1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/memnode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/opaquenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/valuetypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 
  50 #ifndef PRODUCT
  51 extern int explicit_null_checks_inserted,
  52            explicit_null_checks_elided;
  53 #endif
  54 
  55 //---------------------------------array_load----------------------------------
  56 void Parse::array_load(BasicType bt) {
  57   const Type* elemtype = Type::TOP;
  58   Node* adr = array_addressing(bt, 0, &elemtype);
  59   if (stopped())  return;     // guaranteed null or range check
  60 
  61   Node* idx = pop();
  62   Node* ary = pop();
  63 
  64   // Handle value type arrays
  65   const TypeOopPtr* elemptr = elemtype->make_oopptr();
  66   if (elemtype->isa_valuetype() != NULL) {
  67     // Load from flattened value type array
  68     ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
  69     ValueTypeNode* vt = ValueTypeNode::make_from_flattened(this, vk, ary, adr);
  70     push(vt);
  71     return;
  72   } else if (elemptr != NULL && elemptr->is_valuetypeptr()) {
  73     // Load from non-flattened value type array (elements can never be null)
  74     bt = T_VALUETYPE;
  75     assert(elemptr->meet(TypePtr::NULL_PTR) != elemptr, "value type array elements should never be null");
  76   } else if (ValueArrayFlatten && elemptr != NULL && elemptr->can_be_value_type()) {
  77     // Cannot statically determine if array is flattened, emit runtime check
  78     gen_flattened_array_guard(ary, 2);
  79   }
  80 
  81   if (elemtype == TypeInt::BOOL) {
  82     bt = T_BOOLEAN;
  83   } else if (bt == T_OBJECT) {
  84     elemtype = _gvn.type(ary)->is_aryptr()->elem()->make_oopptr();
  85   }
  86 
  87   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
  88   Node* ld = access_load_at(ary, adr, adr_type, elemtype, bt,
  89                             IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
  90   if (bt == T_VALUETYPE) {
  91     // Loading a non-flattened (but flattenable) value type from an array
  92     assert(!gvn().type(ld)->is_ptr()->maybe_null(), "value type array elements should never be null");
  93     ld = ValueTypeNode::make_from_oop(this, ld, elemptr->value_klass());
  94   }
  95 
  96   push_node(bt, ld);
  97 }
  98 
  99 
 100 //--------------------------------array_store----------------------------------
 101 void Parse::array_store(BasicType bt) {
 102   const Type* elemtype = Type::TOP;
 103   Node* adr = array_addressing(bt, type2size[bt], &elemtype);
 104   if (stopped())  return;     // guaranteed null or range check
 105   Node* cast_val = NULL;
 106   if (bt == T_OBJECT) {
 107     cast_val = array_store_check();
 108     if (stopped()) return;
 109   }
 110   Node* val = pop_node(bt); // Value to store
 111   Node* idx = pop();        // Index in the array
 112   Node* ary = pop();        // The array itself
 113 
 114   if (bt == T_OBJECT) {
 115     const TypeOopPtr* elemptr = elemtype->make_oopptr();
 116     if (elemtype->isa_valuetype() != NULL) {
 117       // Store to flattened value type array
 118       cast_val->as_ValueType()->store_flattened(this, ary, adr);
 119       return;
 120     } else if (elemptr->is_valuetypeptr()) {
 121       // Store to non-flattened value type array
 122     } else if (ValueArrayFlatten && elemptr->can_be_value_type() && val->is_ValueType()) {
 123       IdealKit ideal(this);
 124       Node* kls = load_object_klass(ary);
 125       Node* lhp = basic_plus_adr(kls, in_bytes(Klass::layout_helper_offset()));
 126       Node* layout_val = make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
 127       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
 128       ideal.if_then(layout_val, BoolTest::ne, intcon(Klass::_lh_array_tag_vt_value)); {
 129         // non flattened
 130         sync_kit(ideal);
 131         const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 132         elemtype = _gvn.type(ary)->is_aryptr()->elem()->make_oopptr();
 133         access_store_at(control(), ary, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 134         ideal.sync_kit(this);
 135       } ideal.else_(); {
 136         // flattened
 137         sync_kit(ideal);
 138         // Object/interface array must be flattened, cast it
 139         const TypeValueType* vt = _gvn.type(val)->is_valuetype();
 140         ciArrayKlass* array_klass = ciArrayKlass::make(vt->value_klass());
 141         const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
 142         ary = _gvn.transform(new CheckCastPPNode(control(), ary, arytype));
 143         adr = array_element_address(ary, idx, T_OBJECT, arytype->size(), control());
 144         val->as_ValueType()->store_flattened(this, ary, adr);
 145         ideal.sync_kit(this);
 146       } ideal.end_if();
 147       sync_kit(ideal);
 148       return;
 149     }
 150   }
 151 
 152   if (elemtype == TypeInt::BOOL) {
 153     bt = T_BOOLEAN;
 154   } else if (bt == T_OBJECT) {
 155     elemtype = _gvn.type(ary)->is_aryptr()->elem()->make_oopptr();
 156   }
 157 
 158   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 159 
 160   access_store_at(control(), ary, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 161 }
 162 
 163 
 164 //------------------------------array_addressing-------------------------------
 165 // Pull array and index from the stack.  Compute pointer-to-element.
 166 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
 167   Node *idx   = peek(0+vals);   // Get from stack without popping
 168   Node *ary   = peek(1+vals);   // in case of exception
 169 
 170   // Null check the array base, with correct stack contents
 171   ary = null_check(ary, T_ARRAY);
 172   // Compile-time detect of null-exception?
 173   if (stopped())  return top();
 174 
 175   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 176   const TypeInt*    sizetype = arytype->size();
 177   const Type*       elemtype = arytype->elem();
 178 
 179   if (UseUniqueSubclasses && result2 != NULL) {
 180     const Type* el = elemtype->make_ptr();
 181     if (el && el->isa_instptr()) {
 182       const TypeInstPtr* toop = el->is_instptr();
 183       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
 184         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 185         const Type* subklass = Type::get_const_type(toop->klass());
 186         elemtype = subklass->join_speculative(el);
 187       }
 188     }
 189   }
 190 
 191   // Check for big class initializers with all constant offsets
 192   // feeding into a known-size array.
 193   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 194   // See if the highest idx value is less than the lowest array bound,
 195   // and if the idx value cannot be negative:
 196   bool need_range_check = true;
 197   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 198     need_range_check = false;
 199     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 200   }
 201 
 202   ciKlass * arytype_klass = arytype->klass();
 203   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 204     // Only fails for some -Xcomp runs
 205     // The class is unloaded.  We have to run this bytecode in the interpreter.
 206     uncommon_trap(Deoptimization::Reason_unloaded,
 207                   Deoptimization::Action_reinterpret,
 208                   arytype->klass(), "!loaded array");
 209     return top();
 210   }
 211 
 212   // Do the range check
 213   if (GenerateRangeChecks && need_range_check) {
 214     Node* tst;
 215     if (sizetype->_hi <= 0) {
 216       // The greatest array bound is negative, so we can conclude that we're
 217       // compiling unreachable code, but the unsigned compare trick used below
 218       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 219       // the uncommon_trap path will always be taken.
 220       tst = _gvn.intcon(0);
 221     } else {
 222       // Range is constant in array-oop, so we can use the original state of mem
 223       Node* len = load_array_length(ary);
 224 
 225       // Test length vs index (standard trick using unsigned compare)
 226       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 227       BoolTest::mask btest = BoolTest::lt;
 228       tst = _gvn.transform( new BoolNode(chk, btest) );
 229     }
 230     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 231     _gvn.set_type(rc, rc->Value(&_gvn));
 232     if (!tst->is_Con()) {
 233       record_for_igvn(rc);
 234     }
 235     set_control(_gvn.transform(new IfTrueNode(rc)));
 236     // Branch to failure if out of bounds
 237     {
 238       PreserveJVMState pjvms(this);
 239       set_control(_gvn.transform(new IfFalseNode(rc)));
 240       if (C->allow_range_check_smearing()) {
 241         // Do not use builtin_throw, since range checks are sometimes
 242         // made more stringent by an optimistic transformation.
 243         // This creates "tentative" range checks at this point,
 244         // which are not guaranteed to throw exceptions.
 245         // See IfNode::Ideal, is_range_check, adjust_check.
 246         uncommon_trap(Deoptimization::Reason_range_check,
 247                       Deoptimization::Action_make_not_entrant,
 248                       NULL, "range_check");
 249       } else {
 250         // If we have already recompiled with the range-check-widening
 251         // heroic optimization turned off, then we must really be throwing
 252         // range check exceptions.
 253         builtin_throw(Deoptimization::Reason_range_check, idx);
 254       }
 255     }
 256   }
 257   // Check for always knowing you are throwing a range-check exception
 258   if (stopped())  return top();
 259 
 260   // Make array address computation control dependent to prevent it
 261   // from floating above the range check during loop optimizations.
 262   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 263 
 264   if (result2 != NULL)  *result2 = elemtype;
 265 
 266   assert(ptr != top(), "top should go hand-in-hand with stopped");
 267 
 268   return ptr;
 269 }
 270 
 271 
 272 // returns IfNode
 273 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
 274   Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 275   Node   *tst = _gvn.transform(new BoolNode(cmp, mask));
 276   IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
 277   return iff;
 278 }
 279 
 280 // return Region node
 281 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 282   Node *region  = new RegionNode(3); // 2 results
 283   record_for_igvn(region);
 284   region->init_req(1, iffalse);
 285   region->init_req(2, iftrue );
 286   _gvn.set_type(region, Type::CONTROL);
 287   region = _gvn.transform(region);
 288   set_control (region);
 289   return region;
 290 }
 291 
 292 // sentinel value for the target bci to mark never taken branches
 293 // (according to profiling)
 294 static const int never_reached = INT_MAX;
 295 
 296 //------------------------------helper for tableswitch-------------------------
 297 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
 298   // True branch, use existing map info
 299   { PreserveJVMState pjvms(this);
 300     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 301     set_control( iftrue );
 302     if (unc) {
 303       repush_if_args();
 304       uncommon_trap(Deoptimization::Reason_unstable_if,
 305                     Deoptimization::Action_reinterpret,
 306                     NULL,
 307                     "taken always");
 308     } else {
 309       assert(dest_bci_if_true != never_reached, "inconsistent dest");
 310       profile_switch_case(prof_table_index);
 311       merge_new_path(dest_bci_if_true);
 312     }
 313   }
 314 
 315   // False branch
 316   Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
 317   set_control( iffalse );
 318 }
 319 
 320 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
 321   // True branch, use existing map info
 322   { PreserveJVMState pjvms(this);
 323     Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
 324     set_control( iffalse );
 325     if (unc) {
 326       repush_if_args();
 327       uncommon_trap(Deoptimization::Reason_unstable_if,
 328                     Deoptimization::Action_reinterpret,
 329                     NULL,
 330                     "taken never");
 331     } else {
 332       assert(dest_bci_if_true != never_reached, "inconsistent dest");
 333       profile_switch_case(prof_table_index);
 334       merge_new_path(dest_bci_if_true);
 335     }
 336   }
 337 
 338   // False branch
 339   Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
 340   set_control( iftrue );
 341 }
 342 
 343 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index, bool unc) {
 344   // False branch, use existing map and control()
 345   if (unc) {
 346     repush_if_args();
 347     uncommon_trap(Deoptimization::Reason_unstable_if,
 348                   Deoptimization::Action_reinterpret,
 349                   NULL,
 350                   "taken never");
 351   } else {
 352     assert(dest_bci != never_reached, "inconsistent dest");
 353     profile_switch_case(prof_table_index);
 354     merge_new_path(dest_bci);
 355   }
 356 }
 357 
 358 
 359 extern "C" {
 360   static int jint_cmp(const void *i, const void *j) {
 361     int a = *(jint *)i;
 362     int b = *(jint *)j;
 363     return a > b ? 1 : a < b ? -1 : 0;
 364   }
 365 }
 366 
 367 
 368 // Default value for methodData switch indexing. Must be a negative value to avoid
 369 // conflict with any legal switch index.
