1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "interpreter/bytecode.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/objArrayOop.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/fieldStreams.hpp"
  43 #include "oops/typeArrayOop.inline.hpp"
  44 #include "oops/verifyOopClosure.hpp"
  45 #include "prims/jvmtiThreadState.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/compilationPolicy.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/frame.inline.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/safepointVerifiers.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/signature.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/thread.hpp"
  56 #include "runtime/threadSMR.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "runtime/vframe_hp.hpp"
  60 #include "utilities/events.hpp"
  61 #include "utilities/preserveException.hpp"
  62 #include "utilities/xmlstream.hpp"
  63 
  64 #if INCLUDE_JVMCI
  65 #include "jvmci/jvmciRuntime.hpp"
  66 #include "jvmci/jvmciJavaClasses.hpp"
  67 #endif
  68 
  69 
  70 bool DeoptimizationMarker::_is_active = false;
  71 
  72 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  73                                          int  caller_adjustment,
  74                                          int  caller_actual_parameters,
  75                                          int  number_of_frames,
  76                                          intptr_t* frame_sizes,
  77                                          address* frame_pcs,
  78                                          BasicType return_type,
  79                                          int exec_mode) {
  80   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  81   _caller_adjustment         = caller_adjustment;
  82   _caller_actual_parameters  = caller_actual_parameters;
  83   _number_of_frames          = number_of_frames;
  84   _frame_sizes               = frame_sizes;
  85   _frame_pcs                 = frame_pcs;
  86   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  87   _return_type               = return_type;
  88   _initial_info              = 0;
  89   // PD (x86 only)
  90   _counter_temp              = 0;
  91   _unpack_kind               = exec_mode;
  92   _sender_sp_temp            = 0;
  93 
  94   _total_frame_sizes         = size_of_frames();
  95   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  96 }
  97 
  98 
  99 Deoptimization::UnrollBlock::~UnrollBlock() {
 100   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 101   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 102   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 103 }
 104 
 105 
 106 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 107   assert(register_number < RegisterMap::reg_count, "checking register number");
 108   return &_register_block[register_number * 2];
 109 }
 110 
 111 
 112 
 113 int Deoptimization::UnrollBlock::size_of_frames() const {
 114   // Acount first for the adjustment of the initial frame
 115   int result = _caller_adjustment;
 116   for (int index = 0; index < number_of_frames(); index++) {
 117     result += frame_sizes()[index];
 118   }
 119   return result;
 120 }
 121 
 122 
 123 void Deoptimization::UnrollBlock::print() {
 124   ttyLocker ttyl;
 125   tty->print_cr("UnrollBlock");
 126   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 127   tty->print(   "  frame_sizes: ");
 128   for (int index = 0; index < number_of_frames(); index++) {
 129     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 130   }
 131   tty->cr();
 132 }
 133 
 134 
 135 // In order to make fetch_unroll_info work properly with escape
 136 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 137 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 138 // of previously eliminated objects occurs in realloc_objects, which is
 139 // called from the method fetch_unroll_info_helper below.
 140 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 141   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 142   // but makes the entry a little slower. There is however a little dance we have to
 143   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 144 
 145   // fetch_unroll_info() is called at the beginning of the deoptimization
 146   // handler. Note this fact before we start generating temporary frames
 147   // that can confuse an asynchronous stack walker. This counter is
 148   // decremented at the end of unpack_frames().
 149   if (TraceDeoptimization) {
 150     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 151   }
 152   thread->inc_in_deopt_handler();
 153 
 154   return fetch_unroll_info_helper(thread, exec_mode);
 155 JRT_END
 156 
 157 
 158 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 159 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 160 
 161   // Note: there is a safepoint safety issue here. No matter whether we enter
 162   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 163   // the vframeArray is created.
 164   //
 165 
 166   // Allocate our special deoptimization ResourceMark
 167   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 168   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 169   thread->set_deopt_mark(dmark);
 170 
 171   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 172   RegisterMap map(thread, true);
 173   RegisterMap dummy_map(thread, false);
 174   // Now get the deoptee with a valid map
 175   frame deoptee = stub_frame.sender(&map);
 176   // Set the deoptee nmethod
 177   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 178   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 179   thread->set_deopt_compiled_method(cm);
 180 
 181   if (VerifyStack) {
 182     thread->validate_frame_layout();
 183   }
 184 
 185   // Create a growable array of VFrames where each VFrame represents an inlined
 186   // Java frame.  This storage is allocated with the usual system arena.
 187   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 188   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 189   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 190   while (!vf->is_top()) {
 191     assert(vf->is_compiled_frame(), "Wrong frame type");
 192     chunk->push(compiledVFrame::cast(vf));
 193     vf = vf->sender();
 194   }
 195   assert(vf->is_compiled_frame(), "Wrong frame type");
 196   chunk->push(compiledVFrame::cast(vf));
 197 
 198   bool realloc_failures = false;
 199 
 200 #if COMPILER2_OR_JVMCI
 201   // Reallocate the non-escaping objects and restore their fields. Then
 202   // relock objects if synchronization on them was eliminated.
 203 #if !INCLUDE_JVMCI
 204   if (DoEscapeAnalysis || EliminateNestedLocks) {
 205     if (EliminateAllocations) {
 206 #endif // INCLUDE_JVMCI
 207       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 208       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 209 
 210       // The flag return_oop() indicates call sites which return oop
 211       // in compiled code. Such sites include java method calls,
 212       // runtime calls (for example, used to allocate new objects/arrays
 213       // on slow code path) and any other calls generated in compiled code.
 214       // It is not guaranteed that we can get such information here only
 215       // by analyzing bytecode in deoptimized frames. This is why this flag
 216       // is set during method compilation (see Compile::Process_OopMap_Node()).
 217       // If the previous frame was popped or if we are dispatching an exception,
 218       // we don't have an oop result.
 219       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 220       Handle return_value;
 221       if (save_oop_result) {
 222         // Reallocation may trigger GC. If deoptimization happened on return from
 223         // call which returns oop we need to save it since it is not in oopmap.
 224         oop result = deoptee.saved_oop_result(&map);
 225         assert(oopDesc::is_oop_or_null(result), "must be oop");
 226         return_value = Handle(thread, result);
 227         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 228         if (TraceDeoptimization) {
 229           ttyLocker ttyl;
 230           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 231         }
 232       }
 233       if (objects != NULL) {
 234         JRT_BLOCK
 235           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 236         JRT_END
 237         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 238         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 239 #ifndef PRODUCT
 240         if (TraceDeoptimization) {
 241           ttyLocker ttyl;
 242           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 243           print_objects(objects, realloc_failures);
 244         }
 245 #endif
 246       }
 247       if (save_oop_result) {
 248         // Restore result.
 249         deoptee.set_saved_oop_result(&map, return_value());
 250       }
 251 #if !INCLUDE_JVMCI
 252     }
 253     if (EliminateLocks) {
 254 #endif // INCLUDE_JVMCI
 255 #ifndef PRODUCT
 256       bool first = true;
 257 #endif
 258       for (int i = 0; i < chunk->length(); i++) {
 259         compiledVFrame* cvf = chunk->at(i);
 260         assert (cvf->scope() != NULL,"expect only compiled java frames");
 261         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 262         if (monitors->is_nonempty()) {
 263           relock_objects(monitors, thread, realloc_failures);
 264 #ifndef PRODUCT
 265           if (PrintDeoptimizationDetails) {
 266             ttyLocker ttyl;
 267             for (int j = 0; j < monitors->length(); j++) {
 268               MonitorInfo* mi = monitors->at(j);
 269               if (mi->eliminated()) {
 270                 if (first) {
 271                   first = false;
 272                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 273                 }
 274                 if (mi->owner_is_scalar_replaced()) {
 275                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 276                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 277                 } else {
 278                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 279                 }
 280               }
 281             }
 282           }
 283 #endif // !PRODUCT
 284         }
 285       }
 286 #if !INCLUDE_JVMCI
 287     }
 288   }
 289 #endif // INCLUDE_JVMCI
 290 #endif // COMPILER2_OR_JVMCI
 291 
 292   ScopeDesc* trap_scope = chunk->at(0)->scope();
 293   Handle exceptionObject;
 294   if (trap_scope->rethrow_exception()) {
 295     if (PrintDeoptimizationDetails) {
 296       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 297     }
 298     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 299     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 300     ScopeValue* topOfStack = expressions->top();
 301     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 302     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 303   }
 304 
 305   // Ensure that no safepoint is taken after pointers have been stored
 306   // in fields of rematerialized objects.  If a safepoint occurs from here on
 307   // out the java state residing in the vframeArray will be missed.
 308   NoSafepointVerifier no_safepoint;
 309 
 310   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 311 #if COMPILER2_OR_JVMCI
 312   if (realloc_failures) {
 313     pop_frames_failed_reallocs(thread, array);
 314   }
 315 #endif
 316 
 317   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 318   thread->set_vframe_array_head(array);
 319 
 320   // Now that the vframeArray has been created if we have any deferred local writes
 321   // added by jvmti then we can free up that structure as the data is now in the
 322   // vframeArray
 323 
 324   if (thread->deferred_locals() != NULL) {
 325     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 326     int i = 0;
 327     do {
 328       // Because of inlining we could have multiple vframes for a single frame
 329       // and several of the vframes could have deferred writes. Find them all.
 330       if (list->at(i)->id() == array->original().id()) {
 331         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 332         list->remove_at(i);
 333         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 334         delete dlv;
 335       } else {
 336         i++;
 337       }
 338     } while ( i < list->length() );
 339     if (list->length() == 0) {
 340       thread->set_deferred_locals(NULL);
 341       // free the list and elements back to C heap.
