safepoints (ncsfpt).
1859 //
1860 // A complication is that a safepoint in a inner loop may be needed
1861 // by an outer loop. In the following, the inner loop sees it has a
1862 // call (block 3) on every path from the head (block 2) to the
1863 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1864 // in block 2, _but_ this leaves the outer loop without a safepoint.
1865 //
1866 //          entry  0
1867 //                 |
1868 //                 v
1869 // outer 1,2    +->1
1870 //              |  |
1871 //              |  v
1872 //              |  2<---+  ncsfpt in 2
1873 //              |_/|\   |
1874 //                 | v  |
1875 // inner 2,3      /  3  |  call in 3
1876 //               /   |  |
1877 //              v    +--+
1878 //        exit  4
1879 //
1880 //
1881 // This method creates a list (_required_safept) of ncsfpt nodes that must
1882 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1883 // is first looked for in the lists for the outer loops of the current loop.
1884 //
1885 // The insights into the problem:
1886 //  A) counted loops are okay
1887 //  B) innermost loops are okay (only an inner loop can delete
1888 //     a ncsfpt needed by an outer loop)
1889 //  C) a loop is immune from an inner loop deleting a safepoint
1890 //     if the loop has a call on the idom-path
1891 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1892 //     idom-path that is not in a nested loop
1893 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1894 //     loop needs to be prevented from deletion by an inner loop
1895 //
1896 // There are two analyses:
1897 //  1) The first, and cheaper one, scans the loop body from
1898 //     tail to head following the idom (immediate dominator)
1899 //     chain, looking for the cases (C,D,E) above.
1900 //     Since inner loops are scanned before outer loops, there is summary
1901 //     information about inner loops.  Inner loops can be skipped over
1902 //     when the tail of an inner loop is encountered.
1903 //
1904 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1905 //     the idom path (which is rare), scans all predecessor control paths
1906 //     from the tail to the head, terminating a path when a call or sfpt
1907 //     is encountered, to find the ncsfpt's that are closest to the tail.
1908 //
1909 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1910   // Bottom up traversal
1911   IdealLoopTree* ch = _child;
1912   if (_child) _child->check_safepts(visited, stack);
1913   if (_next)  _next ->check_safepts(visited, stack);
1914 
1915   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1916     bool  has_call         = false; // call on dom-path
1917     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1918     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1919     // Scan the dom-path nodes from tail to head
1920     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1921       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1922         has_call = true;
1923         _has_sfpt = 1;          // Then no need for a safept!
1924         break;
1925       } else if (n->Opcode() == Op_SafePoint) {
1926         if (_phase->get_loop(n) == this) {
1927           has_local_ncsfpt = true;
1928           break;
1929         }
1930         if (nonlocal_ncsfpt == NULL) {
1931           nonlocal_ncsfpt = n; // save the one closest to the tail
1932         }
1933       } else {
1934         IdealLoopTree* nlpt = _phase->get_loop(n);
1935         if (this != nlpt) {
1936           // If at an inner loop tail, see if the inner loop has already
1937           // recorded seeing a call on the dom-path (and stop.)  If not,
1938           // jump to the head of the inner loop.
1939           assert(is_member(nlpt), "nested loop");
1940           Node* tail = nlpt->_tail;
1941           if (tail->in(0)->is_If()) tail = tail->in(0);
1942           if (n == tail) {
1943             // If inner loop has call on dom-path, so does outer loop
1944             if (nlpt->_has_sfpt) {
1945               has_call = true;
1946               _has_sfpt = 1;
1947               break;
1948             }
1949             // Skip to head of inner loop
1950             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1951             n = nlpt->_head;
1952           }
1953         }
1954       }
1955     }
1956     // Record safept's that this loop needs preserved when an
1957     // inner loop attempts to delete it's safepoints.
1958     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1959       if (nonlocal_ncsfpt != NULL) {
1960         if (_required_safept == NULL) _required_safept = new Node_List();
1961         _required_safept->push(nonlocal_ncsfpt);
1962       } else {
1963         // Failed to find a suitable safept on the dom-path.  Now use
1964         // an all paths walk from tail to head, looking for safepoints to preserve.
1965         allpaths_check_safepts(visited, stack);
1966       }
1967     }
1968   }
1969 }
1970 
1971 //---------------------------is_deleteable_safept----------------------------
1972 // Is safept not required by an outer loop?
1973 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1974   assert(sfpt->Opcode() == Op_SafePoint, "");
1975   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1976   while (lp != NULL) {
1977     Node_List* sfpts = lp->_required_safept;
1978     if (sfpts != NULL) {
1979       for (uint i = 0; i < sfpts->size(); i++) {
1980         if (sfpt == sfpts->at(i))
1981           return false;
1982       }
1983     }
1984     lp = lp->_parent;
1985   }
1986   return true;
1987 }
1988 
1989 //---------------------------replace_parallel_iv-------------------------------
1990 // Replace parallel induction variable (parallel to trip counter)
1991 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
1992   assert(loop->_head->is_CountedLoop(), "");
1993   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1994   if (!cl->is_valid_counted_loop())
1995     return;         // skip malformed counted loop
1996   Node *incr = cl->incr();
1997   if (incr == NULL)
1998     return;         // Dead loop?
1999   Node *init = cl->init_trip();
2000   Node *phi  = cl->phi();
2001   int stride_con = cl->stride_con();
2002 
2003   // Visit all children, looking for Phis
2004   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
2005     Node *out = cl->out(i);
2006     // Look for other phis (secondary IVs). Skip dead ones
2007     if (!out->is_Phi() || out == phi || !has_node(out))
2008       continue;
2009     PhiNode* phi2 = out->as_Phi();
2010     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
2011     // Look for induction variables of the form:  X += constant
2012     if (phi2->region() != loop->_head ||
2013         incr2->req() != 3 ||
2014         incr2->in(1) != phi2 ||
2015         incr2 == incr ||
2016         incr2->Opcode() != Op_AddI ||
2017         !incr2->in(2)->is_Con())
2018       continue;
2019 
2020     // Check for parallel induction variable (parallel to trip counter)
2021     // via an affine function.  In particular, count-down loops with
2022     // count-up array indices are common. We only RCE references off
2023     // the trip-counter, so we need to convert all these to trip-counter
2024     // expressions.
2025     Node *init2 = phi2->in( LoopNode::EntryControl );
2026     int stride_con2 = incr2->in(2)->get_int();
2027 
2028     // The ratio of the two strides cannot be represented as an int
2029     // if stride_con2 is min_int and stride_con is -1.
2030     if (stride_con2 == min_jint && stride_con == -1) {
2031       continue;
2032     }
2033 
2034     // The general case here gets a little tricky.  We want to find the
2035     // GCD of all possible parallel IV's and make a new IV using this
2036     // GCD for the loop.  Then all possible IVs are simple multiples of
2037     // the GCD.  In practice, this will cover very few extra loops.
2038     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
2039     // where +/-1 is the common case, but other integer multiples are
2040     // also easy to handle.
2041     int ratio_con = stride_con2/stride_con;
2042 
2043     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
2044 #ifndef PRODUCT
2045       if (TraceLoopOpts) {
2046         tty->print("Parallel IV: %d ", phi2->_idx);
2047         loop->dump_head();
2048       }
2049 #endif
2050       // Convert to using the trip counter.  The parallel induction
2051       // variable differs from the trip counter by a loop-invariant
2052       // amount, the difference between their respective initial values.
2053       // It is scaled by the 'ratio_con'.
2054       Node* ratio = _igvn.intcon(ratio_con);
2055       set_ctrl(ratio, C->root());
2056       Node* ratio_init = new MulINode(init, ratio);
2057       _igvn.register_new_node_with_optimizer(ratio_init, init);
2058       set_early_ctrl(ratio_init);
2059       Node* diff = new SubINode(init2, ratio_init);
2060       _igvn.register_new_node_with_optimizer(diff, init2);
2061       set_early_ctrl(diff);
2062       Node* ratio_idx = new MulINode(phi, ratio);
2063       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
2064       set_ctrl(ratio_idx, cl);
2065       Node* add = new AddINode(ratio_idx, diff);
2066       _igvn.register_new_node_with_optimizer(add);
2067       set_ctrl(add, cl);
2068       _igvn.replace_node( phi2, add );
2069       // Sometimes an induction variable is unused
2070       if (add->outcnt() == 0) {
2071         _igvn.remove_dead_node(add);
2072       }
2073       --i; // deleted this phi; rescan starting with next position
2074       continue;
2075     }
2076   }
2077 }
2078 
2079 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
2080   Node* keep = NULL;
2081   if (keep_one) {
2082     // Look for a safepoint on the idom-path.
2083     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
2084       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
2085         keep = i;
2086         break; // Found one
2087       }
2088     }
2089   }
2090 
2091   // Don't remove any safepoints if it is requested to keep a single safepoint and
2092   // no safepoint was found on idom-path. It is not safe to remove any safepoint
2093   // in this case since there's no safepoint dominating all paths in the loop body.
2094   bool prune = !keep_one || keep != NULL;
2095 
2096   // Delete other safepoints in this loop.
2097   Node_List* sfpts = _safepts;
2098   if (prune && sfpts != NULL) {
2099     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
2100     for (uint i = 0; i < sfpts->size(); i++) {
2101       Node* n = sfpts->at(i);
2102       assert(phase->get_loop(n) == this, "");
2103       if (n != keep && phase->is_deleteable_safept(n)) {
2104         phase->lazy_replace(n, n->in(TypeFunc::Control));
2105       }
2106     }
2107   }
2108 }
2109 
2110 //------------------------------counted_loop-----------------------------------
2111 // Convert to counted loops where possible
2112 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
2113 
2114   // For grins, set the inner-loop flag here
2115   if (!_child) {
2116     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
2117   }
2118 
2119   IdealLoopTree* loop = this;
2120   if (_head->is_CountedLoop() ||
2121       phase->is_counted_loop(_head, loop)) {
2122 
2123     if (LoopStripMiningIter == 0 || (LoopStripMiningIter > 1 && _child == NULL)) {
2124       // Indicate we do not need a safepoint here
2125       _has_sfpt = 1;
2126     }
2127 
2128     // Remove safepoints
2129     bool keep_one_sfpt = !(_has_call || _has_sfpt);
2130     remove_safepoints(phase, keep_one_sfpt);
2131 
2132     // Look for induction variables
2133     phase->replace_parallel_iv(this);
2134 
2135   } else if (_parent != NULL && !_irreducible) {
2136     // Not a counted loop. Keep one safepoint.
