1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "oops/valueArrayKlass.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/subnode.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/threadCritical.hpp"
  72 #include "runtime/vframe.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vframe_hp.hpp"
  75 #include "utilities/copy.hpp"
  76 #include "utilities/preserveException.hpp"
  77 
  78 
  79 // For debugging purposes:
  80 //  To force FullGCALot inside a runtime function, add the following two lines
  81 //
  82 //  Universe::release_fullgc_alot_dummy();
  83 //  MarkSweep::invoke(0, "Debugging");
  84 //
  85 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  86 
  87 
  88 
  89 
  90 // Compiled code entry points
  91 address OptoRuntime::_new_instance_Java                           = NULL;
  92 address OptoRuntime::_new_array_Java                              = NULL;
  93 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  94 address OptoRuntime::_multianewarray2_Java                        = NULL;
  95 address OptoRuntime::_multianewarray3_Java                        = NULL;
  96 address OptoRuntime::_multianewarray4_Java                        = NULL;
  97 address OptoRuntime::_multianewarray5_Java                        = NULL;
  98 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  99 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 100 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 101 address OptoRuntime::_monitor_notify_Java                         = NULL;
 102 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 103 address OptoRuntime::_rethrow_Java                                = NULL;
 104 
 105 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 106 address OptoRuntime::_register_finalizer_Java                     = NULL;
 107 
 108 ExceptionBlob* OptoRuntime::_exception_blob;
 109 
 110 // This should be called in an assertion at the start of OptoRuntime routines
 111 // which are entered from compiled code (all of them)
 112 #ifdef ASSERT
 113 static bool check_compiled_frame(JavaThread* thread) {
 114   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 115   RegisterMap map(thread, false);
 116   frame caller = thread->last_frame().sender(&map);
 117   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 118   return true;
 119 }
 120 #endif // ASSERT
 121 
 122 
 123 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 124   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 125   if (var == NULL) { return false; }
 126 
 127 bool OptoRuntime::generate(ciEnv* env) {
 128 
 129   generate_exception_blob();
 130 
 131   // Note: tls: Means fetching the return oop out of the thread-local storage
 132   //
 133   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 134   // -------------------------------------------------------------------------------------------------------------------------------
 135   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 136   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 137   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 138   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 142   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 143   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 144   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 145   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 146   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 147 
 148   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 149   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 150 
 151   return true;
 152 }
 153 
 154 #undef gen
 155 
 156 
 157 // Helper method to do generation of RunTimeStub's
 158 address OptoRuntime::generate_stub( ciEnv* env,
 159                                     TypeFunc_generator gen, address C_function,
 160                                     const char *name, int is_fancy_jump,
 161                                     bool pass_tls,
 162                                     bool save_argument_registers,
 163                                     bool return_pc) {
 164 
 165   // Matching the default directive, we currently have no method to match.
 166   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 167   ResourceMark rm;
 168   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 169   DirectivesStack::release(directive);
 170   return  C.stub_entry_point();
 171 }
 172 
 173 const char* OptoRuntime::stub_name(address entry) {
 174 #ifndef PRODUCT
 175   CodeBlob* cb = CodeCache::find_blob(entry);
 176   RuntimeStub* rs =(RuntimeStub *)cb;
 177   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 178   return rs->name();
 179 #else
 180   // Fast implementation for product mode (maybe it should be inlined too)
 181   return "runtime stub";
 182 #endif
 183 }
 184 
 185 
 186 //=============================================================================
 187 // Opto compiler runtime routines
 188 //=============================================================================
 189 
 190 
 191 //=============================allocation======================================
 192 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 193 // and try allocation again.
 194 
 195 // object allocation
 196 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 197   JRT_BLOCK;
 198 #ifndef PRODUCT
 199   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 200 #endif
 201   assert(check_compiled_frame(thread), "incorrect caller");
 202 
 203   // These checks are cheap to make and support reflective allocation.
 204   int lh = klass->layout_helper();
 205   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 206     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 207     klass->check_valid_for_instantiation(false, THREAD);
 208     if (!HAS_PENDING_EXCEPTION) {
 209       InstanceKlass::cast(klass)->initialize(THREAD);
 210     }
 211   }
 212 
 213   if (!HAS_PENDING_EXCEPTION) {
 214     // Scavenge and allocate an instance.
 215     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 216     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 217     thread->set_vm_result(result);
 218 
 219     // Pass oops back through thread local storage.  Our apparent type to Java
 220     // is that we return an oop, but we can block on exit from this routine and
 221     // a GC can trash the oop in C's return register.  The generated stub will
 222     // fetch the oop from TLS after any possible GC.
 223   }
 224 
 225   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 226   JRT_BLOCK_END;
 227 
 228   // inform GC that we won't do card marks for initializing writes.
 229   SharedRuntime::on_slowpath_allocation_exit(thread);
 230 JRT_END
 231 
 232 
 233 // array allocation
 234 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 235   JRT_BLOCK;
 236 #ifndef PRODUCT
 237   SharedRuntime::_new_array_ctr++;            // new array requires GC
 238 #endif
 239   assert(check_compiled_frame(thread), "incorrect caller");
 240 
 241   // Scavenge and allocate an instance.
 242   oop result;
 243 
 244   if (array_type->is_valueArray_klass()) {
 245     // TODO refactor all these checks, is_typeArray_klass should not be true for a value type array
 246     // TODO use oopFactory::new_array
 247     Klass* elem_type = ValueArrayKlass::cast(array_type)->element_klass();
 248     result = oopFactory::new_valueArray(elem_type, len, THREAD);
 249   } else if (array_type->is_typeArray_klass()) {
 250     // The oopFactory likes to work with the element type.
 251     // (We could bypass the oopFactory, since it doesn't add much value.)
 252     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 253     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 254   } else {
 255     // Although the oopFactory likes to work with the elem_type,
 256     // the compiler prefers the array_type, since it must already have
 257     // that latter value in hand for the fast path.
 258     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 259     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 260     result = oopFactory::new_array(elem_type, len, THREAD);
 261   }
 262 
 263   // Pass oops back through thread local storage.  Our apparent type to Java
 264   // is that we return an oop, but we can block on exit from this routine and
 265   // a GC can trash the oop in C's return register.  The generated stub will
 266   // fetch the oop from TLS after any possible GC.
 267   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 268   thread->set_vm_result(result);
 269   JRT_BLOCK_END;
 270 
 271   // inform GC that we won't do card marks for initializing writes.
