1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/memnode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/opaquenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/valuetypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 
  50 #ifndef PRODUCT
  51 extern int explicit_null_checks_inserted,
  52            explicit_null_checks_elided;
  53 #endif
  54 
  55 //---------------------------------array_load----------------------------------
  56 void Parse::array_load(BasicType bt) {
  57   const Type* elemtype = Type::TOP;
  58   Node* adr = array_addressing(bt, 0, &elemtype);
  59   if (stopped())  return;     // guaranteed null or range check
  60 
  61   Node* idx = pop();
  62   Node* ary = pop();
  63 
  64   // Handle value type arrays
  65   const TypeOopPtr* elemptr = elemtype->make_oopptr();
  66   const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
  67   if (elemtype->isa_valuetype() != NULL) {
  68     // Load from flattened value type array
  69     ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
  70     ValueTypeNode* vt = ValueTypeNode::make_from_flattened(this, vk, ary, adr);
  71     push(vt);
  72     return;
  73   } else if (elemptr != NULL && elemptr->is_valuetypeptr()) {
  74     // Load from non-flattened value type array (elements can never be null)
  75     bt = T_VALUETYPE;
  76     assert(elemptr->meet(TypePtr::NULL_PTR) != elemptr, "value type array elements should never be null");
  77   } else if (ValueArrayFlatten && elemptr != NULL && elemptr->can_be_value_type() &&
  78              !ary_t->klass_is_exact()) {
  79     // Cannot statically determine if array is flattened, emit runtime check
  80     IdealKit ideal(this);
  81     IdealVariable res(ideal);
  82     ideal.declarations_done();
  83     Node* kls = load_object_klass(ary);
  84     Node* tag = load_lh_array_tag(kls);
  85     ideal.if_then(tag, BoolTest::ne, intcon(Klass::_lh_array_tag_vt_value)); {
  86       // non flattened
  87       sync_kit(ideal);
  88       const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
  89       elemtype = ary_t->elem()->make_oopptr();
  90       Node* ld = access_load_at(ary, adr, adr_type, elemtype, bt,
  91                                 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
  92       ideal.sync_kit(this);
  93       ideal.set(res, ld);
  94     } ideal.else_(); {
  95       // flattened
  96       sync_kit(ideal);
  97       Node* k_adr = basic_plus_adr(kls, in_bytes(ArrayKlass::element_klass_offset()));
  98       Node* elem_klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
  99       Node* obj_size  = NULL;
 100       kill_dead_locals();
 101       inc_sp(2);
 102       Node* alloc_obj = new_instance(elem_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
 103       dec_sp(2);
 104 
 105       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
 106       assert(alloc->maybe_set_complete(&_gvn), "");
 107       alloc->initialization()->set_complete_with_arraycopy();
 108       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 109       // Unknown value type so might have reference fields
 110       if (!bs->array_copy_requires_gc_barriers(T_OBJECT)) {
 111         int base_off = sizeof(instanceOopDesc);
 112         Node* dst_base = basic_plus_adr(alloc_obj, base_off);
 113         Node* countx = obj_size;
 114         countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
 115         countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong)));
 116 
 117         assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
 118         Node* lhp = basic_plus_adr(kls, in_bytes(Klass::layout_helper_offset()));
 119         Node* elem_shift = make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
 120         uint header = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE);
 121         Node* base  = basic_plus_adr(ary, header);
 122         idx = Compile::conv_I2X_index(&_gvn, idx, TypeInt::POS, control());
 123         Node* scale = _gvn.transform(new LShiftXNode(idx, elem_shift));
 124         Node* adr = basic_plus_adr(ary, base, scale);
 125 
 126         access_clone(control(), adr, dst_base, countx, false);
 127       } else {
 128         ideal.sync_kit(this);
 129         ideal.make_leaf_call(OptoRuntime::load_unknown_value_Type(),
 130                              CAST_FROM_FN_PTR(address, OptoRuntime::load_unknown_value),
 131                              "load_unknown_value",
 132                              ary, idx, alloc_obj);
 133         sync_kit(ideal);
 134       }
 135 
 136       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
 137 
 138       ideal.sync_kit(this);
 139       ideal.set(res, alloc_obj);
 140     } ideal.end_if();
 141     sync_kit(ideal);
 142     push_node(bt, ideal.value(res));
 143     return;
 144   }
 145 
 146   if (elemtype == TypeInt::BOOL) {
 147     bt = T_BOOLEAN;
 148   } else if (bt == T_OBJECT) {
 149     elemtype = ary_t->elem()->make_oopptr();
 150   }
 151 
 152   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 153   Node* ld = access_load_at(ary, adr, adr_type, elemtype, bt,
 154                             IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
 155   if (bt == T_VALUETYPE) {
 156     // Loading a non-flattened (but flattenable) value type from an array
 157     assert(!gvn().type(ld)->is_ptr()->maybe_null(), "value type array elements should never be null");
 158     ld = ValueTypeNode::make_from_oop(this, ld, elemptr->value_klass());
 159   }
 160 
 161   push_node(bt, ld);
 162 }
 163 
 164 
 165 //--------------------------------array_store----------------------------------
 166 void Parse::array_store(BasicType bt) {
 167   const Type* elemtype = Type::TOP;
 168   Node* adr = array_addressing(bt, type2size[bt], &elemtype);
 169   if (stopped())  return;     // guaranteed null or range check
 170   Node* cast_val = NULL;
 171   if (bt == T_OBJECT) {
 172     cast_val = array_store_check();
 173     if (stopped()) return;
 174   }
 175   Node* val = pop_node(bt); // Value to store
 176   Node* idx = pop();        // Index in the array
 177   Node* ary = pop();        // The array itself
 178 
 179   const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
 180   if (bt == T_OBJECT) {
 181     const TypeOopPtr* elemptr = elemtype->make_oopptr();
 182     const Type* val_t = _gvn.type(val);
 183     if (elemtype->isa_valuetype() != NULL) {
 184       // Store to flattened value type array
 185       if (!val->is_ValueType() && val_t == TypePtr::NULL_PTR) {
 186         // Can not store null into a value type array
 187         inc_sp(3);
 188         uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
 189         return;
 190       }
 191       cast_val->as_ValueType()->store_flattened(this, ary, adr);
 192       return;
 193     } else if (elemptr->is_valuetypeptr()) {
 194       // Store to non-flattened value type array
 195       if (!val->is_ValueType() && val_t == TypePtr::NULL_PTR) {
 196         // Can not store null into a value type array
 197         inc_sp(3);
 198         uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
 199         return;
 200       }
 201     } else if (elemptr->can_be_value_type() && !ary_t->klass_is_exact() &&
 202                (val->is_ValueType() || val_t == TypePtr::NULL_PTR || val_t->is_oopptr()->can_be_value_type())) {
 203       if (ValueArrayFlatten) {
 204         IdealKit ideal(this);
 205         Node* kls = load_object_klass(ary);
 206         Node* layout_val = load_lh_array_tag(kls);
 207         ideal.if_then(layout_val, BoolTest::ne, intcon(Klass::_lh_array_tag_vt_value)); {
 208           // non flattened
 209           sync_kit(ideal);
 210 
 211           if (!val->is_ValueType() && TypePtr::NULL_PTR->higher_equal(val_t)) {
 212             gen_value_type_array_guard(ary, val, 3);
 213           }
 214         
 215           const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 216           elemtype = ary_t->elem()->make_oopptr();
 217           access_store_at(control(), ary, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 218           ideal.sync_kit(this);
 219         } ideal.else_(); {
 220           // flattened
 221           // Object/interface array must be flattened, cast it
 222           if (val->is_ValueType()) {
 223             sync_kit(ideal);
 224             const TypeValueType* vt = _gvn.type(val)->is_valuetype();
 225             ciArrayKlass* array_klass = ciArrayKlass::make(vt->value_klass());
 226             const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
 227             ary = _gvn.transform(new CheckCastPPNode(control(), ary, arytype));
 228             adr = array_element_address(ary, idx, T_OBJECT, arytype->size(), control());
 229             val->as_ValueType()->store_flattened(this, ary, adr);
 230             ideal.sync_kit(this);
 231           } else {
 232             if (TypePtr::NULL_PTR->higher_equal(val_t)) {
 233               sync_kit(ideal);
 234               Node* null_ctl = top();
 235               val = null_check_oop(val, &null_ctl);
 236               {
 237                 assert(null_ctl != top(), "expected to possibly be null");
 238                 PreserveJVMState pjvms(this);
 239                 set_control(null_ctl);
 240                 inc_sp(3);
 241                 uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
 242               }
 243               ideal.sync_kit(this);
 244             }
 245 
 246             if (!ideal.ctrl()->is_top()) {
 247               ideal.make_leaf_call(OptoRuntime::store_unknown_value_Type(),
 248                                    CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_value),
 249                                    "store_unknown_value",
 250                                    val, ary, idx);
 251             }
 252           }
 253         } ideal.end_if();
 254         sync_kit(ideal);
 255         return;
 256       } else {
 257         if (!val->is_ValueType() && TypePtr::NULL_PTR->higher_equal(val_t)) {
 258           gen_value_type_array_guard(ary, val, 3);
 259         }
 260       }
 261     }
 262   }
 263 
 264   if (elemtype == TypeInt::BOOL) {
 265     bt = T_BOOLEAN;
 266   } else if (bt == T_OBJECT) {
 267     elemtype = ary_t->elem()->make_oopptr();
 268   }
 269 
 270   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 271 
 272   access_store_at(control(), ary, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 273 }
 274 
 275 
 276 //------------------------------array_addressing-------------------------------
 277 // Pull array and index from the stack.  Compute pointer-to-element.