2137     bool keep_one_sfpt = true;
2138     remove_safepoints(phase, keep_one_sfpt);
2139   }
2140 
2141   // Recursively
2142   assert(loop->_child != this || (loop->_head->as_Loop()->is_strip_mined() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
2143   assert(loop->_child != this || (loop->_child->_child == NULL && loop->_child->_next == NULL), "would miss some loops");
2144   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
2145   if (loop->_next)  loop->_next ->counted_loop(phase);
2146 }
2147 
2148 #ifndef PRODUCT
2149 //------------------------------dump_head--------------------------------------
2150 // Dump 1 liner for loop header info
2151 void IdealLoopTree::dump_head( ) const {
2152   for (uint i=0; i<_nest; i++)
2153     tty->print("  ");
2154   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
2155   if (_irreducible) tty->print(" IRREDUCIBLE");
2156   Node* entry = _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl);
2157   Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
2158   if (predicate != NULL ) {
2159     tty->print(" limit_check");
2160     entry = entry->in(0)->in(0);
2161   }
2162   if (UseLoopPredicate) {
2163     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
2164     if (entry != NULL) {
2165       tty->print(" predicated");
2166     }
2167   }
2168   if (_head->is_CountedLoop()) {
2169     CountedLoopNode *cl = _head->as_CountedLoop();
2170     tty->print(" counted");
2171 
2172     Node* init_n = cl->init_trip();
2173     if (init_n  != NULL &&  init_n->is_Con())
2174       tty->print(" [%d,", cl->init_trip()->get_int());
2175     else
2176       tty->print(" [int,");
2177     Node* limit_n = cl->limit();
2178     if (limit_n  != NULL &&  limit_n->is_Con())
2179       tty->print("%d),", cl->limit()->get_int());
2180     else
2181       tty->print("int),");
2182     int stride_con  = cl->stride_con();
2183     if (stride_con > 0) tty->print("+");
2184     tty->print("%d", stride_con);
2185 
2186     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
2187 
2188     if (cl->is_pre_loop ()) tty->print(" pre" );
2189     if (cl->is_main_loop()) tty->print(" main");
2190     if (cl->is_post_loop()) tty->print(" post");
2191     if (cl->is_vectorized_loop()) tty->print(" vector");
2192     if (cl->range_checks_present()) tty->print(" rc ");
2193     if (cl->is_multiversioned()) tty->print(" multi ");
2194   }
2195   if (_has_call) tty->print(" has_call");
2196   if (_has_sfpt) tty->print(" has_sfpt");
2197   if (_rce_candidate) tty->print(" rce");
2198   if (_safepts != NULL && _safepts->size() > 0) {
2199     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
2200   }
2201   if (_required_safept != NULL && _required_safept->size() > 0) {
2202     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
2203   }
2204   if (Verbose) {
2205     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
2206   }
2207   if (_head->as_Loop()->is_strip_mined()) {
2208     tty->print(" strip mined");
2209   }
2210   tty->cr();
2211 }
2212 
2213 //------------------------------dump-------------------------------------------
2214 // Dump loops by loop tree
2215 void IdealLoopTree::dump( ) const {
2216   dump_head();
2217   if (_child) _child->dump();
2218   if (_next)  _next ->dump();
2219 }
2220 
2221 #endif
2222 
2223 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
2224   if (loop == root) {
2225     if (loop->_child != NULL) {
2226       log->begin_head("loop_tree");
2227       log->end_head();
2228       if( loop->_child ) log_loop_tree(root, loop->_child, log);
2229       log->tail("loop_tree");
2230       assert(loop->_next == NULL, "what?");
2231     }
2232   } else {
2233     Node* head = loop->_head;
2234     log->begin_head("loop");
2235     log->print(" idx='%d' ", head->_idx);
2236     if (loop->_irreducible) log->print("irreducible='1' ");
2237     if (head->is_Loop()) {
2238       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
2239       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
2240     }
2241     if (head->is_CountedLoop()) {
2242       CountedLoopNode* cl = head->as_CountedLoop();
2243       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
2244       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
2245       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
2246     }
2247     log->end_head();
2248     if( loop->_child ) log_loop_tree(root, loop->_child, log);
2249     log->tail("loop");
2250     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
2251   }
2252 }
2253 
2254 //---------------------collect_potentially_useful_predicates-----------------------
2255 // Helper function to collect potentially useful predicates to prevent them from
2256 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
2257 void PhaseIdealLoop::collect_potentially_useful_predicates(
2258                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
2259   if (loop->_child) { // child
2260     collect_potentially_useful_predicates(loop->_child, useful_predicates);
2261   }
2262 
2263   // self (only loops that we can apply loop predication may use their predicates)
2264   if (loop->_head->is_Loop() &&
2265       !loop->_irreducible    &&
2266       !loop->tail()->is_top()) {
2267     LoopNode* lpn = loop->_head->as_Loop();
2268     Node* entry = lpn->in(LoopNode::EntryControl);
2269     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
2270     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
2271       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
2272       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2273       entry = entry->in(0)->in(0);
2274     }
2275     predicate_proj = find_predicate(entry); // Predicate
2276     if (predicate_proj != NULL ) {
2277       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2278     }
2279   }
2280 
2281   if (loop->_next) { // sibling
2282     collect_potentially_useful_predicates(loop->_next, useful_predicates);
2283   }
2284 }
2285 
2286 //------------------------eliminate_useless_predicates-----------------------------
2287 // Eliminate all inserted predicates if they could not be used by loop predication.
2288 // Note: it will also eliminates loop limits check predicate since it also uses
2289 // Opaque1 node (see Parse::add_predicate()).
2290 void PhaseIdealLoop::eliminate_useless_predicates() {
2291   if (C->predicate_count() == 0)
2292     return; // no predicate left
2293 
2294   Unique_Node_List useful_predicates; // to store useful predicates
2295   if (C->has_loops()) {
2296     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
2297   }
2298 
2299   for (int i = C->predicate_count(); i > 0; i--) {
2300      Node * n = C->predicate_opaque1_node(i-1);
2301      assert(n->Opcode() == Op_Opaque1, "must be");
2302      if (!useful_predicates.member(n)) { // not in the useful list
2303        _igvn.replace_node(n, n->in(1));
2304      }
2305   }
2306 }
2307 
2308 //------------------------process_expensive_nodes-----------------------------
2309 // Expensive nodes have their control input set to prevent the GVN
2310 // from commoning them and as a result forcing the resulting node to
2311 // be in a more frequent path. Use CFG information here, to change the
2312 // control inputs so that some expensive nodes can be commoned while
2313 // not executed more frequently.
2314 bool PhaseIdealLoop::process_expensive_nodes() {
2315   assert(OptimizeExpensiveOps, "optimization off?");
2316 
2317   // Sort nodes to bring similar nodes together
2318   C->sort_expensive_nodes();
2319 
2320   bool progress = false;
2321 
2322   for (int i = 0; i < C->expensive_count(); ) {
2323     Node* n = C->expensive_node(i);
2324     int start = i;
2325     // Find nodes similar to n
2326     i++;
2327     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
2328     int end = i;
2329     // And compare them two by two
2330     for (int j = start; j < end; j++) {
2331       Node* n1 = C->expensive_node(j);
2332       if (is_node_unreachable(n1)) {
2333         continue;
2334       }
2335       for (int k = j+1; k < end; k++) {
2336         Node* n2 = C->expensive_node(k);
2337         if (is_node_unreachable(n2)) {
2338           continue;
2339         }
2340 
2341         assert(n1 != n2, "should be pair of nodes");
2342 
2343         Node* c1 = n1->in(0);
2344         Node* c2 = n2->in(0);
2345 
2346         Node* parent_c1 = c1;
2347         Node* parent_c2 = c2;
2348 
2349         // The call to get_early_ctrl_for_expensive() moves the
2350         // expensive nodes up but stops at loops that are in a if
2351         // branch. See whether we can exit the loop and move above the
2352         // If.
2353         if (c1->is_Loop()) {
2354           parent_c1 = c1->in(1);
2355         }
2356         if (c2->is_Loop()) {
2357           parent_c2 = c2->in(1);
2358         }
2359 
2360         if (parent_c1 == parent_c2) {
2361           _igvn._worklist.push(n1);
2362           _igvn._worklist.push(n2);
2363           continue;
2364         }
2365 
2366         // Look for identical expensive node up the dominator chain.
2367         if (is_dominator(c1, c2)) {
2368           c2 = c1;
2369         } else if (is_dominator(c2, c1)) {
2370           c1 = c2;
2371         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2372                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2373           // Both branches have the same expensive node so move it up
2374           // before the if.
2375           c1 = c2 = idom(parent_c1->in(0));
2376         }
2377         // Do the actual moves
2378         if (n1->in(0) != c1) {
2379           _igvn.hash_delete(n1);
2380           n1->set_req(0, c1);
2381           _igvn.hash_insert(n1);
2382           _igvn._worklist.push(n1);
2383           progress = true;
2384         }
2385         if (n2->in(0) != c2) {
2386           _igvn.hash_delete(n2);
2387           n2->set_req(0, c2);
2388           _igvn.hash_insert(n2);
2389           _igvn._worklist.push(n2);
2390           progress = true;
2391         }
2392       }
2393     }
2394   }
2395 
2396   return progress;
2397 }
2398 
2399 
2400 //=============================================================================
2401 //----------------------------build_and_optimize-------------------------------
2402 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2403 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2404 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
2405   ResourceMark rm;
2406 
2407   int old_progress = C->major_progress();
2408   uint orig_worklist_size = _igvn._worklist.size();
2409 
2410   // Reset major-progress flag for the driver's heuristics
2411   C->clear_major_progress();
2412 
2413 #ifndef PRODUCT
2414   // Capture for later assert
2415   uint unique = C->unique();
2416   _loop_invokes++;
2417   _loop_work += unique;
2418 #endif
2419 
2420   // True if the method has at least 1 irreducible loop
2421   _has_irreducible_loops = false;
2422 
2423   _created_loop_node = false;
2424 
2425   Arena *a = Thread::current()->resource_area();
2426   VectorSet visited(a);
2427   // Pre-grow the mapping from Nodes to IdealLoopTrees.
2428   _nodes.map(C->unique(), NULL);
2429   memset(_nodes.adr(), 0, wordSize * C->unique());
2430 
2431   // Pre-build the top-level outermost loop tree entry
2432   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2433   // Do not need a safepoint at the top level
2434   _ltree_root->_has_sfpt = 1;
2435 
2436   // Initialize Dominators.
2437   // Checked in clone_loop_predicate() during beautify_loops().
2438   _idom_size = 0;
2439   _idom      = NULL;
2440   _dom_depth = NULL;
2441   _dom_stk   = NULL;
2442 
2443   // Empty pre-order array
2444   allocate_preorders();
2445 
2446   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2447   // IdealLoopTree entries.  Data nodes are NOT walked.