 370 #define NullTableIndex -1
 371 
 372 class SwitchRange : public StackObj {
 373   // a range of integers coupled with a bci destination
 374   jint _lo;                     // inclusive lower limit
 375   jint _hi;                     // inclusive upper limit
 376   int _dest;
 377   int _table_index;             // index into method data table
 378   float _cnt;                   // how many times this range was hit according to profiling
 379 
 380 public:
 381   jint lo() const              { return _lo;   }
 382   jint hi() const              { return _hi;   }
 383   int  dest() const            { return _dest; }
 384   int  table_index() const     { return _table_index; }
 385   bool is_singleton() const    { return _lo == _hi; }
 386   float cnt() const            { return _cnt; }
 387 
 388   void setRange(jint lo, jint hi, int dest, int table_index, float cnt) {
 389     assert(lo <= hi, "must be a non-empty range");
 390     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index; _cnt = cnt;
 391     assert(_cnt >= 0, "");
 392   }
 393   bool adjoinRange(jint lo, jint hi, int dest, int table_index, float cnt, bool trim_ranges) {
 394     assert(lo <= hi, "must be a non-empty range");
 395     if (lo == _hi+1 && table_index == _table_index) {
 396       // see merge_ranges() comment below
 397       if (trim_ranges) {
 398         if (cnt == 0) {
 399           if (_cnt != 0) {
 400             return false;
 401           }
 402           if (dest != _dest) {
 403             _dest = never_reached;
 404           }
 405         } else {
 406           if (_cnt == 0) {
 407             return false;
 408           }
 409           if (dest != _dest) {
 410             return false;
 411           }
 412         }
 413       } else {
 414         if (dest != _dest) {
 415           return false;
 416         }
 417       }
 418       _hi = hi;
 419       _cnt += cnt;
 420       return true;
 421     }
 422     return false;
 423   }
 424 
 425   void set (jint value, int dest, int table_index, float cnt) {
 426     setRange(value, value, dest, table_index, cnt);
 427   }
 428   bool adjoin(jint value, int dest, int table_index, float cnt, bool trim_ranges) {
 429     return adjoinRange(value, value, dest, table_index, cnt, trim_ranges);
 430   }
 431   bool adjoin(SwitchRange& other) {
 432     return adjoinRange(other._lo, other._hi, other._dest, other._table_index, other._cnt, false);
 433   }
 434 
 435   void print() {
 436     if (is_singleton())
 437       tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt());
 438     else if (lo() == min_jint)
 439       tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt());
 440     else if (hi() == max_jint)
 441       tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt());
 442     else
 443       tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt());
 444   }
 445 };
 446 
 447 // We try to minimize the number of ranges and the size of the taken
 448 // ones using profiling data. When ranges are created,
 449 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge
 450 // if both were never hit or both were hit to build longer unreached
 451 // ranges. Here, we now merge adjoining ranges with the same
 452 // destination and finally set destination of unreached ranges to the
 453 // special value never_reached because it can help minimize the number
 454 // of tests that are necessary.
 455 //
 456 // For instance:
 457 // [0, 1] to target1 sometimes taken
 458 // [1, 2] to target1 never taken
 459 // [2, 3] to target2 never taken
 460 // would lead to:
 461 // [0, 1] to target1 sometimes taken
 462 // [1, 3] never taken
 463 //
 464 // (first 2 ranges to target1 are not merged)
 465 static void merge_ranges(SwitchRange* ranges, int& rp) {
 466   if (rp == 0) {
 467     return;
 468   }
 469   int shift = 0;
 470   for (int j = 0; j < rp; j++) {
 471     SwitchRange& r1 = ranges[j-shift];
 472     SwitchRange& r2 = ranges[j+1];
 473     if (r1.adjoin(r2)) {
 474       shift++;
 475     } else if (shift > 0) {
 476       ranges[j+1-shift] = r2;
 477     }
 478   }
 479   rp -= shift;
 480   for (int j = 0; j <= rp; j++) {
 481     SwitchRange& r = ranges[j];
 482     if (r.cnt() == 0 && r.dest() != never_reached) {
 483       r.setRange(r.lo(), r.hi(), never_reached, r.table_index(), r.cnt());
 484     }
 485   }
 486 }
 487 
 488 //-------------------------------do_tableswitch--------------------------------
 489 void Parse::do_tableswitch() {
 490   Node* lookup = pop();
 491   // Get information about tableswitch
 492   int default_dest = iter().get_dest_table(0);
 493   int lo_index     = iter().get_int_table(1);
 494   int hi_index     = iter().get_int_table(2);
 495   int len          = hi_index - lo_index + 1;
 496 
 497   if (len < 1) {
 498     // If this is a backward branch, add safepoint
 499     maybe_add_safepoint(default_dest);
 500     merge(default_dest);
 501     return;
 502   }
 503 
 504   ciMethodData* methodData = method()->method_data();
 505   ciMultiBranchData* profile = NULL;
 506   if (methodData->is_mature() && UseSwitchProfiling) {
 507     ciProfileData* data = methodData->bci_to_data(bci());
 508     if (data != NULL && data->is_MultiBranchData()) {
 509       profile = (ciMultiBranchData*)data;
 510     }
 511   }
 512   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 513 
 514   // generate decision tree, using trichotomy when possible
 515   int rnum = len+2;
 516   bool makes_backward_branch = false;
 517   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 518   int rp = -1;
 519   if (lo_index != min_jint) {
 520     uint cnt = 1;
 521     if (profile != NULL) {
 522       cnt = profile->default_count() / (hi_index != max_jint ? 2 : 1);
 523     }
 524     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex, cnt);
 525   }
 526   for (int j = 0; j < len; j++) {
 527     jint match_int = lo_index+j;
 528     int  dest      = iter().get_dest_table(j+3);
 529     makes_backward_branch |= (dest <= bci());
 530     int  table_index = method_data_update() ? j : NullTableIndex;
 531     uint cnt = 1;
 532     if (profile != NULL) {
 533       cnt = profile->count_at(j);
 534     }
 535     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
 536       ranges[++rp].set(match_int, dest, table_index, cnt);
 537     }
 538   }
 539   jint highest = lo_index+(len-1);
 540   assert(ranges[rp].hi() == highest, "");
 541   if (highest != max_jint) {
 542     uint cnt = 1;
 543     if (profile != NULL) {
 544       cnt = profile->default_count() / (lo_index != min_jint ? 2 : 1);
 545     }
 546     if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, cnt, trim_ranges)) {
 547       ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, cnt);
 548     }
 549   }
 550   assert(rp < len+2, "not too many ranges");
 551 
 552   if (trim_ranges) {
 553     merge_ranges(ranges, rp);
 554   }
 555 
 556   // Safepoint in case if backward branch observed
 557   if( makes_backward_branch && UseLoopSafepoints )
 558     add_safepoint();
 559 
 560   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 561 }
 562 
 563 
 564 //------------------------------do_lookupswitch--------------------------------
 565 void Parse::do_lookupswitch() {
 566   Node *lookup = pop();         // lookup value
 567   // Get information about lookupswitch
 568   int default_dest = iter().get_dest_table(0);
 569   int len          = iter().get_int_table(1);
 570 
 571   if (len < 1) {    // If this is a backward branch, add safepoint
 572     maybe_add_safepoint(default_dest);
 573     merge(default_dest);
 574     return;
 575   }
 576 
 577   ciMethodData* methodData = method()->method_data();
 578   ciMultiBranchData* profile = NULL;
 579   if (methodData->is_mature() && UseSwitchProfiling) {
 580     ciProfileData* data = methodData->bci_to_data(bci());
 581     if (data != NULL && data->is_MultiBranchData()) {
 582       profile = (ciMultiBranchData*)data;
 583     }
 584   }
 585   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 586 
 587   // generate decision tree, using trichotomy when possible
 588   jint* table = NEW_RESOURCE_ARRAY(jint, len*3);
 589   {
 590     for (int j = 0; j < len; j++) {
 591       table[3*j+0] = iter().get_int_table(2+2*j);
 592       table[3*j+1] = iter().get_dest_table(2+2*j+1);
 593       table[3*j+2] = profile == NULL ? 1 : profile->count_at(j);
 594     }
 595     qsort(table, len, 3*sizeof(table[0]), jint_cmp);
 596   }
 597 
 598   float defaults = 0;
 599   jint prev = min_jint;
 600   for (int j = 0; j < len; j++) {
 601     jint match_int = table[3*j+0];
 602     if (match_int != prev) {
 603       defaults += (float)match_int - prev;
 604     }
 605     prev = match_int+1;
 606   }
 607   if (prev-1 != max_jint) {
 608     defaults += (float)max_jint - prev + 1;
 609   }
 610   float default_cnt = 1;
 611   if (profile != NULL) {
 612     default_cnt = profile->default_count()/defaults;
 613   }
 614 
 615   int rnum = len*2+1;
 616   bool makes_backward_branch = false;
 617   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 618   int rp = -1;
 619   for (int j = 0; j < len; j++) {
 620     jint match_int   = table[3*j+0];
 621     int  dest        = table[3*j+1];
 622     int  cnt         = table[3*j+2];
 623     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 624     int  table_index = method_data_update() ? j : NullTableIndex;
 625     makes_backward_branch |= (dest <= bci());
 626     float c = default_cnt * ((float)match_int - next_lo);
 627     if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, NullTableIndex, c, trim_ranges))) {
 628       assert(default_dest != never_reached, "sentinel value for dead destinations");
 629       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex, c);
 630     }
 631     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
 632       assert(dest != never_reached, "sentinel value for dead destinations");
 633       ranges[++rp].set(match_int, dest, table_index, cnt);
 634     }
 635   }
 636   jint highest = table[3*(len-1)];
 637   assert(ranges[rp].hi() == highest, "");
 638   if (highest != max_jint &&
 639       !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest), trim_ranges)) {
 640     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest));
 641   }
 642   assert(rp < rnum, "not too many ranges");
 643 
 644   if (trim_ranges) {
 645     merge_ranges(ranges, rp);
 646   }
 647 
 648   // Safepoint in case backward branch observed
 649   if (makes_backward_branch && UseLoopSafepoints)
 650     add_safepoint();
 651 
 652   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 653 }
 654 
 655 static float if_prob(float taken_cnt, float total_cnt) {
 656   assert(taken_cnt <= total_cnt, "");
 657   if (total_cnt == 0) {
 658     return PROB_FAIR;
 659   }
 660   float p = taken_cnt / total_cnt;
 661   return MIN2(MAX2(p, PROB_MIN), PROB_MAX);
 662 }
 663 
 664 static float if_cnt(float cnt) {
 665   if (cnt == 0) {
 666     return COUNT_UNKNOWN;
 667   }
 668   return cnt;
 669 }
 670 
 671 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) {
 672   float total_cnt = 0;
 673   for (SwitchRange* sr = lo; sr <= hi; sr++) {
 674     total_cnt += sr->cnt();
 675   }
 676   return total_cnt;
 677 }
 678 
 679 class SwitchRanges : public ResourceObj {
 680 public:
 681   SwitchRange* _lo;
 682   SwitchRange* _hi;
 683   SwitchRange* _mid;
 684   float _cost;
 685 
 686   enum {
 687     Start,
 688     LeftDone,
 689     RightDone,
 690     Done
 691   } _state;
 692 
 693   SwitchRanges(SwitchRange *lo, SwitchRange *hi)
 694     : _lo(lo), _hi(hi), _mid(NULL),
 695       _cost(0), _state(Start) {
 696   }
 697 
 698   SwitchRanges()
 699     : _lo(NULL), _hi(NULL), _mid(NULL),
 700       _cost(0), _state(Start) {}
 701 };
 702 
 703 // Estimate cost of performing a binary search on lo..hi
 704 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) {
 705   GrowableArray<SwitchRanges> tree;
 706   SwitchRanges root(lo, hi);
 707   tree.push(root);
 708 
 709   float cost = 0;
 710   do {
 711     SwitchRanges& r = *tree.adr_at(tree.length()-1);
 712     if (r._hi != r._lo) {
 713       if (r._mid == NULL) {
 714         float r_cnt = sum_of_cnts(r._lo, r._hi);
 715 
 716         if (r_cnt == 0) {
 717           tree.pop();
 718           cost = 0;
 719           continue;
 720         }
 721 
 722         SwitchRange* mid = NULL;
 723         mid = r._lo;
 724         for (float cnt = 0; ; ) {
 725           assert(mid <= r._hi, "out of bounds");
 726           cnt += mid->cnt();
 727           if (cnt > r_cnt / 2) {
 728             break;
 729           }
 730           mid++;
 731         }
 732         assert(mid <= r._hi, "out of bounds");
 733         r._mid = mid;
 734         r._cost = r_cnt / total_cnt;
 735       }
 736       r._cost += cost;
 737       if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) {
 738         cost = 0;
 739         r._state = SwitchRanges::LeftDone;
 740         tree.push(SwitchRanges(r._lo, r._mid-1));
 741       } else if (r._state < SwitchRanges::RightDone) {
 742         cost = 0;
 743         r._state = SwitchRanges::RightDone;
 744         tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi));
 745       } else {
 746         tree.pop();
 747         cost = r._cost;
 748       }
 749     } else {
 750       tree.pop();
 751       cost = r._cost;
 752     }
 753   } while (tree.length() > 0);
 754 
 755 
 756   return cost;
 757 }
 758 
 759 // It sometimes pays off to test most common ranges before the binary search
 760 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) {
 761   uint nr = hi - lo + 1;
 762   float total_cnt = sum_of_cnts(lo, hi);
 763 
 764   float min = compute_tree_cost(lo, hi, total_cnt);
 765   float extra = 1;
 766   float sub = 0;
 767 
 768   SwitchRange* array1 = lo;
 769   SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr);
 770 
 771   SwitchRange* ranges = NULL;
 772 
 773   while (nr >= 2) {
 774     assert(lo == array1 || lo == array2, "one the 2 already allocated arrays");
 775     ranges = (lo == array1) ? array2 : array1;
 776 
 777     // Find highest frequency range
 778     SwitchRange* candidate = lo;
 779     for (SwitchRange* sr = lo+1; sr <= hi; sr++) {
 780       if (sr->cnt() > candidate->cnt()) {
 781         candidate = sr;
 782       }
 783     }
 784     SwitchRange most_freq = *candidate;
 785     if (most_freq.cnt() == 0) {
 786       break;
 787     }
 788 
 789     // Copy remaining ranges into another array
 790     int shift = 0;
 791     for (uint i = 0; i < nr; i++) {
 792       SwitchRange* sr = &lo[i];
 793       if (sr != candidate) {
 794         ranges[i-shift] = *sr;
 795       } else {
 796         shift++;
 797         if (i > 0 && i < nr-1) {
 798           SwitchRange prev = lo[i-1];
 799           prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.table_index(), prev.cnt());
 800           if (prev.adjoin(lo[i+1])) {
 801             shift++;
 802             i++;
 803           }
 804           ranges[i-shift] = prev;
 805         }
 806       }
 807     }
 808     nr -= shift;
 809 
 810     // Evaluate cost of testing the most common range and performing a
 811     // binary search on the other ranges
 812     float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt);
 813     if (cost >= min) {
 814       break;
 815     }
 816     // swap arrays
 817     lo = &ranges[0];
 818     hi = &ranges[nr-1];
 819 
 820     // It pays off: emit the test for the most common range
 821     assert(most_freq.cnt() > 0, "must be taken");
 822     Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo())));
 823     Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(most_freq.hi() - most_freq.lo())));
 824     Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le));
 825     IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt()));
 826     jump_if_true_fork(iff, most_freq.dest(), most_freq.table_index(), false);
 827 
 828     sub += most_freq.cnt() / total_cnt;
 829     extra += 1 - sub;
 830     min = cost;
 831   }
 832 }
 833 
 834 //----------------------------create_jump_tables-------------------------------
 835 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 836   // Are jumptables enabled
 837   if (!UseJumpTables)  return false;
 838 
 839   // Are jumptables supported
 840   if (!Matcher::has_match_rule(Op_Jump))  return false;
 841 
 842   // Don't make jump table if profiling
 843   if (method_data_update())  return false;
 844 
 845   bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 846 
 847   // Decide if a guard is needed to lop off big ranges at either (or
 848   // both) end(s) of the input set. We'll call this the default target
 849   // even though we can't be sure that it is the true "default".