 278 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
 279   Node *idx   = peek(0+vals);   // Get from stack without popping
 280   Node *ary   = peek(1+vals);   // in case of exception
 281 
 282   // Null check the array base, with correct stack contents
 283   ary = null_check(ary, T_ARRAY);
 284   // Compile-time detect of null-exception?
 285   if (stopped())  return top();
 286 
 287   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 288   const TypeInt*    sizetype = arytype->size();
 289   const Type*       elemtype = arytype->elem();
 290 
 291   if (UseUniqueSubclasses && result2 != NULL) {
 292     const Type* el = elemtype->make_ptr();
 293     if (el && el->isa_instptr()) {
 294       const TypeInstPtr* toop = el->is_instptr();
 295       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
 296         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 297         const Type* subklass = Type::get_const_type(toop->klass());
 298         elemtype = subklass->join_speculative(el);
 299       }
 300     }
 301   }
 302 
 303   // Check for big class initializers with all constant offsets
 304   // feeding into a known-size array.
 305   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 306   // See if the highest idx value is less than the lowest array bound,
 307   // and if the idx value cannot be negative:
 308   bool need_range_check = true;
 309   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 310     need_range_check = false;
 311     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 312   }
 313 
 314   ciKlass * arytype_klass = arytype->klass();
 315   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 316     // Only fails for some -Xcomp runs
 317     // The class is unloaded.  We have to run this bytecode in the interpreter.
 318     uncommon_trap(Deoptimization::Reason_unloaded,
 319                   Deoptimization::Action_reinterpret,
 320                   arytype->klass(), "!loaded array");
 321     return top();
 322   }
 323 
 324   // Do the range check
 325   if (GenerateRangeChecks && need_range_check) {
 326     Node* tst;
 327     if (sizetype->_hi <= 0) {
 328       // The greatest array bound is negative, so we can conclude that we're
 329       // compiling unreachable code, but the unsigned compare trick used below
 330       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 331       // the uncommon_trap path will always be taken.
 332       tst = _gvn.intcon(0);
 333     } else {
 334       // Range is constant in array-oop, so we can use the original state of mem
 335       Node* len = load_array_length(ary);
 336 
 337       // Test length vs index (standard trick using unsigned compare)
 338       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 339       BoolTest::mask btest = BoolTest::lt;
 340       tst = _gvn.transform( new BoolNode(chk, btest) );
 341     }
 342     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 343     _gvn.set_type(rc, rc->Value(&_gvn));
 344     if (!tst->is_Con()) {
 345       record_for_igvn(rc);
 346     }
 347     set_control(_gvn.transform(new IfTrueNode(rc)));
 348     // Branch to failure if out of bounds
 349     {
 350       PreserveJVMState pjvms(this);
 351       set_control(_gvn.transform(new IfFalseNode(rc)));
 352       if (C->allow_range_check_smearing()) {
 353         // Do not use builtin_throw, since range checks are sometimes
 354         // made more stringent by an optimistic transformation.
 355         // This creates "tentative" range checks at this point,
 356         // which are not guaranteed to throw exceptions.
 357         // See IfNode::Ideal, is_range_check, adjust_check.
 358         uncommon_trap(Deoptimization::Reason_range_check,
 359                       Deoptimization::Action_make_not_entrant,
 360                       NULL, "range_check");
 361       } else {
 362         // If we have already recompiled with the range-check-widening
 363         // heroic optimization turned off, then we must really be throwing
 364         // range check exceptions.
 365         builtin_throw(Deoptimization::Reason_range_check, idx);
 366       }
 367     }
 368   }
 369   // Check for always knowing you are throwing a range-check exception
 370   if (stopped())  return top();
 371 
 372   // Make array address computation control dependent to prevent it
 373   // from floating above the range check during loop optimizations.
 374   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 375 
 376   if (result2 != NULL)  *result2 = elemtype;
 377 
 378   assert(ptr != top(), "top should go hand-in-hand with stopped");
 379 
 380   return ptr;
 381 }
 382 
 383 
 384 // returns IfNode
 385 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
 386   Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 387   Node   *tst = _gvn.transform(new BoolNode(cmp, mask));
 388   IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
 389   return iff;
 390 }
 391 
 392 // return Region node
 393 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 394   Node *region  = new RegionNode(3); // 2 results
 395   record_for_igvn(region);
 396   region->init_req(1, iffalse);
 397   region->init_req(2, iftrue );
 398   _gvn.set_type(region, Type::CONTROL);
 399   region = _gvn.transform(region);
 400   set_control (region);
 401   return region;
 402 }
 403 
 404 // sentinel value for the target bci to mark never taken branches
 405 // (according to profiling)
 406 static const int never_reached = INT_MAX;
 407 
 408 //------------------------------helper for tableswitch-------------------------
 409 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
 410   // True branch, use existing map info
 411   { PreserveJVMState pjvms(this);
 412     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 413     set_control( iftrue );
 414     if (unc) {
 415       repush_if_args();
 416       uncommon_trap(Deoptimization::Reason_unstable_if,
 417                     Deoptimization::Action_reinterpret,
 418                     NULL,
 419                     "taken always");
 420     } else {
 421       assert(dest_bci_if_true != never_reached, "inconsistent dest");
 422       profile_switch_case(prof_table_index);
 423       merge_new_path(dest_bci_if_true);
 424     }
 425   }
 426 
 427   // False branch
 428   Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
 429   set_control( iffalse );
 430 }
 431 
 432 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
 433   // True branch, use existing map info
 434   { PreserveJVMState pjvms(this);
 435     Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
 436     set_control( iffalse );
 437     if (unc) {
 438       repush_if_args();
 439       uncommon_trap(Deoptimization::Reason_unstable_if,
 440                     Deoptimization::Action_reinterpret,
 441                     NULL,
 442                     "taken never");
 443     } else {
 444       assert(dest_bci_if_true != never_reached, "inconsistent dest");
 445       profile_switch_case(prof_table_index);
 446       merge_new_path(dest_bci_if_true);
 447     }
 448   }
 449 
 450   // False branch
 451   Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
 452   set_control( iftrue );
 453 }
 454 
 455 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index, bool unc) {
 456   // False branch, use existing map and control()
 457   if (unc) {
 458     repush_if_args();
 459     uncommon_trap(Deoptimization::Reason_unstable_if,
 460                   Deoptimization::Action_reinterpret,
 461                   NULL,
 462                   "taken never");
 463   } else {
 464     assert(dest_bci != never_reached, "inconsistent dest");
 465     profile_switch_case(prof_table_index);
 466     merge_new_path(dest_bci);
 467   }
 468 }
 469 
 470 
 471 extern "C" {
 472   static int jint_cmp(const void *i, const void *j) {
 473     int a = *(jint *)i;
 474     int b = *(jint *)j;
 475     return a > b ? 1 : a < b ? -1 : 0;
 476   }
 477 }
 478 
 479 
 480 // Default value for methodData switch indexing. Must be a negative value to avoid
 481 // conflict with any legal switch index.