 272   SharedRuntime::on_slowpath_allocation_exit(thread);
 273 JRT_END
 274 
 275 // array allocation without zeroing
 276 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 277   JRT_BLOCK;
 278 #ifndef PRODUCT
 279   SharedRuntime::_new_array_ctr++;            // new array requires GC
 280 #endif
 281   assert(check_compiled_frame(thread), "incorrect caller");
 282 
 283   // Scavenge and allocate an instance.
 284   oop result;
 285 
 286   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 287   // The oopFactory likes to work with the element type.
 288   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 289   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 290 
 291   // Pass oops back through thread local storage.  Our apparent type to Java
 292   // is that we return an oop, but we can block on exit from this routine and
 293   // a GC can trash the oop in C's return register.  The generated stub will
 294   // fetch the oop from TLS after any possible GC.
 295   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 296   thread->set_vm_result(result);
 297   JRT_BLOCK_END;
 298 
 299 
 300   // inform GC that we won't do card marks for initializing writes.
 301   SharedRuntime::on_slowpath_allocation_exit(thread);
 302 
 303   oop result = thread->vm_result();
 304   if ((len > 0) && (result != NULL) &&
 305       is_deoptimized_caller_frame(thread)) {
 306     // Zero array here if the caller is deoptimized.
 307     int size = ((typeArrayOop)result)->object_size();
 308     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 309     const size_t hs = arrayOopDesc::header_size(elem_type);
 310     // Align to next 8 bytes to avoid trashing arrays's length.
 311     const size_t aligned_hs = align_object_offset(hs);
 312     HeapWord* obj = (HeapWord*)result;
 313     if (aligned_hs > hs) {
 314       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 315     }
 316     // Optimized zeroing.
 317     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 318   }
 319 
 320 JRT_END
 321 
 322 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 323 
 324 // multianewarray for 2 dimensions
 325 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 326 #ifndef PRODUCT
 327   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 328 #endif
 329   assert(check_compiled_frame(thread), "incorrect caller");
 330   assert(elem_type->is_klass(), "not a class");
 331   jint dims[2];
 332   dims[0] = len1;
 333   dims[1] = len2;
 334   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 335   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 336   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 337   thread->set_vm_result(obj);
 338 JRT_END
 339 
 340 // multianewarray for 3 dimensions
 341 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 342 #ifndef PRODUCT
 343   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 344 #endif
 345   assert(check_compiled_frame(thread), "incorrect caller");
 346   assert(elem_type->is_klass(), "not a class");
 347   jint dims[3];
 348   dims[0] = len1;
 349   dims[1] = len2;
 350   dims[2] = len3;
 351   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 352   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 353   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 354   thread->set_vm_result(obj);
 355 JRT_END
 356 
 357 // multianewarray for 4 dimensions
 358 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 359 #ifndef PRODUCT
 360   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 361 #endif
 362   assert(check_compiled_frame(thread), "incorrect caller");
 363   assert(elem_type->is_klass(), "not a class");
 364   jint dims[4];
 365   dims[0] = len1;
 366   dims[1] = len2;
 367   dims[2] = len3;
 368   dims[3] = len4;
 369   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 370   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 371   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 372   thread->set_vm_result(obj);
 373 JRT_END
 374 
 375 // multianewarray for 5 dimensions
 376 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 377 #ifndef PRODUCT
 378   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 379 #endif
 380   assert(check_compiled_frame(thread), "incorrect caller");
 381   assert(elem_type->is_klass(), "not a class");
 382   jint dims[5];
 383   dims[0] = len1;
 384   dims[1] = len2;
 385   dims[2] = len3;
 386   dims[3] = len4;
 387   dims[4] = len5;
 388   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 389   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 390   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 391   thread->set_vm_result(obj);
 392 JRT_END
 393 
 394 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 395   assert(check_compiled_frame(thread), "incorrect caller");
 396   assert(elem_type->is_klass(), "not a class");
 397   assert(oop(dims)->is_typeArray(), "not an array");
 398 
 399   ResourceMark rm;
 400   jint len = dims->length();
 401   assert(len > 0, "Dimensions array should contain data");
 402   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 403   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 404                                        c_dims, len);
 405 
 406   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 409   thread->set_vm_result(obj);
 410 JRT_END
 411 
 412 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 413 
 414   // Very few notify/notifyAll operations find any threads on the waitset, so
 415   // the dominant fast-path is to simply return.
 416   // Relatedly, it's critical that notify/notifyAll be fast in order to
 417   // reduce lock hold times.
 418   if (!SafepointSynchronize::is_synchronizing()) {
 419     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 420       return;
 421     }
 422   }
 423 
 424   // This is the case the fast-path above isn't provisioned to handle.
 425   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 426   // (The fast-path is just a degenerate variant of the slow-path).
 427   // Perform the dreaded state transition and pass control into the slow-path.
 428   JRT_BLOCK;
 429   Handle h_obj(THREAD, obj);
 430   ObjectSynchronizer::notify(h_obj, CHECK);
 431   JRT_BLOCK_END;
 432 JRT_END
 433 
 434 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 435 
 436   if (!SafepointSynchronize::is_synchronizing() ) {
 437     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 438       return;
 439     }
 440   }
 441 
 442   // This is the case the fast-path above isn't provisioned to handle.
 443   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 444   // (The fast-path is just a degenerate variant of the slow-path).
 445   // Perform the dreaded state transition and pass control into the slow-path.
