1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/divnode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/superword.hpp"
  41 
  42 //=============================================================================
  43 //------------------------------is_loop_iv-------------------------------------
  44 // Determine if a node is Counted loop induction variable.
  45 // The method is declared in node.hpp.
  46 const Node* Node::is_loop_iv() const {
  47   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  48       this->as_Phi()->region()->is_CountedLoop() &&
  49       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  50     return this;
  51   } else {
  52     return NULL;
  53   }
  54 }
  55 
  56 //=============================================================================
  57 //------------------------------dump_spec--------------------------------------
  58 // Dump special per-node info
  59 #ifndef PRODUCT
  60 void LoopNode::dump_spec(outputStream *st) const {
  61   if (is_inner_loop()) st->print( "inner " );
  62   if (is_partial_peel_loop()) st->print( "partial_peel " );
  63   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  64 }
  65 #endif
  66 
  67 //------------------------------is_valid_counted_loop-------------------------
  68 bool LoopNode::is_valid_counted_loop() const {
  69   if (is_CountedLoop()) {
  70     CountedLoopNode*    l  = as_CountedLoop();
  71     CountedLoopEndNode* le = l->loopexit_or_null();
  72     if (le != NULL &&
  73         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  74       Node* phi  = l->phi();
  75       Node* exit = le->proj_out_or_null(0 /* false */);
  76       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  77           phi != NULL && phi->is_Phi() &&
  78           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  79           le->loopnode() == l && le->stride_is_con()) {
  80         return true;
  81       }
  82     }
  83   }
  84   return false;
  85 }
  86 
  87 //------------------------------get_early_ctrl---------------------------------
  88 // Compute earliest legal control
  89 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  90   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  91   uint i;
  92   Node *early;
  93   if (n->in(0) && !n->is_expensive()) {
  94     early = n->in(0);
  95     if (!early->is_CFG()) // Might be a non-CFG multi-def
  96       early = get_ctrl(early);        // So treat input as a straight data input
  97     i = 1;
  98   } else {
  99     early = get_ctrl(n->in(1));
 100     i = 2;
 101   }
 102   uint e_d = dom_depth(early);
 103   assert( early, "" );
 104   for (; i < n->req(); i++) {
 105     Node *cin = get_ctrl(n->in(i));
 106     assert( cin, "" );
 107     // Keep deepest dominator depth
 108     uint c_d = dom_depth(cin);
 109     if (c_d > e_d) {           // Deeper guy?
 110       early = cin;              // Keep deepest found so far
 111       e_d = c_d;
 112     } else if (c_d == e_d &&    // Same depth?
 113                early != cin) { // If not equal, must use slower algorithm
 114       // If same depth but not equal, one _must_ dominate the other
 115       // and we want the deeper (i.e., dominated) guy.
 116       Node *n1 = early;
 117       Node *n2 = cin;
 118       while (1) {
 119         n1 = idom(n1);          // Walk up until break cycle
 120         n2 = idom(n2);
 121         if (n1 == cin ||        // Walked early up to cin
 122             dom_depth(n2) < c_d)
 123           break;                // early is deeper; keep him
 124         if (n2 == early ||      // Walked cin up to early
 125             dom_depth(n1) < c_d) {
 126           early = cin;          // cin is deeper; keep him
 127           break;
 128         }
 129       }
 130       e_d = dom_depth(early);   // Reset depth register cache
 131     }
 132   }
 133 
 134   // Return earliest legal location
 135   assert(early == find_non_split_ctrl(early), "unexpected early control");
 136 
 137   if (n->is_expensive() && !_verify_only && !_verify_me) {
 138     assert(n->in(0), "should have control input");
 139     early = get_early_ctrl_for_expensive(n, early);
 140   }
 141 
 142   return early;
 143 }
 144 
 145 //------------------------------get_early_ctrl_for_expensive---------------------------------
 146 // Move node up the dominator tree as high as legal while still beneficial
 147 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 148   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 149   assert(OptimizeExpensiveOps, "optimization off?");
 150 
 151   Node* ctl = n->in(0);
 152   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 153   uint min_dom_depth = dom_depth(earliest);
 154 #ifdef ASSERT
 155   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 156     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 157     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 158   }
 159 #endif
 160   if (dom_depth(ctl) < min_dom_depth) {
 161     return earliest;
 162   }
 163 
 164   while (1) {
 165     Node *next = ctl;
 166     // Moving the node out of a loop on the projection of a If
 167     // confuses loop predication. So once we hit a Loop in a If branch
 168     // that doesn't branch to an UNC, we stop. The code that process
 169     // expensive nodes will notice the loop and skip over it to try to
 170     // move the node further up.
 171     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
 172       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 173         break;
 174       }
 175       next = idom(ctl->in(1)->in(0));
 176     } else if (ctl->is_Proj()) {
 177       // We only move it up along a projection if the projection is
 178       // the single control projection for its parent: same code path,
 179       // if it's a If with UNC or fallthrough of a call.
 180       Node* parent_ctl = ctl->in(0);
 181       if (parent_ctl == NULL) {
 182         break;
 183       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
 184         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 185       } else if (parent_ctl->is_If()) {
 186         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
 187           break;
 188         }
 189         assert(idom(ctl) == parent_ctl, "strange");
 190         next = idom(parent_ctl);
 191       } else if (ctl->is_CatchProj()) {
 192         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 193           break;
 194         }
 195         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 196         next = parent_ctl->in(0)->in(0)->in(0);
 197       } else {
 198         // Check if parent control has a single projection (this
 199         // control is the only possible successor of the parent
 200         // control). If so, we can try to move the node above the
 201         // parent control.
 202         int nb_ctl_proj = 0;
 203         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 204           Node *p = parent_ctl->fast_out(i);
 205           if (p->is_Proj() && p->is_CFG()) {
 206             nb_ctl_proj++;
 207             if (nb_ctl_proj > 1) {
 208               break;
 209             }
 210           }
 211         }
 212 
 213         if (nb_ctl_proj > 1) {
 214           break;
 215         }
 216         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
 217         assert(idom(ctl) == parent_ctl, "strange");
 218         next = idom(parent_ctl);
 219       }
 220     } else {
 221       next = idom(ctl);
 222     }
 223     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 224       break;
 225     }
 226     ctl = next;
 227   }
 228 
 229   if (ctl != n->in(0)) {
 230     _igvn.replace_input_of(n, 0, ctl);
 231     _igvn.hash_insert(n);
 232   }
 233 
 234   return ctl;
 235 }
 236 
 237 
 238 //------------------------------set_early_ctrl---------------------------------
 239 // Set earliest legal control
 240 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 241   Node *early = get_early_ctrl(n);
 242 
 243   // Record earliest legal location
 244   set_ctrl(n, early);
 245 }
 246 
 247 //------------------------------set_subtree_ctrl-------------------------------
 248 // set missing _ctrl entries on new nodes
 249 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 250   // Already set?  Get out.
 251   if( _nodes[n->_idx] ) return;
 252   // Recursively set _nodes array to indicate where the Node goes
 253   uint i;
 254   for( i = 0; i < n->req(); ++i ) {
 255     Node *m = n->in(i);
 256     if( m && m != C->root() )
 257       set_subtree_ctrl( m );
 258   }
 259 
 260   // Fixup self
 261   set_early_ctrl( n );
 262 }
 263 
 264 // Create a skeleton strip mined outer loop: a Loop head before the
 265 // inner strip mined loop, a safepoint and an exit condition guarded
 266 // by an opaque node after the inner strip mined loop with a backedge
 267 // to the loop head. The inner strip mined loop is left as it is. Only
 268 // once loop optimizations are over, do we adjust the inner loop exit
 269 // condition to limit its number of iterations, set the outer loop
 270 // exit condition and add Phis to the outer loop head. Some loop
 271 // optimizations that operate on the inner strip mined loop need to be
 272 // aware of the outer strip mined loop: loop unswitching needs to
 273 // clone the outer loop as well as the inner, unrolling needs to only
 274 // clone the inner loop etc. No optimizations need to change the outer
 275 // strip mined loop as it is only a skeleton.
 276 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 277                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 278                                                              Node*& entry_control, Node*& iffalse) {
 279   Node* outer_test = _igvn.intcon(0);
 280   set_ctrl(outer_test, C->root());
 281   Node *orig = iffalse;
 282   iffalse = iffalse->clone();
 283   _igvn.register_new_node_with_optimizer(iffalse);
 284   set_idom(iffalse, idom(orig), dom_depth(orig));
 285 
 286   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 287   Node *outer_ift = new IfTrueNode (outer_le);
 288   Node* outer_iff = orig;
 289   _igvn.replace_input_of(outer_iff, 0, outer_le);
 290 
 291   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 292   entry_control = outer_l;
 293 
 294   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 295   IdealLoopTree* parent = loop->_parent;
 296   IdealLoopTree* sibling = parent->_child;
 297   if (sibling == loop) {
 298     parent->_child = outer_ilt;
 299   } else {
 300     while (sibling->_next != loop) {
 301       sibling = sibling->_next;
 302     }
 303     sibling->_next = outer_ilt;
 304   }
 305   outer_ilt->_next = loop->_next;
 306   outer_ilt->_parent = parent;
 307   outer_ilt->_child = loop;
 308   outer_ilt->_nest = loop->_nest;
 309   loop->_parent = outer_ilt;
 310   loop->_next = NULL;
 311   loop->_nest++;
 312 
 313   set_loop(iffalse, outer_ilt);
 314   register_control(outer_le, outer_ilt, iffalse);
 315   register_control(outer_ift, outer_ilt, outer_le);
 316   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 317   _igvn.register_new_node_with_optimizer(outer_l);
 318   set_loop(outer_l, outer_ilt);
 319   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 320 
 321   return outer_ilt;
 322 }
 323 
 324 //------------------------------is_counted_loop--------------------------------
 325 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*& loop) {
 326   PhaseGVN *gvn = &_igvn;
 327 
 328   // Counted loop head must be a good RegionNode with only 3 not NULL
 329   // control input edges: Self, Entry, LoopBack.
 330   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
 331     return false;
 332   }
 333   Node *init_control = x->in(LoopNode::EntryControl);
 334   Node *back_control = x->in(LoopNode::LoopBackControl);
 335   if (init_control == NULL || back_control == NULL)    // Partially dead
 336     return false;
 337   // Must also check for TOP when looking for a dead loop
 338   if (init_control->is_top() || back_control->is_top())
 339     return false;
 340 
 341   // Allow funny placement of Safepoint
 342   if (back_control->Opcode() == Op_SafePoint) {
 343     if (LoopStripMiningIter != 0) {
 344       // Leaving the safepoint on the backedge and creating a
 345       // CountedLoop will confuse optimizations. We can't move the
 346       // safepoint around because its jvm state wouldn't match a new
 347       // location. Give up on that loop.
 348       return false;
 349     }
 350     back_control = back_control->in(TypeFunc::Control);
 351   }
 352 
 353   // Controlling test for loop
 354   Node *iftrue = back_control;
 355   uint iftrue_op = iftrue->Opcode();
 356   if (iftrue_op != Op_IfTrue &&
 357       iftrue_op != Op_IfFalse)
 358     // I have a weird back-control.  Probably the loop-exit test is in
 359     // the middle of the loop and I am looking at some trailing control-flow
 360     // merge point.  To fix this I would have to partially peel the loop.
 361     return false; // Obscure back-control
 362 
 363   // Get boolean guarding loop-back test
 364   Node *iff = iftrue->in(0);
 365   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 366     return false;
 367   BoolNode *test = iff->in(1)->as_Bool();
 368   BoolTest::mask bt = test->_test._test;
 369   float cl_prob = iff->as_If()->_prob;
 370   if (iftrue_op == Op_IfFalse) {
 371     bt = BoolTest(bt).negate();
 372     cl_prob = 1.0 - cl_prob;
 373   }
 374   // Get backedge compare
 375   Node *cmp = test->in(1);
 376   int cmp_op = cmp->Opcode();
 377   if (cmp_op != Op_CmpI)
 378     return false;                // Avoid pointer & float compares
 379 
 380   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 381   Node *incr  = cmp->in(1);
 382   Node *limit = cmp->in(2);
 383 
 384   // ---------
 385   // need 'loop()' test to tell if limit is loop invariant
 386   // ---------
 387 
 388   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 389     Node *tmp = incr;            // Then reverse order into the CmpI
 390     incr = limit;
 391     limit = tmp;
 392     bt = BoolTest(bt).commute(); // And commute the exit test
 393   }
 394   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 395     return false;
 396   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 397     return false;
 398 
 399   Node* phi_incr = NULL;
 400   // Trip-counter increment must be commutative & associative.
 401   if (incr->Opcode() == Op_CastII) {
 402     incr = incr->in(1);
 403   }
 404   if (incr->is_Phi()) {
 405     if (incr->as_Phi()->region() != x || incr->req() != 3)
 406       return false; // Not simple trip counter expression
 407     phi_incr = incr;
 408     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 409     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 410       return false;
 411   }
 412 
 413   Node* trunc1 = NULL;
 414   Node* trunc2 = NULL;
 415   const TypeInt* iv_trunc_t = NULL;
 416   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 417     return false; // Funny increment opcode
 418   }
 419   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 420 
 421   // Get merge point
 422   Node *xphi = incr->in(1);
 423   Node *stride = incr->in(2);
 424   if (!stride->is_Con()) {     // Oops, swap these
 425     if (!xphi->is_Con())       // Is the other guy a constant?
 426       return false;             // Nope, unknown stride, bail out
 427     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 428     xphi = stride;
 429     stride = tmp;
 430   }
 431   if (xphi->Opcode() == Op_CastII) {
 432     xphi = xphi->in(1);
 433   }
 434   // Stride must be constant
 435   int stride_con = stride->get_int();
 436   if (stride_con == 0)
 437     return false; // missed some peephole opt
 438 
 439   if (!xphi->is_Phi())
 440     return false; // Too much math on the trip counter
 441   if (phi_incr != NULL && phi_incr != xphi)
 442     return false;
 443   PhiNode *phi = xphi->as_Phi();
 444 
 445   // Phi must be of loop header; backedge must wrap to increment
 446   if (phi->region() != x)
 447     return false;
 448   if ((trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr) ||
 449       (trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1)) {
 450     return false;
 451   }
 452   Node *init_trip = phi->in(LoopNode::EntryControl);
 453 
 454   // If iv trunc type is smaller than int, check for possible wrap.
 455   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 456     assert(trunc1 != NULL, "must have found some truncation");
 457 
 458     // Get a better type for the phi (filtered thru if's)
 459     const TypeInt* phi_ft = filtered_type(phi);
 460 
 461     // Can iv take on a value that will wrap?
 462     //
 463     // Ensure iv's limit is not within "stride" of the wrap value.
 464     //
 465     // Example for "short" type
 466     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 467     //    If the stride is +10, then the last value of the induction
 468     //    variable before the increment (phi_ft->_hi) must be
 469     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 470     //    ensure no truncation occurs after the increment.
 471 
 472     if (stride_con > 0) {
 473       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 474           iv_trunc_t->_lo > phi_ft->_lo) {
 475         return false;  // truncation may occur
 476       }
 477     } else if (stride_con < 0) {
 478       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 479           iv_trunc_t->_hi < phi_ft->_hi) {
 480         return false;  // truncation may occur
 481       }
 482     }
 483     // No possibility of wrap so truncation can be discarded
 484     // Promote iv type to Int
 485   } else {
 486     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 487   }
 488 
 489   // If the condition is inverted and we will be rolling
 490   // through MININT to MAXINT, then bail out.
 491   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 492       // Odd stride
 493       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 494       // Count down loop rolls through MAXINT
 495       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 496       // Count up loop rolls through MININT
 497       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 498     return false; // Bail out
 499   }
 500 
 501   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 502   const TypeInt* limit_t = gvn->type(limit)->is_int();
 503 
 504   if (stride_con > 0) {
 505     jlong init_p = (jlong)init_t->_lo + stride_con;
 506     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 507       return false; // cyclic loop or this loop trips only once
 508   } else {
 509     jlong init_p = (jlong)init_t->_hi + stride_con;
 510     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 511       return false; // cyclic loop or this loop trips only once
 512   }
 513 
 514   if (phi_incr != NULL) {
 515     // check if there is a possiblity of IV overflowing after the first increment
 516     if (stride_con > 0) {
 517       if (init_t->_hi > max_jint - stride_con) {
 518         return false;
 519       }
 520     } else {
 521       if (init_t->_lo < min_jint - stride_con) {
 522         return false;
 523       }
 524     }
 525   }
 526 
 527   // =================================================
 528   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 529   //
 530   assert(x->Opcode() == Op_Loop, "regular loops only");
 531   C->print_method(PHASE_BEFORE_CLOOPS, 3);
 532 
 533   Node *hook = new Node(6);
 534 
 535   // ===================================================
 536   // Generate loop limit check to avoid integer overflow
 537   // in cases like next (cyclic loops):
 538   //
 539   // for (i=0; i <= max_jint; i++) {}
 540   // for (i=0; i <  max_jint; i+=2) {}
 541   //
 542   //
 543   // Limit check predicate depends on the loop test:
 544   //
 545   // for(;i != limit; i++)       --> limit <= (max_jint)
 546   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 547   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 548   //
 549 
 550   // Check if limit is excluded to do more precise int overflow check.
 551   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 552   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 553 
 554   // If compare points directly to the phi we need to adjust
 555   // the compare so that it points to the incr. Limit have
 556   // to be adjusted to keep trip count the same and the
 557   // adjusted limit should be checked for int overflow.
 558   if (phi_incr != NULL) {
 559     stride_m  += stride_con;
 560   }
 561 
 562   if (limit->is_Con()) {
 563     int limit_con = limit->get_int();
 564     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 565         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 566       // Bailout: it could be integer overflow.
 567       return false;
 568     }
 569   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 570              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 571       // Limit's type may satisfy the condition, for example,
 572       // when it is an array length.
 573   } else {
 574     // Generate loop's limit check.
 575     // Loop limit check predicate should be near the loop.
 576     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 577     if (!limit_check_proj) {
 578       // The limit check predicate is not generated if this method trapped here before.
 579 #ifdef ASSERT
 580       if (TraceLoopLimitCheck) {
 581         tty->print("missing loop limit check:");
 582         loop->dump_head();
 583         x->dump(1);
 584       }
 585 #endif
 586       return false;
 587     }
 588 
 589     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 590     Node* cmp_limit;
 591     Node* bol;
 592 
 593     if (stride_con > 0) {
 594       cmp_limit = new CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 595       bol = new BoolNode(cmp_limit, BoolTest::le);
 596     } else {
 597       cmp_limit = new CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 598       bol = new BoolNode(cmp_limit, BoolTest::ge);
 599     }
 600     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 601     bol = _igvn.register_new_node_with_optimizer(bol);
 602     set_subtree_ctrl(bol);
 603 
 604     // Replace condition in original predicate but preserve Opaque node
 605     // so that previous predicates could be found.
 606     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 607            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 608     Node* opq = check_iff->in(1)->in(1);
 609     _igvn.replace_input_of(opq, 1, bol);
 610     // Update ctrl.
