1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/opaquenode.hpp"
  39 #include "opto/superword.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "opto/movenode.hpp"
  42 
  43 //
  44 //                  S U P E R W O R D   T R A N S F O R M
  45 //=============================================================================
  46 
  47 //------------------------------SuperWord---------------------------
  48 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  49   _phase(phase),
  50   _igvn(phase->_igvn),
  51   _arena(phase->C->comp_arena()),
  52   _packset(arena(), 8,  0, NULL),         // packs for the current block
  53   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  54   _block(arena(), 8,  0, NULL),           // nodes in current block
  55   _post_block(arena(), 8, 0, NULL),       // nodes common to current block which are marked as post loop vectorizable
  56   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  57   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  58   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  59   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  60   _clone_map(phase->C->clone_map()),      // map of nodes created in cloning
  61   _cmovev_kit(_arena, this),              // map to facilitate CMoveV creation
  62   _align_to_ref(NULL),                    // memory reference to align vectors to
  63   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  64   _dg(_arena),                            // dependence graph
  65   _visited(arena()),                      // visited node set
  66   _post_visited(arena()),                 // post visited node set
  67   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  68   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  69   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  70   _lpt(NULL),                             // loop tree node
  71   _lp(NULL),                              // LoopNode
  72   _bb(NULL),                              // basic block
  73   _iv(NULL),                              // induction var
  74   _race_possible(false),                  // cases where SDMU is true
  75   _early_return(true),                    // analysis evaluations routine
  76   _num_work_vecs(0),                      // amount of vector work we have
  77   _num_reductions(0),                     // amount of reduction work we have
  78   _do_vector_loop(phase->C->do_vector_loop()),  // whether to do vectorization/simd style
  79   _do_reserve_copy(DoReserveCopyInSuperWord),
  80   _ii_first(-1),                          // first loop generation index - only if do_vector_loop()
  81   _ii_last(-1),                           // last loop generation index - only if do_vector_loop()
  82   _ii_order(arena(), 8, 0, 0)
  83 {
  84 #ifndef PRODUCT
  85   _vector_loop_debug = 0;
  86   if (_phase->C->method() != NULL) {
  87     _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
  88   }
  89 
  90 #endif
  91 }
  92 
  93 //------------------------------transform_loop---------------------------
  94 void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
  95   assert(UseSuperWord, "should be");
  96   // Do vectors exist on this architecture?
  97   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
  98 
  99   assert(lpt->_head->is_CountedLoop(), "must be");
 100   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
 101 
 102   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
 103 
 104   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 105   if (post_loop_allowed) {
 106     if (cl->is_reduction_loop()) return; // no predication mapping
 107     Node *limit = cl->limit();
 108     if (limit->is_Con()) return; // non constant limits only
 109     // Now check the limit for expressions we do not handle
 110     if (limit->is_Add()) {
 111       Node *in2 = limit->in(2);
 112       if (in2->is_Con()) {
 113         int val = in2->get_int();
 114         // should not try to program these cases
 115         if (val < 0) return;
 116       }
 117     }
 118   }
 119 
 120   // skip any loop that has not been assigned max unroll by analysis
 121   if (do_optimization) {
 122     if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
 123   }
 124 
 125   // Check for no control flow in body (other than exit)
 126   Node *cl_exit = cl->loopexit();
 127   if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
 128     #ifndef PRODUCT
 129       if (TraceSuperWord) {
 130         tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
 131         tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
 132         tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
 133         tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
 134         lpt->dump_head();
 135       }
 136     #endif
 137     return;
 138   }
 139 
 140   // Make sure the are no extra control users of the loop backedge
 141   if (cl->back_control()->outcnt() != 1) {
 142     return;
 143   }
 144 
 145   // Skip any loops already optimized by slp
 146   if (cl->is_vectorized_loop()) return;
 147 
 148   if (cl->do_unroll_only()) return;
 149 
 150   if (cl->is_main_loop()) {
 151     // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
 152     CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
 153     if (pre_end == NULL) return;
 154     Node *pre_opaq1 = pre_end->limit();
 155     if (pre_opaq1->Opcode() != Op_Opaque1) return;
 156   }
 157 
 158   init(); // initialize data structures
 159 
 160   set_lpt(lpt);
 161   set_lp(cl);
 162 
 163   // For now, define one block which is the entire loop body
 164   set_bb(cl);
 165 
 166   if (do_optimization) {
 167     assert(_packset.length() == 0, "packset must be empty");
 168     SLP_extract();
 169     if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
 170       if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
 171         IdealLoopTree *lpt_next = lpt->_next;
 172         CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
 173         _phase->has_range_checks(lpt_next);
 174         if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
 175           if (!cl_next->is_vectorized_loop()) {
 176             int slp_max_unroll_factor = cl->slp_max_unroll();
 177             cl_next->set_slp_max_unroll(slp_max_unroll_factor);
 178           }
 179         }
 180       }
 181     }
 182   }
 183 }
 184 
 185 //------------------------------early unrolling analysis------------------------------
 186 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
 187   bool is_slp = true;
 188   ResourceMark rm;
 189   size_t ignored_size = lpt()->_body.size();
 190   int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
 191   Node_Stack nstack((int)ignored_size);
 192   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 193   Node *cl_exit = cl->loopexit_or_null();
 194   int rpo_idx = _post_block.length();
 195 
 196   assert(rpo_idx == 0, "post loop block is empty");
 197 
 198   // First clear the entries
 199   for (uint i = 0; i < lpt()->_body.size(); i++) {
 200     ignored_loop_nodes[i] = -1;
 201   }
 202 
 203   int max_vector = Matcher::max_vector_size(T_BYTE);
 204   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 205 
 206   // Process the loop, some/all of the stack entries will not be in order, ergo
 207   // need to preprocess the ignored initial state before we process the loop
 208   for (uint i = 0; i < lpt()->_body.size(); i++) {
 209     Node* n = lpt()->_body.at(i);
 210     if (n == cl->incr() ||
 211       n->is_reduction() ||
 212       n->is_AddP() ||
 213       n->is_Cmp() ||
 214       n->is_IfTrue() ||
 215       n->is_CountedLoop() ||
 216       (n == cl_exit)) {
 217       ignored_loop_nodes[i] = n->_idx;
 218       continue;
 219     }
 220 
 221     if (n->is_If()) {
 222       IfNode *iff = n->as_If();
 223       if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
 224         if (lpt()->is_loop_exit(iff)) {
 225           ignored_loop_nodes[i] = n->_idx;
 226           continue;
 227         }
 228       }
 229     }
 230 
 231     if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
 232       Node* n_tail = n->in(LoopNode::LoopBackControl);
 233       if (n_tail != n->in(LoopNode::EntryControl)) {
 234         if (!n_tail->is_Mem()) {
 235           is_slp = false;
 236           break;
 237         }
 238       }
 239     }
 240 
 241     // This must happen after check of phi/if
 242     if (n->is_Phi() || n->is_If()) {
 243       ignored_loop_nodes[i] = n->_idx;
 244       continue;
 245     }
 246 
 247     if (n->is_LoadStore() || n->is_MergeMem() ||
 248       (n->is_Proj() && !n->as_Proj()->is_CFG())) {
 249       is_slp = false;
 250       break;
 251     }
 252 
 253     // Ignore nodes with non-primitive type.
 254     BasicType bt;
 255     if (n->is_Mem()) {
 256       bt = n->as_Mem()->memory_type();
 257     } else {
 258       bt = n->bottom_type()->basic_type();
 259     }
 260     if (is_java_primitive(bt) == false) {
 261       ignored_loop_nodes[i] = n->_idx;
 262       continue;
 263     }
 264 
 265     if (n->is_Mem()) {
 266       MemNode* current = n->as_Mem();
 267       Node* adr = n->in(MemNode::Address);
 268       Node* n_ctrl = _phase->get_ctrl(adr);
 269 
 270       // save a queue of post process nodes
 271       if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
 272         // Process the memory expression
 273         int stack_idx = 0;
 274         bool have_side_effects = true;
 275         if (adr->is_AddP() == false) {
 276           nstack.push(adr, stack_idx++);
 277         } else {
 278           // Mark the components of the memory operation in nstack
 279           SWPointer p1(current, this, &nstack, true);
 280           have_side_effects = p1.node_stack()->is_nonempty();
 281         }
 282 
 283         // Process the pointer stack
 284         while (have_side_effects) {
 285           Node* pointer_node = nstack.node();
 286           for (uint j = 0; j < lpt()->_body.size(); j++) {
 287             Node* cur_node = lpt()->_body.at(j);
 288             if (cur_node == pointer_node) {
 289               ignored_loop_nodes[j] = cur_node->_idx;
 290               break;
 291             }
 292           }
 293           nstack.pop();
 294           have_side_effects = nstack.is_nonempty();
 295         }
 296       }
 297     }
 298   }
 299 
 300   if (is_slp) {
 301     // Now we try to find the maximum supported consistent vector which the machine
 302     // description can use
 303     bool small_basic_type = false;
 304     bool flag_small_bt = false;
 305     for (uint i = 0; i < lpt()->_body.size(); i++) {
 306       if (ignored_loop_nodes[i] != -1) continue;
 307 
 308       BasicType bt;
 309       Node* n = lpt()->_body.at(i);
 310       if (n->is_Mem()) {
 311         bt = n->as_Mem()->memory_type();
 312       } else {
 313         bt = n->bottom_type()->basic_type();
 314       }
 315 
 316       if (post_loop_allowed) {
 317         if (!small_basic_type) {
 318           switch (bt) {
 319           case T_CHAR:
 320           case T_BYTE:
 321           case T_SHORT:
 322             small_basic_type = true;
 323             break;
 324 
 325           case T_LONG:
 326             // TODO: Remove when support completed for mask context with LONG.
 327             //       Support needs to be augmented for logical qword operations, currently we map to dword
 328             //       buckets for vectors on logicals as these were legacy.
 329             small_basic_type = true;
 330             break;
 331 
 332           default:
 333             break;
 334           }
 335         }
 336       }
 337 
 338       if (is_java_primitive(bt) == false) continue;
 339 
 340          int cur_max_vector = Matcher::max_vector_size(bt);
 341 
 342       // If a max vector exists which is not larger than _local_loop_unroll_factor
 343       // stop looking, we already have the max vector to map to.
 344       if (cur_max_vector < local_loop_unroll_factor) {
 345         is_slp = false;
 346         if (TraceSuperWordLoopUnrollAnalysis) {
 347           tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
 348         }
 349         break;
 350       }
 351 
 352       // Map the maximal common vector
 353       if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
 354         if (cur_max_vector < max_vector && !flag_small_bt) {
 355           max_vector = cur_max_vector;
 356         } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) {
 357           // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types.
 358           // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively.
 359           // We check for possibility of narrowing by looking through chain operations using subword types.
 360           if (is_subword_type(bt)) {
 361             uint start, end;
 362             VectorNode::vector_operands(n, &start, &end);
 363 
 364             for (uint j = start; j < end; j++) {
 365               Node* in = n->in(j);
 366               // Don't propagate through a memory
 367               if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) {
 368                 bool same_type = true;
 369                 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
 370                   Node *use = in->fast_out(k);
 371                   if (!in_bb(use) && use->bottom_type()->basic_type() != bt) {
 372                     same_type = false;
 373                     break;
 374                   }
 375                 }
 376                 if (same_type) {
 377                   max_vector = cur_max_vector;
 378                   flag_small_bt = true;
 379                 }
 380               }
 381             }
 382           }
 383         }
 384         // We only process post loops on predicated targets where we want to
 385         // mask map the loop to a single iteration
 386         if (post_loop_allowed) {
 387           _post_block.at_put_grow(rpo_idx++, n);
 388         }
 389       }
 390     }
 391     if (is_slp) {
 392       local_loop_unroll_factor = max_vector;
 393       cl->mark_passed_slp();
 394     }
 395     cl->mark_was_slp();
 396     if (cl->is_main_loop()) {
 397       cl->set_slp_max_unroll(local_loop_unroll_factor);
 398     } else if (post_loop_allowed) {
 399       if (!small_basic_type) {
 400         // avoid replication context for small basic types in programmable masked loops
 401         cl->set_slp_max_unroll(local_loop_unroll_factor);
 402       }
 403     }
 404   }
 405 }
 406 
 407 //------------------------------SLP_extract---------------------------
 408 // Extract the superword level parallelism
 409 //
 410 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 411 //    this list from first to last, all definitions are visited before their uses.
 412 //
 413 // 2) A point-to-point dependence graph is constructed between memory references.
 414 //    This simplies the upcoming "independence" checker.
 415 //
 416 // 3) The maximum depth in the node graph from the beginning of the block
 417 //    to each node is computed.  This is used to prune the graph search
 418 //    in the independence checker.
 419 //
 420 // 4) For integer types, the necessary bit width is propagated backwards
 421 //    from stores to allow packed operations on byte, char, and short
 422 //    integers.  This reverses the promotion to type "int" that javac
 423 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 424 //
 425 // 5) One of the memory references is picked to be an aligned vector reference.
 426 //    The pre-loop trip count is adjusted to align this reference in the
 427 //    unrolled body.
 428 //
 429 // 6) The initial set of pack pairs is seeded with memory references.
 430 //
 431 // 7) The set of pack pairs is extended by following use->def and def->use links.
 432 //
 433 // 8) The pairs are combined into vector sized packs.
 434 //
 435 // 9) Reorder the memory slices to co-locate members of the memory packs.
 436 //
 437 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 438 //    inserting scalar promotion, vector creation from multiple scalars, and
 439 //    extraction of scalar values from vectors.
 440 //
 441 void SuperWord::SLP_extract() {
 442 
 443 #ifndef PRODUCT
 444   if (_do_vector_loop && TraceSuperWord) {
 445     tty->print("SuperWord::SLP_extract\n");
 446     tty->print("input loop\n");
 447     _lpt->dump_head();
 448     _lpt->dump();
 449     for (uint i = 0; i < _lpt->_body.size(); i++) {
 450       _lpt->_body.at(i)->dump();
 451     }
 452   }
 453 #endif
 454   // Ready the block
 455   if (!construct_bb()) {
 456     return; // Exit if no interesting nodes or complex graph.
 457   }
 458 
 459   // build    _dg, _disjoint_ptrs
 460   dependence_graph();
 461 
 462   // compute function depth(Node*)
 463   compute_max_depth();
 464 
 465   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 466   bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
 467   if (cl->is_main_loop()) {
 468     if (_do_vector_loop) {
 469       if (mark_generations() != -1) {
 470         hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
 471 
 472         if (!construct_bb()) {
 473           return; // Exit if no interesting nodes or complex graph.
 474         }
 475         dependence_graph();
 476         compute_max_depth();
 477       }
 478 
 479 #ifndef PRODUCT
 480       if (TraceSuperWord) {
 481         tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
 482         _lpt->dump_head();
 483         for (int j = 0; j < _block.length(); j++) {
 484           Node* n = _block.at(j);
 485           int d = depth(n);
 486           for (int i = 0; i < d; i++) tty->print("%s", "  ");
 487           tty->print("%d :", d);
 488           n->dump();
 489         }
 490       }
 491 #endif
 492     }
 493 
 494     compute_vector_element_type();
 495 
 496     // Attempt vectorization
 497 
 498     find_adjacent_refs();
 499 
 500     extend_packlist();
 501 
 502     if (_do_vector_loop) {
 503       if (_packset.length() == 0) {
 504         if (TraceSuperWord) {
 505           tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
 506         }
 507         pack_parallel();
 508       }
 509     }
 510 
 511     combine_packs();
 512 
 513     construct_my_pack_map();
 514     if (UseVectorCmov) {
 515       merge_packs_to_cmovd();
 516     }
 517 
 518     filter_packs();
 519 
 520     schedule();
 521   } else if (post_loop_allowed) {
 522     int saved_mapped_unroll_factor = cl->slp_max_unroll();
 523     if (saved_mapped_unroll_factor) {
 524       int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
 525 
 526       // now reset the slp_unroll_factor so that we can check the analysis mapped
 527       // what the vector loop was mapped to
 528       cl->set_slp_max_unroll(0);
 529 
 530       // do the analysis on the post loop
 531       unrolling_analysis(vector_mapped_unroll_factor);
 532 
 533       // if our analyzed loop is a canonical fit, start processing it
 534       if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
 535         // now add the vector nodes to packsets
 536         for (int i = 0; i < _post_block.length(); i++) {
 537           Node* n = _post_block.at(i);
 538           Node_List* singleton = new Node_List();
 539           singleton->push(n);
 540           _packset.append(singleton);
 541           set_my_pack(n, singleton);
 542         }
 543 
 544         // map base types for vector usage
 545         compute_vector_element_type();
 546       } else {
 547         return;
 548       }
 549     } else {
 550       // for some reason we could not map the slp analysis state of the vectorized loop
 551       return;
 552     }
 553   }
 554 
 555   output();
 556 }
 557 
 558 //------------------------------find_adjacent_refs---------------------------
 559 // Find the adjacent memory references and create pack pairs for them.
 560 // This is the initial set of packs that will then be extended by
 561 // following use->def and def->use links.  The align positions are
 562 // assigned relative to the reference "align_to_ref"
 563 void SuperWord::find_adjacent_refs() {
 564   // Get list of memory operations
 565   Node_List memops;
 566   for (int i = 0; i < _block.length(); i++) {
 567     Node* n = _block.at(i);
 568     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
 569         is_java_primitive(n->as_Mem()->memory_type())) {
 570       int align = memory_alignment(n->as_Mem(), 0);
 571       if (align != bottom_align) {
 572         memops.push(n);
 573       }
 574     }
 575   }
 576 
 577   Node_List align_to_refs;
 578   int best_iv_adjustment = 0;
 579   MemNode* best_align_to_mem_ref = NULL;
 580 
 581   while (memops.size() != 0) {
 582     // Find a memory reference to align to.
 583     MemNode* mem_ref = find_align_to_ref(memops);
 584     if (mem_ref == NULL) break;
 585     align_to_refs.push(mem_ref);
 586     int iv_adjustment = get_iv_adjustment(mem_ref);
 587 
 588     if (best_align_to_mem_ref == NULL) {
 589       // Set memory reference which is the best from all memory operations
 590       // to be used for alignment. The pre-loop trip count is modified to align
 591       // this reference to a vector-aligned address.
 592       best_align_to_mem_ref = mem_ref;
 593       best_iv_adjustment = iv_adjustment;
 594       NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 595     }
 596 
 597     SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 598     // Set alignment relative to "align_to_ref" for all related memory operations.