 446   JRT_BLOCK;
 447   Handle h_obj(THREAD, obj);
 448   ObjectSynchronizer::notifyall(h_obj, CHECK);
 449   JRT_BLOCK_END;
 450 JRT_END
 451 
 452 const TypeFunc *OptoRuntime::new_instance_Type() {
 453   // create input type (domain)
 454   const Type **fields = TypeTuple::fields(1);
 455   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 456   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 457 
 458   // create result type (range)
 459   fields = TypeTuple::fields(1);
 460   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 461 
 462   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 463 
 464   return TypeFunc::make(domain, range);
 465 }
 466 
 467 
 468 const TypeFunc *OptoRuntime::athrow_Type() {
 469   // create input type (domain)
 470   const Type **fields = TypeTuple::fields(1);
 471   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 472   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 473 
 474   // create result type (range)
 475   fields = TypeTuple::fields(0);
 476 
 477   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 478 
 479   return TypeFunc::make(domain, range);
 480 }
 481 
 482 
 483 const TypeFunc *OptoRuntime::new_array_Type() {
 484   // create input type (domain)
 485   const Type **fields = TypeTuple::fields(2);
 486   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 487   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 489 
 490   // create result type (range)
 491   fields = TypeTuple::fields(1);
 492   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 493 
 494   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 495 
 496   return TypeFunc::make(domain, range);
 497 }
 498 
 499 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 500   // create input type (domain)
 501   const int nargs = ndim + 1;
 502   const Type **fields = TypeTuple::fields(nargs);
 503   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 504   for( int i = 1; i < nargs; i++ )
 505     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 506   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 507 
 508   // create result type (range)
 509   fields = TypeTuple::fields(1);
 510   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 511   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 512 
 513   return TypeFunc::make(domain, range);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 517   return multianewarray_Type(2);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 521   return multianewarray_Type(3);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 525   return multianewarray_Type(4);
 526 }
 527 
 528 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 529   return multianewarray_Type(5);
 530 }
 531 
 532 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 533   // create input type (domain)
 534   const Type **fields = TypeTuple::fields(2);
 535   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 536   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 537   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 538 
 539   // create result type (range)
 540   fields = TypeTuple::fields(1);
 541   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 542   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 543 
 544   return TypeFunc::make(domain, range);
 545 }
 546 
 547 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 548   // create input type (domain)
 549   const Type **fields = TypeTuple::fields(1);
 550   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 551   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 552 
 553   // create result type (range)
 554   fields = TypeTuple::fields(0);
 555   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 556 
 557   return TypeFunc::make(domain, range);
 558 }
 559 
 560 //-----------------------------------------------------------------------------
 561 // Monitor Handling
 562 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 563   // create input type (domain)
 564   const Type **fields = TypeTuple::fields(2);
 565   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 566   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 567   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 568 
 569   // create result type (range)
 570   fields = TypeTuple::fields(0);
 571 
 572   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 573 
 574   return TypeFunc::make(domain, range);
 575 }
 576 
 577 
 578 //-----------------------------------------------------------------------------
 579 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 580   // create input type (domain)
 581   const Type **fields = TypeTuple::fields(3);
 582   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 583   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 584   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 585   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 586 
 587   // create result type (range)
 588   fields = TypeTuple::fields(0);
 589 
 590   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 591 
 592   return TypeFunc::make(domain, range);
 593 }
 594 
 595 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 596   // create input type (domain)
 597   const Type **fields = TypeTuple::fields(1);
 598   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 599   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 600 
 601   // create result type (range)
 602   fields = TypeTuple::fields(0);
 603   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 604   return TypeFunc::make(domain, range);
 605 }
 606 
 607 const TypeFunc* OptoRuntime::flush_windows_Type() {
 608   // create input type (domain)
 609   const Type** fields = TypeTuple::fields(1);
 610   fields[TypeFunc::Parms+0] = NULL; // void
 611   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 612 
 613   // create result type
 614   fields = TypeTuple::fields(1);
 615   fields[TypeFunc::Parms+0] = NULL; // void
 616   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 617 
 618   return TypeFunc::make(domain, range);
 619 }
 620 
 621 const TypeFunc* OptoRuntime::l2f_Type() {
 622   // create input type (domain)
 623   const Type **fields = TypeTuple::fields(2);
 624   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 625   fields[TypeFunc::Parms+1] = Type::HALF;
 626   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 627 
 628   // create result type (range)
 629   fields = TypeTuple::fields(1);
 630   fields[TypeFunc::Parms+0] = Type::FLOAT;
 631   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 632 
 633   return TypeFunc::make(domain, range);
 634 }
 635 
 636 const TypeFunc* OptoRuntime::modf_Type() {
 637   const Type **fields = TypeTuple::fields(2);
 638   fields[TypeFunc::Parms+0] = Type::FLOAT;
 639   fields[TypeFunc::Parms+1] = Type::FLOAT;
 640   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 641 
 642   // create result type (range)
 643   fields = TypeTuple::fields(1);
 644   fields[TypeFunc::Parms+0] = Type::FLOAT;
 645 
 646   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 647 
 648   return TypeFunc::make(domain, range);
 649 }
 650 
 651 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 652   // create input type (domain)
 653   const Type **fields = TypeTuple::fields(2);
 654   // Symbol* name of class to be loaded
 655   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 656   fields[TypeFunc::Parms+1] = Type::HALF;
 657   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 658 
 659   // create result type (range)
 660   fields = TypeTuple::fields(2);
 661   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 662   fields[TypeFunc::Parms+1] = Type::HALF;
 663   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 664 
 665   return TypeFunc::make(domain, range);
 666 }
 667 
 668 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 669   const Type **fields = TypeTuple::fields(4);
 670   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 671   fields[TypeFunc::Parms+1] = Type::HALF;
 672   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 673   fields[TypeFunc::Parms+3] = Type::HALF;
 674   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 675 
 676   // create result type (range)
 677   fields = TypeTuple::fields(2);
 678   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 679   fields[TypeFunc::Parms+1] = Type::HALF;
 680   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 681 
 682   return TypeFunc::make(domain, range);
 683 }
 684 
 685 //-------------- currentTimeMillis, currentTimeNanos, etc
 686 
 687 const TypeFunc* OptoRuntime::void_long_Type() {
 688   // create input type (domain)
 689   const Type **fields = TypeTuple::fields(0);
 690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 691 
 692   // create result type (range)
 693   fields = TypeTuple::fields(2);
 694   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 695   fields[TypeFunc::Parms+1] = Type::HALF;
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 // arraycopy stub variations:
 702 enum ArrayCopyType {
 703   ac_fast,                      // void(ptr, ptr, size_t)
 704   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 705   ac_slow,                      // void(ptr, int, ptr, int, int)
 706   ac_generic                    //  int(ptr, int, ptr, int, int)
 707 };
 708 
 709 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 710   // create input type (domain)
 711   int num_args      = (act == ac_fast ? 3 : 5);
 712   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 713   int argcnt = num_args;
 714   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 715   const Type** fields = TypeTuple::fields(argcnt);
 716   int argp = TypeFunc::Parms;
 717   fields[argp++] = TypePtr::NOTNULL;    // src
 718   if (num_size_args == 0) {
 719     fields[argp++] = TypeInt::INT;      // src_pos
 720   }
 721   fields[argp++] = TypePtr::NOTNULL;    // dest
 722   if (num_size_args == 0) {
 723     fields[argp++] = TypeInt::INT;      // dest_pos
 724     fields[argp++] = TypeInt::INT;      // length
 725   }
 726   while (num_size_args-- > 0) {
 727     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 728     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 729   }
 730   if (act == ac_checkcast) {
 731     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 732   }
 733   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 734   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 735 
 736   // create result type if needed
 737   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 738   fields = TypeTuple::fields(1);
 739   if (retcnt == 0)
 740     fields[TypeFunc::Parms+0] = NULL; // void
 741   else
 742     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 743   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 744   return TypeFunc::make(domain, range);
 745 }
 746 
 747 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 748   // This signature is simple:  Two base pointers and a size_t.