 611     set_ctrl(opq, check_iff->in(0));
 612     set_ctrl(check_iff->in(1), check_iff->in(0));
 613 
 614 #ifndef PRODUCT
 615     // report that the loop predication has been actually performed
 616     // for this loop
 617     if (TraceLoopLimitCheck) {
 618       tty->print_cr("Counted Loop Limit Check generated:");
 619       debug_only( bol->dump(2); )
 620     }
 621 #endif
 622   }
 623 
 624   if (phi_incr != NULL) {
 625     // If compare points directly to the phi we need to adjust
 626     // the compare so that it points to the incr. Limit have
 627     // to be adjusted to keep trip count the same and we
 628     // should avoid int overflow.
 629     //
 630     //   i = init; do {} while(i++ < limit);
 631     // is converted to
 632     //   i = init; do {} while(++i < limit+1);
 633     //
 634     limit = gvn->transform(new AddINode(limit, stride));
 635   }
 636 
 637   // Now we need to canonicalize loop condition.
 638   if (bt == BoolTest::ne) {
 639     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 640     // 'ne' can be replaced with 'lt' only when init < limit.
 641     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 642       bt = BoolTest::lt;
 643     // 'ne' can be replaced with 'gt' only when init > limit.
 644     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 645       bt = BoolTest::gt;
 646   }
 647 
 648   if (incl_limit) {
 649     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 650     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 651     //
 652     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 653     limit = gvn->transform(new AddINode(limit, one));
 654     if (bt == BoolTest::le)
 655       bt = BoolTest::lt;
 656     else if (bt == BoolTest::ge)
 657       bt = BoolTest::gt;
 658     else
 659       ShouldNotReachHere();
 660   }
 661   set_subtree_ctrl( limit );
 662 
 663   if (LoopStripMiningIter == 0) {
 664     // Check for SafePoint on backedge and remove
 665     Node *sfpt = x->in(LoopNode::LoopBackControl);
 666     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 667       lazy_replace( sfpt, iftrue );
 668       if (loop->_safepts != NULL) {
 669         loop->_safepts->yank(sfpt);
 670       }
 671       loop->_tail = iftrue;
 672     }
 673   }
 674 
 675   // Build a canonical trip test.
 676   // Clone code, as old values may be in use.
 677   incr = incr->clone();
 678   incr->set_req(1,phi);
 679   incr->set_req(2,stride);
 680   incr = _igvn.register_new_node_with_optimizer(incr);
 681   set_early_ctrl( incr );
 682   _igvn.rehash_node_delayed(phi);
 683   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 684 
 685   // If phi type is more restrictive than Int, raise to
 686   // Int to prevent (almost) infinite recursion in igvn
 687   // which can only handle integer types for constants or minint..maxint.
 688   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 689     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 690     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 691     nphi = _igvn.register_new_node_with_optimizer(nphi);
 692     set_ctrl(nphi, get_ctrl(phi));
 693     _igvn.replace_node(phi, nphi);
 694     phi = nphi->as_Phi();
 695   }
 696   cmp = cmp->clone();
 697   cmp->set_req(1,incr);
 698   cmp->set_req(2,limit);
 699   cmp = _igvn.register_new_node_with_optimizer(cmp);
 700   set_ctrl(cmp, iff->in(0));
 701 
 702   test = test->clone()->as_Bool();
 703   (*(BoolTest*)&test->_test)._test = bt;
 704   test->set_req(1,cmp);
 705   _igvn.register_new_node_with_optimizer(test);
 706   set_ctrl(test, iff->in(0));
 707 
 708   // Replace the old IfNode with a new LoopEndNode
 709   Node *lex = _igvn.register_new_node_with_optimizer(new CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 710   IfNode *le = lex->as_If();
 711   uint dd = dom_depth(iff);
 712   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 713   set_loop(le, loop);
 714 
 715   // Get the loop-exit control
 716   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 717 
 718   // Need to swap loop-exit and loop-back control?
 719   if (iftrue_op == Op_IfFalse) {
 720     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
 721     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
 722 
 723     loop->_tail = back_control = ift2;
 724     set_loop(ift2, loop);
 725     set_loop(iff2, get_loop(iffalse));
 726 
 727     // Lazy update of 'get_ctrl' mechanism.
 728     lazy_replace(iffalse, iff2);
 729     lazy_replace(iftrue,  ift2);
 730 
 731     // Swap names
 732     iffalse = iff2;
 733     iftrue  = ift2;
 734   } else {
 735     _igvn.rehash_node_delayed(iffalse);
 736     _igvn.rehash_node_delayed(iftrue);
 737     iffalse->set_req_X( 0, le, &_igvn );
 738     iftrue ->set_req_X( 0, le, &_igvn );
 739   }
 740 
 741   set_idom(iftrue,  le, dd+1);
 742   set_idom(iffalse, le, dd+1);
 743   assert(iff->outcnt() == 0, "should be dead now");
 744   lazy_replace( iff, le ); // fix 'get_ctrl'
 745 
 746   Node *sfpt2 = le->in(0);
 747 
 748   Node* entry_control = init_control;
 749   bool strip_mine_loop = LoopStripMiningIter > 1 && loop->_child == NULL &&
 750     sfpt2->Opcode() == Op_SafePoint && !loop->_has_call;
 751   IdealLoopTree* outer_ilt = NULL;
 752   if (strip_mine_loop) {
 753     outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop,
 754                                               cl_prob, le->_fcnt, entry_control,
 755                                               iffalse);
 756   }
 757 
 758   // Now setup a new CountedLoopNode to replace the existing LoopNode
 759   CountedLoopNode *l = new CountedLoopNode(entry_control, back_control);
 760   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 761   // The following assert is approximately true, and defines the intention
 762   // of can_be_counted_loop.  It fails, however, because phase->type
 763   // is not yet initialized for this loop and its parts.
 764   //assert(l->can_be_counted_loop(this), "sanity");
 765   _igvn.register_new_node_with_optimizer(l);
 766   set_loop(l, loop);
 767   loop->_head = l;
 768   // Fix all data nodes placed at the old loop head.
 769   // Uses the lazy-update mechanism of 'get_ctrl'.
 770   lazy_replace( x, l );
 771   set_idom(l, entry_control, dom_depth(entry_control) + 1);
 772 
 773   if (LoopStripMiningIter == 0 || strip_mine_loop) {
 774     // Check for immediately preceding SafePoint and remove
 775     if (sfpt2->Opcode() == Op_SafePoint && (LoopStripMiningIter != 0 || is_deleteable_safept(sfpt2))) {
 776       if (strip_mine_loop) {
 777         Node* outer_le = outer_ilt->_tail->in(0);
 778         Node* sfpt = sfpt2->clone();
 779         sfpt->set_req(0, iffalse);
 780         outer_le->set_req(0, sfpt);
 781         register_control(sfpt, outer_ilt, iffalse);
 782         set_idom(outer_le, sfpt, dom_depth(sfpt));
 783       }
 784       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 785       if (loop->_safepts != NULL) {
 786         loop->_safepts->yank(sfpt2);
 787       }
 788     }
 789   }
 790 
 791   // Free up intermediate goo
 792   _igvn.remove_dead_node(hook);
 793 
 794 #ifdef ASSERT
 795   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 796   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
 797 #endif
 798 #ifndef PRODUCT
 799   if (TraceLoopOpts) {
 800     tty->print("Counted      ");
 801     loop->dump_head();
 802   }
 803 #endif
 804 
 805   C->print_method(PHASE_AFTER_CLOOPS, 3);
 806 
 807   // Capture bounds of the loop in the induction variable Phi before
 808   // subsequent transformation (iteration splitting) obscures the
 809   // bounds
 810   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
 811 
 812   if (strip_mine_loop) {
 813     l->mark_strip_mined();
 814     l->verify_strip_mined(1);
 815     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
 816     loop = outer_ilt;
 817   }
 818 
 819   return true;
 820 }
 821 
 822 //----------------------exact_limit-------------------------------------------
 823 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 824   assert(loop->_head->is_CountedLoop(), "");
 825   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 826   assert(cl->is_valid_counted_loop(), "");
 827 
 828   if (ABS(cl->stride_con()) == 1 ||
 829       cl->limit()->Opcode() == Op_LoopLimit) {
 830     // Old code has exact limit (it could be incorrect in case of int overflow).
 831     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 832     return cl->limit();
 833   }
 834   Node *limit = NULL;
 835 #ifdef ASSERT
 836   BoolTest::mask bt = cl->loopexit()->test_trip();
 837   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 838 #endif
 839   if (cl->has_exact_trip_count()) {
 840     // Simple case: loop has constant boundaries.
 841     // Use jlongs to avoid integer overflow.
 842     int stride_con = cl->stride_con();
 843     jlong  init_con = cl->init_trip()->get_int();
 844     jlong limit_con = cl->limit()->get_int();
 845     julong trip_cnt = cl->trip_count();
 846     jlong final_con = init_con + trip_cnt*stride_con;
 847     int final_int = (int)final_con;
 848     // The final value should be in integer range since the loop
 849     // is counted and the limit was checked for overflow.
 850     assert(final_con == (jlong)final_int, "final value should be integer");
 851     limit = _igvn.intcon(final_int);
 852   } else {
 853     // Create new LoopLimit node to get exact limit (final iv value).
 854     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 855     register_new_node(limit, cl->in(LoopNode::EntryControl));
 856   }
 857   assert(limit != NULL, "sanity");
 858   return limit;
 859 }
 860 
 861 //------------------------------Ideal------------------------------------------
 862 // Return a node which is more "ideal" than the current node.
 863 // Attempt to convert into a counted-loop.
 864 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 865   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
 866     phase->C->set_major_progress();
 867   }
 868   return RegionNode::Ideal(phase, can_reshape);
 869 }
 870 
 871 void LoopNode::verify_strip_mined(int expect_skeleton) const {
 872 #ifdef ASSERT
 873   const OuterStripMinedLoopNode* outer = NULL;
 874   const CountedLoopNode* inner = NULL;
 875   if (is_strip_mined()) {
 876     assert(is_CountedLoop(), "no Loop should be marked strip mined");
 877     inner = as_CountedLoop();
 878     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
 879   } else if (is_OuterStripMinedLoop()) {
 880     outer = this->as_OuterStripMinedLoop();
 881     inner = outer->unique_ctrl_out()->as_CountedLoop();
 882     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
 883   }
 884   if (inner != NULL || outer != NULL) {
 885     assert(inner != NULL && outer != NULL, "missing loop in strip mined nest");
 886     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
 887     Node* outer_le = outer_tail->in(0);
 888     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
 889     Node* sfpt = outer_le->in(0);
 890     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
 891     Node* inner_out = sfpt->in(0);
 892     if (inner_out->outcnt() != 1) {
 893       ResourceMark rm;
 894       Unique_Node_List wq;
 895 
 896       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 897         Node* u = inner_out->fast_out(i);
 898         if (u == sfpt) {
 899           continue;
 900         }
 901         wq.clear();
 902         wq.push(u);
 903         bool found_sfpt = false;
 904         for (uint next = 0; next < wq.size() && !found_sfpt; next++) {
 905           Node *n = wq.at(next);
 906           for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && !found_sfpt; i++) {
 907             Node* u = n->fast_out(i);
 908             if (u == sfpt) {
 909               found_sfpt = true;
 910             }
 911             if (!u->is_CFG()) {
 912               wq.push(u);
 913             }
 914           }
 915         }
 916         assert(found_sfpt, "no node in loop that's not input to safepoint");
 917       }
 918     }
 919     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
 920     assert(cle == inner->loopexit_or_null(), "mismatch");
 921     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
 922     if (has_skeleton) {
 923       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
 924       assert(outer->outcnt() == 2, "only phis");
 925     } else {
 926       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
 927       uint phis = 0;
 928       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
 929         Node* u = inner->fast_out(i);
 930         if (u->is_Phi()) {
 931           phis++;
 932         }
 933       }
 934       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
 935         Node* u = outer->fast_out(i);
 936         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
 937       }
 938       uint stores = 0;
 939       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
 940         Node* u = inner_out->fast_out(i);
 941         if (u->is_Store()) {
 942           stores++;
 943         }
 944       }
 945       assert(outer->outcnt() >= phis + 2 && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
 946     }
 947     assert(sfpt->outcnt() == 1, "no data node");
 948     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
 949   }
 950 #endif
 951 }
 952 
 953 //=============================================================================
 954 //------------------------------Ideal------------------------------------------
 955 // Return a node which is more "ideal" than the current node.
 956 // Attempt to convert into a counted-loop.
 957 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 958   return RegionNode::Ideal(phase, can_reshape);
 959 }
 960 
 961 //------------------------------dump_spec--------------------------------------
 962 // Dump special per-node info
 963 #ifndef PRODUCT
 964 void CountedLoopNode::dump_spec(outputStream *st) const {
 965   LoopNode::dump_spec(st);
 966   if (stride_is_con()) {
 967     st->print("stride: %d ",stride_con());
 968   }
 969   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 970   if (is_main_loop()) st->print("main of N%d", _idx);
 971   if (is_post_loop()) st->print("post of N%d", _main_idx);
 972   if (is_strip_mined()) st->print(" strip mined");
 973 }
 974 #endif
 975 
 976 //=============================================================================
 977 int CountedLoopEndNode::stride_con() const {
 978   return stride()->bottom_type()->is_int()->get_con();
 979 }
 980 
 981 //=============================================================================
 982 //------------------------------Value-----------------------------------------
 983 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
 984   const Type* init_t   = phase->type(in(Init));
 985   const Type* limit_t  = phase->type(in(Limit));
 986   const Type* stride_t = phase->type(in(Stride));
 987   // Either input is TOP ==> the result is TOP
 988   if (init_t   == Type::TOP) return Type::TOP;
 989   if (limit_t  == Type::TOP) return Type::TOP;
 990   if (stride_t == Type::TOP) return Type::TOP;
 991 
 992   int stride_con = stride_t->is_int()->get_con();
 993   if (stride_con == 1)
 994     return NULL;  // Identity
 995 
 996   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
 997     // Use jlongs to avoid integer overflow.
 998     jlong init_con   =  init_t->is_int()->get_con();
 999     jlong limit_con  = limit_t->is_int()->get_con();
1000     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
1001     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
1002     jlong final_con  = init_con + stride_con*trip_count;
1003     int final_int = (int)final_con;
1004     // The final value should be in integer range since the loop
1005     // is counted and the limit was checked for overflow.
1006     assert(final_con == (jlong)final_int, "final value should be integer");
1007     return TypeInt::make(final_int);
1008   }
1009 
1010   return bottom_type(); // TypeInt::INT
1011 }
1012 
1013 //------------------------------Ideal------------------------------------------
1014 // Return a node which is more "ideal" than the current node.
1015 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1016   if (phase->type(in(Init))   == Type::TOP ||
1017       phase->type(in(Limit))  == Type::TOP ||
1018       phase->type(in(Stride)) == Type::TOP)
1019     return NULL;  // Dead
1020 
1021   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1022   if (stride_con == 1)
1023     return NULL;  // Identity
1024 
1025   if (in(Init)->is_Con() && in(Limit)->is_Con())
1026     return NULL;  // Value
1027 
1028   // Delay following optimizations until all loop optimizations
1029   // done to keep Ideal graph simple.
1030   if (!can_reshape || phase->C->major_progress())
1031     return NULL;
1032 
1033   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
1034   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
1035   int stride_p;
1036   jlong lim, ini;
1037   julong max;
1038   if (stride_con > 0) {
1039     stride_p = stride_con;
1040     lim = limit_t->_hi;
1041     ini = init_t->_lo;
1042     max = (julong)max_jint;
1043   } else {
1044     stride_p = -stride_con;
1045     lim = init_t->_hi;
1046     ini = limit_t->_lo;
1047     max = (julong)min_jint;
1048   }
1049   julong range = lim - ini + stride_p;
1050   if (range <= max) {
1051     // Convert to integer expression if it is not overflow.
1052     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
1053     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
1054     Node *bias  = phase->transform(new AddINode(range, stride_m));
1055     Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
1056     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
1057     return new AddINode(span, in(Init)); // exact limit
1058   }
1059 
1060   if (is_power_of_2(stride_p) ||                // divisor is 2^n
1061       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
1062     // Convert to long expression to avoid integer overflow
1063     // and let igvn optimizer convert this division.
1064     //
1065     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
1066     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
1067     Node* stride   = phase->longcon(stride_con);
1068     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
1069 
1070     Node *range = phase->transform(new SubLNode(limit, init));
1071     Node *bias  = phase->transform(new AddLNode(range, stride_m));
1072     Node *span;
1073     if (stride_con > 0 && is_power_of_2(stride_p)) {
1074       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
1075       // and avoid generating rounding for division. Zero trip guard should
1076       // guarantee that init < limit but sometimes the guard is missing and
1077       // we can get situation when init > limit. Note, for the empty loop
1078       // optimization zero trip guard is generated explicitly which leaves
1079       // only RCE predicate where exact limit is used and the predicate
1080       // will simply fail forcing recompilation.
1081       Node* neg_stride   = phase->longcon(-stride_con);
1082       span = phase->transform(new AndLNode(bias, neg_stride));
1083     } else {
1084       Node *trip  = phase->transform(new DivLNode(0, bias, stride));
1085       span = phase->transform(new MulLNode(trip, stride));
1086     }
1087     // Convert back to int
1088     Node *span_int = phase->transform(new ConvL2INode(span));
1089     return new AddINode(span_int, in(Init)); // exact limit
1090   }
1091 
1092   return NULL;    // No progress
1093 }
1094 
1095 //------------------------------Identity---------------------------------------
1096 // If stride == 1 return limit node.
1097 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
1098   int stride_con = phase->type(in(Stride))->is_int()->get_con();
1099   if (stride_con == 1 || stride_con == -1)
1100     return in(Limit);
1101   return this;
1102 }
1103 
1104 //=============================================================================
1105 //----------------------match_incr_with_optional_truncation--------------------
1106 // Match increment with optional truncation:
1107 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
1108 // Return NULL for failure. Success returns the increment node.
1109 Node* CountedLoopNode::match_incr_with_optional_truncation(
1110                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
1111   // Quick cutouts:
1112   if (expr == NULL || expr->req() != 3)  return NULL;
1113 
1114   Node *t1 = NULL;
1115   Node *t2 = NULL;
1116   const TypeInt* trunc_t = TypeInt::INT;
1117   Node* n1 = expr;
1118   int   n1op = n1->Opcode();
1119 
1120   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
1121   if (n1op == Op_AndI &&
1122       n1->in(2)->is_Con() &&
1123       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
1124     // %%% This check should match any mask of 2**K-1.
1125     t1 = n1;
1126     n1 = t1->in(1);
1127     n1op = n1->Opcode();
1128     trunc_t = TypeInt::CHAR;
1129   } else if (n1op == Op_RShiftI &&
1130              n1->in(1) != NULL &&
1131              n1->in(1)->Opcode() == Op_LShiftI &&
1132              n1->in(2) == n1->in(1)->in(2) &&
1133              n1->in(2)->is_Con()) {
1134     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
1135     // %%% This check should match any shift in [1..31].