 599     for (int i = memops.size() - 1; i >= 0; i--) {
 600       MemNode* s = memops.at(i)->as_Mem();
 601       if (isomorphic(s, mem_ref) &&
 602            (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
 603         SWPointer p2(s, this, NULL, false);
 604         if (p2.comparable(align_to_ref_p)) {
 605           int align = memory_alignment(s, iv_adjustment);
 606           set_alignment(s, align);
 607         }
 608       }
 609     }
 610 
 611     // Create initial pack pairs of memory operations for which
 612     // alignment is set and vectors will be aligned.
 613     bool create_pack = true;
 614     if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
 615       if (!Matcher::misaligned_vectors_ok()) {
 616         int vw = vector_width(mem_ref);
 617         int vw_best = vector_width(best_align_to_mem_ref);
 618         if (vw > vw_best) {
 619           // Do not vectorize a memory access with more elements per vector
 620           // if unaligned memory access is not allowed because number of
 621           // iterations in pre-loop will be not enough to align it.
 622           create_pack = false;
 623         } else {
 624           SWPointer p2(best_align_to_mem_ref, this, NULL, false);
 625           if (align_to_ref_p.invar() != p2.invar()) {
 626             // Do not vectorize memory accesses with different invariants
 627             // if unaligned memory accesses are not allowed.
 628             create_pack = false;
 629           }
 630         }
 631       }
 632     } else {
 633       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 634         // Can't allow vectorization of unaligned memory accesses with the
 635         // same type since it could be overlapped accesses to the same array.
 636         create_pack = false;
 637       } else {
 638         // Allow independent (different type) unaligned memory operations
 639         // if HW supports them.
 640         if (!Matcher::misaligned_vectors_ok()) {
 641           create_pack = false;
 642         } else {
 643           // Check if packs of the same memory type but
 644           // with a different alignment were created before.
 645           for (uint i = 0; i < align_to_refs.size(); i++) {
 646             MemNode* mr = align_to_refs.at(i)->as_Mem();
 647             if (same_velt_type(mr, mem_ref) &&
 648                 memory_alignment(mr, iv_adjustment) != 0)
 649               create_pack = false;
 650           }
 651         }
 652       }
 653     }
 654     if (create_pack) {
 655       for (uint i = 0; i < memops.size(); i++) {
 656         Node* s1 = memops.at(i);
 657         int align = alignment(s1);
 658         if (align == top_align) continue;
 659         for (uint j = 0; j < memops.size(); j++) {
 660           Node* s2 = memops.at(j);
 661           if (alignment(s2) == top_align) continue;
 662           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 663             if (stmts_can_pack(s1, s2, align)) {
 664               Node_List* pair = new Node_List();
 665               pair->push(s1);
 666               pair->push(s2);
 667               if (!_do_vector_loop || same_origin_idx(s1, s2)) {
 668                 _packset.append(pair);
 669               }
 670             }
 671           }
 672         }
 673       }
 674     } else { // Don't create unaligned pack
 675       // First, remove remaining memory ops of the same type from the list.
 676       for (int i = memops.size() - 1; i >= 0; i--) {
 677         MemNode* s = memops.at(i)->as_Mem();
 678         if (same_velt_type(s, mem_ref)) {
 679           memops.remove(i);
 680         }
 681       }
 682 
 683       // Second, remove already constructed packs of the same type.
 684       for (int i = _packset.length() - 1; i >= 0; i--) {
 685         Node_List* p = _packset.at(i);
 686         MemNode* s = p->at(0)->as_Mem();
 687         if (same_velt_type(s, mem_ref)) {
 688           remove_pack_at(i);
 689         }
 690       }
 691 
 692       // If needed find the best memory reference for loop alignment again.
 693       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 694         // Put memory ops from remaining packs back on memops list for
 695         // the best alignment search.
 696         uint orig_msize = memops.size();
 697         for (int i = 0; i < _packset.length(); i++) {
 698           Node_List* p = _packset.at(i);
 699           MemNode* s = p->at(0)->as_Mem();
 700           assert(!same_velt_type(s, mem_ref), "sanity");
 701           memops.push(s);
 702         }
 703         best_align_to_mem_ref = find_align_to_ref(memops);
 704         if (best_align_to_mem_ref == NULL) {
 705           if (TraceSuperWord) {
 706             tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
 707           }
 708           break;
 709         }
 710         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
 711         NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
 712         // Restore list.
 713         while (memops.size() > orig_msize)
 714           (void)memops.pop();
 715       }
 716     } // unaligned memory accesses
 717 
 718     // Remove used mem nodes.
 719     for (int i = memops.size() - 1; i >= 0; i--) {
 720       MemNode* m = memops.at(i)->as_Mem();
 721       if (alignment(m) != top_align) {
 722         memops.remove(i);
 723       }
 724     }
 725 
 726   } // while (memops.size() != 0
 727   set_align_to_ref(best_align_to_mem_ref);
 728 
 729   if (TraceSuperWord) {
 730     tty->print_cr("\nAfter find_adjacent_refs");
 731     print_packset();
 732   }
 733 }
 734 
 735 #ifndef PRODUCT
 736 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
 737   if (is_trace_adjacent()) {
 738     tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
 739        best_align_to_mem_ref->_idx, best_iv_adjustment);
 740        best_align_to_mem_ref->dump();
 741   }
 742 }
 743 #endif
 744 
 745 //------------------------------find_align_to_ref---------------------------
 746 // Find a memory reference to align the loop induction variable to.
 747 // Looks first at stores then at loads, looking for a memory reference
 748 // with the largest number of references similar to it.
 749 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
 750   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 751 
 752   // Count number of comparable memory ops
 753   for (uint i = 0; i < memops.size(); i++) {
 754     MemNode* s1 = memops.at(i)->as_Mem();
 755     SWPointer p1(s1, this, NULL, false);
 756     // Discard if pre loop can't align this reference
 757     if (!ref_is_alignable(p1)) {
 758       *cmp_ct.adr_at(i) = 0;
 759       continue;
 760     }
 761     for (uint j = i+1; j < memops.size(); j++) {
 762       MemNode* s2 = memops.at(j)->as_Mem();
 763       if (isomorphic(s1, s2)) {
 764         SWPointer p2(s2, this, NULL, false);
 765         if (p1.comparable(p2)) {
 766           (*cmp_ct.adr_at(i))++;
 767           (*cmp_ct.adr_at(j))++;
 768         }
 769       }
 770     }
 771   }
 772 
 773   // Find Store (or Load) with the greatest number of "comparable" references,
 774   // biggest vector size, smallest data size and smallest iv offset.
 775   int max_ct        = 0;
 776   int max_vw        = 0;
 777   int max_idx       = -1;
 778   int min_size      = max_jint;
 779   int min_iv_offset = max_jint;
 780   for (uint j = 0; j < memops.size(); j++) {
 781     MemNode* s = memops.at(j)->as_Mem();
 782     if (s->is_Store()) {
 783       int vw = vector_width_in_bytes(s);
 784       assert(vw > 1, "sanity");
 785       SWPointer p(s, this, NULL, false);
 786       if ( cmp_ct.at(j) >  max_ct ||
 787           (cmp_ct.at(j) == max_ct &&
 788             ( vw >  max_vw ||
 789              (vw == max_vw &&
 790               ( data_size(s) <  min_size ||
 791                (data_size(s) == min_size &&
 792                 p.offset_in_bytes() < min_iv_offset)))))) {
 793         max_ct = cmp_ct.at(j);
 794         max_vw = vw;
 795         max_idx = j;
 796         min_size = data_size(s);
 797         min_iv_offset = p.offset_in_bytes();
 798       }
 799     }
 800   }
 801   // If no stores, look at loads
 802   if (max_ct == 0) {
 803     for (uint j = 0; j < memops.size(); j++) {
 804       MemNode* s = memops.at(j)->as_Mem();
 805       if (s->is_Load()) {
 806         int vw = vector_width_in_bytes(s);
 807         assert(vw > 1, "sanity");
 808         SWPointer p(s, this, NULL, false);
 809         if ( cmp_ct.at(j) >  max_ct ||
 810             (cmp_ct.at(j) == max_ct &&
 811               ( vw >  max_vw ||
 812                (vw == max_vw &&
 813                 ( data_size(s) <  min_size ||
 814                  (data_size(s) == min_size &&
 815                   p.offset_in_bytes() < min_iv_offset)))))) {
 816           max_ct = cmp_ct.at(j);
 817           max_vw = vw;
 818           max_idx = j;
 819           min_size = data_size(s);
 820           min_iv_offset = p.offset_in_bytes();
 821         }
 822       }
 823     }
 824   }
 825 
 826 #ifdef ASSERT
 827   if (TraceSuperWord && Verbose) {
 828     tty->print_cr("\nVector memops after find_align_to_ref");
 829     for (uint i = 0; i < memops.size(); i++) {
 830       MemNode* s = memops.at(i)->as_Mem();
 831       s->dump();
 832     }
 833   }
 834 #endif
 835 
 836   if (max_ct > 0) {
 837 #ifdef ASSERT
 838     if (TraceSuperWord) {
 839       tty->print("\nVector align to node: ");
 840       memops.at(max_idx)->as_Mem()->dump();
 841     }
 842 #endif
 843     return memops.at(max_idx)->as_Mem();
 844   }
 845   return NULL;
 846 }
 847 
 848 //------------------------------ref_is_alignable---------------------------
 849 // Can the preloop align the reference to position zero in the vector?
 850 bool SuperWord::ref_is_alignable(SWPointer& p) {
 851   if (!p.has_iv()) {
 852     return true;   // no induction variable
 853   }
 854   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 855   assert(pre_end != NULL, "we must have a correct pre-loop");
 856   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 857   int preloop_stride = pre_end->stride_con();
 858 
 859   int span = preloop_stride * p.scale_in_bytes();
 860   int mem_size = p.memory_size();
 861   int offset   = p.offset_in_bytes();
 862   // Stride one accesses are alignable if offset is aligned to memory operation size.
 863   // Offset can be unaligned when UseUnalignedAccesses is used.
 864   if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
 865     return true;
 866   }
 867   // If the initial offset from start of the object is computable,
 868   // check if the pre-loop can align the final offset accordingly.
 869   //
 870   // In other words: Can we find an i such that the offset
 871   // after i pre-loop iterations is aligned to vw?
 872   //   (init_offset + pre_loop) % vw == 0              (1)
 873   // where
 874   //   pre_loop = i * span
 875   // is the number of bytes added to the offset by i pre-loop iterations.
 876   //
 877   // For this to hold we need pre_loop to increase init_offset by
 878   //   pre_loop = vw - (init_offset % vw)
 879   //
 880   // This is only possible if pre_loop is divisible by span because each
 881   // pre-loop iteration increases the initial offset by 'span' bytes:
 882   //   (vw - (init_offset % vw)) % span == 0
 883   //
 884   int vw = vector_width_in_bytes(p.mem());
 885   assert(vw > 1, "sanity");
 886   Node* init_nd = pre_end->init_trip();
 887   if (init_nd->is_Con() && p.invar() == NULL) {
 888     int init = init_nd->bottom_type()->is_int()->get_con();
 889     int init_offset = init * p.scale_in_bytes() + offset;
 890     assert(init_offset >= 0, "positive offset from object start");
 891     if (vw % span == 0) {
 892       // If vm is a multiple of span, we use formula (1).
 893       if (span > 0) {
 894         return (vw - (init_offset % vw)) % span == 0;
 895       } else {
 896         assert(span < 0, "nonzero stride * scale");
 897         return (init_offset % vw) % -span == 0;
 898       }
 899     } else if (span % vw == 0) {
 900       // If span is a multiple of vw, we can simplify formula (1) to:
 901       //   (init_offset + i * span) % vw == 0
 902       //     =>
 903       //   (init_offset % vw) + ((i * span) % vw) == 0
 904       //     =>
 905       //   init_offset % vw == 0
 906       //
 907       // Because we add a multiple of vw to the initial offset, the final
 908       // offset is a multiple of vw if and only if init_offset is a multiple.
 909       //
 910       return (init_offset % vw) == 0;
 911     }
 912   }
 913   return false;
 914 }
 915 
 916 //---------------------------get_iv_adjustment---------------------------
 917 // Calculate loop's iv adjustment for this memory ops.
 918 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
 919   SWPointer align_to_ref_p(mem_ref, this, NULL, false);
 920   int offset = align_to_ref_p.offset_in_bytes();
 921   int scale  = align_to_ref_p.scale_in_bytes();
 922   int elt_size = align_to_ref_p.memory_size();
 923   int vw       = vector_width_in_bytes(mem_ref);
 924   assert(vw > 1, "sanity");
 925   int iv_adjustment;
 926   if (scale != 0) {
 927     int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
 928     // At least one iteration is executed in pre-loop by default. As result
 929     // several iterations are needed to align memory operations in main-loop even
 930     // if offset is 0.
 931     int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
 932     assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
 933            "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
 934     iv_adjustment = iv_adjustment_in_bytes/elt_size;
 935   } else {
 936     // This memory op is not dependent on iv (scale == 0)
 937     iv_adjustment = 0;
 938   }
 939 
 940 #ifndef PRODUCT
 941   if (TraceSuperWord) {
 942     tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
 943       mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
 944     mem_ref->dump();
 945   }
 946 #endif
 947   return iv_adjustment;
 948 }
 949 
 950 //---------------------------dependence_graph---------------------------
 951 // Construct dependency graph.
 952 // Add dependence edges to load/store nodes for memory dependence
 953 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 954 void SuperWord::dependence_graph() {
 955   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
 956   // First, assign a dependence node to each memory node
 957   for (int i = 0; i < _block.length(); i++ ) {
 958     Node *n = _block.at(i);
 959     if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
 960       _dg.make_node(n);
 961     }
 962   }
 963 
 964   // For each memory slice, create the dependences
 965   for (int i = 0; i < _mem_slice_head.length(); i++) {
 966     Node* n      = _mem_slice_head.at(i);
 967     Node* n_tail = _mem_slice_tail.at(i);
 968 
 969     // Get slice in predecessor order (last is first)
 970     if (cl->is_main_loop()) {
 971       mem_slice_preds(n_tail, n, _nlist);
 972     }
 973 
 974 #ifndef PRODUCT
 975     if(TraceSuperWord && Verbose) {
 976       tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
 977       for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 978         _nlist.at(j)->dump();
 979       }
 980     }
 981 #endif
 982     // Make the slice dependent on the root
 983     DepMem* slice = _dg.dep(n);
 984     _dg.make_edge(_dg.root(), slice);
 985 
 986     // Create a sink for the slice
 987     DepMem* slice_sink = _dg.make_node(NULL);
 988     _dg.make_edge(slice_sink, _dg.tail());
 989 
 990     // Now visit each pair of memory ops, creating the edges
 991     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 992       Node* s1 = _nlist.at(j);
 993 
 994       // If no dependency yet, use slice
 995       if (_dg.dep(s1)->in_cnt() == 0) {
 996         _dg.make_edge(slice, s1);
 997       }
 998       SWPointer p1(s1->as_Mem(), this, NULL, false);
 999       bool sink_dependent = true;
1000       for (int k = j - 1; k >= 0; k--) {
1001         Node* s2 = _nlist.at(k);
1002         if (s1->is_Load() && s2->is_Load())
1003           continue;
1004         SWPointer p2(s2->as_Mem(), this, NULL, false);
1005 
1006         int cmp = p1.cmp(p2);
1007         if (SuperWordRTDepCheck &&
1008             p1.base() != p2.base() && p1.valid() && p2.valid()) {
1009           // Create a runtime check to disambiguate
1010           OrderedPair pp(p1.base(), p2.base());
1011           _disjoint_ptrs.append_if_missing(pp);
1012         } else if (!SWPointer::not_equal(cmp)) {
1013           // Possibly same address
1014           _dg.make_edge(s1, s2);
1015           sink_dependent = false;
1016         }
1017       }
1018       if (sink_dependent) {
1019         _dg.make_edge(s1, slice_sink);
1020       }
1021     }
1022 
1023     if (TraceSuperWord) {
1024       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
1025       for (int q = 0; q < _nlist.length(); q++) {
1026         _dg.print(_nlist.at(q));
1027       }
1028       tty->cr();
1029     }
1030 
1031     _nlist.clear();
1032   }
1033 
1034   if (TraceSuperWord) {
1035     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
1036     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
1037       _disjoint_ptrs.at(r).print();
1038       tty->cr();
1039     }
1040     tty->cr();
1041   }
1042 
1043 }
1044 
1045 //---------------------------mem_slice_preds---------------------------
1046 // Return a memory slice (node list) in predecessor order starting at "start"
1047 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
1048   assert(preds.length() == 0, "start empty");
1049   Node* n = start;
1050   Node* prev = NULL;
1051   while (true) {
1052     NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
1053     assert(in_bb(n), "must be in block");
1054     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1055       Node* out = n->fast_out(i);
1056       if (out->is_Load()) {
1057         if (in_bb(out)) {
1058           preds.push(out);
1059           if (TraceSuperWord && Verbose) {
1060             tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
1061           }
1062         }
1063       } else {
1064         // FIXME
1065         if (out->is_MergeMem() && !in_bb(out)) {
1066           // Either unrolling is causing a memory edge not to disappear,
1067           // or need to run igvn.optimize() again before SLP
1068         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
1069           // Ditto.  Not sure what else to check further.
1070         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
1071           // StoreCM has an input edge used as a precedence edge.
1072           // Maybe an issue when oop stores are vectorized.
1073         } else {
1074           assert(out == prev || prev == NULL, "no branches off of store slice");
1075         }
1076       }//else
1077     }//for
1078     if (n == stop) break;
1079     preds.push(n);
1080     if (TraceSuperWord && Verbose) {
1081       tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
1082     }
1083     prev = n;
1084     assert(n->is_Mem(), "unexpected node %s", n->Name());
1085     n = n->in(MemNode::Memory);
1086   }
1087 }
1088 
1089 //------------------------------stmts_can_pack---------------------------
1090 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
1091 // s1 aligned at "align"
1092 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
1093 
1094   // Do not use superword for non-primitives
1095   BasicType bt1 = velt_basic_type(s1);
1096   BasicType bt2 = velt_basic_type(s2);
1097   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
1098     return false;
1099   if (Matcher::max_vector_size(bt1) < 2) {
1100     return false; // No vectors for this type
1101   }
1102 
1103   if (isomorphic(s1, s2)) {
1104     if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) {
1105       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
1106         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
1107           int s1_align = alignment(s1);
1108           int s2_align = alignment(s2);
1109           if (s1_align == top_align || s1_align == align) {
1110             if (s2_align == top_align || s2_align == align + data_size(s1)) {
1111               return true;
1112             }
1113           }
1114         }
1115       }
1116     }
1117   }
1118   return false;
1119 }
1120 
1121 //------------------------------exists_at---------------------------
1122 // Does s exist in a pack at position pos?