 850 
 851   bool needs_guard = false;
 852   int default_dest;
 853   int64_t total_outlier_size = 0;
 854   int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
 855   int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
 856 
 857   if (lo->dest() == hi->dest()) {
 858     total_outlier_size = hi_size + lo_size;
 859     default_dest = lo->dest();
 860   } else if (lo_size > hi_size) {
 861     total_outlier_size = lo_size;
 862     default_dest = lo->dest();
 863   } else {
 864     total_outlier_size = hi_size;
 865     default_dest = hi->dest();
 866   }
 867 
 868   float total = sum_of_cnts(lo, hi);
 869   float cost = compute_tree_cost(lo, hi, total);
 870 
 871   // If a guard test will eliminate very sparse end ranges, then
 872   // it is worth the cost of an extra jump.
 873   float trimmed_cnt = 0;
 874   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 875     needs_guard = true;
 876     if (default_dest == lo->dest()) {
 877       trimmed_cnt += lo->cnt();
 878       lo++;
 879     }
 880     if (default_dest == hi->dest()) {
 881       trimmed_cnt += hi->cnt();
 882       hi--;
 883     }
 884   }
 885 
 886   // Find the total number of cases and ranges
 887   int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
 888   int num_range = hi - lo + 1;
 889 
 890   // Don't create table if: too large, too small, or too sparse.
 891   if (num_cases > MaxJumpTableSize)
 892     return false;
 893   if (UseSwitchProfiling) {
 894     // MinJumpTableSize is set so with a well balanced binary tree,
 895     // when the number of ranges is MinJumpTableSize, it's cheaper to
 896     // go through a JumpNode that a tree of IfNodes. Average cost of a
 897     // tree of IfNodes with MinJumpTableSize is
 898     // log2f(MinJumpTableSize) comparisons. So if the cost computed
 899     // from profile data is less than log2f(MinJumpTableSize) then
 900     // going with the binary search is cheaper.
 901     if (cost < log2f(MinJumpTableSize)) {
 902       return false;
 903     }
 904   } else {
 905     if (num_cases < MinJumpTableSize)
 906       return false;
 907   }
 908   if (num_cases > (MaxJumpTableSparseness * num_range))
 909     return false;
 910 
 911   // Normalize table lookups to zero
 912   int lowval = lo->lo();
 913   key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
 914 
 915   // Generate a guard to protect against input keyvals that aren't
 916   // in the switch domain.
 917   if (needs_guard) {
 918     Node*   size = _gvn.intcon(num_cases);
 919     Node*   cmp = _gvn.transform(new CmpUNode(key_val, size));
 920     Node*   tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge));
 921     IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt));
 922     jump_if_true_fork(iff, default_dest, NullTableIndex, trim_ranges && trimmed_cnt == 0);
 923 
 924     total -= trimmed_cnt;
 925   }
 926 
 927   // Create an ideal node JumpTable that has projections
 928   // of all possible ranges for a switch statement
 929   // The key_val input must be converted to a pointer offset and scaled.
 930   // Compare Parse::array_addressing above.
 931 
 932   // Clean the 32-bit int into a real 64-bit offset.
 933   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 934   const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
 935   // Make I2L conversion control dependent to prevent it from
 936   // floating above the range check during loop optimizations.
 937   key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
 938 
 939   // Shift the value by wordsize so we have an index into the table, rather
 940   // than a switch value
 941   Node *shiftWord = _gvn.MakeConX(wordSize);
 942   key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
 943 
 944   // Create the JumpNode
 945   Arena* arena = C->comp_arena();
 946   float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases);
 947   int i = 0;
 948   if (total == 0) {
 949     for (SwitchRange* r = lo; r <= hi; r++) {
 950       for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 951         probs[i] = 1.0F / num_cases;
 952       }
 953     }
 954   } else {
 955     for (SwitchRange* r = lo; r <= hi; r++) {
 956       float prob = r->cnt()/total;
 957       for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 958         probs[i] = prob / (r->hi() - r->lo() + 1);
 959       }
 960     }
 961   }
 962 
 963   ciMethodData* methodData = method()->method_data();
 964   ciMultiBranchData* profile = NULL;
 965   if (methodData->is_mature()) {
 966     ciProfileData* data = methodData->bci_to_data(bci());
 967     if (data != NULL && data->is_MultiBranchData()) {
 968       profile = (ciMultiBranchData*)data;
 969     }
 970   }
 971 
 972   Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == NULL ? COUNT_UNKNOWN : total));
 973 
 974   // These are the switch destinations hanging off the jumpnode
 975   i = 0;
 976   for (SwitchRange* r = lo; r <= hi; r++) {
 977     for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 978       Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
 979       {
 980         PreserveJVMState pjvms(this);
 981         set_control(input);
 982         jump_if_always_fork(r->dest(), r->table_index(), trim_ranges && r->cnt() == 0);
 983       }
 984     }
 985   }
 986   assert(i == num_cases, "miscount of cases");
 987   stop_and_kill_map();  // no more uses for this JVMS
 988   return true;
 989 }
 990 
 991 //----------------------------jump_switch_ranges-------------------------------
 992 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 993   Block* switch_block = block();
 994   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 995 
 996   if (switch_depth == 0) {
 997     // Do special processing for the top-level call.
 998     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 999     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
1000 
1001     // Decrement pred-numbers for the unique set of nodes.
1002 #ifdef ASSERT
1003     if (!trim_ranges) {
1004       // Ensure that the block's successors are a (duplicate-free) set.
1005       int successors_counted = 0;  // block occurrences in [hi..lo]
1006       int unique_successors = switch_block->num_successors();
1007       for (int i = 0; i < unique_successors; i++) {
1008         Block* target = switch_block->successor_at(i);
1009 
1010         // Check that the set of successors is the same in both places.
1011         int successors_found = 0;
1012         for (SwitchRange* p = lo; p <= hi; p++) {
1013           if (p->dest() == target->start())  successors_found++;
1014         }
1015         assert(successors_found > 0, "successor must be known");
1016         successors_counted += successors_found;
1017       }
1018       assert(successors_counted == (hi-lo)+1, "no unexpected successors");
1019     }
1020 #endif
1021 
1022     // Maybe prune the inputs, based on the type of key_val.
1023     jint min_val = min_jint;
1024     jint max_val = max_jint;
1025     const TypeInt* ti = key_val->bottom_type()->isa_int();
1026     if (ti != NULL) {
1027       min_val = ti->_lo;
1028       max_val = ti->_hi;
1029       assert(min_val <= max_val, "invalid int type");
1030     }
1031     while (lo->hi() < min_val) {
1032       lo++;
1033     }
1034     if (lo->lo() < min_val)  {
1035       lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index(), lo->cnt());
1036     }
1037     while (hi->lo() > max_val) {
1038       hi--;
1039     }
1040     if (hi->hi() > max_val) {
1041       hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index(), hi->cnt());
1042     }
1043 
1044     linear_search_switch_ranges(key_val, lo, hi);
1045   }
1046 
1047 #ifndef PRODUCT
1048   if (switch_depth == 0) {
1049     _max_switch_depth = 0;
1050     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
1051   }
1052 #endif
1053 
1054   assert(lo <= hi, "must be a non-empty set of ranges");
1055   if (lo == hi) {
1056     jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
1057   } else {
1058     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
1059     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
1060 
1061     if (create_jump_tables(key_val, lo, hi)) return;
1062 
1063     SwitchRange* mid = NULL;
1064     float total_cnt = sum_of_cnts(lo, hi);
1065 
1066     int nr = hi - lo + 1;
1067     if (UseSwitchProfiling) {
1068       // Don't keep the binary search tree balanced: pick up mid point
1069       // that split frequencies in half.
1070       float cnt = 0;
1071       for (SwitchRange* sr = lo; sr <= hi; sr++) {
1072         cnt += sr->cnt();
1073         if (cnt >= total_cnt / 2) {
1074           mid = sr;
1075           break;
1076         }
1077       }
1078     } else {
1079       mid = lo + nr/2;
1080 
1081       // if there is an easy choice, pivot at a singleton:
1082       if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
1083 
1084       assert(lo < mid && mid <= hi, "good pivot choice");
1085       assert(nr != 2 || mid == hi,   "should pick higher of 2");
1086       assert(nr != 3 || mid == hi-1, "should pick middle of 3");
1087     }
1088 
1089 
1090     Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo());
1091 
1092     if (mid->is_singleton()) {
1093       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt()));
1094       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index(), trim_ranges && mid->cnt() == 0);
1095 
1096       // Special Case:  If there are exactly three ranges, and the high
1097       // and low range each go to the same place, omit the "gt" test,
1098       // since it will not discriminate anything.
1099       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo;
1100 
1101       // if there is a higher range, test for it and process it:
1102       if (mid < hi && !eq_test_only) {
1103         // two comparisons of same values--should enable 1 test for 2 branches
1104         // Use BoolTest::le instead of BoolTest::gt
1105         float cnt = sum_of_cnts(lo, mid-1);
1106         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le, if_prob(cnt, total_cnt), if_cnt(cnt));
1107         Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
1108         Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
1109         { PreserveJVMState pjvms(this);
1110           set_control(iffalse);
1111           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
1112         }
1113         set_control(iftrue);
1114       }
1115 
1116     } else {
1117       // mid is a range, not a singleton, so treat mid..hi as a unit
1118       float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi);
1119       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt));
1120 
1121       // if there is a higher range, test for it and process it:
1122       if (mid == hi) {
1123         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index(), trim_ranges && cnt == 0);
1124       } else {
1125         Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
1126         Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
1127         { PreserveJVMState pjvms(this);
1128           set_control(iftrue);
1129           jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1);
1130         }
1131         set_control(iffalse);
1132       }
1133     }
1134 
1135     // in any case, process the lower range
1136     if (mid == lo) {
1137       if (mid->is_singleton()) {
1138         jump_switch_ranges(key_val, lo+1, hi, switch_depth+1);
1139       } else {
1140         jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
1141       }
1142     } else {
1143       jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
1144     }
1145   }
1146 
1147   // Decrease pred_count for each successor after all is done.
1148   if (switch_depth == 0) {
1149     int unique_successors = switch_block->num_successors();
1150     for (int i = 0; i < unique_successors; i++) {
1151       Block* target = switch_block->successor_at(i);
1152       // Throw away the pre-allocated path for each unique successor.
