1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class OuterStripMinedLoopEndNode;
  41 class PathFrequency;
  42 class PhaseIdealLoop;
  43 class CountedLoopReserveKit;
  44 class VectorSet;
  45 class Invariance;
  46 struct small_cache;
  47 
  48 //
  49 //                  I D E A L I Z E D   L O O P S
  50 //
  51 // Idealized loops are the set of loops I perform more interesting
  52 // transformations on, beyond simple hoisting.
  53 
  54 //------------------------------LoopNode---------------------------------------
  55 // Simple loop header.  Fall in path on left, loop-back path on right.
  56 class LoopNode : public RegionNode {
  57   // Size is bigger to hold the flags.  However, the flags do not change
  58   // the semantics so it does not appear in the hash & cmp functions.
  59   virtual uint size_of() const { return sizeof(*this); }
  60 protected:
  61   uint _loop_flags;
  62   // Names for flag bitfields
  63   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  64          MainHasNoPreLoop=4,
  65          HasExactTripCount=8,
  66          InnerLoop=16,
  67          PartialPeelLoop=32,
  68          PartialPeelFailed=64,
  69          HasReductions=128,
  70          WasSlpAnalyzed=256,
  71          PassedSlpAnalysis=512,
  72          DoUnrollOnly=1024,
  73          VectorizedLoop=2048,
  74          HasAtomicPostLoop=4096,
  75          HasRangeChecks=8192,
  76          IsMultiversioned=16384,
  77          StripMined=32768,
  78          ProfileTripFailed=65536};
  79   char _unswitch_count;
  80   enum { _unswitch_max=3 };
  81   char _postloop_flags;
  82   enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
  83 
  84   // Expected trip count from profile data
  85   float _profile_trip_cnt;
  86 
  87 public:
  88   // Names for edge indices
  89   enum { Self=0, EntryControl, LoopBackControl };
  90 
  91   uint is_inner_loop() const { return _loop_flags & InnerLoop; }
  92   void set_inner_loop() { _loop_flags |= InnerLoop; }
  93 
  94   uint range_checks_present() const { return _loop_flags & HasRangeChecks; }
  95   uint is_multiversioned() const { return _loop_flags & IsMultiversioned; }
  96   uint is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  97   uint is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  98   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  99   uint partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
 100   uint is_strip_mined() const { return _loop_flags & StripMined; }
 101   uint is_profile_trip_failed() const { return _loop_flags & ProfileTripFailed; }
 102 
 103   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
 104   void mark_has_reductions() { _loop_flags |= HasReductions; }
 105   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 106   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 107   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 108   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 109   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 110   void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
 111   void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
 112   void mark_strip_mined() { _loop_flags |= StripMined; }
 113   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 114   void mark_profile_trip_failed() { _loop_flags |= ProfileTripFailed; }
 115 
 116   int unswitch_max() { return _unswitch_max; }
 117   int unswitch_count() { return _unswitch_count; }
 118 
 119   int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
 120   void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
 121   int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
 122   void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
 123 
 124   void set_unswitch_count(int val) {
 125     assert (val <= unswitch_max(), "too many unswitches");
 126     _unswitch_count = val;
 127   }
 128 
 129   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 130   float profile_trip_cnt()             { return _profile_trip_cnt; }
 131 
 132   LoopNode(Node *entry, Node *backedge)
 133     : RegionNode(3), _loop_flags(0), _unswitch_count(0),
 134       _postloop_flags(0), _profile_trip_cnt(COUNT_UNKNOWN)  {
 135     init_class_id(Class_Loop);
 136     init_req(EntryControl, entry);
 137     init_req(LoopBackControl, backedge);
 138   }
 139 
 140   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 141   virtual int Opcode() const;
 142   bool can_be_counted_loop(PhaseTransform* phase) const {
 143     return req() == 3 && in(0) != NULL &&
 144       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 145       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 146   }
 147   bool is_valid_counted_loop() const;
 148 #ifndef PRODUCT
 149   virtual void dump_spec(outputStream *st) const;
 150 #endif
 151 
 152   void verify_strip_mined(int expect_skeleton) const;
 153   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 154   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return NULL; }
 155   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return NULL; }
 156   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return NULL; }
 157   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return NULL; }
 158 };
 159 
 160 //------------------------------Counted Loops----------------------------------
 161 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 162 // path (and maybe some other exit paths).  The trip-counter exit is always
 163 // last in the loop.  The trip-counter have to stride by a constant;
 164 // the exit value is also loop invariant.
 165 
 166 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 167 // CountedLoopNode has the incoming loop control and the loop-back-control
 168 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 169 // CountedLoopEndNode has an incoming control (possibly not the
 170 // CountedLoopNode if there is control flow in the loop), the post-increment
 171 // trip-counter value, and the limit.  The trip-counter value is always of
 172 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 173 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 174 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 175 // CountedLoopEndNode also takes in the loop-invariant limit value.
 176 
 177 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 178 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 179 // via the old-trip-counter from the Op node.
 180 
 181 //------------------------------CountedLoopNode--------------------------------
 182 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 183 // inputs the incoming loop-start control and the loop-back control, so they
 184 // act like RegionNodes.  They also take in the initial trip counter, the
 185 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 186 // produce a loop-body control and the trip counter value.  Since
 187 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 188 
 189 class CountedLoopNode : public LoopNode {
 190   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 191   // the semantics so it does not appear in the hash & cmp functions.
 192   virtual uint size_of() const { return sizeof(*this); }
 193 
 194   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 195   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 196   node_idx_t _main_idx;
 197 
 198   // Known trip count calculated by compute_exact_trip_count()
 199   uint  _trip_count;
 200 
 201   // Log2 of original loop bodies in unrolled loop
 202   int _unrolled_count_log2;
 203 
 204   // Node count prior to last unrolling - used to decide if
 205   // unroll,optimize,unroll,optimize,... is making progress
 206   int _node_count_before_unroll;
 207 
 208   // If slp analysis is performed we record the maximum
 209   // vector mapped unroll factor here
 210   int _slp_maximum_unroll_factor;
 211 
 212 public:
 213   CountedLoopNode( Node *entry, Node *backedge )
 214     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 215       _unrolled_count_log2(0), _node_count_before_unroll(0),
 216       _slp_maximum_unroll_factor(0) {
 217     init_class_id(Class_CountedLoop);
 218     // Initialize _trip_count to the largest possible value.