1123 bool SuperWord::exists_at(Node* s, uint pos) {
1124   for (int i = 0; i < _packset.length(); i++) {
1125     Node_List* p = _packset.at(i);
1126     if (p->at(pos) == s) {
1127       return true;
1128     }
1129   }
1130   return false;
1131 }
1132 
1133 //------------------------------are_adjacent_refs---------------------------
1134 // Is s1 immediately before s2 in memory?
1135 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
1136   if (!s1->is_Mem() || !s2->is_Mem()) return false;
1137   if (!in_bb(s1)    || !in_bb(s2))    return false;
1138 
1139   // Do not use superword for non-primitives
1140   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
1141       !is_java_primitive(s2->as_Mem()->memory_type())) {
1142     return false;
1143   }
1144 
1145   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
1146   // only pack memops that are in the same alias set until that's fixed.
1147   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
1148       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
1149     return false;
1150   SWPointer p1(s1->as_Mem(), this, NULL, false);
1151   SWPointer p2(s2->as_Mem(), this, NULL, false);
1152   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
1153   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
1154   return diff == data_size(s1);
1155 }
1156 
1157 //------------------------------isomorphic---------------------------
1158 // Are s1 and s2 similar?
1159 bool SuperWord::isomorphic(Node* s1, Node* s2) {
1160   if (s1->Opcode() != s2->Opcode()) return false;
1161   if (s1->req() != s2->req()) return false;
1162   if (s1->in(0) != s2->in(0)) return false;
1163   if (!same_velt_type(s1, s2)) return false;
1164   return true;
1165 }
1166 
1167 //------------------------------independent---------------------------
1168 // Is there no data path from s1 to s2 or s2 to s1?
1169 bool SuperWord::independent(Node* s1, Node* s2) {
1170   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1171   int d1 = depth(s1);
1172   int d2 = depth(s2);
1173   if (d1 == d2) return s1 != s2;
1174   Node* deep    = d1 > d2 ? s1 : s2;
1175   Node* shallow = d1 > d2 ? s2 : s1;
1176 
1177   visited_clear();
1178 
1179   return independent_path(shallow, deep);
1180 }
1181 
1182 //--------------------------have_similar_inputs-----------------------
1183 // For a node pair (s1, s2) which is isomorphic and independent,
1184 // do s1 and s2 have similar input edges?
1185 bool SuperWord::have_similar_inputs(Node* s1, Node* s2) {
1186   // assert(isomorphic(s1, s2) == true, "check isomorphic");
1187   // assert(independent(s1, s2) == true, "check independent");
1188   if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) {
1189     for (uint i = 1; i < s1->req(); i++) {
1190       if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false;
1191     }
1192   }
1193   return true;
1194 }
1195 
1196 //------------------------------reduction---------------------------
1197 // Is there a data path between s1 and s2 and the nodes reductions?
1198 bool SuperWord::reduction(Node* s1, Node* s2) {
1199   bool retValue = false;
1200   int d1 = depth(s1);
1201   int d2 = depth(s2);
1202   if (d1 + 1 == d2) {
1203     if (s1->is_reduction() && s2->is_reduction()) {
1204       // This is an ordered set, so s1 should define s2
1205       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1206         Node* t1 = s1->fast_out(i);
1207         if (t1 == s2) {
1208           // both nodes are reductions and connected
1209           retValue = true;
1210         }
1211       }
1212     }
1213   }
1214 
1215   return retValue;
1216 }
1217 
1218 //------------------------------independent_path------------------------------
1219 // Helper for independent
1220 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1221   if (dp >= 1000) return false; // stop deep recursion
1222   visited_set(deep);
1223   int shal_depth = depth(shallow);
1224   assert(shal_depth <= depth(deep), "must be");
1225   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1226     Node* pred = preds.current();
1227     if (in_bb(pred) && !visited_test(pred)) {
1228       if (shallow == pred) {
1229         return false;
1230       }
1231       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1232         return false;
1233       }
1234     }
1235   }
1236   return true;
1237 }
1238 
1239 //------------------------------set_alignment---------------------------
1240 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1241   set_alignment(s1, align);
1242   if (align == top_align || align == bottom_align) {
1243     set_alignment(s2, align);
1244   } else {
1245     set_alignment(s2, align + data_size(s1));
1246   }
1247 }
1248 
1249 //------------------------------data_size---------------------------
1250 int SuperWord::data_size(Node* s) {
1251   Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov
1252   if (UseVectorCmov) {
1253     use = _cmovev_kit.is_Bool_candidate(s);
1254     if (use != NULL) {
1255       return data_size(use);
1256     }
1257     use = _cmovev_kit.is_CmpD_candidate(s);
1258     if (use != NULL) {
1259       return data_size(use);
1260     }
1261   }
1262 
1263   int bsize = type2aelembytes(velt_basic_type(s));
1264   assert(bsize != 0, "valid size");
1265   return bsize;
1266 }
1267 
1268 //------------------------------extend_packlist---------------------------
1269 // Extend packset by following use->def and def->use links from pack members.
1270 void SuperWord::extend_packlist() {
1271   bool changed;
1272   do {
1273     packset_sort(_packset.length());
1274     changed = false;
1275     for (int i = 0; i < _packset.length(); i++) {
1276       Node_List* p = _packset.at(i);
1277       changed |= follow_use_defs(p);
1278       changed |= follow_def_uses(p);
1279     }
1280   } while (changed);
1281 
1282   if (_race_possible) {
1283     for (int i = 0; i < _packset.length(); i++) {
1284       Node_List* p = _packset.at(i);
1285       order_def_uses(p);
1286     }
1287   }
1288 
1289   if (TraceSuperWord) {
1290     tty->print_cr("\nAfter extend_packlist");
1291     print_packset();
1292   }
1293 }
1294 
1295 //------------------------------follow_use_defs---------------------------
1296 // Extend the packset by visiting operand definitions of nodes in pack p
1297 bool SuperWord::follow_use_defs(Node_List* p) {
1298   assert(p->size() == 2, "just checking");
1299   Node* s1 = p->at(0);
1300   Node* s2 = p->at(1);
1301   assert(s1->req() == s2->req(), "just checking");
1302   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1303 
1304   if (s1->is_Load()) return false;
1305 
1306   int align = alignment(s1);
1307   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
1308   bool changed = false;
1309   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
1310   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1311   for (int j = start; j < end; j++) {
1312     Node* t1 = s1->in(j);
1313     Node* t2 = s2->in(j);
1314     if (!in_bb(t1) || !in_bb(t2))
1315       continue;
1316     if (stmts_can_pack(t1, t2, align)) {
1317       if (est_savings(t1, t2) >= 0) {
1318         Node_List* pair = new Node_List();
1319         pair->push(t1);
1320         pair->push(t2);
1321         _packset.append(pair);
1322         NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
1323         set_alignment(t1, t2, align);
1324         changed = true;
1325       }
1326     }
1327   }
1328   return changed;
1329 }
1330 
1331 //------------------------------follow_def_uses---------------------------
1332 // Extend the packset by visiting uses of nodes in pack p
1333 bool SuperWord::follow_def_uses(Node_List* p) {
1334   bool changed = false;
1335   Node* s1 = p->at(0);
1336   Node* s2 = p->at(1);
1337   assert(p->size() == 2, "just checking");
1338   assert(s1->req() == s2->req(), "just checking");
1339   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1340 
1341   if (s1->is_Store()) return false;
1342 
1343   int align = alignment(s1);
1344   NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
1345   int savings = -1;
1346   int num_s1_uses = 0;
1347   Node* u1 = NULL;
1348   Node* u2 = NULL;
1349   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1350     Node* t1 = s1->fast_out(i);
1351     num_s1_uses++;
1352     if (!in_bb(t1)) continue;
1353     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1354       Node* t2 = s2->fast_out(j);
1355       if (!in_bb(t2)) continue;
1356       if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv
1357       if (!opnd_positions_match(s1, t1, s2, t2))
1358         continue;
1359       if (stmts_can_pack(t1, t2, align)) {
1360         int my_savings = est_savings(t1, t2);
1361         if (my_savings > savings) {
1362           savings = my_savings;
1363           u1 = t1;
1364           u2 = t2;
1365         }
1366       }
1367     }
1368   }
1369   if (num_s1_uses > 1) {
1370     _race_possible = true;
1371   }
1372   if (savings >= 0) {
1373     Node_List* pair = new Node_List();
1374     pair->push(u1);
1375     pair->push(u2);
1376     _packset.append(pair);
1377     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
1378     set_alignment(u1, u2, align);
1379     changed = true;
1380   }
1381   return changed;
1382 }
1383 
1384 //------------------------------order_def_uses---------------------------
1385 // For extended packsets, ordinally arrange uses packset by major component
1386 void SuperWord::order_def_uses(Node_List* p) {
1387   Node* s1 = p->at(0);
1388 
1389   if (s1->is_Store()) return;
1390 
1391   // reductions are always managed beforehand
1392   if (s1->is_reduction()) return;
1393 
1394   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1395     Node* t1 = s1->fast_out(i);
1396 
1397     // Only allow operand swap on commuting operations
1398     if (!t1->is_Add() && !t1->is_Mul()) {
1399       break;
1400     }
1401 
1402     // Now find t1's packset
1403     Node_List* p2 = NULL;
1404     for (int j = 0; j < _packset.length(); j++) {
1405       p2 = _packset.at(j);
1406       Node* first = p2->at(0);
1407       if (t1 == first) {
1408         break;
1409       }
1410       p2 = NULL;
1411     }
1412     // Arrange all sub components by the major component
1413     if (p2 != NULL) {
1414       for (uint j = 1; j < p->size(); j++) {
1415         Node* d1 = p->at(j);
1416         Node* u1 = p2->at(j);
1417         opnd_positions_match(s1, t1, d1, u1);
1418       }
1419     }
1420   }
1421 }
1422 
1423 //---------------------------opnd_positions_match-------------------------
1424 // Is the use of d1 in u1 at the same operand position as d2 in u2?
1425 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1426   // check reductions to see if they are marshalled to represent the reduction
1427   // operator in a specified opnd
1428   if (u1->is_reduction() && u2->is_reduction()) {
1429     // ensure reductions have phis and reduction definitions feeding the 1st operand
1430     Node* first = u1->in(2);
1431     if (first->is_Phi() || first->is_reduction()) {
1432       u1->swap_edges(1, 2);
1433     }
1434     // ensure reductions have phis and reduction definitions feeding the 1st operand
1435     first = u2->in(2);
1436     if (first->is_Phi() || first->is_reduction()) {
1437       u2->swap_edges(1, 2);
1438     }
1439     return true;
1440   }
1441 
1442   uint ct = u1->req();
1443   if (ct != u2->req()) return false;
1444   uint i1 = 0;
1445   uint i2 = 0;
1446   do {
1447     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1448     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1449     if (i1 != i2) {
1450       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1451         // Further analysis relies on operands position matching.
1452         u2->swap_edges(i1, i2);
1453       } else {
1454         return false;
1455       }
1456     }
1457   } while (i1 < ct);
1458   return true;
1459 }
1460 
1461 //------------------------------est_savings---------------------------
1462 // Estimate the savings from executing s1 and s2 as a pack
1463 int SuperWord::est_savings(Node* s1, Node* s2) {
1464   int save_in = 2 - 1; // 2 operations per instruction in packed form
1465 
1466   // inputs
1467   for (uint i = 1; i < s1->req(); i++) {
1468     Node* x1 = s1->in(i);
1469     Node* x2 = s2->in(i);
1470     if (x1 != x2) {
1471       if (are_adjacent_refs(x1, x2)) {
1472         save_in += adjacent_profit(x1, x2);
1473       } else if (!in_packset(x1, x2)) {
1474         save_in -= pack_cost(2);
1475       } else {
1476         save_in += unpack_cost(2);
1477       }
1478     }
1479   }
1480 
1481   // uses of result
1482   uint ct = 0;
1483   int save_use = 0;
1484   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1485     Node* s1_use = s1->fast_out(i);
1486     for (int j = 0; j < _packset.length(); j++) {
1487       Node_List* p = _packset.at(j);
1488       if (p->at(0) == s1_use) {
1489         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1490           Node* s2_use = s2->fast_out(k);
1491           if (p->at(p->size()-1) == s2_use) {
1492             ct++;
1493             if (are_adjacent_refs(s1_use, s2_use)) {
1494               save_use += adjacent_profit(s1_use, s2_use);
1495             }
1496           }
1497         }
1498       }
1499     }
1500   }
1501 
1502   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1503   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1504 
1505   return MAX2(save_in, save_use);
1506 }
1507 
1508 //------------------------------costs---------------------------
1509 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
1510 int SuperWord::pack_cost(int ct)   { return ct; }
1511 int SuperWord::unpack_cost(int ct) { return ct; }
1512 
1513 //------------------------------combine_packs---------------------------
1514 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
1515 void SuperWord::combine_packs() {
1516   bool changed = true;
1517   // Combine packs regardless max vector size.
1518   while (changed) {
1519     changed = false;
1520     for (int i = 0; i < _packset.length(); i++) {
1521       Node_List* p1 = _packset.at(i);
1522       if (p1 == NULL) continue;
1523       // Because of sorting we can start at i + 1
1524       for (int j = i + 1; j < _packset.length(); j++) {
1525         Node_List* p2 = _packset.at(j);
1526         if (p2 == NULL) continue;
1527         if (i == j) continue;
1528         if (p1->at(p1->size()-1) == p2->at(0)) {
1529           for (uint k = 1; k < p2->size(); k++) {
1530             p1->push(p2->at(k));
1531           }
1532           _packset.at_put(j, NULL);
1533           changed = true;
1534         }
1535       }
1536     }
1537   }
1538 
1539   // Split packs which have size greater then max vector size.
1540   for (int i = 0; i < _packset.length(); i++) {
1541     Node_List* p1 = _packset.at(i);
1542     if (p1 != NULL) {
1543       BasicType bt = velt_basic_type(p1->at(0));
1544       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1545       assert(is_power_of_2(max_vlen), "sanity");
1546       uint psize = p1->size();
1547       if (!is_power_of_2(psize)) {
1548         // Skip pack which can't be vector.
1549         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1550         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1551         _packset.at_put(i, NULL);
1552         continue;
1553       }
1554       if (psize > max_vlen) {
1555         Node_List* pack = new Node_List();
1556         for (uint j = 0; j < psize; j++) {
1557           pack->push(p1->at(j));
1558           if (pack->size() >= max_vlen) {
1559             assert(is_power_of_2(pack->size()), "sanity");
1560             _packset.append(pack);
1561             pack = new Node_List();
1562           }
1563         }
1564         _packset.at_put(i, NULL);
1565       }
1566     }
1567   }
1568 
1569   // Compress list.
1570   for (int i = _packset.length() - 1; i >= 0; i--) {
1571     Node_List* p1 = _packset.at(i);
1572     if (p1 == NULL) {
1573       _packset.remove_at(i);
1574     }
1575   }
1576 
1577   if (TraceSuperWord) {
1578     tty->print_cr("\nAfter combine_packs");
1579     print_packset();
1580   }
1581 }
1582 
1583 //-----------------------------construct_my_pack_map--------------------------
1584 // Construct the map from nodes to packs.  Only valid after the
1585 // point where a node is only in one pack (after combine_packs).
1586 void SuperWord::construct_my_pack_map() {
1587   Node_List* rslt = NULL;
1588   for (int i = 0; i < _packset.length(); i++) {
1589     Node_List* p = _packset.at(i);
1590     for (uint j = 0; j < p->size(); j++) {
1591       Node* s = p->at(j);
1592       assert(my_pack(s) == NULL, "only in one pack");
1593       set_my_pack(s, p);
1594     }
1595   }
1596 }
1597 
1598 //------------------------------filter_packs---------------------------
1599 // Remove packs that are not implemented or not profitable.
1600 void SuperWord::filter_packs() {
1601   // Remove packs that are not implemented
1602   for (int i = _packset.length() - 1; i >= 0; i--) {
1603     Node_List* pk = _packset.at(i);
1604     bool impl = implemented(pk);
1605     if (!impl) {
1606 #ifndef PRODUCT
1607       if (TraceSuperWord && Verbose) {
1608         tty->print_cr("Unimplemented");
1609         pk->at(0)->dump();
1610       }
1611 #endif
1612       remove_pack_at(i);
1613     }
1614     Node *n = pk->at(0);
1615     if (n->is_reduction()) {
1616       _num_reductions++;
1617     } else {
1618       _num_work_vecs++;
1619     }
1620   }
1621 
1622   // Remove packs that are not profitable
1623   bool changed;
1624   do {
1625     changed = false;
1626     for (int i = _packset.length() - 1; i >= 0; i--) {
1627       Node_List* pk = _packset.at(i);
1628       bool prof = profitable(pk);
1629       if (!prof) {
1630 #ifndef PRODUCT
1631         if (TraceSuperWord && Verbose) {
1632           tty->print_cr("Unprofitable");
1633           pk->at(0)->dump();
1634         }
1635 #endif
1636         remove_pack_at(i);
1637         changed = true;
1638       }
1639     }
1640   } while (changed);
1641 
1642 #ifndef PRODUCT
1643   if (TraceSuperWord) {
1644     tty->print_cr("\nAfter filter_packs");
1645     print_packset();
1646     tty->cr();
1647   }
1648 #endif
1649 }
1650 
1651 //------------------------------merge_packs_to_cmovd---------------------------
1652 // Merge CMoveD into new vector-nodes
1653 // We want to catch this pattern and subsume CmpD and Bool into CMoveD
1654 //
1655 //                   SubD             ConD
1656 //                  /  |               /
1657 //                 /   |           /   /
1658 //                /    |       /      /
1659 //               /     |   /         /
1660 //              /      /            /
1661 //             /    /  |           /
1662 //            v /      |          /
1663 //         CmpD        |         /
1664 //          |          |        /
1665 //          v          |       /
1666 //         Bool        |      /
1667 //           \         |     /
1668 //             \       |    /
1669 //               \     |   /
1670 //                 \   |  /
1671 //                   \ v /
1672 //                   CMoveD
1673 //
1674 
1675 void SuperWord::merge_packs_to_cmovd() {
1676   for (int i = _packset.length() - 1; i >= 0; i--) {
1677     _cmovev_kit.make_cmovevd_pack(_packset.at(i));
1678   }
1679   #ifndef PRODUCT
1680     if (TraceSuperWord) {
1681       tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
1682       print_packset();
1683       tty->cr();
1684     }
1685   #endif
1686 }
1687 
1688 Node* CMoveKit::is_Bool_candidate(Node* def) const {
1689   Node* use = NULL;
1690   if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
1691     return NULL;
1692   }
1693   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1694     use = def->fast_out(j);
1695     if (!_sw->same_generation(def, use) || !use->is_CMove()) {
1696       return NULL;
1697     }
1698   }
1699   return use;
1700 }
1701 
1702 Node* CMoveKit::is_CmpD_candidate(Node* def) const {
1703   Node* use = NULL;
1704   if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
1705     return NULL;
1706   }
1707   for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1708     use = def->fast_out(j);
1709     if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
1710       return NULL;
1711     }
1712   }
1713   return use;
1714 }
1715 
1716 Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
1717   Node *cmovd = cmovd_pk->at(0);
1718   if (!cmovd->is_CMove()) {
1719     return NULL;
1720   }
1721   if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) {
1722     return NULL;
1723   }
1724   if (pack(cmovd) != NULL) { // already in the cmov pack
1725     return NULL;
1726   }
1727   if (cmovd->in(0) != NULL) {
1728     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
1729     return NULL;
1730   }
1731 
1732   Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
1733   if (!bol->is_Bool()
1734       || bol->outcnt() != 1
1735       || !_sw->same_generation(bol, cmovd)
1736       || bol->in(0) != NULL  // BoolNode has control flow!!