 482 #define NullTableIndex -1
 483 
 484 class SwitchRange : public StackObj {
 485   // a range of integers coupled with a bci destination
 486   jint _lo;                     // inclusive lower limit
 487   jint _hi;                     // inclusive upper limit
 488   int _dest;
 489   int _table_index;             // index into method data table
 490   float _cnt;                   // how many times this range was hit according to profiling
 491 
 492 public:
 493   jint lo() const              { return _lo;   }
 494   jint hi() const              { return _hi;   }
 495   int  dest() const            { return _dest; }
 496   int  table_index() const     { return _table_index; }
 497   bool is_singleton() const    { return _lo == _hi; }
 498   float cnt() const            { return _cnt; }
 499 
 500   void setRange(jint lo, jint hi, int dest, int table_index, float cnt) {
 501     assert(lo <= hi, "must be a non-empty range");
 502     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index; _cnt = cnt;
 503     assert(_cnt >= 0, "");
 504   }
 505   bool adjoinRange(jint lo, jint hi, int dest, int table_index, float cnt, bool trim_ranges) {
 506     assert(lo <= hi, "must be a non-empty range");
 507     if (lo == _hi+1 && table_index == _table_index) {
 508       // see merge_ranges() comment below
 509       if (trim_ranges) {
 510         if (cnt == 0) {
 511           if (_cnt != 0) {
 512             return false;
 513           }
 514           if (dest != _dest) {
 515             _dest = never_reached;
 516           }
 517         } else {
 518           if (_cnt == 0) {
 519             return false;
 520           }
 521           if (dest != _dest) {
 522             return false;
 523           }
 524         }
 525       } else {
 526         if (dest != _dest) {
 527           return false;
 528         }
 529       }
 530       _hi = hi;
 531       _cnt += cnt;
 532       return true;
 533     }
 534     return false;
 535   }
 536 
 537   void set (jint value, int dest, int table_index, float cnt) {
 538     setRange(value, value, dest, table_index, cnt);
 539   }
 540   bool adjoin(jint value, int dest, int table_index, float cnt, bool trim_ranges) {
 541     return adjoinRange(value, value, dest, table_index, cnt, trim_ranges);
 542   }
 543   bool adjoin(SwitchRange& other) {
 544     return adjoinRange(other._lo, other._hi, other._dest, other._table_index, other._cnt, false);
 545   }
 546 
 547   void print() {
 548     if (is_singleton())
 549       tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt());
 550     else if (lo() == min_jint)
 551       tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt());
 552     else if (hi() == max_jint)
 553       tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt());
 554     else
 555       tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt());
 556   }
 557 };
 558 
 559 // We try to minimize the number of ranges and the size of the taken
 560 // ones using profiling data. When ranges are created,
 561 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge
 562 // if both were never hit or both were hit to build longer unreached
 563 // ranges. Here, we now merge adjoining ranges with the same
 564 // destination and finally set destination of unreached ranges to the
 565 // special value never_reached because it can help minimize the number
 566 // of tests that are necessary.
 567 //
 568 // For instance:
 569 // [0, 1] to target1 sometimes taken
 570 // [1, 2] to target1 never taken
 571 // [2, 3] to target2 never taken
 572 // would lead to:
 573 // [0, 1] to target1 sometimes taken
 574 // [1, 3] never taken
 575 //
 576 // (first 2 ranges to target1 are not merged)
 577 static void merge_ranges(SwitchRange* ranges, int& rp) {
 578   if (rp == 0) {
 579     return;
 580   }
 581   int shift = 0;
 582   for (int j = 0; j < rp; j++) {
 583     SwitchRange& r1 = ranges[j-shift];
 584     SwitchRange& r2 = ranges[j+1];
 585     if (r1.adjoin(r2)) {
 586       shift++;
 587     } else if (shift > 0) {
 588       ranges[j+1-shift] = r2;
 589     }
 590   }
 591   rp -= shift;
 592   for (int j = 0; j <= rp; j++) {
 593     SwitchRange& r = ranges[j];
 594     if (r.cnt() == 0 && r.dest() != never_reached) {
 595       r.setRange(r.lo(), r.hi(), never_reached, r.table_index(), r.cnt());
 596     }
 597   }
 598 }
 599 
 600 //-------------------------------do_tableswitch--------------------------------
 601 void Parse::do_tableswitch() {
 602   Node* lookup = pop();
 603   // Get information about tableswitch
 604   int default_dest = iter().get_dest_table(0);
 605   int lo_index     = iter().get_int_table(1);
 606   int hi_index     = iter().get_int_table(2);
 607   int len          = hi_index - lo_index + 1;
 608 
 609   if (len < 1) {
 610     // If this is a backward branch, add safepoint
 611     maybe_add_safepoint(default_dest);
 612     merge(default_dest);
 613     return;
 614   }
 615 
 616   ciMethodData* methodData = method()->method_data();
 617   ciMultiBranchData* profile = NULL;
 618   if (methodData->is_mature() && UseSwitchProfiling) {
 619     ciProfileData* data = methodData->bci_to_data(bci());
 620     if (data != NULL && data->is_MultiBranchData()) {
 621       profile = (ciMultiBranchData*)data;
 622     }
 623   }
 624   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 625 
 626   // generate decision tree, using trichotomy when possible
 627   int rnum = len+2;
 628   bool makes_backward_branch = false;
 629   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 630   int rp = -1;
 631   if (lo_index != min_jint) {
 632     uint cnt = 1;
 633     if (profile != NULL) {
 634       cnt = profile->default_count() / (hi_index != max_jint ? 2 : 1);
 635     }
 636     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex, cnt);
 637   }
 638   for (int j = 0; j < len; j++) {
 639     jint match_int = lo_index+j;
 640     int  dest      = iter().get_dest_table(j+3);
 641     makes_backward_branch |= (dest <= bci());
 642     int  table_index = method_data_update() ? j : NullTableIndex;
 643     uint cnt = 1;
 644     if (profile != NULL) {
 645       cnt = profile->count_at(j);
 646     }
 647     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
 648       ranges[++rp].set(match_int, dest, table_index, cnt);
 649     }
 650   }
 651   jint highest = lo_index+(len-1);
 652   assert(ranges[rp].hi() == highest, "");
 653   if (highest != max_jint) {
 654     uint cnt = 1;
 655     if (profile != NULL) {
 656       cnt = profile->default_count() / (lo_index != min_jint ? 2 : 1);
 657     }
 658     if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, cnt, trim_ranges)) {
 659       ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, cnt);
 660     }
 661   }
 662   assert(rp < len+2, "not too many ranges");
 663 
 664   if (trim_ranges) {
 665     merge_ranges(ranges, rp);
 666   }
 667 
 668   // Safepoint in case if backward branch observed
 669   if( makes_backward_branch && UseLoopSafepoints )
 670     add_safepoint();
 671 
 672   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 673 }
 674 
 675 
 676 //------------------------------do_lookupswitch--------------------------------
 677 void Parse::do_lookupswitch() {
 678   Node *lookup = pop();         // lookup value
 679   // Get information about lookupswitch
 680   int default_dest = iter().get_dest_table(0);
 681   int len          = iter().get_int_table(1);
 682 
 683   if (len < 1) {    // If this is a backward branch, add safepoint
 684     maybe_add_safepoint(default_dest);
 685     merge(default_dest);
 686     return;
 687   }
 688 
 689   ciMethodData* methodData = method()->method_data();
 690   ciMultiBranchData* profile = NULL;
 691   if (methodData->is_mature() && UseSwitchProfiling) {
 692     ciProfileData* data = methodData->bci_to_data(bci());
 693     if (data != NULL && data->is_MultiBranchData()) {
 694       profile = (ciMultiBranchData*)data;
 695     }
 696   }
 697   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 698 
 699   // generate decision tree, using trichotomy when possible
 700   jint* table = NEW_RESOURCE_ARRAY(jint, len*3);
 701   {
 702     for (int j = 0; j < len; j++) {
 703       table[3*j+0] = iter().get_int_table(2+2*j);
 704       table[3*j+1] = iter().get_dest_table(2+2*j+1);
 705       table[3*j+2] = profile == NULL ? 1 : profile->count_at(j);
 706     }
 707     qsort(table, len, 3*sizeof(table[0]), jint_cmp);
 708   }
 709 
 710   float defaults = 0;
 711   jint prev = min_jint;
 712   for (int j = 0; j < len; j++) {
 713     jint match_int = table[3*j+0];
 714     if (match_int != prev) {
 715       defaults += (float)match_int - prev;
 716     }
 717     prev = match_int+1;
 718   }
 719   if (prev-1 != max_jint) {
 720     defaults += (float)max_jint - prev + 1;
 721   }
 722   float default_cnt = 1;
 723   if (profile != NULL) {
 724     default_cnt = profile->default_count()/defaults;
 725   }
 726 
 727   int rnum = len*2+1;
 728   bool makes_backward_branch = false;
 729   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 730   int rp = -1;
 731   for (int j = 0; j < len; j++) {
 732     jint match_int   = table[3*j+0];
 733     int  dest        = table[3*j+1];
 734     int  cnt         = table[3*j+2];
 735     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 736     int  table_index = method_data_update() ? j : NullTableIndex;