 342       delete list;
 343     }
 344 
 345   }
 346 
 347   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 348   CodeBlob* cb = stub_frame.cb();
 349   // Verify we have the right vframeArray
 350   assert(cb->frame_size() >= 0, "Unexpected frame size");
 351   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 352 
 353   // If the deopt call site is a MethodHandle invoke call site we have
 354   // to adjust the unpack_sp.
 355   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 356   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 357     unpack_sp = deoptee.unextended_sp();
 358 
 359 #ifdef ASSERT
 360   assert(cb->is_deoptimization_stub() ||
 361          cb->is_uncommon_trap_stub() ||
 362          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 363          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 364          "unexpected code blob: %s", cb->name());
 365 #endif
 366 
 367   // This is a guarantee instead of an assert because if vframe doesn't match
 368   // we will unpack the wrong deoptimized frame and wind up in strange places
 369   // where it will be very difficult to figure out what went wrong. Better
 370   // to die an early death here than some very obscure death later when the
 371   // trail is cold.
 372   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 373   // in that it will fail to detect a problem when there is one. This needs
 374   // more work in tiger timeframe.
 375   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 376 
 377   int number_of_frames = array->frames();
 378 
 379   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 380   // virtual activation, which is the reverse of the elements in the vframes array.
 381   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 382   // +1 because we always have an interpreter return address for the final slot.
 383   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 384   int popframe_extra_args = 0;
 385   // Create an interpreter return address for the stub to use as its return
 386   // address so the skeletal frames are perfectly walkable
 387   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 388 
 389   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 390   // activation be put back on the expression stack of the caller for reexecution
 391   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 392     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 393   }
 394 
 395   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 396   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 397   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 398   //
 399   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 400   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 401 
 402   // It's possible that the number of parameters at the call site is
 403   // different than number of arguments in the callee when method
 404   // handles are used.  If the caller is interpreted get the real
 405   // value so that the proper amount of space can be added to it's
 406   // frame.
 407   bool caller_was_method_handle = false;
 408   if (deopt_sender.is_interpreted_frame()) {
 409     methodHandle method = deopt_sender.interpreter_frame_method();
 410     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 411     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 412       // Method handle invokes may involve fairly arbitrary chains of
 413       // calls so it's impossible to know how much actual space the
 414       // caller has for locals.
 415       caller_was_method_handle = true;
 416     }
 417   }
 418 
 419   //
 420   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 421   // frame_sizes/frame_pcs[1] next oldest frame (int)
 422   // frame_sizes/frame_pcs[n] youngest frame (int)
 423   //
 424   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 425   // owns the space for the return address to it's caller).  Confusing ain't it.
 426   //
 427   // The vframe array can address vframes with indices running from
 428   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 429   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 430   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 431   // so things look a little strange in this loop.
 432   //
 433   int callee_parameters = 0;
 434   int callee_locals = 0;
 435   for (int index = 0; index < array->frames(); index++ ) {
 436     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 437     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 438     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 439     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 440                                                                                                     callee_locals,
 441                                                                                                     index == 0,
 442                                                                                                     popframe_extra_args);
 443     // This pc doesn't have to be perfect just good enough to identify the frame
 444     // as interpreted so the skeleton frame will be walkable
 445     // The correct pc will be set when the skeleton frame is completely filled out
 446     // The final pc we store in the loop is wrong and will be overwritten below
 447     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 448 
 449     callee_parameters = array->element(index)->method()->size_of_parameters();
 450     callee_locals = array->element(index)->method()->max_locals();
 451     popframe_extra_args = 0;
 452   }
 453 
 454   // Compute whether the root vframe returns a float or double value.
 455   BasicType return_type;
 456   {
 457     methodHandle method(thread, array->element(0)->method());
 458     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 459     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 460   }
 461 
 462   // Compute information for handling adapters and adjusting the frame size of the caller.
 463   int caller_adjustment = 0;
 464 
 465   // Compute the amount the oldest interpreter frame will have to adjust
 466   // its caller's stack by. If the caller is a compiled frame then
 467   // we pretend that the callee has no parameters so that the
 468   // extension counts for the full amount of locals and not just
 469   // locals-parms. This is because without a c2i adapter the parm
 470   // area as created by the compiled frame will not be usable by
 471   // the interpreter. (Depending on the calling convention there
 472   // may not even be enough space).
 473 
 474   // QQQ I'd rather see this pushed down into last_frame_adjust
 475   // and have it take the sender (aka caller).
 476 
 477   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 478     caller_adjustment = last_frame_adjust(0, callee_locals);
 479   } else if (callee_locals > callee_parameters) {
 480     // The caller frame may need extending to accommodate
 481     // non-parameter locals of the first unpacked interpreted frame.
 482     // Compute that adjustment.
 483     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 484   }
 485 
 486   // If the sender is deoptimized the we must retrieve the address of the handler
 487   // since the frame will "magically" show the original pc before the deopt
 488   // and we'd undo the deopt.
 489 
 490   frame_pcs[0] = deopt_sender.raw_pc();
 491 
 492   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 493 
 494 #if INCLUDE_JVMCI
 495   if (exceptionObject() != NULL) {
 496     thread->set_exception_oop(exceptionObject());
 497     exec_mode = Unpack_exception;
 498   }
 499 #endif
 500 
 501   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 502     assert(thread->has_pending_exception(), "should have thrown OOME");
 503     thread->set_exception_oop(thread->pending_exception());
 504     thread->clear_pending_exception();
 505     exec_mode = Unpack_exception;
 506   }
 507 
 508 #if INCLUDE_JVMCI
 509   if (thread->frames_to_pop_failed_realloc() > 0) {
 510     thread->set_pending_monitorenter(false);
 511   }
 512 #endif
 513 
 514   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 515                                       caller_adjustment * BytesPerWord,
 516                                       caller_was_method_handle ? 0 : callee_parameters,
 517                                       number_of_frames,
 518                                       frame_sizes,
 519                                       frame_pcs,
 520                                       return_type,
 521                                       exec_mode);
 522   // On some platforms, we need a way to pass some platform dependent
 523   // information to the unpacking code so the skeletal frames come out
 524   // correct (initial fp value, unextended sp, ...)
 525   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 526 
 527   if (array->frames() > 1) {
 528     if (VerifyStack && TraceDeoptimization) {
 529       ttyLocker ttyl;
 530       tty->print_cr("Deoptimizing method containing inlining");
 531     }
 532   }
 533 
 534   array->set_unroll_block(info);
 535   return info;
 536 }
 537 
 538 // Called to cleanup deoptimization data structures in normal case
 539 // after unpacking to stack and when stack overflow error occurs
 540 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 541                                         vframeArray *array) {
 542 
 543   // Get array if coming from exception
 544   if (array == NULL) {
 545     array = thread->vframe_array_head();
 546   }
 547   thread->set_vframe_array_head(NULL);
 548 
 549   // Free the previous UnrollBlock
 550   vframeArray* old_array = thread->vframe_array_last();
 551   thread->set_vframe_array_last(array);
 552 
 553   if (old_array != NULL) {
 554     UnrollBlock* old_info = old_array->unroll_block();
 555     old_array->set_unroll_block(NULL);
 556     delete old_info;
 557     delete old_array;
 558   }
 559 
 560   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 561   // inside the vframeArray (StackValueCollections)
 562 
 563   delete thread->deopt_mark();
 564   thread->set_deopt_mark(NULL);
 565   thread->set_deopt_compiled_method(NULL);
 566 
 567 
 568   if (JvmtiExport::can_pop_frame()) {
 569 #ifndef CC_INTERP
 570     // Regardless of whether we entered this routine with the pending
 571     // popframe condition bit set, we should always clear it now
 572     thread->clear_popframe_condition();
 573 #else
 574     // C++ interpreter will clear has_pending_popframe when it enters
 575     // with method_resume. For deopt_resume2 we clear it now.
 576     if (thread->popframe_forcing_deopt_reexecution())
 577         thread->clear_popframe_condition();
 578 #endif /* CC_INTERP */
 579   }
 580 
 581   // unpack_frames() is called at the end of the deoptimization handler
 582   // and (in C2) at the end of the uncommon trap handler. Note this fact
 583   // so that an asynchronous stack walker can work again. This counter is
 584   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 585   // the beginning of uncommon_trap().
 586   thread->dec_in_deopt_handler();
 587 }
 588 
 589 // Moved from cpu directories because none of the cpus has callee save values.
 590 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 591 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 592 
 593   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 594   // the days we had adapter frames. When we deoptimize a situation where a
 595   // compiled caller calls a compiled caller will have registers it expects
 596   // to survive the call to the callee. If we deoptimize the callee the only
 597   // way we can restore these registers is to have the oldest interpreter
 598   // frame that we create restore these values. That is what this routine
 599   // will accomplish.
 600 
 601   // At the moment we have modified c2 to not have any callee save registers
 602   // so this problem does not exist and this routine is just a place holder.
 603 
 604   assert(f->is_interpreted_frame(), "must be interpreted");
 605 }
 606 
 607 // Return BasicType of value being returned
 608 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 609 
 610   // We are already active in the special DeoptResourceMark any ResourceObj's we
 611   // allocate will be freed at the end of the routine.
 612 
 613   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 614   // but makes the entry a little slower. There is however a little dance we have to
 615   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 616   ResetNoHandleMark rnhm; // No-op in release/product versions
 617   HandleMark hm;
 618 
 619   frame stub_frame = thread->last_frame();
 620 
 621   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 622   // must point to the vframeArray for the unpack frame.
