< prev index next >

src/hotspot/share/opto/parse2.cpp

Print this page

        

*** 184,197 **** return ptr; } // returns IfNode ! IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) { ! Node *cmp = _gvn.transform( new CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 ! Node *tst = _gvn.transform( new BoolNode( cmp, mask)); ! IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN ); return iff; } // return Region node Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) { --- 184,197 ---- return ptr; } // returns IfNode ! IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { ! Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 ! Node *tst = _gvn.transform(new BoolNode(cmp, mask)); ! IfNode *iff = create_and_map_if(control(), tst, prob, cnt); return iff; } // return Region node Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
*** 203,246 **** region = _gvn.transform(region); set_control (region); return region; } //------------------------------helper for tableswitch------------------------- ! void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) { // True branch, use existing map info { PreserveJVMState pjvms(this); Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); set_control( iftrue ); profile_switch_case(prof_table_index); merge_new_path(dest_bci_if_true); } // False branch Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); set_control( iffalse ); } ! void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) { // True branch, use existing map info { PreserveJVMState pjvms(this); Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); set_control( iffalse ); profile_switch_case(prof_table_index); merge_new_path(dest_bci_if_true); } // False branch Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); set_control( iftrue ); } ! void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) { // False branch, use existing map and control() profile_switch_case(prof_table_index); merge_new_path(dest_bci); } extern "C" { static int jint_cmp(const void *i, const void *j) { --- 203,276 ---- region = _gvn.transform(region); set_control (region); return region; } + // sentinel value for the target bci to mark never taken branches + // (according to profiling) + static const int never_reached = INT_MAX; //------------------------------helper for tableswitch------------------------- ! void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) { // True branch, use existing map info { PreserveJVMState pjvms(this); Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); set_control( iftrue ); + if (unc) { + repush_if_args(); + uncommon_trap(Deoptimization::Reason_unstable_if, + Deoptimization::Action_reinterpret, + NULL, + "taken always"); + } else { + assert(dest_bci_if_true != never_reached, "inconsistent dest"); profile_switch_case(prof_table_index); merge_new_path(dest_bci_if_true); } + } // False branch Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); set_control( iffalse ); } ! void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) { // True branch, use existing map info { PreserveJVMState pjvms(this); Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); set_control( iffalse ); + if (unc) { + repush_if_args(); + uncommon_trap(Deoptimization::Reason_unstable_if, + Deoptimization::Action_reinterpret, + NULL, + "taken never"); + } else { + assert(dest_bci_if_true != never_reached, "inconsistent dest"); profile_switch_case(prof_table_index); merge_new_path(dest_bci_if_true); } + } // False branch Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); set_control( iftrue ); } ! void Parse::jump_if_always_fork(int dest_bci, int prof_table_index, bool unc) { // False branch, use existing map and control() + if (unc) { + repush_if_args(); + uncommon_trap(Deoptimization::Reason_unstable_if, + Deoptimization::Action_reinterpret, + NULL, + "taken never"); + } else { + assert(dest_bci != never_reached, "inconsistent dest"); profile_switch_case(prof_table_index); merge_new_path(dest_bci); + } } extern "C" { static int jint_cmp(const void *i, const void *j) {
*** 259,313 **** // a range of integers coupled with a bci destination jint _lo; // inclusive lower limit jint _hi; // inclusive upper limit int _dest; int _table_index; // index into method data table public: jint lo() const { return _lo; } jint hi() const { return _hi; } int dest() const { return _dest; } int table_index() const { return _table_index; } bool