 737     makes_backward_branch |= (dest <= bci());
 738     float c = default_cnt * ((float)match_int - next_lo);
 739     if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, NullTableIndex, c, trim_ranges))) {
 740       assert(default_dest != never_reached, "sentinel value for dead destinations");
 741       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex, c);
 742     }
 743     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
 744       assert(dest != never_reached, "sentinel value for dead destinations");
 745       ranges[++rp].set(match_int, dest, table_index, cnt);
 746     }
 747   }
 748   jint highest = table[3*(len-1)];
 749   assert(ranges[rp].hi() == highest, "");
 750   if (highest != max_jint &&
 751       !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest), trim_ranges)) {
 752     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest));
 753   }
 754   assert(rp < rnum, "not too many ranges");
 755 
 756   if (trim_ranges) {
 757     merge_ranges(ranges, rp);
 758   }
 759 
 760   // Safepoint in case backward branch observed
 761   if (makes_backward_branch && UseLoopSafepoints)
 762     add_safepoint();
 763 
 764   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 765 }
 766 
 767 static float if_prob(float taken_cnt, float total_cnt) {
 768   assert(taken_cnt <= total_cnt, "");
 769   if (total_cnt == 0) {
 770     return PROB_FAIR;
 771   }
 772   float p = taken_cnt / total_cnt;
 773   return MIN2(MAX2(p, PROB_MIN), PROB_MAX);
 774 }
 775 
 776 static float if_cnt(float cnt) {
 777   if (cnt == 0) {
 778     return COUNT_UNKNOWN;
 779   }
 780   return cnt;
 781 }
 782 
 783 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) {
 784   float total_cnt = 0;
 785   for (SwitchRange* sr = lo; sr <= hi; sr++) {
 786     total_cnt += sr->cnt();
 787   }
 788   return total_cnt;
 789 }
 790 
 791 class SwitchRanges : public ResourceObj {
 792 public:
 793   SwitchRange* _lo;
 794   SwitchRange* _hi;
 795   SwitchRange* _mid;
 796   float _cost;
 797 
 798   enum {
 799     Start,
 800     LeftDone,
 801     RightDone,
 802     Done
 803   } _state;
 804 
 805   SwitchRanges(SwitchRange *lo, SwitchRange *hi)
 806     : _lo(lo), _hi(hi), _mid(NULL),
 807       _cost(0), _state(Start) {
 808   }
 809 
 810   SwitchRanges()
 811     : _lo(NULL), _hi(NULL), _mid(NULL),
 812       _cost(0), _state(Start) {}
 813 };
 814 
 815 // Estimate cost of performing a binary search on lo..hi
 816 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) {
 817   GrowableArray<SwitchRanges> tree;
 818   SwitchRanges root(lo, hi);
 819   tree.push(root);
 820 
 821   float cost = 0;
 822   do {
 823     SwitchRanges& r = *tree.adr_at(tree.length()-1);
 824     if (r._hi != r._lo) {
 825       if (r._mid == NULL) {
 826         float r_cnt = sum_of_cnts(r._lo, r._hi);
 827 
 828         if (r_cnt == 0) {
 829           tree.pop();
 830           cost = 0;
 831           continue;
 832         }
 833 
 834         SwitchRange* mid = NULL;
 835         mid = r._lo;
 836         for (float cnt = 0; ; ) {
 837           assert(mid <= r._hi, "out of bounds");
 838           cnt += mid->cnt();
 839           if (cnt > r_cnt / 2) {
 840             break;
 841           }
 842           mid++;
 843         }
 844         assert(mid <= r._hi, "out of bounds");
 845         r._mid = mid;
 846         r._cost = r_cnt / total_cnt;
 847       }
 848       r._cost += cost;
 849       if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) {
 850         cost = 0;
 851         r._state = SwitchRanges::LeftDone;
 852         tree.push(SwitchRanges(r._lo, r._mid-1));
 853       } else if (r._state < SwitchRanges::RightDone) {
 854         cost = 0;
 855         r._state = SwitchRanges::RightDone;
 856         tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi));
 857       } else {
 858         tree.pop();
 859         cost = r._cost;
 860       }
 861     } else {
 862       tree.pop();
 863       cost = r._cost;
 864     }
 865   } while (tree.length() > 0);
 866 
 867 
 868   return cost;
 869 }
 870 
 871 // It sometimes pays off to test most common ranges before the binary search
 872 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) {
 873   uint nr = hi - lo + 1;
 874   float total_cnt = sum_of_cnts(lo, hi);
 875 
 876   float min = compute_tree_cost(lo, hi, total_cnt);
 877   float extra = 1;
 878   float sub = 0;
 879 
 880   SwitchRange* array1 = lo;
 881   SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr);
 882 
 883   SwitchRange* ranges = NULL;
 884 
 885   while (nr >= 2) {
 886     assert(lo == array1 || lo == array2, "one the 2 already allocated arrays");
 887     ranges = (lo == array1) ? array2 : array1;
 888 
 889     // Find highest frequency range
 890     SwitchRange* candidate = lo;
 891     for (SwitchRange* sr = lo+1; sr <= hi; sr++) {
 892       if (sr->cnt() > candidate->cnt()) {
 893         candidate = sr;
 894       }
 895     }
 896     SwitchRange most_freq = *candidate;
 897     if (most_freq.cnt() == 0) {
 898       break;
 899     }
 900 
 901     // Copy remaining ranges into another array
 902     int shift = 0;
 903     for (uint i = 0; i < nr; i++) {
 904       SwitchRange* sr = &lo[i];
 905       if (sr != candidate) {
 906         ranges[i-shift] = *sr;
 907       } else {
 908         shift++;
 909         if (i > 0 && i < nr-1) {
 910           SwitchRange prev = lo[i-1];
 911           prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.table_index(), prev.cnt());
 912           if (prev.adjoin(lo[i+1])) {
 913             shift++;
 914             i++;
 915           }
 916           ranges[i-shift] = prev;
 917         }
 918       }
 919     }
 920     nr -= shift;
 921 
 922     // Evaluate cost of testing the most common range and performing a
 923     // binary search on the other ranges
 924     float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt);
 925     if (cost >= min) {
 926       break;
 927     }
 928     // swap arrays
 929     lo = &ranges[0];
 930     hi = &ranges[nr-1];
 931 
 932     // It pays off: emit the test for the most common range
 933     assert(most_freq.cnt() > 0, "must be taken");
 934     Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo())));
 935     Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(most_freq.hi() - most_freq.lo())));
 936     Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le));
 937     IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt()));
 938     jump_if_true_fork(iff, most_freq.dest(), most_freq.table_index(), false);
 939 
 940     sub += most_freq.cnt() / total_cnt;
 941     extra += 1 - sub;
 942     min = cost;
 943   }
 944 }
 945 
 946 //----------------------------create_jump_tables-------------------------------
 947 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 948   // Are jumptables enabled
 949   if (!UseJumpTables)  return false;
 950 
 951   // Are jumptables supported
 952   if (!Matcher::has_match_rule(Op_Jump))  return false;
 953 
 954   // Don't make jump table if profiling
 955   if (method_data_update())  return false;
 956 
 957   bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 958 
 959   // Decide if a guard is needed to lop off big ranges at either (or
 960   // both) end(s) of the input set. We'll call this the default target
 961   // even though we can't be sure that it is the true "default".
 962 
 963   bool needs_guard = false;
 964   int default_dest;
 965   int64_t total_outlier_size = 0;
 966   int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
 967   int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
 968 
 969   if (lo->dest() == hi->dest()) {
 970     total_outlier_size = hi_size + lo_size;
 971     default_dest = lo->dest();
 972   } else if (lo_size > hi_size) {
 973     total_outlier_size = lo_size;
 974     default_dest = lo->dest();
 975   } else {
 976     total_outlier_size = hi_size;
 977     default_dest = hi->dest();
 978   }
 979 
 980   float total = sum_of_cnts(lo, hi);
 981   float cost = compute_tree_cost(lo, hi, total);
 982 
 983   // If a guard test will eliminate very sparse end ranges, then
 984   // it is worth the cost of an extra jump.
 985   float trimmed_cnt = 0;
 986   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 987     needs_guard = true;
 988     if (default_dest == lo->dest()) {
 989       trimmed_cnt += lo->cnt();
 990       lo++;
 991     }
 992     if (default_dest == hi->dest()) {
 993       trimmed_cnt += hi->cnt();
 994       hi--;
 995     }
 996   }
 997 
 998   // Find the total number of cases and ranges
 999   int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
1000   int num_range = hi - lo + 1;
1001 
1002   // Don't create table if: too large, too small, or too sparse.
1003   if (num_cases > MaxJumpTableSize)
1004     return false;
1005   if (UseSwitchProfiling) {
1006     // MinJumpTableSize is set so with a well balanced binary tree,
1007     // when the number of ranges is MinJumpTableSize, it's cheaper to
1008     // go through a JumpNode that a tree of IfNodes. Average cost of a
1009     // tree of IfNodes with MinJumpTableSize is
1010     // log2f(MinJumpTableSize) comparisons. So if the cost computed
1011     // from profile data is less than log2f(MinJumpTableSize) then
1012     // going with the binary search is cheaper.