 749   return make_arraycopy_Type(ac_fast);
 750 }
 751 
 752 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 753   // An extension of fast_arraycopy_Type which adds type checking.
 754   return make_arraycopy_Type(ac_checkcast);
 755 }
 756 
 757 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 758   // This signature is exactly the same as System.arraycopy.
 759   // There are no intptr_t (int/long) arguments.
 760   return make_arraycopy_Type(ac_slow);
 761 }
 762 
 763 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 764   // This signature is like System.arraycopy, except that it returns status.
 765   return make_arraycopy_Type(ac_generic);
 766 }
 767 
 768 
 769 const TypeFunc* OptoRuntime::array_fill_Type() {
 770   const Type** fields;
 771   int argp = TypeFunc::Parms;
 772   // create input type (domain): pointer, int, size_t
 773   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 774   fields[argp++] = TypePtr::NOTNULL;
 775   fields[argp++] = TypeInt::INT;
 776   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 777   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 778   const TypeTuple *domain = TypeTuple::make(argp, fields);
 779 
 780   // create result type
 781   fields = TypeTuple::fields(1);
 782   fields[TypeFunc::Parms+0] = NULL; // void
 783   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 784 
 785   return TypeFunc::make(domain, range);
 786 }
 787 
 788 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 789 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 790   // create input type (domain)
 791   int num_args      = 3;
 792   if (Matcher::pass_original_key_for_aes()) {
 793     num_args = 4;
 794   }
 795   int argcnt = num_args;
 796   const Type** fields = TypeTuple::fields(argcnt);
 797   int argp = TypeFunc::Parms;
 798   fields[argp++] = TypePtr::NOTNULL;    // src
 799   fields[argp++] = TypePtr::NOTNULL;    // dest
 800   fields[argp++] = TypePtr::NOTNULL;    // k array
 801   if (Matcher::pass_original_key_for_aes()) {
 802     fields[argp++] = TypePtr::NOTNULL;    // original k array
 803   }
 804   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 805   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 806 
 807   // no result type needed
 808   fields = TypeTuple::fields(1);
 809   fields[TypeFunc::Parms+0] = NULL; // void
 810   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 811   return TypeFunc::make(domain, range);
 812 }
 813 
 814 /**
 815  * int updateBytesCRC32(int crc, byte* b, int len)
 816  */
 817 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 818   // create input type (domain)
 819   int num_args      = 3;
 820   int argcnt = num_args;
 821   const Type** fields = TypeTuple::fields(argcnt);
 822   int argp = TypeFunc::Parms;
 823   fields[argp++] = TypeInt::INT;        // crc
 824   fields[argp++] = TypePtr::NOTNULL;    // src
 825   fields[argp++] = TypeInt::INT;        // len
 826   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 827   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 828 
 829   // result type needed
 830   fields = TypeTuple::fields(1);
 831   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 832   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 833   return TypeFunc::make(domain, range);
 834 }
 835 
 836 /**
 837  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 838  */
 839 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 840   // create input type (domain)
 841   int num_args      = 4;
 842   int argcnt = num_args;
 843   const Type** fields = TypeTuple::fields(argcnt);
 844   int argp = TypeFunc::Parms;
 845   fields[argp++] = TypeInt::INT;        // crc
 846   fields[argp++] = TypePtr::NOTNULL;    // buf
 847   fields[argp++] = TypeInt::INT;        // len
 848   fields[argp++] = TypePtr::NOTNULL;    // table
 849   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 850   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 851 
 852   // result type needed
 853   fields = TypeTuple::fields(1);
 854   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 855   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 856   return TypeFunc::make(domain, range);
 857 }
 858 
 859 /**
 860 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 861 */
 862 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 863   // create input type (domain)
 864   int num_args      = 3;
 865   int argcnt = num_args;
 866   const Type** fields = TypeTuple::fields(argcnt);
 867   int argp = TypeFunc::Parms;
 868   fields[argp++] = TypeInt::INT;        // crc
 869   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 870   fields[argp++] = TypeInt::INT;        // len
 871   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 872   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 873 
 874   // result type needed
 875   fields = TypeTuple::fields(1);
 876   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 877   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 878   return TypeFunc::make(domain, range);
 879 }
 880 
 881 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 882 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 883   // create input type (domain)
 884   int num_args      = 5;
 885   if (Matcher::pass_original_key_for_aes()) {
 886     num_args = 6;
 887   }
 888   int argcnt = num_args;
 889   const Type** fields = TypeTuple::fields(argcnt);
 890   int argp = TypeFunc::Parms;
 891   fields[argp++] = TypePtr::NOTNULL;    // src
 892   fields[argp++] = TypePtr::NOTNULL;    // dest
 893   fields[argp++] = TypePtr::NOTNULL;    // k array
 894   fields[argp++] = TypePtr::NOTNULL;    // r array
 895   fields[argp++] = TypeInt::INT;        // src len
 896   if (Matcher::pass_original_key_for_aes()) {
 897     fields[argp++] = TypePtr::NOTNULL;    // original k array
 898   }
 899   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 900   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 901 
 902   // returning cipher len (int)
 903   fields = TypeTuple::fields(1);
 904   fields[TypeFunc::Parms+0] = TypeInt::INT;
 905   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 906   return TypeFunc::make(domain, range);
 907 }
 908 
 909 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 910 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 911   // create input type (domain)
 912   int num_args = 7;
 913   if (Matcher::pass_original_key_for_aes()) {
 914     num_args = 8;
 915   }
 916   int argcnt = num_args;
 917   const Type** fields = TypeTuple::fields(argcnt);
 918   int argp = TypeFunc::Parms;
 919   fields[argp++] = TypePtr::NOTNULL; // src
 920   fields[argp++] = TypePtr::NOTNULL; // dest
 921   fields[argp++] = TypePtr::NOTNULL; // k array
 922   fields[argp++] = TypePtr::NOTNULL; // counter array
 923   fields[argp++] = TypeInt::INT; // src len
 924   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 925   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 926   if (Matcher::pass_original_key_for_aes()) {
 927     fields[argp++] = TypePtr::NOTNULL; // original k array
 928   }
 929   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 930   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 931   // returning cipher len (int)
 932   fields = TypeTuple::fields(1);