1153       target->next_path_num();
1154     }
1155   }
1156 
1157 #ifndef PRODUCT
1158   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
1159   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
1160     SwitchRange* r;
1161     int nsing = 0;
1162     for( r = lo; r <= hi; r++ ) {
1163       if( r->is_singleton() )  nsing++;
1164     }
1165     tty->print(">>> ");
1166     _method->print_short_name();
1167     tty->print_cr(" switch decision tree");
1168     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
1169                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
1170     if (_max_switch_depth > _est_switch_depth) {
1171       tty->print_cr("******** BAD SWITCH DEPTH ********");
1172     }
1173     tty->print("   ");
1174     for( r = lo; r <= hi; r++ ) {
1175       r->print();
1176     }
1177     tty->cr();
1178   }
1179 #endif
1180 }
1181 
1182 void Parse::modf() {
1183   Node *f2 = pop();
1184   Node *f1 = pop();
1185   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
1186                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
1187                               "frem", NULL, //no memory effects
1188                               f1, f2);
1189   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1190 
1191   push(res);
1192 }
1193 
1194 void Parse::modd() {
1195   Node *d2 = pop_pair();
1196   Node *d1 = pop_pair();
1197   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
1198                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
1199                               "drem", NULL, //no memory effects
1200                               d1, top(), d2, top());
1201   Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1202 
1203 #ifdef ASSERT
1204   Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
1205   assert(res_top == top(), "second value must be top");
1206 #endif
1207 
1208   push_pair(res_d);
1209 }
1210 
1211 void Parse::l2f() {
1212   Node* f2 = pop();
1213   Node* f1 = pop();
1214   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
1215                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
1216                               "l2f", NULL, //no memory effects
1217                               f1, f2);
1218   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1219 
1220   push(res);
1221 }
1222 
1223 void Parse::do_irem() {
1224   // Must keep both values on the expression-stack during null-check
1225   zero_check_int(peek());
1226   // Compile-time detect of null-exception?
1227   if (stopped())  return;
1228 
1229   Node* b = pop();
1230   Node* a = pop();
1231 
1232   const Type *t = _gvn.type(b);
1233   if (t != Type::TOP) {
1234     const TypeInt *ti = t->is_int();
1235     if (ti->is_con()) {
1236       int divisor = ti->get_con();
1237       // check for positive power of 2
1238       if (divisor > 0 &&
1239           (divisor & ~(divisor-1)) == divisor) {
1240         // yes !
1241         Node *mask = _gvn.intcon((divisor - 1));
1242         // Sigh, must handle negative dividends
1243         Node *zero = _gvn.intcon(0);
1244         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt, PROB_FAIR, COUNT_UNKNOWN);
1245         Node *iff = _gvn.transform( new IfFalseNode(ifff) );
1246         Node *ift = _gvn.transform( new IfTrueNode (ifff) );
1247         Node *reg = jump_if_join(ift, iff);
1248         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
1249         // Negative path; negate/and/negate
1250         Node *neg = _gvn.transform( new SubINode(zero, a) );
1251         Node *andn= _gvn.transform( new AndINode(neg, mask) );
1252         Node *negn= _gvn.transform( new SubINode(zero, andn) );
1253         phi->init_req(1, negn);
1254         // Fast positive case
1255         Node *andx = _gvn.transform( new AndINode(a, mask) );
1256         phi->init_req(2, andx);
1257         // Push the merge
1258         push( _gvn.transform(phi) );
1259         return;
1260       }
1261     }
1262   }
1263   // Default case
1264   push( _gvn.transform( new ModINode(control(),a,b) ) );
1265 }
1266 
1267 // Handle jsr and jsr_w bytecode
1268 void Parse::do_jsr() {
1269   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
1270 
1271   // Store information about current state, tagged with new _jsr_bci
1272   int return_bci = iter().next_bci();
1273   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
1274 
1275   // Update method data
1276   profile_taken_branch(jsr_bci);
1277 
1278   // The way we do things now, there is only one successor block
1279   // for the jsr, because the target code is cloned by ciTypeFlow.
1280   Block* target = successor_for_bci(jsr_bci);
1281 
1282   // What got pushed?
1283   const Type* ret_addr = target->peek();
1284   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
1285 
1286   // Effect on jsr on stack
1287   push(_gvn.makecon(ret_addr));
1288 
1289   // Flow to the jsr.
1290   merge(jsr_bci);
1291 }
1292 
1293 // Handle ret bytecode
1294 void Parse::do_ret() {
1295   // Find to whom we return.
1296   assert(block()->num_successors() == 1, "a ret can only go one place now");
1297   Block* target = block()->successor_at(0);
1298   assert(!target->is_ready(), "our arrival must be expected");
1299   profile_ret(target->flow()->start());
1300   int pnum = target->next_path_num();
1301   merge_common(target, pnum);
1302 }
1303 
1304 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
1305   if (btest != BoolTest::eq && btest != BoolTest::ne) {
1306     // Only ::eq and ::ne are supported for profile injection.
1307     return false;
1308   }
1309   if (test->is_Cmp() &&
1310       test->in(1)->Opcode() == Op_ProfileBoolean) {
1311     ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
1312     int false_cnt = profile->false_count();
1313     int  true_cnt = profile->true_count();
1314 
1315     // Counts matching depends on the actual test operation (::eq or ::ne).
1316     // No need to scale the counts because profile injection was designed
1317     // to feed exact counts into VM.
1318     taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
1319     not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
1320 
1321     profile->consume();
1322     return true;
1323   }
1324   return false;
1325 }
1326 //--------------------------dynamic_branch_prediction--------------------------
1327 // Try to gather dynamic branch prediction behavior.  Return a probability
1328 // of the branch being taken and set the "cnt" field.  Returns a -1.0
1329 // if we need to use static prediction for some reason.
1330 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
1331   ResourceMark rm;
1332 
1333   cnt  = COUNT_UNKNOWN;
1334 
1335   int     taken = 0;
1336   int not_taken = 0;
1337 
1338   bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
1339 
1340   if (use_mdo) {
1341     // Use MethodData information if it is available
1342     // FIXME: free the ProfileData structure
1343     ciMethodData* methodData = method()->method_data();
1344     if (!methodData->is_mature())  return PROB_UNKNOWN;
1345     ciProfileData* data = methodData->bci_to_data(bci());
1346     if (data == NULL) {
1347       return PROB_UNKNOWN;
1348     }
1349     if (!data->is_JumpData())  return PROB_UNKNOWN;
1350 
1351     // get taken and not taken values
1352     taken = data->as_JumpData()->taken();
1353     not_taken = 0;
1354     if (data->is_BranchData()) {
1355       not_taken = data->as_BranchData()->not_taken();
1356     }
1357 
1358     // scale the counts to be commensurate with invocation counts:
1359     taken = method()->scale_count(taken);
1360     not_taken = method()->scale_count(not_taken);
1361   }
1362 
1363   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
1364   // We also check that individual counters are positive first, otherwise the sum can become positive.
1365   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
1366     if (C->log() != NULL) {
1367       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
1368     }
1369     return PROB_UNKNOWN;
1370   }
1371 
1372   // Compute frequency that we arrive here
1373   float sum = taken + not_taken;
1374   // Adjust, if this block is a cloned private block but the
1375   // Jump counts are shared.  Taken the private counts for
1376   // just this path instead of the shared counts.
1377   if( block()->count() > 0 )
1378     sum = block()->count();
1379   cnt = sum / FreqCountInvocations;
1380 
1381   // Pin probability to sane limits
1382   float prob;
1383   if( !taken )
1384     prob = (0+PROB_MIN) / 2;
1385   else if( !not_taken )
1386     prob = (1+PROB_MAX) / 2;
1387   else {                         // Compute probability of true path
1388     prob = (float)taken / (float)(taken + not_taken);
1389     if (prob > PROB_MAX)  prob = PROB_MAX;
1390     if (prob < PROB_MIN)   prob = PROB_MIN;
1391   }
1392 
1393   assert((cnt > 0.0f) && (prob > 0.0f),
1394          "Bad frequency assignment in if");
1395 
1396   if (C->log() != NULL) {
1397     const char* prob_str = NULL;
1398     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
1399     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
1400     char prob_str_buf[30];
1401     if (prob_str == NULL) {
1402       sprintf(prob_str_buf, "%g", prob);
1403       prob_str = prob_str_buf;
1404     }
1405     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
1406                    iter().get_dest(), taken, not_taken, cnt, prob_str);
1407   }
1408   return prob;
1409 }
1410 
1411 //-----------------------------branch_prediction-------------------------------
1412 float Parse::branch_prediction(float& cnt,
1413                                BoolTest::mask btest,
1414                                int target_bci,
1415                                Node* test) {
1416   float prob = dynamic_branch_prediction(cnt, btest, test);
1417   // If prob is unknown, switch to static prediction
1418   if (prob != PROB_UNKNOWN)  return prob;
1419 
1420   prob = PROB_FAIR;                   // Set default value
1421   if (btest == BoolTest::eq)          // Exactly equal test?
1422     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
1423   else if (btest == BoolTest::ne)
1424     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
1425 
1426   // If this is a conditional test guarding a backwards branch,
1427   // assume its a loop-back edge.  Make it a likely taken branch.
1428   if (target_bci < bci()) {
1429     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
1430       // Since it's an OSR, we probably have profile data, but since
1431       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
1432       // Let's make a special check here for completely zero counts.
1433       ciMethodData* methodData = method()->method_data();
1434       if (!methodData->is_empty()) {
1435         ciProfileData* data = methodData->bci_to_data(bci());
1436         // Only stop for truly zero counts, which mean an unknown part
1437         // of the OSR-ed method, and we want to deopt to gather more stats.
1438         // If you have ANY counts, then this loop is simply 'cold' relative
1439         // to the OSR loop.
1440         if (data == NULL ||
1441             (data->as_BranchData()->taken() +  data->as_BranchData()->not_taken() == 0)) {
1442           // This is the only way to return PROB_UNKNOWN:
1443           return PROB_UNKNOWN;
1444         }
1445       }
1446     }
1447     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
1448   }
1449 
1450   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
1451   return prob;
1452 }
1453 
1454 // The magic constants are chosen so as to match the output of
1455 // branch_prediction() when the profile reports a zero taken count.
1456 // It is important to distinguish zero counts unambiguously, because
1457 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
1458 // very small but nonzero probabilities, which if confused with zero
1459 // counts would keep the program recompiling indefinitely.
1460 bool Parse::seems_never_taken(float prob) const {
1461   return prob < PROB_MIN;
1462 }
1463 
1464 // True if the comparison seems to be the kind that will not change its
1465 // statistics from true to false.  See comments in adjust_map_after_if.
1466 // This question is only asked along paths which are already
1467 // classifed as untaken (by seems_never_taken), so really,
1468 // if a path is never taken, its controlling comparison is
1469 // already acting in a stable fashion.  If the comparison
1470 // seems stable, we will put an expensive uncommon trap
1471 // on the untaken path.
1472 bool Parse::seems_stable_comparison() const {
1473   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
1474     return false;
1475   }
1476   return true;
1477 }
1478 
1479 //-------------------------------repush_if_args--------------------------------
1480 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
1481 inline int Parse::repush_if_args() {
1482   if (PrintOpto && WizardMode) {
1483     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
1484                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
1485     method()->print_name(); tty->cr();
1486   }
1487   int bc_depth = - Bytecodes::depth(iter().cur_bc());
1488   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
1489   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
1490   assert(argument(0) != NULL, "must exist");
1491   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
1492   inc_sp(bc_depth);
1493   return bc_depth;
1494 }
1495 
1496 //----------------------------------do_ifnull----------------------------------
1497 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
1498   int target_bci = iter().get_dest();
1499 
1500   Block* branch_block = successor_for_bci(target_bci);
1501   Block* next_block   = successor_for_bci(iter().next_bci());
1502 
1503   float cnt;
1504   float prob = branch_prediction(cnt, btest, target_bci, c);
1505   if (prob == PROB_UNKNOWN) {
1506     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
1507     if (PrintOpto && Verbose) {
1508       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1509     }
1510     repush_if_args(); // to gather stats on loop
1511     // We need to mark this branch as taken so that if we recompile we will
1512     // see that it is possible. In the tiered system the interpreter doesn't
1513     // do profiling and by the time we get to the lower tier from the interpreter
1514     // the path may be cold again. Make sure it doesn't look untaken
1515     profile_taken_branch(target_bci, !ProfileInterpreter);
1516     uncommon_trap(Deoptimization::Reason_unreached,
1517                   Deoptimization::Action_reinterpret,
1518                   NULL, "cold");
1519     if (C->eliminate_boxing()) {
1520       // Mark the successor blocks as parsed
1521       branch_block->next_path_num();
1522       next_block->next_path_num();
1523     }
1524     return;
1525   }
1526 
1527   NOT_PRODUCT(explicit_null_checks_inserted++);
1528 
1529   // Generate real control flow
1530   Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1531 
1532   // Sanity check the probability value
1533   assert(prob > 0.0f,"Bad probability in Parser");
1534  // Need xform to put node in hash table
1535   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1536   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1537   // True branch
1538   { PreserveJVMState pjvms(this);
1539     Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1540     set_control(iftrue);
1541 
1542     if (stopped()) {            // Path is dead?