1013     if (cost < log2f(MinJumpTableSize)) {
1014       return false;
1015     }
1016   } else {
1017     if (num_cases < MinJumpTableSize)
1018       return false;
1019   }
1020   if (num_cases > (MaxJumpTableSparseness * num_range))
1021     return false;
1022 
1023   // Normalize table lookups to zero
1024   int lowval = lo->lo();
1025   key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
1026 
1027   // Generate a guard to protect against input keyvals that aren't
1028   // in the switch domain.
1029   if (needs_guard) {
1030     Node*   size = _gvn.intcon(num_cases);
1031     Node*   cmp = _gvn.transform(new CmpUNode(key_val, size));
1032     Node*   tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge));
1033     IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt));
1034     jump_if_true_fork(iff, default_dest, NullTableIndex, trim_ranges && trimmed_cnt == 0);
1035 
1036     total -= trimmed_cnt;
1037   }
1038 
1039   // Create an ideal node JumpTable that has projections
1040   // of all possible ranges for a switch statement
1041   // The key_val input must be converted to a pointer offset and scaled.
1042   // Compare Parse::array_addressing above.
1043 
1044   // Clean the 32-bit int into a real 64-bit offset.
1045   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
1046   const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
1047   // Make I2L conversion control dependent to prevent it from
1048   // floating above the range check during loop optimizations.
1049   key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
1050 
1051   // Shift the value by wordsize so we have an index into the table, rather
1052   // than a switch value
1053   Node *shiftWord = _gvn.MakeConX(wordSize);
1054   key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
1055 
1056   // Create the JumpNode
1057   Arena* arena = C->comp_arena();
1058   float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases);
1059   int i = 0;
1060   if (total == 0) {
1061     for (SwitchRange* r = lo; r <= hi; r++) {
1062       for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
1063         probs[i] = 1.0F / num_cases;
1064       }
1065     }
1066   } else {
1067     for (SwitchRange* r = lo; r <= hi; r++) {
1068       float prob = r->cnt()/total;
1069       for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
1070         probs[i] = prob / (r->hi() - r->lo() + 1);
1071       }
1072     }
1073   }
1074 
1075   ciMethodData* methodData = method()->method_data();
1076   ciMultiBranchData* profile = NULL;
1077   if (methodData->is_mature()) {
1078     ciProfileData* data = methodData->bci_to_data(bci());
1079     if (data != NULL && data->is_MultiBranchData()) {
1080       profile = (ciMultiBranchData*)data;
1081     }
1082   }
1083 
1084   Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == NULL ? COUNT_UNKNOWN : total));
1085 
1086   // These are the switch destinations hanging off the jumpnode
1087   i = 0;
1088   for (SwitchRange* r = lo; r <= hi; r++) {
1089     for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
1090       Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
1091       {
1092         PreserveJVMState pjvms(this);
1093         set_control(input);
1094         jump_if_always_fork(r->dest(), r->table_index(), trim_ranges && r->cnt() == 0);
1095       }
1096     }
1097   }
1098   assert(i == num_cases, "miscount of cases");
1099   stop_and_kill_map();  // no more uses for this JVMS
1100   return true;
1101 }
1102 
1103 //----------------------------jump_switch_ranges-------------------------------
1104 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
1105   Block* switch_block = block();
1106   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
1107 
1108   if (switch_depth == 0) {
1109     // Do special processing for the top-level call.
1110     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
1111     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
1112 
1113     // Decrement pred-numbers for the unique set of nodes.
1114 #ifdef ASSERT
1115     if (!trim_ranges) {
1116       // Ensure that the block's successors are a (duplicate-free) set.
1117       int successors_counted = 0;  // block occurrences in [hi..lo]
1118       int unique_successors = switch_block->num_successors();
1119       for (int i = 0; i < unique_successors; i++) {
1120         Block* target = switch_block->successor_at(i);
1121 
1122         // Check that the set of successors is the same in both places.
1123         int successors_found = 0;
1124         for (SwitchRange* p = lo; p <= hi; p++) {
1125           if (p->dest() == target->start())  successors_found++;
1126         }
1127         assert(successors_found > 0, "successor must be known");
1128         successors_counted += successors_found;
1129       }
1130       assert(successors_counted == (hi-lo)+1, "no unexpected successors");
1131     }
1132 #endif
1133 
1134     // Maybe prune the inputs, based on the type of key_val.
1135     jint min_val = min_jint;
1136     jint max_val = max_jint;
1137     const TypeInt* ti = key_val->bottom_type()->isa_int();
1138     if (ti != NULL) {
1139       min_val = ti->_lo;
1140       max_val = ti->_hi;
1141       assert(min_val <= max_val, "invalid int type");
1142     }
1143     while (lo->hi() < min_val) {
1144       lo++;
1145     }
1146     if (lo->lo() < min_val)  {
1147       lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index(), lo->cnt());
1148     }
1149     while (hi->lo() > max_val) {
1150       hi--;
1151     }
1152     if (hi->hi() > max_val) {
1153       hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index(), hi->cnt());
1154     }
1155 
1156     linear_search_switch_ranges(key_val, lo, hi);
1157   }
1158 
1159 #ifndef PRODUCT
1160   if (switch_depth == 0) {
1161     _max_switch_depth = 0;
1162     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
1163   }
1164 #endif
1165 
1166   assert(lo <= hi, "must be a non-empty set of ranges");
1167   if (lo == hi) {
1168     jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
1169   } else {
1170     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
1171     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
1172 
1173     if (create_jump_tables(key_val, lo, hi)) return;
1174 
1175     SwitchRange* mid = NULL;
1176     float total_cnt = sum_of_cnts(lo, hi);
1177 
1178     int nr = hi - lo + 1;
1179     if (UseSwitchProfiling) {
1180       // Don't keep the binary search tree balanced: pick up mid point
1181       // that split frequencies in half.
1182       float cnt = 0;
1183       for (SwitchRange* sr = lo; sr <= hi; sr++) {
1184         cnt += sr->cnt();
1185         if (cnt >= total_cnt / 2) {
1186           mid = sr;
1187           break;
1188         }
1189       }
1190     } else {
1191       mid = lo + nr/2;
1192 
1193       // if there is an easy choice, pivot at a singleton:
1194       if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
1195 
1196       assert(lo < mid && mid <= hi, "good pivot choice");
1197       assert(nr != 2 || mid == hi,   "should pick higher of 2");
1198       assert(nr != 3 || mid == hi-1, "should pick middle of 3");
1199     }
1200 
1201 
1202     Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo());
1203 
1204     if (mid->is_singleton()) {
1205       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt()));
1206       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index(), trim_ranges && mid->cnt() == 0);
1207 
1208       // Special Case:  If there are exactly three ranges, and the high
1209       // and low range each go to the same place, omit the "gt" test,
1210       // since it will not discriminate anything.
1211       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo;
1212 
1213       // if there is a higher range, test for it and process it:
1214       if (mid < hi && !eq_test_only) {
1215         // two comparisons of same values--should enable 1 test for 2 branches
1216         // Use BoolTest::le instead of BoolTest::gt
1217         float cnt = sum_of_cnts(lo, mid-1);
1218         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le, if_prob(cnt, total_cnt), if_cnt(cnt));
1219         Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
1220         Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
1221         { PreserveJVMState pjvms(this);
1222           set_control(iffalse);
1223           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
1224         }
1225         set_control(iftrue);
1226       }
1227 
1228     } else {
1229       // mid is a range, not a singleton, so treat mid..hi as a unit
1230       float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi);
1231       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt));
1232 
1233       // if there is a higher range, test for it and process it:
1234       if (mid == hi) {
1235         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index(), trim_ranges && cnt == 0);
1236       } else {
1237         Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
1238         Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
1239         { PreserveJVMState pjvms(this);
1240           set_control(iftrue);
1241           jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1);
1242         }
1243         set_control(iffalse);
1244       }
1245     }
1246 
1247     // in any case, process the lower range
1248     if (mid == lo) {
1249       if (mid->is_singleton()) {
1250         jump_switch_ranges(key_val, lo+1, hi, switch_depth+1);
1251       } else {
1252         jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
1253       }
1254     } else {
1255       jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
1256     }
1257   }
1258 
1259   // Decrease pred_count for each successor after all is done.
1260   if (switch_depth == 0) {
1261     int unique_successors = switch_block->num_successors();
1262     for (int i = 0; i < unique_successors; i++) {
1263       Block* target = switch_block->successor_at(i);
1264       // Throw away the pre-allocated path for each unique successor.