 933   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 934   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 935   return TypeFunc::make(domain, range);
 936 }
 937 
 938 /*
 939  * void implCompress(byte[] buf, int ofs)
 940  */
 941 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 942   // create input type (domain)
 943   int num_args = 2;
 944   int argcnt = num_args;
 945   const Type** fields = TypeTuple::fields(argcnt);
 946   int argp = TypeFunc::Parms;
 947   fields[argp++] = TypePtr::NOTNULL; // buf
 948   fields[argp++] = TypePtr::NOTNULL; // state
 949   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 950   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 951 
 952   // no result type needed
 953   fields = TypeTuple::fields(1);
 954   fields[TypeFunc::Parms+0] = NULL; // void
 955   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 956   return TypeFunc::make(domain, range);
 957 }
 958 
 959 /*
 960  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 961  */
 962 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 963   // create input type (domain)
 964   int num_args = 4;
 965   int argcnt = num_args;
 966   const Type** fields = TypeTuple::fields(argcnt);
 967   int argp = TypeFunc::Parms;
 968   fields[argp++] = TypePtr::NOTNULL; // buf
 969   fields[argp++] = TypePtr::NOTNULL; // state
 970   fields[argp++] = TypeInt::INT;     // ofs
 971   fields[argp++] = TypeInt::INT;     // limit
 972   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 973   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 974 
 975   // returning ofs (int)
 976   fields = TypeTuple::fields(1);
 977   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 978   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 979   return TypeFunc::make(domain, range);
 980 }
 981 
 982 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 983   // create input type (domain)
 984   int num_args      = 6;
 985   int argcnt = num_args;
 986   const Type** fields = TypeTuple::fields(argcnt);
 987   int argp = TypeFunc::Parms;
 988   fields[argp++] = TypePtr::NOTNULL;    // x
 989   fields[argp++] = TypeInt::INT;        // xlen
 990   fields[argp++] = TypePtr::NOTNULL;    // y
 991   fields[argp++] = TypeInt::INT;        // ylen
 992   fields[argp++] = TypePtr::NOTNULL;    // z
 993   fields[argp++] = TypeInt::INT;        // zlen
 994   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 995   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 996 
 997   // no result type needed
 998   fields = TypeTuple::fields(1);
 999   fields[TypeFunc::Parms+0] = NULL;
1000   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1001   return TypeFunc::make(domain, range);
1002 }
1003 
1004 const TypeFunc* OptoRuntime::squareToLen_Type() {
1005   // create input type (domain)
1006   int num_args      = 4;
1007   int argcnt = num_args;
1008   const Type** fields = TypeTuple::fields(argcnt);
1009   int argp = TypeFunc::Parms;
1010   fields[argp++] = TypePtr::NOTNULL;    // x
1011   fields[argp++] = TypeInt::INT;        // len
1012   fields[argp++] = TypePtr::NOTNULL;    // z
1013   fields[argp++] = TypeInt::INT;        // zlen
1014   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1015   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1016 
1017   // no result type needed
1018   fields = TypeTuple::fields(1);
1019   fields[TypeFunc::Parms+0] = NULL;
1020   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1021   return TypeFunc::make(domain, range);
1022 }
1023 
1024 // for mulAdd calls, 2 pointers and 3 ints, returning int
1025 const TypeFunc* OptoRuntime::mulAdd_Type() {
1026   // create input type (domain)
1027   int num_args      = 5;
1028   int argcnt = num_args;
1029   const Type** fields = TypeTuple::fields(argcnt);
1030   int argp = TypeFunc::Parms;
1031   fields[argp++] = TypePtr::NOTNULL;    // out
1032   fields[argp++] = TypePtr::NOTNULL;    // in
1033   fields[argp++] = TypeInt::INT;        // offset
1034   fields[argp++] = TypeInt::INT;        // len
1035   fields[argp++] = TypeInt::INT;        // k
1036   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1037   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1038 
1039   // returning carry (int)
1040   fields = TypeTuple::fields(1);
1041   fields[TypeFunc::Parms+0] = TypeInt::INT;
1042   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1043   return TypeFunc::make(domain, range);
1044 }
1045 
1046 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1047   // create input type (domain)
1048   int num_args      = 7;
1049   int argcnt = num_args;
1050   const Type** fields = TypeTuple::fields(argcnt);
1051   int argp = TypeFunc::Parms;
1052   fields[argp++] = TypePtr::NOTNULL;    // a
1053   fields[argp++] = TypePtr::NOTNULL;    // b
1054   fields[argp++] = TypePtr::NOTNULL;    // n
1055   fields[argp++] = TypeInt::INT;        // len
1056   fields[argp++] = TypeLong::LONG;      // inv
1057   fields[argp++] = Type::HALF;
1058   fields[argp++] = TypePtr::NOTNULL;    // result
1059   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1060   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1061 
1062   // result type needed
1063   fields = TypeTuple::fields(1);
1064   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1065 
1066   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1067   return TypeFunc::make(domain, range);
1068 }
1069 
1070 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1071   // create input type (domain)
1072   int num_args      = 6;
1073   int argcnt = num_args;
1074   const Type** fields = TypeTuple::fields(argcnt);
1075   int argp = TypeFunc::Parms;
1076   fields[argp++] = TypePtr::NOTNULL;    // a
1077   fields[argp++] = TypePtr::NOTNULL;    // n
1078   fields[argp++] = TypeInt::INT;        // len
1079   fields[argp++] = TypeLong::LONG;      // inv
1080   fields[argp++] = Type::HALF;
1081   fields[argp++] = TypePtr::NOTNULL;    // result
1082   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1083   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1084 
1085   // result type needed
1086   fields = TypeTuple::fields(1);
1087   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1088 
1089   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1090   return TypeFunc::make(domain, range);
1091 }
1092 
1093 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1094   // create input type (domain)
1095   int num_args = 4;
1096   int argcnt = num_args;
1097   const Type** fields = TypeTuple::fields(argcnt);
1098   int argp = TypeFunc::Parms;
1099   fields[argp++] = TypePtr::NOTNULL;    // obja
1100   fields[argp++] = TypePtr::NOTNULL;    // objb
1101   fields[argp++] = TypeInt::INT;        // length, number of elements
1102   fields[argp++] = TypeInt::INT;        // log2scale, element size
1103   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1104   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1105 
1106   //return mismatch index (int)
1107   fields = TypeTuple::fields(1);
1108   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1109   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1110   return TypeFunc::make(domain, range);
1111 }
1112 
1113 // GHASH block processing
1114 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1115     int argcnt = 4;
1116 
1117     const Type** fields = TypeTuple::fields(argcnt);
1118     int argp = TypeFunc::Parms;
1119     fields[argp++] = TypePtr::NOTNULL;    // state