2448   build_loop_tree();
2449   // Check for bailout, and return
2450   if (C->failing()) {
2451     return;
2452   }
2453 
2454   // No loops after all
2455   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2456 
2457   // There should always be an outer loop containing the Root and Return nodes.
2458   // If not, we have a degenerate empty program.  Bail out in this case.
2459   if (!has_node(C->root())) {
2460     if (!_verify_only) {
2461       C->clear_major_progress();
2462       C->record_method_not_compilable("empty program detected during loop optimization");
2463     }
2464     return;
2465   }
2466 
2467   // Nothing to do, so get out
2468   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
2469   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2470   if (stop_early && !do_expensive_nodes) {
2471     _igvn.optimize();           // Cleanup NeverBranches
2472     return;
2473   }
2474 
2475   // Set loop nesting depth
2476   _ltree_root->set_nest( 0 );
2477 
2478   // Split shared headers and insert loop landing pads.
2479   // Do not bother doing this on the Root loop of course.
2480   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
2481     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
2482     if( _ltree_root->_child->beautify_loops( this ) ) {
2483       // Re-build loop tree!
2484       _ltree_root->_child = NULL;
2485       _nodes.clear();
2486       reallocate_preorders();
2487       build_loop_tree();
2488       // Check for bailout, and return
2489       if (C->failing()) {
2490         return;
2491       }
2492       // Reset loop nesting depth
2493       _ltree_root->set_nest( 0 );
2494 
2495       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
2496     }
2497   }
2498 
2499   // Build Dominators for elision of NULL checks & loop finding.
2500   // Since nodes do not have a slot for immediate dominator, make
2501   // a persistent side array for that info indexed on node->_idx.
2502   _idom_size = C->unique();
2503   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
2504   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
2505   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
2506   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2507 
2508   Dominators();
2509 
2510   if (!_verify_only) {
2511     // As a side effect, Dominators removed any unreachable CFG paths
2512     // into RegionNodes.  It doesn't do this test against Root, so
2513     // we do it here.
2514     for( uint i = 1; i < C->root()->req(); i++ ) {
2515       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2516         _igvn.delete_input_of(C->root(), i);
2517         i--;                      // Rerun same iteration on compressed edges
2518       }
2519     }
2520 
2521     // Given dominators, try to find inner loops with calls that must
2522     // always be executed (call dominates loop tail).  These loops do
2523     // not need a separate safepoint.
2524     Node_List cisstack(a);
2525     _ltree_root->check_safepts(visited, cisstack);
2526   }
2527 
2528   // Walk the DATA nodes and place into loops.  Find earliest control
2529   // node.  For CFG nodes, the _nodes array starts out and remains
2530   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2531   // _nodes array holds the earliest legal controlling CFG node.
2532 
2533   // Allocate stack with enough space to avoid frequent realloc
2534   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
2535   Node_Stack nstack( a, stack_size );
2536 
2537   visited.Clear();
2538   Node_List worklist(a);
2539   // Don't need C->root() on worklist since
2540   // it will be processed among C->top() inputs
2541   worklist.push( C->top() );
2542   visited.set( C->top()->_idx ); // Set C->top() as visited now
2543   build_loop_early( visited, worklist, nstack );
2544 
2545   // Given early legal placement, try finding counted loops.  This placement
2546   // is good enough to discover most loop invariants.
2547   if( !_verify_me && !_verify_only )
2548     _ltree_root->counted_loop( this );
2549 
2550   // Find latest loop placement.  Find ideal loop placement.
2551   visited.Clear();
2552   init_dom_lca_tags();
2553   // Need C->root() on worklist when processing outs
2554   worklist.push( C->root() );
2555   NOT_PRODUCT( C->verify_graph_edges(); )
2556   worklist.push( C->top() );
2557   build_loop_late( visited, worklist, nstack );
2558 
2559   if (_verify_only) {
2560     // restore major progress flag
2561     for (int i = 0; i < old_progress; i++)
2562       C->set_major_progress();
2563     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2564     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2565     return;
2566   }
2567 
2568   // clear out the dead code after build_loop_late
2569   while (_deadlist.size()) {
2570     _igvn.remove_globally_dead_node(_deadlist.pop());
2571   }
2572 
2573   if (stop_early) {
2574     assert(do_expensive_nodes, "why are we here?");
2575     if (process_expensive_nodes()) {
2576       // If we made some progress when processing expensive nodes then
2577       // the IGVN may modify the graph in a way that will allow us to
2578       // make some more progress: we need to try processing expensive
2579       // nodes again.
2580       C->set_major_progress();
2581     }
2582     _igvn.optimize();
2583     return;
2584   }
2585 
2586   // Some parser-inserted loop predicates could never be used by loop
2587   // predication or they were moved away from loop during some optimizations.
2588   // For example, peeling. Eliminate them before next loop optimizations.
2589   eliminate_useless_predicates();
2590 
2591 #ifndef PRODUCT
2592   C->verify_graph_edges();
2593   if (_verify_me) {             // Nested verify pass?
2594     // Check to see if the verify mode is broken
2595     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2596     return;
2597   }
2598   if(VerifyLoopOptimizations) verify();
2599   if(TraceLoopOpts && C->has_loops()) {
2600     _ltree_root->dump();
2601   }
2602 #endif
2603 
2604   if (skip_loop_opts) {
2605     // restore major progress flag
2606     for (int i = 0; i < old_progress; i++) {
2607       C->set_major_progress();
2608     }
2609 
2610     // Cleanup any modified bits
2611     _igvn.optimize();
2612 
2613     if (C->log() != NULL) {
2614       log_loop_tree(_ltree_root, _ltree_root, C->log());
2615     }
2616     return;
2617   }
2618 
2619   if (ReassociateInvariants) {
2620     // Reassociate invariants and prep for split_thru_phi
2621     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2622       IdealLoopTree* lpt = iter.current();
2623       bool is_counted = lpt->is_counted();
2624       if (!is_counted || !lpt->is_inner()) continue;
2625 
2626       // check for vectorized loops, any reassociation of invariants was already done
2627       if (is_counted && lpt->_head->as_CountedLoop()->do_unroll_only()) continue;
2628 
2629       lpt->reassociate_invariants(this);
2630 
2631       // Because RCE opportunities can be masked by split_thru_phi,
2632       // look for RCE candidates and inhibit split_thru_phi
2633       // on just their loop-phi's for this pass of loop opts
2634       if (SplitIfBlocks && do_split_ifs) {
2635         if (lpt->policy_range_check(this)) {
2636           lpt->_rce_candidate = 1; // = true
2637         }
2638       }
2639     }
2640   }
2641 
2642   // Check for aggressive application of split-if and other transforms
2643   // that require basic-block info (like cloning through Phi's)
2644   if( SplitIfBlocks && do_split_ifs ) {
2645     visited.Clear();
2646     split_if_with_blocks( visited, nstack );
2647     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2648   }
2649 
2650   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
2651     C->set_major_progress();
2652   }
2653 
2654   // Perform loop predication before iteration splitting
2655   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2656     _ltree_root->_child->loop_predication(this);
2657   }
2658 
2659   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2660     if (do_intrinsify_fill()) {
2661       C->set_major_progress();
2662     }
2663   }
2664 
2665   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2666   // range checks or one-shot null checks.
2667 
2668   // If split-if's didn't hack the graph too bad (no CFG changes)
2669   // then do loop opts.
2670   if (C->has_loops() && !C->major_progress()) {
2671     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2672     _ltree_root->_child->iteration_split( this, worklist );
2673     // No verify after peeling!  GCM has hoisted code out of the loop.
2674     // After peeling, the hoisted code could sink inside the peeled area.
2675     // The peeling code does not try to recompute the best location for
2676     // all the code before the peeled area, so the verify pass will always
2677     // complain about it.
2678   }
2679   // Do verify graph edges in any case
2680   NOT_PRODUCT( C->verify_graph_edges(); );
2681 
2682   if (!do_split_ifs) {
2683     // We saw major progress in Split-If to get here.  We forced a
2684     // pass with unrolling and not split-if, however more split-if's
2685     // might make progress.  If the unrolling didn't make progress
2686     // then the major-progress flag got cleared and we won't try
2687     // another round of Split-If.  In particular the ever-common
2688     // instance-of/check-cast pattern requires at least 2 rounds of
2689     // Split-If to clear out.
2690     C->set_major_progress();
2691   }
2692 
2693   // Repeat loop optimizations if new loops were seen
2694   if (created_loop_node()) {
2695     C->set_major_progress();
2696   }
2697 
2698   // Keep loop predicates and perform optimizations with them
2699   // until no more loop optimizations could be done.
2700   // After that switch predicates off and do more loop optimizations.
2701   if (!C->major_progress() && (C->predicate_count() > 0)) {
2702      C->cleanup_loop_predicates(_igvn);
2703      if (TraceLoopOpts) {
2704        tty->print_cr("PredicatesOff");
2705      }
2706      C->set_major_progress();
2707   }
2708 
2709   // Convert scalar to superword operations at the end of all loop opts.
2710   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2711     // SuperWord transform
2712     SuperWord sw(this);
2713     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2714       IdealLoopTree* lpt = iter.current();
2715       if (lpt->is_counted()) {
2716         CountedLoopNode *cl = lpt->_head->as_CountedLoop();
2717 
2718         if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
2719           // Check that the rce'd post loop is encountered first, multiversion after all
2720           // major main loop optimization are concluded
2721           if (!C->major_progress()) {
2722             IdealLoopTree *lpt_next = lpt->_next;
2723             if (lpt_next && lpt_next->is_counted()) {
2724               CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
2725               has_range_checks(lpt_next);
2726               if (cl->is_post_loop() && cl->range_checks_present()) {
2727                 if (!cl->is_multiversioned()) {
2728                   if (multi_version_post_loops(lpt, lpt_next) == false) {
2729                     // Cause the rce loop to be optimized away if we fail
2730                     cl->mark_is_multiversioned();
2731                     cl->set_slp_max_unroll(0);
2732                     poison_rce_post_loop(lpt);
2733                   }
2734                 }
2735               }
2736             }
2737             sw.transform_loop(lpt, true);
2738           }
2739         } else if (cl->is_main_loop()) {
2740           sw.transform_loop(lpt, true);
2741         }
2742       }
2743     }
2744   }
2745 
2746   // Cleanup any modified bits
2747   _igvn.optimize();
2748 
2749   // disable assert until issue with split_flow_path is resolved (6742111)
2750   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2751   //        "shouldn't introduce irreducible loops");
2752 
2753   if (C->log() != NULL) {
2754     log_loop_tree(_ltree_root, _ltree_root, C->log());
2755   }
2756 }
2757 
2758 #ifndef PRODUCT
2759 //------------------------------print_statistics-------------------------------
2760 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2761 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2762 void PhaseIdealLoop::print_statistics() {
2763   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2764 }
2765 
2766 //------------------------------verify-----------------------------------------
2767 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2768 static int fail;                // debug only, so its multi-thread dont care
2769 void PhaseIdealLoop::verify() const {
2770   int old_progress = C->major_progress();
2771   ResourceMark rm;
2772   PhaseIdealLoop loop_verify( _igvn, this );
2773   VectorSet visited(Thread::current()->resource_area());
2774 
2775   fail = 0;
2776   verify_compare( C->root(), &loop_verify, visited );
2777   assert( fail == 0, "verify loops failed" );
2778   // Verify loop structure is the same
2779   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2780   // Reset major-progress.  It was cleared by creating a verify version of
2781   // PhaseIdealLoop.