1265       target->next_path_num();
1266     }
1267   }
1268 
1269 #ifndef PRODUCT
1270   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
1271   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
1272     SwitchRange* r;
1273     int nsing = 0;
1274     for( r = lo; r <= hi; r++ ) {
1275       if( r->is_singleton() )  nsing++;
1276     }
1277     tty->print(">>> ");
1278     _method->print_short_name();
1279     tty->print_cr(" switch decision tree");
1280     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
1281                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
1282     if (_max_switch_depth > _est_switch_depth) {
1283       tty->print_cr("******** BAD SWITCH DEPTH ********");
1284     }
1285     tty->print("   ");
1286     for( r = lo; r <= hi; r++ ) {
1287       r->print();
1288     }
1289     tty->cr();
1290   }
1291 #endif
1292 }
1293 
1294 void Parse::modf() {
1295   Node *f2 = pop();
1296   Node *f1 = pop();
1297   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
1298                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
1299                               "frem", NULL, //no memory effects
1300                               f1, f2);
1301   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1302 
1303   push(res);
1304 }
1305 
1306 void Parse::modd() {
1307   Node *d2 = pop_pair();
1308   Node *d1 = pop_pair();
1309   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
1310                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
1311                               "drem", NULL, //no memory effects
1312                               d1, top(), d2, top());
1313   Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1314 
1315 #ifdef ASSERT
1316   Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
1317   assert(res_top == top(), "second value must be top");
1318 #endif
1319 
1320   push_pair(res_d);
1321 }
1322 
1323 void Parse::l2f() {
1324   Node* f2 = pop();
1325   Node* f1 = pop();
1326   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
1327                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
1328                               "l2f", NULL, //no memory effects
1329                               f1, f2);
1330   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1331 
1332   push(res);
1333 }
1334 
1335 void Parse::do_irem() {
1336   // Must keep both values on the expression-stack during null-check
1337   zero_check_int(peek());
1338   // Compile-time detect of null-exception?
1339   if (stopped())  return;
1340 
1341   Node* b = pop();
1342   Node* a = pop();
1343 
1344   const Type *t = _gvn.type(b);
1345   if (t != Type::TOP) {
1346     const TypeInt *ti = t->is_int();
1347     if (ti->is_con()) {
1348       int divisor = ti->get_con();
1349       // check for positive power of 2
1350       if (divisor > 0 &&
1351           (divisor & ~(divisor-1)) == divisor) {
1352         // yes !
1353         Node *mask = _gvn.intcon((divisor - 1));
1354         // Sigh, must handle negative dividends
1355         Node *zero = _gvn.intcon(0);
1356         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt, PROB_FAIR, COUNT_UNKNOWN);
1357         Node *iff = _gvn.transform( new IfFalseNode(ifff) );
1358         Node *ift = _gvn.transform( new IfTrueNode (ifff) );
1359         Node *reg = jump_if_join(ift, iff);
1360         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
1361         // Negative path; negate/and/negate
1362         Node *neg = _gvn.transform( new SubINode(zero, a) );
1363         Node *andn= _gvn.transform( new AndINode(neg, mask) );
1364         Node *negn= _gvn.transform( new SubINode(zero, andn) );
1365         phi->init_req(1, negn);
1366         // Fast positive case
1367         Node *andx = _gvn.transform( new AndINode(a, mask) );
1368         phi->init_req(2, andx);
1369         // Push the merge
1370         push( _gvn.transform(phi) );
1371         return;
1372       }
1373     }
1374   }
1375   // Default case
1376   push( _gvn.transform( new ModINode(control(),a,b) ) );
1377 }
1378 
1379 // Handle jsr and jsr_w bytecode
1380 void Parse::do_jsr() {
1381   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
1382 
1383   // Store information about current state, tagged with new _jsr_bci
1384   int return_bci = iter().next_bci();
1385   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
1386 
1387   // Update method data
1388   profile_taken_branch(jsr_bci);
1389 
1390   // The way we do things now, there is only one successor block
1391   // for the jsr, because the target code is cloned by ciTypeFlow.
1392   Block* target = successor_for_bci(jsr_bci);
1393 
1394   // What got pushed?
1395   const Type* ret_addr = target->peek();
1396   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
1397 
1398   // Effect on jsr on stack
1399   push(_gvn.makecon(ret_addr));
1400 
1401   // Flow to the jsr.
1402   merge(jsr_bci);
1403 }
1404 
1405 // Handle ret bytecode
1406 void Parse::do_ret() {
1407   // Find to whom we return.
1408   assert(block()->num_successors() == 1, "a ret can only go one place now");
1409   Block* target = block()->successor_at(0);
1410   assert(!target->is_ready(), "our arrival must be expected");
1411   profile_ret(target->flow()->start());
1412   int pnum = target->next_path_num();
1413   merge_common(target, pnum);
1414 }
1415 
1416 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
1417   if (btest != BoolTest::eq && btest != BoolTest::ne) {
1418     // Only ::eq and ::ne are supported for profile injection.
1419     return false;
1420   }
1421   if (test->is_Cmp() &&
1422       test->in(1)->Opcode() == Op_ProfileBoolean) {
1423     ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
1424     int false_cnt = profile->false_count();
1425     int  true_cnt = profile->true_count();
1426 
1427     // Counts matching depends on the actual test operation (::eq or ::ne).
1428     // No need to scale the counts because profile injection was designed
1429     // to feed exact counts into VM.
1430     taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
1431     not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
1432 
1433     profile->consume();
1434     return true;
1435   }
1436   return false;
1437 }
1438 //--------------------------dynamic_branch_prediction--------------------------
1439 // Try to gather dynamic branch prediction behavior.  Return a probability
1440 // of the branch being taken and set the "cnt" field.  Returns a -1.0
1441 // if we need to use static prediction for some reason.
1442 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
1443   ResourceMark rm;
1444 
1445   cnt  = COUNT_UNKNOWN;
1446 
1447   int     taken = 0;
1448   int not_taken = 0;
1449 
1450   bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
1451 
1452   if (use_mdo) {
1453     // Use MethodData information if it is available
1454     // FIXME: free the ProfileData structure
1455     ciMethodData* methodData = method()->method_data();
1456     if (!methodData->is_mature())  return PROB_UNKNOWN;
1457     ciProfileData* data = methodData->bci_to_data(bci());
1458     if (data == NULL) {
1459       return PROB_UNKNOWN;
1460     }
1461     if (!data->is_JumpData())  return PROB_UNKNOWN;
1462 
1463     // get taken and not taken values
1464     taken = data->as_JumpData()->taken();
1465     not_taken = 0;
1466     if (data->is_BranchData()) {
1467       not_taken = data->as_BranchData()->not_taken();
1468     }
1469 
1470     // scale the counts to be commensurate with invocation counts:
1471     taken = method()->scale_count(taken);
1472     not_taken = method()->scale_count(not_taken);
1473   }
1474 
1475   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
1476   // We also check that individual counters are positive first, otherwise the sum can become positive.
1477   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
1478     if (C->log() != NULL) {
1479       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
1480     }
1481     return PROB_UNKNOWN;
1482   }
1483 
1484   // Compute frequency that we arrive here
1485   float sum = taken + not_taken;
1486   // Adjust, if this block is a cloned private block but the
1487   // Jump counts are shared.  Taken the private counts for
1488   // just this path instead of the shared counts.
1489   if( block()->count() > 0 )
1490     sum = block()->count();
1491   cnt = sum / FreqCountInvocations;
1492 
1493   // Pin probability to sane limits
1494   float prob;
1495   if( !taken )
1496     prob = (0+PROB_MIN) / 2;
1497   else if( !not_taken )
1498     prob = (1+PROB_MAX) / 2;
1499   else {                         // Compute probability of true path
1500     prob = (float)taken / (float)(taken + not_taken);
1501     if (prob > PROB_MAX)  prob = PROB_MAX;
1502     if (prob < PROB_MIN)   prob = PROB_MIN;
1503   }
1504 
1505   assert((cnt > 0.0f) && (prob > 0.0f),
1506          "Bad frequency assignment in if");
1507 
1508   if (C->log() != NULL) {
1509     const char* prob_str = NULL;
1510     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
1511     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
1512     char prob_str_buf[30];
1513     if (prob_str == NULL) {
1514       sprintf(prob_str_buf, "%g", prob);
1515       prob_str = prob_str_buf;
1516     }
1517     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
1518                    iter().get_dest(), taken, not_taken, cnt, prob_str);
1519   }
1520   return prob;
1521 }
1522 
1523 //-----------------------------branch_prediction-------------------------------
1524 float Parse::branch_prediction(float& cnt,
1525                                BoolTest::mask btest,
1526                                int target_bci,
1527                                Node* test) {
1528   float prob = dynamic_branch_prediction(cnt, btest, test);
1529   // If prob is unknown, switch to static prediction
1530   if (prob != PROB_UNKNOWN)  return prob;
1531 
1532   prob = PROB_FAIR;                   // Set default value
1533   if (btest == BoolTest::eq)          // Exactly equal test?