1120     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1121     fields[argp++] = TypePtr::NOTNULL;    // data
1122     fields[argp++] = TypeInt::INT;        // blocks
1123     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1124     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1125 
1126     // result type needed
1127     fields = TypeTuple::fields(1);
1128     fields[TypeFunc::Parms+0] = NULL; // void
1129     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1130     return TypeFunc::make(domain, range);
1131 }
1132 // Base64 encode function
1133 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1134   int argcnt = 6;
1135 
1136   const Type** fields = TypeTuple::fields(argcnt);
1137   int argp = TypeFunc::Parms;
1138   fields[argp++] = TypePtr::NOTNULL;    // src array
1139   fields[argp++] = TypeInt::INT;        // offset
1140   fields[argp++] = TypeInt::INT;        // length
1141   fields[argp++] = TypePtr::NOTNULL;    // dest array
1142   fields[argp++] = TypeInt::INT;       // dp
1143   fields[argp++] = TypeInt::BOOL;       // isURL
1144   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1145   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1146 
1147   // result type needed
1148   fields = TypeTuple::fields(1);
1149   fields[TypeFunc::Parms + 0] = NULL; // void
1150   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1151   return TypeFunc::make(domain, range);
1152 }
1153 
1154 //------------- Interpreter state access for on stack replacement
1155 const TypeFunc* OptoRuntime::osr_end_Type() {
1156   // create input type (domain)
1157   const Type **fields = TypeTuple::fields(1);
1158   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1159   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1160 
1161   // create result type
1162   fields = TypeTuple::fields(1);
1163   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1164   fields[TypeFunc::Parms+0] = NULL; // void
1165   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1166   return TypeFunc::make(domain, range);
1167 }
1168 
1169 //-------------- methodData update helpers
1170 
1171 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1172   // create input type (domain)
1173   const Type **fields = TypeTuple::fields(2);
1174   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1175   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1176   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1177 
1178   // create result type
1179   fields = TypeTuple::fields(1);
1180   fields[TypeFunc::Parms+0] = NULL; // void
1181   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1182   return TypeFunc::make(domain, range);
1183 }
1184 
1185 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1186   if (receiver == NULL) return;
1187   Klass* receiver_klass = receiver->klass();
1188 
1189   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1190   int empty_row = -1;           // free row, if any is encountered
1191 
1192   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1193   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1194     // if (vc->receiver(row) == receiver_klass)
1195     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1196     intptr_t row_recv = *(mdp + receiver_off);
1197     if (row_recv == (intptr_t) receiver_klass) {
1198       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1199       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1200       *(mdp + count_off) += DataLayout::counter_increment;
1201       return;
1202     } else if (row_recv == 0) {
1203       // else if (vc->receiver(row) == NULL)
1204       empty_row = (int) row;
1205     }
1206   }
1207 
1208   if (empty_row != -1) {
1209     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1210     // vc->set_receiver(empty_row, receiver_klass);
1211     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1212     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1213     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1214     *(mdp + count_off) = DataLayout::counter_increment;
1215   } else {
1216     // Receiver did not match any saved receiver and there is no empty row for it.
1217     // Increment total counter to indicate polymorphic case.
1218     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1219     *count_p += DataLayout::counter_increment;
1220   }
1221 JRT_END
1222 
1223 //-------------------------------------------------------------------------------------
1224 // register policy
1225 
1226 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1227   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1228   switch (register_save_policy[reg]) {
1229     case 'C': return false; //SOC
1230     case 'E': return true ; //SOE
1231     case 'N': return false; //NS
1232     case 'A': return false; //AS
1233   }
1234   ShouldNotReachHere();
1235   return false;
1236 }
1237 
1238 //-----------------------------------------------------------------------
1239 // Exceptions
1240 //
1241 
1242 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1243 
1244 // The method is an entry that is always called by a C++ method not
1245 // directly from compiled code. Compiled code will call the C++ method following.
1246 // We can't allow async exception to be installed during  exception processing.
1247 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1248 
1249   // Do not confuse exception_oop with pending_exception. The exception_oop
1250   // is only used to pass arguments into the method. Not for general
1251   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1252   // the runtime stubs checks this on exit.
1253   assert(thread->exception_oop() != NULL, "exception oop is found");
1254   address handler_address = NULL;
1255 
1256   Handle exception(thread, thread->exception_oop());
1257   address pc = thread->exception_pc();
1258 
1259   // Clear out the exception oop and pc since looking up an
1260   // exception handler can cause class loading, which might throw an
1261   // exception and those fields are expected to be clear during
1262   // normal bytecode execution.
1263   thread->clear_exception_oop_and_pc();
1264 
1265   LogTarget(Info, exceptions) lt;
1266   if (lt.is_enabled()) {
1267     ResourceMark rm;
1268     LogStream ls(lt);
1269     trace_exception(&ls, exception(), pc, "");
1270   }
1271 
1272   // for AbortVMOnException flag
1273   Exceptions::debug_check_abort(exception);
1274 
1275 #ifdef ASSERT
1276   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1277     // should throw an exception here
1278     ShouldNotReachHere();
1279   }
1280 #endif
1281 
1282   // new exception handling: this method is entered only from adapters
1283   // exceptions from compiled java methods are handled in compiled code
1284   // using rethrow node
1285 
1286   nm = CodeCache::find_nmethod(pc);
1287   assert(nm != NULL, "No NMethod found");
1288   if (nm->is_native_method()) {
1289     fatal("Native method should not have path to exception handling");
1290   } else {
1291     // we are switching to old paradigm: search for exception handler in caller_frame
1292     // instead in exception handler of caller_frame.sender()
1293 
1294     if (JvmtiExport::can_post_on_exceptions()) {
1295       // "Full-speed catching" is not necessary here,
1296       // since we're notifying the VM on every catch.