1543       NOT_PRODUCT(explicit_null_checks_elided++);
1544       if (C->eliminate_boxing()) {
1545         // Mark the successor block as parsed
1546         branch_block->next_path_num();
1547       }
1548     } else {                    // Path is live.
1549       // Update method data
1550       profile_taken_branch(target_bci);
1551       adjust_map_after_if(btest, c, prob, branch_block);
1552       if (!stopped()) {
1553         merge(target_bci);
1554       }
1555     }
1556   }
1557 
1558   // False branch
1559   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1560   set_control(iffalse);
1561 
1562   if (stopped()) {              // Path is dead?
1563     NOT_PRODUCT(explicit_null_checks_elided++);
1564     if (C->eliminate_boxing()) {
1565       // Mark the successor block as parsed
1566       next_block->next_path_num();
1567     }
1568   } else  {                     // Path is live.
1569     // Update method data
1570     profile_not_taken_branch();
1571     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1572   }
1573 }
1574 
1575 //------------------------------------do_if------------------------------------
1576 void Parse::do_if(BoolTest::mask btest, Node* c, bool new_path, Node** ctrl_taken) {
1577   int target_bci = iter().get_dest();
1578 
1579   Block* branch_block = successor_for_bci(target_bci);
1580   Block* next_block   = successor_for_bci(iter().next_bci());
1581 
1582   float cnt;
1583   float prob = branch_prediction(cnt, btest, target_bci, c);
1584   float untaken_prob = 1.0 - prob;
1585 
1586   if (prob == PROB_UNKNOWN) {
1587     if (PrintOpto && Verbose) {
1588       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1589     }
1590     repush_if_args(); // to gather stats on loop
1591     // We need to mark this branch as taken so that if we recompile we will
1592     // see that it is possible. In the tiered system the interpreter doesn't
1593     // do profiling and by the time we get to the lower tier from the interpreter
1594     // the path may be cold again. Make sure it doesn't look untaken
1595     profile_taken_branch(target_bci, !ProfileInterpreter);
1596     uncommon_trap(Deoptimization::Reason_unreached,
1597                   Deoptimization::Action_reinterpret,
1598                   NULL, "cold");
1599     if (C->eliminate_boxing()) {
1600       // Mark the successor blocks as parsed
1601       branch_block->next_path_num();
1602       next_block->next_path_num();
1603     }
1604     return;
1605   }
1606 
1607   // Sanity check the probability value
1608   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1609 
1610   bool taken_if_true = true;
1611   // Convert BoolTest to canonical form:
1612   if (!BoolTest(btest).is_canonical()) {
1613     btest         = BoolTest(btest).negate();
1614     taken_if_true = false;
1615     // prob is NOT updated here; it remains the probability of the taken
1616     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1617   }
1618   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1619 
1620   Node* tst0 = new BoolNode(c, btest);
1621   Node* tst = _gvn.transform(tst0);
1622   BoolTest::mask taken_btest   = BoolTest::illegal;
1623   BoolTest::mask untaken_btest = BoolTest::illegal;
1624 
1625   if (tst->is_Bool()) {
1626     // Refresh c from the transformed bool node, since it may be
1627     // simpler than the original c.  Also re-canonicalize btest.
1628     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1629     // That can arise from statements like: if (x instanceof C) ...
1630     if (tst != tst0) {
1631       // Canonicalize one more time since transform can change it.
1632       btest = tst->as_Bool()->_test._test;
1633       if (!BoolTest(btest).is_canonical()) {
1634         // Reverse edges one more time...
1635         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1636         btest = tst->as_Bool()->_test._test;
1637         assert(BoolTest(btest).is_canonical(), "sanity");
1638         taken_if_true = !taken_if_true;
1639       }
1640       c = tst->in(1);
1641     }
1642     BoolTest::mask neg_btest = BoolTest(btest).negate();
1643     taken_btest   = taken_if_true ?     btest : neg_btest;
1644     untaken_btest = taken_if_true ? neg_btest :     btest;
1645   }
1646 
1647   // Generate real control flow
1648   float true_prob = (taken_if_true ? prob : untaken_prob);
1649   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1650   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1651   Node* taken_branch   = new IfTrueNode(iff);
1652   Node* untaken_branch = new IfFalseNode(iff);
1653   if (!taken_if_true) {  // Finish conversion to canonical form
1654     Node* tmp      = taken_branch;
1655     taken_branch   = untaken_branch;
1656     untaken_branch = tmp;
1657   }
1658 
1659   // Branch is taken:
1660   { PreserveJVMState pjvms(this);
1661     taken_branch = _gvn.transform(taken_branch);
1662     set_control(taken_branch);
1663 
1664     if (stopped()) {
1665       if (C->eliminate_boxing() && !new_path) {
1666         // Mark the successor block as parsed (if we haven't created a new path)
1667         branch_block->next_path_num();
1668       }
1669     } else {
1670       // Update method data
1671       profile_taken_branch(target_bci);
1672       adjust_map_after_if(taken_btest, c, prob, branch_block);
1673       if (!stopped()) {
1674         if (new_path) {
1675           // Merge by using a new path
1676           merge_new_path(target_bci);
1677         } else if (ctrl_taken != NULL) {
1678           // Don't merge but save taken branch to be wired by caller
1679           *ctrl_taken = control();
1680         } else {
1681           merge(target_bci);
1682         }
1683       }
1684     }
1685   }
1686 
1687   untaken_branch = _gvn.transform(untaken_branch);
1688   set_control(untaken_branch);
1689 
1690   // Branch not taken.
1691   if (stopped() && ctrl_taken == NULL) {
1692     if (C->eliminate_boxing()) {
1693       // Mark the successor block as parsed (if caller does not re-wire control flow)
1694       next_block->next_path_num();
1695     }
1696   } else {
1697     // Update method data
1698     profile_not_taken_branch();
1699     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);
1700   }
1701 }
1702 
1703 void Parse::do_acmp(BoolTest::mask btest, Node* a, Node* b) {
1704   // In the case were both operands might be value types, we need to
1705   // use the new acmp implementation. Otherwise, i.e. if one operand
1706   // is not a value type, we can use the old acmp implementation.
1707   Node* cmp = C->optimize_acmp(&_gvn, a, b);
1708   if (cmp != NULL) {
1709     // Use optimized/old acmp
1710     cmp = optimize_cmp_with_klass(_gvn.transform(cmp));
1711     do_if(btest, cmp);
1712     return;
1713   }
1714 
1715   Node* ctrl = NULL;
1716   bool safe_for_replace = true;
1717   if (!UsePointerPerturbation) {
1718     // Emit old acmp before new acmp for quick a != b check
1719     cmp = CmpP(a, b);
1720     cmp = optimize_cmp_with_klass(_gvn.transform(cmp));
1721     if (btest == BoolTest::ne) {
1722       do_if(btest, cmp, true);
1723       if (stopped()) {
1724         return; // Never equal
1725       }
1726     } else if (btest == BoolTest::eq) {
1727       Node* is_equal = NULL;
1728       {
1729         PreserveJVMState pjvms(this);
1730         do_if(btest, cmp, false, &is_equal);
1731         if (!stopped()) {
1732           // Not equal, skip valuetype check
1733           ctrl = new RegionNode(3);
1734           ctrl->init_req(1, control());
1735           _gvn.set_type(ctrl, Type::CONTROL);
1736           record_for_igvn(ctrl);
1737           safe_for_replace = false;
1738         }
1739       }
1740       if (is_equal == NULL) {
1741         assert(ctrl != NULL, "no control left");
1742         set_control(_gvn.transform(ctrl));
1743         return; // Never equal
1744       }
1745       set_control(is_equal);
1746     }
1747   }
1748 
1749   // Null check operand before loading the is_value bit
1750   bool speculate = false;
1751   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(b))) {
1752     // Operand 'b' is never null, swap operands to avoid null check
1753     swap(a, b);
1754   } else if (!too_many_traps(Deoptimization::Reason_speculate_null_check)) {
1755     // Speculate on non-nullness of one operand
1756     if (!_gvn.type(a)->speculative_maybe_null()) {
1757       speculate = true;
1758     } else if (!_gvn.type(b)->speculative_maybe_null()) {
1759       speculate = true;
1760       swap(a, b);
1761     }
1762   }
1763   inc_sp(2);
1764   Node* null_ctl = top();
1765   Node* not_null_a = null_check_oop(a, &null_ctl, speculate, safe_for_replace, speculate);
1766   assert(!stopped(), "operand is always null");
1767   dec_sp(2);
1768   Node* region = new RegionNode(2);
1769   Node* is_value = new PhiNode(region, TypeX_X);
1770   if (null_ctl != top()) {
1771     assert(!speculate, "should never be null");
1772     region->add_req(null_ctl);
1773     is_value->add_req(_gvn.MakeConX(0));
1774   }
1775 
1776   Node* value_mask = _gvn.MakeConX(markOopDesc::always_locked_pattern);
1777   if (UsePointerPerturbation) {
1778     Node* mark_addr = basic_plus_adr(not_null_a, oopDesc::mark_offset_in_bytes());
1779     Node* mark = make_load(NULL, mark_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1780     Node* not_mark = _gvn.transform(new XorXNode(mark, _gvn.MakeConX(-1)));
1781     Node* andn = _gvn.transform(new AndXNode(not_mark, value_mask));
1782     Node* neg_if_value = _gvn.transform(new SubXNode(andn, _gvn.MakeConX(1)));
1783     is_value->init_req(1, _gvn.transform(new RShiftXNode(neg_if_value, _gvn.intcon(63))));
1784   } else {
1785     is_value->init_req(1, is_always_locked(not_null_a));
1786   }
1787   region->init_req(1, control());
1788 
1789   set_control(_gvn.transform(region));
1790   is_value = _gvn.transform(is_value);
1791 
1792   if (UsePointerPerturbation) {
1793     // Perturbe oop if operand is a value type to make comparison fail
1794     Node* pert = _gvn.transform(new AddPNode(a, a, is_value));
1795     cmp = _gvn.transform(new CmpPNode(pert, b));
1796   } else {
1797     // Check for a value type because we already know that operands are equal
1798     cmp = _gvn.transform(new CmpXNode(is_value, value_mask));
1799     btest = (btest == BoolTest::eq) ? BoolTest::ne : BoolTest::eq;
1800   }
1801   cmp = optimize_cmp_with_klass(cmp);
1802   do_if(btest, cmp);
1803 
1804   if (ctrl != NULL) {
1805     ctrl->init_req(2, control());
1806     set_control(_gvn.transform(ctrl));
1807   }
1808 }
1809 
1810 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1811   // Don't want to speculate on uncommon traps when running with -Xcomp
1812   if (!UseInterpreter) {
1813     return false;
1814   }
1815   return (seems_never_taken(prob) && seems_stable_comparison());
1816 }
1817 
1818 void Parse::maybe_add_predicate_after_if(Block* path) {
1819   if (path->is_SEL_head() && path->preds_parsed() == 0) {
1820     // Add predicates at bci of if dominating the loop so traps can be
1821     // recorded on the if's profile data
1822     int bc_depth = repush_if_args();
1823     add_predicate();
1824     dec_sp(bc_depth);
1825     path->set_has_predicates();
1826   }
1827 }
1828 
1829 
1830 //----------------------------adjust_map_after_if------------------------------
1831 // Adjust the JVM state to reflect the result of taking this path.
1832 // Basically, it means inspecting the CmpNode controlling this
1833 // branch, seeing how it constrains a tested value, and then
1834 // deciding if it's worth our while to encode this constraint
1835 // as graph nodes in the current abstract interpretation map.
1836 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
1837   if (!c->is_Cmp()) {
1838     maybe_add_predicate_after_if(path);
1839     return;
1840   }
1841 
1842   if (stopped() || btest == BoolTest::illegal) {
1843     return;                             // nothing to do
1844   }
1845 
1846   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1847 
1848   if (path_is_suitable_for_uncommon_trap(prob)) {
1849     repush_if_args();
1850     uncommon_trap(Deoptimization::Reason_unstable_if,
1851                   Deoptimization::Action_reinterpret,
1852                   NULL,
1853                   (is_fallthrough ? "taken always" : "taken never"));
1854     return;
1855   }
1856 
1857   Node* val = c->in(1);
1858   Node* con = c->in(2);
1859   const Type* tcon = _gvn.type(con);
1860   const Type* tval = _gvn.type(val);
1861   bool have_con = tcon->singleton();
1862   if (tval->singleton()) {
1863     if (!have_con) {
1864       // Swap, so constant is in con.
1865       con  = val;
1866       tcon = tval;
1867       val  = c->in(2);
1868       tval = _gvn.type(val);
1869       btest = BoolTest(btest).commute();
1870       have_con = true;
1871     } else {
1872       // Do we have two constants?  Then leave well enough alone.