1737       || _sw->my_pack(bol) == NULL) {
1738       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
1739       return NULL;
1740   }
1741   Node_List* bool_pk = _sw->my_pack(bol);
1742   if (bool_pk->size() != cmovd_pk->size() ) {
1743     return NULL;
1744   }
1745 
1746   Node* cmpd = bol->in(1);
1747   if (!cmpd->is_Cmp()
1748       || cmpd->outcnt() != 1
1749       || !_sw->same_generation(cmpd, cmovd)
1750       || cmpd->in(0) != NULL  // CmpDNode has control flow!!
1751       || _sw->my_pack(cmpd) == NULL) {
1752       NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
1753       return NULL;
1754   }
1755   Node_List* cmpd_pk = _sw->my_pack(cmpd);
1756   if (cmpd_pk->size() != cmovd_pk->size() ) {
1757     return NULL;
1758   }
1759 
1760   if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
1761     NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
1762     return NULL;
1763   }
1764 
1765   Node_List* new_cmpd_pk = new Node_List();
1766   uint sz = cmovd_pk->size() - 1;
1767   for (uint i = 0; i <= sz; ++i) {
1768     Node* cmov = cmovd_pk->at(i);
1769     Node* bol  = bool_pk->at(i);
1770     Node* cmp  = cmpd_pk->at(i);
1771 
1772     new_cmpd_pk->insert(i, cmov);
1773 
1774     map(cmov, new_cmpd_pk);
1775     map(bol, new_cmpd_pk);
1776     map(cmp, new_cmpd_pk);
1777 
1778     _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
1779   }
1780   _sw->_packset.remove(cmovd_pk);
1781   _sw->_packset.remove(bool_pk);
1782   _sw->_packset.remove(cmpd_pk);
1783   _sw->_packset.append(new_cmpd_pk);
1784   NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
1785   return new_cmpd_pk;
1786 }
1787 
1788 bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
1789   Node* cmpd0 = cmpd_pk->at(0);
1790   assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
1791   assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
1792   assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
1793   Node* in1 = cmpd0->in(1);
1794   Node* in2 = cmpd0->in(2);
1795   Node_List* in1_pk = _sw->my_pack(in1);
1796   Node_List* in2_pk = _sw->my_pack(in2);
1797 
1798   if (  (in1_pk != NULL && in1_pk->size() != cmpd_pk->size())
1799      || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) {
1800     return false;
1801   }
1802 
1803   // test if "all" in1 are in the same pack or the same node
1804   if (in1_pk == NULL) {
1805     for (uint j = 1; j < cmpd_pk->size(); j++) {
1806       if (cmpd_pk->at(j)->in(1) != in1) {
1807         return false;
1808       }
1809     }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
1810   }
1811   // test if "all" in2 are in the same pack or the same node
1812   if (in2_pk == NULL) {
1813     for (uint j = 1; j < cmpd_pk->size(); j++) {
1814       if (cmpd_pk->at(j)->in(2) != in2) {
1815         return false;
1816       }
1817     }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
1818   }
1819   //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
1820   int cmovd_ind1, cmovd_ind2;
1821   if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1822    && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1823       cmovd_ind1 = CMoveNode::IfFalse;
1824       cmovd_ind2 = CMoveNode::IfTrue;
1825   } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1826           && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1827       cmovd_ind2 = CMoveNode::IfFalse;
1828       cmovd_ind1 = CMoveNode::IfTrue;
1829   }
1830   else {
1831     return false;
1832   }
1833 
1834   for (uint j = 1; j < cmpd_pk->size(); j++) {
1835     if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
1836         || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
1837         return false;
1838     }//if
1839   }
1840   NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
1841   return true;
1842 }
1843 
1844 //------------------------------implemented---------------------------
1845 // Can code be generated for pack p?
1846 bool SuperWord::implemented(Node_List* p) {
1847   bool retValue = false;
1848   Node* p0 = p->at(0);
1849   if (p0 != NULL) {
1850     int opc = p0->Opcode();
1851     uint size = p->size();
1852     if (p0->is_reduction()) {
1853       const Type *arith_type = p0->bottom_type();
1854       // Length 2 reductions of INT/LONG do not offer performance benefits
1855       if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1856         retValue = false;
1857       } else {
1858         retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1859       }
1860     } else {
1861       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1862     }
1863     if (!retValue) {
1864       if (is_cmov_pack(p)) {
1865         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
1866         return true;
1867       }
1868     }
1869   }
1870   return retValue;
1871 }
1872 
1873 bool SuperWord::is_cmov_pack(Node_List* p) {
1874   return _cmovev_kit.pack(p->at(0)) != NULL;
1875 }
1876 //------------------------------same_inputs--------------------------
1877 // For pack p, are all idx operands the same?
1878 bool SuperWord::same_inputs(Node_List* p, int idx) {
1879   Node* p0 = p->at(0);
1880   uint vlen = p->size();
1881   Node* p0_def = p0->in(idx);
1882   for (uint i = 1; i < vlen; i++) {
1883     Node* pi = p->at(i);
1884     Node* pi_def = pi->in(idx);
1885     if (p0_def != pi_def) {
1886       return false;
1887     }
1888   }
1889   return true;
1890 }
1891 
1892 //------------------------------profitable---------------------------
1893 // For pack p, are all operands and all uses (with in the block) vector?
1894 bool SuperWord::profitable(Node_List* p) {
1895   Node* p0 = p->at(0);
1896   uint start, end;
1897   VectorNode::vector_operands(p0, &start, &end);
1898 
1899   // Return false if some inputs are not vectors or vectors with different
1900   // size or alignment.
1901   // Also, for now, return false if not scalar promotion case when inputs are
1902   // the same. Later, implement PackNode and allow differing, non-vector inputs
1903   // (maybe just the ones from outside the block.)
1904   for (uint i = start; i < end; i++) {
1905     if (!is_vector_use(p0, i)) {
1906       return false;
1907     }
1908   }
1909   // Check if reductions are connected
1910   if (p0->is_reduction()) {
1911     Node* second_in = p0->in(2);
1912     Node_List* second_pk = my_pack(second_in);
1913     if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
1914       // Remove reduction flag if no parent pack or if not enough work
1915       // to cover reduction expansion overhead
1916       p0->remove_flag(Node::Flag_is_reduction);
1917       return false;
1918     } else if (second_pk->size() != p->size()) {
1919       return false;
1920     }
1921   }
1922   if (VectorNode::is_shift(p0)) {
1923     // For now, return false if shift count is vector or not scalar promotion
1924     // case (different shift counts) because it is not supported yet.
1925     Node* cnt = p0->in(2);
1926     Node_List* cnt_pk = my_pack(cnt);
1927     if (cnt_pk != NULL)
1928       return false;
1929     if (!same_inputs(p, 2))
1930       return false;
1931   }
1932   if (!p0->is_Store()) {
1933     // For now, return false if not all uses are vector.
1934     // Later, implement ExtractNode and allow non-vector uses (maybe
1935     // just the ones outside the block.)
1936     for (uint i = 0; i < p->size(); i++) {
1937       Node* def = p->at(i);
1938       if (is_cmov_pack_internal_node(p, def)) {
1939         continue;
1940       }
1941       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1942         Node* use = def->fast_out(j);
1943         for (uint k = 0; k < use->req(); k++) {
1944           Node* n = use->in(k);
1945           if (def == n) {
1946             // reductions can be loop carried dependences
1947             if (def->is_reduction() && use->is_Phi())
1948               continue;
1949             if (!is_vector_use(use, k)) {
1950               return false;
1951             }
1952           }
1953         }
1954       }
1955     }
1956   }
1957   return true;
1958 }
1959 
1960 //------------------------------schedule---------------------------
1961 // Adjust the memory graph for the packed operations
1962 void SuperWord::schedule() {
1963 
1964   // Co-locate in the memory graph the members of each memory pack
1965   for (int i = 0; i < _packset.length(); i++) {
1966     co_locate_pack(_packset.at(i));
1967   }
1968 }
1969 
1970 //-------------------------------remove_and_insert-------------------
1971 // Remove "current" from its current position in the memory graph and insert
1972 // it after the appropriate insertion point (lip or uip).
1973 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
1974                                   Node *uip, Unique_Node_List &sched_before) {
1975   Node* my_mem = current->in(MemNode::Memory);
1976   bool sched_up = sched_before.member(current);
1977 
1978   // remove current_store from its current position in the memmory graph
1979   for (DUIterator i = current->outs(); current->has_out(i); i++) {
1980     Node* use = current->out(i);
1981     if (use->is_Mem()) {
1982       assert(use->in(MemNode::Memory) == current, "must be");
1983       if (use == prev) { // connect prev to my_mem
1984           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
1985           --i; //deleted this edge; rescan position
1986       } else if (sched_before.member(use)) {
1987         if (!sched_up) { // Will be moved together with current
1988           _igvn.replace_input_of(use, MemNode::Memory, uip);
1989           --i; //deleted this edge; rescan position
1990         }
1991       } else {
1992         if (sched_up) { // Will be moved together with current
1993           _igvn.replace_input_of(use, MemNode::Memory, lip);
1994           --i; //deleted this edge; rescan position
1995         }
1996       }
1997     }
1998   }
1999 
2000   Node *insert_pt =  sched_up ?  uip : lip;
2001 
2002   // all uses of insert_pt's memory state should use current's instead
2003   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
2004     Node* use = insert_pt->out(i);
2005     if (use->is_Mem()) {
2006       assert(use->in(MemNode::Memory) == insert_pt, "must be");
2007       _igvn.replace_input_of(use, MemNode::Memory, current);
2008       --i; //deleted this edge; rescan position
2009     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
2010       uint pos; //lip (lower insert point) must be the last one in the memory slice
2011       for (pos=1; pos < use->req(); pos++) {
2012         if (use->in(pos) == insert_pt) break;
2013       }
2014       _igvn.replace_input_of(use, pos, current);
2015       --i;
2016     }
2017   }
2018 
2019   //connect current to insert_pt
2020   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
2021 }
2022 
2023 //------------------------------co_locate_pack----------------------------------
2024 // To schedule a store pack, we need to move any sandwiched memory ops either before
2025 // or after the pack, based upon dependence information:
2026 // (1) If any store in the pack depends on the sandwiched memory op, the
2027 //     sandwiched memory op must be scheduled BEFORE the pack;
2028 // (2) If a sandwiched memory op depends on any store in the pack, the
2029 //     sandwiched memory op must be scheduled AFTER the pack;
2030 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
2031 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
2032 //     scheduled before the pack, memB must also be scheduled before the pack;
2033 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
2034 //     schedule this store AFTER the pack
2035 // (5) We know there is no dependence cycle, so there in no other case;
2036 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
2037 //
2038 // To schedule a load pack, we use the memory state of either the first or the last load in
2039 // the pack, based on the dependence constraint.
2040 void SuperWord::co_locate_pack(Node_List* pk) {
2041   if (pk->at(0)->is_Store()) {
2042     MemNode* first     = executed_first(pk)->as_Mem();
2043     MemNode* last      = executed_last(pk)->as_Mem();
2044     Unique_Node_List schedule_before_pack;
2045     Unique_Node_List memops;
2046 
2047     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
2048     MemNode* previous  = last;
2049     while (true) {
2050       assert(in_bb(current), "stay in block");
2051       memops.push(previous);
2052       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2053         Node* use = current->out(i);
2054         if (use->is_Mem() && use != previous)
2055           memops.push(use);
2056       }
2057       if (current == first) break;
2058       previous = current;
2059       current  = current->in(MemNode::Memory)->as_Mem();
2060     }
2061 
2062     // determine which memory operations should be scheduled before the pack
2063     for (uint i = 1; i < memops.size(); i++) {
2064       Node *s1 = memops.at(i);
2065       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
2066         for (uint j = 0; j< i; j++) {
2067           Node *s2 = memops.at(j);
2068           if (!independent(s1, s2)) {
2069             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
2070               schedule_before_pack.push(s1); // s1 must be scheduled before
2071               Node_List* mem_pk = my_pack(s1);
2072               if (mem_pk != NULL) {
2073                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
2074                   Node* s = mem_pk->at(ii);  // follow partner
2075                   if (memops.member(s) && !schedule_before_pack.member(s))
2076                     schedule_before_pack.push(s);
2077                 }
2078               }
2079               break;
2080             }
2081           }
2082         }
2083       }
2084     }
2085 
2086     Node*    upper_insert_pt = first->in(MemNode::Memory);
2087     // Following code moves loads connected to upper_insert_pt below aliased stores.
2088     // Collect such loads here and reconnect them back to upper_insert_pt later.
2089     memops.clear();
2090     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
2091       Node* use = upper_insert_pt->out(i);
2092       if (use->is_Mem() && !use->is_Store()) {
2093         memops.push(use);
2094       }
2095     }
2096 
2097     MemNode* lower_insert_pt = last;
2098     previous                 = last; //previous store in pk
2099     current                  = last->in(MemNode::Memory)->as_Mem();
2100 
2101     // start scheduling from "last" to "first"
2102     while (true) {
2103       assert(in_bb(current), "stay in block");
2104       assert(in_pack(previous, pk), "previous stays in pack");
2105       Node* my_mem = current->in(MemNode::Memory);
2106 
2107       if (in_pack(current, pk)) {
2108         // Forward users of my memory state (except "previous) to my input memory state
2109         for (DUIterator i = current->outs(); current->has_out(i); i++) {
2110           Node* use = current->out(i);
2111           if (use->is_Mem() && use != previous) {
2112             assert(use->in(MemNode::Memory) == current, "must be");
2113             if (schedule_before_pack.member(use)) {
2114               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
2115             } else {
2116               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
2117             }
2118             --i; // deleted this edge; rescan position
2119           }
2120         }
2121         previous = current;
2122       } else { // !in_pack(current, pk) ==> a sandwiched store
2123         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
2124       }
2125 
2126       if (current == first) break;
2127       current = my_mem->as_Mem();
2128     } // end while
2129 
2130     // Reconnect loads back to upper_insert_pt.
2131     for (uint i = 0; i < memops.size(); i++) {
2132       Node *ld = memops.at(i);
2133       if (ld->in(MemNode::Memory) != upper_insert_pt) {
2134         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
2135       }
2136     }
2137   } else if (pk->at(0)->is_Load()) { //load
2138     // all loads in the pack should have the same memory state. By default,
2139     // we use the memory state of the last load. However, if any load could
2140     // not be moved down due to the dependence constraint, we use the memory
2141     // state of the first load.
2142     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
2143     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
2144     bool schedule_last = true;
2145     for (uint i = 0; i < pk->size(); i++) {
2146       Node* ld = pk->at(i);
2147       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
2148            current=current->in(MemNode::Memory)) {
2149         assert(current != first_mem, "corrupted memory graph");
2150         if(current->is_Mem() && !independent(current, ld)){
2151           schedule_last = false; // a later store depends on this load
2152           break;
2153         }
2154       }
2155     }
2156 
2157     Node* mem_input = schedule_last ? last_mem : first_mem;
2158     _igvn.hash_delete(mem_input);
2159     // Give each load the same memory state
2160     for (uint i = 0; i < pk->size(); i++) {
2161       LoadNode* ld = pk->at(i)->as_Load();
2162       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
2163     }
2164   }
2165 }
2166 
2167 #ifndef PRODUCT
2168 void SuperWord::print_loop(bool whole) {
2169   Node_Stack stack(_arena, _phase->C->unique() >> 2);
2170   Node_List rpo_list;
2171   VectorSet visited(_arena);
2172   visited.set(lpt()->_head->_idx);
2173   _phase->rpo(lpt()->_head, stack, visited, rpo_list);
2174   _phase->dump(lpt(), rpo_list.size(), rpo_list );
2175   if(whole) {
2176     tty->print_cr("\n Whole loop tree");
2177     _phase->dump();
2178     tty->print_cr(" End of whole loop tree\n");
2179   }
2180 }
2181 #endif
2182 
2183 //------------------------------output---------------------------
2184 // Convert packs into vector node operations
2185 void SuperWord::output() {
2186   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2187   Compile* C = _phase->C;
2188   if (_packset.length() == 0) {
2189     if (cl->is_main_loop()) {
2190       // Instigate more unrolling for optimization when vectorization fails.