 219     // Will be reset (lower) if the loop's trip count is known.
 220   }
 221 
 222   virtual int Opcode() const;
 223   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 224 
 225   Node *init_control() const { return in(EntryControl); }
 226   Node *back_control() const { return in(LoopBackControl); }
 227   CountedLoopEndNode *loopexit_or_null() const;
 228   CountedLoopEndNode *loopexit() const;
 229   Node *init_trip() const;
 230   Node *stride() const;
 231   int   stride_con() const;
 232   bool  stride_is_con() const;
 233   Node *limit() const;
 234   Node *incr() const;
 235   Node *phi() const;
 236 
 237   // Match increment with optional truncation
 238   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 239 
 240   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 241   // can run short a few iterations and may start a few iterations in.
 242   // It will be RCE'd and unrolled and aligned.
 243 
 244   // A following 'post' loop will run any remaining iterations.  Used
 245   // during Range Check Elimination, the 'post' loop will do any final
 246   // iterations with full checks.  Also used by Loop Unrolling, where
 247   // the 'post' loop will do any epilog iterations needed.  Basically,
 248   // a 'post' loop can not profitably be further unrolled or RCE'd.
 249 
 250   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 251   // it may do under-flow checks for RCE and may do alignment iterations
 252   // so the following main loop 'knows' that it is striding down cache
 253   // lines.
 254 
 255   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 256   // Aligned, may be missing it's pre-loop.
 257   uint is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 258   uint is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 259   uint is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 260   uint is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 261   uint is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 262   uint was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 263   uint has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 264   uint do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 265   uint is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 266   uint has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 267   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 268 
 269   int main_idx() const { return _main_idx; }
 270 
 271 
 272   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 273   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 274   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 275   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 276 
 277   void set_trip_count(uint tc) { _trip_count = tc; }
 278   uint trip_count()            { return _trip_count; }
 279 
 280   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 281   void set_exact_trip_count(uint tc) {
 282     _trip_count = tc;
 283     _loop_flags |= HasExactTripCount;
 284   }
 285   void set_nonexact_trip_count() {
 286     _loop_flags &= ~HasExactTripCount;
 287   }
 288   void set_notpassed_slp() {
 289     _loop_flags &= ~PassedSlpAnalysis;
 290   }
 291 
 292   void double_unrolled_count() { _unrolled_count_log2++; }
 293   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 294 
 295   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 296   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 297   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 298   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 299 
 300   virtual LoopNode* skip_strip_mined(int expect_opaq = 1);
 301   OuterStripMinedLoopNode* outer_loop() const;
 302   virtual IfTrueNode* outer_loop_tail() const;
 303   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 304   virtual IfFalseNode* outer_loop_exit() const;
 305   virtual SafePointNode* outer_safepoint() const;
 306 
 307   // If this is a main loop in a pre/main/post loop nest, walk over
 308   // the predicates that were inserted by
 309   // duplicate_predicates()/add_range_check_predicate()
 310   static Node* skip_predicates_from_entry(Node* ctrl);
 311   Node* skip_predicates();
 312 
 313 #ifndef PRODUCT
 314   virtual void dump_spec(outputStream *st) const;
 315 #endif
 316 };
 317 
 318 //------------------------------CountedLoopEndNode-----------------------------
 319 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 320 // IfNodes.
 321 class CountedLoopEndNode : public IfNode {
 322 public:
 323   enum { TestControl, TestValue };
 324 
 325   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 326     : IfNode( control, test, prob, cnt) {
 327     init_class_id(Class_CountedLoopEnd);
 328   }
 329   virtual int Opcode() const;
 330 
 331   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 332   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 333   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 334   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 335   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 336   int stride_con() const;
 337   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 338   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 339   PhiNode *phi() const {
 340     Node *tmp = incr();
 341     if (tmp && tmp->req() == 3) {
 342       Node* phi = tmp->in(1);
 343       if (phi->is_Phi()) {
 344         return phi->as_Phi();
 345       }
 346     }
 347     return NULL;
 348   }
 349   CountedLoopNode *loopnode() const {
 350     // The CountedLoopNode that goes with this CountedLoopEndNode may
 351     // have been optimized out by the IGVN so be cautious with the
 352     // pattern matching on the graph
 353     PhiNode* iv_phi = phi();
 354     if (iv_phi == NULL) {
 355       return NULL;
 356     }
 357     Node *ln = iv_phi->in(0);
 358     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit_or_null() == this) {
 359       return (CountedLoopNode*)ln;
 360     }
 361     return NULL;
 362   }
 363 
 364 #ifndef PRODUCT
 365   virtual void dump_spec(outputStream *st) const;
 366 #endif
 367 };
 368 
 369 
 370 inline CountedLoopEndNode *CountedLoopNode::loopexit_or_null() const {
 371   Node *bc = back_control();
 372   if( bc == NULL ) return NULL;
 373   Node *le = bc->in(0);
 374   if( le->Opcode() != Op_CountedLoopEnd )
 375     return NULL;
 376   return (CountedLoopEndNode*)le;
 377 }
 378 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 379   CountedLoopEndNode* cle = loopexit_or_null();
 380   assert(cle != NULL, "loopexit is NULL");
 381   return cle;
 382 }
 383 inline Node *CountedLoopNode::init_trip() const { return loopexit_or_null() ? loopexit()->init_trip() : NULL; }
 384 inline Node *CountedLoopNode::stride() const { return loopexit_or_null() ? loopexit()->stride() : NULL; }
 385 inline int CountedLoopNode::stride_con() const { return loopexit_or_null() ? loopexit()->stride_con() : 0; }
 386 inline bool CountedLoopNode::stride_is_con() const { return loopexit_or_null() && loopexit()->stride_is_con(); }
 387 inline Node *CountedLoopNode::limit() const { return loopexit_or_null() ? loopexit()->limit() : NULL; }
 388 inline Node *CountedLoopNode::incr() const { return loopexit_or_null() ? loopexit()->incr() : NULL; }
 389 inline Node *CountedLoopNode::phi() const { return loopexit_or_null() ? loopexit()->phi() : NULL; }
 390 
 391 //------------------------------LoopLimitNode-----------------------------
 392 // Counted Loop limit node which represents exact final iterator value:
 393 // trip_count = (limit - init_trip + stride - 1)/stride
 394 // final_value= trip_count * stride + init_trip.