 623   vframeArray* array = thread->vframe_array_head();
 624 
 625 #ifndef PRODUCT
 626   if (TraceDeoptimization) {
 627     ttyLocker ttyl;
 628     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 629                   p2i(thread), p2i(array), exec_mode);
 630   }
 631 #endif
 632   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 633               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 634 
 635   UnrollBlock* info = array->unroll_block();
 636 
 637   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 638   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 639 
 640   BasicType bt = info->return_type();
 641 
 642   // If we have an exception pending, claim that the return type is an oop
 643   // so the deopt_blob does not overwrite the exception_oop.
 644 
 645   if (exec_mode == Unpack_exception)
 646     bt = T_OBJECT;
 647 
 648   // Cleanup thread deopt data
 649   cleanup_deopt_info(thread, array);
 650 
 651 #ifndef PRODUCT
 652   if (VerifyStack) {
 653     ResourceMark res_mark;
 654     // Clear pending exception to not break verification code (restored afterwards)
 655     PRESERVE_EXCEPTION_MARK;
 656 
 657     thread->validate_frame_layout();
 658 
 659     // Verify that the just-unpacked frames match the interpreter's
 660     // notions of expression stack and locals
 661     vframeArray* cur_array = thread->vframe_array_last();
 662     RegisterMap rm(thread, false);
 663     rm.set_include_argument_oops(false);
 664     bool is_top_frame = true;
 665     int callee_size_of_parameters = 0;
 666     int callee_max_locals = 0;
 667     for (int i = 0; i < cur_array->frames(); i++) {
 668       vframeArrayElement* el = cur_array->element(i);
 669       frame* iframe = el->iframe();
 670       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 671 
 672       // Get the oop map for this bci
 673       InterpreterOopMap mask;
 674       int cur_invoke_parameter_size = 0;
 675       bool try_next_mask = false;
 676       int next_mask_expression_stack_size = -1;
 677       int top_frame_expression_stack_adjustment = 0;
 678       methodHandle mh(thread, iframe->interpreter_frame_method());
 679       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 680       BytecodeStream str(mh);
 681       str.set_start(iframe->interpreter_frame_bci());
 682       int max_bci = mh->code_size();
 683       // Get to the next bytecode if possible
 684       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 685       // Check to see if we can grab the number of outgoing arguments
 686       // at an uncommon trap for an invoke (where the compiler
 687       // generates debug info before the invoke has executed)
 688       Bytecodes::Code cur_code = str.next();
 689       if (Bytecodes::is_invoke(cur_code)) {
 690         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 691         cur_invoke_parameter_size = invoke.size_of_parameters();
 692         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 693           callee_size_of_parameters++;
 694         }
 695       }
 696       if (str.bci() < max_bci) {
 697         Bytecodes::Code next_code = str.next();
 698         if (next_code >= 0) {
 699           // The interpreter oop map generator reports results before
 700           // the current bytecode has executed except in the case of
 701           // calls. It seems to be hard to tell whether the compiler
 702           // has emitted debug information matching the "state before"
 703           // a given bytecode or the state after, so we try both
 704           if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) {
 705             // Get expression stack size for the next bytecode
 706             if (Bytecodes::is_invoke(next_code)) {
 707               Bytecode_invoke invoke(mh, str.bci());
 708               next_mask_expression_stack_size = invoke.size_of_parameters();
 709             } else {
 710               InterpreterOopMap next_mask;
 711               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 712               next_mask_expression_stack_size = next_mask.expression_stack_size();
 713             }
 714             // Need to subtract off the size of the result type of
 715             // the bytecode because this is not described in the
 716             // debug info but returned to the interpreter in the TOS
 717             // caching register
 718             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 719             if (bytecode_result_type != T_ILLEGAL) {
 720               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 721             }
 722             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 723             try_next_mask = true;
 724           }
 725         }
 726       }
 727 
 728       // Verify stack depth and oops in frame
 729       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 730       if (!(
 731             /* SPARC */
 732             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 733             /* x86 */
 734             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 735             (try_next_mask &&
 736              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 737                                                                     top_frame_expression_stack_adjustment))) ||
 738             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 739             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 740              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 741             )) {
 742         ttyLocker ttyl;
 743 
 744         // Print out some information that will help us debug the problem
 745         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 746         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 747         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 748                       iframe->interpreter_frame_expression_stack_size());
 749         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 750         tty->print_cr("  try_next_mask = %d", try_next_mask);
 751         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 752         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 753         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 754         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 755         tty->print_cr("  exec_mode = %d", exec_mode);
 756         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 757         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 758         tty->print_cr("  Interpreted frames:");
 759         for (int k = 0; k < cur_array->frames(); k++) {
 760           vframeArrayElement* el = cur_array->element(k);
 761           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 762         }
 763         cur_array->print_on_2(tty);
 764         guarantee(false, "wrong number of expression stack elements during deopt");
 765       }
 766       VerifyOopClosure verify;
 767       iframe->oops_interpreted_do(&verify, &rm, false);
 768       callee_size_of_parameters = mh->size_of_parameters();
 769       callee_max_locals = mh->max_locals();
 770       is_top_frame = false;
 771     }
 772   }
 773 #endif /* !PRODUCT */
 774 
 775 
 776   return bt;
 777 JRT_END
 778 
 779 
 780 int Deoptimization::deoptimize_dependents() {
 781   Threads::deoptimized_wrt_marked_nmethods();
 782   return 0;
 783 }
 784 
 785 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 786   = Deoptimization::Action_reinterpret;
 787 
 788 #if COMPILER2_OR_JVMCI
 789 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 790   Handle pending_exception(THREAD, thread->pending_exception());
 791   const char* exception_file = thread->exception_file();
 792   int exception_line = thread->exception_line();
 793   thread->clear_pending_exception();
 794 
 795   bool failures = false;
 796 
 797   for (int i = 0; i < objects->length(); i++) {
 798     assert(objects->at(i)->is_object(), "invalid debug information");
 799     ObjectValue* sv = (ObjectValue*) objects->at(i);
 800 
 801     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 802     oop obj = NULL;
 803 
 804     if (k->is_instance_klass()) {
 805       InstanceKlass* ik = InstanceKlass::cast(k);
 806       obj = ik->allocate_instance(THREAD);
 807     } else if (k->is_typeArray_klass()) {
 808       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 809       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 810       int len = sv->field_size() / type2size[ak->element_type()];
 811       obj = ak->allocate(len, THREAD);
 812     } else if (k->is_objArray_klass()) {
 813       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 814       obj = ak->allocate(sv->field_size(), THREAD);
 815     }
 816 
 817     if (obj == NULL) {
 818       failures = true;
 819     }
 820 
 821     assert(sv->value().is_null(), "redundant reallocation");
 822     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 823     CLEAR_PENDING_EXCEPTION;
 824     sv->set_value(obj);
 825   }
 826 
 827   if (failures) {
 828     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 829   } else if (pending_exception.not_null()) {
 830     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 831   }
 832 
 833   return failures;
 834 }
 835 
 836 // restore elements of an eliminated type array
 837 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 838   int index = 0;
 839   intptr_t val;
 840 
 841   for (int i = 0; i < sv->field_size(); i++) {
 842     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 843     switch(type) {
 844     case T_LONG: case T_DOUBLE: {
 845       assert(value->type() == T_INT, "Agreement.");
 846       StackValue* low =
 847         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 848 #ifdef _LP64
 849       jlong res = (jlong)low->get_int();
 850 #else
 851 #ifdef SPARC
 852       // For SPARC we have to swap high and low words.
 853       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 854 #else
 855       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 856 #endif //SPARC
 857 #endif
 858       obj->long_at_put(index, res);
 859       break;
 860     }
 861 
 862     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 863     case T_INT: case T_FLOAT: { // 4 bytes.
 864       assert(value->type() == T_INT, "Agreement.");
 865       bool big_value = false;
 866       if (i + 1 < sv->field_size() && type == T_INT) {
 867         if (sv->field_at(i)->is_location()) {
 868           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 869           if (type == Location::dbl || type == Location::lng) {
 870             big_value = true;
 871           }
 872         } else if (sv->field_at(i)->is_constant_int()) {
 873           ScopeValue* next_scope_field = sv->field_at(i + 1);
 874           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 875             big_value = true;
 876           }
 877         }
 878       }
 879 
 880       if (big_value) {
 881         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 882   #ifdef _LP64
 883         jlong res = (jlong)low->get_int();
 884   #else
 885   #ifdef SPARC
 886         // For SPARC we have to swap high and low words.