2782   for( int i=0; i<old_progress; i++ )
2783     C->set_major_progress();
2784 }
2785 
2786 //------------------------------verify_compare---------------------------------
2787 // Make sure me and the given PhaseIdealLoop agree on key data structures
2788 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2789   if( !n ) return;
2790   if( visited.test_set( n->_idx ) ) return;
2791   if( !_nodes[n->_idx] ) {      // Unreachable
2792     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2793     return;
2794   }
2795 
2796   uint i;
2797   for( i = 0; i < n->req(); i++ )
2798     verify_compare( n->in(i), loop_verify, visited );
2799 
2800   // Check the '_nodes' block/loop structure
2801   i = n->_idx;
2802   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2803     if( _nodes[i] != loop_verify->_nodes[i] &&
2804         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2805       tty->print("Mismatched control setting for: ");
2806       n->dump();
2807       if( fail++ > 10 ) return;
2808       Node *c = get_ctrl_no_update(n);
2809       tty->print("We have it as: ");
2810       if( c->in(0) ) c->dump();
2811         else tty->print_cr("N%d",c->_idx);
2812       tty->print("Verify thinks: ");
2813       if( loop_verify->has_ctrl(n) )
2814         loop_verify->get_ctrl_no_update(n)->dump();
2815       else
2816         loop_verify->get_loop_idx(n)->dump();
2817       tty->cr();
2818     }
2819   } else {                    // We have a loop
2820     IdealLoopTree *us = get_loop_idx(n);
2821     if( loop_verify->has_ctrl(n) ) {
2822       tty->print("Mismatched loop setting for: ");
2823       n->dump();
2824       if( fail++ > 10 ) return;
2825       tty->print("We have it as: ");
2826       us->dump();
2827       tty->print("Verify thinks: ");
2828       loop_verify->get_ctrl_no_update(n)->dump();
2829       tty->cr();
2830     } else if (!C->major_progress()) {
2831       // Loop selection can be messed up if we did a major progress
2832       // operation, like split-if.  Do not verify in that case.
2833       IdealLoopTree *them = loop_verify->get_loop_idx(n);
2834       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
2835         tty->print("Unequals loops for: ");
2836         n->dump();
2837         if( fail++ > 10 ) return;
2838         tty->print("We have it as: ");
2839         us->dump();
2840         tty->print("Verify thinks: ");
2841         them->dump();
2842         tty->cr();
2843       }
2844     }
2845   }
2846 
2847   // Check for immediate dominators being equal
2848   if( i >= _idom_size ) {
2849     if( !n->is_CFG() ) return;
2850     tty->print("CFG Node with no idom: ");
2851     n->dump();
2852     return;
2853   }
2854   if( !n->is_CFG() ) return;
2855   if( n == C->root() ) return; // No IDOM here
2856 
2857   assert(n->_idx == i, "sanity");
2858   Node *id = idom_no_update(n);
2859   if( id != loop_verify->idom_no_update(n) ) {
2860     tty->print("Unequals idoms for: ");
2861     n->dump();
2862     if( fail++ > 10 ) return;
2863     tty->print("We have it as: ");
2864     id->dump();
2865     tty->print("Verify thinks: ");
2866     loop_verify->idom_no_update(n)->dump();
2867     tty->cr();
2868   }
2869 
2870 }
2871 
2872 //------------------------------verify_tree------------------------------------
2873 // Verify that tree structures match.  Because the CFG can change, siblings
2874 // within the loop tree can be reordered.  We attempt to deal with that by
2875 // reordering the verify's loop tree if possible.
2876 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
2877   assert( _parent == parent, "Badly formed loop tree" );
2878 
2879   // Siblings not in same order?  Attempt to re-order.
2880   if( _head != loop->_head ) {
2881     // Find _next pointer to update
2882     IdealLoopTree **pp = &loop->_parent->_child;
2883     while( *pp != loop )
2884       pp = &((*pp)->_next);
2885     // Find proper sibling to be next
2886     IdealLoopTree **nn = &loop->_next;
2887     while( (*nn) && (*nn)->_head != _head )
2888       nn = &((*nn)->_next);
2889 
2890     // Check for no match.
2891     if( !(*nn) ) {
2892       // Annoyingly, irreducible loops can pick different headers
2893       // after a major_progress operation, so the rest of the loop
2894       // tree cannot be matched.
2895       if (_irreducible && Compile::current()->major_progress())  return;
2896       assert( 0, "failed to match loop tree" );
2897     }
2898 
2899     // Move (*nn) to (*pp)
2900     IdealLoopTree *hit = *nn;
2901     *nn = hit->_next;
2902     hit->_next = loop;
2903     *pp = loop;
2904     loop = hit;
2905     // Now try again to verify
2906   }
2907 
2908   assert( _head  == loop->_head , "mismatched loop head" );
2909   Node *tail = _tail;           // Inline a non-updating version of
2910   while( !tail->in(0) )         // the 'tail()' call.
2911     tail = tail->in(1);
2912   assert( tail == loop->_tail, "mismatched loop tail" );
2913 
2914   // Counted loops that are guarded should be able to find their guards
2915   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
2916     CountedLoopNode *cl = _head->as_CountedLoop();
2917     Node *init = cl->init_trip();
2918     Node *ctrl = cl->in(LoopNode::EntryControl);
2919     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
2920     Node *iff  = ctrl->in(0);
2921     assert( iff->Opcode() == Op_If, "" );
2922     Node *bol  = iff->in(1);
2923     assert( bol->Opcode() == Op_Bool, "" );
2924     Node *cmp  = bol->in(1);
2925     assert( cmp->Opcode() == Op_CmpI, "" );
2926     Node *add  = cmp->in(1);
2927     Node *opaq;
2928     if( add->Opcode() == Op_Opaque1 ) {
2929       opaq = add;
2930     } else {
2931       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
2932       assert( add == init, "" );
2933       opaq = cmp->in(2);
2934     }
2935     assert( opaq->Opcode() == Op_Opaque1, "" );
2936 
2937   }
2938 
2939   if (_child != NULL)  _child->verify_tree(loop->_child, this);
2940   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
2941   // Innermost loops need to verify loop bodies,
2942   // but only if no 'major_progress'
2943   int fail = 0;
2944   if (!Compile::current()->major_progress() && _child == NULL) {
2945     for( uint i = 0; i < _body.size(); i++ ) {
2946       Node *n = _body.at(i);
2947       if (n->outcnt() == 0)  continue; // Ignore dead
2948       uint j;
2949       for( j = 0; j < loop->_body.size(); j++ )
2950         if( loop->_body.at(j) == n )
2951           break;
2952       if( j == loop->_body.size() ) { // Not found in loop body
2953         // Last ditch effort to avoid assertion: Its possible that we
2954         // have some users (so outcnt not zero) but are still dead.
2955         // Try to find from root.
2956         if (Compile::current()->root()->find(n->_idx)) {
2957           fail++;
2958           tty->print("We have that verify does not: ");
2959           n->dump();
2960         }
2961       }
2962     }
2963     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
2964       Node *n = loop->_body.at(i2);
2965       if (n->outcnt() == 0)  continue; // Ignore dead
2966       uint j;
2967       for( j = 0; j < _body.size(); j++ )
2968         if( _body.at(j) == n )
2969           break;
2970       if( j == _body.size() ) { // Not found in loop body
2971         // Last ditch effort to avoid assertion: Its possible that we
2972         // have some users (so outcnt not zero) but are still dead.
2973         // Try to find from root.
2974         if (Compile::current()->root()->find(n->_idx)) {
2975           fail++;
2976           tty->print("Verify has that we do not: ");
2977           n->dump();
2978         }
2979       }
2980     }
2981     assert( !fail, "loop body mismatch" );
2982   }
2983 }
2984 
2985 #endif
2986 
2987 //------------------------------set_idom---------------------------------------
2988 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
2989   uint idx = d->_idx;
2990   if (idx >= _idom_size) {
2991     uint newsize = _idom_size<<1;
2992     while( idx >= newsize ) {
2993       newsize <<= 1;
2994     }
2995     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
2996     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
2997     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
2998     _idom_size = newsize;
2999   }
3000   _idom[idx] = n;
3001   _dom_depth[idx] = dom_depth;
3002 }
3003 
3004 //------------------------------recompute_dom_depth---------------------------------------
3005 // The dominator tree is constructed with only parent pointers.
3006 // This recomputes the depth in the tree by first tagging all
3007 // nodes as "no depth yet" marker.  The next pass then runs up
3008 // the dom tree from each node marked "no depth yet", and computes
3009 // the depth on the way back down.
3010 void PhaseIdealLoop::recompute_dom_depth() {
3011   uint no_depth_marker = C->unique();
3012   uint i;
3013   // Initialize depth to "no depth yet"
3014   for (i = 0; i < _idom_size; i++) {
3015     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
3016      _dom_depth[i] = no_depth_marker;
3017     }
3018   }
3019   if (_dom_stk == NULL) {
3020     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
3021     if (init_size < 10) init_size = 10;
3022     _dom_stk = new GrowableArray<uint>(init_size);
3023   }
3024   // Compute new depth for each node.
3025   for (i = 0; i < _idom_size; i++) {
3026     uint j = i;
3027     // Run up the dom tree to find a node with a depth
3028     while (_dom_depth[j] == no_depth_marker) {
3029       _dom_stk->push(j);
3030       j = _idom[j]->_idx;
3031     }
3032     // Compute the depth on the way back down this tree branch
3033     uint dd = _dom_depth[j] + 1;
3034     while (_dom_stk->length() > 0) {
3035       uint j = _dom_stk->pop();
3036       _dom_depth[j] = dd;
3037       dd++;
3038     }
3039   }
3040 }
3041 
3042 //------------------------------sort-------------------------------------------
3043 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
3044 // loop tree, not the root.