 395 // Use HW instructions to calculate it when it can overflow in integer.
 396 // Note, final_value should fit into integer since counted loop has
 397 // limit check: limit <= max_int-stride.
 398 class LoopLimitNode : public Node {
 399   enum { Init=1, Limit=2, Stride=3 };
 400  public:
 401   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 402     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 403     init_flags(Flag_is_macro);
 404     C->add_macro_node(this);
 405   }
 406   virtual int Opcode() const;
 407   virtual const Type *bottom_type() const { return TypeInt::INT; }
 408   virtual uint ideal_reg() const { return Op_RegI; }
 409   virtual const Type* Value(PhaseGVN* phase) const;
 410   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 411   virtual Node* Identity(PhaseGVN* phase);
 412 };
 413 
 414 // Support for strip mining
 415 class OuterStripMinedLoopNode : public LoopNode {
 416 private:
 417   CountedLoopNode* inner_loop() const;
 418 public:
 419   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 420     : LoopNode(entry, backedge) {
 421     init_class_id(Class_OuterStripMinedLoop);
 422     init_flags(Flag_is_macro);
 423     C->add_macro_node(this);
 424   }
 425 
 426   virtual int Opcode() const;
 427 
 428   virtual IfTrueNode* outer_loop_tail() const;
 429   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 430   virtual IfFalseNode* outer_loop_exit() const;
 431   virtual SafePointNode* outer_safepoint() const;
 432   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 433 };
 434 
 435 class OuterStripMinedLoopEndNode : public IfNode {
 436 public:
 437   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 438     : IfNode(control, test, prob, cnt) {
 439     init_class_id(Class_OuterStripMinedLoopEnd);
 440   }
 441 
 442   virtual int Opcode() const;
 443 
 444   virtual const Type* Value(PhaseGVN* phase) const;
 445   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 446 };
 447 
 448 // -----------------------------IdealLoopTree----------------------------------
 449 class IdealLoopTree : public ResourceObj {
 450 public:
 451   IdealLoopTree *_parent;       // Parent in loop tree
 452   IdealLoopTree *_next;         // Next sibling in loop tree
 453   IdealLoopTree *_child;        // First child in loop tree
 454 
 455   // The head-tail backedge defines the loop.
 456   // If tail is NULL then this loop has multiple backedges as part of the
 457   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 458   // them at the loop bottom and flow 1 real backedge into the loop.
 459   Node *_head;                  // Head of loop
 460   Node *_tail;                  // Tail of loop
 461   inline Node *tail();          // Handle lazy update of _tail field
 462   PhaseIdealLoop* _phase;
 463   int _local_loop_unroll_limit;
 464   int _local_loop_unroll_factor;
 465 
 466   Node_List _body;              // Loop body for inner loops
 467 
 468   uint8_t _nest;                // Nesting depth
 469   uint8_t _irreducible:1,       // True if irreducible
 470           _has_call:1,          // True if has call safepoint
 471           _has_sfpt:1,          // True if has non-call safepoint
 472           _rce_candidate:1;     // True if candidate for range check elimination
 473 
 474   Node_List* _safepts;          // List of safepoints in this loop
 475   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 476   bool  _allow_optimizations;   // Allow loop optimizations
 477 
 478   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 479     : _parent(0), _next(0), _child(0),
 480       _head(head), _tail(tail),
 481       _phase(phase),
 482       _safepts(NULL),
 483       _required_safept(NULL),
 484       _allow_optimizations(true),
 485       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 486       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 487   { }
 488 
 489   // Is 'l' a member of 'this'?
 490   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 491 
 492   // Set loop nesting depth.  Accumulate has_call bits.
 493   int set_nest( uint depth );
 494 
 495   // Split out multiple fall-in edges from the loop header.  Move them to a
 496   // private RegionNode before the loop.  This becomes the loop landing pad.
 497   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 498 
 499   // Split out the outermost loop from this shared header.
 500   void split_outer_loop( PhaseIdealLoop *phase );
 501 
 502   // Merge all the backedges from the shared header into a private Region.
 503   // Feed that region as the one backedge to this loop.
 504   void merge_many_backedges( PhaseIdealLoop *phase );
 505 
 506   // Split shared headers and insert loop landing pads.
 507   // Insert a LoopNode to replace the RegionNode.
 508   // Returns TRUE if loop tree is structurally changed.
 509   bool beautify_loops( PhaseIdealLoop *phase );
 510 
 511   // Perform optimization to use the loop predicates for null checks and range checks.
 512   // Applies to any loop level (not just the innermost one)
 513   bool loop_predication( PhaseIdealLoop *phase);
 514 
 515   // Perform iteration-splitting on inner loops.  Split iterations to
 516   // avoid range checks or one-shot null checks.  Returns false if the
 517   // current round of loop opts should stop.
 518   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 519 
 520   // Driver for various flavors of iteration splitting.  Returns false
 521   // if the current round of loop opts should stop.
 522   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 523 
 524   // Given dominators, try to find loops with calls that must always be
 525   // executed (call dominates loop tail).  These loops do not need non-call
 526   // safepoints (ncsfpt).
 527   void check_safepts(VectorSet &visited, Node_List &stack);
 528 
 529   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 530   // encountered.
 531   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 532 
 533   // Remove safepoints from loop. Optionally keeping one.
 534   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 535 
 536   // Convert to counted loops where possible
 537   void counted_loop( PhaseIdealLoop *phase );
 538 
 539   // Check for Node being a loop-breaking test
 540   Node *is_loop_exit(Node *iff) const;
 541 
 542   // Remove simplistic dead code from loop body
 543   void DCE_loop_body();
 544 
 545   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 546   // Replace with a 1-in-10 exit guess.