 887         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 888   #else
 889         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 890   #endif //SPARC
 891   #endif
 892         obj->int_at_put(index, (jint)*((jint*)&res));
 893         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 894       } else {
 895         val = value->get_int();
 896         obj->int_at_put(index, (jint)*((jint*)&val));
 897       }
 898       break;
 899     }
 900 
 901     case T_SHORT:
 902       assert(value->type() == T_INT, "Agreement.");
 903       val = value->get_int();
 904       obj->short_at_put(index, (jshort)*((jint*)&val));
 905       break;
 906 
 907     case T_CHAR:
 908       assert(value->type() == T_INT, "Agreement.");
 909       val = value->get_int();
 910       obj->char_at_put(index, (jchar)*((jint*)&val));
 911       break;
 912 
 913     case T_BYTE:
 914       assert(value->type() == T_INT, "Agreement.");
 915       val = value->get_int();
 916       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 917       break;
 918 
 919     case T_BOOLEAN:
 920       assert(value->type() == T_INT, "Agreement.");
 921       val = value->get_int();
 922       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 923       break;
 924 
 925       default:
 926         ShouldNotReachHere();
 927     }
 928     index++;
 929   }
 930 }
 931 
 932 
 933 // restore fields of an eliminated object array
 934 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 935   for (int i = 0; i < sv->field_size(); i++) {
 936     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 937     assert(value->type() == T_OBJECT, "object element expected");
 938     obj->obj_at_put(i, value->get_obj()());
 939   }
 940 }
 941 
 942 class ReassignedField {
 943 public:
 944   int _offset;
 945   BasicType _type;
 946 public:
 947   ReassignedField() {
 948     _offset = 0;
 949     _type = T_ILLEGAL;
 950   }
 951 };
 952 
 953 int compare(ReassignedField* left, ReassignedField* right) {
 954   return left->_offset - right->_offset;
 955 }
 956 
 957 // Restore fields of an eliminated instance object using the same field order
 958 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 959 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 960   if (klass->superklass() != NULL) {
 961     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 962   }
 963 
 964   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 965   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 966     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 967       ReassignedField field;
 968       field._offset = fs.offset();
 969       field._type = FieldType::basic_type(fs.signature());
 970       fields->append(field);
 971     }
 972   }
 973   fields->sort(compare);
 974   for (int i = 0; i < fields->length(); i++) {
 975     intptr_t val;
 976     ScopeValue* scope_field = sv->field_at(svIndex);
 977     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 978     int offset = fields->at(i)._offset;
 979     BasicType type = fields->at(i)._type;
 980     switch (type) {
 981       case T_OBJECT: case T_ARRAY:
 982         assert(value->type() == T_OBJECT, "Agreement.");
 983         obj->obj_field_put(offset, value->get_obj()());
 984         break;
 985 
 986       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 987       case T_INT: case T_FLOAT: { // 4 bytes.
 988         assert(value->type() == T_INT, "Agreement.");
 989         bool big_value = false;
 990         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 991           if (scope_field->is_location()) {
 992             Location::Type type = ((LocationValue*) scope_field)->location().type();
 993             if (type == Location::dbl || type == Location::lng) {
 994               big_value = true;
 995             }
 996           }
 997           if (scope_field->is_constant_int()) {
 998             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
 999             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1000               big_value = true;
1001             }
1002           }
1003         }
1004 
1005         if (big_value) {
1006           i++;
1007           assert(i < fields->length(), "second T_INT field needed");
1008           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1009         } else {
1010           val = value->get_int();
1011           obj->int_field_put(offset, (jint)*((jint*)&val));
1012           break;
1013         }
1014       }
1015         /* no break */
1016 
1017       case T_LONG: case T_DOUBLE: {
1018         assert(value->type() == T_INT, "Agreement.");
1019         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1020 #ifdef _LP64
1021         jlong res = (jlong)low->get_int();
1022 #else
1023 #ifdef SPARC
1024         // For SPARC we have to swap high and low words.
1025         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1026 #else
1027         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1028 #endif //SPARC
1029 #endif
1030         obj->long_field_put(offset, res);
1031         break;
1032       }
1033 
1034       case T_SHORT:
1035         assert(value->type() == T_INT, "Agreement.");
1036         val = value->get_int();
1037         obj->short_field_put(offset, (jshort)*((jint*)&val));
1038         break;
1039 
1040       case T_CHAR:
1041         assert(value->type() == T_INT, "Agreement.");
1042         val = value->get_int();
1043         obj->char_field_put(offset, (jchar)*((jint*)&val));
1044         break;
1045 
1046       case T_BYTE:
1047         assert(value->type() == T_INT, "Agreement.");
1048         val = value->get_int();
1049         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1050         break;
1051 
1052       case T_BOOLEAN:
1053         assert(value->type() == T_INT, "Agreement.");
1054         val = value->get_int();
1055         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1056         break;
1057 
1058       default:
1059         ShouldNotReachHere();
1060     }
1061     svIndex++;
1062   }
1063   return svIndex;
1064 }
1065 
1066 // restore fields of all eliminated objects and arrays
1067 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1068   for (int i = 0; i < objects->length(); i++) {
1069     ObjectValue* sv = (ObjectValue*) objects->at(i);
1070     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1071     Handle obj = sv->value();
1072     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1073     if (PrintDeoptimizationDetails) {
1074       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1075     }
1076     if (obj.is_null()) {
1077       continue;
1078     }
1079 
1080     if (k->is_instance_klass()) {
1081       InstanceKlass* ik = InstanceKlass::cast(k);
1082       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1083     } else if (k->is_typeArray_klass()) {
1084       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1085       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1086     } else if (k->is_objArray_klass()) {
1087       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1088     }
1089   }
1090 }
1091 
1092 
1093 // relock objects for which synchronization was eliminated
1094 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1095   for (int i = 0; i < monitors->length(); i++) {
1096     MonitorInfo* mon_info = monitors->at(i);
1097     if (mon_info->eliminated()) {
1098       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1099       if (!mon_info->owner_is_scalar_replaced()) {
1100         Handle obj(thread, mon_info->owner());
1101         markOop mark = obj->mark();
1102         if (UseBiasedLocking && mark->has_bias_pattern()) {
1103           // New allocated objects may have the mark set to anonymously biased.
1104           // Also the deoptimized method may called methods with synchronization
1105           // where the thread-local object is bias locked to the current thread.
1106           assert(mark->is_biased_anonymously() ||
1107                  mark->biased_locker() == thread, "should be locked to current thread");
1108           // Reset mark word to unbiased prototype.
1109           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1110           obj->set_mark(unbiased_prototype);
1111         }
1112         BasicLock* lock = mon_info->lock();
1113         ObjectSynchronizer::slow_enter(obj, lock, thread);
1114         assert(mon_info->owner()->is_locked(), "object must be locked now");
1115       }
1116     }
1117   }
1118 }
1119 
1120 
1121 #ifndef PRODUCT
1122 // print information about reallocated objects
1123 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1124   fieldDescriptor fd;
1125 
1126   for (int i = 0; i < objects->length(); i++) {
1127     ObjectValue* sv = (ObjectValue*) objects->at(i);
1128     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1129     Handle obj = sv->value();
1130 
1131     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1132     k->print_value();
1133     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1134     if (obj.is_null()) {
1135       tty->print(" allocation failed");
1136     } else {
1137       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1138     }
1139     tty->cr();
1140 
1141     if (Verbose && !obj.is_null()) {
1142       k->oop_print_on(obj(), tty);
1143     }
1144   }
1145 }
1146 #endif
1147 #endif // COMPILER2_OR_JVMCI
1148 
1149 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1150   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1151 
1152 #ifndef PRODUCT
1153   if (PrintDeoptimizationDetails) {
1154     ttyLocker ttyl;
1155     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1156     fr.print_on(tty);
1157     tty->print_cr("     Virtual frames (innermost first):");
1158     for (int index = 0; index < chunk->length(); index++) {
1159       compiledVFrame* vf = chunk->at(index);
1160       tty->print("       %2d - ", index);
1161       vf->print_value();
1162       int bci = chunk->at(index)->raw_bci();
1163       const char* code_name;
1164       if (bci == SynchronizationEntryBCI) {
1165         code_name = "sync entry";
1166       } else {
1167         Bytecodes::Code code = vf->method()->code_at(bci);
1168         code_name = Bytecodes::name(code);
1169       }
1170       tty->print(" - %s", code_name);
1171       tty->print_cr(" @ bci %d ", bci);
1172       if (Verbose) {
1173         vf->print();
1174         tty->cr();
1175       }
1176     }
1177   }
1178 #endif
1179 
1180   // Register map for next frame (used for stack crawl).  We capture
1181   // the state of the deopt'ing frame's caller.  Thus if we need to
1182   // stuff a C2I adapter we can properly fill in the callee-save
1183   // register locations.
1184   frame caller = fr.sender(reg_map);
1185   int frame_size = caller.sp() - fr.sp();
1186 
1187   frame sender = caller;
1188 
1189   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1190   // the vframeArray containing the unpacking information is allocated in the C heap.
1191   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1192   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1193 
1194   // Compare the vframeArray to the collected vframes
1195   assert(array->structural_compare(thread, chunk), "just checking");
1196 
1197 #ifndef PRODUCT
1198   if (PrintDeoptimizationDetails) {
1199     ttyLocker ttyl;
1200     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1201   }
1202 #endif // PRODUCT
1203 
1204   return array;
1205 }
1206 
1207 #if COMPILER2_OR_JVMCI
1208 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1209   // Reallocation of some scalar replaced objects failed. Record
1210   // that we need to pop all the interpreter frames for the
1211   // deoptimized compiled frame.
1212   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1213   thread->set_frames_to_pop_failed_realloc(array->frames());
1214   // Unlock all monitors here otherwise the interpreter will see a
1215   // mix of locked and unlocked monitors (because of failed
1216   // reallocations of synchronized objects) and be confused.