is_singleton() const { return _lo == _hi; } ! void setRange(jint lo, jint hi, int dest, int table_index) { assert(lo <= hi, "must be a non-empty range"); ! _lo = lo, _hi = hi; _dest = dest; _table_index = table_index; } ! bool adjoinRange(jint lo, jint hi, int dest, int table_index) { assert(lo <= hi, "must be a non-empty range"); ! if (lo == _hi+1 && dest == _dest && table_index == _table_index) { _hi = hi; return true; } return false; } ! void set (jint value, int dest, int table_index) { ! setRange(value, value, dest, table_index); } ! bool adjoin(jint value, int dest, int table_index) { ! return adjoinRange(value, value, dest, table_index); } void print() { if (is_singleton()) ! tty->print(" {%d}=>%d", lo(), dest()); else if (lo() == min_jint) ! tty->print(" {..%d}=>%d", hi(), dest()); else if (hi() == max_jint) ! tty->print(" {%d..}=>%d", lo(), dest()); else ! tty->print(" {%d..%d}=>%d", lo(), hi(), dest()); } }; //-------------------------------do_tableswitch-------------------------------- void Parse::do_tableswitch() { Node* lookup = pop(); - // Get information about tableswitch int default_dest = iter().get_dest_table(0); int lo_index = iter().get_int_table(1); int hi_index = iter().get_int_table(2); int len = hi_index - lo_index + 1; --- 289,411 ---- // a range of integers coupled with a bci destination jint _lo; // inclusive lower limit jint _hi; // inclusive upper limit int _dest; int _table_index; // index into method data table + float _cnt; // how many times this range was hit according to profiling public: jint lo() const { return _lo; } jint hi() const { return _hi; } int dest() const { return _dest; } int table_index() const { return _table_index; } bool is_singleton() const { return _lo == _hi; } + float cnt() const { return _cnt; } ! void setRange(jint lo, jint hi, int dest, int table_index, float cnt) { assert(lo <= hi, "must be a non-empty range"); ! _lo = lo, _hi = hi; _dest = dest; _table_index = table_index; _cnt = cnt; ! assert(_cnt >= 0, ""); } ! bool adjoinRange(jint lo, jint hi, int dest, int table_index, float cnt, bool trim_ranges) { assert(lo <= hi, "must be a non-empty range"); ! if (lo == _hi+1 && table_index == _table_index) { ! // see merge_ranges() comment below ! if (trim_ranges) { ! if (cnt == 0) { ! if (_cnt != 0) { ! return false; ! } ! if (dest != _dest) { ! _dest = never_reached; ! } ! } else { ! if (_cnt == 0) { ! return false; ! } ! if (dest != _dest) { ! return false; ! } ! } ! } else { ! if (dest != _dest) { ! return false; ! } ! } _hi = hi; + _cnt += cnt; return true; } return false; } ! void set (jint value, int dest, int table_index, float cnt) { ! setRange(value, value, dest, table_index, cnt); ! } ! bool adjoin(jint value, int dest, int table_index, float cnt, bool trim_ranges) { ! return adjoinRange(value, value, dest, table_index, cnt, trim_ranges); } ! bool adjoin(SwitchRange& other) { ! return adjoinRange(other._lo, other._hi, other._dest, other._table_index, other._cnt, false); } void print() { if (is_singleton()) ! tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); else if (lo() == min_jint) ! tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); else if (hi() == max_jint) ! tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); else ! tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); } }; + // We try to minimize the number of ranges and the size of the taken + // ones using profiling data. When ranges are created, + // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge + // if both were never hit or both were hit to build longer unreached + // ranges. Here, we now merge adjoining ranges with the same + // destination and finally set destination of unreached ranges to the + // special value never_reached because it can help minimize the number + // of tests that are necessary. + // + // For instance: + // [0, 1] to target1 sometimes taken + // [1, 2] to target1 never taken + // [2, 3] to target2 never taken + // would lead to: + // [0, 1] to target1 sometimes taken + // [1, 3] never taken + // + // (first 2 ranges to target1 are not merged) + static void merge_ranges(SwitchRange* ranges, int& rp) { + if (rp == 0) { + return; + } + int shift = 0; + for (int j = 0; j < rp; j++) { + SwitchRange& r1 = ranges[j-shift]; + SwitchRange& r2 = ranges[j+1]; + if (r1.adjoin(r2)) { + shift++; + } else if (shift > 0) { + ranges[j+1-shift] = r2; + } + } + rp -= shift; + for (int j = 0; j <= rp; j++) { + SwitchRange& r = ranges[j]; + if (r.cnt() == 0 && r.dest() != never_reached) { + r.setRange(r.lo(), r.hi(), never_reached, r.table_index(), r.cnt()); + } + } + } //-------------------------------do_tableswitch-------------------------------- void Parse::do_tableswitch() { Node* lookup = pop(); // Get information about tableswitch int default_dest = iter().get_dest_table(0); int lo_index = iter().get_int_table(1); int hi_index = iter().get_int_table(2); int len = hi_index - lo_index + 1;
*** 317,351 **** maybe_add_safepoint(default_dest); merge(default_dest); return; } // generate decision tree, using trichotomy when possible int rnum = len+2; bool makes_backward_branch = false; SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); int rp = -1; if (lo_index != min_jint) { ! ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex); } for (int j = 0; j < len; j++) { jint match_int = lo_index+j; int dest = iter().get_dest_table(j+3); makes_backward_branch |= (dest <= bci()); int table_index = method_data_update() ? j : NullTableIndex; ! if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) { ! ranges[++rp].set(match_int, dest, table_index); } } jint highest = lo_index+(len-1); assert(ranges[rp].hi() == highest, ""); ! if (highest != max_jint ! && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) { ! ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex); } assert(rp < len+2, "not too many ranges"); // Safepoint in case if backward branch observed if( makes_backward_branch && UseLoopSafepoints ) add_safepoint(); jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); --- 415,476 ---- maybe_add_safepoint(default_dest); merge(default_dest); return; } + ciMethodData* methodData = method()->method_data(); + ciMultiBranchData* profile = NULL; + if (methodData->is_mature() && UseSwitchProfiling) { + ciProfileData* data = methodData->bci_to_data(bci()); + if (data != NULL && data->is_MultiBranchData()) { + profile = (ciMultiBranchData*)data; + } + } + bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); + // generate decision tree, using trichotomy when possible int rnum = len+2; bool makes_backward_branch = false; SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); int rp = -1; if (lo_index != min_jint) { ! uint cnt = 1; ! if (profile != NULL) { ! cnt = profile->default_count() / (hi_index != max_jint ? 2 : 1); ! } ! ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex, cnt); } for (int j = 0; j < len; j++) { jint match_int = lo_index+j; int dest = iter().get_dest_table(j+3); makes_backward_branch |= (dest <= bci()); int table_index = method_data_update() ? j : NullTableIndex; ! uint cnt = 1; ! if (profile != NULL) { ! cnt = profile->count_at(j); ! } ! if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) { ! ranges[++rp].set(match_int, dest, table_index, cnt); } } jint highest = lo_index+(len-1); assert(ranges[rp].hi() == highest, ""); ! if (highest != max_jint) { ! uint cnt = 1; ! if (profile != NULL) { ! cnt = profile->default_count() / (lo_index != min_jint ? 2 : 1); ! } ! if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, cnt, trim_ranges)) { ! ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, cnt); ! } } assert(rp < len+2, "not too many ranges"); + if (trim_ranges) { + merge_ranges(ranges, rp); + } + // Safepoint in case if backward branch observed if( makes_backward_branch && UseLoopSafepoints ) add_safepoint(); jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
*** 363,414 **** maybe_add_safepoint(default_dest); merge(default_dest); return; } // generate decision tree, using trichotomy when possible ! jint* table = NEW_RESOURCE_ARRAY(jint, len*2); { ! for( int j = 0; j < len; j++ ) { ! table[j+j+0] = iter().get_int_table(2+j+j); ! table[j+j+1] = iter().get_dest_table(2+j+j+1); } ! qsort( table, len, 2*sizeof(table[0]), jint_cmp ); } int rnum = len*2+1; bool makes_backward_branch = false; SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); int rp = -1; ! for( int j = 0; j < len; j++ ) { ! jint match_int = table[j+j+0]; ! int dest = table[j+j+1]; int next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; int table_index = method_data_update() ? j : NullTableIndex; makes_backward_branch |= (dest <= bci()); ! if( match_int != next_lo ) { ! ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex); } ! if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) { ! ranges[++rp].set(match_int, dest, table_index); } } ! jint highest = table[2*(len-1)]; assert(ranges[rp].hi() == highest, ""); ! if( highest != max_jint ! && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) { ! ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex); } assert(rp < rnum, "not too many ranges"); // Safepoint in case backward branch observed ! if( makes_backward_branch && UseLoopSafepoints ) add_safepoint(); jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); } //----------------------------create_jump_tables------------------------------- bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { // Are jumptables enabled if (!UseJumpTables) return false; --- 488,754 ---- maybe_add_safepoint(default_dest); merge(default_dest); return; } + ciMethodData* methodData = method()->method_data(); + ciMultiBranchData* profile = NULL; + if (methodData->is_mature() && UseSwitchProfiling) { + ciProfileData* data = methodData->bci_to_data(bci()); + if (data != NULL && data->is_MultiBranchData()) { + profile = (ciMultiBranchData*)data; + } + } + bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); + // generate decision tree, using trichotomy when possible ! jint* table = NEW_RESOURCE_ARRAY(jint, len*3); { ! for (int j = 0; j < len; j++) { ! table[3*j+0] = iter().get_int_table(2+2*j); ! table[3*j+1] = iter().get_dest_table(2+2*j+1); ! table[3*j+2] = profile == NULL ? 1 : profile->count_at(j); ! } ! qsort(table, len, 3*sizeof(table[0]), jint_cmp); } ! ! float defaults = 0; ! jint prev = min_jint; ! for (int j = 0; j < len; j++) { ! jint match_int = table[3*j+0]; ! if (match_int != prev) { ! defaults += (float)match_int - prev; ! } ! prev = match_int+1; ! } ! if (prev-1 != max_jint) { ! defaults += (float)max_jint - prev + 1; ! } ! float default_cnt = 1; ! if (profile != NULL) { ! default_cnt = profile->default_count()/defaults; } int rnum = len*2+1; bool makes_backward_branch = false; SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); int rp = -1; ! for (int j = 0; j < len; j++) { ! jint match_int = table[3*j+0]; ! int dest = table[3*j+1]; ! int cnt = table[3*j+2]; int next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; int table_index = method_data_update() ? j : NullTableIndex; makes_backward_branch |= (dest <= bci()); ! float c = default_cnt * ((float)match_int - next_lo); ! if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, NullTableIndex, c, trim_ranges))) { ! assert(default_dest != never_reached, "sentinel value for dead destinations"); ! ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex, c); } ! if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) { ! assert(dest != never_reached, "sentinel value for dead destinations"); ! ranges[++rp].set(match_int, dest, table_index, cnt); } } ! jint highest = table[3*(len-1)]; assert(ranges[rp].hi() == highest, ""); ! if (highest != max_jint && ! !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest), trim_ranges)) { ! ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest)); } assert(rp < rnum, "not too many ranges"); + if (trim_ranges) { + merge_ranges(ranges, rp); + } + // Safepoint in case backward branch observed ! if (makes_backward_branch && UseLoopSafepoints) add_safepoint(); jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); } + static float if_prob(float taken_cnt, float total_cnt) { + assert(taken_cnt <= total_cnt, ""); + if (total_cnt == 0) { + return PROB_FAIR; + } + float p = taken_cnt / total_cnt; + return MIN2(MAX2(p, PROB_MIN), PROB_MAX); + } + + static float if_cnt(float cnt) { + if (cnt == 0) { + return COUNT_UNKNOWN; + } + return cnt; + } + + static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { + float total_cnt = 0; + for (SwitchRange* sr = lo; sr <= hi; sr++) { + total_cnt += sr->cnt(); + } + return total_cnt; + } + + class SwitchRanges : public ResourceObj { + public: + SwitchRange* _lo; + SwitchRange* _hi; + SwitchRange* _mid; + float _cost; + + enum { + Start, + LeftDone, + RightDone, + Done + } _state; + + SwitchRanges(SwitchRange *lo, SwitchRange *hi) + : _lo(lo), _hi(hi), _mid(NULL), + _cost(0), _state(Start) { + } + + SwitchRanges() + : _lo(NULL), _hi(NULL), _mid(NULL), + _cost(0), _state(Start) {} + }; + + // Estimate cost of performing a binary search on lo..hi + static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { + GrowableArray<SwitchRanges> tree; + SwitchRanges root(lo, hi); + tree.push(root); + + float