3045 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
3046   if( !innermost ) return loop; // New innermost loop
3047 
3048   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
3049   assert( loop_preorder, "not yet post-walked loop" );
3050   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
3051   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
3052 
3053   // Insert at start of list
3054   while( l ) {                  // Insertion sort based on pre-order
3055     if( l == loop ) return innermost; // Already on list!
3056     int l_preorder = get_preorder(l->_head); // Cache pre-order number
3057     assert( l_preorder, "not yet post-walked l" );
3058     // Check header pre-order number to figure proper nesting
3059     if( loop_preorder > l_preorder )
3060       break;                    // End of insertion
3061     // If headers tie (e.g., shared headers) check tail pre-order numbers.
3062     // Since I split shared headers, you'd think this could not happen.
3063     // BUT: I must first do the preorder numbering before I can discover I
3064     // have shared headers, so the split headers all get the same preorder
3065     // number as the RegionNode they split from.
3066     if( loop_preorder == l_preorder &&
3067         get_preorder(loop->_tail) < get_preorder(l->_tail) )
3068       break;                    // Also check for shared headers (same pre#)
3069     pp = &l->_parent;           // Chain up list
3070     l = *pp;
3071   }
3072   // Link into list
3073   // Point predecessor to me
3074   *pp = loop;
3075   // Point me to successor
3076   IdealLoopTree *p = loop->_parent;
3077   loop->_parent = l;            // Point me to successor
3078   if( p ) sort( p, innermost ); // Insert my parents into list as well
3079   return innermost;
3080 }
3081 
3082 //------------------------------build_loop_tree--------------------------------
3083 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
3084 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
3085 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
3086 // tightest enclosing IdealLoopTree for post-walked.
3087 //
3088 // During my forward walk I do a short 1-layer lookahead to see if I can find
3089 // a loop backedge with that doesn't have any work on the backedge.  This
3090 // helps me construct nested loops with shared headers better.
3091 //
3092 // Once I've done the forward recursion, I do the post-work.  For each child
3093 // I check to see if there is a backedge.  Backedges define a loop!  I
3094 // insert an IdealLoopTree at the target of the backedge.
3095 //
3096 // During the post-work I also check to see if I have several children
3097 // belonging to different loops.  If so, then this Node is a decision point
3098 // where control flow can choose to change loop nests.  It is at this
3099 // decision point where I can figure out how loops are nested.  At this
3100 // time I can properly order the different loop nests from my children.
3101 // Note that there may not be any backedges at the decision point!
3102 //
3103 // Since the decision point can be far removed from the backedges, I can't
3104 // order my loops at the time I discover them.  Thus at the decision point
3105 // I need to inspect loop header pre-order numbers to properly nest my
3106 // loops.  This means I need to sort my childrens' loops by pre-order.
3107 // The sort is of size number-of-control-children, which generally limits
3108 // it to size 2 (i.e., I just choose between my 2 target loops).
3109 void PhaseIdealLoop::build_loop_tree() {
3110   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3111   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
3112   Node *n = C->root();
3113   bltstack.push(n);
3114   int pre_order = 1;
3115   int stack_size;
3116 
3117   while ( ( stack_size = bltstack.length() ) != 0 ) {
3118     n = bltstack.top(); // Leave node on stack
3119     if ( !is_visited(n) ) {
3120       // ---- Pre-pass Work ----
3121       // Pre-walked but not post-walked nodes need a pre_order number.
3122 
3123       set_preorder_visited( n, pre_order ); // set as visited
3124 
3125       // ---- Scan over children ----
3126       // Scan first over control projections that lead to loop headers.
3127       // This helps us find inner-to-outer loops with shared headers better.
3128 
3129       // Scan children's children for loop headers.
3130       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
3131         Node* m = n->raw_out(i);       // Child
3132         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
3133           // Scan over children's children to find loop
3134           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3135             Node* l = m->fast_out(j);
3136             if( is_visited(l) &&       // Been visited?
3137                 !is_postvisited(l) &&  // But not post-visited
3138                 get_preorder(l) < pre_order ) { // And smaller pre-order
3139               // Found!  Scan the DFS down this path before doing other paths
3140               bltstack.push(m);
3141               break;
3142             }
3143           }
3144         }
3145       }
3146       pre_order++;
3147     }
3148     else if ( !is_postvisited(n) ) {
3149       // Note: build_loop_tree_impl() adds out edges on rare occasions,
3150       // such as com.sun.rsasign.am::a.
3151       // For non-recursive version, first, process current children.
3152       // On next iteration, check if additional children were added.
3153       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
3154         Node* u = n->raw_out(k);
3155         if ( u->is_CFG() && !is_visited(u) ) {
3156           bltstack.push(u);
3157         }
3158       }
3159       if ( bltstack.length() == stack_size ) {
3160         // There were no additional children, post visit node now
3161         (void)bltstack.pop(); // Remove node from stack
3162         pre_order = build_loop_tree_impl( n, pre_order );
3163         // Check for bailout
3164         if (C->failing()) {
3165           return;
3166         }
3167         // Check to grow _preorders[] array for the case when
3168         // build_loop_tree_impl() adds new nodes.
3169         check_grow_preorders();
3170       }
3171     }
3172     else {
3173       (void)bltstack.pop(); // Remove post-visited node from stack
3174     }
3175   }
3176 }
3177 
3178 //------------------------------build_loop_tree_impl---------------------------
3179 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
3180   // ---- Post-pass Work ----
3181   // Pre-walked but not post-walked nodes need a pre_order number.
3182 
3183   // Tightest enclosing loop for this Node
3184   IdealLoopTree *innermost = NULL;
3185 
3186   // For all children, see if any edge is a backedge.  If so, make a loop
3187   // for it.  Then find the tightest enclosing loop for the self Node.
3188   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3189     Node* m = n->fast_out(i);   // Child
3190     if( n == m ) continue;      // Ignore control self-cycles
3191     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
3192 
3193     IdealLoopTree *l;           // Child's loop
3194     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
3195       // Found a backedge
3196       assert( get_preorder(m) < pre_order, "should be backedge" );
3197       // Check for the RootNode, which is already a LoopNode and is allowed
3198       // to have multiple "backedges".
3199       if( m == C->root()) {     // Found the root?
3200         l = _ltree_root;        // Root is the outermost LoopNode
3201       } else {                  // Else found a nested loop
3202         // Insert a LoopNode to mark this loop.
3203         l = new IdealLoopTree(this, m, n);
3204       } // End of Else found a nested loop
3205       if( !has_loop(m) )        // If 'm' does not already have a loop set
3206         set_loop(m, l);         // Set loop header to loop now
3207 
3208     } else {                    // Else not a nested loop
3209       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
3210       l = get_loop(m);          // Get previously determined loop
3211       // If successor is header of a loop (nest), move up-loop till it
3212       // is a member of some outer enclosing loop.  Since there are no
3213       // shared headers (I've split them already) I only need to go up
3214       // at most 1 level.
3215       while( l && l->_head == m ) // Successor heads loop?
3216         l = l->_parent;         // Move up 1 for me
3217       // If this loop is not properly parented, then this loop
3218       // has no exit path out, i.e. its an infinite loop.
3219       if( !l ) {
3220         // Make loop "reachable" from root so the CFG is reachable.  Basically
3221         // insert a bogus loop exit that is never taken.  'm', the loop head,
3222         // points to 'n', one (of possibly many) fall-in paths.  There may be
3223         // many backedges as well.
3224 
3225         // Here I set the loop to be the root loop.  I could have, after
3226         // inserting a bogus loop exit, restarted the recursion and found my
3227         // new loop exit.  This would make the infinite loop a first-class
3228         // loop and it would then get properly optimized.  What's the use of
3229         // optimizing an infinite loop?
3230         l = _ltree_root;        // Oops, found infinite loop
3231 
3232         if (!_verify_only) {
3233           // Insert the NeverBranch between 'm' and it's control user.
3234           NeverBranchNode *iff = new NeverBranchNode( m );
3235           _igvn.register_new_node_with_optimizer(iff);
3236           set_loop(iff, l);
3237           Node *if_t = new CProjNode( iff, 0 );
3238           _igvn.register_new_node_with_optimizer(if_t);
3239           set_loop(if_t, l);
3240 
3241           Node* cfg = NULL;       // Find the One True Control User of m
3242           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3243             Node* x = m->fast_out(j);
3244             if (x->is_CFG() && x != m && x != iff)
3245               { cfg = x; break; }
3246           }
3247           assert(cfg != NULL, "must find the control user of m");
3248           uint k = 0;             // Probably cfg->in(0)
3249           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
3250           cfg->set_req( k, if_t ); // Now point to NeverBranch
3251           _igvn._worklist.push(cfg);
3252 
3253           // Now create the never-taken loop exit
3254           Node *if_f = new CProjNode( iff, 1 );
3255           _igvn.register_new_node_with_optimizer(if_f);
3256           set_loop(if_f, l);
3257           // Find frame ptr for Halt.  Relies on the optimizer
3258           // V-N'ing.  Easier and quicker than searching through
3259           // the program structure.
3260           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
3261           _igvn.register_new_node_with_optimizer(frame);
3262           // Halt & Catch Fire
3263           Node *halt = new HaltNode( if_f, frame );
3264           _igvn.register_new_node_with_optimizer(halt);
3265           set_loop(halt, l);
3266           C->root()->add_req(halt);
3267         }
3268         set_loop(C->root(), _ltree_root);
3269       }
3270     }
3271     // Weeny check for irreducible.  This child was already visited (this
3272     // IS the post-work phase).  Is this child's loop header post-visited
3273     // as well?  If so, then I found another entry into the loop.
3274     if (!_verify_only) {
3275       while( is_postvisited(l->_head) ) {
3276         // found irreducible
3277         l->_irreducible = 1; // = true
3278         l = l->_parent;
3279         _has_irreducible_loops = true;
3280         // Check for bad CFG here to prevent crash, and bailout of compile
3281         if (l == NULL) {
3282           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
3283           return pre_order;
3284         }
3285       }
3286       C->set_has_irreducible_loop(_has_irreducible_loops);
3287     }
3288 
3289     // This Node might be a decision point for loops.  It is only if
3290     // it's children belong to several different loops.  The sort call
3291     // does a trivial amount of work if there is only 1 child or all
3292     // children belong to the same loop.  If however, the children
3293     // belong to different loops, the sort call will properly set the
3294     // _parent pointers to show how the loops nest.
3295     //
3296     // In any case, it returns the tightest enclosing loop.