1217   for (int i = 0; i < array->frames(); i++) {
1218     MonitorChunk* monitors = array->element(i)->monitors();
1219     if (monitors != NULL) {
1220       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1221         BasicObjectLock* src = monitors->at(j);
1222         if (src->obj() != NULL) {
1223           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1224         }
1225       }
1226       array->element(i)->free_monitors(thread);
1227 #ifdef ASSERT
1228       array->element(i)->set_removed_monitors();
1229 #endif
1230     }
1231   }
1232 }
1233 #endif
1234 
1235 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1236   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1237   Thread* thread = Thread::current();
1238   for (int i = 0; i < monitors->length(); i++) {
1239     MonitorInfo* mon_info = monitors->at(i);
1240     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1241       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1242     }
1243   }
1244 }
1245 
1246 
1247 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1248   if (!UseBiasedLocking) {
1249     return;
1250   }
1251 
1252   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1253 
1254   // Unfortunately we don't have a RegisterMap available in most of
1255   // the places we want to call this routine so we need to walk the
1256   // stack again to update the register map.
1257   if (map == NULL || !map->update_map()) {
1258     StackFrameStream sfs(thread, true);
1259     bool found = false;
1260     while (!found && !sfs.is_done()) {
1261       frame* cur = sfs.current();
1262       sfs.next();
1263       found = cur->id() == fr.id();
1264     }
1265     assert(found, "frame to be deoptimized not found on target thread's stack");
1266     map = sfs.register_map();
1267   }
1268 
1269   vframe* vf = vframe::new_vframe(&fr, map, thread);
1270   compiledVFrame* cvf = compiledVFrame::cast(vf);
1271   // Revoke monitors' biases in all scopes
1272   while (!cvf->is_top()) {
1273     collect_monitors(cvf, objects_to_revoke);
1274     cvf = compiledVFrame::cast(cvf->sender());
1275   }
1276   collect_monitors(cvf, objects_to_revoke);
1277 
1278   if (SafepointSynchronize::is_at_safepoint()) {
1279     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1280   } else {
1281     BiasedLocking::revoke(objects_to_revoke);
1282   }
1283 }
1284 
1285 
1286 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1287   if (!UseBiasedLocking) {
1288     return;
1289   }
1290 
1291   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1292   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1293   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1294     if (jt->has_last_Java_frame()) {
1295       StackFrameStream sfs(jt, true);
1296       while (!sfs.is_done()) {
1297         frame* cur = sfs.current();
1298         if (cb->contains(cur->pc())) {
1299           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1300           compiledVFrame* cvf = compiledVFrame::cast(vf);
1301           // Revoke monitors' biases in all scopes
1302           while (!cvf->is_top()) {
1303             collect_monitors(cvf, objects_to_revoke);
1304             cvf = compiledVFrame::cast(cvf->sender());
1305           }
1306           collect_monitors(cvf, objects_to_revoke);
1307         }
1308         sfs.next();
1309       }
1310     }
1311   }
1312   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1313 }
1314 
1315 
1316 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1317   assert(fr.can_be_deoptimized(), "checking frame type");
1318 
1319   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1320 
1321   if (LogCompilation && xtty != NULL) {
1322     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1323     assert(cm != NULL, "only compiled methods can deopt");
1324 
1325     ttyLocker ttyl;
1326     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1327     cm->log_identity(xtty);
1328     xtty->end_head();
1329     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1330       xtty->begin_elem("jvms bci='%d'", sd->bci());
1331       xtty->method(sd->method());
1332       xtty->end_elem();
1333       if (sd->is_top())  break;
1334     }
1335     xtty->tail("deoptimized");
1336   }
1337 
1338   // Patch the compiled method so that when execution returns to it we will
1339   // deopt the execution state and return to the interpreter.
1340   fr.deoptimize(thread);
1341 }
1342 
1343 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1344   deoptimize(thread, fr, map, Reason_constraint);
1345 }
1346 
1347 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1348   // Deoptimize only if the frame comes from compile code.
1349   // Do not deoptimize the frame which is already patched
1350   // during the execution of the loops below.
1351   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1352     return;
1353   }
1354   ResourceMark rm;
1355   DeoptimizationMarker dm;
1356   if (UseBiasedLocking) {
1357     revoke_biases_of_monitors(thread, fr, map);
1358   }
1359   deoptimize_single_frame(thread, fr, reason);
1360 
1361 }
1362 
1363 #if INCLUDE_JVMCI
1364 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1365   // there is no exception handler for this pc => deoptimize
1366   cm->make_not_entrant();
1367 
1368   // Use Deoptimization::deoptimize for all of its side-effects:
1369   // revoking biases of monitors, gathering traps statistics, logging...
1370   // it also patches the return pc but we do not care about that
1371   // since we return a continuation to the deopt_blob below.
1372   JavaThread* thread = JavaThread::current();
1373   RegisterMap reg_map(thread, UseBiasedLocking);
1374   frame runtime_frame = thread->last_frame();
1375   frame caller_frame = runtime_frame.sender(&reg_map);
1376   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1377   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1378 
1379   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1380   if (trap_mdo != NULL) {
1381     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1382   }
1383 
1384   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1385 }
1386 #endif
1387 
1388 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1389   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1390          "can only deoptimize other thread at a safepoint");
1391   // Compute frame and register map based on thread and sp.
1392   RegisterMap reg_map(thread, UseBiasedLocking);
1393   frame fr = thread->last_frame();
1394   while (fr.id() != id) {
1395     fr = fr.sender(&reg_map);
1396   }
1397   deoptimize(thread, fr, &reg_map, reason);
1398 }
1399 
1400 
1401 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1402   if (thread == Thread::current()) {
1403     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1404   } else {
1405     VM_DeoptimizeFrame deopt(thread, id, reason);
1406     VMThread::execute(&deopt);
1407   }
1408 }
1409 
1410 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1411   deoptimize_frame(thread, id, Reason_constraint);
1412 }
1413 
1414 // JVMTI PopFrame support
1415 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1416 {
1417   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1418 }
1419 JRT_END
1420 
1421 MethodData*
1422 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1423                                 bool create_if_missing) {
1424   Thread* THREAD = thread;
1425   MethodData* mdo = m()->method_data();
1426   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1427     // Build an MDO.  Ignore errors like OutOfMemory;
1428     // that simply means we won't have an MDO to update.
1429     Method::build_interpreter_method_data(m, THREAD);
1430     if (HAS_PENDING_EXCEPTION) {
1431       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1432       CLEAR_PENDING_EXCEPTION;
1433     }
1434     mdo = m()->method_data();
1435   }
1436   return mdo;
1437 }
1438 
1439 #if COMPILER2_OR_JVMCI
1440 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1441   // in case of an unresolved klass entry, load the class.
1442   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1443     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1444     return;
1445   }
1446 
1447   if (!constant_pool->tag_at(index).is_symbol()) return;
1448 
1449   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1450   Symbol*  symbol  = constant_pool->symbol_at(index);
1451 
1452   // class name?
1453   if (symbol->byte_at(0) != '(') {
1454     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1455     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1456     return;
1457   }
1458 
1459   // then it must be a signature!
1460   ResourceMark rm(THREAD);
1461   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1462     if (ss.is_object()) {
1463       Symbol* class_name = ss.as_symbol(CHECK);
1464       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1465       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1466     }
1467   }
1468 }
1469 
1470 
1471 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1472   EXCEPTION_MARK;
1473   load_class_by_index(constant_pool, index, THREAD);
1474   if (HAS_PENDING_EXCEPTION) {
1475     // Exception happened during classloading. We ignore the exception here, since it
1476     // is going to be rethrown since the current activation is going to be deoptimized and
1477     // the interpreter will re-execute the bytecode.
1478     CLEAR_PENDING_EXCEPTION;
1479     // Class loading called java code which may have caused a stack
1480     // overflow. If the exception was thrown right before the return
1481     // to the runtime the stack is no longer guarded. Reguard the
1482     // stack otherwise if we return to the uncommon trap blob and the
1483     // stack bang causes a stack overflow we crash.
1484     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1485     JavaThread* thread = (JavaThread*)THREAD;
1486     bool guard_pages_enabled = thread->stack_guards_enabled();
1487     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1488     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1489   }
1490 }
1491 
1492 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1493   HandleMark hm;
1494 
1495   // uncommon_trap() is called at the beginning of the uncommon trap
1496   // handler. Note this fact before we start generating temporary frames
1497   // that can confuse an asynchronous stack walker. This counter is
1498   // decremented at the end of unpack_frames().
1499   thread->inc_in_deopt_handler();
1500 
1501   // We need to update the map if we have biased locking.
1502 #if INCLUDE_JVMCI
1503   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1504   RegisterMap reg_map(thread, true);
1505 #else
1506   RegisterMap reg_map(thread, UseBiasedLocking);
1507 #endif
1508   frame stub_frame = thread->last_frame();
1509   frame fr = stub_frame.sender(&reg_map);
1510   // Make sure the calling nmethod is not getting deoptimized and removed
1511   // before we are done with it.