cost = 0; + do { + SwitchRanges& r = *tree.adr_at(tree.length()-1); + if (r._hi != r._lo) { + if (r._mid == NULL) { + float r_cnt = sum_of_cnts(r._lo, r._hi); + + if (r_cnt == 0) { + tree.pop(); + cost = 0; + continue; + } + + SwitchRange* mid = NULL; + mid = r._lo; + for (float cnt = 0; ; ) { + assert(mid <= r._hi, "out of bounds"); + cnt += mid->cnt(); + if (cnt > r_cnt / 2) { + break; + } + mid++; + } + assert(mid <= r._hi, "out of bounds"); + r._mid = mid; + r._cost = r_cnt / total_cnt; + } + r._cost += cost; + if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { + cost = 0; + r._state = SwitchRanges::LeftDone; + tree.push(SwitchRanges(r._lo, r._mid-1)); + } else if (r._state < SwitchRanges::RightDone) { + cost = 0; + r._state = SwitchRanges::RightDone; + tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); + } else { + tree.pop(); + cost = r._cost; + } + } else { + tree.pop(); + cost = r._cost; + } + } while (tree.length() > 0); + + + return cost; + } + + // It sometimes pays off to test most common ranges before the binary search + void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { + uint nr = hi - lo + 1; + float total_cnt = sum_of_cnts(lo, hi); + + float min = compute_tree_cost(lo, hi, total_cnt); + float extra = 1; + float sub = 0; + + SwitchRange* array1 = lo; + SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); + + SwitchRange* ranges = NULL; + + while (nr >= 2) { + assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); + ranges = (lo == array1) ? array2 : array1; + + // Find highest frequency range + SwitchRange* candidate = lo; + for (SwitchRange* sr = lo+1; sr <= hi; sr++) { + if (sr->cnt() > candidate->cnt()) { + candidate = sr; + } + } + SwitchRange most_freq = *candidate; + if (most_freq.cnt() == 0) { + break; + } + + // Copy remaining ranges into another array + int shift = 0; + for (uint i = 0; i < nr; i++) { + SwitchRange* sr = &lo[i]; + if (sr != candidate) { + ranges[i-shift] = *sr; + } else { + shift++; + if (i > 0 && i < nr-1) { + SwitchRange prev = lo[i-1]; + prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.table_index(), prev.cnt()); + if (prev.adjoin(lo[i+1])) { + shift++; + i++; + } + ranges[i-shift] = prev; + } + } + } + nr -= shift; + + // Evaluate cost of testing the most common range and performing a + // binary search on the other ranges + float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); + if (cost >= min) { + break; + } + // swap arrays + lo = &ranges[0]; + hi = &ranges[nr-1]; + + // It pays off: emit the test for the most common range + assert(most_freq.cnt() > 0, "must be taken"); + Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); + Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(most_freq.hi() - most_freq.lo()))); + Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); + IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); + jump_if_true_fork(iff, most_freq.dest(), most_freq.table_index(), false); + + sub += most_freq.cnt() / total_cnt; + extra += 1 - sub; + min = cost; + } + } + //----------------------------create_jump_tables------------------------------- bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { // Are jumptables enabled if (!UseJumpTables) return false;
*** 416,425 **** --- 756,767 ---- if (!Matcher::has_match_rule(Op_Jump)) return false; // Don't make jump table if profiling if (method_data_update()) return false; + bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); + // Decide if a guard is needed to lop off big ranges at either (or // both) end(s) of the input set. We'll call this the default target // even though we can't be sure that it is the true "default". bool needs_guard = false;
*** 437,461 **** } else { total_outlier_size = hi_size; default_dest = hi->dest(); } // If a guard test will eliminate very sparse end ranges, then // it is worth the cost of an extra jump. if (total_outlier_size > (MaxJumpTableSparseness * 4)) { needs_guard = true; ! if (default_dest == lo->dest()) lo++; ! if (default_dest == hi->dest()) hi--; } // Find the total number of cases and ranges int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; int num_range = hi - lo + 1; // Don't create table if: too large, too small, or too sparse. ! if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize) return false; if (num_cases > (MaxJumpTableSparseness * num_range)) return false; // Normalize table lookups to zero int lowval = lo->lo(); --- 