 547   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 548 
 549   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 550   // Useful for unrolling loops with NO array accesses.
 551   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 552 
 553   // Return TRUE or FALSE if the loop should be unswitched -- clone
 554   // loop with an invariant test
 555   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 556 
 557   // Micro-benchmark spamming.  Remove empty loops.
 558   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 559 
 560   // Convert one iteration loop into normal code.
 561   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 562 
 563   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 564   // make some loop-invariant test (usually a null-check) happen before the
 565   // loop.
 566   bool policy_peeling( PhaseIdealLoop *phase ) const;
 567 
 568   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 569   // known trip count in the counted loop node.
 570   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 571 
 572   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 573   // the loop is a CountedLoop and the body is small enough.
 574   bool policy_unroll(PhaseIdealLoop *phase);
 575 
 576   // Loop analyses to map to a maximal superword unrolling for vectorization.
 577   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 578 
 579   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 580   // Gather a list of IF tests that are dominated by iteration splitting;
 581   // also gather the end of the first split and the start of the 2nd split.
 582   bool policy_range_check( PhaseIdealLoop *phase ) const;
 583 
 584   // Return TRUE or FALSE if the loop should be cache-line aligned.
 585   // Gather the expression that does the alignment.  Note that only
 586   // one array base can be aligned in a loop (unless the VM guarantees
 587   // mutual alignment).  Note that if we vectorize short memory ops
 588   // into longer memory ops, we may want to increase alignment.
 589   bool policy_align( PhaseIdealLoop *phase ) const;
 590 
 591   // Return TRUE if "iff" is a range check.
 592   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 593 
 594   // Compute loop trip count if possible
 595   void compute_trip_count(PhaseIdealLoop* phase);
 596 
 597   // Compute loop trip count from profile data
 598   float compute_profile_trip_cnt_helper(Node* n);
 599   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 600 
 601   // Reassociate invariant expressions.
 602   void reassociate_invariants(PhaseIdealLoop *phase);
 603   // Reassociate invariant add and subtract expressions.
 604   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 605   // Return nonzero index of invariant operand if invariant and variant
 606   // are combined with an Add or Sub. Helper for reassociate_invariants.
 607   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 608 
 609   // Return true if n is invariant
 610   bool is_invariant(Node* n) const;
 611 
 612   // Put loop body on igvn work list
 613   void record_for_igvn();
 614 
 615   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 616   bool is_inner()   { return is_loop() && _child == NULL; }
 617   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 618 
 619   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 620 
 621 #ifndef PRODUCT
 622   void dump_head( ) const;      // Dump loop head only
 623   void dump() const;            // Dump this loop recursively
 624   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 625 #endif
 626 
 627 };
 628 
 629 // -----------------------------PhaseIdealLoop---------------------------------
 630 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 631 // loop tree.  Drives the loop-based transformations on the ideal graph.
 632 class PhaseIdealLoop : public PhaseTransform {
 633   friend class IdealLoopTree;
 634   friend class SuperWord;
 635   friend class CountedLoopReserveKit;
 636 
 637   // Pre-computed def-use info
 638   PhaseIterGVN &_igvn;
 639 
 640   // Head of loop tree
 641   IdealLoopTree *_ltree_root;
 642 
 643   // Array of pre-order numbers, plus post-visited bit.
 644   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 645   // ODD for post-visited.  Other bits are the pre-order number.
 646   uint *_preorders;
 647   uint _max_preorder;
 648 
 649   const PhaseIdealLoop* _verify_me;
 650   bool _verify_only;
 651 
 652   // Allocate _preorders[] array
 653   void allocate_preorders() {
 654     _max_preorder = C->unique()+8;
 655     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 656     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 657   }
 658 
 659   // Allocate _preorders[] array
 660   void reallocate_preorders() {
 661     if ( _max_preorder < C->unique() ) {
 662       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 663       _max_preorder = C->unique();
 664     }
 665     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 666   }
 667 
 668   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 669   // adds new nodes.
 670   void check_grow_preorders( ) {
 671     if ( _max_preorder < C->unique() ) {
 672       uint newsize = _max_preorder<<1;  // double size of array
 673       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 674       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 675       _max_preorder = newsize;
 676     }
 677   }
 678   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 679   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 680   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 681   void set_preorder_visited( Node *n, int pre_order ) {
 682     assert( !is_visited( n ), "already set" );
 683     _preorders[n->_idx] = (pre_order<<1);
 684   };
 685   // Return pre-order number.
 686   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 687 
 688   // Check for being post-visited.
 689   // Should be previsited already (checked with assert(is_visited(n))).
 690   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 691 
 692   // Mark as post visited
 693   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 694 
 695   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 696   // Returns true if "n" is a data node, false if it's a control node.
 697   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 698 
 699   // clear out dead code after build_loop_late
 700   Node_List _deadlist;
 701 
 702   // Support for faster execution of get_late_ctrl()/dom_lca()
 703   // when a node has many uses and dominator depth is deep.
 704   Node_Array _dom_lca_tags;
 705   void   init_dom_lca_tags();
 706   void   clear_dom_lca_tags();
 707 
 708   // Helper for debugging bad dominance relationships
 709   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 710 
 711   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 712 
 713   // Inline wrapper for frequent cases:
 714   // 1) only one use
 715   // 2) a use is the same as the current LCA passed as 'n1'
 716   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 717     assert( n->is_CFG(), "" );
 718     // Fast-path NULL lca
 719     if( lca != NULL && lca != n ) {
 720       assert( lca->is_CFG(), "" );
 721       // find LCA of all uses
 722       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 723     }
 724     return find_non_split_ctrl(n);
 725   }
 726   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 727 
 728   // Helper function for directing control inputs away from CFG split
 729   // points.