1136     if (shift == 16 || shift == 8) {
1137       t1 = n1;
1138       t2 = t1->in(1);
1139       n1 = t2->in(1);
1140       n1op = n1->Opcode();
1141       if (shift == 16) {
1142         trunc_t = TypeInt::SHORT;
1143       } else if (shift == 8) {
1144         trunc_t = TypeInt::BYTE;
1145       }
1146     }
1147   }
1148 
1149   // If (maybe after stripping) it is an AddI, we won:
1150   if (n1op == Op_AddI) {
1151     *trunc1 = t1;
1152     *trunc2 = t2;
1153     *trunc_type = trunc_t;
1154     return n1;
1155   }
1156 
1157   // failed
1158   return NULL;
1159 }
1160 
1161 LoopNode* CountedLoopNode::skip_strip_mined(int expect_opaq) {
1162   if (is_strip_mined()) {
1163     verify_strip_mined(expect_opaq);
1164     return in(EntryControl)->as_Loop();
1165   }
1166   return this;
1167 }
1168 
1169 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
1170   assert(is_strip_mined(), "not a strip mined loop");
1171   Node* c = in(EntryControl);
1172   if (c == NULL || c->is_top() || !c->is_OuterStripMinedLoop()) {
1173     return NULL;
1174   }
1175   return c->as_OuterStripMinedLoop();
1176 }
1177 
1178 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
1179   Node* c = in(LoopBackControl);
1180   if (c == NULL || c->is_top()) {
1181     return NULL;
1182   }
1183   return c->as_IfTrue();
1184 }
1185 
1186 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
1187   LoopNode* l = outer_loop();
1188   if (l == NULL) {
1189     return NULL;
1190   }
1191   return l->outer_loop_tail();
1192 }
1193 
1194 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
1195   IfTrueNode* proj = outer_loop_tail();
1196   if (proj == NULL) {
1197     return NULL;
1198   }
1199   Node* c = proj->in(0);
1200   if (c == NULL || c->is_top() || c->outcnt() != 2) {
1201     return NULL;
1202   }
1203   return c->as_OuterStripMinedLoopEnd();
1204 }
1205 
1206 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
1207   LoopNode* l = outer_loop();
1208   if (l == NULL) {
1209     return NULL;
1210   }
1211   return l->outer_loop_end();
1212 }
1213 
1214 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
1215   IfNode* le = outer_loop_end();
1216   if (le == NULL) {
1217     return NULL;
1218   }
1219   Node* c = le->proj_out_or_null(false);
1220   if (c == NULL) {
1221     return NULL;
1222   }
1223   return c->as_IfFalse();
1224 }
1225 
1226 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
1227   LoopNode* l = outer_loop();
1228   if (l == NULL) {
1229     return NULL;
1230   }
1231   return l->outer_loop_exit();
1232 }
1233 
1234 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
1235   IfNode* le = outer_loop_end();
1236   if (le == NULL) {
1237     return NULL;
1238   }
1239   Node* c = le->in(0);
1240   if (c == NULL || c->is_top()) {
1241     return NULL;
1242   }
1243   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
1244   return c->as_SafePoint();
1245 }
1246 
1247 SafePointNode* CountedLoopNode::outer_safepoint() const {
1248   LoopNode* l = outer_loop();
1249   if (l == NULL) {
1250     return NULL;
1251   }
1252   return l->outer_safepoint();
1253 }
1254 
1255 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
1256   // Look for the outer & inner strip mined loop, reduce number of
1257   // iterations of the inner loop, set exit condition of outer loop,
1258   // construct required phi nodes for outer loop.
1259   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
1260   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
1261   Node* inner_iv_phi = inner_cl->phi();
1262   if (inner_iv_phi == NULL) {
1263     IfNode* outer_le = outer_loop_end();
1264     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1265     igvn->replace_node(outer_le, iff);
1266     inner_cl->clear_strip_mined();
1267     return;
1268   }
1269   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
1270 
1271   int stride = inner_cl->stride_con();
1272   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS(stride);
1273   int scaled_iters = (int)scaled_iters_long;
1274   int short_scaled_iters = LoopStripMiningIterShortLoop* ABS(stride);
1275   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
1276   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
1277   assert(iter_estimate > 0, "broken");
1278   if ((jlong)scaled_iters != scaled_iters_long || iter_estimate <= short_scaled_iters) {
1279     // Remove outer loop and safepoint (too few iterations)
1280     Node* outer_sfpt = outer_safepoint();
1281     Node* outer_out = outer_loop_exit();
1282     igvn->replace_node(outer_out, outer_sfpt->in(0));
1283     igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
1284     inner_cl->clear_strip_mined();
1285     return;
1286   }
1287   if (iter_estimate <= scaled_iters_long) {
1288     // We would only go through one iteration of
1289     // the outer loop: drop the outer loop but
1290     // keep the safepoint so we don't run for
1291     // too long without a safepoint
1292     IfNode* outer_le = outer_loop_end();
1293     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1294     igvn->replace_node(outer_le, iff);
1295     inner_cl->clear_strip_mined();
1296     return;
1297   }
1298 
1299   Node* cle_tail = inner_cle->proj_out(true);
1300   ResourceMark rm;
1301   Node_List old_new;
1302   if (cle_tail->outcnt() > 1) {
1303     // Look for nodes on backedge of inner loop and clone them
1304     Unique_Node_List backedge_nodes;
1305     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
1306       Node* u = cle_tail->fast_out(i);
1307       if (u != inner_cl) {
1308         assert(!u->is_CFG(), "control flow on the backedge?");
1309         backedge_nodes.push(u);
1310       }
1311     }
1312     uint last = igvn->C->unique();
1313     for (uint next = 0; next < backedge_nodes.size(); next++) {
1314       Node* n = backedge_nodes.at(next);
1315       old_new.map(n->_idx, n->clone());
1316       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1317         Node* u = n->fast_out(i);
1318         assert(!u->is_CFG(), "broken");
1319         if (u->_idx >= last) {
1320           continue;
1321         }
1322         if (!u->is_Phi()) {
1323           backedge_nodes.push(u);
1324         } else {
1325           assert(u->in(0) == inner_cl, "strange phi on the backedge");
1326         }
1327       }
1328     }
1329     // Put the clones on the outer loop backedge
1330     Node* le_tail = outer_loop_tail();
1331     for (uint next = 0; next < backedge_nodes.size(); next++) {
1332       Node *n = old_new[backedge_nodes.at(next)->_idx];
1333       for (uint i = 1; i < n->req(); i++) {
1334         if (n->in(i) != NULL && old_new[n->in(i)->_idx] != NULL) {
1335           n->set_req(i, old_new[n->in(i)->_idx]);
1336         }
1337       }
1338       if (n->in(0) != NULL && n->in(0) == cle_tail) {
1339         n->set_req(0, le_tail);
1340       }
1341       igvn->register_new_node_with_optimizer(n);
1342     }
1343   }
1344 
1345   Node* iv_phi = NULL;
1346   // Make a clone of each phi in the inner loop
1347   // for the outer loop
1348   for (uint i = 0; i < inner_cl->outcnt(); i++) {
1349     Node* u = inner_cl->raw_out(i);
1350     if (u->is_Phi()) {
1351       assert(u->in(0) == inner_cl, "inconsistent");
1352       Node* phi = u->clone();
1353       phi->set_req(0, this);
1354       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
1355       if (be != NULL) {
1356         phi->set_req(LoopNode::LoopBackControl, be);
1357       }
1358       phi = igvn->transform(phi);
1359       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
1360       if (u == inner_iv_phi) {
1361         iv_phi = phi;
1362       }
1363     }
1364   }
1365   Node* cle_out = inner_cle->proj_out(false);
1366   if (cle_out->outcnt() > 1) {
1367     // Look for chains of stores that were sunk
1368     // out of the inner loop and are in the outer loop
1369     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
1370       Node* u = cle_out->fast_out(i);
1371       if (u->is_Store()) {
1372         Node* first = u;
1373         for(;;) {
1374           Node* next = first->in(MemNode::Memory);
1375           if (!next->is_Store() || next->in(0) != cle_out) {
1376             break;
1377           }
1378           first = next;
1379         }
1380         Node* last = u;
1381         for(;;) {
1382           Node* next = NULL;
1383           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
1384             Node* uu = last->fast_out(j);
1385             if (uu->is_Store() && uu->in(0) == cle_out) {
1386               assert(next == NULL, "only one in the outer loop");
1387               next = uu;
1388             }
1389           }
1390           if (next == NULL) {
1391             break;
1392           }
1393           last = next;
1394         }
1395         Node* phi = NULL;
1396         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1397           Node* uu = fast_out(j);
1398           if (uu->is_Phi()) {
1399             Node* be = uu->in(LoopNode::LoopBackControl);
1400             if (be->is_Store() && old_new[be->_idx] != NULL) {
1401               assert(false, "store on the backedge + sunk stores: unsupported");
1402               // drop outer loop
1403               IfNode* outer_le = outer_loop_end();
1404               Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1405               igvn->replace_node(outer_le, iff);
1406               inner_cl->clear_strip_mined();
1407               return;
1408             }
1409             if (be == last || be == first->in(MemNode::Memory)) {
1410               assert(phi == NULL, "only one phi");
1411               phi = uu;
1412             }
1413           }
1414         }
1415 #ifdef ASSERT
1416         for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1417           Node* uu = fast_out(j);
1418           if (uu->is_Phi() && uu->bottom_type() == Type::MEMORY) {
1419             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
1420               assert(phi == uu, "what's that phi?");
1421             } else if (uu->adr_type() == TypePtr::BOTTOM) {
1422               Node* n = uu->in(LoopNode::LoopBackControl);
1423               uint limit = igvn->C->live_nodes();
1424               uint i = 0;
1425               while (n != uu) {
1426                 i++;
1427                 assert(i < limit, "infinite loop");
1428                 if (n->is_Proj()) {
1429                   n = n->in(0);
1430                 } else if (n->is_SafePoint() || n->is_MemBar()) {
1431                   n = n->in(TypeFunc::Memory);
1432                 } else if (n->is_Phi()) {
1433                   n = n->in(1);
1434                 } else if (n->is_MergeMem()) {
1435                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
1436                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
1437                   n = n->in(MemNode::Memory);
1438                 } else {
1439                   n->dump();
1440                   ShouldNotReachHere();
1441                 }
1442               }
1443             }
1444           }
1445         }
1446 #endif
1447         if (phi == NULL) {
1448           // If the an entire chains was sunk, the
1449           // inner loop has no phi for that memory
1450           // slice, create one for the outer loop
1451           phi = PhiNode::make(this, first->in(MemNode::Memory), Type::MEMORY,
1452                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
1453           phi->set_req(LoopNode::LoopBackControl, last);
1454           phi = igvn->transform(phi);
1455           igvn->replace_input_of(first, MemNode::Memory, phi);
1456         } else {
1457           // Or fix the outer loop fix to include
1458           // that chain of stores.
1459           Node* be = phi->in(LoopNode::LoopBackControl);
1460           assert(!(be->is_Store() && old_new[be->_idx] != NULL), "store on the backedge + sunk stores: unsupported");
1461           if (be == first->in(MemNode::Memory)) {
1462             if (be == phi->in(LoopNode::LoopBackControl)) {
1463               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
1464             } else {
1465               igvn->replace_input_of(be, MemNode::Memory, last);
1466             }
1467           } else {
1468 #ifdef ASSERT
1469             if (be == phi->in(LoopNode::LoopBackControl)) {
1470               assert(phi->in(LoopNode::LoopBackControl) == last, "");
1471             } else {
1472               assert(be->in(MemNode::Memory) == last, "");
1473             }
1474 #endif
1475           }
1476         }
1477       }
1478     }
1479   }
1480 
1481   if (iv_phi != NULL) {
1482     // Now adjust the inner loop's exit condition
1483     Node* limit = inner_cl->limit();
1484     Node* sub = NULL;
1485     if (stride > 0) {
1486       sub = igvn->transform(new SubINode(limit, iv_phi));
1487     } else {
1488       sub = igvn->transform(new SubINode(iv_phi, limit));
1489     }
1490     Node* min = igvn->transform(new MinINode(sub, igvn->intcon(scaled_iters)));
1491     Node* new_limit = NULL;
1492     if (stride > 0) {
1493       new_limit = igvn->transform(new AddINode(min, iv_phi));
1494     } else {
1495       new_limit = igvn->transform(new SubINode(iv_phi, min));
1496     }
1497     Node* cmp = inner_cle->cmp_node()->clone();
1498     igvn->replace_input_of(cmp, 2, new_limit);
1499     Node* bol = inner_cle->in(CountedLoopEndNode::TestValue)->clone();
1500     cmp->set_req(2, limit);
1501     bol->set_req(1, igvn->transform(cmp));
1502     igvn->replace_input_of(outer_loop_end(), 1, igvn->transform(bol));
1503   } else {
1504     assert(false, "should be able to adjust outer loop");
1505     IfNode* outer_le = outer_loop_end();
1506     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
1507     igvn->replace_node(outer_le, iff);
1508     inner_cl->clear_strip_mined();
1509   }
1510 }
1511 
1512 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
1513   if (!in(0)) return Type::TOP;
1514   if (phase->type(in(0)) == Type::TOP)
1515     return Type::TOP;
1516 
1517   return TypeTuple::IFBOTH;
1518 }
1519 
1520 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1521   if (remove_dead_region(phase, can_reshape))  return this;
1522 
1523   return NULL;
1524 }
1525 
1526 //------------------------------filtered_type--------------------------------
1527 // Return a type based on condition control flow
1528 // A successful return will be a type that is restricted due
1529 // to a series of dominating if-tests, such as:
1530 //    if (i < 10) {
1531 //       if (i > 0) {
1532 //          here: "i" type is [1..10)
1533 //       }
1534 //    }
1535 // or a control flow merge
1536 //    if (i < 10) {
1537 //       do {
1538 //          phi( , ) -- at top of loop type is [min_int..10)
1539 //         i = ?
1540 //       } while ( i < 10)
1541 //
1542 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1543   assert(n && n->bottom_type()->is_int(), "must be int");
1544   const TypeInt* filtered_t = NULL;
1545   if (!n->is_Phi()) {
1546     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1547     filtered_t = filtered_type_from_dominators(n, n_ctrl);
1548 
1549   } else {
1550     Node* phi    = n->as_Phi();
1551     Node* region = phi->in(0);
1552     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1553     if (region && region != C->top()) {
1554       for (uint i = 1; i < phi->req(); i++) {
1555         Node* val   = phi->in(i);
1556         Node* use_c = region->in(i);
1557         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1558         if (val_t != NULL) {
1559           if (filtered_t == NULL) {
1560             filtered_t = val_t;
1561           } else {
1562             filtered_t = filtered_t->meet(val_t)->is_int();
1563           }
1564         }
1565       }
1566     }
1567   }
1568   const TypeInt* n_t = _igvn.type(n)->is_int();
1569   if (filtered_t != NULL) {
1570     n_t = n_t->join(filtered_t)->is_int();
1571   }
1572   return n_t;
1573 }
1574 
1575 
1576 //------------------------------filtered_type_from_dominators--------------------------------
1577 // Return a possibly more restrictive type for val based on condition control flow of dominators
1578 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1579   if (val->is_Con()) {
1580      return val->bottom_type()->is_int();
1581   }
1582   uint if_limit = 10; // Max number of dominating if's visited
1583   const TypeInt* rtn_t = NULL;
1584 
1585   if (use_ctrl && use_ctrl != C->top()) {
1586     Node* val_ctrl = get_ctrl(val);
1587     uint val_dom_depth = dom_depth(val_ctrl);
1588     Node* pred = use_ctrl;
1589     uint if_cnt = 0;
1590     while (if_cnt < if_limit) {
1591       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1592         if_cnt++;
1593         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1594         if (if_t != NULL) {
1595           if (rtn_t == NULL) {
1596             rtn_t = if_t;
1597           } else {
1598             rtn_t = rtn_t->join(if_t)->is_int();
1599           }
1600         }
1601       }
1602       pred = idom(pred);
1603       if (pred == NULL || pred == C->top()) {
1604         break;
1605       }
1606       // Stop if going beyond definition block of val
1607       if (dom_depth(pred) < val_dom_depth) {
1608         break;
1609       }
1610     }
1611   }
1612   return rtn_t;
1613 }
1614 
1615 
1616 //------------------------------dump_spec--------------------------------------
1617 // Dump special per-node info
1618 #ifndef PRODUCT
1619 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1620   if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
1621     BoolTest bt( test_trip()); // Added this for g++.
1622 
1623     st->print("[");
1624     bt.dump_on(st);
1625     st->print("]");
1626   }
1627   st->print(" ");
1628   IfNode::dump_spec(st);
1629 }
1630 #endif
1631 
1632 //=============================================================================
1633 //------------------------------is_member--------------------------------------
1634 // Is 'l' a member of 'this'?
1635 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
1636   while( l->_nest > _nest ) l = l->_parent;
1637   return l == this;
1638 }
1639 
1640 //------------------------------set_nest---------------------------------------
1641 // Set loop tree nesting depth.  Accumulate _has_call bits.
1642 int IdealLoopTree::set_nest( uint depth ) {
1643   _nest = depth;
1644   int bits = _has_call;
1645   if( _child ) bits |= _child->set_nest(depth+1);
1646   if( bits ) _has_call = 1;
1647   if( _next  ) bits |= _next ->set_nest(depth  );
1648   return bits;
1649 }
1650 
1651 //------------------------------split_fall_in----------------------------------
1652 // Split out multiple fall-in edges from the loop header.  Move them to a
1653 // private RegionNode before the loop.  This becomes the loop landing pad.
1654 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1655   PhaseIterGVN &igvn = phase->_igvn;
1656   uint i;
1657 
1658   // Make a new RegionNode to be the landing pad.
1659   Node *landing_pad = new RegionNode( fall_in_cnt+1 );
1660   phase->set_loop(landing_pad,_parent);
1661   // Gather all the fall-in control paths into the landing pad
1662   uint icnt = fall_in_cnt;
1663   uint oreq = _head->req();
1664   for( i = oreq-1; i>0; i-- )
1665     if( !phase->is_member( this, _head->in(i) ) )
1666       landing_pad->set_req(icnt--,_head->in(i));
1667 
1668   // Peel off PhiNode edges as well
1669   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1670     Node *oj = _head->fast_out(j);
1671     if( oj->is_Phi() ) {
1672       PhiNode* old_phi = oj->as_Phi();
1673       assert( old_phi->region() == _head, "" );
1674       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1675       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1676       uint icnt = fall_in_cnt;
1677       for( i = oreq-1; i>0; i-- ) {
1678         if( !phase->is_member( this, _head->in(i) ) ) {
1679           p->init_req(icnt--, old_phi->in(i));
1680           // Go ahead and clean out old edges from old phi
1681           old_phi->del_req(i);
1682         }
1683       }
1684       // Search for CSE's here, because ZKM.jar does a lot of
1685       // loop hackery and we need to be a little incremental
1686       // with the CSE to avoid O(N^2) node blow-up.
1687       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1688       if( p2 ) {                // Found CSE
1689         p->destruct();          // Recover useless new node
1690         p = p2;                 // Use old node
1691       } else {
1692         igvn.register_new_node_with_optimizer(p, old_phi);
1693       }
1694       // Make old Phi refer to new Phi.
1695       old_phi->add_req(p);
1696       // Check for the special case of making the old phi useless and
1697       // disappear it.  In JavaGrande I have a case where this useless
1698       // Phi is the loop limit and prevents recognizing a CountedLoop
1699       // which in turn prevents removing an empty loop.
1700       Node *id_old_phi = old_phi->Identity( &igvn );
1701       if( id_old_phi != old_phi ) { // Found a simple identity?
1702         // Note that I cannot call 'replace_node' here, because
1703         // that will yank the edge from old_phi to the Region and
1704         // I'm mid-iteration over the Region's uses.