779,828 ---- } else { total_outlier_size = hi_size; default_dest = hi->dest(); } + float total = sum_of_cnts(lo, hi); + float cost = compute_tree_cost(lo, hi, total); + // If a guard test will eliminate very sparse end ranges, then // it is worth the cost of an extra jump. + float trimmed_cnt = 0; if (total_outlier_size > (MaxJumpTableSparseness * 4)) { needs_guard = true; ! if (default_dest == lo->dest()) { ! trimmed_cnt += lo->cnt(); ! lo++; ! } ! if (default_dest == hi->dest()) { ! trimmed_cnt += hi->cnt(); ! hi--; ! } } // Find the total number of cases and ranges int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; int num_range = hi - lo + 1; // Don't create table if: too large, too small, or too sparse. ! if (num_cases > MaxJumpTableSize) ! return false; ! if (UseSwitchProfiling) { ! // MinJumpTableSize is set so with a well balanced binary tree, ! // when the number of ranges is MinJumpTableSize, it's cheaper to ! // go through a JumpNode that a tree of IfNodes. Average cost of a ! // tree of IfNodes with MinJumpTableSize is ! // log2f(MinJumpTableSize) comparisons. So if the cost computed ! // from profile data is less than log2f(MinJumpTableSize) then ! // going with the binary search is cheaper. ! if (cost < log2f(MinJumpTableSize)) { return false; + } + } else { + if (num_cases < MinJumpTableSize) + return false; + } if (num_cases > (MaxJumpTableSparseness * num_range)) return false; // Normalize table lookups to zero int lowval = lo->lo();
*** 463,476 **** // Generate a guard to protect against input keyvals that aren't // in the switch domain. if (needs_guard) { Node* size = _gvn.intcon(num_cases); ! Node* cmp = _gvn.transform( new CmpUNode(key_val, size) ); ! Node* tst = _gvn.transform( new BoolNode(cmp, BoolTest::ge) ); ! IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN); ! jump_if_true_fork(iff, default_dest, NullTableIndex); } // Create an ideal node JumpTable that has projections // of all possible ranges for a switch statement // The key_val input must be converted to a pointer offset and scaled. --- 830,845 ---- // Generate a guard to protect against input keyvals that aren't // in the switch domain. if (needs_guard) { Node* size = _gvn.intcon(num_cases); ! Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); ! Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); ! IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); ! jump_if_true_fork(iff, default_dest, NullTableIndex, trim_ranges && trimmed_cnt == 0); ! ! total -= trimmed_cnt; } // Create an ideal node JumpTable that has projections // of all possible ranges for a switch statement // The key_val input must be converted to a pointer offset and scaled.
*** 487,507 **** // than a switch value Node *shiftWord = _gvn.MakeConX(wordSize); key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); // Create the JumpNode ! Node* jtn = _gvn.transform( new JumpNode(control(), key_val, num_cases) ); // These are the switch destinations hanging off the jumpnode ! int i = 0; for (SwitchRange* r = lo; r <= hi; r++) { for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); { PreserveJVMState pjvms(this); set_control(input); ! jump_if_always_fork(r->dest(), r->table_index()); } } } assert(i == num_cases, "miscount of cases"); stop_and_kill_map(); // no more uses for this JVMS --- 856,903 ---- // than a switch value Node *shiftWord = _gvn.MakeConX(wordSize); key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); // Create the JumpNode ! Arena* arena = C->comp_arena(); ! float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); ! int i = 0; ! if (total == 0) { ! for (SwitchRange* r = lo; r <= hi; r++) { ! for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { ! probs[i] = 1.0F / num_cases; ! } ! } ! } else { ! for (SwitchRange* r = lo; r <= hi; r++) { ! float prob = r->cnt()/total; ! for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { ! probs[i] = prob / (r->hi() - r->lo() + 1); ! } ! } ! } ! ! ciMethodData* methodData = method()->method_data(); ! ciMultiBranchData* profile = NULL; ! if (methodData->is_mature()) { ! ciProfileData* data = methodData->bci_to_data(bci()); ! if (data != NULL && data->is_MultiBranchData()) { ! profile = (ciMultiBranchData*)data; ! } ! } ! ! Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == NULL ? COUNT_UNKNOWN : total)); // These are the switch destinations hanging off the jumpnode ! i = 0; for (SwitchRange* r = lo; r <= hi; r++) { for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); { PreserveJVMState pjvms(this); set_control(input); ! jump_if_always_fork(r->dest(), r->table_index(), trim_ranges && r->cnt() == 0); } } } assert(i == num_cases, "miscount of cases"); stop_and_kill_map(); // no more uses for this JVMS
*** 509,526 **** --- 905,924 ---- } //----------------------------jump_switch_ranges------------------------------- void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { Block* switch_block = block(); + bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); if (switch_depth == 0) { // Do special processing for the top-level call. assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); // Decrement pred-numbers for the unique set of nodes. #ifdef ASSERT + if (!trim_ranges) { // Ensure that the block's successors are a (duplicate-free) set. int successors_counted = 0; // block occurrences in [hi..lo] int unique_successors = switch_block->num_successors(); for (int i = 0; i < unique_successors; i++) { Block* target = switch_block->successor_at(i);
*** 532,541 **** --- 930,940 ---- } assert(successors_found > 0, "successor must be known"); successors_counted += successors_found; } assert(successors_counted == (hi-lo)+1, "no unexpected successors"); + } #endif // Maybe prune the inputs, based on the type of key_val. jint min_val = min_jint; jint max_val = max_jint;
*** 543,556 **** if (ti != NULL) { min_val = ti->_lo; max_val = ti->_hi; assert(min_val <= max_val, "invalid int type"); } ! while (lo->hi() < min_val) lo++; ! if (lo->lo() < min_val) lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index()); ! while (hi->lo() > max_val) hi--; ! if (hi->hi() > max_val) hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index()); } #ifndef PRODUCT if (switch_depth == 0) { _max_switch_depth = 0; --- 942,965 ---- if (ti != NULL) { min_val = ti->_lo; max_val = ti->_hi; assert(min_val <= max_val, "invalid int type"); } ! while (lo->hi() < min_val) { ! lo++; ! } ! if (lo->lo() < min_val) { ! lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index(), lo->cnt()); ! } ! while (hi->lo() > max_val) { ! hi--; ! } ! if (hi->hi() > max_val) { ! hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index(), hi->cnt()); ! } ! ! linear_search_switch_ranges(key_val, lo, hi); } #ifndef PRODUCT if (switch_depth == 0) { _max_switch_depth = 0;
*** 558,603 **** } #endif assert(lo <= hi, "must be a non-empty set of ranges"); if (lo == hi) { ! jump_if_always_fork(lo->dest(), lo->table_index()); } else { assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); if (create_jump_tables(key_val, lo, hi)) return; int nr = hi - lo + 1; - SwitchRange* mid = lo + nr/2; // if there is an easy choice, pivot at a singleton: if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; assert(lo < mid && mid <= hi, "good pivot choice"); assert(nr != 2 || mid == hi, "should pick higher of 2"); assert(nr != 3 || mid == hi-1, "should pick middle of 3"); ! Node *test_val = _gvn.intcon(mid->lo()); if (mid->is_singleton()) { ! IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne); ! jump_if_false_fork(iff_ne, mid->dest(), mid->table_index()); // Special Case: If there are exactly three ranges, and the high // and low range each go to the same place, omit the "gt" test, // since it will not discriminate anything. ! bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest()); ! if (eq_test_only) { ! assert(mid == hi-1, ""); ! } // if there is a higher range, test for it and process it: if (mid < hi && !eq_test_only) { // two comparisons of same values--should enable 1 test for 2 branches // Use BoolTest::le instead of BoolTest::gt ! IfNode *iff_le = jump_if_fork_int(key_val, test_val, BoolTest::le); Node *iftrue = _gvn.transform( new IfTrueNode(iff_le) ); Node *iffalse = _gvn.transform( new IfFalseNode(iff_le) ); { PreserveJVMState pjvms(this); set_control(iffalse); jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); --- 967,1027 ---- } #endif assert(lo <= hi, "must be a non-empty set of ranges"); if (lo == hi) { ! jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0); } else { assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); if (create_jump_tables(key_val, lo, hi)) return; + SwitchRange* mid = NULL; + float total_cnt = sum_of_cnts(lo, hi); + int nr = hi - lo + 1; + if (UseSwitchProfiling) { + // Don't keep the binary search tree balanced: pick up mid point + // that split frequencies in half. + float cnt = 0; + for (SwitchRange* sr = lo; sr <= hi; sr++) { + cnt += sr->cnt(); + if (cnt >= total_cnt / 2) { + mid = sr; + break; + } + } + } else { + mid = lo + nr/2; // if there is an easy choice, pivot at a singleton: if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; assert(lo < mid && mid <= hi, "good pivot choice"); assert(nr != 2 || mid == hi, "should pick higher of 2"); assert(nr != 3 || mid == hi-1, "should pick middle of 3"); + } ! ! Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); if (mid->is_singleton()) { ! IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); ! jump_if_false_fork(iff_ne, mid->dest(), mid->table_index(), trim_ranges && mid->cnt() == 0); // Special Case: If there are exactly three ranges, and the high // and low range each go to the same place, omit the "gt" test, // since it will not discriminate anything. ! bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; // if there is a higher range, test for it and process it: if (mid < hi && !eq_test_only) { // two comparisons of same values--should enable 1 test for 2 branches // Use BoolTest::le instead of BoolTest::gt ! float cnt = sum_of_cnts(lo, mid-1); ! IfNode *iff_le = jump_if_fork_int(key_val, test_val, BoolTest::le, if_prob(cnt, total_cnt), if_cnt(cnt)); Node *iftrue = _gvn.transform( new IfTrueNode(iff_le) ); Node *iffalse = _gvn.transform( new IfFalseNode(iff_le) ); { PreserveJVMState pjvms(this); set_control(iffalse); jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
*** 605,633 **** set_control(iftrue); } } else { // mid is a range, not a singleton, so treat mid..hi as a unit ! IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge); // if there is a higher range, test for it and process it: if (mid == hi) { ! jump_if_true_fork(iff_ge, mid->dest(), mid->table_index()); } else { Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); { PreserveJVMState pjvms(this); set_control(iftrue); ! jump_switch_ranges(key_val, mid, hi, switch_depth+1); } set_control(iffalse); } } // in any case, process the lower range jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); } // Decrease pred_count for each successor after all is done. if (switch_depth == 0) { int unique_successors = switch_block->num_successors(); for (int i = 0; i < unique_successors; i++) { --- 1029,1066 ---- set_control(iftrue); } } else { // mid is a range, not a singleton, so treat mid..hi as a unit ! float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); ! IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); // if there is a higher range, test for it and process it: if (mid == hi) { ! jump_if_true_fork(iff_ge, mid->dest(), mid->table_index(), trim_ranges && cnt == 0); } else { Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); { PreserveJVMState pjvms(this); set_control(iftrue); ! jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); } set_control(iffalse); } } // in any case, process the lower range + if (mid == lo) { + if (mid->is_singleton()) { + jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); + } else { + jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0); + } + } else { jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); } + } // Decrease pred_count for each successor after all is done. if (switch_depth == 0) { int unique_successors = switch_block->num_successors(); for (int i = 0; i < unique_successors; i++) {
*** 722,732 **** (divisor & ~(divisor-1)) == divisor) { // yes ! Node *mask = _gvn.intcon((divisor - 1)); // Sigh, must handle negative dividends Node *zero = _gvn.intcon(0); ! IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt); Node *iff = _gvn.transform( new IfFalseNode(ifff) ); Node *ift = _gvn.transform( new IfTrueNode (ifff) ); Node *reg = jump_if_join(ift, iff); Node *phi = PhiNode::make(reg, NULL, TypeInt::INT); // Negative path; negate/and/negate --- 1155,1165 ---- (divisor & ~(divisor-1)) == divisor) { // yes ! Node *mask = _gvn.intcon((divisor - 1)); // Sigh, must handle negative dividends Node *zero = _gvn.intcon(0); ! IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt, PROB_FAIR, COUNT_UNKNOWN); Node *iff = _gvn.transform( new IfFalseNode(ifff) ); Node *ift = _gvn.transform( new IfTrueNode (ifff) ); Node *reg = jump_if_join(ift, iff); Node *phi = PhiNode::make(reg, NULL, TypeInt::INT); // Negative path; negate/and/negate
< prev index next >