1512   nmethodLocker nl(fr.pc());
1513 
1514   // Log a message
1515   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1516               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1517 
1518   {
1519     ResourceMark rm;
1520 
1521     // Revoke biases of any monitors in the frame to ensure we can migrate them
1522     revoke_biases_of_monitors(thread, fr, &reg_map);
1523 
1524     DeoptReason reason = trap_request_reason(trap_request);
1525     DeoptAction action = trap_request_action(trap_request);
1526 #if INCLUDE_JVMCI
1527     int debug_id = trap_request_debug_id(trap_request);
1528 #endif
1529     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1530 
1531     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1532     compiledVFrame* cvf = compiledVFrame::cast(vf);
1533 
1534     CompiledMethod* nm = cvf->code();
1535 
1536     ScopeDesc*      trap_scope  = cvf->scope();
1537 
1538     if (TraceDeoptimization) {
1539       ttyLocker ttyl;
1540       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1541 #if INCLUDE_JVMCI
1542           , debug_id
1543 #endif
1544           );
1545     }
1546 
1547     methodHandle    trap_method = trap_scope->method();
1548     int             trap_bci    = trap_scope->bci();
1549 #if INCLUDE_JVMCI
1550     oop speculation = thread->pending_failed_speculation();
1551     if (nm->is_compiled_by_jvmci()) {
1552       if (speculation != NULL) {
1553         oop speculation_log = nm->as_nmethod()->speculation_log();
1554         if (speculation_log != NULL) {
1555           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1556             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1557               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1558             }
1559           }
1560           if (TraceDeoptimization) {
1561             tty->print_cr("Saving speculation to speculation log");
1562           }
1563           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1564         } else {
1565           if (TraceDeoptimization) {
1566             tty->print_cr("Speculation present but no speculation log");
1567           }
1568         }
1569         thread->set_pending_failed_speculation(NULL);
1570       } else {
1571         if (TraceDeoptimization) {
1572           tty->print_cr("No speculation");
1573         }
1574       }
1575     } else {
1576       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1577     }
1578 
1579     if (trap_bci == SynchronizationEntryBCI) {
1580       trap_bci = 0;
1581       thread->set_pending_monitorenter(true);
1582     }
1583 
1584     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1585       thread->set_pending_transfer_to_interpreter(true);
1586     }
1587 #endif
1588 
1589     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1590     // Record this event in the histogram.
1591     gather_statistics(reason, action, trap_bc);
1592 
1593     // Ensure that we can record deopt. history:
1594     // Need MDO to record RTM code generation state.
1595     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1596 
1597     methodHandle profiled_method;
1598 #if INCLUDE_JVMCI
1599     if (nm->is_compiled_by_jvmci()) {
1600       profiled_method = nm->method();
1601     } else {
1602       profiled_method = trap_method;
1603     }
1604 #else
1605     profiled_method = trap_method;
1606 #endif
1607 
1608     MethodData* trap_mdo =
1609       get_method_data(thread, profiled_method, create_if_missing);
1610 
1611     // Log a message
1612     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1613                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1614                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1615 
1616     // Print a bunch of diagnostics, if requested.
1617     if (TraceDeoptimization || LogCompilation) {
1618       ResourceMark rm;
1619       ttyLocker ttyl;
1620       char buf[100];
1621       if (xtty != NULL) {
1622         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1623                          os::current_thread_id(),
1624                          format_trap_request(buf, sizeof(buf), trap_request));
1625         nm->log_identity(xtty);
1626       }
1627       Symbol* class_name = NULL;
1628       bool unresolved = false;
1629       if (unloaded_class_index >= 0) {
1630         constantPoolHandle constants (THREAD, trap_method->constants());
1631         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1632           class_name = constants->klass_name_at(unloaded_class_index);
1633           unresolved = true;
1634           if (xtty != NULL)
1635             xtty->print(" unresolved='1'");
1636         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1637           class_name = constants->symbol_at(unloaded_class_index);
1638         }
1639         if (xtty != NULL)
1640           xtty->name(class_name);
1641       }
1642       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1643         // Dump the relevant MDO state.
1644         // This is the deopt count for the current reason, any previous
1645         // reasons or recompiles seen at this point.
1646         int dcnt = trap_mdo->trap_count(reason);
1647         if (dcnt != 0)
1648           xtty->print(" count='%d'", dcnt);
1649         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1650         int dos = (pdata == NULL)? 0: pdata->trap_state();
1651         if (dos != 0) {
1652           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1653           if (trap_state_is_recompiled(dos)) {
1654             int recnt2 = trap_mdo->overflow_recompile_count();
1655             if (recnt2 != 0)
1656               xtty->print(" recompiles2='%d'", recnt2);
1657           }
1658         }
1659       }
1660       if (xtty != NULL) {
1661         xtty->stamp();
1662         xtty->end_head();
1663       }
1664       if (TraceDeoptimization) {  // make noise on the tty
1665         tty->print("Uncommon trap occurred in");
1666         nm->method()->print_short_name(tty);
1667         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1668 #if INCLUDE_JVMCI
1669         if (nm->is_nmethod()) {
1670           char* installed_code_name = nm->as_nmethod()->jvmci_installed_code_name(buf, sizeof(buf));
1671           if (installed_code_name != NULL) {
1672             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1673           }
1674         }
1675 #endif
1676         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1677                    p2i(fr.pc()),
1678                    os::current_thread_id(),
1679                    trap_reason_name(reason),
1680                    trap_action_name(action),
1681                    unloaded_class_index
1682 #if INCLUDE_JVMCI
1683                    , debug_id
1684 #endif
1685                    );
1686         if (class_name != NULL) {
1687           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1688           class_name->print_symbol_on(tty);
1689         }
1690         tty->cr();
1691       }
1692       if (xtty != NULL) {
1693         // Log the precise location of the trap.
1694         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1695           xtty->begin_elem("jvms bci='%d'", sd->bci());
1696           xtty->method(sd->method());
1697           xtty->end_elem();
1698           if (sd->is_top())  break;
1699         }
1700         xtty->tail("uncommon_trap");
1701       }
1702     }
1703     // (End diagnostic printout.)
1704 
1705     // Load class if necessary
1706     if (unloaded_class_index >= 0) {
1707       constantPoolHandle constants(THREAD, trap_method->constants());
1708       load_class_by_index(constants, unloaded_class_index);
1709     }
1710 
1711     // Flush the nmethod if necessary and desirable.
1712     //
1713     // We need to avoid situations where we are re-flushing the nmethod
1714     // because of a hot deoptimization site.  Repeated flushes at the same
1715     // point need to be detected by the compiler and avoided.  If the compiler
1716     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1717     // module must take measures to avoid an infinite cycle of recompilation
1718     // and deoptimization.  There are several such measures:
1719     //
1720     //   1. If a recompilation is ordered a second time at some site X
1721     //   and for the same reason R, the action is adjusted to 'reinterpret',
1722     //   to give the interpreter time to exercise the method more thoroughly.
1723     //   If this happens, the method's overflow_recompile_count is incremented.
1724     //
1725     //   2. If the compiler fails to reduce the deoptimization rate, then
1726     //   the method's overflow_recompile_count will begin to exceed the set
1727     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1728     //   is adjusted to 'make_not_compilable', and the method is abandoned
1729     //   to the interpreter.  This is a performance hit for hot methods,
1730     //   but is better than a disastrous infinite cycle of recompilations.
1731     //   (Actually, only the method containing the site X is abandoned.)
1732     //
1733     //   3. In parallel with the previous measures, if the total number of
1734     //   recompilations of a method exceeds the much larger set limit
1735     //   PerMethodRecompilationCutoff, the method is abandoned.
1736     //   This should only happen if the method is very large and has
1737     //   many "lukewarm" deoptimizations.  The code which enforces this
1738     //   limit is elsewhere (class nmethod, class Method).
1739     //
1740     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1741     // to recompile at each bytecode independently of the per-BCI cutoff.
1742     //
1743     // The decision to update code is up to the compiler, and is encoded
1744     // in the Action_xxx code.  If the compiler requests Action_none
1745     // no trap state is changed, no compiled code is changed, and the
1746     // computation suffers along in the interpreter.
1747     //
1748     // The other action codes specify various tactics for decompilation
1749     // and recompilation.  Action_maybe_recompile is the loosest, and
1750     // allows the compiled code to stay around until enough traps are seen,
1751     // and until the compiler gets around to recompiling the trapping method.
1752     //
1753     // The other actions cause immediate removal of the present code.
1754 
1755     // Traps caused by injected profile shouldn't pollute trap counts.
1756     bool injected_profile_trap = trap_method->has_injected_profile() &&
1757                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1758 
1759     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1760     bool make_not_entrant = false;
1761     bool make_not_compilable = false;
1762     bool reprofile = false;
1763     switch (action) {
1764     case Action_none:
1765       // Keep the old code.
1766       update_trap_state = false;
1767       break;
1768     case Action_maybe_recompile:
1769       // Do not need to invalidate the present code, but we can
1770       // initiate another
1771       // Start compiler without (necessarily) invalidating the nmethod.
1772       // The system will tolerate the old code, but new code should be
1773       // generated when possible.
1774       break;
1775     case Action_reinterpret:
1776       // Go back into the interpreter for a while, and then consider
1777       // recompiling form scratch.
1778       make_not_entrant = true;
1779       // Reset invocation counter for outer most method.
1780       // This will allow the interpreter to exercise the bytecodes
1781       // for a while before recompiling.
1782       // By contrast, Action_make_not_entrant is immediate.
1783       //
1784       // Note that the compiler will track null_check, null_assert,
1785       // range_check, and class_check events and log them as if they
1786       // had been traps taken from compiled code.  This will update
1787       // the MDO trap history so that the next compilation will
1788       // properly detect hot trap sites.
1789       reprofile = true;
1790       break;
1791     case Action_make_not_entrant:
1792       // Request immediate recompilation, and get rid of the old code.
1793       // Make them not entrant, so next time they are called they get
1794       // recompiled.  Unloaded classes are loaded now so recompile before next
1795       // time they are called.  Same for uninitialized.  The interpreter will
1796       // link the missing class, if any.
1797       make_not_entrant = true;
1798       break;
1799     case Action_make_not_compilable:
1800       // Give up on compiling this method at all.
1801       make_not_entrant = true;
1802       make_not_compilable = true;
1803       break;
1804     default:
1805       ShouldNotReachHere();
1806     }
1807 
1808     // Setting +ProfileTraps fixes the following, on all platforms:
1809     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1810     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1811     // recompile relies on a MethodData* to record heroic opt failures.