1705         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1706           Node* use = old_phi->last_out(i);
1707           igvn.rehash_node_delayed(use);
1708           uint uses_found = 0;
1709           for (uint j = 0; j < use->len(); j++) {
1710             if (use->in(j) == old_phi) {
1711               if (j < use->req()) use->set_req (j, id_old_phi);
1712               else                use->set_prec(j, id_old_phi);
1713               uses_found++;
1714             }
1715           }
1716           i -= uses_found;    // we deleted 1 or more copies of this edge
1717         }
1718       }
1719       igvn._worklist.push(old_phi);
1720     }
1721   }
1722   // Finally clean out the fall-in edges from the RegionNode
1723   for( i = oreq-1; i>0; i-- ) {
1724     if( !phase->is_member( this, _head->in(i) ) ) {
1725       _head->del_req(i);
1726     }
1727   }
1728   igvn.rehash_node_delayed(_head);
1729   // Transform landing pad
1730   igvn.register_new_node_with_optimizer(landing_pad, _head);
1731   // Insert landing pad into the header
1732   _head->add_req(landing_pad);
1733 }
1734 
1735 //------------------------------split_outer_loop-------------------------------
1736 // Split out the outermost loop from this shared header.
1737 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1738   PhaseIterGVN &igvn = phase->_igvn;
1739 
1740   // Find index of outermost loop; it should also be my tail.
1741   uint outer_idx = 1;
1742   while( _head->in(outer_idx) != _tail ) outer_idx++;
1743 
1744   // Make a LoopNode for the outermost loop.
1745   Node *ctl = _head->in(LoopNode::EntryControl);
1746   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
1747   outer = igvn.register_new_node_with_optimizer(outer, _head);
1748   phase->set_created_loop_node();
1749 
1750   // Outermost loop falls into '_head' loop
1751   _head->set_req(LoopNode::EntryControl, outer);
1752   _head->del_req(outer_idx);
1753   // Split all the Phis up between '_head' loop and 'outer' loop.
1754   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1755     Node *out = _head->fast_out(j);
1756     if( out->is_Phi() ) {
1757       PhiNode *old_phi = out->as_Phi();
1758       assert( old_phi->region() == _head, "" );
1759       Node *phi = PhiNode::make_blank(outer, old_phi);
1760       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1761       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1762       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1763       // Make old Phi point to new Phi on the fall-in path
1764       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1765       old_phi->del_req(outer_idx);
1766     }
1767   }
1768 
1769   // Use the new loop head instead of the old shared one
1770   _head = outer;
1771   phase->set_loop(_head, this);
1772 }
1773 
1774 //------------------------------fix_parent-------------------------------------
1775 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1776   loop->_parent = parent;
1777   if( loop->_child ) fix_parent( loop->_child, loop   );
1778   if( loop->_next  ) fix_parent( loop->_next , parent );
1779 }
1780 
1781 //------------------------------estimate_path_freq-----------------------------
1782 static float estimate_path_freq( Node *n ) {
1783   // Try to extract some path frequency info
1784   IfNode *iff;
1785   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1786     uint nop = n->Opcode();
1787     if( nop == Op_SafePoint ) {   // Skip any safepoint
1788       n = n->in(0);
1789       continue;
1790     }
1791     if( nop == Op_CatchProj ) {   // Get count from a prior call
1792       // Assume call does not always throw exceptions: means the call-site
1793       // count is also the frequency of the fall-through path.
1794       assert( n->is_CatchProj(), "" );
1795       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1796         return 0.0f;            // Assume call exception path is rare
1797       Node *call = n->in(0)->in(0)->in(0);
1798       assert( call->is_Call(), "expect a call here" );
1799       const JVMState *jvms = ((CallNode*)call)->jvms();
1800       ciMethodData* methodData = jvms->method()->method_data();
1801       if (!methodData->is_mature())  return 0.0f; // No call-site data
1802       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1803       if ((data == NULL) || !data->is_CounterData()) {
1804         // no call profile available, try call's control input
1805         n = n->in(0);
1806         continue;
1807       }
1808       return data->as_CounterData()->count()/FreqCountInvocations;
1809     }
1810     // See if there's a gating IF test
1811     Node *n_c = n->in(0);
1812     if( !n_c->is_If() ) break;       // No estimate available
1813     iff = n_c->as_If();
1814     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1815       // Compute how much count comes on this path
1816       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1817     // Have no count info.  Skip dull uncommon-trap like branches.
1818     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1819         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1820       break;
1821     // Skip through never-taken branch; look for a real loop exit.
1822     n = iff->in(0);
1823   }
1824   return 0.0f;                  // No estimate available
1825 }
1826 
1827 //------------------------------merge_many_backedges---------------------------
1828 // Merge all the backedges from the shared header into a private Region.
1829 // Feed that region as the one backedge to this loop.
1830 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1831   uint i;
1832 
1833   // Scan for the top 2 hottest backedges
1834   float hotcnt = 0.0f;
1835   float warmcnt = 0.0f;
1836   uint hot_idx = 0;
1837   // Loop starts at 2 because slot 1 is the fall-in path
1838   for( i = 2; i < _head->req(); i++ ) {
1839     float cnt = estimate_path_freq(_head->in(i));
1840     if( cnt > hotcnt ) {       // Grab hottest path
1841       warmcnt = hotcnt;
1842       hotcnt = cnt;
1843       hot_idx = i;
1844     } else if( cnt > warmcnt ) { // And 2nd hottest path
1845       warmcnt = cnt;
1846     }
1847   }
1848 
1849   // See if the hottest backedge is worthy of being an inner loop
1850   // by being much hotter than the next hottest backedge.
1851   if( hotcnt <= 0.0001 ||
1852       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1853 
1854   // Peel out the backedges into a private merge point; peel
1855   // them all except optionally hot_idx.
1856   PhaseIterGVN &igvn = phase->_igvn;
1857 
1858   Node *hot_tail = NULL;
1859   // Make a Region for the merge point
1860   Node *r = new RegionNode(1);
1861   for( i = 2; i < _head->req(); i++ ) {
1862     if( i != hot_idx )
1863       r->add_req( _head->in(i) );
1864     else hot_tail = _head->in(i);
1865   }
1866   igvn.register_new_node_with_optimizer(r, _head);
1867   // Plug region into end of loop _head, followed by hot_tail
1868   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1869   igvn.replace_input_of(_head, 2, r);
1870   if( hot_idx ) _head->add_req(hot_tail);
1871 
1872   // Split all the Phis up between '_head' loop and the Region 'r'
1873   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1874     Node *out = _head->fast_out(j);
1875     if( out->is_Phi() ) {
1876       PhiNode* n = out->as_Phi();
1877       igvn.hash_delete(n);      // Delete from hash before hacking edges
1878       Node *hot_phi = NULL;
1879       Node *phi = new PhiNode(r, n->type(), n->adr_type());
1880       // Check all inputs for the ones to peel out
1881       uint j = 1;
1882       for( uint i = 2; i < n->req(); i++ ) {
1883         if( i != hot_idx )
1884           phi->set_req( j++, n->in(i) );
1885         else hot_phi = n->in(i);
1886       }
1887       // Register the phi but do not transform until whole place transforms
1888       igvn.register_new_node_with_optimizer(phi, n);
1889       // Add the merge phi to the old Phi
1890       while( n->req() > 3 ) n->del_req( n->req()-1 );
1891       igvn.replace_input_of(n, 2, phi);
1892       if( hot_idx ) n->add_req(hot_phi);
1893     }
1894   }
1895 
1896 
1897   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1898   // of self loop tree.  Turn self into a loop headed by _head and with
1899   // tail being the new merge point.
1900   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1901   phase->set_loop(_tail,ilt);   // Adjust tail
1902   _tail = r;                    // Self's tail is new merge point
1903   phase->set_loop(r,this);
1904   ilt->_child = _child;         // New guy has my children
1905   _child = ilt;                 // Self has new guy as only child
1906   ilt->_parent = this;          // new guy has self for parent
1907   ilt->_nest = _nest;           // Same nesting depth (for now)
1908 
1909   // Starting with 'ilt', look for child loop trees using the same shared
1910   // header.  Flatten these out; they will no longer be loops in the end.
1911   IdealLoopTree **pilt = &_child;
1912   while( ilt ) {
1913     if( ilt->_head == _head ) {
1914       uint i;
1915       for( i = 2; i < _head->req(); i++ )
1916         if( _head->in(i) == ilt->_tail )
1917           break;                // Still a loop
1918       if( i == _head->req() ) { // No longer a loop
1919         // Flatten ilt.  Hang ilt's "_next" list from the end of
1920         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1921         IdealLoopTree **cp = &ilt->_child;
1922         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1923         *cp = ilt->_next;       // Hang next list at end of child list
1924         *pilt = ilt->_child;    // Move child up to replace ilt
1925         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1926         ilt = ilt->_child;      // Repeat using new ilt
1927         continue;               // do not advance over ilt->_child
1928       }
1929       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1930       phase->set_loop(_head,ilt);
1931     }
1932     pilt = &ilt->_child;        // Advance to next
1933     ilt = *pilt;
1934   }
1935 
1936   if( _child ) fix_parent( _child, this );
1937 }
1938 
1939 //------------------------------beautify_loops---------------------------------
1940 // Split shared headers and insert loop landing pads.
1941 // Insert a LoopNode to replace the RegionNode.
1942 // Return TRUE if loop tree is structurally changed.
1943 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1944   bool result = false;
1945   // Cache parts in locals for easy
1946   PhaseIterGVN &igvn = phase->_igvn;
1947 
1948   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1949 
1950   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1951   int fall_in_cnt = 0;
1952   for( uint i = 1; i < _head->req(); i++ )
1953     if( !phase->is_member( this, _head->in(i) ) )
1954       fall_in_cnt++;
1955   assert( fall_in_cnt, "at least 1 fall-in path" );
1956   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1957     split_fall_in( phase, fall_in_cnt );
1958 
1959   // Swap inputs to the _head and all Phis to move the fall-in edge to
1960   // the left.
1961   fall_in_cnt = 1;
1962   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1963     fall_in_cnt++;
1964   if( fall_in_cnt > 1 ) {
1965     // Since I am just swapping inputs I do not need to update def-use info
1966     Node *tmp = _head->in(1);
1967     igvn.rehash_node_delayed(_head);
1968     _head->set_req( 1, _head->in(fall_in_cnt) );
1969     _head->set_req( fall_in_cnt, tmp );
1970     // Swap also all Phis
1971     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1972       Node* phi = _head->fast_out(i);
1973       if( phi->is_Phi() ) {
1974         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
1975         tmp = phi->in(1);
1976         phi->set_req( 1, phi->in(fall_in_cnt) );
1977         phi->set_req( fall_in_cnt, tmp );
1978       }
1979     }
1980   }
1981   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1982   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1983 
1984   // If I am a shared header (multiple backedges), peel off the many
1985   // backedges into a private merge point and use the merge point as
1986   // the one true backedge.
1987   if( _head->req() > 3 ) {
1988     // Merge the many backedges into a single backedge but leave
1989     // the hottest backedge as separate edge for the following peel.
1990     merge_many_backedges( phase );
1991     result = true;
1992   }
1993 
1994   // If I have one hot backedge, peel off myself loop.
1995   // I better be the outermost loop.
1996   if (_head->req() > 3 && !_irreducible) {
1997     split_outer_loop( phase );
1998     result = true;
1999 
2000   } else if (!_head->is_Loop() && !_irreducible) {
2001     // Make a new LoopNode to replace the old loop head
2002     Node *l = new LoopNode( _head->in(1), _head->in(2) );
2003     l = igvn.register_new_node_with_optimizer(l, _head);
2004     phase->set_created_loop_node();
2005     // Go ahead and replace _head
2006     phase->_igvn.replace_node( _head, l );
2007     _head = l;
2008     phase->set_loop(_head, this);
2009   }
2010 
2011   // Now recursively beautify nested loops
2012   if( _child ) result |= _child->beautify_loops( phase );
2013   if( _next  ) result |= _next ->beautify_loops( phase );
2014   return result;
2015 }
2016 
2017 //------------------------------allpaths_check_safepts----------------------------
2018 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
2019 // encountered.  Helper for check_safepts.
2020 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
2021   assert(stack.size() == 0, "empty stack");
2022   stack.push(_tail);
2023   visited.Clear();
2024   visited.set(_tail->_idx);
2025   while (stack.size() > 0) {
2026     Node* n = stack.pop();
2027     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2028       // Terminate this path
2029     } else if (n->Opcode() == Op_SafePoint) {
2030       if (_phase->get_loop(n) != this) {
2031         if (_required_safept == NULL) _required_safept = new Node_List();
2032         _required_safept->push(n);  // save the one closest to the tail
2033       }
2034       // Terminate this path
2035     } else {
2036       uint start = n->is_Region() ? 1 : 0;
2037       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
2038       for (uint i = start; i < end; i++) {
2039         Node* in = n->in(i);
2040         assert(in->is_CFG(), "must be");
2041         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
2042           stack.push(in);
2043         }
2044       }
2045     }
2046   }
2047 }
2048 
2049 //------------------------------check_safepts----------------------------
2050 // Given dominators, try to find loops with calls that must always be
2051 // executed (call dominates loop tail).  These loops do not need non-call
2052 // safepoints (ncsfpt).
2053 //
2054 // A complication is that a safepoint in a inner loop may be needed
2055 // by an outer loop. In the following, the inner loop sees it has a
2056 // call (block 3) on every path from the head (block 2) to the
2057 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
2058 // in block 2, _but_ this leaves the outer loop without a safepoint.
2059 //
2060 //          entry  0
2061 //                 |
2062 //                 v
2063 // outer 1,2    +->1
2064 //              |  |
2065 //              |  v
2066 //              |  2<---+  ncsfpt in 2
2067 //              |_/|\   |
2068 //                 | v  |
2069 // inner 2,3      /  3  |  call in 3
2070 //               /   |  |
2071 //              v    +--+
2072 //        exit  4
2073 //
2074 //
2075 // This method creates a list (_required_safept) of ncsfpt nodes that must
2076 // be protected is created for each loop. When a ncsfpt maybe deleted, it
2077 // is first looked for in the lists for the outer loops of the current loop.
2078 //
2079 // The insights into the problem:
2080 //  A) counted loops are okay
2081 //  B) innermost loops are okay (only an inner loop can delete
2082 //     a ncsfpt needed by an outer loop)
2083 //  C) a loop is immune from an inner loop deleting a safepoint
2084 //     if the loop has a call on the idom-path
2085 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
2086 //     idom-path that is not in a nested loop
2087 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
2088 //     loop needs to be prevented from deletion by an inner loop
2089 //
2090 // There are two analyses:
2091 //  1) The first, and cheaper one, scans the loop body from
2092 //     tail to head following the idom (immediate dominator)
2093 //     chain, looking for the cases (C,D,E) above.
2094 //     Since inner loops are scanned before outer loops, there is summary
2095 //     information about inner loops.  Inner loops can be skipped over
2096 //     when the tail of an inner loop is encountered.
2097 //
2098 //  2) The second, invoked if the first fails to find a call or ncsfpt on
2099 //     the idom path (which is rare), scans all predecessor control paths
2100 //     from the tail to the head, terminating a path when a call or sfpt
2101 //     is encountered, to find the ncsfpt's that are closest to the tail.
2102 //
2103 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
2104   // Bottom up traversal
2105   IdealLoopTree* ch = _child;
2106   if (_child) _child->check_safepts(visited, stack);
2107   if (_next)  _next ->check_safepts(visited, stack);
2108 
2109   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
2110     bool  has_call         = false; // call on dom-path
2111     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
2112     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
2113     // Scan the dom-path nodes from tail to head
2114     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
2115       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
2116         has_call = true;
2117         _has_sfpt = 1;          // Then no need for a safept!
2118         break;
2119       } else if (n->Opcode() == Op_SafePoint) {
2120         if (_phase->get_loop(n) == this) {
2121           has_local_ncsfpt = true;
2122           break;
2123         }
2124         if (nonlocal_ncsfpt == NULL) {
2125           nonlocal_ncsfpt = n; // save the one closest to the tail
2126         }
2127       } else {
2128         IdealLoopTree* nlpt = _phase->get_loop(n);
2129         if (this != nlpt) {
2130           // If at an inner loop tail, see if the inner loop has already
2131           // recorded seeing a call on the dom-path (and stop.)  If not,
2132           // jump to the head of the inner loop.
2133           assert(is_member(nlpt), "nested loop");
2134           Node* tail = nlpt->_tail;
2135           if (tail->in(0)->is_If()) tail = tail->in(0);
2136           if (n == tail) {
2137             // If inner loop has call on dom-path, so does outer loop
2138             if (nlpt->_has_sfpt) {
2139               has_call = true;
2140               _has_sfpt = 1;
2141               break;
2142             }
2143             // Skip to head of inner loop
2144             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
2145             n = nlpt->_head;
2146           }
2147         }
2148       }
2149     }
2150     // Record safept's that this loop needs preserved when an
2151     // inner loop attempts to delete it's safepoints.
2152     if (_child != NULL && !has_call && !has_local_ncsfpt) {
2153       if (nonlocal_ncsfpt != NULL) {
2154         if (_required_safept == NULL) _required_safept = new Node_List();
2155         _required_safept->push(nonlocal_ncsfpt);
2156       } else {
2157         // Failed to find a suitable safept on the dom-path.  Now use
2158         // an all paths walk from tail to head, looking for safepoints to preserve.
2159         allpaths_check_safepts(visited, stack);
2160       }
2161     }
2162   }
2163 }
2164 
2165 //---------------------------is_deleteable_safept----------------------------
2166 // Is safept not required by an outer loop?
2167 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
2168   assert(sfpt->Opcode() == Op_SafePoint, "");
2169   IdealLoopTree* lp = get_loop(sfpt)->_parent;
2170   while (lp != NULL) {
2171     Node_List* sfpts = lp->_required_safept;
2172     if (sfpts != NULL) {
2173       for (uint i = 0; i < sfpts->size(); i++) {
2174         if (sfpt == sfpts->at(i))
2175           return false;
2176       }
2177     }
2178     lp = lp->_parent;
2179   }
2180   return true;
2181 }
2182 
2183 //---------------------------replace_parallel_iv-------------------------------
2184 // Replace parallel induction variable (parallel to trip counter)
2185 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
2186   assert(loop->_head->is_CountedLoop(), "");
2187   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2188   if (!cl->is_valid_counted_loop())
2189     return;         // skip malformed counted loop
2190   Node *incr = cl->incr();
2191   if (incr == NULL)
2192     return;         // Dead loop?
2193   Node *init = cl->init_trip();
2194   Node *phi  = cl->phi();
2195   int stride_con = cl->stride_con();
2196 
2197   // Visit all children, looking for Phis
2198   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
2199     Node *out = cl->out(i);
2200     // Look for other phis (secondary IVs). Skip dead ones
2201     if (!out->is_Phi() || out == phi || !has_node(out))
2202       continue;
2203     PhiNode* phi2 = out->as_Phi();
2204     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
2205     // Look for induction variables of the form:  X += constant
2206     if (phi2->region() != loop->_head ||
2207         incr2->req() != 3 ||
2208         incr2->in(1) != phi2 ||
2209         incr2 == incr ||
2210         incr2->Opcode() != Op_AddI ||
2211         !incr2->in(2)->is_Con())
2212       continue;
2213 
2214     // Check for parallel induction variable (parallel to trip counter)
2215     // via an affine function.  In particular, count-down loops with
2216     // count-up array indices are common. We only RCE references off
2217     // the trip-counter, so we need to convert all these to trip-counter
2218     // expressions.