2191       C->set_major_progress();
2192       cl->set_notpassed_slp();
2193       cl->mark_do_unroll_only();
2194     }
2195     return;
2196   }
2197 
2198 #ifndef PRODUCT
2199   if (TraceLoopOpts) {
2200     tty->print("SuperWord::output    ");
2201     lpt()->dump_head();
2202   }
2203 #endif
2204 
2205   if (cl->is_main_loop()) {
2206     // MUST ENSURE main loop's initial value is properly aligned:
2207     //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
2208 
2209     align_initial_loop_index(align_to_ref());
2210 
2211     // Insert extract (unpack) operations for scalar uses
2212     for (int i = 0; i < _packset.length(); i++) {
2213       insert_extracts(_packset.at(i));
2214     }
2215   }
2216 
2217   uint max_vlen_in_bytes = 0;
2218   uint max_vlen = 0;
2219   bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
2220 
2221   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
2222 
2223   CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
2224 
2225   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
2226 
2227   if (do_reserve_copy() && !make_reversable.has_reserved()) {
2228     NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
2229     return;
2230   }
2231 
2232   for (int i = 0; i < _block.length(); i++) {
2233     Node* n = _block.at(i);
2234     Node_List* p = my_pack(n);
2235     if (p && n == executed_last(p)) {
2236       uint vlen = p->size();
2237       uint vlen_in_bytes = 0;
2238       Node* vn = NULL;
2239       Node* low_adr = p->at(0);
2240       Node* first   = executed_first(p);
2241       if (can_process_post_loop) {
2242         // override vlen with the main loops vector length
2243         vlen = cl->slp_max_unroll();
2244       }
2245       NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
2246       int   opc = n->Opcode();
2247       if (n->is_Load()) {
2248         Node* ctl = n->in(MemNode::Control);
2249         Node* mem = first->in(MemNode::Memory);
2250         SWPointer p1(n->as_Mem(), this, NULL, false);
2251         // Identify the memory dependency for the new loadVector node by
2252         // walking up through memory chain.
2253         // This is done to give flexibility to the new loadVector node so that
2254         // it can move above independent storeVector nodes.
2255         while (mem->is_StoreVector()) {
2256           SWPointer p2(mem->as_Mem(), this, NULL, false);
2257           int cmp = p1.cmp(p2);
2258           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
2259             mem = mem->in(MemNode::Memory);
2260           } else {
2261             break; // dependent memory
2262           }
2263         }
2264         Node* adr = low_adr->in(MemNode::Address);
2265         const TypePtr* atyp = n->adr_type();
2266         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
2267         vlen_in_bytes = vn->as_LoadVector()->memory_size();
2268       } else if (n->is_Store()) {
2269         // Promote value to be stored to vector
2270         Node* val = vector_opd(p, MemNode::ValueIn);
2271         if (val == NULL) {
2272           if (do_reserve_copy()) {
2273             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
2274             return; //and reverse to backup IG
2275           }
2276           ShouldNotReachHere();
2277         }
2278 
2279         Node* ctl = n->in(MemNode::Control);
2280         Node* mem = first->in(MemNode::Memory);
2281         Node* adr = low_adr->in(MemNode::Address);
2282         const TypePtr* atyp = n->adr_type();
2283         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
2284         vlen_in_bytes = vn->as_StoreVector()->memory_size();
2285       } else if (n->req() == 3 && !is_cmov_pack(p)) {
2286         // Promote operands to vector
2287         Node* in1 = NULL;
2288         bool node_isa_reduction = n->is_reduction();
2289         if (node_isa_reduction) {
2290           // the input to the first reduction operation is retained
2291           in1 = low_adr->in(1);
2292         } else {
2293           in1 = vector_opd(p, 1);
2294           if (in1 == NULL) {
2295             if (do_reserve_copy()) {
2296               NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
2297               return; //and reverse to backup IG
2298             }
2299             ShouldNotReachHere();
2300           }
2301         }
2302         Node* in2 = vector_opd(p, 2);
2303         if (in2 == NULL) {
2304           if (do_reserve_copy()) {
2305             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
2306             return; //and reverse to backup IG
2307           }
2308           ShouldNotReachHere();
2309         }
2310         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
2311           // Move invariant vector input into second position to avoid register spilling.
2312           Node* tmp = in1;
2313           in1 = in2;
2314           in2 = tmp;
2315         }
2316         if (node_isa_reduction) {
2317           const Type *arith_type = n->bottom_type();
2318           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
2319           if (in2->is_Load()) {
2320             vlen_in_bytes = in2->as_LoadVector()->memory_size();
2321           } else {
2322             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
2323           }
2324         } else {
2325           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2326           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2327         }
2328       } else if (opc == Op_SqrtF || opc == Op_SqrtD ||
2329                  opc == Op_AbsF || opc == Op_AbsD ||
2330                  opc == Op_NegF || opc == Op_NegD ||
2331                  opc == Op_PopCountI) {
2332         assert(n->req() == 2, "only one input expected");
2333         Node* in = vector_opd(p, 1);
2334         vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
2335         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2336       } else if (is_cmov_pack(p)) {
2337         if (can_process_post_loop) {
2338           // do not refactor of flow in post loop context
2339           return;
2340         }
2341         if (!n->is_CMove()) {
2342           continue;
2343         }
2344         // place here CMoveVDNode
2345         NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
2346         Node* bol = n->in(CMoveNode::Condition);
2347         if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
2348           NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
2349           bol = bol->in(1); //may be ExtractNode
2350         }
2351 
2352         assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
2353         if (!bol->is_Bool()) {
2354           if (do_reserve_copy()) {
2355             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
2356             return; //and reverse to backup IG
2357           }
2358           ShouldNotReachHere();
2359         }
2360 
2361         int cond = (int)bol->as_Bool()->_test._test;
2362         Node* in_cc  = _igvn.intcon(cond);
2363         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
2364         Node* cc = bol->clone();
2365         cc->set_req(1, in_cc);
2366         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
2367 
2368         Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
2369         if (src1 == NULL) {
2370           if (do_reserve_copy()) {
2371             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
2372             return; //and reverse to backup IG
2373           }
2374           ShouldNotReachHere();
2375         }
2376         Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
2377         if (src2 == NULL) {
2378           if (do_reserve_copy()) {
2379             NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
2380             return; //and reverse to backup IG
2381           }
2382           ShouldNotReachHere();
2383         }
2384         BasicType bt = velt_basic_type(n);
2385         const TypeVect* vt = TypeVect::make(bt, vlen);
2386         assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported");
2387         if (bt == T_FLOAT) {
2388           vn = new CMoveVFNode(cc, src1, src2, vt);
2389         } else {
2390           assert(bt == T_DOUBLE, "Expected double");
2391           vn = new CMoveVDNode(cc, src1, src2, vt);
2392         }
2393         NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
2394       } else if (opc == Op_FmaD || opc == Op_FmaF) {
2395         // Promote operands to vector
2396         Node* in1 = vector_opd(p, 1);
2397         Node* in2 = vector_opd(p, 2);
2398         Node* in3 = vector_opd(p, 3);
2399         vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
2400         vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2401       } else {
2402         if (do_reserve_copy()) {
2403           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
2404           return; //and reverse to backup IG
2405         }
2406         ShouldNotReachHere();
2407       }
2408 
2409       assert(vn != NULL, "sanity");
2410       if (vn == NULL) {
2411         if (do_reserve_copy()){
2412           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
2413           return; //and reverse to backup IG
2414         }
2415         ShouldNotReachHere();
2416       }
2417 
2418       _block.at_put(i, vn);
2419       _igvn.register_new_node_with_optimizer(vn);
2420       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
2421       for (uint j = 0; j < p->size(); j++) {
2422         Node* pm = p->at(j);
2423         _igvn.replace_node(pm, vn);
2424       }
2425       _igvn._worklist.push(vn);
2426 
2427       if (can_process_post_loop) {
2428         // first check if the vector size if the maximum vector which we can use on the machine,
2429         // other vector size have reduced values for predicated data mapping.
2430         if (vlen_in_bytes != (uint)MaxVectorSize) {
2431           return;
2432         }
2433       }
2434 
2435       if (vlen_in_bytes >= max_vlen_in_bytes && vlen > max_vlen) {
2436         max_vlen = vlen;
2437         max_vlen_in_bytes = vlen_in_bytes;
2438       }
2439 #ifdef ASSERT
2440       if (TraceNewVectors) {
2441         tty->print("new Vector node: ");
2442         vn->dump();
2443       }
2444 #endif
2445     }
2446   }//for (int i = 0; i < _block.length(); i++)
2447 
2448   if (max_vlen_in_bytes > C->max_vector_size()) {
2449     C->set_max_vector_size(max_vlen_in_bytes);
2450   }
2451   if (max_vlen_in_bytes > 0) {
2452     cl->mark_loop_vectorized();
2453   }
2454 
2455   if (SuperWordLoopUnrollAnalysis) {
2456     if (cl->has_passed_slp()) {
2457       uint slp_max_unroll_factor = cl->slp_max_unroll();
2458       if (slp_max_unroll_factor == max_vlen) {
2459         if (TraceSuperWordLoopUnrollAnalysis) {
2460           tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
2461         }
2462 
2463         // For atomic unrolled loops which are vector mapped, instigate more unrolling
2464         cl->set_notpassed_slp();
2465         if (cl->is_main_loop()) {
2466           // if vector resources are limited, do not allow additional unrolling, also
2467           // do not unroll more on pure vector loops which were not reduced so that we can
2468           // program the post loop to single iteration execution.
2469           if (FLOATPRESSURE > 8) {
2470             C->set_major_progress();
2471             cl->mark_do_unroll_only();
2472           }
2473         }
2474 
2475         if (do_reserve_copy()) {
2476           if (can_process_post_loop) {
2477             // Now create the difference of trip and limit and use it as our mask index.
2478             // Note: We limited the unroll of the vectorized loop so that
2479             //       only vlen-1 size iterations can remain to be mask programmed.
2480             Node *incr = cl->incr();
2481             SubINode *index = new SubINode(cl->limit(), cl->init_trip());
2482             _igvn.register_new_node_with_optimizer(index);
2483             SetVectMaskINode  *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
2484             _igvn.register_new_node_with_optimizer(mask);
2485             // make this a single iteration loop
2486             AddINode *new_incr = new AddINode(incr->in(1), mask);
2487             _igvn.register_new_node_with_optimizer(new_incr);
2488             _phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
2489             _igvn.replace_node(incr, new_incr);
2490             cl->mark_is_multiversioned();
2491             cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
2492           }
2493         }
2494       }
2495     }
2496   }
2497 
2498   if (do_reserve_copy()) {
2499     make_reversable.use_new();
2500   }
2501   NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
2502   return;
2503 }
2504 
2505 //------------------------------vector_opd---------------------------
2506 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
2507 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
2508   Node* p0 = p->at(0);
2509   uint vlen = p->size();
2510   Node* opd = p0->in(opd_idx);
2511   CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2512 
2513   if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
2514     // override vlen with the main loops vector length
2515     vlen = cl->slp_max_unroll();
2516   }
2517 
2518   if (same_inputs(p, opd_idx)) {
2519     if (opd->is_Vector() || opd->is_LoadVector()) {
2520       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
2521       if (opd_idx == 2 && VectorNode::is_shift(p0)) {
2522         NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
2523         return NULL;
2524       }
2525       return opd; // input is matching vector
2526     }
2527     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
2528       Compile* C = _phase->C;
2529       Node* cnt = opd;
2530       // Vector instructions do not mask shift count, do it here.
2531       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2532       const TypeInt* t = opd->find_int_type();
2533       if (t != NULL && t->is_con()) {
2534         juint shift = t->get_con();
2535         if (shift > mask) { // Unsigned cmp
2536           cnt = ConNode::make(TypeInt::make(shift & mask));
2537         }
2538       } else {
2539         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2540           cnt = ConNode::make(TypeInt::make(mask));
2541           _igvn.register_new_node_with_optimizer(cnt);
2542           cnt = new AndINode(opd, cnt);
2543           _igvn.register_new_node_with_optimizer(cnt);
2544           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2545         }
2546         assert(opd->bottom_type()->isa_int(), "int type only");
2547         if (!opd->bottom_type()->isa_int()) {
2548           NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
2549           return NULL;
2550         }
2551         // Move non constant shift count into vector register.
2552         cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
2553       }
2554       if (cnt != opd) {
2555         _igvn.register_new_node_with_optimizer(cnt);
2556         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2557       }
2558       return cnt;
2559     }
2560     assert(!opd->is_StoreVector(), "such vector is not expected here");
2561     if (opd->is_StoreVector()) {
2562       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
2563       return NULL;
2564     }
2565     // Convert scalar input to vector with the same number of elements as
2566     // p0's vector. Use p0's type because size of operand's container in
2567     // vector should match p0's size regardless operand's size.
2568     const Type* p0_t = velt_type(p0);
2569     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
2570 
2571     _igvn.register_new_node_with_optimizer(vn);
2572     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
2573 #ifdef ASSERT
2574     if (TraceNewVectors) {
2575       tty->print("new Vector node: ");
2576       vn->dump();
2577     }
2578 #endif
2579     return vn;
2580   }
2581 
2582   // Insert pack operation
2583   BasicType bt = velt_basic_type(p0);
2584   PackNode* pk = PackNode::make(opd, vlen, bt);
2585   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2586 
2587   for (uint i = 1; i < vlen; i++) {
2588     Node* pi = p->at(i);
2589     Node* in = pi->in(opd_idx);
2590     assert(my_pack(in) == NULL, "Should already have been unpacked");
2591     if (my_pack(in) != NULL) {
2592       NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
2593       return NULL;
2594     }
2595     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2596     pk->add_opd(in);
2597   }
2598   _igvn.register_new_node_with_optimizer(pk);
2599   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2600 #ifdef ASSERT
2601   if (TraceNewVectors) {
2602     tty->print("new Vector node: ");
2603     pk->dump();
2604   }
2605 #endif
2606   return pk;
2607 }
2608 
2609 //------------------------------insert_extracts---------------------------
2610 // If a use of pack p is not a vector use, then replace the
2611 // use with an extract operation.
2612 void SuperWord::insert_extracts(Node_List* p) {
2613   if (p->at(0)->is_Store()) return;
2614   assert(_n_idx_list.is_empty(), "empty (node,index) list");
2615 
2616   // Inspect each use of each pack member.  For each use that is
2617   // not a vector use, replace the use with an extract operation.
2618 
2619   for (uint i = 0; i < p->size(); i++) {
2620     Node* def = p->at(i);
2621     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2622       Node* use = def->fast_out(j);
2623       for (uint k = 0; k < use->req(); k++) {
2624         Node* n = use->in(k);
2625         if (def == n) {
2626           Node_List* u_pk = my_pack(use);
2627           if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
2628               _n_idx_list.push(use, k);
2629           }
2630         }
2631       }
2632     }
2633   }
2634 
2635   while (_n_idx_list.is_nonempty()) {
2636     Node* use = _n_idx_list.node();
2637     int   idx = _n_idx_list.index();
2638     _n_idx_list.pop();
2639     Node* def = use->in(idx);
2640 
2641     if (def->is_reduction()) continue;
2642 
2643     // Insert extract operation
2644     _igvn.hash_delete(def);
2645     int def_pos = alignment(def) / data_size(def);
2646 
2647     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2648     _igvn.register_new_node_with_optimizer(ex);
2649     _phase->set_ctrl(ex, _phase->get_ctrl(def));
2650     _igvn.replace_input_of(use, idx, ex);
2651     _igvn._worklist.push(def);
2652 
2653     bb_insert_after(ex, bb_idx(def));
2654     set_velt_type(ex, velt_type(def));
2655   }
2656 }
2657 
2658 //------------------------------is_vector_use---------------------------
2659 // Is use->in(u_idx) a vector use?
2660 bool SuperWord::is_vector_use(Node* use, int u_idx) {
2661   Node_List* u_pk = my_pack(use);
2662   if (u_pk == NULL) return false;
2663   if (use->is_reduction()) return true;
2664   Node* def = use->in(u_idx);
2665   Node_List* d_pk = my_pack(def);
2666   if (d_pk == NULL) {
2667     // check for scalar promotion
2668     Node* n = u_pk->at(0)->in(u_idx);
2669     for (uint i = 1; i < u_pk->size(); i++) {
2670       if (u_pk->at(i)->in(u_idx) != n) return false;
2671     }
2672     return true;
2673   }
2674   if (u_pk->size() != d_pk->size())
2675     return false;
2676   for (uint i = 0; i < u_pk->size(); i++) {
2677     Node* ui = u_pk->at(i);
2678     Node* di = d_pk->at(i);
2679     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2680       return false;
2681   }
2682   return true;
2683 }
2684 
2685 //------------------------------construct_bb---------------------------
2686 // Construct reverse postorder list of block members
2687 bool SuperWord::construct_bb() {
2688   Node* entry = bb();
2689 
2690   assert(_stk.length() == 0,            "stk is empty");
2691   assert(_block.length() == 0,          "block is empty");
2692   assert(_data_entry.length() == 0,     "data_entry is empty");
2693   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2694   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2695 
2696   // Find non-control nodes with no inputs from within block,
2697   // create a temporary map from node _idx to bb_idx for use
2698   // by the visited and post_visited sets,
2699   // and count number of nodes in block.
2700   int bb_ct = 0;
2701   for (uint i = 0; i < lpt()->_body.size(); i++) {
2702     Node *n = lpt()->_body.at(i);
2703     set_bb_idx(n, i); // Create a temporary map
2704     if (in_bb(n)) {
2705       if (n->is_LoadStore() || n->is_MergeMem() ||
2706           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2707         // Bailout if the loop has LoadStore, MergeMem or data Proj
2708         // nodes. Superword optimization does not work with them.
2709         return false;
2710       }
2711       bb_ct++;
2712       if (!n->is_CFG()) {
2713         bool found = false;
2714         for (uint j = 0; j < n->req(); j++) {
2715           Node* def = n->in(j);
2716           if (def && in_bb(def)) {
2717             found = true;
2718             break;
2719           }
2720         }
2721         if (!found) {
2722           assert(n != entry, "can't be entry");
2723           _data_entry.push(n);
2724         }
2725       }
2726     }
2727   }
2728 
2729   // Find memory slices (head and tail)
2730   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2731     Node *n = lp()->fast_out(i);
2732     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2733       Node* n_tail  = n->in(LoopNode::LoopBackControl);
2734       if (n_tail != n->in(LoopNode::EntryControl)) {
2735         if (!n_tail->is_Mem()) {
2736           assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
2737           return false; // Bailout
2738         }
2739         _mem_slice_head.push(n);
2740         _mem_slice_tail.push(n_tail);
2741       }
2742     }
2743   }
2744 
2745   // Create an RPO list of nodes in block
2746 
2747   visited_clear();
2748   post_visited_clear();
2749 
2750   // Push all non-control nodes with no inputs from within block, then control entry
2751   for (int j = 0; j < _data_entry.length(); j++) {
2752     Node* n = _data_entry.at(j);
2753     visited_set(n);
2754     _stk.push(n);
2755   }
2756   visited_set(entry);
2757   _stk.push(entry);
2758 
2759   // Do a depth first walk over out edges
2760   int rpo_idx = bb_ct - 1;
2761   int size;
2762   int reduction_uses = 0;
2763   while ((size = _stk.length()) > 0) {
2764     Node* n = _stk.top(); // Leave node on stack
2765     if (!visited_test_set(n)) {
2766       // forward arc in graph
2767     } else if (!post_visited_test(n)) {
2768       // cross or back arc
2769       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2770         Node *use = n->fast_out(i);
2771         if (in_bb(use) && !visited_test(use) &&
2772             // Don't go around backedge
2773             (!use->is_Phi() || n == entry)) {
2774           if (use->is_reduction()) {
2775             // First see if we can map the reduction on the given system we are on, then
2776             // make a data entry operation for each reduction we see.