1812 
1813     // Whether the interpreter is producing MDO data or not, we also need
1814     // to use the MDO to detect hot deoptimization points and control
1815     // aggressive optimization.
1816     bool inc_recompile_count = false;
1817     ProfileData* pdata = NULL;
1818     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1819       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1820       uint this_trap_count = 0;
1821       bool maybe_prior_trap = false;
1822       bool maybe_prior_recompile = false;
1823       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1824 #if INCLUDE_JVMCI
1825                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1826 #endif
1827                                    nm->method(),
1828                                    //outputs:
1829                                    this_trap_count,
1830                                    maybe_prior_trap,
1831                                    maybe_prior_recompile);
1832       // Because the interpreter also counts null, div0, range, and class
1833       // checks, these traps from compiled code are double-counted.
1834       // This is harmless; it just means that the PerXTrapLimit values
1835       // are in effect a little smaller than they look.
1836 
1837       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1838       if (per_bc_reason != Reason_none) {
1839         // Now take action based on the partially known per-BCI history.
1840         if (maybe_prior_trap
1841             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1842           // If there are too many traps at this BCI, force a recompile.
1843           // This will allow the compiler to see the limit overflow, and
1844           // take corrective action, if possible.  The compiler generally
1845           // does not use the exact PerBytecodeTrapLimit value, but instead
1846           // changes its tactics if it sees any traps at all.  This provides
1847           // a little hysteresis, delaying a recompile until a trap happens
1848           // several times.
1849           //
1850           // Actually, since there is only one bit of counter per BCI,
1851           // the possible per-BCI counts are {0,1,(per-method count)}.
1852           // This produces accurate results if in fact there is only
1853           // one hot trap site, but begins to get fuzzy if there are
1854           // many sites.  For example, if there are ten sites each
1855           // trapping two or more times, they each get the blame for
1856           // all of their traps.
1857           make_not_entrant = true;
1858         }
1859 
1860         // Detect repeated recompilation at the same BCI, and enforce a limit.
1861         if (make_not_entrant && maybe_prior_recompile) {
1862           // More than one recompile at this point.
1863           inc_recompile_count = maybe_prior_trap;
1864         }
1865       } else {
1866         // For reasons which are not recorded per-bytecode, we simply
1867         // force recompiles unconditionally.
1868         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1869         make_not_entrant = true;
1870       }
1871 
1872       // Go back to the compiler if there are too many traps in this method.
1873       if (this_trap_count >= per_method_trap_limit(reason)) {
1874         // If there are too many traps in this method, force a recompile.
1875         // This will allow the compiler to see the limit overflow, and
1876         // take corrective action, if possible.
1877         // (This condition is an unlikely backstop only, because the
1878         // PerBytecodeTrapLimit is more likely to take effect first,
1879         // if it is applicable.)
1880         make_not_entrant = true;
1881       }
1882 
1883       // Here's more hysteresis:  If there has been a recompile at
1884       // this trap point already, run the method in the interpreter
1885       // for a while to exercise it more thoroughly.
1886       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1887         reprofile = true;
1888       }
1889     }
1890 
1891     // Take requested actions on the method:
1892 
1893     // Recompile
1894     if (make_not_entrant) {
1895       if (!nm->make_not_entrant()) {
1896         return; // the call did not change nmethod's state
1897       }
1898 
1899       if (pdata != NULL) {
1900         // Record the recompilation event, if any.
1901         int tstate0 = pdata->trap_state();
1902         int tstate1 = trap_state_set_recompiled(tstate0, true);
1903         if (tstate1 != tstate0)
1904           pdata->set_trap_state(tstate1);
1905       }
1906 
1907 #if INCLUDE_RTM_OPT
1908       // Restart collecting RTM locking abort statistic if the method
1909       // is recompiled for a reason other than RTM state change.
1910       // Assume that in new recompiled code the statistic could be different,
1911       // for example, due to different inlining.
1912       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1913           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1914         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1915       }
1916 #endif
1917       // For code aging we count traps separately here, using make_not_entrant()
1918       // as a guard against simultaneous deopts in multiple threads.
1919       if (reason == Reason_tenured && trap_mdo != NULL) {
1920         trap_mdo->inc_tenure_traps();
1921       }
1922     }
1923 
1924     if (inc_recompile_count) {
1925       trap_mdo->inc_overflow_recompile_count();
1926       if ((uint)trap_mdo->overflow_recompile_count() >
1927           (uint)PerBytecodeRecompilationCutoff) {
1928         // Give up on the method containing the bad BCI.
1929         if (trap_method() == nm->method()) {
1930           make_not_compilable = true;
1931         } else {
1932           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1933           // But give grace to the enclosing nm->method().
1934         }
1935       }
1936     }
1937 
1938     // Reprofile
1939     if (reprofile) {
1940       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1941     }
1942 
1943     // Give up compiling
1944     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1945       assert(make_not_entrant, "consistent");
1946       nm->method()->set_not_compilable(CompLevel_full_optimization);
1947     }
1948 
1949   } // Free marked resources
1950 
1951 }
1952 JRT_END
1953 
1954 ProfileData*
1955 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1956                                          int trap_bci,
1957                                          Deoptimization::DeoptReason reason,
1958                                          bool update_total_trap_count,
1959 #if INCLUDE_JVMCI
1960                                          bool is_osr,
1961 #endif
1962                                          Method* compiled_method,
1963                                          //outputs:
1964                                          uint& ret_this_trap_count,
1965                                          bool& ret_maybe_prior_trap,
1966                                          bool& ret_maybe_prior_recompile) {
1967   bool maybe_prior_trap = false;
1968   bool maybe_prior_recompile = false;
1969   uint this_trap_count = 0;
1970   if (update_total_trap_count) {
1971     uint idx = reason;
1972 #if INCLUDE_JVMCI
1973     if (is_osr) {
1974       idx += Reason_LIMIT;
1975     }
1976 #endif
1977     uint prior_trap_count = trap_mdo->trap_count(idx);
1978     this_trap_count  = trap_mdo->inc_trap_count(idx);
1979 
1980     // If the runtime cannot find a place to store trap history,
1981     // it is estimated based on the general condition of the method.
1982     // If the method has ever been recompiled, or has ever incurred
1983     // a trap with the present reason , then this BCI is assumed
1984     // (pessimistically) to be the culprit.
1985     maybe_prior_trap      = (prior_trap_count != 0);
1986     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1987   }
1988   ProfileData* pdata = NULL;
1989 
1990 
1991   // For reasons which are recorded per bytecode, we check per-BCI data.
1992   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1993   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1994   if (per_bc_reason != Reason_none) {
1995     // Find the profile data for this BCI.  If there isn't one,
1996     // try to allocate one from the MDO's set of spares.
1997     // This will let us detect a repeated trap at this point.
1998     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1999 
2000     if (pdata != NULL) {
2001       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2002         if (LogCompilation && xtty != NULL) {
2003           ttyLocker ttyl;
2004           // no more room for speculative traps in this MDO
2005           xtty->elem("speculative_traps_oom");
2006         }
2007       }
2008       // Query the trap state of this profile datum.
2009       int tstate0 = pdata->trap_state();
2010       if (!trap_state_has_reason(tstate0, per_bc_reason))
2011         maybe_prior_trap = false;
2012       if (!trap_state_is_recompiled(tstate0))
2013         maybe_prior_recompile = false;
2014 
2015       // Update the trap state of this profile datum.
2016       int tstate1 = tstate0;
2017       // Record the reason.
2018       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2019       // Store the updated state on the MDO, for next time.
2020       if (tstate1 != tstate0)
2021         pdata->set_trap_state(tstate1);
2022     } else {
2023       if (LogCompilation && xtty != NULL) {
2024         ttyLocker ttyl;
2025         // Missing MDP?  Leave a small complaint in the log.
2026         xtty->elem("missing_mdp bci='%d'", trap_bci);
2027       }
2028     }
2029   }
2030 
2031   // Return results:
2032   ret_this_trap_count = this_trap_count;
2033   ret_maybe_prior_trap = maybe_prior_trap;
2034   ret_maybe_prior_recompile = maybe_prior_recompile;
2035   return pdata;
2036 }
2037 
2038 void
2039 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2040   ResourceMark rm;
2041   // Ignored outputs:
2042   uint ignore_this_trap_count;
2043   bool ignore_maybe_prior_trap;
2044   bool ignore_maybe_prior_recompile;
2045   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2046   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2047   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2048   query_update_method_data(trap_mdo, trap_bci,
2049                            (DeoptReason)reason,
2050                            update_total_counts,
2051 #if INCLUDE_JVMCI
2052                            false,
2053 #endif
2054                            NULL,
2055                            ignore_this_trap_count,
2056                            ignore_maybe_prior_trap,
2057                            ignore_maybe_prior_recompile);
2058 }
2059 
2060 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2061   if (TraceDeoptimization) {
2062     tty->print("Uncommon trap ");
2063   }
2064   // Still in Java no safepoints
2065   {
2066     // This enters VM and may safepoint
2067     uncommon_trap_inner(thread, trap_request);
2068   }
2069   return fetch_unroll_info_helper(thread, exec_mode);
2070 }
2071 
2072 // Local derived constants.