2219     Node *init2 = phi2->in( LoopNode::EntryControl );
2220     int stride_con2 = incr2->in(2)->get_int();
2221 
2222     // The ratio of the two strides cannot be represented as an int
2223     // if stride_con2 is min_int and stride_con is -1.
2224     if (stride_con2 == min_jint && stride_con == -1) {
2225       continue;
2226     }
2227 
2228     // The general case here gets a little tricky.  We want to find the
2229     // GCD of all possible parallel IV's and make a new IV using this
2230     // GCD for the loop.  Then all possible IVs are simple multiples of
2231     // the GCD.  In practice, this will cover very few extra loops.
2232     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
2233     // where +/-1 is the common case, but other integer multiples are
2234     // also easy to handle.
2235     int ratio_con = stride_con2/stride_con;
2236 
2237     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
2238 #ifndef PRODUCT
2239       if (TraceLoopOpts) {
2240         tty->print("Parallel IV: %d ", phi2->_idx);
2241         loop->dump_head();
2242       }
2243 #endif
2244       // Convert to using the trip counter.  The parallel induction
2245       // variable differs from the trip counter by a loop-invariant
2246       // amount, the difference between their respective initial values.
2247       // It is scaled by the 'ratio_con'.
2248       Node* ratio = _igvn.intcon(ratio_con);
2249       set_ctrl(ratio, C->root());
2250       Node* ratio_init = new MulINode(init, ratio);
2251       _igvn.register_new_node_with_optimizer(ratio_init, init);
2252       set_early_ctrl(ratio_init);
2253       Node* diff = new SubINode(init2, ratio_init);
2254       _igvn.register_new_node_with_optimizer(diff, init2);
2255       set_early_ctrl(diff);
2256       Node* ratio_idx = new MulINode(phi, ratio);
2257       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
2258       set_ctrl(ratio_idx, cl);
2259       Node* add = new AddINode(ratio_idx, diff);
2260       _igvn.register_new_node_with_optimizer(add);
2261       set_ctrl(add, cl);
2262       _igvn.replace_node( phi2, add );
2263       // Sometimes an induction variable is unused
2264       if (add->outcnt() == 0) {
2265         _igvn.remove_dead_node(add);
2266       }
2267       --i; // deleted this phi; rescan starting with next position
2268       continue;
2269     }
2270   }
2271 }
2272 
2273 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
2274   Node* keep = NULL;
2275   if (keep_one) {
2276     // Look for a safepoint on the idom-path.
2277     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
2278       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
2279         keep = i;
2280         break; // Found one
2281       }
2282     }
2283   }
2284 
2285   // Don't remove any safepoints if it is requested to keep a single safepoint and
2286   // no safepoint was found on idom-path. It is not safe to remove any safepoint
2287   // in this case since there's no safepoint dominating all paths in the loop body.
2288   bool prune = !keep_one || keep != NULL;
2289 
2290   // Delete other safepoints in this loop.
2291   Node_List* sfpts = _safepts;
2292   if (prune && sfpts != NULL) {
2293     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
2294     for (uint i = 0; i < sfpts->size(); i++) {
2295       Node* n = sfpts->at(i);
2296       assert(phase->get_loop(n) == this, "");
2297       if (n != keep && phase->is_deleteable_safept(n)) {
2298         phase->lazy_replace(n, n->in(TypeFunc::Control));
2299       }
2300     }
2301   }
2302 }
2303 
2304 //------------------------------counted_loop-----------------------------------
2305 // Convert to counted loops where possible
2306 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
2307 
2308   // For grins, set the inner-loop flag here
2309   if (!_child) {
2310     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
2311   }
2312 
2313   IdealLoopTree* loop = this;
2314   if (_head->is_CountedLoop() ||
2315       phase->is_counted_loop(_head, loop)) {
2316 
2317     if (LoopStripMiningIter == 0 || (LoopStripMiningIter > 1 && _child == NULL)) {
2318       // Indicate we do not need a safepoint here
2319       _has_sfpt = 1;
2320     }
2321 
2322     // Remove safepoints
2323     bool keep_one_sfpt = !(_has_call || _has_sfpt);
2324     remove_safepoints(phase, keep_one_sfpt);
2325 
2326     // Look for induction variables
2327     phase->replace_parallel_iv(this);
2328 
2329   } else if (_parent != NULL && !_irreducible) {
2330     // Not a counted loop. Keep one safepoint.
2331     bool keep_one_sfpt = true;
2332     remove_safepoints(phase, keep_one_sfpt);
2333   }
2334 
2335   // Recursively
2336   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
2337   assert(loop->_child != this || (loop->_child->_child == NULL && loop->_child->_next == NULL), "would miss some loops");
2338   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
2339   if (loop->_next)  loop->_next ->counted_loop(phase);
2340 }
2341 
2342 #ifndef PRODUCT
2343 //------------------------------dump_head--------------------------------------
2344 // Dump 1 liner for loop header info
2345 void IdealLoopTree::dump_head( ) const {
2346   for (uint i=0; i<_nest; i++)
2347     tty->print("  ");
2348   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
2349   if (_irreducible) tty->print(" IRREDUCIBLE");
2350   Node* entry = _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl);
2351   Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
2352   if (predicate != NULL ) {
2353     tty->print(" limit_check");
2354     entry = entry->in(0)->in(0);
2355   }
2356   if (UseLoopPredicate) {
2357     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
2358     if (entry != NULL) {
2359       tty->print(" predicated");
2360     }
2361   }
2362   if (_head->is_CountedLoop()) {
2363     CountedLoopNode *cl = _head->as_CountedLoop();
2364     tty->print(" counted");
2365 
2366     Node* init_n = cl->init_trip();
2367     if (init_n  != NULL &&  init_n->is_Con())
2368       tty->print(" [%d,", cl->init_trip()->get_int());
2369     else
2370       tty->print(" [int,");
2371     Node* limit_n = cl->limit();
2372     if (limit_n  != NULL &&  limit_n->is_Con())
2373       tty->print("%d),", cl->limit()->get_int());
2374     else
2375       tty->print("int),");
2376     int stride_con  = cl->stride_con();
2377     if (stride_con > 0) tty->print("+");
2378     tty->print("%d", stride_con);
2379 
2380     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
2381 
2382     if (cl->is_pre_loop ()) tty->print(" pre" );
2383     if (cl->is_main_loop()) tty->print(" main");
2384     if (cl->is_post_loop()) tty->print(" post");
2385     if (cl->is_vectorized_loop()) tty->print(" vector");
2386     if (cl->range_checks_present()) tty->print(" rc ");
2387     if (cl->is_multiversioned()) tty->print(" multi ");
2388   }
2389   if (_has_call) tty->print(" has_call");
2390   if (_has_sfpt) tty->print(" has_sfpt");
2391   if (_rce_candidate) tty->print(" rce");
2392   if (_safepts != NULL && _safepts->size() > 0) {
2393     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
2394   }
2395   if (_required_safept != NULL && _required_safept->size() > 0) {
2396     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
2397   }
2398   if (Verbose) {
2399     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
2400   }
2401   if (_head->as_Loop()->is_strip_mined()) {
2402     tty->print(" strip_mined");
2403   }
2404   tty->cr();
2405 }
2406 
2407 //------------------------------dump-------------------------------------------
2408 // Dump loops by loop tree
2409 void IdealLoopTree::dump( ) const {
2410   dump_head();
2411   if (_child) _child->dump();
2412   if (_next)  _next ->dump();
2413 }
2414 
2415 #endif
2416 
2417 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
2418   if (loop == root) {
2419     if (loop->_child != NULL) {
2420       log->begin_head("loop_tree");
2421       log->end_head();
2422       if( loop->_child ) log_loop_tree(root, loop->_child, log);
2423       log->tail("loop_tree");
2424       assert(loop->_next == NULL, "what?");
2425     }
2426   } else {
2427     Node* head = loop->_head;
2428     log->begin_head("loop");
2429     log->print(" idx='%d' ", head->_idx);
2430     if (loop->_irreducible) log->print("irreducible='1' ");
2431     if (head->is_Loop()) {
2432       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
2433       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
2434     }
2435     if (head->is_CountedLoop()) {
2436       CountedLoopNode* cl = head->as_CountedLoop();
2437       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
2438       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
2439       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
2440     }
2441     log->end_head();
2442     if( loop->_child ) log_loop_tree(root, loop->_child, log);
2443     log->tail("loop");
2444     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
2445   }
2446 }
2447 
2448 //---------------------collect_potentially_useful_predicates-----------------------
2449 // Helper function to collect potentially useful predicates to prevent them from
2450 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
2451 void PhaseIdealLoop::collect_potentially_useful_predicates(
2452                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
2453   if (loop->_child) { // child
2454     collect_potentially_useful_predicates(loop->_child, useful_predicates);
2455   }
2456 
2457   // self (only loops that we can apply loop predication may use their predicates)
2458   if (loop->_head->is_Loop() &&
2459       !loop->_irreducible    &&
2460       !loop->tail()->is_top()) {
2461     LoopNode* lpn = loop->_head->as_Loop();
2462     Node* entry = lpn->in(LoopNode::EntryControl);
2463     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
2464     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
2465       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
2466       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2467       entry = entry->in(0)->in(0);
2468     }
2469     predicate_proj = find_predicate(entry); // Predicate
2470     if (predicate_proj != NULL ) {
2471       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
2472     }
2473   }
2474 
2475   if (loop->_next) { // sibling
2476     collect_potentially_useful_predicates(loop->_next, useful_predicates);
2477   }
2478 }
2479 
2480 //------------------------eliminate_useless_predicates-----------------------------
2481 // Eliminate all inserted predicates if they could not be used by loop predication.
2482 // Note: it will also eliminates loop limits check predicate since it also uses
2483 // Opaque1 node (see Parse::add_predicate()).
2484 void PhaseIdealLoop::eliminate_useless_predicates() {
2485   if (C->predicate_count() == 0)
2486     return; // no predicate left
2487 
2488   Unique_Node_List useful_predicates; // to store useful predicates
2489   if (C->has_loops()) {
2490     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
2491   }
2492 
2493   for (int i = C->predicate_count(); i > 0; i--) {
2494      Node * n = C->predicate_opaque1_node(i-1);
2495      assert(n->Opcode() == Op_Opaque1, "must be");
2496      if (!useful_predicates.member(n)) { // not in the useful list
2497        _igvn.replace_node(n, n->in(1));
2498      }
2499   }
2500 }
2501 
2502 //------------------------process_expensive_nodes-----------------------------
2503 // Expensive nodes have their control input set to prevent the GVN
2504 // from commoning them and as a result forcing the resulting node to
2505 // be in a more frequent path. Use CFG information here, to change the
2506 // control inputs so that some expensive nodes can be commoned while
2507 // not executed more frequently.
2508 bool PhaseIdealLoop::process_expensive_nodes() {
2509   assert(OptimizeExpensiveOps, "optimization off?");
2510 
2511   // Sort nodes to bring similar nodes together
2512   C->sort_expensive_nodes();
2513 
2514   bool progress = false;
2515 
2516   for (int i = 0; i < C->expensive_count(); ) {
2517     Node* n = C->expensive_node(i);
2518     int start = i;
2519     // Find nodes similar to n
2520     i++;
2521     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
2522     int end = i;
2523     // And compare them two by two
2524     for (int j = start; j < end; j++) {
2525       Node* n1 = C->expensive_node(j);
2526       if (is_node_unreachable(n1)) {
2527         continue;
2528       }
2529       for (int k = j+1; k < end; k++) {
2530         Node* n2 = C->expensive_node(k);
2531         if (is_node_unreachable(n2)) {
2532           continue;
2533         }
2534 
2535         assert(n1 != n2, "should be pair of nodes");
2536 
2537         Node* c1 = n1->in(0);
2538         Node* c2 = n2->in(0);
2539 
2540         Node* parent_c1 = c1;
2541         Node* parent_c2 = c2;
2542 
2543         // The call to get_early_ctrl_for_expensive() moves the
2544         // expensive nodes up but stops at loops that are in a if
2545         // branch. See whether we can exit the loop and move above the
2546         // If.
2547         if (c1->is_Loop()) {
2548           parent_c1 = c1->in(1);
2549         }
2550         if (c2->is_Loop()) {
2551           parent_c2 = c2->in(1);
2552         }
2553 
2554         if (parent_c1 == parent_c2) {
2555           _igvn._worklist.push(n1);
2556           _igvn._worklist.push(n2);
2557           continue;
2558         }
2559 
2560         // Look for identical expensive node up the dominator chain.
2561         if (is_dominator(c1, c2)) {
2562           c2 = c1;
2563         } else if (is_dominator(c2, c1)) {
2564           c1 = c2;
2565         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2566                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2567           // Both branches have the same expensive node so move it up
2568           // before the if.
2569           c1 = c2 = idom(parent_c1->in(0));
2570         }
2571         // Do the actual moves
2572         if (n1->in(0) != c1) {
2573           _igvn.hash_delete(n1);
2574           n1->set_req(0, c1);
2575           _igvn.hash_insert(n1);
2576           _igvn._worklist.push(n1);
2577           progress = true;
2578         }
2579         if (n2->in(0) != c2) {
2580           _igvn.hash_delete(n2);
2581           n2->set_req(0, c2);
2582           _igvn.hash_insert(n2);
2583           _igvn._worklist.push(n2);
2584           progress = true;
2585         }
2586       }
2587     }
2588   }
2589 
2590   return progress;
2591 }
2592 
2593 
2594 //=============================================================================
2595 //----------------------------build_and_optimize-------------------------------
2596 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2597 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2598 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
2599   ResourceMark rm;
2600 
2601   int old_progress = C->major_progress();
2602   uint orig_worklist_size = _igvn._worklist.size();
2603 
2604   // Reset major-progress flag for the driver's heuristics
2605   C->clear_major_progress();
2606 
2607 #ifndef PRODUCT
2608   // Capture for later assert
2609   uint unique = C->unique();
2610   _loop_invokes++;
2611   _loop_work += unique;
2612 #endif
2613 
2614   // True if the method has at least 1 irreducible loop
2615   _has_irreducible_loops = false;
2616 
2617   _created_loop_node = false;
2618 
2619   Arena *a = Thread::current()->resource_area();
2620   VectorSet visited(a);
2621   // Pre-grow the mapping from Nodes to IdealLoopTrees.
2622   _nodes.map(C->unique(), NULL);
2623   memset(_nodes.adr(), 0, wordSize * C->unique());
2624 
2625   // Pre-build the top-level outermost loop tree entry
2626   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2627   // Do not need a safepoint at the top level
2628   _ltree_root->_has_sfpt = 1;
2629 
2630   // Initialize Dominators.
2631   // Checked in clone_loop_predicate() during beautify_loops().
2632   _idom_size = 0;
2633   _idom      = NULL;
2634   _dom_depth = NULL;
2635   _dom_stk   = NULL;
2636 
2637   // Empty pre-order array
2638   allocate_preorders();
2639 
2640   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2641   // IdealLoopTree entries.  Data nodes are NOT walked.
2642   build_loop_tree();
2643   // Check for bailout, and return
2644   if (C->failing()) {
2645     return;
2646   }
2647 
2648   // No loops after all
2649   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2650 
2651   // There should always be an outer loop containing the Root and Return nodes.
2652   // If not, we have a degenerate empty program.  Bail out in this case.
2653   if (!has_node(C->root())) {
2654     if (!_verify_only) {
2655       C->clear_major_progress();
2656       C->record_method_not_compilable("empty program detected during loop optimization");
2657     }
2658     return;
2659   }
2660 
2661   // Nothing to do, so get out
2662   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
2663   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2664   if (stop_early && !do_expensive_nodes) {
2665     _igvn.optimize();           // Cleanup NeverBranches
2666     return;
2667   }
2668 
2669   // Set loop nesting depth
2670   _ltree_root->set_nest( 0 );
2671 
2672   // Split shared headers and insert loop landing pads.
2673   // Do not bother doing this on the Root loop of course.
2674   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
2675     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
2676     if( _ltree_root->_child->beautify_loops( this ) ) {
2677       // Re-build loop tree!
2678       _ltree_root->_child = NULL;
2679       _nodes.clear();
2680       reallocate_preorders();
2681       build_loop_tree();
2682       // Check for bailout, and return
2683       if (C->failing()) {
2684         return;
2685       }
2686       // Reset loop nesting depth
2687       _ltree_root->set_nest( 0 );
2688 
2689       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
2690     }
2691   }
2692 
2693   // Build Dominators for elision of NULL checks & loop finding.
2694   // Since nodes do not have a slot for immediate dominator, make
2695   // a persistent side array for that info indexed on node->_idx.
2696   _idom_size = C->unique();
2697   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
2698   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
2699   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
2700   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2701 
2702   Dominators();
2703 
2704   if (!_verify_only) {
2705     // As a side effect, Dominators removed any unreachable CFG paths
2706     // into RegionNodes.  It doesn't do this test against Root, so
2707     // we do it here.
2708     for( uint i = 1; i < C->root()->req(); i++ ) {
2709       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2710         _igvn.delete_input_of(C->root(), i);
2711         i--;                      // Rerun same iteration on compressed edges
2712       }
2713     }
2714 
2715     // Given dominators, try to find inner loops with calls that must
2716     // always be executed (call dominates loop tail).  These loops do
2717     // not need a separate safepoint.
2718     Node_List cisstack(a);
2719     _ltree_root->check_safepts(visited, cisstack);
2720   }
2721 
2722   // Walk the DATA nodes and place into loops.  Find earliest control
2723   // node.  For CFG nodes, the _nodes array starts out and remains
2724   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2725   // _nodes array holds the earliest legal controlling CFG node.
2726 
2727   // Allocate stack with enough space to avoid frequent realloc
2728   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
2729   Node_Stack nstack( a, stack_size );
2730 
2731   visited.Clear();
2732   Node_List worklist(a);
2733   // Don't need C->root() on worklist since
2734   // it will be processed among C->top() inputs
2735   worklist.push( C->top() );
2736   visited.set( C->top()->_idx ); // Set C->top() as visited now
2737   build_loop_early( visited, worklist, nstack );
2738 
2739   // Given early legal placement, try finding counted loops.  This placement
2740   // is good enough to discover most loop invariants.
2741   if( !_verify_me && !_verify_only )
2742     _ltree_root->counted_loop( this );
2743 
2744   // Find latest loop placement.  Find ideal loop placement.
2745   visited.Clear();
2746   init_dom_lca_tags();
2747   // Need C->root() on worklist when processing outs
2748   worklist.push( C->root() );
2749   NOT_PRODUCT( C->verify_graph_edges(); )
2750   worklist.push( C->top() );
2751   build_loop_late( visited, worklist, nstack );
2752 
2753   if (_verify_only) {
2754     // restore major progress flag
2755     for (int i = 0; i < old_progress; i++)
2756       C->set_major_progress();
2757     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2758     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2759     return;
2760   }
2761 
2762   // clear out the dead code after build_loop_late
2763   while (_deadlist.size()) {
2764     _igvn.remove_globally_dead_node(_deadlist.pop());
2765   }
2766 
2767   if (stop_early) {
2768     assert(do_expensive_nodes, "why are we here?");
2769     if (process_expensive_nodes()) {
2770       // If we made some progress when processing expensive nodes then
2771       // the IGVN may modify the graph in a way that will allow us to
2772       // make some more progress: we need to try processing expensive
2773       // nodes again.