1297       // Force deoptimization and the rest of the lookup
1298       // will be fine.
1299       deoptimize_caller_frame(thread);
1300     }
1301 
1302     // Check the stack guard pages.  If enabled, look for handler in this frame;
1303     // otherwise, forcibly unwind the frame.
1304     //
1305     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1306     bool force_unwind = !thread->reguard_stack();
1307     bool deopting = false;
1308     if (nm->is_deopt_pc(pc)) {
1309       deopting = true;
1310       RegisterMap map(thread, false);
1311       frame deoptee = thread->last_frame().sender(&map);
1312       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1313       // Adjust the pc back to the original throwing pc
1314       pc = deoptee.pc();
1315     }
1316 
1317     // If we are forcing an unwind because of stack overflow then deopt is
1318     // irrelevant since we are throwing the frame away anyway.
1319 
1320     if (deopting && !force_unwind) {
1321       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1322     } else {
1323 
1324       handler_address =
1325         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1326 
1327       if (handler_address == NULL) {
1328         bool recursive_exception = false;
1329         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1330         assert (handler_address != NULL, "must have compiled handler");
1331         // Update the exception cache only when the unwind was not forced
1332         // and there didn't happen another exception during the computation of the
1333         // compiled exception handler. Checking for exception oop equality is not
1334         // sufficient because some exceptions are pre-allocated and reused.
1335         if (!force_unwind && !recursive_exception) {
1336           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1337         }
1338       } else {
1339 #ifdef ASSERT
1340         bool recursive_exception = false;
1341         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1342         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1343                  p2i(handler_address), p2i(computed_address));
1344 #endif
1345       }
1346     }
1347 
1348     thread->set_exception_pc(pc);
1349     thread->set_exception_handler_pc(handler_address);
1350 
1351     // Check if the exception PC is a MethodHandle call site.
1352     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1353   }
1354 
1355   // Restore correct return pc.  Was saved above.
1356   thread->set_exception_oop(exception());
1357   return handler_address;
1358 
1359 JRT_END
1360 
1361 // We are entering here from exception_blob
1362 // If there is a compiled exception handler in this method, we will continue there;
1363 // otherwise we will unwind the stack and continue at the caller of top frame method
1364 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1365 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1366 // we looked up the handler for has been deoptimized in the meantime. If it has been
1367 // we must not use the handler and instead return the deopt blob.
1368 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1369 //
1370 // We are in Java not VM and in debug mode we have a NoHandleMark
1371 //
1372 #ifndef PRODUCT
1373   SharedRuntime::_find_handler_ctr++;          // find exception handler
1374 #endif
1375   debug_only(NoHandleMark __hm;)
1376   nmethod* nm = NULL;
1377   address handler_address = NULL;
1378   {
1379     // Enter the VM
1380 
1381     ResetNoHandleMark rnhm;
1382     handler_address = handle_exception_C_helper(thread, nm);
1383   }
1384 
1385   // Back in java: Use no oops, DON'T safepoint
1386 
1387   // Now check to see if the handler we are returning is in a now
1388   // deoptimized frame
1389 
1390   if (nm != NULL) {
1391     RegisterMap map(thread, false);
1392     frame caller = thread->last_frame().sender(&map);
1393 #ifdef ASSERT
1394     assert(caller.is_compiled_frame(), "must be");
1395 #endif // ASSERT
1396     if (caller.is_deoptimized_frame()) {
1397       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1398     }
1399   }
1400   return handler_address;
1401 }
1402 
1403 //------------------------------rethrow----------------------------------------
1404 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1405 // is either throwing or rethrowing an exception.  The callee-save registers
1406 // have been restored, synchronized objects have been unlocked and the callee
1407 // stack frame has been removed.  The return address was passed in.
1408 // Exception oop is passed as the 1st argument.  This routine is then called
1409 // from the stub.  On exit, we know where to jump in the caller's code.
1410 // After this C code exits, the stub will pop his frame and end in a jump
1411 // (instead of a return).  We enter the caller's default handler.
1412 //
1413 // This must be JRT_LEAF:
1414 //     - caller will not change its state as we cannot block on exit,
1415 //       therefore raw_exception_handler_for_return_address is all it takes
1416 //       to handle deoptimized blobs
1417 //
1418 // However, there needs to be a safepoint check in the middle!  So compiled
1419 // safepoints are completely watertight.
1420 //
1421 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1422 //
1423 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1424 //
1425 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1426 #ifndef PRODUCT
1427   SharedRuntime::_rethrow_ctr++;               // count rethrows
1428 #endif
1429   assert (exception != NULL, "should have thrown a NULLPointerException");
1430 #ifdef ASSERT
1431   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1432     // should throw an exception here
1433     ShouldNotReachHere();
1434   }
1435 #endif
1436 
1437   thread->set_vm_result(exception);
1438   // Frame not compiled (handles deoptimization blob)
1439   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1440 }
1441 
1442 
1443 const TypeFunc *OptoRuntime::rethrow_Type() {
1444   // create input type (domain)
1445   const Type **fields = TypeTuple::fields(1);
1446   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1447   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1448 
1449   // create result type (range)
1450   fields = TypeTuple::fields(1);
1451   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1452   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1453 
1454   return TypeFunc::make(domain, range);
1455 }
1456 
1457 
1458 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1459   // Deoptimize the caller before continuing, as the compiled
1460   // exception handler table may not be valid.
1461   if (!StressCompiledExceptionHandlers && doit) {
1462     deoptimize_caller_frame(thread);
1463   }
1464 }
1465 
1466 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1467   // Called from within the owner thread, so no need for safepoint
1468   RegisterMap reg_map(thread);
1469   frame stub_frame = thread->last_frame();
1470   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1471   frame caller_frame = stub_frame.sender(&reg_map);
1472 
1473   // Deoptimize the caller frame.