1873       have_con = false;
1874     }
1875   }
1876   if (!have_con) {                        // remaining adjustments need a con
1877     maybe_add_predicate_after_if(path);
1878     return;
1879   }
1880 
1881   sharpen_type_after_if(btest, con, tcon, val, tval);
1882   maybe_add_predicate_after_if(path);
1883 }
1884 
1885 
1886 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1887   Node* ldk;
1888   if (n->is_DecodeNKlass()) {
1889     if (n->in(1)->Opcode() != Op_LoadNKlass) {
1890       return NULL;
1891     } else {
1892       ldk = n->in(1);
1893     }
1894   } else if (n->Opcode() != Op_LoadKlass) {
1895     return NULL;
1896   } else {
1897     ldk = n;
1898   }
1899   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1900 
1901   Node* adr = ldk->in(MemNode::Address);
1902   intptr_t off = 0;
1903   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1904   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1905     return NULL;
1906   const TypePtr* tp = gvn->type(obj)->is_ptr();
1907   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1908     return NULL;
1909 
1910   return obj;
1911 }
1912 
1913 void Parse::sharpen_type_after_if(BoolTest::mask btest,
1914                                   Node* con, const Type* tcon,
1915                                   Node* val, const Type* tval) {
1916   // Look for opportunities to sharpen the type of a node
1917   // whose klass is compared with a constant klass.
1918   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1919     Node* obj = extract_obj_from_klass_load(&_gvn, val);
1920     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1921     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1922        // Found:
1923        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1924        // or the narrowOop equivalent.
1925        const Type* obj_type = _gvn.type(obj);
1926        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1927        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1928            tboth->higher_equal(obj_type)) {
1929           // obj has to be of the exact type Foo if the CmpP succeeds.
1930           int obj_in_map = map()->find_edge(obj);
1931           JVMState* jvms = this->jvms();
1932           if (obj_in_map >= 0 &&
1933               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1934             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1935             const Type* tcc = ccast->as_Type()->type();
1936             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1937             // Delay transform() call to allow recovery of pre-cast value
1938             // at the control merge.
1939             _gvn.set_type_bottom(ccast);
1940             record_for_igvn(ccast);
1941             // Here's the payoff.
1942             replace_in_map(obj, ccast);
1943           }
1944        }
1945     }
1946   }
1947 
1948   int val_in_map = map()->find_edge(val);
1949   if (val_in_map < 0)  return;          // replace_in_map would be useless
1950   {
1951     JVMState* jvms = this->jvms();
1952     if (!(jvms->is_loc(val_in_map) ||
1953           jvms->is_stk(val_in_map)))
1954       return;                           // again, it would be useless
1955   }
1956 
1957   // Check for a comparison to a constant, and "know" that the compared
1958   // value is constrained on this path.
1959   assert(tcon->singleton(), "");
1960   ConstraintCastNode* ccast = NULL;
1961   Node* cast = NULL;
1962 
1963   switch (btest) {
1964   case BoolTest::eq:                    // Constant test?
1965     {
1966       const Type* tboth = tcon->join_speculative(tval);
1967       if (tboth == tval)  break;        // Nothing to gain.
1968       if (tcon->isa_int()) {
1969         ccast = new CastIINode(val, tboth);
1970       } else if (tcon == TypePtr::NULL_PTR) {
1971         // Cast to null, but keep the pointer identity temporarily live.
1972         ccast = new CastPPNode(val, tboth);
1973       } else {
1974         const TypeF* tf = tcon->isa_float_constant();
1975         const TypeD* td = tcon->isa_double_constant();
1976         // Exclude tests vs float/double 0 as these could be
1977         // either +0 or -0.  Just because you are equal to +0
1978         // doesn't mean you ARE +0!
1979         // Note, following code also replaces Long and Oop values.
1980         if ((!tf || tf->_f != 0.0) &&
1981             (!td || td->_d != 0.0))
1982           cast = con;                   // Replace non-constant val by con.
1983       }
1984     }
1985     break;
1986 
1987   case BoolTest::ne:
1988     if (tcon == TypePtr::NULL_PTR) {
1989       cast = cast_not_null(val, false);
1990     }
1991     break;
1992 
1993   default:
1994     // (At this point we could record int range types with CastII.)
1995     break;
1996   }
1997 
1998   if (ccast != NULL) {
1999     const Type* tcc = ccast->as_Type()->type();
2000     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
2001     // Delay transform() call to allow recovery of pre-cast value
2002     // at the control merge.
2003     ccast->set_req(0, control());
2004     _gvn.set_type_bottom(ccast);
2005     record_for_igvn(ccast);
2006     cast = ccast;
2007   }
2008 
2009   if (cast != NULL) {                   // Here's the payoff.
2010     replace_in_map(val, cast);
2011   }
2012 }
2013 
2014 /**
2015  * Use speculative type to optimize CmpP node: if comparison is
2016  * against the low level class, cast the object to the speculative
2017  * type if any. CmpP should then go away.
2018  *
2019  * @param c  expected CmpP node
2020  * @return   result of CmpP on object casted to speculative type
2021  *
2022  */
2023 Node* Parse::optimize_cmp_with_klass(Node* c) {
2024   // If this is transformed by the _gvn to a comparison with the low
2025   // level klass then we may be able to use speculation
2026   if (c->Opcode() == Op_CmpP &&
2027       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
2028       c->in(2)->is_Con()) {
2029     Node* load_klass = NULL;
2030     Node* decode = NULL;
2031     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
2032       decode = c->in(1);
2033       load_klass = c->in(1)->in(1);
2034     } else {
2035       load_klass = c->in(1);
2036     }
2037     if (load_klass->in(2)->is_AddP()) {
2038       Node* addp = load_klass->in(2);
2039       Node* obj = addp->in(AddPNode::Address);
2040       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2041       if (obj_type->speculative_type_not_null() != NULL) {
2042         ciKlass* k = obj_type->speculative_type();
2043         inc_sp(2);
2044         obj = maybe_cast_profiled_obj(obj, k);
2045         dec_sp(2);
2046         if (obj->is_ValueType()) {
2047           assert(obj->as_ValueType()->is_allocated(&_gvn), "must be allocated");
2048           obj = obj->as_ValueType()->get_oop();
2049         }
2050         // Make the CmpP use the casted obj
2051         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
2052         load_klass = load_klass->clone();
2053         load_klass->set_req(2, addp);
2054         load_klass = _gvn.transform(load_klass);
2055         if (decode != NULL) {
2056           decode = decode->clone();
2057           decode->set_req(1, load_klass);
2058           load_klass = _gvn.transform(decode);
2059         }
2060         c = c->clone();
2061         c->set_req(1, load_klass);
2062         c = _gvn.transform(c);
2063       }
2064     }
2065   }
2066   return c;
2067 }
2068 
2069 //------------------------------do_one_bytecode--------------------------------
2070 // Parse this bytecode, and alter the Parsers JVM->Node mapping
2071 void Parse::do_one_bytecode() {
2072   Node *a, *b, *c, *d;          // Handy temps
2073   BoolTest::mask btest;
2074   int i;
2075 
2076   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
2077 
2078   if (C->check_node_count(NodeLimitFudgeFactor * 5,
2079                           "out of nodes parsing method")) {
2080     return;
2081   }
2082 
2083 #ifdef ASSERT
2084   // for setting breakpoints
2085   if (TraceOptoParse) {
2086     tty->print(" @");
2087     dump_bci(bci());
2088     tty->cr();
2089   }
2090 #endif
2091 
2092   switch (bc()) {
2093   case Bytecodes::_nop:
2094     // do nothing
2095     break;
2096   case Bytecodes::_lconst_0:
2097     push_pair(longcon(0));
2098     break;
2099 
2100   case Bytecodes::_lconst_1:
2101     push_pair(longcon(1));
2102     break;
2103 
2104   case Bytecodes::_fconst_0:
2105     push(zerocon(T_FLOAT));
2106     break;
2107 
2108   case Bytecodes::_fconst_1:
2109     push(makecon(TypeF::ONE));
2110     break;
2111 
2112   case Bytecodes::_fconst_2:
2113     push(makecon(TypeF::make(2.0f)));
2114     break;
2115 
2116   case Bytecodes::_dconst_0:
2117     push_pair(zerocon(T_DOUBLE));
2118     break;
2119 
2120   case Bytecodes::_dconst_1:
2121     push_pair(makecon(TypeD::ONE));
2122     break;
2123 
2124   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
2125   case Bytecodes::_iconst_0: push(intcon( 0)); break;
2126   case Bytecodes::_iconst_1: push(intcon( 1)); break;
2127   case Bytecodes::_iconst_2: push(intcon( 2)); break;
2128   case Bytecodes::_iconst_3: push(intcon( 3)); break;
2129   case Bytecodes::_iconst_4: push(intcon( 4)); break;
2130   case Bytecodes::_iconst_5: push(intcon( 5)); break;
2131   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
2132   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
2133   case Bytecodes::_aconst_null: push(null());  break;
2134   case Bytecodes::_ldc:
2135   case Bytecodes::_ldc_w:
2136   case Bytecodes::_ldc2_w:
2137     // If the constant is unresolved, run this BC once in the interpreter.
2138     {
2139       ciConstant constant = iter().get_constant();
2140       if (!constant.is_valid() ||
2141           (constant.basic_type() == T_OBJECT &&
2142            !constant.as_object()->is_loaded())) {
2143         int index = iter().get_constant_pool_index();
2144         constantTag tag = iter().get_constant_pool_tag(index);
2145         uncommon_trap(Deoptimization::make_trap_request
2146                       (Deoptimization::Reason_unloaded,
2147                        Deoptimization::Action_reinterpret,
2148                        index),
2149                       NULL, tag.internal_name());
2150         break;
2151       }
2152       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
2153              "must be java_mirror of klass");
2154       const Type* con_type = Type::make_from_constant(constant);
2155       if (con_type != NULL) {
2156         push_node(con_type->basic_type(), makecon(con_type));
2157       }
2158     }
2159 
2160     break;
2161 
2162   case Bytecodes::_aload_0:
2163     push( local(0) );
2164     break;
2165   case Bytecodes::_aload_1:
2166     push( local(1) );
2167     break;
2168   case Bytecodes::_aload_2:
2169     push( local(2) );
2170     break;
2171   case Bytecodes::_aload_3:
2172     push( local(3) );
2173     break;
2174   case Bytecodes::_aload:
2175     push( local(iter().get_index()) );
2176     break;
2177 
2178   case Bytecodes::_fload_0:
2179   case Bytecodes::_iload_0:
2180     push( local(0) );
2181     break;
2182   case Bytecodes::_fload_1:
2183   case Bytecodes::_iload_1:
2184     push( local(1) );
2185     break;
2186   case Bytecodes::_fload_2:
2187   case Bytecodes::_iload_2:
2188     push( local(2) );
2189     break;
2190   case Bytecodes::_fload_3:
2191   case Bytecodes::_iload_3:
2192     push( local(3) );
2193     break;
2194   case Bytecodes::_fload:
2195   case Bytecodes::_iload:
2196     push( local(iter().get_index()) );
2197     break;
2198   case Bytecodes::_lload_0:
2199     push_pair_local( 0 );
2200     break;
2201   case Bytecodes::_lload_1:
2202     push_pair_local( 1 );
2203     break;
2204   case Bytecodes::_lload_2:
2205     push_pair_local( 2 );
2206     break;
2207   case Bytecodes::_lload_3:
2208     push_pair_local( 3 );
2209     break;
2210   case Bytecodes::_lload:
2211     push_pair_local( iter().get_index() );
2212     break;
2213 
2214   case Bytecodes::_dload_0:
2215     push_pair_local(0);
2216     break;
2217   case Bytecodes::_dload_1:
2218     push_pair_local(1);
2219     break;
2220   case Bytecodes::_dload_2:
2221     push_pair_local(2);
2222     break;
2223   case Bytecodes::_dload_3:
2224     push_pair_local(3);
2225     break;
2226   case Bytecodes::_dload:
2227     push_pair_local(iter().get_index());
2228     break;
2229   case Bytecodes::_fstore_0:
2230   case Bytecodes::_istore_0:
2231   case Bytecodes::_astore_0:
2232     set_local( 0, pop() );
2233     break;
2234   case Bytecodes::_fstore_1:
2235   case Bytecodes::_istore_1:
2236   case Bytecodes::_astore_1:
2237     set_local( 1, pop() );
2238     break;
2239   case Bytecodes::_fstore_2:
2240   case Bytecodes::_istore_2:
2241   case Bytecodes::_astore_2:
2242     set_local( 2, pop() );
2243     break;
2244   case Bytecodes::_fstore_3:
2245   case Bytecodes::_istore_3:
2246   case Bytecodes::_astore_3:
2247     set_local( 3, pop() );
2248     break;
2249   case Bytecodes::_fstore:
2250   case Bytecodes::_istore:
2251   case Bytecodes::_astore:
2252     set_local( iter().get_index(), pop() );
2253     break;
2254   // long stores
2255   case Bytecodes::_lstore_0:
2256     set_pair_local( 0, pop_pair() );
2257     break;
2258   case Bytecodes::_lstore_1:
2259     set_pair_local( 1, pop_pair() );
2260     break;
2261   case Bytecodes::_lstore_2:
2262     set_pair_local( 2, pop_pair() );
2263     break;
2264   case Bytecodes::_lstore_3:
2265     set_pair_local( 3, pop_pair() );
2266     break;
2267   case Bytecodes::_lstore:
2268     set_pair_local( iter().get_index(), pop_pair() );
2269     break;
2270 
2271   // double stores
2272   case Bytecodes::_dstore_0:
2273     set_pair_local( 0, dstore_rounding(pop_pair()) );
2274     break;
2275   case Bytecodes::_dstore_1:
2276     set_pair_local( 1, dstore_rounding(pop_pair()) );
2277     break;
2278   case Bytecodes::_dstore_2:
2279     set_pair_local( 2, dstore_rounding(pop_pair()) );
2280     break;
2281   case Bytecodes::_dstore_3:
2282     set_pair_local( 3, dstore_rounding(pop_pair()) );
2283     break;
2284   case Bytecodes::_dstore:
2285     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
2286     break;
2287 
2288   case Bytecodes::_pop:  dec_sp(1);   break;
2289   case Bytecodes::_pop2: dec_sp(2);   break;
2290   case Bytecodes::_swap:
2291     a = pop();
2292     b = pop();
2293     push(a);
2294     push(b);
2295     break;
2296   case Bytecodes::_dup:
2297     a = pop();
2298     push(a);
2299     push(a);
2300     break;
2301   case Bytecodes::_dup_x1:
2302     a = pop();
2303     b = pop();
2304     push( a );
2305     push( b );
2306     push( a );
2307     break;
2308   case Bytecodes::_dup_x2:
2309     a = pop();
2310     b = pop();
2311     c = pop();
2312     push( a );
2313     push( c );
2314     push( b );
2315     push( a );
2316     break;
2317   case Bytecodes::_dup2:
2318     a = pop();
2319     b = pop();
2320     push( b );
2321     push( a );
2322     push( b );
2323     push( a );
2324     break;
2325 
2326   case Bytecodes::_dup2_x1:
2327     // before: .. c, b, a
2328     // after:  .. b, a, c, b, a
2329     // not tested
2330     a = pop();
2331     b = pop();
2332     c = pop();
2333     push( b );
2334     push( a );
2335     push( c );
2336     push( b );
2337     push( a );
2338     break;
2339   case Bytecodes::_dup2_x2:
2340     // before: .. d, c, b, a
2341     // after:  .. b, a, d, c, b, a
2342     // not tested
2343     a = pop();
2344     b = pop();
2345     c = pop();
2346     d = pop();
2347     push( b );
2348     push( a );
2349     push( d );
2350     push( c );
2351     push( b );
2352     push( a );
2353     break;
2354 
2355   case Bytecodes::_arraylength: {
2356     // Must do null-check with value on expression stack
2357     Node *ary = null_check(peek(), T_ARRAY);
2358     // Compile-time detect of null-exception?