1534     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
1535   else if (btest == BoolTest::ne)
1536     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
1537 
1538   // If this is a conditional test guarding a backwards branch,
1539   // assume its a loop-back edge.  Make it a likely taken branch.
1540   if (target_bci < bci()) {
1541     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
1542       // Since it's an OSR, we probably have profile data, but since
1543       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
1544       // Let's make a special check here for completely zero counts.
1545       ciMethodData* methodData = method()->method_data();
1546       if (!methodData->is_empty()) {
1547         ciProfileData* data = methodData->bci_to_data(bci());
1548         // Only stop for truly zero counts, which mean an unknown part
1549         // of the OSR-ed method, and we want to deopt to gather more stats.
1550         // If you have ANY counts, then this loop is simply 'cold' relative
1551         // to the OSR loop.
1552         if (data == NULL ||
1553             (data->as_BranchData()->taken() +  data->as_BranchData()->not_taken() == 0)) {
1554           // This is the only way to return PROB_UNKNOWN:
1555           return PROB_UNKNOWN;
1556         }
1557       }
1558     }
1559     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
1560   }
1561 
1562   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
1563   return prob;
1564 }
1565 
1566 // The magic constants are chosen so as to match the output of
1567 // branch_prediction() when the profile reports a zero taken count.
1568 // It is important to distinguish zero counts unambiguously, because
1569 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
1570 // very small but nonzero probabilities, which if confused with zero
1571 // counts would keep the program recompiling indefinitely.
1572 bool Parse::seems_never_taken(float prob) const {
1573   return prob < PROB_MIN;
1574 }
1575 
1576 // True if the comparison seems to be the kind that will not change its
1577 // statistics from true to false.  See comments in adjust_map_after_if.
1578 // This question is only asked along paths which are already
1579 // classifed as untaken (by seems_never_taken), so really,
1580 // if a path is never taken, its controlling comparison is
1581 // already acting in a stable fashion.  If the comparison
1582 // seems stable, we will put an expensive uncommon trap
1583 // on the untaken path.
1584 bool Parse::seems_stable_comparison() const {
1585   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
1586     return false;
1587   }
1588   return true;
1589 }
1590 
1591 //-------------------------------repush_if_args--------------------------------
1592 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
1593 inline int Parse::repush_if_args() {
1594   if (PrintOpto && WizardMode) {
1595     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
1596                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
1597     method()->print_name(); tty->cr();
1598   }
1599   int bc_depth = - Bytecodes::depth(iter().cur_bc());
1600   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
1601   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
1602   assert(argument(0) != NULL, "must exist");
1603   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
1604   inc_sp(bc_depth);
1605   return bc_depth;
1606 }
1607 
1608 //----------------------------------do_ifnull----------------------------------
1609 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
1610   int target_bci = iter().get_dest();
1611 
1612   Block* branch_block = successor_for_bci(target_bci);
1613   Block* next_block   = successor_for_bci(iter().next_bci());
1614 
1615   float cnt;
1616   float prob = branch_prediction(cnt, btest, target_bci, c);
1617   if (prob == PROB_UNKNOWN) {
1618     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
1619     if (PrintOpto && Verbose) {
1620       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1621     }
1622     repush_if_args(); // to gather stats on loop
1623     // We need to mark this branch as taken so that if we recompile we will
1624     // see that it is possible. In the tiered system the interpreter doesn't
1625     // do profiling and by the time we get to the lower tier from the interpreter
1626     // the path may be cold again. Make sure it doesn't look untaken
1627     profile_taken_branch(target_bci, !ProfileInterpreter);
1628     uncommon_trap(Deoptimization::Reason_unreached,
1629                   Deoptimization::Action_reinterpret,
1630                   NULL, "cold");
1631     if (C->eliminate_boxing()) {
1632       // Mark the successor blocks as parsed
1633       branch_block->next_path_num();
1634       next_block->next_path_num();
1635     }
1636     return;
1637   }
1638 
1639   NOT_PRODUCT(explicit_null_checks_inserted++);
1640 
1641   // Generate real control flow
1642   Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1643 
1644   // Sanity check the probability value
1645   assert(prob > 0.0f,"Bad probability in Parser");
1646  // Need xform to put node in hash table
1647   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1648   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1649   // True branch
1650   { PreserveJVMState pjvms(this);
1651     Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1652     set_control(iftrue);
1653 
1654     if (stopped()) {            // Path is dead?
1655       NOT_PRODUCT(explicit_null_checks_elided++);
1656       if (C->eliminate_boxing()) {
1657         // Mark the successor block as parsed
1658         branch_block->next_path_num();
1659       }
1660     } else {                    // Path is live.
1661       // Update method data
1662       profile_taken_branch(target_bci);
1663       adjust_map_after_if(btest, c, prob, branch_block);
1664       if (!stopped()) {
1665         merge(target_bci);
1666       }
1667     }
1668   }
1669 
1670   // False branch
1671   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1672   set_control(iffalse);
1673 
1674   if (stopped()) {              // Path is dead?
1675     NOT_PRODUCT(explicit_null_checks_elided++);
1676     if (C->eliminate_boxing()) {
1677       // Mark the successor block as parsed
1678       next_block->next_path_num();
1679     }
1680   } else  {                     // Path is live.
1681     // Update method data
1682     profile_not_taken_branch();
1683     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1684   }
1685 }
1686 
1687 //------------------------------------do_if------------------------------------
1688 void Parse::do_if(BoolTest::mask btest, Node* c, bool new_path, Node** ctrl_taken) {
1689   int target_bci = iter().get_dest();
1690 
1691   Block* branch_block = successor_for_bci(target_bci);
1692   Block* next_block   = successor_for_bci(iter().next_bci());
1693 
1694   float cnt;
1695   float prob = branch_prediction(cnt, btest, target_bci, c);
1696   float untaken_prob = 1.0 - prob;
1697 
1698   if (prob == PROB_UNKNOWN) {
1699     if (PrintOpto && Verbose) {
1700       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1701     }
1702     repush_if_args(); // to gather stats on loop
1703     // We need to mark this branch as taken so that if we recompile we will
1704     // see that it is possible. In the tiered system the interpreter doesn't
1705     // do profiling and by the time we get to the lower tier from the interpreter
1706     // the path may be cold again. Make sure it doesn't look untaken
1707     profile_taken_branch(target_bci, !ProfileInterpreter);
1708     uncommon_trap(Deoptimization::Reason_unreached,
1709                   Deoptimization::Action_reinterpret,
1710                   NULL, "cold");
1711     if (C->eliminate_boxing()) {
1712       // Mark the successor blocks as parsed
1713       branch_block->next_path_num();
1714       next_block->next_path_num();
1715     }
1716     return;
1717   }
1718 
1719   // Sanity check the probability value
1720   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1721 
1722   bool taken_if_true = true;
1723   // Convert BoolTest to canonical form:
1724   if (!BoolTest(btest).is_canonical()) {
1725     btest         = BoolTest(btest).negate();
1726     taken_if_true = false;
1727     // prob is NOT updated here; it remains the probability of the taken
1728     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1729   }
1730   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1731 
1732   Node* tst0 = new BoolNode(c, btest);
1733   Node* tst = _gvn.transform(tst0);
1734   BoolTest::mask taken_btest   = BoolTest::illegal;
1735   BoolTest::mask untaken_btest = BoolTest::illegal;
1736 
1737   if (tst->is_Bool()) {
1738     // Refresh c from the transformed bool node, since it may be
1739     // simpler than the original c.  Also re-canonicalize btest.
1740     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1741     // That can arise from statements like: if (x instanceof C) ...
1742     if (tst != tst0) {
1743       // Canonicalize one more time since transform can change it.
1744       btest = tst->as_Bool()->_test._test;
1745       if (!BoolTest(btest).is_canonical()) {
1746         // Reverse edges one more time...