 730   Node *find_non_split_ctrl( Node *ctrl ) const {
 731     if (ctrl != NULL) {
 732       if (ctrl->is_MultiBranch()) {
 733         ctrl = ctrl->in(0);
 734       }
 735       assert(ctrl->is_CFG(), "CFG");
 736     }
 737     return ctrl;
 738   }
 739 
 740   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 741   void duplicate_predicates_helper(Node* predicate, Node* castii, IdealLoopTree* outer_loop,
 742                                    LoopNode* outer_main_head, uint dd_main_head);
 743   void duplicate_predicates(CountedLoopNode* pre_head, Node* castii, IdealLoopTree* outer_loop,
 744                             LoopNode* outer_main_head, uint dd_main_head);
 745 
 746 public:
 747 
 748   static bool is_canonical_loop_entry(CountedLoopNode* cl);
 749 
 750   bool has_node( Node* n ) const {
 751     guarantee(n != NULL, "No Node.");
 752     return _nodes[n->_idx] != NULL;
 753   }
 754   // check if transform created new nodes that need _ctrl recorded
 755   Node *get_late_ctrl( Node *n, Node *early );
 756   Node *get_early_ctrl( Node *n );
 757   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 758   void set_early_ctrl( Node *n );
 759   void set_subtree_ctrl( Node *root );
 760   void set_ctrl( Node *n, Node *ctrl ) {
 761     assert( !has_node(n) || has_ctrl(n), "" );
 762     assert( ctrl->in(0), "cannot set dead control node" );
 763     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 764     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 765   }
 766   // Set control and update loop membership
 767   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 768     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 769     IdealLoopTree* new_loop = get_loop(ctrl);
 770     if (old_loop != new_loop) {
 771       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 772       if (new_loop->_child == NULL) new_loop->_body.push(n);
 773     }
 774     set_ctrl(n, ctrl);
 775   }
 776   // Control nodes can be replaced or subsumed.  During this pass they
 777   // get their replacement Node in slot 1.  Instead of updating the block
 778   // location of all Nodes in the subsumed block, we lazily do it.  As we
 779   // pull such a subsumed block out of the array, we write back the final
 780   // correct block.
 781   Node *get_ctrl( Node *i ) {
 782     assert(has_node(i), "");
 783     Node *n = get_ctrl_no_update(i);
 784     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 785     assert(has_node(i) && has_ctrl(i), "");
 786     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 787     return n;
 788   }
 789   // true if CFG node d dominates CFG node n
 790   bool is_dominator(Node *d, Node *n);
 791   // return get_ctrl for a data node and self(n) for a CFG node
 792   Node* ctrl_or_self(Node* n) {
 793     if (has_ctrl(n))
 794       return get_ctrl(n);
 795     else {
 796       assert (n->is_CFG(), "must be a CFG node");
 797       return n;
 798     }
 799   }
 800 
 801 private:
 802   Node *get_ctrl_no_update_helper(Node *i) const {
 803     assert(has_ctrl(i), "should be control, not loop");
 804     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 805   }
 806 
 807   Node *get_ctrl_no_update(Node *i) const {
 808     assert( has_ctrl(i), "" );
 809     Node *n = get_ctrl_no_update_helper(i);
 810     if (!n->in(0)) {
 811       // Skip dead CFG nodes
 812       do {
 813         n = get_ctrl_no_update_helper(n);
 814       } while (!n->in(0));
 815       n = find_non_split_ctrl(n);
 816     }
 817     return n;
 818   }
 819 
 820   // Check for loop being set
 821   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 822   bool has_loop( Node *n ) const {
 823     assert(!has_node(n) || !has_ctrl(n), "");
 824     return has_node(n);
 825   }
 826   // Set loop
 827   void set_loop( Node *n, IdealLoopTree *loop ) {
 828     _nodes.map(n->_idx, (Node*)loop);
 829   }
 830   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 831   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 832   // from old_node to new_node to support the lazy update.  Reference
 833   // replaces loop reference, since that is not needed for dead node.
 834 public:
 835   void lazy_update(Node *old_node, Node *new_node) {
 836     assert(old_node != new_node, "no cycles please");
 837     // Re-use the side array slot for this node to provide the
 838     // forwarding pointer.
 839     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
 840   }
 841   void lazy_replace(Node *old_node, Node *new_node) {
 842     _igvn.replace_node(old_node, new_node);
 843     lazy_update(old_node, new_node);
 844   }
 845 
 846 private:
 847 
 848   // Place 'n' in some loop nest, where 'n' is a CFG node
 849   void build_loop_tree();
 850   int build_loop_tree_impl( Node *n, int pre_order );
 851   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 852   // loop tree, not the root.
 853   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 854 
 855   // Place Data nodes in some loop nest
 856   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 857   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 858   void build_loop_late_post ( Node* n );
 859   void verify_strip_mined_scheduling(Node *n, Node* least);
 860 
 861   // Array of immediate dominance info for each CFG node indexed by node idx
 862 private:
 863   uint _idom_size;
 864   Node **_idom;                 // Array of immediate dominators
 865   uint *_dom_depth;           // Used for fast LCA test
 866   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 867 
 868   Node* idom_no_update(Node* d) const {
 869     assert(d->_idx < _idom_size, "oob");
 870     Node* n = _idom[d->_idx];
 871     assert(n != NULL,"Bad immediate dominator info.");
 872     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 873       //n = n->in(1);
 874       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 875       assert(n != NULL,"Bad immediate dominator info.");
 876     }
 877     return n;
 878   }
 879   Node *idom(Node* d) const {
 880     uint didx = d->_idx;
 881     Node *n = idom_no_update(d);
 882     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 883     return n;
 884   }
 885   uint dom_depth(Node* d) const {
 886     guarantee(d != NULL, "Null dominator info.");
 887     guarantee(d->_idx < _idom_size, "");
 888     return _dom_depth[d->_idx];
 889   }
 890   void set_idom(Node* d, Node* n, uint dom_depth);
 891   // Locally compute IDOM using dom_lca call
 892   Node *compute_idom( Node *region ) const;
 893   // Recompute dom_depth
 894   void recompute_dom_depth();
 895 
 896   // Is safept not required by an outer loop?
 897   bool is_deleteable_safept(Node* sfpt);
 898 
 899   // Replace parallel induction variable (parallel to trip counter)
 900   void replace_parallel_iv(IdealLoopTree *loop);
 901 
 902   // Perform verification that the graph is valid.