3297     innermost = sort( l, innermost );
3298   }
3299 
3300   // Def-use info will have some dead stuff; dead stuff will have no
3301   // loop decided on.
3302 
3303   // Am I a loop header?  If so fix up my parent's child and next ptrs.
3304   if( innermost && innermost->_head == n ) {
3305     assert( get_loop(n) == innermost, "" );
3306     IdealLoopTree *p = innermost->_parent;
3307     IdealLoopTree *l = innermost;
3308     while( p && l->_head == n ) {
3309       l->_next = p->_child;     // Put self on parents 'next child'
3310       p->_child = l;            // Make self as first child of parent
3311       l = p;                    // Now walk up the parent chain
3312       p = l->_parent;
3313     }
3314   } else {
3315     // Note that it is possible for a LoopNode to reach here, if the
3316     // backedge has been made unreachable (hence the LoopNode no longer
3317     // denotes a Loop, and will eventually be removed).
3318 
3319     // Record tightest enclosing loop for self.  Mark as post-visited.
3320     set_loop(n, innermost);
3321     // Also record has_call flag early on
3322     if( innermost ) {
3323       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
3324         // Do not count uncommon calls
3325         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
3326           Node *iff = n->in(0)->in(0);
3327           // No any calls for vectorized loops.
3328           if( UseSuperWord || !iff->is_If() ||
3329               (n->in(0)->Opcode() == Op_IfFalse &&
3330                (1.0 - iff->as_If()->_prob) >= 0.01) ||
3331               (iff->as_If()->_prob >= 0.01) )
3332             innermost->_has_call = 1;
3333         }
3334       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
3335         // Disable loop optimizations if the loop has a scalar replaceable
3336         // allocation. This disabling may cause a potential performance lost
3337         // if the allocation is not eliminated for some reason.
3338         innermost->_allow_optimizations = false;
3339         innermost->_has_call = 1; // = true
3340       } else if (n->Opcode() == Op_SafePoint) {
3341         // Record all safepoints in this loop.
3342         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
3343         innermost->_safepts->push(n);
3344       }
3345     }
3346   }
3347 
3348   // Flag as post-visited now
3349   set_postvisited(n);
3350   return pre_order;
3351 }
3352 
3353 
3354 //------------------------------build_loop_early-------------------------------
3355 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3356 // First pass computes the earliest controlling node possible.  This is the
3357 // controlling input with the deepest dominating depth.
3358 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3359   while (worklist.size() != 0) {
3360     // Use local variables nstack_top_n & nstack_top_i to cache values
3361     // on nstack's top.
3362     Node *nstack_top_n = worklist.pop();
3363     uint  nstack_top_i = 0;
3364 //while_nstack_nonempty:
3365     while (true) {
3366       // Get parent node and next input's index from stack's top.
3367       Node  *n = nstack_top_n;
3368       uint   i = nstack_top_i;
3369       uint cnt = n->req(); // Count of inputs
3370       if (i == 0) {        // Pre-process the node.
3371         if( has_node(n) &&            // Have either loop or control already?
3372             !has_ctrl(n) ) {          // Have loop picked out already?
3373           // During "merge_many_backedges" we fold up several nested loops
3374           // into a single loop.  This makes the members of the original
3375           // loop bodies pointing to dead loops; they need to move up
3376           // to the new UNION'd larger loop.  I set the _head field of these
3377           // dead loops to NULL and the _parent field points to the owning
3378           // loop.  Shades of UNION-FIND algorithm.
3379           IdealLoopTree *ilt;
3380           while( !(ilt = get_loop(n))->_head ) {
3381             // Normally I would use a set_loop here.  But in this one special
3382             // case, it is legal (and expected) to change what loop a Node
3383             // belongs to.
3384             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3385           }
3386           // Remove safepoints ONLY if I've already seen I don't need one.
3387           // (the old code here would yank a 2nd safepoint after seeing a
3388           // first one, even though the 1st did not dominate in the loop body
3389           // and thus could be avoided indefinitely)
3390           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3391               is_deleteable_safept(n)) {
3392             Node *in = n->in(TypeFunc::Control);
3393             lazy_replace(n,in);       // Pull safepoint now
3394             if (ilt->_safepts != NULL) {
3395               ilt->_safepts->yank(n);
3396             }
3397             // Carry on with the recursion "as if" we are walking
3398             // only the control input
3399             if( !visited.test_set( in->_idx ) ) {
3400               worklist.push(in);      // Visit this guy later, using worklist
3401             }
3402             // Get next node from nstack:
3403             // - skip n's inputs processing by setting i > cnt;
3404             // - we also will not call set_early_ctrl(n) since
3405             //   has_node(n) == true (see the condition above).
3406             i = cnt + 1;
3407           }
3408         }
3409       } // if (i == 0)
3410 
3411       // Visit all inputs
3412       bool done = true;       // Assume all n's inputs will be processed
3413       while (i < cnt) {
3414         Node *in = n->in(i);
3415         ++i;
3416         if (in == NULL) continue;
3417         if (in->pinned() && !in->is_CFG())
3418           set_ctrl(in, in->in(0));
3419         int is_visited = visited.test_set( in->_idx );
3420         if (!has_node(in)) {  // No controlling input yet?
3421           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3422           assert( !is_visited, "visit only once" );
3423           nstack.push(n, i);  // Save parent node and next input's index.
3424           nstack_top_n = in;  // Process current input now.
3425           nstack_top_i = 0;
3426           done = false;       // Not all n's inputs processed.
3427           break; // continue while_nstack_nonempty;
3428         } else if (!is_visited) {
3429           // This guy has a location picked out for him, but has not yet
3430           // been visited.  Happens to all CFG nodes, for instance.
3431           // Visit him using the worklist instead of recursion, to break
3432           // cycles.  Since he has a location already we do not need to
3433           // find his location before proceeding with the current Node.
3434           worklist.push(in);  // Visit this guy later, using worklist
3435         }
3436       }
3437       if (done) {
3438         // All of n's inputs have been processed, complete post-processing.
3439 
3440         // Compute earliest point this Node can go.
3441         // CFG, Phi, pinned nodes already know their controlling input.
3442         if (!has_node(n)) {
3443           // Record earliest legal location
3444           set_early_ctrl( n );
3445         }
3446         if (nstack.is_empty()) {
3447           // Finished all nodes on stack.
3448           // Process next node on the worklist.
3449           break;
3450         }
3451         // Get saved parent node and next input's index.
3452         nstack_top_n = nstack.node();
3453         nstack_top_i = nstack.index();
3454         nstack.pop();
3455       }
3456     } // while (true)
3457   }
3458 }
3459 
3460 //------------------------------dom_lca_internal--------------------------------
3461 // Pair-wise LCA
3462 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
3463   if( !n1 ) return n2;          // Handle NULL original LCA
3464   assert( n1->is_CFG(), "" );
3465   assert( n2->is_CFG(), "" );
3466   // find LCA of all uses
3467   uint d1 = dom_depth(n1);
3468   uint d2 = dom_depth(n2);
3469   while (n1 != n2) {
3470     if (d1 > d2) {
3471       n1 =      idom(n1);
3472       d1 = dom_depth(n1);
3473     } else if (d1 < d2) {
3474       n2 =      idom(n2);
3475       d2 = dom_depth(n2);
3476     } else {
3477       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3478       // of the tree might have the same depth.  These sections have
3479       // to be searched more carefully.
3480 
3481       // Scan up all the n1's with equal depth, looking for n2.
3482       Node *t1 = idom(n1);
3483       while (dom_depth(t1) == d1) {
3484         if (t1 == n2)  return n2;
3485         t1 = idom(t1);
3486       }
3487       // Scan up all the n2's with equal depth, looking for n1.
3488       Node *t2 = idom(n2);
3489       while (dom_depth(t2) == d2) {
3490         if (t2 == n1)  return n1;
3491         t2 = idom(t2);
3492       }
3493       // Move up to a new dominator-depth value as well as up the dom-tree.
3494       n1 = t1;
3495       n2 = t2;
3496       d1 = dom_depth(n1);
3497       d2 = dom_depth(n2);
3498     }
3499   }
3500   return n1;
3501 }
3502 
3503 //------------------------------compute_idom-----------------------------------
3504 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
3505 // IDOMs are correct.
3506 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
3507   assert( region->is_Region(), "" );
3508   Node *LCA = NULL;
3509   for( uint i = 1; i < region->req(); i++ ) {
3510     if( region->in(i) != C->top() )
3511       LCA = dom_lca( LCA, region->in(i) );
3512   }
3513   return LCA;
3514 }
3515 
3516 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
3517   bool had_error = false;
3518 #ifdef ASSERT
3519   if (early != C->root()) {
3520     // Make sure that there's a dominance path from LCA to early
3521     Node* d = LCA;
3522     while (d != early) {
3523       if (d == C->root()) {
3524         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
3525         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
3526         had_error = true;
3527         break;
3528       }
3529       d = idom(d);
3530     }
3531   }
3532 #endif
3533   return had_error;
3534 }
3535 
3536 
3537 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
3538   // Compute LCA over list of uses
3539   bool had_error = false;
3540   Node *LCA = NULL;
3541   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
3542     Node* c = n->fast_out(i);
3543     if (_nodes[c->_idx] == NULL)
3544       continue;                 // Skip the occasional dead node
3545     if( c->is_Phi() ) {         // For Phis, we must land above on the path
3546       for( uint j=1; j<c->req(); j++ ) {// For all inputs
3547         if( c->in(j) == n ) {   // Found matching input?
3548           Node *use = c->in(0)->in(j);
3549           if (_verify_only && use->is_top()) continue;
3550           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3551           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3552         }
3553       }
3554     } else {
3555       // For CFG data-users, use is in the block just prior
3556       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3557       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3558       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3559     }
3560   }
3561   assert(!had_error, "bad dominance");
3562   return LCA;
3563 }
3564 
3565 // Check the shape of the graph at the loop entry. In some cases,
3566 // the shape of the graph does not match the shape outlined below.
3567 // That is caused by the Opaque1 node "protecting" the shape of
3568 // the graph being removed by, for example, the IGVN performed
3569 // in PhaseIdealLoop::build_and_optimize().
3570 //
3571 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
3572 // loop unswitching, and IGVN, or a combination of them) can freely change
3573 // the graph's shape. As a result, the graph shape outlined below cannot
3574 // be guaranteed anymore.