1474   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1475 }
1476 
1477 
1478 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1479   // Called from within the owner thread, so no need for safepoint
1480   RegisterMap reg_map(thread);
1481   frame stub_frame = thread->last_frame();
1482   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1483   frame caller_frame = stub_frame.sender(&reg_map);
1484   return caller_frame.is_deoptimized_frame();
1485 }
1486 
1487 
1488 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1489   // create input type (domain)
1490   const Type **fields = TypeTuple::fields(1);
1491   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1492   // // The JavaThread* is passed to each routine as the last argument
1493   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1494   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1495 
1496   // create result type (range)
1497   fields = TypeTuple::fields(0);
1498 
1499   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1500 
1501   return TypeFunc::make(domain, range);
1502 }
1503 
1504 
1505 //-----------------------------------------------------------------------------
1506 // Dtrace support.  entry and exit probes have the same signature
1507 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1508   // create input type (domain)
1509   const Type **fields = TypeTuple::fields(2);
1510   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1511   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1512   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1513 
1514   // create result type (range)
1515   fields = TypeTuple::fields(0);
1516 
1517   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1518 
1519   return TypeFunc::make(domain, range);
1520 }
1521 
1522 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1523   // create input type (domain)
1524   const Type **fields = TypeTuple::fields(2);
1525   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1526   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1527 
1528   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1529 
1530   // create result type (range)
1531   fields = TypeTuple::fields(0);
1532 
1533   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1534 
1535   return TypeFunc::make(domain, range);
1536 }
1537 
1538 
1539 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1540   assert(oopDesc::is_oop(obj), "must be a valid oop");
1541   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1542   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1543 JRT_END
1544 
1545 //-----------------------------------------------------------------------------
1546 
1547 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1548 
1549 //
1550 // dump the collected NamedCounters.
1551 //
1552 void OptoRuntime::print_named_counters() {
1553   int total_lock_count = 0;
1554   int eliminated_lock_count = 0;
1555 
1556   NamedCounter* c = _named_counters;
1557   while (c) {
1558     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1559       int count = c->count();
1560       if (count > 0) {
1561         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1562         if (Verbose) {
1563           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1564         }
1565         total_lock_count += count;
1566         if (eliminated) {
1567           eliminated_lock_count += count;
1568         }
1569       }
1570     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1571       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1572       if (blc->nonzero()) {
1573         tty->print_cr("%s", c->name());
1574         blc->print_on(tty);
1575       }
1576 #if INCLUDE_RTM_OPT
1577     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1578       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1579       if (rlc->nonzero()) {
1580         tty->print_cr("%s", c->name());
1581         rlc->print_on(tty);
1582       }
1583 #endif
1584     }
1585     c = c->next();
1586   }
1587   if (total_lock_count > 0) {
1588     tty->print_cr("dynamic locks: %d", total_lock_count);
1589     if (eliminated_lock_count) {
1590       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1591                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1592     }
1593   }
1594 }
1595 
1596 //
1597 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1598 //  name which consists of method@line for the inlining tree.
1599 //
1600 
1601 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1602   int max_depth = youngest_jvms->depth();
1603 
1604   // Visit scopes from youngest to oldest.
1605   bool first = true;
1606   stringStream st;
1607   for (int depth = max_depth; depth >= 1; depth--) {
1608     JVMState* jvms = youngest_jvms->of_depth(depth);
1609     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1610     if (!first) {
1611       st.print(" ");
1612     } else {
1613       first = false;
1614     }
1615     int bci = jvms->bci();
1616     if (bci < 0) bci = 0;
1617     if (m != NULL) {
1618       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1619     } else {
1620       st.print("no method");
1621     }
1622     st.print("@%d", bci);
1623     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1624   }
1625   NamedCounter* c;
1626   if (tag == NamedCounter::BiasedLockingCounter) {
1627     c = new BiasedLockingNamedCounter(st.as_string());
1628   } else if (tag == NamedCounter::RTMLockingCounter) {
1629     c = new RTMLockingNamedCounter(st.as_string());
1630   } else {
1631     c = new NamedCounter(st.as_string(), tag);
1632   }
1633 
1634   // atomically add the new counter to the head of the list.  We only
1635   // add counters so this is safe.
1636   NamedCounter* head;
1637   do {
1638     c->set_next(NULL);
1639     head = _named_counters;
1640     c->set_next(head);
1641   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1642   return c;
1643 }
1644 
1645 int trace_exception_counter = 0;
1646 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1647   trace_exception_counter++;
1648   stringStream tempst;
1649 
1650   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1651   exception_oop->print_value_on(&tempst);
1652   tempst.print(" in ");
1653   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1654   if (blob->is_compiled()) {
1655     CompiledMethod* cm = blob->as_compiled_method_or_null();
1656     cm->method()->print_value_on(&tempst);
1657   } else if (blob->is_runtime_stub()) {
1658     tempst.print("<runtime-stub>");
1659   } else {
1660     tempst.print("<unknown>");
1661   }
1662   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1663   tempst.print("]");
1664 
1665   st->print_raw_cr(tempst.as_string());
1666 }
1667 
1668 const TypeFunc *OptoRuntime::store_value_type_fields_Type() {
1669   // create input type (domain)
1670   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1671   const Type **fields = TypeTuple::fields(total);
1672   // We don't know the number of returned values and their
1673   // types. Assume all registers available to the return convention
1674   // are used.
1675   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
1676   uint i = 1;
1677   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
1678     fields[TypeFunc::Parms+i] = TypeInt::INT;
1679   }
1680   for (; i < total; i+=2) {
1681     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1682     fields[TypeFunc::Parms+i+1] = Type::HALF;
1683   }
1684   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1685 
1686   // create result type (range)
1687   fields = TypeTuple::fields(1);
1688   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1689 
1690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1691 
1692   return TypeFunc::make(domain, range);
1693 }
1694 
1695 const TypeFunc *OptoRuntime::pack_value_type_Type() {
1696   // create input type (domain)
1697   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1698   const Type **fields = TypeTuple::fields(total);
1699   // We don't know the number of returned values and their
1700   // types. Assume all registers available to the return convention
1701   // are used.
1702   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
1703   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
1704   uint i = 2;
1705   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
1706     fields[TypeFunc::Parms+i] = TypeInt::INT;
1707   }
1708   for (; i < total; i+=2) {
1709     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1710     fields[TypeFunc::Parms+i+1] = Type::HALF;
1711   }
1712   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1713 
1714   // create result type (range)
1715   fields = TypeTuple::fields(1);
1716   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1717 
1718   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1719 
1720   return TypeFunc::make(domain, range);
1721 }