 903   PhaseIdealLoop( PhaseIterGVN &igvn) :
 904     PhaseTransform(Ideal_Loop),
 905     _igvn(igvn),
 906     _dom_lca_tags(arena()), // Thread::resource_area
 907     _verify_me(NULL),
 908     _verify_only(true) {
 909     build_and_optimize(false, false);
 910   }
 911 
 912   // build the loop tree and perform any requested optimizations
 913   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 914 
 915 public:
 916   // Dominators for the sea of nodes
 917   void Dominators();
 918   Node *dom_lca( Node *n1, Node *n2 ) const {
 919     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 920   }
 921   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 922 
 923   // Compute the Ideal Node to Loop mapping
 924   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 925     PhaseTransform(Ideal_Loop),
 926     _igvn(igvn),
 927     _dom_lca_tags(arena()), // Thread::resource_area
 928     _verify_me(NULL),
 929     _verify_only(false) {
 930     build_and_optimize(do_split_ifs, skip_loop_opts);
 931   }
 932 
 933   // Verify that verify_me made the same decisions as a fresh run.
 934   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 935     PhaseTransform(Ideal_Loop),
 936     _igvn(igvn),
 937     _dom_lca_tags(arena()), // Thread::resource_area
 938     _verify_me(verify_me),
 939     _verify_only(false) {
 940     build_and_optimize(false, false);
 941   }
 942 
 943   // Build and verify the loop tree without modifying the graph.  This
 944   // is useful to verify that all inputs properly dominate their uses.
 945   static void verify(PhaseIterGVN& igvn) {
 946 #ifdef ASSERT
 947     PhaseIdealLoop v(igvn);
 948 #endif
 949   }
 950 
 951   // True if the method has at least 1 irreducible loop
 952   bool _has_irreducible_loops;
 953 
 954   // Per-Node transform
 955   virtual Node *transform( Node *a_node ) { return 0; }
 956 
 957   bool is_counted_loop(Node* x, IdealLoopTree*& loop);
 958   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 959                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
 960                                                Node*& entry_control, Node*& iffalse);
 961 
 962   Node* exact_limit( IdealLoopTree *loop );
 963 
 964   // Return a post-walked LoopNode
 965   IdealLoopTree *get_loop( Node *n ) const {
 966     // Dead nodes have no loop, so return the top level loop instead
 967     if (!has_node(n))  return _ltree_root;
 968     assert(!has_ctrl(n), "");
 969     return (IdealLoopTree*)_nodes[n->_idx];
 970   }
 971 
 972   // Is 'n' a (nested) member of 'loop'?
 973   int is_member( const IdealLoopTree *loop, Node *n ) const {
 974     return loop->is_member(get_loop(n)); }
 975 
 976   // This is the basic building block of the loop optimizations.  It clones an
 977   // entire loop body.  It makes an old_new loop body mapping; with this
 978   // mapping you can find the new-loop equivalent to an old-loop node.  All
 979   // new-loop nodes are exactly equal to their old-loop counterparts, all
 980   // edges are the same.  All exits from the old-loop now have a RegionNode
 981   // that merges the equivalent new-loop path.  This is true even for the
 982   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 983   // now come from (one or more) Phis that merge their new-loop equivalents.
 984   // Parameter side_by_side_idom:
 985   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 986   //      the clone loop to dominate the original.  Used in construction of
 987   //      pre-main-post loop sequence.
 988   //   When nonnull, the clone and original are side-by-side, both are
 989   //      dominated by the passed in side_by_side_idom node.  Used in
 990   //      construction of unswitched loops.
 991   enum CloneLoopMode {
 992     IgnoreStripMined = 0,        // Only clone inner strip mined loop
 993     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
 994     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
 995                                  // result control flow branches
 996                                  // either to inner clone or outer
 997                                  // strip mined loop.
 998   };
 999   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
1000                   CloneLoopMode mode, Node* side_by_side_idom = NULL);
1001   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
1002                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
1003                                    Node_List*& split_if_set, Node_List*& split_bool_set,
1004                                    Node_List*& split_cex_set, Node_List& worklist,
1005                                    uint new_counter, CloneLoopMode mode);
1006   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1007                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1008                         Node_List& extra_data_nodes);
1009 
1010   // If we got the effect of peeling, either by actually peeling or by
1011   // making a pre-loop which must execute at least once, we can remove
1012   // all loop-invariant dominated tests in the main body.
1013   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1014 
1015   // Generate code to do a loop peel for the given loop (and body).
1016   // old_new is a temp array.
1017   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1018 
1019   // Add pre and post loops around the given loop.  These loops are used
1020   // during RCE, unrolling and aligning loops.
1021   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1022 
1023   // Add post loop after the given loop.
1024   Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
1025                          CountedLoopNode *main_head, CountedLoopEndNode *main_end,
1026                          Node *incr, Node *limit, CountedLoopNode *&post_head);
1027 
1028   // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
1029   void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
1030 
1031   // Add a vector post loop between a vector main loop and the current post loop
1032   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1033   // If Node n lives in the back_ctrl block, we clone a private version of n
1034   // in preheader_ctrl block and return that, otherwise return n.
1035   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1036 
1037   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1038   // unroll to do double iterations.  The next round of major loop transforms
1039   // will repeat till the doubled loop body does all remaining iterations in 1
1040   // pass.
1041   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1042 
1043   // Unroll the loop body one step - make each trip do 2 iterations.