2777             BasicType bt = use->bottom_type()->basic_type();
2778             if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2779               reduction_uses++;
2780             }
2781           }
2782           _stk.push(use);
2783         }
2784       }
2785       if (_stk.length() == size) {
2786         // There were no additional uses, post visit node now
2787         _stk.pop(); // Remove node from stack
2788         assert(rpo_idx >= 0, "");
2789         _block.at_put_grow(rpo_idx, n);
2790         rpo_idx--;
2791         post_visited_set(n);
2792         assert(rpo_idx >= 0 || _stk.is_empty(), "");
2793       }
2794     } else {
2795       _stk.pop(); // Remove post-visited node from stack
2796     }
2797   }//while
2798 
2799   int ii_current = -1;
2800   unsigned int load_idx = (unsigned int)-1;
2801   _ii_order.clear();
2802   // Create real map of block indices for nodes
2803   for (int j = 0; j < _block.length(); j++) {
2804     Node* n = _block.at(j);
2805     set_bb_idx(n, j);
2806     if (_do_vector_loop && n->is_Load()) {
2807       if (ii_current == -1) {
2808         ii_current = _clone_map.gen(n->_idx);
2809         _ii_order.push(ii_current);
2810         load_idx = _clone_map.idx(n->_idx);
2811       } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
2812         ii_current = _clone_map.gen(n->_idx);
2813         _ii_order.push(ii_current);
2814       }
2815     }
2816   }//for
2817 
2818   // Ensure extra info is allocated.
2819   initialize_bb();
2820 
2821 #ifndef PRODUCT
2822   if (_vector_loop_debug && _ii_order.length() > 0) {
2823     tty->print("SuperWord::construct_bb: List of generations: ");
2824     for (int jj = 0; jj < _ii_order.length(); ++jj) {
2825       tty->print("  %d:%d", jj, _ii_order.at(jj));
2826     }
2827     tty->print_cr(" ");
2828   }
2829   if (TraceSuperWord) {
2830     print_bb();
2831     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
2832     for (int m = 0; m < _data_entry.length(); m++) {
2833       tty->print("%3d ", m);
2834       _data_entry.at(m)->dump();
2835     }
2836     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
2837     for (int m = 0; m < _mem_slice_head.length(); m++) {
2838       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
2839       tty->print("    ");    _mem_slice_tail.at(m)->dump();
2840     }
2841   }
2842 #endif
2843   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
2844   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
2845 }
2846 
2847 //------------------------------initialize_bb---------------------------
2848 // Initialize per node info
2849 void SuperWord::initialize_bb() {
2850   Node* last = _block.at(_block.length() - 1);
2851   grow_node_info(bb_idx(last));
2852 }
2853 
2854 //------------------------------bb_insert_after---------------------------
2855 // Insert n into block after pos
2856 void SuperWord::bb_insert_after(Node* n, int pos) {
2857   int n_pos = pos + 1;
2858   // Make room
2859   for (int i = _block.length() - 1; i >= n_pos; i--) {
2860     _block.at_put_grow(i+1, _block.at(i));
2861   }
2862   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
2863     _node_info.at_put_grow(j+1, _node_info.at(j));
2864   }
2865   // Set value
2866   _block.at_put_grow(n_pos, n);
2867   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
2868   // Adjust map from node->_idx to _block index
2869   for (int i = n_pos; i < _block.length(); i++) {
2870     set_bb_idx(_block.at(i), i);
2871   }
2872 }
2873 
2874 //------------------------------compute_max_depth---------------------------
2875 // Compute max depth for expressions from beginning of block
2876 // Use to prune search paths during test for independence.
2877 void SuperWord::compute_max_depth() {
2878   int ct = 0;
2879   bool again;
2880   do {
2881     again = false;
2882     for (int i = 0; i < _block.length(); i++) {
2883       Node* n = _block.at(i);
2884       if (!n->is_Phi()) {
2885         int d_orig = depth(n);
2886         int d_in   = 0;
2887         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
2888           Node* pred = preds.current();
2889           if (in_bb(pred)) {
2890             d_in = MAX2(d_in, depth(pred));
2891           }
2892         }
2893         if (d_in + 1 != d_orig) {
2894           set_depth(n, d_in + 1);
2895           again = true;
2896         }
2897       }
2898     }
2899     ct++;
2900   } while (again);
2901 
2902   if (TraceSuperWord && Verbose) {
2903     tty->print_cr("compute_max_depth iterated: %d times", ct);
2904   }
2905 }
2906 
2907 //-------------------------compute_vector_element_type-----------------------
2908 // Compute necessary vector element type for expressions
2909 // This propagates backwards a narrower integer type when the
2910 // upper bits of the value are not needed.
2911 // Example:  char a,b,c;  a = b + c;
2912 // Normally the type of the add is integer, but for packed character
2913 // operations the type of the add needs to be char.
2914 void SuperWord::compute_vector_element_type() {
2915   if (TraceSuperWord && Verbose) {
2916     tty->print_cr("\ncompute_velt_type:");
2917   }
2918 
2919   // Initial type
2920   for (int i = 0; i < _block.length(); i++) {
2921     Node* n = _block.at(i);
2922     set_velt_type(n, container_type(n));
2923   }
2924 
2925   // Propagate integer narrowed type backwards through operations
2926   // that don't depend on higher order bits
2927   for (int i = _block.length() - 1; i >= 0; i--) {
2928     Node* n = _block.at(i);
2929     // Only integer types need be examined
2930     const Type* vtn = velt_type(n);
2931     if (vtn->basic_type() == T_INT) {
2932       uint start, end;
2933       VectorNode::vector_operands(n, &start, &end);
2934 
2935       for (uint j = start; j < end; j++) {
2936         Node* in  = n->in(j);
2937         // Don't propagate through a memory
2938         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
2939             data_size(n) < data_size(in)) {
2940           bool same_type = true;
2941           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
2942             Node *use = in->fast_out(k);
2943             if (!in_bb(use) || !same_velt_type(use, n)) {
2944               same_type = false;
2945               break;
2946             }
2947           }
2948           if (same_type) {
2949             // For right shifts of small integer types (bool, byte, char, short)
2950             // we need precise information about sign-ness. Only Load nodes have
2951             // this information because Store nodes are the same for signed and
2952             // unsigned values. And any arithmetic operation after a load may
2953             // expand a value to signed Int so such right shifts can't be used
2954             // because vector elements do not have upper bits of Int.
2955             const Type* vt = vtn;
2956             if (VectorNode::is_shift(in)) {
2957               Node* load = in->in(1);
2958               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
2959                 vt = velt_type(load);
2960               } else if (in->Opcode() != Op_LShiftI) {
2961                 // Widen type to Int to avoid creation of right shift vector
2962                 // (align + data_size(s1) check in stmts_can_pack() will fail).
2963                 // Note, left shifts work regardless type.
2964                 vt = TypeInt::INT;
2965               }
2966             }
2967             set_velt_type(in, vt);
2968           }
2969         }
2970       }
2971     }
2972   }
2973 #ifndef PRODUCT
2974   if (TraceSuperWord && Verbose) {
2975     for (int i = 0; i < _block.length(); i++) {
2976       Node* n = _block.at(i);
2977       velt_type(n)->dump();
2978       tty->print("\t");
2979       n->dump();
2980     }
2981   }
2982 #endif
2983 }
2984 
2985 //------------------------------memory_alignment---------------------------
2986 // Alignment within a vector memory reference
2987 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
2988   #ifndef PRODUCT
2989     if(TraceSuperWord && Verbose) {
2990       tty->print("SuperWord::memory_alignment within a vector memory reference for %d:  ", s->_idx); s->dump();
2991     }
2992   #endif
2993   NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
2994   SWPointer p(s, this, NULL, false);
2995   if (!p.valid()) {
2996     NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
2997     return bottom_align;
2998   }
2999   int vw = vector_width_in_bytes(s);
3000   if (vw < 2) {
3001     NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
3002     return bottom_align; // No vectors for this type
3003   }
3004   int offset  = p.offset_in_bytes();
3005   offset     += iv_adjust*p.memory_size();
3006   int off_rem = offset % vw;
3007   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
3008   if (TraceSuperWord && Verbose) {
3009     tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
3010   }
3011   return off_mod;
3012 }
3013 
3014 //---------------------------container_type---------------------------
3015 // Smallest type containing range of values
3016 const Type* SuperWord::container_type(Node* n) {
3017   if (n->is_Mem()) {
3018     BasicType bt = n->as_Mem()->memory_type();
3019     if (n->is_Store() && (bt == T_CHAR)) {
3020       // Use T_SHORT type instead of T_CHAR for stored values because any
3021       // preceding arithmetic operation extends values to signed Int.
3022       bt = T_SHORT;
3023     }
3024     if (n->Opcode() == Op_LoadUB) {
3025       // Adjust type for unsigned byte loads, it is important for right shifts.
3026       // T_BOOLEAN is used because there is no basic type representing type
3027       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
3028       // size (one byte) and sign is important.
3029       bt = T_BOOLEAN;
3030     }
3031     return Type::get_const_basic_type(bt);
3032   }
3033   const Type* t = _igvn.type(n);
3034   if (t->basic_type() == T_INT) {
3035     // A narrow type of arithmetic operations will be determined by
3036     // propagating the type of memory operations.
3037     return TypeInt::INT;
3038   }
3039   return t;
3040 }
3041 
3042 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
3043   const Type* vt1 = velt_type(n1);
3044   const Type* vt2 = velt_type(n2);
3045   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
3046     // Compare vectors element sizes for integer types.
3047     return data_size(n1) == data_size(n2);
3048   }
3049   return vt1 == vt2;
3050 }
3051 
3052 //------------------------------in_packset---------------------------
3053 // Are s1 and s2 in a pack pair and ordered as s1,s2?
3054 bool SuperWord::in_packset(Node* s1, Node* s2) {
3055   for (int i = 0; i < _packset.length(); i++) {
3056     Node_List* p = _packset.at(i);
3057     assert(p->size() == 2, "must be");
3058     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
3059       return true;
3060     }
3061   }
3062   return false;
3063 }
3064 
3065 //------------------------------in_pack---------------------------
3066 // Is s in pack p?
3067 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
3068   for (uint i = 0; i < p->size(); i++) {
3069     if (p->at(i) == s) {
3070       return p;
3071     }
3072   }
3073   return NULL;
3074 }
3075 
3076 //------------------------------remove_pack_at---------------------------
3077 // Remove the pack at position pos in the packset
3078 void SuperWord::remove_pack_at(int pos) {
3079   Node_List* p = _packset.at(pos);
3080   for (uint i = 0; i < p->size(); i++) {
3081     Node* s = p->at(i);
3082     set_my_pack(s, NULL);
3083   }
3084   _packset.remove_at(pos);
3085 }
3086 
3087 void SuperWord::packset_sort(int n) {
3088   // simple bubble sort so that we capitalize with O(n) when its already sorted
3089   while (n != 0) {
3090     bool swapped = false;
3091     for (int i = 1; i < n; i++) {
3092       Node_List* q_low = _packset.at(i-1);
3093       Node_List* q_i = _packset.at(i);
3094 
3095       // only swap when we find something to swap
3096       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
3097         Node_List* t = q_i;
3098         *(_packset.adr_at(i)) = q_low;
3099         *(_packset.adr_at(i-1)) = q_i;
3100         swapped = true;
3101       }
3102     }
3103     if (swapped == false) break;
3104     n--;
3105   }
3106 }
3107 
3108 //------------------------------executed_first---------------------------
3109 // Return the node executed first in pack p.  Uses the RPO block list
3110 // to determine order.
3111 Node* SuperWord::executed_first(Node_List* p) {
3112   Node* n = p->at(0);
3113   int n_rpo = bb_idx(n);
3114   for (uint i = 1; i < p->size(); i++) {
3115     Node* s = p->at(i);
3116     int s_rpo = bb_idx(s);
3117     if (s_rpo < n_rpo) {
3118       n = s;
3119       n_rpo = s_rpo;
3120     }
3121   }
3122   return n;
3123 }
3124 
3125 //------------------------------executed_last---------------------------
3126 // Return the node executed last in pack p.
3127 Node* SuperWord::executed_last(Node_List* p) {
3128   Node* n = p->at(0);
3129   int n_rpo = bb_idx(n);
3130   for (uint i = 1; i < p->size(); i++) {
3131     Node* s = p->at(i);
3132     int s_rpo = bb_idx(s);
3133     if (s_rpo > n_rpo) {
3134       n = s;
3135       n_rpo = s_rpo;
3136     }
3137   }
3138   return n;
3139 }
3140 
3141 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
3142   LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
3143   for (uint i = 0; i < p->size(); i++) {
3144     Node* n = p->at(i);
3145     assert(n->is_Load(), "only meaningful for loads");
3146     if (!n->depends_only_on_test()) {
3147       dep = LoadNode::Pinned;
3148     }
3149   }
3150   return dep;
3151 }
3152 
3153 
3154 //----------------------------align_initial_loop_index---------------------------
3155 // Adjust pre-loop limit so that in main loop, a load/store reference
3156 // to align_to_ref will be a position zero in the vector.
3157 //   (iv + k) mod vector_align == 0
3158 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
3159   CountedLoopNode *main_head = lp()->as_CountedLoop();
3160   assert(main_head->is_main_loop(), "");
3161   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
3162   assert(pre_end != NULL, "we must have a correct pre-loop");
3163   Node *pre_opaq1 = pre_end->limit();
3164   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
3165   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
3166   Node *lim0 = pre_opaq->in(1);
3167 
3168   // Where we put new limit calculations
3169   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
3170 
3171   // Ensure the original loop limit is available from the
3172   // pre-loop Opaque1 node.
3173   Node *orig_limit = pre_opaq->original_loop_limit();
3174   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
3175 
3176   SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
3177   assert(align_to_ref_p.valid(), "sanity");
3178 
3179   // Given:
3180   //     lim0 == original pre loop limit
3181   //     V == v_align (power of 2)
3182   //     invar == extra invariant piece of the address expression
3183   //     e == offset [ +/- invar ]
3184   //
3185   // When reassociating expressions involving '%' the basic rules are:
3186   //     (a - b) % k == 0   =>  a % k == b % k
3187   // and:
3188   //     (a + b) % k == 0   =>  a % k == (k - b) % k
3189   //
3190   // For stride > 0 && scale > 0,
3191   //   Derive the new pre-loop limit "lim" such that the two constraints:
3192   //     (1) lim = lim0 + N           (where N is some positive integer < V)
3193   //     (2) (e + lim) % V == 0
3194   //   are true.
3195   //
3196   //   Substituting (1) into (2),
3197   //     (e + lim0 + N) % V == 0
3198   //   solve for N:
3199   //     N = (V - (e + lim0)) % V
3200   //   substitute back into (1), so that new limit
3201   //     lim = lim0 + (V - (e + lim0)) % V
3202   //
3203   // For stride > 0 && scale < 0
3204   //   Constraints:
3205   //     lim = lim0 + N
3206   //     (e - lim) % V == 0
3207   //   Solving for lim:
3208   //     (e - lim0 - N) % V == 0
3209   //     N = (e - lim0) % V
3210   //     lim = lim0 + (e - lim0) % V
3211   //
3212   // For stride < 0 && scale > 0
3213   //   Constraints:
3214   //     lim = lim0 - N
3215   //     (e + lim) % V == 0
3216   //   Solving for lim:
3217   //     (e + lim0 - N) % V == 0
3218   //     N = (e + lim0) % V
3219   //     lim = lim0 - (e + lim0) % V
3220   //
3221   // For stride < 0 && scale < 0
3222   //   Constraints:
3223   //     lim = lim0 - N
3224   //     (e - lim) % V == 0
3225   //   Solving for lim:
3226   //     (e - lim0 + N) % V == 0
3227   //     N = (V - (e - lim0)) % V
3228   //     lim = lim0 - (V - (e - lim0)) % V
3229 
3230   int vw = vector_width_in_bytes(align_to_ref);
3231   int stride   = iv_stride();
3232   int scale    = align_to_ref_p.scale_in_bytes();
3233   int elt_size = align_to_ref_p.memory_size();
3234   int v_align  = vw / elt_size;
3235   assert(v_align > 1, "sanity");
3236   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
3237   Node *offsn  = _igvn.intcon(offset);
3238 
3239   Node *e = offsn;
3240   if (align_to_ref_p.invar() != NULL) {
3241     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
3242     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3243     Node* invar = align_to_ref_p.invar();
3244     if (_igvn.type(invar)->isa_long()) {
3245       // Computations are done % (vector width/element size) so it's
3246       // safe to simply convert invar to an int and loose the upper 32
3247       // bit half.