2774       C->set_major_progress();
2775     }
2776     _igvn.optimize();
2777     return;
2778   }
2779 
2780   // Some parser-inserted loop predicates could never be used by loop
2781   // predication or they were moved away from loop during some optimizations.
2782   // For example, peeling. Eliminate them before next loop optimizations.
2783   eliminate_useless_predicates();
2784 
2785 #ifndef PRODUCT
2786   C->verify_graph_edges();
2787   if (_verify_me) {             // Nested verify pass?
2788     // Check to see if the verify mode is broken
2789     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2790     return;
2791   }
2792   if(VerifyLoopOptimizations) verify();
2793   if(TraceLoopOpts && C->has_loops()) {
2794     _ltree_root->dump();
2795   }
2796 #endif
2797 
2798   if (skip_loop_opts) {
2799     // restore major progress flag
2800     for (int i = 0; i < old_progress; i++) {
2801       C->set_major_progress();
2802     }
2803 
2804     // Cleanup any modified bits
2805     _igvn.optimize();
2806 
2807     if (C->log() != NULL) {
2808       log_loop_tree(_ltree_root, _ltree_root, C->log());
2809     }
2810     return;
2811   }
2812 
2813   if (ReassociateInvariants) {
2814     // Reassociate invariants and prep for split_thru_phi
2815     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2816       IdealLoopTree* lpt = iter.current();
2817       bool is_counted = lpt->is_counted();
2818       if (!is_counted || !lpt->is_inner()) continue;
2819 
2820       // check for vectorized loops, any reassociation of invariants was already done
2821       if (is_counted && lpt->_head->as_CountedLoop()->do_unroll_only()) continue;
2822 
2823       lpt->reassociate_invariants(this);
2824 
2825       // Because RCE opportunities can be masked by split_thru_phi,
2826       // look for RCE candidates and inhibit split_thru_phi
2827       // on just their loop-phi's for this pass of loop opts
2828       if (SplitIfBlocks && do_split_ifs) {
2829         if (lpt->policy_range_check(this)) {
2830           lpt->_rce_candidate = 1; // = true
2831         }
2832       }
2833     }
2834   }
2835 
2836   // Check for aggressive application of split-if and other transforms
2837   // that require basic-block info (like cloning through Phi's)
2838   if( SplitIfBlocks && do_split_ifs ) {
2839     visited.Clear();
2840     split_if_with_blocks( visited, nstack );
2841     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2842   }
2843 
2844   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
2845     C->set_major_progress();
2846   }
2847 
2848   // Perform loop predication before iteration splitting
2849   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2850     _ltree_root->_child->loop_predication(this);
2851   }
2852 
2853   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2854     if (do_intrinsify_fill()) {
2855       C->set_major_progress();
2856     }
2857   }
2858 
2859   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2860   // range checks or one-shot null checks.
2861 
2862   // If split-if's didn't hack the graph too bad (no CFG changes)
2863   // then do loop opts.
2864   if (C->has_loops() && !C->major_progress()) {
2865     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2866     _ltree_root->_child->iteration_split( this, worklist );
2867     // No verify after peeling!  GCM has hoisted code out of the loop.
2868     // After peeling, the hoisted code could sink inside the peeled area.
2869     // The peeling code does not try to recompute the best location for
2870     // all the code before the peeled area, so the verify pass will always
2871     // complain about it.
2872   }
2873   // Do verify graph edges in any case
2874   NOT_PRODUCT( C->verify_graph_edges(); );
2875 
2876   if (!do_split_ifs) {
2877     // We saw major progress in Split-If to get here.  We forced a
2878     // pass with unrolling and not split-if, however more split-if's
2879     // might make progress.  If the unrolling didn't make progress
2880     // then the major-progress flag got cleared and we won't try
2881     // another round of Split-If.  In particular the ever-common
2882     // instance-of/check-cast pattern requires at least 2 rounds of
2883     // Split-If to clear out.
2884     C->set_major_progress();
2885   }
2886 
2887   // Repeat loop optimizations if new loops were seen
2888   if (created_loop_node()) {
2889     C->set_major_progress();
2890   }
2891 
2892   // Keep loop predicates and perform optimizations with them
2893   // until no more loop optimizations could be done.
2894   // After that switch predicates off and do more loop optimizations.
2895   if (!C->major_progress() && (C->predicate_count() > 0)) {
2896      C->cleanup_loop_predicates(_igvn);
2897      if (TraceLoopOpts) {
2898        tty->print_cr("PredicatesOff");
2899      }
2900      C->set_major_progress();
2901   }
2902 
2903   // Convert scalar to superword operations at the end of all loop opts.
2904   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2905     // SuperWord transform
2906     SuperWord sw(this);
2907     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2908       IdealLoopTree* lpt = iter.current();
2909       if (lpt->is_counted()) {
2910         CountedLoopNode *cl = lpt->_head->as_CountedLoop();
2911 
2912         if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
2913           // Check that the rce'd post loop is encountered first, multiversion after all
2914           // major main loop optimization are concluded
2915           if (!C->major_progress()) {
2916             IdealLoopTree *lpt_next = lpt->_next;
2917             if (lpt_next && lpt_next->is_counted()) {
2918               CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
2919               has_range_checks(lpt_next);
2920               if (cl->is_post_loop() && cl->range_checks_present()) {
2921                 if (!cl->is_multiversioned()) {
2922                   if (multi_version_post_loops(lpt, lpt_next) == false) {
2923                     // Cause the rce loop to be optimized away if we fail
2924                     cl->mark_is_multiversioned();
2925                     cl->set_slp_max_unroll(0);
2926                     poison_rce_post_loop(lpt);
2927                   }
2928                 }
2929               }
2930             }
2931             sw.transform_loop(lpt, true);
2932           }
2933         } else if (cl->is_main_loop()) {
2934           sw.transform_loop(lpt, true);
2935         }
2936       }
2937     }
2938   }
2939 
2940   // Cleanup any modified bits
2941   _igvn.optimize();
2942 
2943   // disable assert until issue with split_flow_path is resolved (6742111)
2944   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2945   //        "shouldn't introduce irreducible loops");
2946 
2947   if (C->log() != NULL) {
2948     log_loop_tree(_ltree_root, _ltree_root, C->log());
2949   }
2950 }
2951 
2952 #ifndef PRODUCT
2953 //------------------------------print_statistics-------------------------------
2954 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2955 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2956 void PhaseIdealLoop::print_statistics() {
2957   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2958 }
2959 
2960 //------------------------------verify-----------------------------------------
2961 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2962 static int fail;                // debug only, so its multi-thread dont care
2963 void PhaseIdealLoop::verify() const {
2964   int old_progress = C->major_progress();
2965   ResourceMark rm;
2966   PhaseIdealLoop loop_verify( _igvn, this );
2967   VectorSet visited(Thread::current()->resource_area());
2968 
2969   fail = 0;
2970   verify_compare( C->root(), &loop_verify, visited );
2971   assert( fail == 0, "verify loops failed" );
2972   // Verify loop structure is the same
2973   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2974   // Reset major-progress.  It was cleared by creating a verify version of
2975   // PhaseIdealLoop.
2976   for( int i=0; i<old_progress; i++ )
2977     C->set_major_progress();
2978 }
2979 
2980 //------------------------------verify_compare---------------------------------
2981 // Make sure me and the given PhaseIdealLoop agree on key data structures
2982 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2983   if( !n ) return;
2984   if( visited.test_set( n->_idx ) ) return;
2985   if( !_nodes[n->_idx] ) {      // Unreachable
2986     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2987     return;
2988   }
2989 
2990   uint i;
2991   for( i = 0; i < n->req(); i++ )
2992     verify_compare( n->in(i), loop_verify, visited );
2993 
2994   // Check the '_nodes' block/loop structure
2995   i = n->_idx;
2996   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2997     if( _nodes[i] != loop_verify->_nodes[i] &&
2998         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2999       tty->print("Mismatched control setting for: ");
3000       n->dump();
3001       if( fail++ > 10 ) return;
3002       Node *c = get_ctrl_no_update(n);
3003       tty->print("We have it as: ");
3004       if( c->in(0) ) c->dump();
3005         else tty->print_cr("N%d",c->_idx);
3006       tty->print("Verify thinks: ");
3007       if( loop_verify->has_ctrl(n) )
3008         loop_verify->get_ctrl_no_update(n)->dump();
3009       else
3010         loop_verify->get_loop_idx(n)->dump();
3011       tty->cr();
3012     }
3013   } else {                    // We have a loop
3014     IdealLoopTree *us = get_loop_idx(n);
3015     if( loop_verify->has_ctrl(n) ) {
3016       tty->print("Mismatched loop setting for: ");
3017       n->dump();
3018       if( fail++ > 10 ) return;
3019       tty->print("We have it as: ");
3020       us->dump();
3021       tty->print("Verify thinks: ");
3022       loop_verify->get_ctrl_no_update(n)->dump();
3023       tty->cr();
3024     } else if (!C->major_progress()) {
3025       // Loop selection can be messed up if we did a major progress
3026       // operation, like split-if.  Do not verify in that case.
3027       IdealLoopTree *them = loop_verify->get_loop_idx(n);
3028       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
3029         tty->print("Unequals loops for: ");
3030         n->dump();
3031         if( fail++ > 10 ) return;
3032         tty->print("We have it as: ");
3033         us->dump();
3034         tty->print("Verify thinks: ");
3035         them->dump();
3036         tty->cr();
3037       }
3038     }
3039   }
3040 
3041   // Check for immediate dominators being equal
3042   if( i >= _idom_size ) {
3043     if( !n->is_CFG() ) return;
3044     tty->print("CFG Node with no idom: ");
3045     n->dump();
3046     return;
3047   }
3048   if( !n->is_CFG() ) return;
3049   if( n == C->root() ) return; // No IDOM here
3050 
3051   assert(n->_idx == i, "sanity");
3052   Node *id = idom_no_update(n);
3053   if( id != loop_verify->idom_no_update(n) ) {
3054     tty->print("Unequals idoms for: ");
3055     n->dump();
3056     if( fail++ > 10 ) return;
3057     tty->print("We have it as: ");
3058     id->dump();
3059     tty->print("Verify thinks: ");
3060     loop_verify->idom_no_update(n)->dump();
3061     tty->cr();
3062   }
3063 
3064 }
3065 
3066 //------------------------------verify_tree------------------------------------
3067 // Verify that tree structures match.  Because the CFG can change, siblings
3068 // within the loop tree can be reordered.  We attempt to deal with that by
3069 // reordering the verify's loop tree if possible.
3070 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
3071   assert( _parent == parent, "Badly formed loop tree" );
3072 
3073   // Siblings not in same order?  Attempt to re-order.
3074   if( _head != loop->_head ) {
3075     // Find _next pointer to update
3076     IdealLoopTree **pp = &loop->_parent->_child;
3077     while( *pp != loop )
3078       pp = &((*pp)->_next);
3079     // Find proper sibling to be next
3080     IdealLoopTree **nn = &loop->_next;
3081     while( (*nn) && (*nn)->_head != _head )
3082       nn = &((*nn)->_next);
3083 
3084     // Check for no match.
3085     if( !(*nn) ) {
3086       // Annoyingly, irreducible loops can pick different headers
3087       // after a major_progress operation, so the rest of the loop
3088       // tree cannot be matched.
3089       if (_irreducible && Compile::current()->major_progress())  return;
3090       assert( 0, "failed to match loop tree" );
3091     }
3092 
3093     // Move (*nn) to (*pp)
3094     IdealLoopTree *hit = *nn;
3095     *nn = hit->_next;
3096     hit->_next = loop;
3097     *pp = loop;
3098     loop = hit;
3099     // Now try again to verify
3100   }
3101 
3102   assert( _head  == loop->_head , "mismatched loop head" );
3103   Node *tail = _tail;           // Inline a non-updating version of
3104   while( !tail->in(0) )         // the 'tail()' call.
3105     tail = tail->in(1);
3106   assert( tail == loop->_tail, "mismatched loop tail" );
3107 
3108   // Counted loops that are guarded should be able to find their guards
3109   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
3110     CountedLoopNode *cl = _head->as_CountedLoop();
3111     Node *init = cl->init_trip();
3112     Node *ctrl = cl->in(LoopNode::EntryControl);
3113     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
3114     Node *iff  = ctrl->in(0);
3115     assert( iff->Opcode() == Op_If, "" );
3116     Node *bol  = iff->in(1);
3117     assert( bol->Opcode() == Op_Bool, "" );
3118     Node *cmp  = bol->in(1);
3119     assert( cmp->Opcode() == Op_CmpI, "" );
3120     Node *add  = cmp->in(1);
3121     Node *opaq;
3122     if( add->Opcode() == Op_Opaque1 ) {
3123       opaq = add;
3124     } else {
3125       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
3126       assert( add == init, "" );
3127       opaq = cmp->in(2);
3128     }
3129     assert( opaq->Opcode() == Op_Opaque1, "" );
3130 
3131   }
3132 
3133   if (_child != NULL)  _child->verify_tree(loop->_child, this);
3134   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
3135   // Innermost loops need to verify loop bodies,
3136   // but only if no 'major_progress'
3137   int fail = 0;
3138   if (!Compile::current()->major_progress() && _child == NULL) {
3139     for( uint i = 0; i < _body.size(); i++ ) {
3140       Node *n = _body.at(i);
3141       if (n->outcnt() == 0)  continue; // Ignore dead
3142       uint j;
3143       for( j = 0; j < loop->_body.size(); j++ )
3144         if( loop->_body.at(j) == n )
3145           break;
3146       if( j == loop->_body.size() ) { // Not found in loop body
3147         // Last ditch effort to avoid assertion: Its possible that we
3148         // have some users (so outcnt not zero) but are still dead.
3149         // Try to find from root.
3150         if (Compile::current()->root()->find(n->_idx)) {
3151           fail++;
3152           tty->print("We have that verify does not: ");
3153           n->dump();
3154         }
3155       }
3156     }
3157     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
3158       Node *n = loop->_body.at(i2);
3159       if (n->outcnt() == 0)  continue; // Ignore dead
3160       uint j;
3161       for( j = 0; j < _body.size(); j++ )
3162         if( _body.at(j) == n )
3163           break;
3164       if( j == _body.size() ) { // Not found in loop body
3165         // Last ditch effort to avoid assertion: Its possible that we
3166         // have some users (so outcnt not zero) but are still dead.
3167         // Try to find from root.
3168         if (Compile::current()->root()->find(n->_idx)) {
3169           fail++;
3170           tty->print("Verify has that we do not: ");
3171           n->dump();
3172         }
3173       }
3174     }
3175     assert( !fail, "loop body mismatch" );
3176   }
3177 }
3178 
3179 #endif
3180 
3181 //------------------------------set_idom---------------------------------------
3182 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
3183   uint idx = d->_idx;
3184   if (idx >= _idom_size) {
3185     uint newsize = _idom_size<<1;
3186     while( idx >= newsize ) {
3187       newsize <<= 1;
3188     }
3189     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
3190     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
3191     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
3192     _idom_size = newsize;
3193   }
3194   _idom[idx] = n;
3195   _dom_depth[idx] = dom_depth;
3196 }
3197 
3198 //------------------------------recompute_dom_depth---------------------------------------
3199 // The dominator tree is constructed with only parent pointers.
3200 // This recomputes the depth in the tree by first tagging all
3201 // nodes as "no depth yet" marker.  The next pass then runs up
3202 // the dom tree from each node marked "no depth yet", and computes
3203 // the depth on the way back down.
3204 void PhaseIdealLoop::recompute_dom_depth() {
3205   uint no_depth_marker = C->unique();
3206   uint i;
3207   // Initialize depth to "no depth yet"
3208   for (i = 0; i < _idom_size; i++) {
3209     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
3210      _dom_depth[i] = no_depth_marker;
3211     }
3212   }
3213   if (_dom_stk == NULL) {
3214     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
3215     if (init_size < 10) init_size = 10;
3216     _dom_stk = new GrowableArray<uint>(init_size);
3217   }
3218   // Compute new depth for each node.
3219   for (i = 0; i < _idom_size; i++) {
3220     uint j = i;
3221     // Run up the dom tree to find a node with a depth
3222     while (_dom_depth[j] == no_depth_marker) {
3223       _dom_stk->push(j);
3224       j = _idom[j]->_idx;
3225     }
3226     // Compute the depth on the way back down this tree branch
3227     uint dd = _dom_depth[j] + 1;
3228     while (_dom_stk->length() > 0) {
3229       uint j = _dom_stk->pop();
3230       _dom_depth[j] = dd;
3231       dd++;
3232     }
3233   }
3234 }
3235 
3236 //------------------------------sort-------------------------------------------
3237 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
3238 // loop tree, not the root.
3239 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
3240   if( !innermost ) return loop; // New innermost loop
3241 
3242   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
3243   assert( loop_preorder, "not yet post-walked loop" );
3244   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
3245   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
3246 
3247   // Insert at start of list
3248   while( l ) {                  // Insertion sort based on pre-order
3249     if( l == loop ) return innermost; // Already on list!
3250     int l_preorder = get_preorder(l->_head); // Cache pre-order number
3251     assert( l_preorder, "not yet post-walked l" );
3252     // Check header pre-order number to figure proper nesting
3253     if( loop_preorder > l_preorder )
3254       break;                    // End of insertion
3255     // If headers tie (e.g., shared headers) check tail pre-order numbers.
3256     // Since I split shared headers, you'd think this could not happen.
3257     // BUT: I must first do the preorder numbering before I can discover I
3258     // have shared headers, so the split headers all get the same preorder
3259     // number as the RegionNode they split from.
3260     if( loop_preorder == l_preorder &&
3261         get_preorder(loop->_tail) < get_preorder(l->_tail) )
3262       break;                    // Also check for shared headers (same pre#)
3263     pp = &l->_parent;           // Chain up list
3264     l = *pp;
3265   }
3266   // Link into list
3267   // Point predecessor to me
3268   *pp = loop;
3269   // Point me to successor
3270   IdealLoopTree *p = loop->_parent;
3271   loop->_parent = l;            // Point me to successor
3272   if( p ) sort( p, innermost ); // Insert my parents into list as well
3273   return innermost;
3274 }
3275 
3276 //------------------------------build_loop_tree--------------------------------
3277 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
3278 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
3279 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
3280 // tightest enclosing IdealLoopTree for post-walked.
3281 //
3282 // During my forward walk I do a short 1-layer lookahead to see if I can find
3283 // a loop backedge with that doesn't have any work on the backedge.  This
3284 // helps me construct nested loops with shared headers better.
3285 //
3286 // Once I've done the forward recursion, I do the post-work.  For each child
3287 // I check to see if there is a backedge.  Backedges define a loop!  I
3288 // insert an IdealLoopTree at the target of the backedge.
3289 //
3290 // During the post-work I also check to see if I have several children
3291 // belonging to different loops.  If so, then this Node is a decision point
3292 // where control flow can choose to change loop nests.  It is at this
3293 // decision point where I can figure out how loops are nested.  At this
3294 // time I can properly order the different loop nests from my children.
3295 // Note that there may not be any backedges at the decision point!
3296 //
3297 // Since the decision point can be far removed from the backedges, I can't
3298 // order my loops at the time I discover them.  Thus at the decision point
3299 // I need to inspect loop header pre-order numbers to properly nest my
3300 // loops.  This means I need to sort my childrens' loops by pre-order.
3301 // The sort is of size number-of-control-children, which generally limits
3302 // it to size 2 (i.e., I just choose between my 2 target loops).