1044   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1045 
1046   // Mark vector reduction candidates before loop unrolling
1047   void mark_reductions( IdealLoopTree *loop );
1048 
1049   // Return true if exp is a constant times an induction var
1050   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
1051 
1052   // Return true if exp is a scaled induction var plus (or minus) constant
1053   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
1054 
1055   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1056   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
1057                                         Deoptimization::DeoptReason reason,
1058                                         int opcode);
1059   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
1060 
1061   // Clone loop predicates to cloned loops (peeled, unswitched)
1062   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
1063                                    Deoptimization::DeoptReason reason,
1064                                    PhaseIdealLoop* loop_phase,
1065                                    PhaseIterGVN* igvn);
1066 
1067   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
1068                                          bool clone_limit_check,
1069                                          PhaseIdealLoop* loop_phase,
1070                                          PhaseIterGVN* igvn);
1071   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
1072 
1073   static Node* skip_all_loop_predicates(Node* entry);
1074   static Node* skip_loop_predicates(Node* entry);
1075 
1076   // Find a good location to insert a predicate
1077   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
1078   // Find a predicate
1079   static Node* find_predicate(Node* entry);
1080   // Construct a range check for a predicate if
1081   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
1082                          int scale, Node* offset,
1083                          Node* init, Node* limit, jint stride,
1084                          Node* range, bool upper, bool &overflow);
1085 
1086   // Implementation of the loop predication to promote checks outside the loop
1087   bool loop_predication_impl(IdealLoopTree *loop);
1088   bool loop_predication_impl_helper(IdealLoopTree *loop, ProjNode* proj, ProjNode *predicate_proj,
1089                                     CountedLoopNode *cl, ConNode* zero, Invariance& invar,
1090                                     Deoptimization::DeoptReason reason);
1091   bool loop_predication_should_follow_branches(IdealLoopTree *loop, ProjNode *predicate_proj, float& loop_trip_cnt);
1092   void loop_predication_follow_branches(Node *c, IdealLoopTree *loop, float loop_trip_cnt,
1093                                         PathFrequency& pf, Node_Stack& stack, VectorSet& seen,
1094                                         Node_List& if_proj_list);
1095   ProjNode* insert_skeleton_predicate(IfNode* iff, IdealLoopTree *loop,
1096                                       ProjNode* proj, ProjNode *predicate_proj,
1097                                       ProjNode* upper_bound_proj,
1098                                       int scale, Node* offset,
1099                                       Node* init, Node* limit, jint stride,
1100                                       Node* rng, bool& overflow,
1101                                       Deoptimization::DeoptReason reason);
1102   Node* add_range_check_predicate(IdealLoopTree* loop, CountedLoopNode* cl,
1103                                   Node* predicate_proj, int scale_con, Node* offset,
1104                                   Node* limit, jint stride_con);
1105 
1106   // Helper function to collect predicate for eliminating the useless ones
1107   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
1108   void eliminate_useless_predicates();
1109 
1110   // Change the control input of expensive nodes to allow commoning by
1111   // IGVN when it is guaranteed to not result in a more frequent
1112   // execution of the expensive node. Return true if progress.
1113   bool process_expensive_nodes();
1114 
1115   // Check whether node has become unreachable
1116   bool is_node_unreachable(Node *n) const {
1117     return !has_node(n) || n->is_unreachable(_igvn);
1118   }
1119 
1120   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1121   int do_range_check( IdealLoopTree *loop, Node_List &old_new );
1122 
1123   // Check to see if do_range_check(...) cleaned the main loop of range-checks
1124   void has_range_checks(IdealLoopTree *loop);
1125 
1126   // Process post loops which have range checks and try to build a multi-version
1127   // guard to safely determine if we can execute the post loop which was RCE'd.
1128   bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1129 
1130   // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1131   void poison_rce_post_loop(IdealLoopTree *rce_loop);
1132 
1133   // Create a slow version of the loop by cloning the loop
1134   // and inserting an if to select fast-slow versions.
1135   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1136                                         Node_List &old_new,
1137                                         int opcode,
1138                                         CloneLoopMode mode);
1139 
1140   // Clone a loop and return the clone head (clone_loop_head).
1141   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1142   // This routine was created for usage in CountedLoopReserveKit.
1143   //
1144   //    int(1) -> If -> IfTrue -> original_loop_head
1145   //              |
1146   //              V
1147   //           IfFalse -> clone_loop_head (returned by function pointer)
1148   //
1149   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1150   // Clone loop with an invariant test (that does not exit) and
1151   // insert a clone of the test that selects which version to
1152   // execute.
1153   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1154 
1155   // Find candidate "if" for unswitching
1156   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1157 
1158   // Range Check Elimination uses this function!
1159   // Constrain the main loop iterations so the affine function:
1160   //    low_limit <= scale_con * I + offset  <  upper_limit
1161   // always holds true.  That is, either increase the number of iterations in
1162   // the pre-loop or the post-loop until the condition holds true in the main
1163   // loop.  Scale_con, offset and limit are all loop invariant.
1164   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
1165   // Helper function for add_constraint().
1166   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1167 
1168   // Partially peel loop up through last_peel node.
1169   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1170 
1171   // Create a scheduled list of nodes control dependent on ctrl set.
1172   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1173   // Has a use in the vector set
1174   bool has_use_in_set( Node* n, VectorSet& vset );
1175   // Has use internal to the vector set (ie. not in a phi at the loop head)
1176   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1177   // clone "n" for uses that are outside of loop
1178   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1179   // clone "n" for special uses that are in the not_peeled region
1180   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1181                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1182   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1183   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1184 #ifdef ASSERT
1185   // Validate the loop partition sets: peel and not_peel
1186   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1187   // Ensure that uses outside of loop are of the right form
1188   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1189                                  uint orig_exit_idx, uint clone_exit_idx);
1190   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1191 #endif
1192 
1193   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1194   int stride_of_possible_iv( Node* iff );
1195   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1196   // Return the (unique) control output node that's in the loop (if it exists.)
1197   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1198   // Insert a signed compare loop exit cloned from an unsigned compare.
1199   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1200   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1201   // Utility to register node "n" with PhaseIdealLoop
1202   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1203   // Utility to create an if-projection
1204   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1205   // Force the iff control output to be the live_proj
1206   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1207   // Insert a region before an if projection
1208   RegionNode* insert_region_before_proj(ProjNode* proj);
1209   // Insert a new if before an if projection
1210   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1211 
1212   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1213   // "Nearly" because all Nodes have been cloned from the original in the loop,
1214   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1215   // through the Phi recursively, and return a Bool.
1216   Node *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1217   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1218 
1219 
1220   // Rework addressing expressions to get the most loop-invariant stuff
1221   // moved out.  We'd like to do all associative operators, but it's especially
1222   // important (common) to do address expressions.