2359     if (stopped())  return;
2360     a = pop();
2361     push(load_array_length(a));
2362     break;
2363   }
2364 
2365   case Bytecodes::_baload:  array_load(T_BYTE);    break;
2366   case Bytecodes::_caload:  array_load(T_CHAR);    break;
2367   case Bytecodes::_iaload:  array_load(T_INT);     break;
2368   case Bytecodes::_saload:  array_load(T_SHORT);   break;
2369   case Bytecodes::_faload:  array_load(T_FLOAT);   break;
2370   case Bytecodes::_aaload:  array_load(T_OBJECT);  break;
2371   case Bytecodes::_laload:  array_load(T_LONG);    break;
2372   case Bytecodes::_daload:  array_load(T_DOUBLE);  break;
2373   case Bytecodes::_bastore: array_store(T_BYTE);   break;
2374   case Bytecodes::_castore: array_store(T_CHAR);   break;
2375   case Bytecodes::_iastore: array_store(T_INT);    break;
2376   case Bytecodes::_sastore: array_store(T_SHORT);  break;
2377   case Bytecodes::_fastore: array_store(T_FLOAT);  break;
2378   case Bytecodes::_aastore: array_store(T_OBJECT); break;
2379   case Bytecodes::_lastore: array_store(T_LONG);   break;
2380   case Bytecodes::_dastore: array_store(T_DOUBLE); break;
2381 
2382   case Bytecodes::_getfield:
2383     do_getfield();
2384     break;
2385 
2386   case Bytecodes::_getstatic:
2387     do_getstatic();
2388     break;
2389 
2390   case Bytecodes::_putfield:
2391     do_putfield();
2392     break;
2393 
2394   case Bytecodes::_putstatic:
2395     do_putstatic();
2396     break;
2397 
2398   case Bytecodes::_irem:
2399     do_irem();
2400     break;
2401   case Bytecodes::_idiv:
2402     // Must keep both values on the expression-stack during null-check
2403     zero_check_int(peek());
2404     // Compile-time detect of null-exception?
2405     if (stopped())  return;
2406     b = pop();
2407     a = pop();
2408     push( _gvn.transform( new DivINode(control(),a,b) ) );
2409     break;
2410   case Bytecodes::_imul:
2411     b = pop(); a = pop();
2412     push( _gvn.transform( new MulINode(a,b) ) );
2413     break;
2414   case Bytecodes::_iadd:
2415     b = pop(); a = pop();
2416     push( _gvn.transform( new AddINode(a,b) ) );
2417     break;
2418   case Bytecodes::_ineg:
2419     a = pop();
2420     push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
2421     break;
2422   case Bytecodes::_isub:
2423     b = pop(); a = pop();
2424     push( _gvn.transform( new SubINode(a,b) ) );
2425     break;
2426   case Bytecodes::_iand:
2427     b = pop(); a = pop();
2428     push( _gvn.transform( new AndINode(a,b) ) );
2429     break;
2430   case Bytecodes::_ior:
2431     b = pop(); a = pop();
2432     push( _gvn.transform( new OrINode(a,b) ) );
2433     break;
2434   case Bytecodes::_ixor:
2435     b = pop(); a = pop();
2436     push( _gvn.transform( new XorINode(a,b) ) );
2437     break;
2438   case Bytecodes::_ishl:
2439     b = pop(); a = pop();
2440     push( _gvn.transform( new LShiftINode(a,b) ) );
2441     break;
2442   case Bytecodes::_ishr:
2443     b = pop(); a = pop();
2444     push( _gvn.transform( new RShiftINode(a,b) ) );
2445     break;
2446   case Bytecodes::_iushr:
2447     b = pop(); a = pop();
2448     push( _gvn.transform( new URShiftINode(a,b) ) );
2449     break;
2450 
2451   case Bytecodes::_fneg:
2452     a = pop();
2453     b = _gvn.transform(new NegFNode (a));
2454     push(b);
2455     break;
2456 
2457   case Bytecodes::_fsub:
2458     b = pop();
2459     a = pop();
2460     c = _gvn.transform( new SubFNode(a,b) );
2461     d = precision_rounding(c);
2462     push( d );
2463     break;
2464 
2465   case Bytecodes::_fadd:
2466     b = pop();
2467     a = pop();
2468     c = _gvn.transform( new AddFNode(a,b) );
2469     d = precision_rounding(c);
2470     push( d );
2471     break;
2472 
2473   case Bytecodes::_fmul:
2474     b = pop();
2475     a = pop();
2476     c = _gvn.transform( new MulFNode(a,b) );
2477     d = precision_rounding(c);
2478     push( d );
2479     break;
2480 
2481   case Bytecodes::_fdiv:
2482     b = pop();
2483     a = pop();
2484     c = _gvn.transform( new DivFNode(0,a,b) );
2485     d = precision_rounding(c);
2486     push( d );
2487     break;
2488 
2489   case Bytecodes::_frem:
2490     if (Matcher::has_match_rule(Op_ModF)) {
2491       // Generate a ModF node.
2492       b = pop();
2493       a = pop();
2494       c = _gvn.transform( new ModFNode(0,a,b) );
2495       d = precision_rounding(c);
2496       push( d );
2497     }
2498     else {
2499       // Generate a call.
2500       modf();
2501     }
2502     break;
2503 
2504   case Bytecodes::_fcmpl:
2505     b = pop();
2506     a = pop();
2507     c = _gvn.transform( new CmpF3Node( a, b));
2508     push(c);
2509     break;
2510   case Bytecodes::_fcmpg:
2511     b = pop();
2512     a = pop();
2513 
2514     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
2515     // which negates the result sign except for unordered.  Flip the unordered
2516     // as well by using CmpF3 which implements unordered-lesser instead of
2517     // unordered-greater semantics.  Finally, commute the result bits.  Result
2518     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
2519     c = _gvn.transform( new CmpF3Node( b, a));
2520     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2521     push(c);
2522     break;
2523 
2524   case Bytecodes::_f2i:
2525     a = pop();
2526     push(_gvn.transform(new ConvF2INode(a)));
2527     break;
2528 
2529   case Bytecodes::_d2i:
2530     a = pop_pair();
2531     b = _gvn.transform(new ConvD2INode(a));
2532     push( b );
2533     break;
2534 
2535   case Bytecodes::_f2d:
2536     a = pop();
2537     b = _gvn.transform( new ConvF2DNode(a));
2538     push_pair( b );
2539     break;
2540 
2541   case Bytecodes::_d2f:
2542     a = pop_pair();
2543     b = _gvn.transform( new ConvD2FNode(a));
2544     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
2545     //b = _gvn.transform(new RoundFloatNode(0, b) );
2546     push( b );
2547     break;
2548 
2549   case Bytecodes::_l2f:
2550     if (Matcher::convL2FSupported()) {
2551       a = pop_pair();
2552       b = _gvn.transform( new ConvL2FNode(a));
2553       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
2554       // Rather than storing the result into an FP register then pushing
2555       // out to memory to round, the machine instruction that implements
2556       // ConvL2D is responsible for rounding.
2557       // c = precision_rounding(b);
2558       c = _gvn.transform(b);
2559       push(c);
2560     } else {
2561       l2f();
2562     }
2563     break;
2564 
2565   case Bytecodes::_l2d:
2566     a = pop_pair();
2567     b = _gvn.transform( new ConvL2DNode(a));
2568     // For i486.ad, rounding is always necessary (see _l2f above).
2569     // c = dprecision_rounding(b);
2570     c = _gvn.transform(b);
2571     push_pair(c);
2572     break;
2573 
2574   case Bytecodes::_f2l:
2575     a = pop();
2576     b = _gvn.transform( new ConvF2LNode(a));
2577     push_pair(b);
2578     break;
2579 
2580   case Bytecodes::_d2l:
2581     a = pop_pair();
2582     b = _gvn.transform( new ConvD2LNode(a));
2583     push_pair(b);
2584     break;
2585 
2586   case Bytecodes::_dsub:
2587     b = pop_pair();
2588     a = pop_pair();
2589     c = _gvn.transform( new SubDNode(a,b) );
2590     d = dprecision_rounding(c);
2591     push_pair( d );
2592     break;
2593 
2594   case Bytecodes::_dadd:
2595     b = pop_pair();
2596     a = pop_pair();
2597     c = _gvn.transform( new AddDNode(a,b) );
2598     d = dprecision_rounding(c);
2599     push_pair( d );
2600     break;
2601 
2602   case Bytecodes::_dmul:
2603     b = pop_pair();
2604     a = pop_pair();
2605     c = _gvn.transform( new MulDNode(a,b) );
2606     d = dprecision_rounding(c);
2607     push_pair( d );
2608     break;
2609 
2610   case Bytecodes::_ddiv:
2611     b = pop_pair();
2612     a = pop_pair();
2613     c = _gvn.transform( new DivDNode(0,a,b) );
2614     d = dprecision_rounding(c);
2615     push_pair( d );
2616     break;
2617 
2618   case Bytecodes::_dneg:
2619     a = pop_pair();
2620     b = _gvn.transform(new NegDNode (a));
2621     push_pair(b);
2622     break;
2623 
2624   case Bytecodes::_drem:
2625     if (Matcher::has_match_rule(Op_ModD)) {
2626       // Generate a ModD node.
2627       b = pop_pair();
2628       a = pop_pair();
2629       // a % b
2630 
2631       c = _gvn.transform( new ModDNode(0,a,b) );
2632       d = dprecision_rounding(c);
2633       push_pair( d );
2634     }
2635     else {
2636       // Generate a call.
2637       modd();
2638     }
2639     break;
2640 
2641   case Bytecodes::_dcmpl:
2642     b = pop_pair();
2643     a = pop_pair();
2644     c = _gvn.transform( new CmpD3Node( a, b));
2645     push(c);
2646     break;
2647 
2648   case Bytecodes::_dcmpg:
2649     b = pop_pair();
2650     a = pop_pair();
2651     // Same as dcmpl but need to flip the unordered case.