3303 void PhaseIdealLoop::build_loop_tree() {
3304   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3305   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
3306   Node *n = C->root();
3307   bltstack.push(n);
3308   int pre_order = 1;
3309   int stack_size;
3310 
3311   while ( ( stack_size = bltstack.length() ) != 0 ) {
3312     n = bltstack.top(); // Leave node on stack
3313     if ( !is_visited(n) ) {
3314       // ---- Pre-pass Work ----
3315       // Pre-walked but not post-walked nodes need a pre_order number.
3316 
3317       set_preorder_visited( n, pre_order ); // set as visited
3318 
3319       // ---- Scan over children ----
3320       // Scan first over control projections that lead to loop headers.
3321       // This helps us find inner-to-outer loops with shared headers better.
3322 
3323       // Scan children's children for loop headers.
3324       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
3325         Node* m = n->raw_out(i);       // Child
3326         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
3327           // Scan over children's children to find loop
3328           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3329             Node* l = m->fast_out(j);
3330             if( is_visited(l) &&       // Been visited?
3331                 !is_postvisited(l) &&  // But not post-visited
3332                 get_preorder(l) < pre_order ) { // And smaller pre-order
3333               // Found!  Scan the DFS down this path before doing other paths
3334               bltstack.push(m);
3335               break;
3336             }
3337           }
3338         }
3339       }
3340       pre_order++;
3341     }
3342     else if ( !is_postvisited(n) ) {
3343       // Note: build_loop_tree_impl() adds out edges on rare occasions,
3344       // such as com.sun.rsasign.am::a.
3345       // For non-recursive version, first, process current children.
3346       // On next iteration, check if additional children were added.
3347       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
3348         Node* u = n->raw_out(k);
3349         if ( u->is_CFG() && !is_visited(u) ) {
3350           bltstack.push(u);
3351         }
3352       }
3353       if ( bltstack.length() == stack_size ) {
3354         // There were no additional children, post visit node now
3355         (void)bltstack.pop(); // Remove node from stack
3356         pre_order = build_loop_tree_impl( n, pre_order );
3357         // Check for bailout
3358         if (C->failing()) {
3359           return;
3360         }
3361         // Check to grow _preorders[] array for the case when
3362         // build_loop_tree_impl() adds new nodes.
3363         check_grow_preorders();
3364       }
3365     }
3366     else {
3367       (void)bltstack.pop(); // Remove post-visited node from stack
3368     }
3369   }
3370 }
3371 
3372 //------------------------------build_loop_tree_impl---------------------------
3373 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
3374   // ---- Post-pass Work ----
3375   // Pre-walked but not post-walked nodes need a pre_order number.
3376 
3377   // Tightest enclosing loop for this Node
3378   IdealLoopTree *innermost = NULL;
3379 
3380   // For all children, see if any edge is a backedge.  If so, make a loop
3381   // for it.  Then find the tightest enclosing loop for the self Node.
3382   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3383     Node* m = n->fast_out(i);   // Child
3384     if( n == m ) continue;      // Ignore control self-cycles
3385     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
3386 
3387     IdealLoopTree *l;           // Child's loop
3388     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
3389       // Found a backedge
3390       assert( get_preorder(m) < pre_order, "should be backedge" );
3391       // Check for the RootNode, which is already a LoopNode and is allowed
3392       // to have multiple "backedges".
3393       if( m == C->root()) {     // Found the root?
3394         l = _ltree_root;        // Root is the outermost LoopNode
3395       } else {                  // Else found a nested loop
3396         // Insert a LoopNode to mark this loop.
3397         l = new IdealLoopTree(this, m, n);
3398       } // End of Else found a nested loop
3399       if( !has_loop(m) )        // If 'm' does not already have a loop set
3400         set_loop(m, l);         // Set loop header to loop now
3401 
3402     } else {                    // Else not a nested loop
3403       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
3404       l = get_loop(m);          // Get previously determined loop
3405       // If successor is header of a loop (nest), move up-loop till it
3406       // is a member of some outer enclosing loop.  Since there are no
3407       // shared headers (I've split them already) I only need to go up
3408       // at most 1 level.
3409       while( l && l->_head == m ) // Successor heads loop?
3410         l = l->_parent;         // Move up 1 for me
3411       // If this loop is not properly parented, then this loop
3412       // has no exit path out, i.e. its an infinite loop.
3413       if( !l ) {
3414         // Make loop "reachable" from root so the CFG is reachable.  Basically
3415         // insert a bogus loop exit that is never taken.  'm', the loop head,
3416         // points to 'n', one (of possibly many) fall-in paths.  There may be
3417         // many backedges as well.
3418 
3419         // Here I set the loop to be the root loop.  I could have, after
3420         // inserting a bogus loop exit, restarted the recursion and found my
3421         // new loop exit.  This would make the infinite loop a first-class
3422         // loop and it would then get properly optimized.  What's the use of
3423         // optimizing an infinite loop?
3424         l = _ltree_root;        // Oops, found infinite loop
3425 
3426         if (!_verify_only) {
3427           // Insert the NeverBranch between 'm' and it's control user.
3428           NeverBranchNode *iff = new NeverBranchNode( m );
3429           _igvn.register_new_node_with_optimizer(iff);
3430           set_loop(iff, l);
3431           Node *if_t = new CProjNode( iff, 0 );
3432           _igvn.register_new_node_with_optimizer(if_t);
3433           set_loop(if_t, l);
3434 
3435           Node* cfg = NULL;       // Find the One True Control User of m
3436           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3437             Node* x = m->fast_out(j);
3438             if (x->is_CFG() && x != m && x != iff)
3439               { cfg = x; break; }
3440           }
3441           assert(cfg != NULL, "must find the control user of m");
3442           uint k = 0;             // Probably cfg->in(0)
3443           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
3444           cfg->set_req( k, if_t ); // Now point to NeverBranch
3445           _igvn._worklist.push(cfg);
3446 
3447           // Now create the never-taken loop exit
3448           Node *if_f = new CProjNode( iff, 1 );
3449           _igvn.register_new_node_with_optimizer(if_f);
3450           set_loop(if_f, l);
3451           // Find frame ptr for Halt.  Relies on the optimizer
3452           // V-N'ing.  Easier and quicker than searching through
3453           // the program structure.
3454           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
3455           _igvn.register_new_node_with_optimizer(frame);
3456           // Halt & Catch Fire
3457           Node *halt = new HaltNode( if_f, frame );
3458           _igvn.register_new_node_with_optimizer(halt);
3459           set_loop(halt, l);
3460           C->root()->add_req(halt);
3461         }
3462         set_loop(C->root(), _ltree_root);
3463       }
3464     }
3465     // Weeny check for irreducible.  This child was already visited (this
3466     // IS the post-work phase).  Is this child's loop header post-visited
3467     // as well?  If so, then I found another entry into the loop.
3468     if (!_verify_only) {
3469       while( is_postvisited(l->_head) ) {
3470         // found irreducible
3471         l->_irreducible = 1; // = true
3472         l = l->_parent;
3473         _has_irreducible_loops = true;
3474         // Check for bad CFG here to prevent crash, and bailout of compile
3475         if (l == NULL) {
3476           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
3477           return pre_order;
3478         }
3479       }
3480       C->set_has_irreducible_loop(_has_irreducible_loops);
3481     }
3482 
3483     // This Node might be a decision point for loops.  It is only if
3484     // it's children belong to several different loops.  The sort call
3485     // does a trivial amount of work if there is only 1 child or all
3486     // children belong to the same loop.  If however, the children
3487     // belong to different loops, the sort call will properly set the
3488     // _parent pointers to show how the loops nest.
3489     //
3490     // In any case, it returns the tightest enclosing loop.
3491     innermost = sort( l, innermost );
3492   }
3493 
3494   // Def-use info will have some dead stuff; dead stuff will have no
3495   // loop decided on.
3496 
3497   // Am I a loop header?  If so fix up my parent's child and next ptrs.
3498   if( innermost && innermost->_head == n ) {
3499     assert( get_loop(n) == innermost, "" );
3500     IdealLoopTree *p = innermost->_parent;
3501     IdealLoopTree *l = innermost;
3502     while( p && l->_head == n ) {
3503       l->_next = p->_child;     // Put self on parents 'next child'
3504       p->_child = l;            // Make self as first child of parent
3505       l = p;                    // Now walk up the parent chain
3506       p = l->_parent;
3507     }
3508   } else {
3509     // Note that it is possible for a LoopNode to reach here, if the
3510     // backedge has been made unreachable (hence the LoopNode no longer
3511     // denotes a Loop, and will eventually be removed).
3512 
3513     // Record tightest enclosing loop for self.  Mark as post-visited.
3514     set_loop(n, innermost);
3515     // Also record has_call flag early on
3516     if( innermost ) {
3517       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
3518         // Do not count uncommon calls
3519         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
3520           Node *iff = n->in(0)->in(0);
3521           // No any calls for vectorized loops.
3522           if( UseSuperWord || !iff->is_If() ||
3523               (n->in(0)->Opcode() == Op_IfFalse &&
3524                (1.0 - iff->as_If()->_prob) >= 0.01) ||
3525               (iff->as_If()->_prob >= 0.01) )
3526             innermost->_has_call = 1;
3527         }
3528       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
3529         // Disable loop optimizations if the loop has a scalar replaceable
3530         // allocation. This disabling may cause a potential performance lost
3531         // if the allocation is not eliminated for some reason.
3532         innermost->_allow_optimizations = false;
3533         innermost->_has_call = 1; // = true
3534       } else if (n->Opcode() == Op_SafePoint) {
3535         // Record all safepoints in this loop.
3536         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
3537         innermost->_safepts->push(n);
3538       }
3539     }
3540   }
3541 
3542   // Flag as post-visited now
3543   set_postvisited(n);
3544   return pre_order;
3545 }
3546 
3547 
3548 //------------------------------build_loop_early-------------------------------
3549 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3550 // First pass computes the earliest controlling node possible.  This is the
3551 // controlling input with the deepest dominating depth.
3552 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3553   while (worklist.size() != 0) {
3554     // Use local variables nstack_top_n & nstack_top_i to cache values
3555     // on nstack's top.
3556     Node *nstack_top_n = worklist.pop();
3557     uint  nstack_top_i = 0;
3558 //while_nstack_nonempty:
3559     while (true) {
3560       // Get parent node and next input's index from stack's top.
3561       Node  *n = nstack_top_n;
3562       uint   i = nstack_top_i;
3563       uint cnt = n->req(); // Count of inputs
3564       if (i == 0) {        // Pre-process the node.
3565         if( has_node(n) &&            // Have either loop or control already?
3566             !has_ctrl(n) ) {          // Have loop picked out already?
3567           // During "merge_many_backedges" we fold up several nested loops
3568           // into a single loop.  This makes the members of the original
3569           // loop bodies pointing to dead loops; they need to move up
3570           // to the new UNION'd larger loop.  I set the _head field of these
3571           // dead loops to NULL and the _parent field points to the owning
3572           // loop.  Shades of UNION-FIND algorithm.
3573           IdealLoopTree *ilt;
3574           while( !(ilt = get_loop(n))->_head ) {
3575             // Normally I would use a set_loop here.  But in this one special
3576             // case, it is legal (and expected) to change what loop a Node
3577             // belongs to.
3578             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3579           }
3580           // Remove safepoints ONLY if I've already seen I don't need one.
3581           // (the old code here would yank a 2nd safepoint after seeing a
3582           // first one, even though the 1st did not dominate in the loop body
3583           // and thus could be avoided indefinitely)
3584           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3585               is_deleteable_safept(n)) {
3586             Node *in = n->in(TypeFunc::Control);
3587             lazy_replace(n,in);       // Pull safepoint now
3588             if (ilt->_safepts != NULL) {
3589               ilt->_safepts->yank(n);
3590             }
3591             // Carry on with the recursion "as if" we are walking
3592             // only the control input
3593             if( !visited.test_set( in->_idx ) ) {
3594               worklist.push(in);      // Visit this guy later, using worklist
3595             }
3596             // Get next node from nstack:
3597             // - skip n's inputs processing by setting i > cnt;
3598             // - we also will not call set_early_ctrl(n) since
3599             //   has_node(n) == true (see the condition above).
3600             i = cnt + 1;
3601           }
3602         }
3603       } // if (i == 0)
3604 
3605       // Visit all inputs
3606       bool done = true;       // Assume all n's inputs will be processed
3607       while (i < cnt) {
3608         Node *in = n->in(i);
3609         ++i;
3610         if (in == NULL) continue;
3611         if (in->pinned() && !in->is_CFG())
3612           set_ctrl(in, in->in(0));
3613         int is_visited = visited.test_set( in->_idx );
3614         if (!has_node(in)) {  // No controlling input yet?
3615           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3616           assert( !is_visited, "visit only once" );
3617           nstack.push(n, i);  // Save parent node and next input's index.
3618           nstack_top_n = in;  // Process current input now.
3619           nstack_top_i = 0;
3620           done = false;       // Not all n's inputs processed.
3621           break; // continue while_nstack_nonempty;
3622         } else if (!is_visited) {
3623           // This guy has a location picked out for him, but has not yet
3624           // been visited.  Happens to all CFG nodes, for instance.
3625           // Visit him using the worklist instead of recursion, to break
3626           // cycles.  Since he has a location already we do not need to
3627           // find his location before proceeding with the current Node.
3628           worklist.push(in);  // Visit this guy later, using worklist
3629         }
3630       }
3631       if (done) {
3632         // All of n's inputs have been processed, complete post-processing.
3633 
3634         // Compute earliest point this Node can go.
3635         // CFG, Phi, pinned nodes already know their controlling input.
3636         if (!has_node(n)) {
3637           // Record earliest legal location
3638           set_early_ctrl( n );
3639         }
3640         if (nstack.is_empty()) {
3641           // Finished all nodes on stack.
3642           // Process next node on the worklist.
3643           break;
3644         }
3645         // Get saved parent node and next input's index.
3646         nstack_top_n = nstack.node();
3647         nstack_top_i = nstack.index();
3648         nstack.pop();
3649       }
3650     } // while (true)
3651   }
3652 }
3653 
3654 //------------------------------dom_lca_internal--------------------------------
3655 // Pair-wise LCA
3656 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
3657   if( !n1 ) return n2;          // Handle NULL original LCA
3658   assert( n1->is_CFG(), "" );
3659   assert( n2->is_CFG(), "" );
3660   // find LCA of all uses
3661   uint d1 = dom_depth(n1);
3662   uint d2 = dom_depth(n2);
3663   while (n1 != n2) {
3664     if (d1 > d2) {
3665       n1 =      idom(n1);
3666       d1 = dom_depth(n1);
3667     } else if (d1 < d2) {
3668       n2 =      idom(n2);
3669       d2 = dom_depth(n2);
3670     } else {
3671       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3672       // of the tree might have the same depth.  These sections have
3673       // to be searched more carefully.
3674 
3675       // Scan up all the n1's with equal depth, looking for n2.
3676       Node *t1 = idom(n1);
3677       while (dom_depth(t1) == d1) {
3678         if (t1 == n2)  return n2;
3679         t1 = idom(t1);
3680       }
3681       // Scan up all the n2's with equal depth, looking for n1.
3682       Node *t2 = idom(n2);
3683       while (dom_depth(t2) == d2) {
3684         if (t2 == n1)  return n1;
3685         t2 = idom(t2);
3686       }
3687       // Move up to a new dominator-depth value as well as up the dom-tree.
3688       n1 = t1;
3689       n2 = t2;
3690       d1 = dom_depth(n1);
3691       d2 = dom_depth(n2);
3692     }
3693   }
3694   return n1;
3695 }
3696 
3697 //------------------------------compute_idom-----------------------------------
3698 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
3699 // IDOMs are correct.
3700 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
3701   assert( region->is_Region(), "" );
3702   Node *LCA = NULL;
3703   for( uint i = 1; i < region->req(); i++ ) {
3704     if( region->in(i) != C->top() )
3705       LCA = dom_lca( LCA, region->in(i) );
3706   }
3707   return LCA;
3708 }
3709 
3710 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
3711   bool had_error = false;
3712 #ifdef ASSERT
3713   if (early != C->root()) {
3714     // Make sure that there's a dominance path from LCA to early
3715     Node* d = LCA;
3716     while (d != early) {
3717       if (d == C->root()) {
3718         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
3719         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
3720         had_error = true;
3721         break;
3722       }
3723       d = idom(d);
3724     }
3725   }
3726 #endif
3727   return had_error;
3728 }
3729 
3730 
3731 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
3732   // Compute LCA over list of uses
3733   bool had_error = false;
3734   Node *LCA = NULL;
3735   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
3736     Node* c = n->fast_out(i);
3737     if (_nodes[c->_idx] == NULL)
3738       continue;                 // Skip the occasional dead node
3739     if( c->is_Phi() ) {         // For Phis, we must land above on the path
3740       for( uint j=1; j<c->req(); j++ ) {// For all inputs
3741         if( c->in(j) == n ) {   // Found matching input?
3742           Node *use = c->in(0)->in(j);
3743           if (_verify_only && use->is_top()) continue;
3744           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3745           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3746         }
3747       }
3748     } else {
3749       // For CFG data-users, use is in the block just prior
3750       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3751       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3752       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3753     }
3754   }
3755   assert(!had_error, "bad dominance");
3756   return LCA;
3757 }
3758 
3759 // Check the shape of the graph at the loop entry. In some cases,
3760 // the shape of the graph does not match the shape outlined below.
3761 // That is caused by the Opaque1 node "protecting" the shape of
3762 // the graph being removed by, for example, the IGVN performed
3763 // in PhaseIdealLoop::build_and_optimize().
3764 //
3765 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
3766 // loop unswitching, and IGVN, or a combination of them) can freely change
3767 // the graph's shape. As a result, the graph shape outlined below cannot
3768 // be guaranteed anymore.
3769 bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
3770   if (!cl->is_main_loop() && !cl->is_post_loop()) {
3771     return false;
3772   }
3773   Node* ctrl = cl->skip_strip_mined()->in(LoopNode::EntryControl);
3774   if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
3775     return false;
3776   }
3777   Node* iffm = ctrl->in(0);
3778   if (iffm == NULL || !iffm->is_If()) {
3779     return false;
3780   }
3781   Node* bolzm = iffm->in(1);
3782   if (bolzm == NULL || !bolzm->is_Bool()) {
3783     return false;
3784   }
3785   Node* cmpzm = bolzm->in(1);
3786   if (cmpzm == NULL || !cmpzm->is_Cmp()) {
3787     return false;
3788   }
3789   // compares can get conditionally flipped
3790   bool found_opaque = false;
3791   for (uint i = 1; i < cmpzm->req(); i++) {
3792     Node* opnd = cmpzm->in(i);
3793     if (opnd && opnd->Opcode() == Op_Opaque1) {
3794       found_opaque = true;
3795       break;
3796     }
3797   }
3798   if (!found_opaque) {
3799     return false;
3800   }
3801   return true;
3802 }
3803 
3804 //------------------------------get_late_ctrl----------------------------------
3805 // Compute latest legal control.
3806 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3807   assert(early != NULL, "early control should not be NULL");
3808 
3809   Node* LCA = compute_lca_of_uses(n, early);
3810 #ifdef ASSERT
3811   if (LCA == C->root() && LCA != early) {
3812     // def doesn't dominate uses so print some useful debugging output
3813     compute_lca_of_uses(n, early, true);
3814   }
3815 #endif
3816 
3817   // if this is a load, check for anti-dependent stores
3818   // We use a conservative algorithm to identify potential interfering
3819   // instructions and for rescheduling the load.  The users of the memory
3820   // input of this load are examined.  Any use which is not a load and is
3821   // dominated by early is considered a potentially interfering store.