3575 bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
3576   if (!cl->is_main_loop() && !cl->is_post_loop()) {
3577     return false;
3578   }
3579   Node* ctrl = cl->skip_strip_mined()->in(LoopNode::EntryControl);
3580   if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
3581     return false;
3582   }
3583   Node* iffm = ctrl->in(0);
3584   if (iffm == NULL || !iffm->is_If()) {
3585     return false;
3586   }
3587   Node* bolzm = iffm->in(1);
3588   if (bolzm == NULL || !bolzm->is_Bool()) {
3589     return false;
3590   }
3591   Node* cmpzm = bolzm->in(1);
3592   if (cmpzm == NULL || !cmpzm->is_Cmp()) {
3593     return false;
3594   }
3595   // compares can get conditionally flipped
3596   bool found_opaque = false;
3597   for (uint i = 1; i < cmpzm->req(); i++) {
3598     Node* opnd = cmpzm->in(i);
3599     if (opnd && opnd->Opcode() == Op_Opaque1) {
3600       found_opaque = true;
3601       break;
3602     }
3603   }
3604   if (!found_opaque) {
3605     return false;
3606   }
3607   return true;
3608 }
3609 
3610 //------------------------------get_late_ctrl----------------------------------
3611 // Compute latest legal control.
3612 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3613   assert(early != NULL, "early control should not be NULL");
3614 
3615   Node* LCA = compute_lca_of_uses(n, early);
3616 #ifdef ASSERT
3617   if (LCA == C->root() && LCA != early) {
3618     // def doesn't dominate uses so print some useful debugging output
3619     compute_lca_of_uses(n, early, true);
3620   }
3621 #endif
3622 
3623   // if this is a load, check for anti-dependent stores
3624   // We use a conservative algorithm to identify potential interfering
3625   // instructions and for rescheduling the load.  The users of the memory
3626   // input of this load are examined.  Any use which is not a load and is
3627   // dominated by early is considered a potentially interfering store.
3628   // This can produce false positives.
3629   if (n->is_Load() && LCA != early) {
3630     Node_List worklist;
3631 
3632     Node *mem = n->in(MemNode::Memory);
3633     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3634       Node* s = mem->fast_out(i);
3635       worklist.push(s);
3636     }
3637     while(worklist.size() != 0 && LCA != early) {
3638       Node* s = worklist.pop();
3639       if (s->is_Load() || s->Opcode() == Op_SafePoint) {
3640         continue;
3641       } else if (s->is_MergeMem()) {
3642         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3643           Node* s1 = s->fast_out(i);
3644           worklist.push(s1);
3645         }
3646       } else {
3647         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3648         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3649         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3650           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3651         }
3652       }
3653     }
3654   }
3655 
3656   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3657   return LCA;
3658 }
3659 
3660 // true if CFG node d dominates CFG node n
3661 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3662   if (d == n)
3663     return true;
3664   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3665   uint dd = dom_depth(d);
3666   while (dom_depth(n) >= dd) {
3667     if (n == d)
3668       return true;
3669     n = idom(n);
3670   }
3671   return false;
3672 }
3673 
3674 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3675 // Pair-wise LCA with tags.
3676 // Tag each index with the node 'tag' currently being processed
3677 // before advancing up the dominator chain using idom().
3678 // Later calls that find a match to 'tag' know that this path has already
3679 // been considered in the current LCA (which is input 'n1' by convention).
3680 // Since get_late_ctrl() is only called once for each node, the tag array
3681 // does not need to be cleared between calls to get_late_ctrl().
3682 // Algorithm trades a larger constant factor for better asymptotic behavior
3683 //
3684 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3685   uint d1 = dom_depth(n1);
3686   uint d2 = dom_depth(n2);
3687 
3688   do {
3689     if (d1 > d2) {
3690       // current lca is deeper than n2
3691       _dom_lca_tags.map(n1->_idx, tag);
3692       n1 =      idom(n1);
3693       d1 = dom_depth(n1);
3694     } else if (d1 < d2) {
3695       // n2 is deeper than current lca
3696       Node *memo = _dom_lca_tags[n2->_idx];
3697       if( memo == tag ) {
3698         return n1;    // Return the current LCA
3699       }
3700       _dom_lca_tags.map(n2->_idx, tag);
3701       n2 =      idom(n2);
3702       d2 = dom_depth(n2);
3703     } else {
3704       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3705       // of the tree might have the same depth.  These sections have
3706       // to be searched more carefully.
3707 
3708       // Scan up all the n1's with equal depth, looking for n2.
3709       _dom_lca_tags.map(n1->_idx, tag);
3710       Node *t1 = idom(n1);
3711       while (dom_depth(t1) == d1) {
3712         if (t1 == n2)  return n2;
3713         _dom_lca_tags.map(t1->_idx, tag);
3714         t1 = idom(t1);
3715       }
3716       // Scan up all the n2's with equal depth, looking for n1.
3717       _dom_lca_tags.map(n2->_idx, tag);
3718       Node *t2 = idom(n2);
3719       while (dom_depth(t2) == d2) {
3720         if (t2 == n1)  return n1;
3721         _dom_lca_tags.map(t2->_idx, tag);
3722         t2 = idom(t2);
3723       }
3724       // Move up to a new dominator-depth value as well as up the dom-tree.
3725       n1 = t1;
3726       n2 = t2;
3727       d1 = dom_depth(n1);
3728       d2 = dom_depth(n2);
3729     }
3730   } while (n1 != n2);
3731   return n1;
3732 }
3733 
3734 //------------------------------init_dom_lca_tags------------------------------
3735 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3736 // Intended use does not involve any growth for the array, so it could
3737 // be of fixed size.
3738 void PhaseIdealLoop::init_dom_lca_tags() {
3739   uint limit = C->unique() + 1;
3740   _dom_lca_tags.map( limit, NULL );
3741 #ifdef ASSERT
3742   for( uint i = 0; i < limit; ++i ) {
3743     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3744   }
3745 #endif // ASSERT
3746 }
3747 
3748 //------------------------------clear_dom_lca_tags------------------------------
3749 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3750 // Intended use does not involve any growth for the array, so it could
3751 // be of fixed size.
3752 void PhaseIdealLoop::clear_dom_lca_tags() {
3753   uint limit = C->unique() + 1;
3754   _dom_lca_tags.map( limit, NULL );
3755   _dom_lca_tags.clear();
3756 #ifdef ASSERT
3757   for( uint i = 0; i < limit; ++i ) {
3758     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3759   }
3760 #endif // ASSERT
3761 }
3762 
3763 //------------------------------build_loop_late--------------------------------
3764 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3765 // Second pass finds latest legal placement, and ideal loop placement.
3766 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3767   while (worklist.size() != 0) {
3768     Node *n = worklist.pop();
3769     // Only visit once
3770     if (visited.test_set(n->_idx)) continue;
3771     uint cnt = n->outcnt();
3772     uint   i = 0;
3773     while (true) {
3774       assert( _nodes[n->_idx], "no dead nodes" );
3775       // Visit all children
3776       if (i < cnt) {
3777         Node* use = n->raw_out(i);
3778         ++i;
3779         // Check for dead uses.  Aggressively prune such junk.  It might be
3780         // dead in the global sense, but still have local uses so I cannot
3781         // easily call 'remove_dead_node'.
3782         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3783           // Due to cycles, we might not hit the same fixed point in the verify
3784           // pass as we do in the regular pass.  Instead, visit such phis as
3785           // simple uses of the loop head.
3786           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3787             if( !visited.test(use->_idx) )
3788               worklist.push(use);
3789           } else if( !visited.test_set(use->_idx) ) {
3790             nstack.push(n, i); // Save parent and next use's index.
3791             n   = use;         // Process all children of current use.
3792             cnt = use->outcnt();
3793             i   = 0;
3794           }
3795         } else {
3796           // Do not visit around the backedge of loops via data edges.
3797           // push dead code onto a worklist
3798           _deadlist.push(use);
3799         }
3800       } else {
3801         // All of n's children have been processed, complete post-processing.
3802         build_loop_late_post(n);
3803         if (nstack.is_empty()) {
3804           // Finished all nodes on stack.
3805           // Process next node on the worklist.
3806           break;
3807         }
3808         // Get saved parent node and next use's index. Visit the rest of uses.
3809         n   = nstack.node();
3810         cnt = n->outcnt();
3811         i   = nstack.index();
3812         nstack.pop();
3813       }
3814     }
3815   }
3816 }
3817 
3818 // Verify that no data node is schedules in the outer loop of a strip
3819 // mined loop.
3820 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
3821 #ifdef ASSERT
3822   if (get_loop(least)->_nest == 0) {
3823     return;
3824   }
3825   IdealLoopTree* loop = get_loop(least);
3826   Node* head = loop->_head;
3827   if (head->Opcode() == Op_Loop && head->as_Loop()->is_strip_mined()) {
3828     if (n != head->as_Loop()->outer_bol() &&
3829         n != head->as_Loop()->outer_cmp() &&
3830         n != head->as_Loop()->outer_opaq()) {
3831       Node* sfpt = head->as_Loop()->outer_safepoint();
3832       ResourceMark rm;
3833       Unique_Node_List wq;
3834       wq.push(sfpt);
3835       for (uint i = 0; i < wq.size(); i++) {
3836         Node *m = wq.at(i);
3837         for (uint i = 1; i < m->req(); i++) {
3838           Node* nn = m->in(i);
3839           if (nn == n) {
3840             return;
3841           }
3842           if (nn != NULL && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
3843             wq.push(nn);
3844           }
3845         }
3846       }    
3847       ShouldNotReachHere();
3848     }
3849   }
3850 #endif
3851 }
3852 
3853 
3854 //------------------------------build_loop_late_post---------------------------
3855 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3856 // Second pass finds latest legal placement, and ideal loop placement.
3857 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
3858 
3859   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
3860     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
3861   }
3862 
3863 #ifdef ASSERT
3864   if (_verify_only && !n->is_CFG()) {
3865     // Check def-use domination.
3866     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
3867   }
3868 #endif
3869 
3870   // CFG and pinned nodes already handled
3871   if( n->in(0) ) {
3872     if( n->in(0)->is_top() ) return; // Dead?
3873 
3874     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
3875     // _must_ be pinned (they have to observe their control edge of course).
3876     // Unlike Stores (which modify an unallocable resource, the memory
3877     // state), Mods/Loads can float around.  So free them up.
3878     bool pinned = true;
3879     switch( n->Opcode() ) {
3880     case Op_DivI:
3881     case Op_DivF:
3882     case Op_DivD:
3883     case Op_ModI:
3884     case Op_ModF:
3885     case Op_ModD:
3886     case Op_LoadB:              // Same with Loads; they can sink
3887     case Op_LoadUB:             // during loop optimizations.