3248       invar = new ConvL2INode(invar);
3249       _igvn.register_new_node_with_optimizer(invar);
3250     }
3251     Node* aref = new URShiftINode(invar, log2_elt);
3252     _igvn.register_new_node_with_optimizer(aref);
3253     _phase->set_ctrl(aref, pre_ctrl);
3254     if (align_to_ref_p.negate_invar()) {
3255       e = new SubINode(e, aref);
3256     } else {
3257       e = new AddINode(e, aref);
3258     }
3259     _igvn.register_new_node_with_optimizer(e);
3260     _phase->set_ctrl(e, pre_ctrl);
3261   }
3262   if (vw > ObjectAlignmentInBytes) {
3263     // incorporate base e +/- base && Mask >>> log2(elt)
3264     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
3265     _igvn.register_new_node_with_optimizer(xbase);
3266 #ifdef _LP64
3267     xbase  = new ConvL2INode(xbase);
3268     _igvn.register_new_node_with_optimizer(xbase);
3269 #endif
3270     Node* mask = _igvn.intcon(vw-1);
3271     Node* masked_xbase  = new AndINode(xbase, mask);
3272     _igvn.register_new_node_with_optimizer(masked_xbase);
3273     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3274     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
3275     _igvn.register_new_node_with_optimizer(bref);
3276     _phase->set_ctrl(bref, pre_ctrl);
3277     e = new AddINode(e, bref);
3278     _igvn.register_new_node_with_optimizer(e);
3279     _phase->set_ctrl(e, pre_ctrl);
3280   }
3281 
3282   // compute e +/- lim0
3283   if (scale < 0) {
3284     e = new SubINode(e, lim0);
3285   } else {
3286     e = new AddINode(e, lim0);
3287   }
3288   _igvn.register_new_node_with_optimizer(e);
3289   _phase->set_ctrl(e, pre_ctrl);
3290 
3291   if (stride * scale > 0) {
3292     // compute V - (e +/- lim0)
3293     Node* va  = _igvn.intcon(v_align);
3294     e = new SubINode(va, e);
3295     _igvn.register_new_node_with_optimizer(e);
3296     _phase->set_ctrl(e, pre_ctrl);
3297   }
3298   // compute N = (exp) % V
3299   Node* va_msk = _igvn.intcon(v_align - 1);
3300   Node* N = new AndINode(e, va_msk);
3301   _igvn.register_new_node_with_optimizer(N);
3302   _phase->set_ctrl(N, pre_ctrl);
3303 
3304   //   substitute back into (1), so that new limit
3305   //     lim = lim0 + N
3306   Node* lim;
3307   if (stride < 0) {
3308     lim = new SubINode(lim0, N);
3309   } else {
3310     lim = new AddINode(lim0, N);
3311   }
3312   _igvn.register_new_node_with_optimizer(lim);
3313   _phase->set_ctrl(lim, pre_ctrl);
3314   Node* constrained =
3315     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
3316                  : (Node*) new MaxINode(lim, orig_limit);
3317   _igvn.register_new_node_with_optimizer(constrained);
3318   _phase->set_ctrl(constrained, pre_ctrl);
3319   _igvn.replace_input_of(pre_opaq, 1, constrained);
3320 }
3321 
3322 //----------------------------get_pre_loop_end---------------------------
3323 // Find pre loop end from main loop.  Returns null if none.
3324 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
3325   // The loop cannot be optimized if the graph shape at
3326   // the loop entry is inappropriate.
3327   if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
3328     return NULL;
3329   }
3330 
3331   Node* p_f = cl->skip_predicates()->in(0)->in(0);
3332   if (!p_f->is_IfFalse()) return NULL;
3333   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
3334   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
3335   CountedLoopNode* loop_node = pre_end->loopnode();
3336   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
3337   return pre_end;
3338 }
3339 
3340 //------------------------------init---------------------------
3341 void SuperWord::init() {
3342   _dg.init();
3343   _packset.clear();
3344   _disjoint_ptrs.clear();
3345   _block.clear();
3346   _post_block.clear();
3347   _data_entry.clear();
3348   _mem_slice_head.clear();
3349   _mem_slice_tail.clear();
3350   _iteration_first.clear();
3351   _iteration_last.clear();
3352   _node_info.clear();
3353   _align_to_ref = NULL;
3354   _lpt = NULL;
3355   _lp = NULL;
3356   _bb = NULL;
3357   _iv = NULL;
3358   _race_possible = 0;
3359   _early_return = false;
3360   _num_work_vecs = 0;
3361   _num_reductions = 0;
3362 }
3363 
3364 //------------------------------restart---------------------------
3365 void SuperWord::restart() {
3366   _dg.init();
3367   _packset.clear();
3368   _disjoint_ptrs.clear();
3369   _block.clear();
3370   _post_block.clear();
3371   _data_entry.clear();
3372   _mem_slice_head.clear();
3373   _mem_slice_tail.clear();
3374   _node_info.clear();
3375 }
3376 
3377 //------------------------------print_packset---------------------------
3378 void SuperWord::print_packset() {
3379 #ifndef PRODUCT
3380   tty->print_cr("packset");
3381   for (int i = 0; i < _packset.length(); i++) {
3382     tty->print_cr("Pack: %d", i);
3383     Node_List* p = _packset.at(i);
3384     print_pack(p);
3385   }
3386 #endif
3387 }
3388 
3389 //------------------------------print_pack---------------------------
3390 void SuperWord::print_pack(Node_List* p) {
3391   for (uint i = 0; i < p->size(); i++) {
3392     print_stmt(p->at(i));
3393   }
3394 }
3395 
3396 //------------------------------print_bb---------------------------
3397 void SuperWord::print_bb() {
3398 #ifndef PRODUCT
3399   tty->print_cr("\nBlock");
3400   for (int i = 0; i < _block.length(); i++) {
3401     Node* n = _block.at(i);
3402     tty->print("%d ", i);
3403     if (n) {
3404       n->dump();
3405     }
3406   }
3407 #endif
3408 }
3409 
3410 //------------------------------print_stmt---------------------------
3411 void SuperWord::print_stmt(Node* s) {
3412 #ifndef PRODUCT
3413   tty->print(" align: %d \t", alignment(s));
3414   s->dump();
3415 #endif
3416 }
3417 
3418 //------------------------------blank---------------------------
3419 char* SuperWord::blank(uint depth) {
3420   static char blanks[101];
3421   assert(depth < 101, "too deep");
3422   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
3423   blanks[depth] = '\0';
3424   return blanks;
3425 }
3426 
3427 
3428 //==============================SWPointer===========================
3429 #ifndef PRODUCT
3430 int SWPointer::Tracer::_depth = 0;
3431 #endif
3432 //----------------------------SWPointer------------------------
3433 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
3434   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
3435   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3436   _nstack(nstack), _analyze_only(analyze_only),
3437   _stack_idx(0)
3438 #ifndef PRODUCT
3439   , _tracer(slp)
3440 #endif
3441 {
3442   NOT_PRODUCT(_tracer.ctor_1(mem);)
3443 
3444   Node* adr = mem->in(MemNode::Address);
3445   if (!adr->is_AddP()) {
3446     assert(!valid(), "too complex");
3447     return;
3448   }
3449   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
3450   Node* base = adr->in(AddPNode::Base);
3451   // The base address should be loop invariant
3452   if (!invariant(base)) {
3453     assert(!valid(), "base address is loop variant");
3454     return;
3455   }
3456   //unsafe reference could not be aligned appropriately without runtime checking
3457   if (base == NULL || base->bottom_type() == Type::TOP) {
3458     assert(!valid(), "unsafe access");
3459     return;
3460   }
3461 
3462   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
3463   NOT_PRODUCT(_tracer.ctor_2(adr);)
3464 
3465   int i;
3466   for (i = 0; i < 3; i++) {
3467     NOT_PRODUCT(_tracer.ctor_3(adr, i);)
3468 
3469     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
3470       assert(!valid(), "too complex");
3471       return;
3472     }
3473     adr = adr->in(AddPNode::Address);
3474     NOT_PRODUCT(_tracer.ctor_4(adr, i);)
3475 
3476     if (base == adr || !adr->is_AddP()) {
3477       NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
3478       break; // stop looking at addp's
3479     }
3480   }
3481   NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
3482   NOT_PRODUCT(_tracer.ctor_6(mem);)
3483 
3484   _base = base;
3485   _adr  = adr;
3486   assert(valid(), "Usable");
3487 }
3488 
3489 // Following is used to create a temporary object during
3490 // the pattern match of an address expression.
3491 SWPointer::SWPointer(SWPointer* p) :
3492   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
3493   _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3494   _nstack(p->_nstack), _analyze_only(p->_analyze_only),
3495   _stack_idx(p->_stack_idx)
3496   #ifndef PRODUCT
3497   , _tracer(p->_slp)
3498   #endif
3499 {}
3500 
3501 
3502 bool SWPointer::invariant(Node* n) {
3503   NOT_PRODUCT(Tracer::Depth dd;)
3504   Node *n_c = phase()->get_ctrl(n);
3505   NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
3506   return !lpt()->is_member(phase()->get_loop(n_c));
3507 }
3508 //------------------------scaled_iv_plus_offset--------------------
3509 // Match: k*iv + offset
3510 // where: k is a constant that maybe zero, and
3511 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
3512 bool SWPointer::scaled_iv_plus_offset(Node* n) {
3513   NOT_PRODUCT(Tracer::Depth ddd;)
3514   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
3515 
3516   if (scaled_iv(n)) {
3517     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
3518     return true;
3519   }
3520 
3521   if (offset_plus_k(n)) {
3522     NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
3523     return true;
3524   }
3525 
3526   int opc = n->Opcode();
3527   if (opc == Op_AddI) {
3528     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
3529       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
3530       return true;
3531     }
3532     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3533       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
3534       return true;
3535     }
3536   } else if (opc == Op_SubI) {
3537     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
3538       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
3539       return true;
3540     }
3541     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3542       _scale *= -1;
3543       NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
3544       return true;
3545     }
3546   }
3547 
3548   NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
3549   return false;
3550 }
3551 
3552 //----------------------------scaled_iv------------------------
3553 // Match: k*iv where k is a constant that's not zero
3554 bool SWPointer::scaled_iv(Node* n) {
3555   NOT_PRODUCT(Tracer::Depth ddd;)
3556   NOT_PRODUCT(_tracer.scaled_iv_1(n);)
3557 
3558   if (_scale != 0) { // already found a scale
3559     NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
3560     return false;
3561   }
3562 
3563   if (n == iv()) {
3564     _scale = 1;
3565     NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
3566     return true;
3567   }
3568   if (_analyze_only && (invariant(n) == false)) {
3569     _nstack->push(n, _stack_idx++);
3570   }
3571 
3572   int opc = n->Opcode();
3573   if (opc == Op_MulI) {
3574     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3575       _scale = n->in(2)->get_int();
3576       NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
3577       return true;
3578     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
3579       _scale = n->in(1)->get_int();
3580       NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
3581       return true;
3582     }
3583   } else if (opc == Op_LShiftI) {
3584     if (n->in(1) == iv() && n->in(2)->is_Con()) {
3585       _scale = 1 << n->in(2)->get_int();
3586       NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3587       return true;
3588     }
3589   } else if (opc == Op_ConvI2L) {
3590     if (n->in(1)->Opcode() == Op_CastII &&
3591         n->in(1)->as_CastII()->has_range_check()) {
3592       // Skip range check dependent CastII nodes
3593       n = n->in(1);
3594     }
3595     if (scaled_iv_plus_offset(n->in(1))) {
3596       NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3597       return true;
3598     }
3599   } else if (opc == Op_LShiftL) {
3600     if (!has_iv() && _invar == NULL) {
3601       // Need to preserve the current _offset value, so
3602       // create a temporary object for this expression subtree.
3603       // Hacky, so should re-engineer the address pattern match.
3604       NOT_PRODUCT(Tracer::Depth dddd;)
3605       SWPointer tmp(this);
3606       NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3607 
3608       if (tmp.scaled_iv_plus_offset(n->in(1))) {
3609         if (tmp._invar == NULL || _slp->do_vector_loop()) {
3610           int mult = 1 << n->in(2)->get_int();
3611           _scale   = tmp._scale  * mult;
3612           _offset += tmp._offset * mult;
3613           NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3614           return true;
3615         }
3616       }
3617     }
3618   }
3619   NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3620   return false;
3621 }
3622 
3623 //----------------------------offset_plus_k------------------------
3624 // Match: offset is (k [+/- invariant])
3625 // where k maybe zero and invariant is optional, but not both.
3626 bool SWPointer::offset_plus_k(Node* n, bool negate) {
3627   NOT_PRODUCT(Tracer::Depth ddd;)
3628   NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3629 
3630   int opc = n->Opcode();
3631   if (opc == Op_ConI) {
3632     _offset += negate ? -(n->get_int()) : n->get_int();
3633     NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3634     return true;
3635   } else if (opc == Op_ConL) {
3636     // Okay if value fits into an int
3637     const TypeLong* t = n->find_long_type();
3638     if (t->higher_equal(TypeLong::INT)) {
3639       jlong loff = n->get_long();
3640       jint  off  = (jint)loff;
3641       _offset += negate ? -off : loff;
3642       NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3643       return true;
3644     }
3645     NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3646     return false;
3647   }
3648   if (_invar != NULL) { // already has an invariant
3649     NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3650     return false;
3651   }
3652 
3653   if (_analyze_only && (invariant(n) == false)) {
3654     _nstack->push(n, _stack_idx++);
3655   }
3656   if (opc == Op_AddI) {
3657     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3658       _negate_invar = negate;
3659       _invar = n->in(1);
3660       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3661       NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3662       return true;
3663     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3664       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3665       _negate_invar = negate;
3666       _invar = n->in(2);
3667       NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3668       return true;
3669     }
3670   }
3671   if (opc == Op_SubI) {
3672     if (n->in(2)->is_Con() && invariant(n->in(1))) {
3673       _negate_invar = negate;
3674       _invar = n->in(1);
3675       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3676       NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3677       return true;
3678     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3679       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3680       _negate_invar = !negate;
3681       _invar = n->in(2);
3682       NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3683       return true;
3684     }
3685   }
3686   if (invariant(n)) {
3687     if (opc == Op_ConvI2L) {
3688       n = n->in(1);
3689       if (n->Opcode() == Op_CastII &&
3690           n->as_CastII()->has_range_check()) {
3691         // Skip range check dependent CastII nodes
3692         assert(invariant(n), "sanity");
3693         n = n->in(1);
3694       }
3695     }
3696     _negate_invar = negate;
3697     _invar = n;
3698     NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3699     return true;
3700   }
3701 
3702   NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3703   return false;
3704 }
3705 
3706 //----------------------------print------------------------
3707 void SWPointer::print() {
3708 #ifndef PRODUCT
3709   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
3710              _base != NULL ? _base->_idx : 0,
3711              _adr  != NULL ? _adr->_idx  : 0,
3712              _scale, _offset,
3713              _negate_invar?'-':'+',
3714              _invar != NULL ? _invar->_idx : 0);
3715 #endif
3716 }
3717 
3718 //----------------------------tracing------------------------
3719 #ifndef PRODUCT
3720 void SWPointer::Tracer::print_depth() {
3721   for (int ii = 0; ii<_depth; ++ii) tty->print("  ");
3722 }
3723 
3724 void SWPointer::Tracer::ctor_1 (Node* mem) {
3725   if(_slp->is_trace_alignment()) {
3726     print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3727   }
3728 }
3729 
3730 void SWPointer::Tracer::ctor_2(Node* adr) {
3731   if(_slp->is_trace_alignment()) {
3732     //store_depth();
3733     inc_depth();
3734     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3735     inc_depth();
3736     print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3737   }
3738 }
3739 
3740 void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3741   if(_slp->is_trace_alignment()) {
3742     inc_depth();
3743     Node* offset = adr->in(AddPNode::Offset);
3744     print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3745   }
3746 }
3747 
3748 void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3749   if(_slp->is_trace_alignment()) {
3750     inc_depth();
3751     print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3752   }
3753 }
3754 
3755 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3756   if(_slp->is_trace_alignment()) {
3757     inc_depth();
3758     if (base == adr) {
3759       print_depth(); tty->print_cr("  \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3760     } else if (!adr->is_AddP()) {
3761       print_depth(); tty->print_cr("  \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
3762     }
3763   }
3764 }
3765 
3766 void SWPointer::Tracer::ctor_6(Node* mem) {
3767   if(_slp->is_trace_alignment()) {
3768     //restore_depth();
3769     print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
3770   }
3771 }
3772 
3773 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
3774   if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
3775     int is_member =  _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
3776     int in_bb     =  _slp->in_bb(n);
3777     print_depth(); tty->print("  \\ ");  tty->print_cr(" %d SWPointer::invariant  conditions differ: n_c %d", n->_idx, n_c->_idx);
3778     print_depth(); tty->print("  \\ ");  tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
3779     print_depth(); tty->print("  \\ ");  n->dump();
3780     print_depth(); tty->print("  \\ ");  n_c->dump();
3781   }
3782 }
3783 
3784 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
3785   if(_slp->is_trace_alignment()) {
3786     print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
3787     n->dump();
3788   }
3789 }
3790 
3791 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
3792   if(_slp->is_trace_alignment()) {
3793     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3794   }
3795 }
3796 
3797 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
3798   if(_slp->is_trace_alignment()) {
3799     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3800   }
3801 }
3802 
3803 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
3804   if(_slp->is_trace_alignment()) {
3805     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3806     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3807     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3808   }
3809 }
3810 
3811 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
3812   if(_slp->is_trace_alignment()) {
3813     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3814     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3815     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3816   }
3817 }
3818 
3819 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
3820   if(_slp->is_trace_alignment()) {
3821     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3822     print_depth(); tty->print("  \\  %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3823     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3824   }
3825 }
3826 
3827 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
3828   if(_slp->is_trace_alignment()) {
3829     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3830     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3831     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3832   }
3833 }
3834 
3835 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
3836   if(_slp->is_trace_alignment()) {
3837     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
3838   }
3839 }
3840 
3841 void SWPointer::Tracer::scaled_iv_1(Node* n) {
3842   if(_slp->is_trace_alignment()) {
3843     print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
3844   }
3845 }
3846 
3847 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
3848   if(_slp->is_trace_alignment()) {
3849     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
3850     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
3851   }
3852 }
3853 
3854 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
3855   if(_slp->is_trace_alignment()) {
3856     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
3857   }
3858 }
3859 
3860 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
3861   if(_slp->is_trace_alignment()) {
3862     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3863     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3864     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3865   }
3866 }
3867 
3868 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
3869   if(_slp->is_trace_alignment()) {
3870     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
3871     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
3872     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3873   }
3874 }
3875 
3876 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
3877   if(_slp->is_trace_alignment()) {
3878     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
3879     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
3880     print_depth(); tty->print("  \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3881   }
3882 }
3883 
3884 void SWPointer::Tracer::scaled_iv_7(Node* n) {
3885   if(_slp->is_trace_alignment()) {
3886     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
3887     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
3888     inc_depth(); inc_depth();
3889     print_depth(); n->in(1)->dump();
3890     dec_depth(); dec_depth();
3891   }
3892 }
3893 
3894 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
3895   if(_slp->is_trace_alignment()) {
3896     print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
3897   }
3898 }
3899 
3900 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
3901   if(_slp->is_trace_alignment()) {
3902     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
3903     print_depth(); tty->print_cr("  \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
3904     n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
3905     inc_depth(); inc_depth();
3906     print_depth(); n->in(1)->dump();
3907     print_depth(); n->in(2)->dump();
3908     dec_depth(); dec_depth();
3909   }
3910 }
3911 
3912 void SWPointer::Tracer::scaled_iv_10(Node* n) {
3913   if(_slp->is_trace_alignment()) {
3914     print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
3915   }
3916 }
3917 
3918 void SWPointer::Tracer::offset_plus_k_1(Node* n) {
3919   if(_slp->is_trace_alignment()) {
3920     print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
3921   }
3922 }
3923 
3924 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
3925   if(_slp->is_trace_alignment()) {
3926     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
3927   }
3928 }
3929 
3930 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
3931   if(_slp->is_trace_alignment()) {
3932     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
3933   }
3934 }
3935 
3936 void SWPointer::Tracer::offset_plus_k_4(Node* n) {
3937   if(_slp->is_trace_alignment()) {
3938     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3939     print_depth(); tty->print_cr("  \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
3940   }
3941 }
3942 
3943 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
3944   if(_slp->is_trace_alignment()) {
3945     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
3946     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
3947   }
3948 }
3949 
3950 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3951   if(_slp->is_trace_alignment()) {
3952     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3953     n->_idx, _negate_invar, _invar->_idx, _offset);
3954     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3955     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3956   }
3957 }
3958 
3959 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3960   if(_slp->is_trace_alignment()) {
3961     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3962     n->_idx, _negate_invar, _invar->_idx, _offset);
3963     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3964     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3965   }
3966 }
3967 
3968 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3969   if(_slp->is_trace_alignment()) {
3970     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
3971     n->_idx, _negate_invar, _invar->_idx, _offset);
3972     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
3973     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
3974   }
3975 }
3976 
3977 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3978   if(_slp->is_trace_alignment()) {
3979     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3980     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
3981     print_depth(); tty->print("  \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
3982   }
3983 }
3984 
3985 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
3986   if(_slp->is_trace_alignment()) {
3987     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
3988     print_depth(); tty->print_cr("  \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
3989   }
3990 }
3991 
3992 void SWPointer::Tracer::offset_plus_k_11(Node* n) {
3993   if(_slp->is_trace_alignment()) {
3994     print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
3995   }
3996 }
3997 
3998 #endif
3999 // ========================= OrderedPair =====================
4000 
4001 const OrderedPair OrderedPair::initial;
4002 
4003 // ========================= SWNodeInfo =====================
4004 
4005 const SWNodeInfo SWNodeInfo::initial;
4006 
4007 
4008 // ============================ DepGraph ===========================
4009 
4010 //------------------------------make_node---------------------------
4011 // Make a new dependence graph node for an ideal node.