2073 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2074 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2075 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2076 
2077 //---------------------------trap_state_reason---------------------------------
2078 Deoptimization::DeoptReason
2079 Deoptimization::trap_state_reason(int trap_state) {
2080   // This assert provides the link between the width of DataLayout::trap_bits
2081   // and the encoding of "recorded" reasons.  It ensures there are enough
2082   // bits to store all needed reasons in the per-BCI MDO profile.
2083   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2084   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2085   trap_state -= recompile_bit;
2086   if (trap_state == DS_REASON_MASK) {
2087     return Reason_many;
2088   } else {
2089     assert((int)Reason_none == 0, "state=0 => Reason_none");
2090     return (DeoptReason)trap_state;
2091   }
2092 }
2093 //-------------------------trap_state_has_reason-------------------------------
2094 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2095   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2096   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2097   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2098   trap_state -= recompile_bit;
2099   if (trap_state == DS_REASON_MASK) {
2100     return -1;  // true, unspecifically (bottom of state lattice)
2101   } else if (trap_state == reason) {
2102     return 1;   // true, definitely
2103   } else if (trap_state == 0) {
2104     return 0;   // false, definitely (top of state lattice)
2105   } else {
2106     return 0;   // false, definitely
2107   }
2108 }
2109 //-------------------------trap_state_add_reason-------------------------------
2110 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2111   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2112   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2113   trap_state -= recompile_bit;
2114   if (trap_state == DS_REASON_MASK) {
2115     return trap_state + recompile_bit;     // already at state lattice bottom
2116   } else if (trap_state == reason) {
2117     return trap_state + recompile_bit;     // the condition is already true
2118   } else if (trap_state == 0) {
2119     return reason + recompile_bit;          // no condition has yet been true
2120   } else {
2121     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2122   }
2123 }
2124 //-----------------------trap_state_is_recompiled------------------------------
2125 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2126   return (trap_state & DS_RECOMPILE_BIT) != 0;
2127 }
2128 //-----------------------trap_state_set_recompiled-----------------------------
2129 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2130   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2131   else    return trap_state & ~DS_RECOMPILE_BIT;
2132 }
2133 //---------------------------format_trap_state---------------------------------
2134 // This is used for debugging and diagnostics, including LogFile output.
2135 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2136                                               int trap_state) {
2137   assert(buflen > 0, "sanity");
2138   DeoptReason reason      = trap_state_reason(trap_state);
2139   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2140   // Re-encode the state from its decoded components.
2141   int decoded_state = 0;
2142   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2143     decoded_state = trap_state_add_reason(decoded_state, reason);
2144   if (recomp_flag)
2145     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2146   // If the state re-encodes properly, format it symbolically.
2147   // Because this routine is used for debugging and diagnostics,
2148   // be robust even if the state is a strange value.
2149   size_t len;
2150   if (decoded_state != trap_state) {
2151     // Random buggy state that doesn't decode??
2152     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2153   } else {
2154     len = jio_snprintf(buf, buflen, "%s%s",
2155                        trap_reason_name(reason),
2156                        recomp_flag ? " recompiled" : "");
2157   }
2158   return buf;
2159 }
2160 
2161 
2162 //--------------------------------statics--------------------------------------
2163 const char* Deoptimization::_trap_reason_name[] = {
2164   // Note:  Keep this in sync. with enum DeoptReason.
2165   "none",
2166   "null_check",
2167   "null_assert" JVMCI_ONLY("_or_unreached0"),
2168   "range_check",
2169   "class_check",
2170   "array_check",
2171   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2172   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2173   "profile_predicate",
2174   "unloaded",
2175   "uninitialized",
2176   "unreached",
2177   "unhandled",
2178   "constraint",
2179   "div0_check",
2180   "age",
2181   "predicate",
2182   "loop_limit_check",
2183   "speculate_class_check",
2184   "speculate_null_check",
2185   "speculate_null_assert",
2186   "rtm_state_change",
2187   "unstable_if",
2188   "unstable_fused_if",
2189 #if INCLUDE_JVMCI
2190   "aliasing",
2191   "transfer_to_interpreter",
2192   "not_compiled_exception_handler",
2193   "unresolved",
2194   "jsr_mismatch",
2195 #endif
2196   "tenured"
2197 };
2198 const char* Deoptimization::_trap_action_name[] = {
2199   // Note:  Keep this in sync. with enum DeoptAction.
2200   "none",
2201   "maybe_recompile",
2202   "reinterpret",
2203   "make_not_entrant",
2204   "make_not_compilable"
2205 };
2206 
2207 const char* Deoptimization::trap_reason_name(int reason) {
2208   // Check that every reason has a name
2209   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2210 
2211   if (reason == Reason_many)  return "many";
2212   if ((uint)reason < Reason_LIMIT)
2213     return _trap_reason_name[reason];
2214   static char buf[20];
2215   sprintf(buf, "reason%d", reason);
2216   return buf;
2217 }
2218 const char* Deoptimization::trap_action_name(int action) {
2219   // Check that every action has a name
2220   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2221 
2222   if ((uint)action < Action_LIMIT)
2223     return _trap_action_name[action];
2224   static char buf[20];
2225   sprintf(buf, "action%d", action);
2226   return buf;
2227 }
2228 
2229 // This is used for debugging and diagnostics, including LogFile output.
2230 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2231                                                 int trap_request) {
2232   jint unloaded_class_index = trap_request_index(trap_request);
2233   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2234   const char* action = trap_action_name(trap_request_action(trap_request));
2235 #if INCLUDE_JVMCI
2236   int debug_id = trap_request_debug_id(trap_request);
2237 #endif
2238   size_t len;
2239   if (unloaded_class_index < 0) {
2240     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2241                        reason, action
2242 #if INCLUDE_JVMCI
2243                        ,debug_id
2244 #endif
2245                        );
2246   } else {
2247     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2248                        reason, action, unloaded_class_index
2249 #if INCLUDE_JVMCI
2250                        ,debug_id
2251 #endif
2252                        );
2253   }
2254   return buf;
2255 }
2256 
2257 juint Deoptimization::_deoptimization_hist
2258         [Deoptimization::Reason_LIMIT]
2259     [1 + Deoptimization::Action_LIMIT]
2260         [Deoptimization::BC_CASE_LIMIT]
2261   = {0};
2262 
2263 enum {
2264   LSB_BITS = 8,
2265   LSB_MASK = right_n_bits(LSB_BITS)
2266 };
2267 
2268 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2269                                        Bytecodes::Code bc) {
2270   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2271   assert(action >= 0 && action < Action_LIMIT, "oob");
2272   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2273   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2274   juint* cases = _deoptimization_hist[reason][1+action];
2275   juint* bc_counter_addr = NULL;
2276   juint  bc_counter      = 0;
2277   // Look for an unused counter, or an exact match to this BC.
2278   if (bc != Bytecodes::_illegal) {
2279     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2280       juint* counter_addr = &cases[bc_case];
2281       juint  counter = *counter_addr;
2282       if ((counter == 0 && bc_counter_addr == NULL)
2283           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2284         // this counter is either free or is already devoted to this BC
2285         bc_counter_addr = counter_addr;
2286         bc_counter = counter | bc;
2287       }
2288     }
2289   }
2290   if (bc_counter_addr == NULL) {
2291     // Overflow, or no given bytecode.
2292     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2293     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2294   }
2295   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2296 }
2297 
2298 jint Deoptimization::total_deoptimization_count() {
2299   return _deoptimization_hist[Reason_none][0][0];
2300 }
2301 
2302 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2303   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2304   return _deoptimization_hist[reason][0][0];
2305 }
2306 
2307 void Deoptimization::print_statistics() {
2308   juint total = total_deoptimization_count();
2309   juint account = total;
2310   if (total != 0) {
2311     ttyLocker ttyl;
2312     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2313     tty->print_cr("Deoptimization traps recorded:");
2314     #define PRINT_STAT_LINE(name, r) \
2315       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2316     PRINT_STAT_LINE("total", total);
2317     // For each non-zero entry in the histogram, print the reason,
2318     // the action, and (if specifically known) the type of bytecode.
2319     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2320       for (int action = 0; action < Action_LIMIT; action++) {
2321         juint* cases = _deoptimization_hist[reason][1+action];
2322         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2323           juint counter = cases[bc_case];
2324           if (counter != 0) {
2325             char name[1*K];
2326             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2327             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2328               bc = Bytecodes::_illegal;
2329             sprintf(name, "%s/%s/%s",
2330                     trap_reason_name(reason),
2331                     trap_action_name(action),
2332                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2333             juint r = counter >> LSB_BITS;
2334             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2335             account -= r;
2336           }
2337         }
2338       }
2339     }
2340     if (account != 0) {
2341       PRINT_STAT_LINE("unaccounted", account);
2342     }
2343     #undef PRINT_STAT_LINE
2344     if (xtty != NULL)  xtty->tail("statistics");
2345   }
2346 }
2347 #else // COMPILER2_OR_JVMCI
2348 
2349 
2350 // Stubs for C1 only system.
2351 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2352   return false;
2353 }
2354 
2355 const char* Deoptimization::trap_reason_name(int reason) {
2356   return "unknown";
2357 }
2358 
2359 void Deoptimization::print_statistics() {
2360   // no output
2361 }
2362 
2363 void
2364 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2365   // no udpate
2366 }
2367 
2368 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2369   return 0;
2370 }
2371 
2372 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2373                                        Bytecodes::Code bc) {
2374   // no update
2375 }
2376 
2377 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2378                                               int trap_state) {
2379   jio_snprintf(buf, buflen, "#%d", trap_state);
2380   return buf;
2381 }
2382 
2383 #endif // COMPILER2_OR_JVMCI