3888     case Op_LoadUS:
3889     case Op_LoadD:
3890     case Op_LoadF:
3891     case Op_LoadI:
3892     case Op_LoadKlass:
3893     case Op_LoadNKlass:
3894     case Op_LoadL:
3895     case Op_LoadS:
3896     case Op_LoadP:
3897     case Op_LoadN:
3898     case Op_LoadRange:
3899     case Op_LoadD_unaligned:
3900     case Op_LoadL_unaligned:
3901     case Op_StrComp:            // Does a bunch of load-like effects
3902     case Op_StrEquals:
3903     case Op_StrIndexOf:
3904     case Op_StrIndexOfChar:
3905     case Op_AryEq:
3906     case Op_HasNegatives:
3907       pinned = false;
3908     }
3909     if( pinned ) {
3910       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
3911       if( !chosen_loop->_child )       // Inner loop?
3912         chosen_loop->_body.push(n); // Collect inner loops
3913       return;
3914     }
3915   } else {                      // No slot zero
3916     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
3917       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
3918       return;
3919     }
3920     assert(!n->is_CFG() || n->outcnt() == 0, "");
3921   }
3922 
3923   // Do I have a "safe range" I can select over?
3924   Node *early = get_ctrl(n);// Early location already computed
3925 
3926   // Compute latest point this Node can go
3927   Node *LCA = get_late_ctrl( n, early );
3928   // LCA is NULL due to uses being dead
3929   if( LCA == NULL ) {
3930 #ifdef ASSERT
3931     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
3932       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
3933     }
3934 #endif
3935     _nodes.map(n->_idx, 0);     // This node is useless
3936     _deadlist.push(n);
3937     return;
3938   }
3939   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
3940 
3941   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
3942   Node *least = legal;          // Best legal position so far
3943   while( early != legal ) {     // While not at earliest legal
3944 #ifdef ASSERT
3945     if (legal->is_Start() && !early->is_Root()) {
3946       // Bad graph. Print idom path and fail.
3947       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
3948       assert(false, "Bad graph detected in build_loop_late");
3949     }
3950 #endif
3951     // Find least loop nesting depth
3952     legal = idom(legal);        // Bump up the IDOM tree
3953     // Check for lower nesting depth
3954     if( get_loop(legal)->_nest < get_loop(least)->_nest )
3955       least = legal;
3956   }
3957   assert(early == legal || legal != C->root(), "bad dominance of inputs");
3958 
3959   // Try not to place code on a loop entry projection
3960   // which can inhibit range check elimination.
3961   if (least != early) {
3962     Node* ctrl_out = least->unique_ctrl_out();
3963     if (ctrl_out && ctrl_out->is_Loop() &&
3964         least == ctrl_out->in(LoopNode::EntryControl) &&
3965         (ctrl_out->is_CountedLoop() || ctrl_out->as_Loop()->is_strip_mined())) {
3966       Node* least_dom = idom(least);
3967       if (get_loop(least_dom)->is_member(get_loop(least))) {
3968         least = least_dom;
3969       }
3970     }
3971   }
3972 
3973 #ifdef ASSERT
3974   // If verifying, verify that 'verify_me' has a legal location
3975   // and choose it as our location.
3976   if( _verify_me ) {
3977     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
3978     Node *legal = LCA;
3979     while( early != legal ) {   // While not at earliest legal
3980       if( legal == v_ctrl ) break;  // Check for prior good location
3981       legal = idom(legal)      ;// Bump up the IDOM tree
3982     }
3983     // Check for prior good location
3984     if( legal == v_ctrl ) least = legal; // Keep prior if found
3985   }
3986 #endif
3987 
3988   // Assign discovered "here or above" point
3989   least = find_non_split_ctrl(least);
3990   verify_strip_mined_scheduling(n, least);
3991   set_ctrl(n, least);
3992 
3993   // Collect inner loop bodies
3994   IdealLoopTree *chosen_loop = get_loop(least);
3995   if( !chosen_loop->_child )   // Inner loop?
3996     chosen_loop->_body.push(n);// Collect inner loops
3997 }
3998 
3999 #ifdef ASSERT
4000 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
4001   tty->print_cr("%s", msg);
4002   tty->print("n: "); n->dump();
4003   tty->print("early(n): "); early->dump();
4004   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
4005       n->in(0) != early && !n->in(0)->is_Root()) {
4006     tty->print("n->in(0): "); n->in(0)->dump();
4007   }
4008   for (uint i = 1; i < n->req(); i++) {
4009     Node* in1 = n->in(i);
4010     if (in1 != NULL && in1 != n && !in1->is_top()) {
4011       tty->print("n->in(%d): ", i); in1->dump();
4012       Node* in1_early = get_ctrl(in1);
4013       tty->print("early(n->in(%d)): ", i); in1_early->dump();
4014       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
4015           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
4016         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
4017       }
4018       for (uint j = 1; j < in1->req(); j++) {
4019         Node* in2 = in1->in(j);
4020         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
4021           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
4022           Node* in2_early = get_ctrl(in2);
4023           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
4024           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
4025               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
4026             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
4027           }
4028         }
4029       }
4030     }
4031   }
4032   tty->cr();
4033   tty->print("LCA(n): "); LCA->dump();
4034   for (uint i = 0; i < n->outcnt(); i++) {
4035     Node* u1 = n->raw_out(i);
4036     if (u1 == n)
4037       continue;
4038     tty->print("n->out(%d): ", i); u1->dump();
4039     if (u1->is_CFG()) {
4040       for (uint j = 0; j < u1->outcnt(); j++) {
4041         Node* u2 = u1->raw_out(j);
4042         if (u2 != u1 && u2 != n && u2->is_CFG()) {
4043           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4044         }
4045       }
4046     } else {
4047       Node* u1_later = get_ctrl(u1);
4048       tty->print("later(n->out(%d)): ", i); u1_later->dump();
4049       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
4050           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
4051         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
4052       }
4053       for (uint j = 0; j < u1->outcnt(); j++) {
4054         Node* u2 = u1->raw_out(j);
4055         if (u2 == n || u2 == u1)
4056           continue;
4057         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4058         if (!u2->is_CFG()) {
4059           Node* u2_later = get_ctrl(u2);
4060           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
4061           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
4062               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
4063             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
4064           }
4065         }
4066       }
4067     }
4068   }
4069   tty->cr();
4070   int ct = 0;
4071   Node *dbg_legal = LCA;
4072   while(!dbg_legal->is_Start() && ct < 100) {
4073     tty->print("idom[%d] ",ct); dbg_legal->dump();
4074     ct++;
4075     dbg_legal = idom(dbg_legal);
4076   }
4077   tty->cr();
4078 }
4079 #endif
4080 
4081 #ifndef PRODUCT
4082 //------------------------------dump-------------------------------------------
4083 void PhaseIdealLoop::dump( ) const {
4084   ResourceMark rm;
4085   Arena* arena = Thread::current()->resource_area();
4086   Node_Stack stack(arena, C->live_nodes() >> 2);
4087   Node_List rpo_list;
4088   VectorSet visited(arena);
4089   visited.set(C->top()->_idx);
4090   rpo( C->root(), stack, visited, rpo_list );
4091   // Dump root loop indexed by last element in PO order
4092   dump( _ltree_root, rpo_list.size(), rpo_list );
4093 }
4094 
4095 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
4096   loop->dump_head();
4097 
4098   // Now scan for CFG nodes in the same loop
4099   for( uint j=idx; j > 0;  j-- ) {
4100     Node *n = rpo_list[j-1];
4101     if( !_nodes[n->_idx] )      // Skip dead nodes
4102       continue;
4103     if( get_loop(n) != loop ) { // Wrong loop nest
4104       if( get_loop(n)->_head == n &&    // Found nested loop?
4105           get_loop(n)->_parent == loop )
4106         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
4107       continue;
4108     }
4109 
4110     // Dump controlling node
4111     for( uint x = 0; x < loop->_nest; x++ )
4112       tty->print("  ");
4113     tty->print("C");
4114     if( n == C->root() ) {
4115       n->dump();
4116     } else {
4117       Node* cached_idom   = idom_no_update(n);
4118       Node *computed_idom = n->in(0);
4119       if( n->is_Region() ) {
4120         computed_idom = compute_idom(n);
4121         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
4122         // any MultiBranch ctrl node), so apply a similar transform to
4123         // the cached idom returned from idom_no_update.
4124         cached_idom = find_non_split_ctrl(cached_idom);
4125       }
4126       tty->print(" ID:%d",computed_idom->_idx);
4127       n->dump();
4128       if( cached_idom != computed_idom ) {
4129         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
4130                       computed_idom->_idx, cached_idom->_idx);
4131       }
4132     }
4133     // Dump nodes it controls
4134     for( uint k = 0; k < _nodes.Size(); k++ ) {
4135       // (k < C->unique() && get_ctrl(find(k)) == n)
4136       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
4137         Node *m = C->root()->find(k);
4138         if( m && m->outcnt() > 0 ) {
4139           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
4140             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
4141                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
4142           }
4143           for( uint j = 0; j < loop->_nest; j++ )
4144             tty->print("  ");
4145           tty->print(" ");
4146           m->dump();
4147         }
4148       }
4149     }
4150   }
4151 }
4152 
4153 // Collect a R-P-O for the whole CFG.
4154 // Result list is in post-order (scan backwards for RPO)
4155 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
4156   stk.push(start, 0);
4157   visited.set(start->_idx);
4158 
4159   while (stk.is_nonempty()) {
4160     Node* m   = stk.node();
4161     uint  idx = stk.index();
4162     if (idx < m->outcnt()) {
4163       stk.set_index(idx + 1);
4164       Node* n = m->raw_out(idx);
4165       if (n->is_CFG() && !visited.test_set(n->_idx)) {
4166         stk.push(n, 0);
4167       }
4168     } else {
4169       rpo_list.push(m);
4170       stk.pop();
4171     }
4172   }
4173 }
4174 #endif
4175 
4176 
4177 //=============================================================================
4178 //------------------------------LoopTreeIterator-----------------------------------
4179 
4180 // Advance to next loop tree using a preorder, left-to-right traversal.
4181 void LoopTreeIterator::next() {
4182   assert(!done(), "must not be done.");
4183   if (_curnt->_child != NULL) {
4184     _curnt = _curnt->_child;
4185   } else if (_curnt->_next != NULL) {
4186     _curnt = _curnt->_next;
4187   } else {
4188     while (_curnt != _root && _curnt->_next == NULL) {
4189       _curnt = _curnt->_parent;
4190     }
4191     if (_curnt == _root) {
4192       _curnt = NULL;
4193       assert(done(), "must be done.");
4194     } else {
4195       assert(_curnt->_next != NULL, "must be more to do");
4196       _curnt = _curnt->_next;
4197     }
4198   }
4199 }