3822   // This can produce false positives.
3823   if (n->is_Load() && LCA != early) {
3824     Node_List worklist;
3825 
3826     Node *mem = n->in(MemNode::Memory);
3827     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3828       Node* s = mem->fast_out(i);
3829       worklist.push(s);
3830     }
3831     while(worklist.size() != 0 && LCA != early) {
3832       Node* s = worklist.pop();
3833       if (s->is_Load() || s->Opcode() == Op_SafePoint) {
3834         continue;
3835       } else if (s->is_MergeMem()) {
3836         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3837           Node* s1 = s->fast_out(i);
3838           worklist.push(s1);
3839         }
3840       } else {
3841         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3842         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3843         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3844           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3845         }
3846       }
3847     }
3848   }
3849 
3850   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3851   return LCA;
3852 }
3853 
3854 // true if CFG node d dominates CFG node n
3855 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3856   if (d == n)
3857     return true;
3858   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3859   uint dd = dom_depth(d);
3860   while (dom_depth(n) >= dd) {
3861     if (n == d)
3862       return true;
3863     n = idom(n);
3864   }
3865   return false;
3866 }
3867 
3868 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3869 // Pair-wise LCA with tags.
3870 // Tag each index with the node 'tag' currently being processed
3871 // before advancing up the dominator chain using idom().
3872 // Later calls that find a match to 'tag' know that this path has already
3873 // been considered in the current LCA (which is input 'n1' by convention).
3874 // Since get_late_ctrl() is only called once for each node, the tag array
3875 // does not need to be cleared between calls to get_late_ctrl().
3876 // Algorithm trades a larger constant factor for better asymptotic behavior
3877 //
3878 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3879   uint d1 = dom_depth(n1);
3880   uint d2 = dom_depth(n2);
3881 
3882   do {
3883     if (d1 > d2) {
3884       // current lca is deeper than n2
3885       _dom_lca_tags.map(n1->_idx, tag);
3886       n1 =      idom(n1);
3887       d1 = dom_depth(n1);
3888     } else if (d1 < d2) {
3889       // n2 is deeper than current lca
3890       Node *memo = _dom_lca_tags[n2->_idx];
3891       if( memo == tag ) {
3892         return n1;    // Return the current LCA
3893       }
3894       _dom_lca_tags.map(n2->_idx, tag);
3895       n2 =      idom(n2);
3896       d2 = dom_depth(n2);
3897     } else {
3898       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3899       // of the tree might have the same depth.  These sections have
3900       // to be searched more carefully.
3901 
3902       // Scan up all the n1's with equal depth, looking for n2.
3903       _dom_lca_tags.map(n1->_idx, tag);
3904       Node *t1 = idom(n1);
3905       while (dom_depth(t1) == d1) {
3906         if (t1 == n2)  return n2;
3907         _dom_lca_tags.map(t1->_idx, tag);
3908         t1 = idom(t1);
3909       }
3910       // Scan up all the n2's with equal depth, looking for n1.
3911       _dom_lca_tags.map(n2->_idx, tag);
3912       Node *t2 = idom(n2);
3913       while (dom_depth(t2) == d2) {
3914         if (t2 == n1)  return n1;
3915         _dom_lca_tags.map(t2->_idx, tag);
3916         t2 = idom(t2);
3917       }
3918       // Move up to a new dominator-depth value as well as up the dom-tree.
3919       n1 = t1;
3920       n2 = t2;
3921       d1 = dom_depth(n1);
3922       d2 = dom_depth(n2);
3923     }
3924   } while (n1 != n2);
3925   return n1;
3926 }
3927 
3928 //------------------------------init_dom_lca_tags------------------------------
3929 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3930 // Intended use does not involve any growth for the array, so it could
3931 // be of fixed size.
3932 void PhaseIdealLoop::init_dom_lca_tags() {
3933   uint limit = C->unique() + 1;
3934   _dom_lca_tags.map( limit, NULL );
3935 #ifdef ASSERT
3936   for( uint i = 0; i < limit; ++i ) {
3937     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3938   }
3939 #endif // ASSERT
3940 }
3941 
3942 //------------------------------clear_dom_lca_tags------------------------------
3943 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3944 // Intended use does not involve any growth for the array, so it could
3945 // be of fixed size.
3946 void PhaseIdealLoop::clear_dom_lca_tags() {
3947   uint limit = C->unique() + 1;
3948   _dom_lca_tags.map( limit, NULL );
3949   _dom_lca_tags.clear();
3950 #ifdef ASSERT
3951   for( uint i = 0; i < limit; ++i ) {
3952     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3953   }
3954 #endif // ASSERT
3955 }
3956 
3957 //------------------------------build_loop_late--------------------------------
3958 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3959 // Second pass finds latest legal placement, and ideal loop placement.
3960 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3961   while (worklist.size() != 0) {
3962     Node *n = worklist.pop();
3963     // Only visit once
3964     if (visited.test_set(n->_idx)) continue;
3965     uint cnt = n->outcnt();
3966     uint   i = 0;
3967     while (true) {
3968       assert( _nodes[n->_idx], "no dead nodes" );
3969       // Visit all children
3970       if (i < cnt) {
3971         Node* use = n->raw_out(i);
3972         ++i;
3973         // Check for dead uses.  Aggressively prune such junk.  It might be
3974         // dead in the global sense, but still have local uses so I cannot
3975         // easily call 'remove_dead_node'.
3976         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3977           // Due to cycles, we might not hit the same fixed point in the verify
3978           // pass as we do in the regular pass.  Instead, visit such phis as
3979           // simple uses of the loop head.
3980           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3981             if( !visited.test(use->_idx) )
3982               worklist.push(use);
3983           } else if( !visited.test_set(use->_idx) ) {
3984             nstack.push(n, i); // Save parent and next use's index.
3985             n   = use;         // Process all children of current use.
3986             cnt = use->outcnt();
3987             i   = 0;
3988           }
3989         } else {
3990           // Do not visit around the backedge of loops via data edges.
3991           // push dead code onto a worklist
3992           _deadlist.push(use);
3993         }
3994       } else {
3995         // All of n's children have been processed, complete post-processing.
3996         build_loop_late_post(n);
3997         if (nstack.is_empty()) {
3998           // Finished all nodes on stack.
3999           // Process next node on the worklist.
4000           break;
4001         }
4002         // Get saved parent node and next use's index. Visit the rest of uses.
4003         n   = nstack.node();
4004         cnt = n->outcnt();
4005         i   = nstack.index();
4006         nstack.pop();
4007       }
4008     }
4009   }
4010 }
4011 
4012 // Verify that no data node is schedules in the outer loop of a strip
4013 // mined loop.
4014 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
4015 #ifdef ASSERT
4016   if (get_loop(least)->_nest == 0) {
4017     return;
4018   }
4019   IdealLoopTree* loop = get_loop(least);
4020   Node* head = loop->_head;
4021   if (head->is_OuterStripMinedLoop()) {
4022     Node* sfpt = head->as_Loop()->outer_safepoint();
4023     ResourceMark rm;
4024     Unique_Node_List wq;
4025     wq.push(sfpt);
4026     for (uint i = 0; i < wq.size(); i++) {
4027       Node *m = wq.at(i);
4028       for (uint i = 1; i < m->req(); i++) {
4029         Node* nn = m->in(i);
4030         if (nn == n) {
4031           return;
4032         }
4033         if (nn != NULL && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
4034           wq.push(nn);
4035         }
4036       }
4037     }
4038     ShouldNotReachHere();
4039   }
4040 #endif
4041 }
4042 
4043 
4044 //------------------------------build_loop_late_post---------------------------
4045 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
4046 // Second pass finds latest legal placement, and ideal loop placement.
4047 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
4048 
4049   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
4050     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
4051   }
4052 
4053 #ifdef ASSERT
4054   if (_verify_only && !n->is_CFG()) {
4055     // Check def-use domination.
4056     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
4057   }
4058 #endif
4059 
4060   // CFG and pinned nodes already handled
4061   if( n->in(0) ) {
4062     if( n->in(0)->is_top() ) return; // Dead?
4063 
4064     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
4065     // _must_ be pinned (they have to observe their control edge of course).
4066     // Unlike Stores (which modify an unallocable resource, the memory
4067     // state), Mods/Loads can float around.  So free them up.
4068     bool pinned = true;
4069     switch( n->Opcode() ) {
4070     case Op_DivI:
4071     case Op_DivF:
4072     case Op_DivD:
4073     case Op_ModI:
4074     case Op_ModF:
4075     case Op_ModD:
4076     case Op_LoadB:              // Same with Loads; they can sink
4077     case Op_LoadUB:             // during loop optimizations.
4078     case Op_LoadUS:
4079     case Op_LoadD:
4080     case Op_LoadF:
4081     case Op_LoadI:
4082     case Op_LoadKlass:
4083     case Op_LoadNKlass:
4084     case Op_LoadL:
4085     case Op_LoadS:
4086     case Op_LoadP:
4087     case Op_LoadN:
4088     case Op_LoadRange:
4089     case Op_LoadD_unaligned:
4090     case Op_LoadL_unaligned:
4091     case Op_StrComp:            // Does a bunch of load-like effects
4092     case Op_StrEquals:
4093     case Op_StrIndexOf:
4094     case Op_StrIndexOfChar:
4095     case Op_AryEq:
4096     case Op_HasNegatives:
4097       pinned = false;
4098     }
4099     if( pinned ) {
4100       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
4101       if( !chosen_loop->_child )       // Inner loop?
4102         chosen_loop->_body.push(n); // Collect inner loops
4103       return;
4104     }
4105   } else {                      // No slot zero
4106     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
4107       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
4108       return;
4109     }
4110     assert(!n->is_CFG() || n->outcnt() == 0, "");
4111   }
4112 
4113   // Do I have a "safe range" I can select over?
4114   Node *early = get_ctrl(n);// Early location already computed
4115 
4116   // Compute latest point this Node can go
4117   Node *LCA = get_late_ctrl( n, early );
4118   // LCA is NULL due to uses being dead
4119   if( LCA == NULL ) {
4120 #ifdef ASSERT
4121     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
4122       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
4123     }
4124 #endif
4125     _nodes.map(n->_idx, 0);     // This node is useless
4126     _deadlist.push(n);
4127     return;
4128   }
4129   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
4130 
4131   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
4132   Node *least = legal;          // Best legal position so far
4133   while( early != legal ) {     // While not at earliest legal
4134 #ifdef ASSERT
4135     if (legal->is_Start() && !early->is_Root()) {
4136       // Bad graph. Print idom path and fail.
4137       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
4138       assert(false, "Bad graph detected in build_loop_late");
4139     }
4140 #endif
4141     // Find least loop nesting depth
4142     legal = idom(legal);        // Bump up the IDOM tree
4143     // Check for lower nesting depth
4144     if( get_loop(legal)->_nest < get_loop(least)->_nest )
4145       least = legal;
4146   }
4147   assert(early == legal || legal != C->root(), "bad dominance of inputs");
4148 
4149   // Try not to place code on a loop entry projection
4150   // which can inhibit range check elimination.
4151   if (least != early) {
4152     Node* ctrl_out = least->unique_ctrl_out();
4153     if (ctrl_out && ctrl_out->is_Loop() &&
4154         least == ctrl_out->in(LoopNode::EntryControl) &&
4155         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
4156       Node* least_dom = idom(least);
4157       if (get_loop(least_dom)->is_member(get_loop(least))) {
4158         least = least_dom;
4159       }
4160     }
4161   }
4162 
4163 #ifdef ASSERT
4164   // If verifying, verify that 'verify_me' has a legal location
4165   // and choose it as our location.
4166   if( _verify_me ) {
4167     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
4168     Node *legal = LCA;
4169     while( early != legal ) {   // While not at earliest legal
4170       if( legal == v_ctrl ) break;  // Check for prior good location
4171       legal = idom(legal)      ;// Bump up the IDOM tree
4172     }
4173     // Check for prior good location
4174     if( legal == v_ctrl ) least = legal; // Keep prior if found
4175   }
4176 #endif
4177 
4178   // Assign discovered "here or above" point
4179   least = find_non_split_ctrl(least);
4180   verify_strip_mined_scheduling(n, least);
4181   set_ctrl(n, least);
4182 
4183   // Collect inner loop bodies
4184   IdealLoopTree *chosen_loop = get_loop(least);
4185   if( !chosen_loop->_child )   // Inner loop?
4186     chosen_loop->_body.push(n);// Collect inner loops
4187 }
4188 
4189 #ifdef ASSERT
4190 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
4191   tty->print_cr("%s", msg);
4192   tty->print("n: "); n->dump();
4193   tty->print("early(n): "); early->dump();
4194   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
4195       n->in(0) != early && !n->in(0)->is_Root()) {
4196     tty->print("n->in(0): "); n->in(0)->dump();
4197   }
4198   for (uint i = 1; i < n->req(); i++) {
4199     Node* in1 = n->in(i);
4200     if (in1 != NULL && in1 != n && !in1->is_top()) {
4201       tty->print("n->in(%d): ", i); in1->dump();
4202       Node* in1_early = get_ctrl(in1);
4203       tty->print("early(n->in(%d)): ", i); in1_early->dump();
4204       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
4205           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
4206         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
4207       }
4208       for (uint j = 1; j < in1->req(); j++) {
4209         Node* in2 = in1->in(j);
4210         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
4211           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
4212           Node* in2_early = get_ctrl(in2);
4213           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
4214           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
4215               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
4216             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
4217           }
4218         }
4219       }
4220     }
4221   }
4222   tty->cr();
4223   tty->print("LCA(n): "); LCA->dump();
4224   for (uint i = 0; i < n->outcnt(); i++) {
4225     Node* u1 = n->raw_out(i);
4226     if (u1 == n)
4227       continue;
4228     tty->print("n->out(%d): ", i); u1->dump();
4229     if (u1->is_CFG()) {
4230       for (uint j = 0; j < u1->outcnt(); j++) {
4231         Node* u2 = u1->raw_out(j);
4232         if (u2 != u1 && u2 != n && u2->is_CFG()) {
4233           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4234         }
4235       }
4236     } else {
4237       Node* u1_later = get_ctrl(u1);
4238       tty->print("later(n->out(%d)): ", i); u1_later->dump();
4239       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
4240           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
4241         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
4242       }
4243       for (uint j = 0; j < u1->outcnt(); j++) {
4244         Node* u2 = u1->raw_out(j);
4245         if (u2 == n || u2 == u1)
4246           continue;
4247         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
4248         if (!u2->is_CFG()) {
4249           Node* u2_later = get_ctrl(u2);
4250           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
4251           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
4252               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
4253             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
4254           }
4255         }
4256       }
4257     }
4258   }
4259   tty->cr();
4260   int ct = 0;
4261   Node *dbg_legal = LCA;
4262   while(!dbg_legal->is_Start() && ct < 100) {
4263     tty->print("idom[%d] ",ct); dbg_legal->dump();
4264     ct++;
4265     dbg_legal = idom(dbg_legal);
4266   }
4267   tty->cr();
4268 }
4269 #endif
4270 
4271 #ifndef PRODUCT
4272 //------------------------------dump-------------------------------------------
4273 void PhaseIdealLoop::dump( ) const {
4274   ResourceMark rm;
4275   Arena* arena = Thread::current()->resource_area();
4276   Node_Stack stack(arena, C->live_nodes() >> 2);
4277   Node_List rpo_list;
4278   VectorSet visited(arena);
4279   visited.set(C->top()->_idx);
4280   rpo( C->root(), stack, visited, rpo_list );
4281   // Dump root loop indexed by last element in PO order
4282   dump( _ltree_root, rpo_list.size(), rpo_list );
4283 }
4284 
4285 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
4286   loop->dump_head();
4287 
4288   // Now scan for CFG nodes in the same loop
4289   for( uint j=idx; j > 0;  j-- ) {
4290     Node *n = rpo_list[j-1];
4291     if( !_nodes[n->_idx] )      // Skip dead nodes
4292       continue;
4293     if( get_loop(n) != loop ) { // Wrong loop nest
4294       if( get_loop(n)->_head == n &&    // Found nested loop?
4295           get_loop(n)->_parent == loop )
4296         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
4297       continue;
4298     }
4299 
4300     // Dump controlling node
4301     for( uint x = 0; x < loop->_nest; x++ )
4302       tty->print("  ");
4303     tty->print("C");
4304     if( n == C->root() ) {
4305       n->dump();
4306     } else {
4307       Node* cached_idom   = idom_no_update(n);
4308       Node *computed_idom = n->in(0);
4309       if( n->is_Region() ) {
4310         computed_idom = compute_idom(n);
4311         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
4312         // any MultiBranch ctrl node), so apply a similar transform to
4313         // the cached idom returned from idom_no_update.
4314         cached_idom = find_non_split_ctrl(cached_idom);
4315       }
4316       tty->print(" ID:%d",computed_idom->_idx);
4317       n->dump();
4318       if( cached_idom != computed_idom ) {
4319         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
4320                       computed_idom->_idx, cached_idom->_idx);
4321       }
4322     }
4323     // Dump nodes it controls
4324     for( uint k = 0; k < _nodes.Size(); k++ ) {
4325       // (k < C->unique() && get_ctrl(find(k)) == n)
4326       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
4327         Node *m = C->root()->find(k);
4328         if( m && m->outcnt() > 0 ) {
4329           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
4330             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
4331                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
4332           }
4333           for( uint j = 0; j < loop->_nest; j++ )
4334             tty->print("  ");
4335           tty->print(" ");
4336           m->dump();
4337         }
4338       }
4339     }
4340   }
4341 }
4342 
4343 // Collect a R-P-O for the whole CFG.
4344 // Result list is in post-order (scan backwards for RPO)
4345 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
4346   stk.push(start, 0);
4347   visited.set(start->_idx);
4348 
4349   while (stk.is_nonempty()) {
4350     Node* m   = stk.node();
4351     uint  idx = stk.index();
4352     if (idx < m->outcnt()) {
4353       stk.set_index(idx + 1);
4354       Node* n = m->raw_out(idx);
4355       if (n->is_CFG() && !visited.test_set(n->_idx)) {
4356         stk.push(n, 0);
4357       }
4358     } else {
4359       rpo_list.push(m);
4360       stk.pop();
4361     }
4362   }
4363 }
4364 #endif
4365 
4366 
4367 //=============================================================================
4368 //------------------------------LoopTreeIterator-----------------------------------
4369 
4370 // Advance to next loop tree using a preorder, left-to-right traversal.
4371 void LoopTreeIterator::next() {
4372   assert(!done(), "must not be done.");
4373   if (_curnt->_child != NULL) {
4374     _curnt = _curnt->_child;
4375   } else if (_curnt->_next != NULL) {
4376     _curnt = _curnt->_next;
4377   } else {
4378     while (_curnt != _root && _curnt->_next == NULL) {
4379       _curnt = _curnt->_parent;
4380     }
4381     if (_curnt == _root) {
4382       _curnt = NULL;
4383       assert(done(), "must be done.");
4384     } else {
4385       assert(_curnt->_next != NULL, "must be more to do");
4386       _curnt = _curnt->_next;
4387     }
4388   }
4389 }