4012 DepMem* DepGraph::make_node(Node* node) {
4013   DepMem* m = new (_arena) DepMem(node);
4014   if (node != NULL) {
4015     assert(_map.at_grow(node->_idx) == NULL, "one init only");
4016     _map.at_put_grow(node->_idx, m);
4017   }
4018   return m;
4019 }
4020 
4021 //------------------------------make_edge---------------------------
4022 // Make a new dependence graph edge from dpred -> dsucc
4023 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
4024   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
4025   dpred->set_out_head(e);
4026   dsucc->set_in_head(e);
4027   return e;
4028 }
4029 
4030 // ========================== DepMem ========================
4031 
4032 //------------------------------in_cnt---------------------------
4033 int DepMem::in_cnt() {
4034   int ct = 0;
4035   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
4036   return ct;
4037 }
4038 
4039 //------------------------------out_cnt---------------------------
4040 int DepMem::out_cnt() {
4041   int ct = 0;
4042   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
4043   return ct;
4044 }
4045 
4046 //------------------------------print-----------------------------
4047 void DepMem::print() {
4048 #ifndef PRODUCT
4049   tty->print("  DepNode %d (", _node->_idx);
4050   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
4051     Node* pred = p->pred()->node();
4052     tty->print(" %d", pred != NULL ? pred->_idx : 0);
4053   }
4054   tty->print(") [");
4055   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
4056     Node* succ = s->succ()->node();
4057     tty->print(" %d", succ != NULL ? succ->_idx : 0);
4058   }
4059   tty->print_cr(" ]");
4060 #endif
4061 }
4062 
4063 // =========================== DepEdge =========================
4064 
4065 //------------------------------DepPreds---------------------------
4066 void DepEdge::print() {
4067 #ifndef PRODUCT
4068   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
4069 #endif
4070 }
4071 
4072 // =========================== DepPreds =========================
4073 // Iterator over predecessor edges in the dependence graph.
4074 
4075 //------------------------------DepPreds---------------------------
4076 DepPreds::DepPreds(Node* n, DepGraph& dg) {
4077   _n = n;
4078   _done = false;
4079   if (_n->is_Store() || _n->is_Load()) {
4080     _next_idx = MemNode::Address;
4081     _end_idx  = n->req();
4082     _dep_next = dg.dep(_n)->in_head();
4083   } else if (_n->is_Mem()) {
4084     _next_idx = 0;
4085     _end_idx  = 0;
4086     _dep_next = dg.dep(_n)->in_head();
4087   } else {
4088     _next_idx = 1;
4089     _end_idx  = _n->req();
4090     _dep_next = NULL;
4091   }
4092   next();
4093 }
4094 
4095 //------------------------------next---------------------------
4096 void DepPreds::next() {
4097   if (_dep_next != NULL) {
4098     _current  = _dep_next->pred()->node();
4099     _dep_next = _dep_next->next_in();
4100   } else if (_next_idx < _end_idx) {
4101     _current  = _n->in(_next_idx++);
4102   } else {
4103     _done = true;
4104   }
4105 }
4106 
4107 // =========================== DepSuccs =========================
4108 // Iterator over successor edges in the dependence graph.
4109 
4110 //------------------------------DepSuccs---------------------------
4111 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
4112   _n = n;
4113   _done = false;
4114   if (_n->is_Load()) {
4115     _next_idx = 0;
4116     _end_idx  = _n->outcnt();
4117     _dep_next = dg.dep(_n)->out_head();
4118   } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) {
4119     _next_idx = 0;
4120     _end_idx  = 0;
4121     _dep_next = dg.dep(_n)->out_head();
4122   } else {
4123     _next_idx = 0;
4124     _end_idx  = _n->outcnt();
4125     _dep_next = NULL;
4126   }
4127   next();
4128 }
4129 
4130 //-------------------------------next---------------------------
4131 void DepSuccs::next() {
4132   if (_dep_next != NULL) {
4133     _current  = _dep_next->succ()->node();
4134     _dep_next = _dep_next->next_out();
4135   } else if (_next_idx < _end_idx) {
4136     _current  = _n->raw_out(_next_idx++);
4137   } else {
4138     _done = true;
4139   }
4140 }
4141 
4142 //
4143 // --------------------------------- vectorization/simd -----------------------------------
4144 //
4145 bool SuperWord::same_origin_idx(Node* a, Node* b) const {
4146   return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
4147 }
4148 bool SuperWord::same_generation(Node* a, Node* b) const {
4149   return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
4150 }
4151 
4152 Node*  SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
4153   assert(in_bb(ld), "must be in block");
4154   if (_clone_map.gen(ld->_idx) == _ii_first) {
4155 #ifndef PRODUCT
4156     if (_vector_loop_debug) {
4157       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
4158         _clone_map.gen(ld->_idx));
4159     }
4160 #endif
4161     return NULL; //we think that any ld in the first gen being vectorizable
4162   }
4163 
4164   Node* mem = ld->in(MemNode::Memory);
4165   if (mem->outcnt() <= 1) {
4166     // we don't want to remove the only edge from mem node to load
4167 #ifndef PRODUCT
4168     if (_vector_loop_debug) {
4169       tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
4170         mem->_idx, ld->_idx);
4171       ld->dump();
4172       mem->dump();
4173     }
4174 #endif
4175     return NULL;
4176   }
4177   if (!in_bb(mem) || same_generation(mem, ld)) {
4178 #ifndef PRODUCT
4179     if (_vector_loop_debug) {
4180       tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
4181         _clone_map.gen(mem->_idx));
4182     }
4183 #endif
4184     return NULL; // does not depend on loop volatile node or depends on the same generation
4185   }
4186 
4187   //otherwise first node should depend on mem-phi
4188   Node* first = first_node(ld);
4189   assert(first->is_Load(), "must be Load");
4190   Node* phi = first->as_Load()->in(MemNode::Memory);
4191   if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
4192 #ifndef PRODUCT
4193     if (_vector_loop_debug) {
4194       tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
4195       ld->dump();
4196       first->dump();
4197     }
4198 #endif
4199     return NULL;
4200   }
4201 
4202   Node* tail = 0;
4203   for (int m = 0; m < _mem_slice_head.length(); m++) {
4204     if (_mem_slice_head.at(m) == phi) {
4205       tail = _mem_slice_tail.at(m);
4206     }
4207   }
4208   if (tail == 0) { //test that found phi is in the list  _mem_slice_head
4209 #ifndef PRODUCT
4210     if (_vector_loop_debug) {
4211       tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
4212         ld->_idx, phi->_idx);
4213       ld->dump();
4214       phi->dump();
4215     }
4216 #endif
4217     return NULL;
4218   }
4219 
4220   // now all conditions are met
4221   return phi;
4222 }
4223 
4224 Node* SuperWord::first_node(Node* nd) {
4225   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4226     Node* nnn = _iteration_first.at(ii);
4227     if (same_origin_idx(nnn, nd)) {
4228 #ifndef PRODUCT
4229       if (_vector_loop_debug) {
4230         tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
4231           nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
4232       }
4233 #endif
4234       return nnn;
4235     }
4236   }
4237 
4238 #ifndef PRODUCT
4239   if (_vector_loop_debug) {
4240     tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
4241       nd->_idx, _clone_map.idx(nd->_idx));
4242   }
4243 #endif
4244   return 0;
4245 }
4246 
4247 Node* SuperWord::last_node(Node* nd) {
4248   for (int ii = 0; ii < _iteration_last.length(); ii++) {
4249     Node* nnn = _iteration_last.at(ii);
4250     if (same_origin_idx(nnn, nd)) {
4251 #ifndef PRODUCT
4252       if (_vector_loop_debug) {
4253         tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
4254           _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
4255       }
4256 #endif
4257       return nnn;
4258     }
4259   }
4260   return 0;
4261 }
4262 
4263 int SuperWord::mark_generations() {
4264   Node *ii_err = NULL, *tail_err = NULL;
4265   for (int i = 0; i < _mem_slice_head.length(); i++) {
4266     Node* phi  = _mem_slice_head.at(i);
4267     assert(phi->is_Phi(), "must be phi");
4268 
4269     Node* tail = _mem_slice_tail.at(i);
4270     if (_ii_last == -1) {
4271       tail_err = tail;
4272       _ii_last = _clone_map.gen(tail->_idx);
4273     }
4274     else if (_ii_last != _clone_map.gen(tail->_idx)) {
4275 #ifndef PRODUCT
4276       if (TraceSuperWord && Verbose) {
4277         tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
4278         tail->dump();
4279         tail_err->dump();
4280       }
4281 #endif
4282       return -1;
4283     }
4284 
4285     // find first iteration in the loop
4286     for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
4287       Node* ii = phi->fast_out(i);
4288       if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
4289         if (_ii_first == -1) {
4290           ii_err = ii;
4291           _ii_first = _clone_map.gen(ii->_idx);
4292         } else if (_ii_first != _clone_map.gen(ii->_idx)) {
4293 #ifndef PRODUCT
4294           if (TraceSuperWord && Verbose) {
4295             tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
4296             ii->dump();
4297             if (ii_err!= 0) {
4298               ii_err->dump();
4299             }
4300           }
4301 #endif
4302           return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
4303         }
4304       }
4305     }//for (DUIterator_Fast imax,
4306   }//for (int i...
4307 
4308   if (_ii_first == -1 || _ii_last == -1) {
4309     if (TraceSuperWord && Verbose) {
4310       tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
4311     }
4312     return -1; // something vent wrong
4313   }
4314   // collect nodes in the first and last generations
4315   assert(_iteration_first.length() == 0, "_iteration_first must be empty");
4316   assert(_iteration_last.length() == 0, "_iteration_last must be empty");
4317   for (int j = 0; j < _block.length(); j++) {
4318     Node* n = _block.at(j);
4319     node_idx_t gen = _clone_map.gen(n->_idx);
4320     if ((signed)gen == _ii_first) {
4321       _iteration_first.push(n);
4322     } else if ((signed)gen == _ii_last) {
4323       _iteration_last.push(n);
4324     }
4325   }
4326 
4327   // building order of iterations
4328   if (_ii_order.length() == 0 && ii_err != 0) {
4329     assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
4330     Node* nd = ii_err;
4331     while(_clone_map.gen(nd->_idx) != _ii_last) {
4332       _ii_order.push(_clone_map.gen(nd->_idx));
4333       bool found = false;
4334       for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
4335         Node* use = nd->fast_out(i);
4336         if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
4337           found = true;
4338           nd = use;
4339           break;
4340         }
4341       }//for
4342 
4343       if (found == false) {
4344         if (TraceSuperWord && Verbose) {
4345           tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
4346         }
4347         _ii_order.clear();
4348         return -1;
4349       }
4350     } //while
4351     _ii_order.push(_clone_map.gen(nd->_idx));
4352   }
4353 
4354 #ifndef PRODUCT
4355   if (_vector_loop_debug) {
4356     tty->print_cr("SuperWord::mark_generations");
4357     tty->print_cr("First generation (%d) nodes:", _ii_first);
4358     for (int ii = 0; ii < _iteration_first.length(); ii++)  _iteration_first.at(ii)->dump();
4359     tty->print_cr("Last generation (%d) nodes:", _ii_last);
4360     for (int ii = 0; ii < _iteration_last.length(); ii++)  _iteration_last.at(ii)->dump();
4361     tty->print_cr(" ");
4362 
4363     tty->print("SuperWord::List of generations: ");
4364     for (int jj = 0; jj < _ii_order.length(); ++jj) {
4365       tty->print("%d:%d ", jj, _ii_order.at(jj));
4366     }
4367     tty->print_cr(" ");
4368   }
4369 #endif
4370 
4371   return _ii_first;
4372 }
4373 
4374 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
4375   assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
4376   assert(same_origin_idx(gold, fix), "should be clones of the same node");
4377   Node* gin1 = gold->in(1);
4378   Node* gin2 = gold->in(2);
4379   Node* fin1 = fix->in(1);
4380   Node* fin2 = fix->in(2);
4381   bool swapped = false;
4382 
4383   if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
4384     if (same_origin_idx(gin1, fin1) &&
4385         same_origin_idx(gin2, fin2)) {
4386       return true; // nothing to fix
4387     }
4388     if (same_origin_idx(gin1, fin2) &&
4389         same_origin_idx(gin2, fin1)) {
4390       fix->swap_edges(1, 2);
4391       swapped = true;
4392     }
4393   }
4394   // at least one input comes from outside of bb
4395   if (gin1->_idx == fin1->_idx)  {
4396     return true; // nothing to fix
4397   }
4398   if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx))  { //swapping is expensive, check condition first
4399     fix->swap_edges(1, 2);
4400     swapped = true;
4401   }
4402 
4403   if (swapped) {
4404 #ifndef PRODUCT
4405     if (_vector_loop_debug) {
4406       tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
4407     }
4408 #endif
4409     return true;
4410   }
4411 
4412   if (TraceSuperWord && Verbose) {
4413     tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
4414   }
4415 
4416   return false;
4417 }
4418 
4419 bool SuperWord::pack_parallel() {
4420 #ifndef PRODUCT
4421   if (_vector_loop_debug) {
4422     tty->print_cr("SuperWord::pack_parallel: START");
4423   }
4424 #endif
4425 
4426   _packset.clear();
4427 
4428   for (int ii = 0; ii < _iteration_first.length(); ii++) {
4429     Node* nd = _iteration_first.at(ii);
4430     if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
4431       Node_List* pk = new Node_List();
4432       pk->push(nd);
4433       for (int gen = 1; gen < _ii_order.length(); ++gen) {
4434         for (int kk = 0; kk < _block.length(); kk++) {
4435           Node* clone = _block.at(kk);
4436           if (same_origin_idx(clone, nd) &&
4437               _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
4438             if (nd->is_Add() || nd->is_Mul()) {
4439               fix_commutative_inputs(nd, clone);
4440             }
4441             pk->push(clone);
4442             if (pk->size() == 4) {
4443               _packset.append(pk);
4444 #ifndef PRODUCT
4445               if (_vector_loop_debug) {
4446                 tty->print_cr("SuperWord::pack_parallel: added pack ");
4447                 pk->dump();
4448               }
4449 #endif
4450               if (_clone_map.gen(clone->_idx) != _ii_last) {
4451                 pk = new Node_List();
4452               }
4453             }
4454             break;
4455           }
4456         }
4457       }//for
4458     }//if
4459   }//for
4460 
4461 #ifndef PRODUCT
4462   if (_vector_loop_debug) {
4463     tty->print_cr("SuperWord::pack_parallel: END");
4464   }
4465 #endif
4466 
4467   return true;
4468 }
4469 
4470 bool SuperWord::hoist_loads_in_graph() {
4471   GrowableArray<Node*> loads;
4472 
4473 #ifndef PRODUCT
4474   if (_vector_loop_debug) {
4475     tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
4476   }
4477 #endif
4478 
4479   for (int i = 0; i < _mem_slice_head.length(); i++) {
4480     Node* n = _mem_slice_head.at(i);
4481     if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
4482       if (TraceSuperWord && Verbose) {
4483         tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
4484       }
4485       continue;
4486     }
4487 
4488 #ifndef PRODUCT
4489     if (_vector_loop_debug) {
4490       tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d  = _mem_slice_head.at(%d);", n->_idx, i);
4491     }
4492 #endif
4493 
4494     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4495       Node* ld = n->fast_out(i);
4496       if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
4497         for (int i = 0; i < _block.length(); i++) {
4498           Node* ld2 = _block.at(i);
4499           if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
4500               !same_generation(ld, ld2)) { // <= do not collect the first generation ld
4501 #ifndef PRODUCT
4502             if (_vector_loop_debug) {
4503               tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
4504                 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
4505             }
4506 #endif
4507             // could not do on-the-fly, since iterator is immutable
4508             loads.push(ld2);
4509           }
4510         }// for
4511       }//if
4512     }//for (DUIterator_Fast imax,
4513   }//for (int i = 0; i
4514 
4515   for (int i = 0; i < loads.length(); i++) {
4516     LoadNode* ld = loads.at(i)->as_Load();
4517     Node* phi = find_phi_for_mem_dep(ld);
4518     if (phi != NULL) {
4519 #ifndef PRODUCT
4520       if (_vector_loop_debug) {
4521         tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
4522           MemNode::Memory, ld->_idx, phi->_idx);
4523       }
4524 #endif
4525       _igvn.replace_input_of(ld, MemNode::Memory, phi);
4526     }
4527   }//for
4528 
4529   restart(); // invalidate all basic structures, since we rebuilt the graph
4530 
4531   if (TraceSuperWord && Verbose) {
4532     tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
4533   }
4534 
4535   return true;
4536 }