1223   Node *remix_address_expressions( Node *n );
1224 
1225   // Attempt to use a conditional move instead of a phi/branch
1226   Node *conditional_move( Node *n );
1227 
1228   // Reorganize offset computations to lower register pressure.
1229   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1230   // (which are then alive with the post-incremented trip counter
1231   // forcing an extra register move)
1232   void reorg_offsets( IdealLoopTree *loop );
1233 
1234   // Check for aggressive application of 'split-if' optimization,
1235   // using basic block level info.
1236   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1237   Node *split_if_with_blocks_pre ( Node *n );
1238   void  split_if_with_blocks_post( Node *n );
1239   Node *has_local_phi_input( Node *n );
1240   // Mark an IfNode as being dominated by a prior test,
1241   // without actually altering the CFG (and hence IDOM info).
1242   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1243 
1244   // Split Node 'n' through merge point
1245   Node *split_thru_region( Node *n, Node *region );
1246   // Split Node 'n' through merge point if there is enough win.
1247   Node *split_thru_phi( Node *n, Node *region, int policy );
1248   // Found an If getting its condition-code input from a Phi in the
1249   // same block.  Split thru the Region.
1250   void do_split_if( Node *iff );
1251 
1252   // Conversion of fill/copy patterns into intrisic versions
1253   bool do_intrinsify_fill();
1254   bool intrinsify_fill(IdealLoopTree* lpt);
1255   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1256                        Node*& shift, Node*& offset);
1257 
1258 private:
1259   // Return a type based on condition control flow
1260   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1261   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1262  // Helpers for filtered type
1263   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1264 
1265   // Helper functions
1266   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1267   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1268   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1269   bool split_up( Node *n, Node *blk1, Node *blk2 );
1270   void sink_use( Node *use, Node *post_loop );
1271   Node *place_near_use( Node *useblock ) const;
1272   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1273   void try_move_store_after_loop(Node* n);
1274   bool identical_backtoback_ifs(Node *n);
1275   bool can_split_if(Node *n_ctrl);
1276 
1277   bool _created_loop_node;
1278 public:
1279   void set_created_loop_node() { _created_loop_node = true; }
1280   bool created_loop_node()     { return _created_loop_node; }
1281   void register_new_node( Node *n, Node *blk );
1282 
1283 #ifdef ASSERT
1284   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1285 #endif
1286 
1287 #ifndef PRODUCT
1288   void dump( ) const;
1289   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1290   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1291   void verify() const;          // Major slow  :-)
1292   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1293   IdealLoopTree *get_loop_idx(Node* n) const {
1294     // Dead nodes have no loop, so return the top level loop instead
1295     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1296   }
1297   // Print some stats
1298   static void print_statistics();
1299   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1300   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1301 #endif
1302 };
1303 
1304 // This kit may be used for making of a reserved copy of a loop before this loop
1305 //  goes under non-reversible changes.
1306 //
1307 // Function create_reserve() creates a reserved copy (clone) of the loop.
1308 // The reserved copy is created by calling
1309 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1310 // the original and reserved loops are connected in the outer graph.
1311 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1312 //
1313 // By default the reserved copy (clone) of the loop is created as dead code - it is
1314 // dominated in the outer loop by this node chain:
1315 //   intcon(1)->If->IfFalse->reserved_copy.
1316 // The original loop is dominated by the the same node chain but IfTrue projection:
1317 //   intcon(0)->If->IfTrue->original_loop.
1318 //
1319 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1320 // and the dtor, checks _use_new value.
1321 // If _use_new == false, it "switches" control to reserved copy of the loop
1322 // by simple replacing of node intcon(1) with node intcon(0).
1323 //
1324 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1325 //
1326 // void CountedLoopReserveKit_example()
1327 // {
1328 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1329 //    if (DoReserveCopy && !lrk.has_reserved()) {
1330 //      return; //failed to create reserved loop copy
1331 //    }
1332 //    ...
1333 //    //something is wrong, switch to original loop
1334 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1335 //    ...
1336 //    //everything worked ok, return with the newly modified loop
1337 //    lrk.use_new();
1338 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1339 //  }
1340 //
1341 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1342 // the dtor will "switch to the original" loop.
1343 // NOTE. You you modify outside of the original loop this class is no help.
1344 //
1345 class CountedLoopReserveKit {
1346   private:
1347     PhaseIdealLoop* _phase;
1348     IdealLoopTree*  _lpt;
1349     LoopNode*       _lp;
1350     IfNode*         _iff;
1351     LoopNode*       _lp_reserved;
1352     bool            _has_reserved;
1353     bool            _use_new;
1354     const bool      _active; //may be set to false in ctor, then the object is dummy
1355 
1356   public:
1357     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1358     ~CountedLoopReserveKit();
1359     void use_new()                {_use_new = true;}
1360     void set_iff(IfNode* x)       {_iff = x;}
1361     bool has_reserved()     const { return _active && _has_reserved;}
1362   private:
1363     bool create_reserve();
1364 };// class CountedLoopReserveKit
1365 
1366 inline Node* IdealLoopTree::tail() {
1367 // Handle lazy update of _tail field
1368   Node *n = _tail;
1369   //while( !n->in(0) )  // Skip dead CFG nodes
1370     //n = n->in(1);
1371   if (n->in(0) == NULL)
1372     n = _phase->get_ctrl(n);
1373   _tail = n;
1374   return n;
1375 }
1376 
1377 
1378 // Iterate over the loop tree using a preorder, left-to-right traversal.
1379 //
1380 // Example that visits all counted loops from within PhaseIdealLoop
1381 //
1382 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1383 //   IdealLoopTree* lpt = iter.current();
1384 //   if (!lpt->is_counted()) continue;
1385 //   ...
1386 class LoopTreeIterator : public StackObj {
1387 private:
1388   IdealLoopTree* _root;
1389   IdealLoopTree* _curnt;
1390 
1391 public:
1392   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1393 
1394   bool done() { return _curnt == NULL; }       // Finished iterating?
1395 
1396   void next();                                 // Advance to next loop tree
1397 
1398   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1399 };
1400 
1401 #endif // SHARE_VM_OPTO_LOOPNODE_HPP