2652     // Commute the inputs, which negates the result sign except for unordered.
2653     // Flip the unordered as well by using CmpD3 which implements
2654     // unordered-lesser instead of unordered-greater semantics.
2655     // Finally, negate the result bits.  Result is same as using a
2656     // CmpD3Greater except we did it with CmpD3 alone.
2657     c = _gvn.transform( new CmpD3Node( b, a));
2658     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2659     push(c);
2660     break;
2661 
2662 
2663     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2664   case Bytecodes::_land:
2665     b = pop_pair();
2666     a = pop_pair();
2667     c = _gvn.transform( new AndLNode(a,b) );
2668     push_pair(c);
2669     break;
2670   case Bytecodes::_lor:
2671     b = pop_pair();
2672     a = pop_pair();
2673     c = _gvn.transform( new OrLNode(a,b) );
2674     push_pair(c);
2675     break;
2676   case Bytecodes::_lxor:
2677     b = pop_pair();
2678     a = pop_pair();
2679     c = _gvn.transform( new XorLNode(a,b) );
2680     push_pair(c);
2681     break;
2682 
2683   case Bytecodes::_lshl:
2684     b = pop();                  // the shift count
2685     a = pop_pair();             // value to be shifted
2686     c = _gvn.transform( new LShiftLNode(a,b) );
2687     push_pair(c);
2688     break;
2689   case Bytecodes::_lshr:
2690     b = pop();                  // the shift count
2691     a = pop_pair();             // value to be shifted
2692     c = _gvn.transform( new RShiftLNode(a,b) );
2693     push_pair(c);
2694     break;
2695   case Bytecodes::_lushr:
2696     b = pop();                  // the shift count
2697     a = pop_pair();             // value to be shifted
2698     c = _gvn.transform( new URShiftLNode(a,b) );
2699     push_pair(c);
2700     break;
2701   case Bytecodes::_lmul:
2702     b = pop_pair();
2703     a = pop_pair();
2704     c = _gvn.transform( new MulLNode(a,b) );
2705     push_pair(c);
2706     break;
2707 
2708   case Bytecodes::_lrem:
2709     // Must keep both values on the expression-stack during null-check
2710     assert(peek(0) == top(), "long word order");
2711     zero_check_long(peek(1));
2712     // Compile-time detect of null-exception?
2713     if (stopped())  return;
2714     b = pop_pair();
2715     a = pop_pair();
2716     c = _gvn.transform( new ModLNode(control(),a,b) );
2717     push_pair(c);
2718     break;
2719 
2720   case Bytecodes::_ldiv:
2721     // Must keep both values on the expression-stack during null-check
2722     assert(peek(0) == top(), "long word order");
2723     zero_check_long(peek(1));
2724     // Compile-time detect of null-exception?
2725     if (stopped())  return;
2726     b = pop_pair();
2727     a = pop_pair();
2728     c = _gvn.transform( new DivLNode(control(),a,b) );
2729     push_pair(c);
2730     break;
2731 
2732   case Bytecodes::_ladd:
2733     b = pop_pair();
2734     a = pop_pair();
2735     c = _gvn.transform( new AddLNode(a,b) );
2736     push_pair(c);
2737     break;
2738   case Bytecodes::_lsub:
2739     b = pop_pair();
2740     a = pop_pair();
2741     c = _gvn.transform( new SubLNode(a,b) );
2742     push_pair(c);
2743     break;
2744   case Bytecodes::_lcmp:
2745     // Safepoints are now inserted _before_ branches.  The long-compare
2746     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2747     // slew of control flow.  These are usually followed by a CmpI vs zero and
2748     // a branch; this pattern then optimizes to the obvious long-compare and
2749     // branch.  However, if the branch is backwards there's a Safepoint
2750     // inserted.  The inserted Safepoint captures the JVM state at the
2751     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2752     // long-compare is used to control a loop the debug info will force
2753     // computation of the 3-way value, even though the generated code uses a
2754     // long-compare and branch.  We try to rectify the situation by inserting
2755     // a SafePoint here and have it dominate and kill the safepoint added at a
2756     // following backwards branch.  At this point the JVM state merely holds 2
2757     // longs but not the 3-way value.
2758     if( UseLoopSafepoints ) {
2759       switch( iter().next_bc() ) {
2760       case Bytecodes::_ifgt:
2761       case Bytecodes::_iflt:
2762       case Bytecodes::_ifge:
2763       case Bytecodes::_ifle:
2764       case Bytecodes::_ifne:
2765       case Bytecodes::_ifeq:
2766         // If this is a backwards branch in the bytecodes, add Safepoint
2767         maybe_add_safepoint(iter().next_get_dest());
2768       default:
2769         break;
2770       }
2771     }
2772     b = pop_pair();
2773     a = pop_pair();
2774     c = _gvn.transform( new CmpL3Node( a, b ));
2775     push(c);
2776     break;
2777 
2778   case Bytecodes::_lneg:
2779     a = pop_pair();
2780     b = _gvn.transform( new SubLNode(longcon(0),a));
2781     push_pair(b);
2782     break;
2783   case Bytecodes::_l2i:
2784     a = pop_pair();
2785     push( _gvn.transform( new ConvL2INode(a)));
2786     break;
2787   case Bytecodes::_i2l:
2788     a = pop();
2789     b = _gvn.transform( new ConvI2LNode(a));
2790     push_pair(b);
2791     break;
2792   case Bytecodes::_i2b:
2793     // Sign extend
2794     a = pop();
2795     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2796     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2797     push( a );
2798     break;
2799   case Bytecodes::_i2s:
2800     a = pop();
2801     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2802     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2803     push( a );
2804     break;
2805   case Bytecodes::_i2c:
2806     a = pop();
2807     push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2808     break;
2809 
2810   case Bytecodes::_i2f:
2811     a = pop();
2812     b = _gvn.transform( new ConvI2FNode(a) ) ;
2813     c = precision_rounding(b);
2814     push (b);
2815     break;
2816 
2817   case Bytecodes::_i2d:
2818     a = pop();
2819     b = _gvn.transform( new ConvI2DNode(a));
2820     push_pair(b);
2821     break;
2822 
2823   case Bytecodes::_iinc:        // Increment local
2824     i = iter().get_index();     // Get local index
2825     set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2826     break;
2827 
2828   // Exit points of synchronized methods must have an unlock node
2829   case Bytecodes::_return:
2830     return_current(NULL);
2831     break;
2832 
2833   case Bytecodes::_ireturn:
2834   case Bytecodes::_areturn:
2835   case Bytecodes::_freturn:
2836     return_current(pop());
2837     break;
2838   case Bytecodes::_lreturn:
2839     return_current(pop_pair());
2840     break;
2841   case Bytecodes::_dreturn:
2842     return_current(pop_pair());
2843     break;
2844 
2845   case Bytecodes::_athrow:
2846     // null exception oop throws NULL pointer exception
2847     null_check(peek());
2848     if (stopped())  return;
2849     // Hook the thrown exception directly to subsequent handlers.
2850     if (BailoutToInterpreterForThrows) {
2851       // Keep method interpreted from now on.
2852       uncommon_trap(Deoptimization::Reason_unhandled,
2853                     Deoptimization::Action_make_not_compilable);
2854       return;
2855     }
2856     if (env()->jvmti_can_post_on_exceptions()) {
2857       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2858       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2859     }
2860     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2861     add_exception_state(make_exception_state(peek()));
2862     break;
2863 
2864   case Bytecodes::_goto:   // fall through
2865   case Bytecodes::_goto_w: {
2866     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2867 
2868     // If this is a backwards branch in the bytecodes, add Safepoint
2869     maybe_add_safepoint(target_bci);
2870 
2871     // Update method data
2872     profile_taken_branch(target_bci);
2873 
2874     // Merge the current control into the target basic block
2875     merge(target_bci);
2876 
2877     // See if we can get some profile data and hand it off to the next block
2878     Block *target_block = block()->successor_for_bci(target_bci);
2879     if (target_block->pred_count() != 1)  break;
2880     ciMethodData* methodData = method()->method_data();
2881     if (!methodData->is_mature())  break;
2882     ciProfileData* data = methodData->bci_to_data(bci());
2883     assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch");
2884     int taken = ((ciJumpData*)data)->taken();
2885     taken = method()->scale_count(taken);
2886     target_block->set_count(taken);
2887     break;
2888   }
2889 
2890   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2891   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2892   handle_if_null:
2893     // If this is a backwards branch in the bytecodes, add Safepoint
2894     maybe_add_safepoint(iter().get_dest());
2895     a = null();
2896     b = pop();
2897     if (b->is_ValueType()) {
2898       // Return constant false because 'b' is always non-null
2899       c = _gvn.makecon(TypeInt::CC_GT);
2900     } else {
2901       if (!_gvn.type(b)->speculative_maybe_null() &&
2902           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2903         inc_sp(1);
2904         Node* null_ctl = top();
2905         b = null_check_oop(b, &null_ctl, true, true, true);
2906         assert(null_ctl->is_top(), "no null control here");
2907         dec_sp(1);
2908       } else if (_gvn.type(b)->speculative_always_null() &&
2909                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2910         inc_sp(1);
2911         b = null_assert(b);
2912         dec_sp(1);
2913       }
2914       c = _gvn.transform( new CmpPNode(b, a) );
2915     }
2916     do_ifnull(btest, c);
2917     break;
2918 
2919   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2920   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2921   handle_if_acmp:
2922     // If this is a backwards branch in the bytecodes, add Safepoint
2923     maybe_add_safepoint(iter().get_dest());
2924     a = pop();
2925     b = pop();
2926     do_acmp(btest, a, b);
2927     break;
2928 
2929   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2930   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2931   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2932   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2933   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2934   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2935   handle_ifxx:
2936     // If this is a backwards branch in the bytecodes, add Safepoint
2937     maybe_add_safepoint(iter().get_dest());
2938     a = _gvn.intcon(0);
2939     b = pop();
2940     c = _gvn.transform( new CmpINode(b, a) );
2941     do_if(btest, c);
2942     break;
2943 
2944   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2945   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2946   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2947   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2948   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2949   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2950   handle_if_icmp:
2951     // If this is a backwards branch in the bytecodes, add Safepoint
2952     maybe_add_safepoint(iter().get_dest());
2953     a = pop();
2954     b = pop();
2955     c = _gvn.transform( new CmpINode( b, a ) );
2956     do_if(btest, c);
2957     break;
2958 
2959   case Bytecodes::_tableswitch:
2960     do_tableswitch();
2961     break;
2962 
2963   case Bytecodes::_lookupswitch:
2964     do_lookupswitch();
2965     break;
2966 
2967   case Bytecodes::_invokestatic:
2968   case Bytecodes::_invokedynamic:
2969   case Bytecodes::_invokespecial:
2970   case Bytecodes::_invokevirtual:
2971   case Bytecodes::_invokeinterface:
2972     do_call();
2973     break;
2974   case Bytecodes::_checkcast:
2975     do_checkcast();
2976     break;
2977   case Bytecodes::_instanceof:
2978     do_instanceof();
2979     break;
2980   case Bytecodes::_anewarray:
2981     do_newarray();
2982     break;
2983   case Bytecodes::_newarray:
2984     do_newarray((BasicType)iter().get_index());
2985     break;
2986   case Bytecodes::_multianewarray:
2987     do_multianewarray();
2988     break;
2989   case Bytecodes::_new:
2990     do_new();
2991     break;
2992   case Bytecodes::_defaultvalue:
2993     do_defaultvalue();
2994     break;
2995   case Bytecodes::_withfield:
2996     do_withfield();
2997     break;
2998 
2999   case Bytecodes::_jsr:
3000   case Bytecodes::_jsr_w:
3001     do_jsr();
3002     break;
3003 
3004   case Bytecodes::_ret:
3005     do_ret();
3006     break;
3007 
3008 
3009   case Bytecodes::_monitorenter:
3010     do_monitor_enter();
3011     break;
3012 
3013   case Bytecodes::_monitorexit:
3014     do_monitor_exit();
3015     break;
3016 
3017   case Bytecodes::_breakpoint:
3018     // Breakpoint set concurrently to compile
3019     // %%% use an uncommon trap?
3020     C->record_failure("breakpoint in method");
3021     return;
3022 
3023   default:
3024 #ifndef PRODUCT
3025     map()->dump(99);
3026 #endif
3027     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
3028     ShouldNotReachHere();
3029   }
3030 
3031 #ifndef PRODUCT
3032   IdealGraphPrinter *printer = C->printer();
3033   if (printer && printer->should_print(1)) {
3034     char buffer[256];
3035     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
3036     bool old = printer->traverse_outs();
3037     printer->set_traverse_outs(true);
3038     printer->print_method(buffer, 4);
3039     printer->set_traverse_outs(old);
3040   }
3041 #endif
3042 }