1747         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1748         btest = tst->as_Bool()->_test._test;
1749         assert(BoolTest(btest).is_canonical(), "sanity");
1750         taken_if_true = !taken_if_true;
1751       }
1752       c = tst->in(1);
1753     }
1754     BoolTest::mask neg_btest = BoolTest(btest).negate();
1755     taken_btest   = taken_if_true ?     btest : neg_btest;
1756     untaken_btest = taken_if_true ? neg_btest :     btest;
1757   }
1758 
1759   // Generate real control flow
1760   float true_prob = (taken_if_true ? prob : untaken_prob);
1761   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1762   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1763   Node* taken_branch   = new IfTrueNode(iff);
1764   Node* untaken_branch = new IfFalseNode(iff);
1765   if (!taken_if_true) {  // Finish conversion to canonical form
1766     Node* tmp      = taken_branch;
1767     taken_branch   = untaken_branch;
1768     untaken_branch = tmp;
1769   }
1770 
1771   // Branch is taken:
1772   { PreserveJVMState pjvms(this);
1773     taken_branch = _gvn.transform(taken_branch);
1774     set_control(taken_branch);
1775 
1776     if (stopped()) {
1777       if (C->eliminate_boxing() && !new_path) {
1778         // Mark the successor block as parsed (if we haven't created a new path)
1779         branch_block->next_path_num();
1780       }
1781     } else {
1782       // Update method data
1783       profile_taken_branch(target_bci);
1784       adjust_map_after_if(taken_btest, c, prob, branch_block);
1785       if (!stopped()) {
1786         if (new_path) {
1787           // Merge by using a new path
1788           merge_new_path(target_bci);
1789         } else if (ctrl_taken != NULL) {
1790           // Don't merge but save taken branch to be wired by caller
1791           *ctrl_taken = control();
1792         } else {
1793           merge(target_bci);
1794         }
1795       }
1796     }
1797   }
1798 
1799   untaken_branch = _gvn.transform(untaken_branch);
1800   set_control(untaken_branch);
1801 
1802   // Branch not taken.
1803   if (stopped() && ctrl_taken == NULL) {
1804     if (C->eliminate_boxing()) {
1805       // Mark the successor block as parsed (if caller does not re-wire control flow)
1806       next_block->next_path_num();
1807     }
1808   } else {
1809     // Update method data
1810     profile_not_taken_branch();
1811     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);
1812   }
1813 }
1814 
1815 void Parse::do_acmp(BoolTest::mask btest, Node* a, Node* b) {
1816   // In the case were both operands might be value types, we need to
1817   // use the new acmp implementation. Otherwise, i.e. if one operand
1818   // is not a value type, we can use the old acmp implementation.
1819   Node* cmp = C->optimize_acmp(&_gvn, a, b);
1820   if (cmp != NULL) {
1821     // Use optimized/old acmp
1822     cmp = optimize_cmp_with_klass(_gvn.transform(cmp));
1823     do_if(btest, cmp);
1824     return;
1825   }
1826 
1827   Node* ctrl = NULL;
1828   bool safe_for_replace = true;
1829   if (!UsePointerPerturbation) {
1830     // Emit old acmp before new acmp for quick a != b check
1831     cmp = CmpP(a, b);
1832     cmp = optimize_cmp_with_klass(_gvn.transform(cmp));
1833     if (btest == BoolTest::ne) {
1834       do_if(btest, cmp, true);
1835       if (stopped()) {
1836         return; // Never equal
1837       }
1838     } else if (btest == BoolTest::eq) {
1839       Node* is_equal = NULL;
1840       {
1841         PreserveJVMState pjvms(this);
1842         do_if(btest, cmp, false, &is_equal);
1843         if (!stopped()) {
1844           // Not equal, skip valuetype check
1845           ctrl = new RegionNode(3);
1846           ctrl->init_req(1, control());
1847           _gvn.set_type(ctrl, Type::CONTROL);
1848           record_for_igvn(ctrl);
1849           safe_for_replace = false;
1850         }
1851       }
1852       if (is_equal == NULL) {
1853         assert(ctrl != NULL, "no control left");
1854         set_control(_gvn.transform(ctrl));
1855         return; // Never equal
1856       }
1857       set_control(is_equal);
1858     }
1859   }
1860 
1861   // Null check operand before loading the is_value bit
1862   bool speculate = false;
1863   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(b))) {
1864     // Operand 'b' is never null, swap operands to avoid null check
1865     swap(a, b);
1866   } else if (!too_many_traps(Deoptimization::Reason_speculate_null_check)) {
1867     // Speculate on non-nullness of one operand
1868     if (!_gvn.type(a)->speculative_maybe_null()) {
1869       speculate = true;
1870     } else if (!_gvn.type(b)->speculative_maybe_null()) {
1871       speculate = true;
1872       swap(a, b);
1873     }
1874   }
1875   inc_sp(2);
1876   Node* null_ctl = top();
1877   Node* not_null_a = null_check_oop(a, &null_ctl, speculate, safe_for_replace, speculate);
1878   assert(!stopped(), "operand is always null");
1879   dec_sp(2);
1880   Node* region = new RegionNode(2);
1881   Node* is_value = new PhiNode(region, TypeX_X);
1882   if (null_ctl != top()) {
1883     assert(!speculate, "should never be null");
1884     region->add_req(null_ctl);
1885     is_value->add_req(_gvn.MakeConX(0));
1886   }
1887 
1888   Node* value_mask = _gvn.MakeConX(markOopDesc::always_locked_pattern);
1889   if (UsePointerPerturbation) {
1890     Node* mark_addr = basic_plus_adr(not_null_a, oopDesc::mark_offset_in_bytes());
1891     Node* mark = make_load(NULL, mark_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1892     Node* not_mark = _gvn.transform(new XorXNode(mark, _gvn.MakeConX(-1)));
1893     Node* andn = _gvn.transform(new AndXNode(not_mark, value_mask));
1894     Node* neg_if_value = _gvn.transform(new SubXNode(andn, _gvn.MakeConX(1)));
1895     is_value->init_req(1, _gvn.transform(new RShiftXNode(neg_if_value, _gvn.intcon(63))));
1896   } else {
1897     is_value->init_req(1, is_always_locked(not_null_a));
1898   }
1899   region->init_req(1, control());
1900 
1901   set_control(_gvn.transform(region));
1902   is_value = _gvn.transform(is_value);
1903 
1904   if (UsePointerPerturbation) {
1905     // Perturbe oop if operand is a value type to make comparison fail
1906     Node* pert = _gvn.transform(new AddPNode(a, a, is_value));
1907     cmp = _gvn.transform(new CmpPNode(pert, b));
1908   } else {
1909     // Check for a value type because we already know that operands are equal
1910     cmp = _gvn.transform(new CmpXNode(is_value, value_mask));
1911     btest = (btest == BoolTest::eq) ? BoolTest::ne : BoolTest::eq;
1912   }
1913   cmp = optimize_cmp_with_klass(cmp);
1914   do_if(btest, cmp);
1915 
1916   if (ctrl != NULL) {
1917     ctrl->init_req(2, control());
1918     set_control(_gvn.transform(ctrl));
1919   }
1920 }
1921 
1922 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1923   // Don't want to speculate on uncommon traps when running with -Xcomp
1924   if (!UseInterpreter) {
1925     return false;
1926   }
1927   return (seems_never_taken(prob) && seems_stable_comparison());
1928 }
1929 
1930 void Parse::maybe_add_predicate_after_if(Block* path) {
1931   if (path->is_SEL_head() && path->preds_parsed() == 0) {
1932     // Add predicates at bci of if dominating the loop so traps can be
1933     // recorded on the if's profile data
1934     int bc_depth = repush_if_args();
1935     add_predicate();
1936     dec_sp(bc_depth);
1937     path->set_has_predicates();
1938   }
1939 }
1940 
1941 
1942 //----------------------------adjust_map_after_if------------------------------
1943 // Adjust the JVM state to reflect the result of taking this path.
1944 // Basically, it means inspecting the CmpNode controlling this
1945 // branch, seeing how it constrains a tested value, and then
1946 // deciding if it's worth our while to encode this constraint
1947 // as graph nodes in the current abstract interpretation map.
1948 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
1949   if (!c->is_Cmp()) {
1950     maybe_add_predicate_after_if(path);
1951     return;
1952   }
1953 
1954   if (stopped() || btest == BoolTest::illegal) {
1955     return;                             // nothing to do
1956   }
1957 
1958   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1959 
1960   if (path_is_suitable_for_uncommon_trap(prob)) {
1961     repush_if_args();
1962     uncommon_trap(Deoptimization::Reason_unstable_if,
1963                   Deoptimization::Action_reinterpret,
1964                   NULL,
1965                   (is_fallthrough ? "taken always" : "taken never"));
1966     return;
1967   }
1968 
1969   Node* val = c->in(1);
1970   Node* con = c->in(2);
1971   const Type* tcon = _gvn.type(con);
1972   const Type* tval = _gvn.type(val);
1973   bool have_con = tcon->singleton();
1974   if (tval->singleton()) {
1975     if (!have_con) {
1976       // Swap, so constant is in con.
1977       con  = val;
1978       tcon = tval;
1979       val  = c->in(2);
1980       tval = _gvn.type(val);
1981       btest = BoolTest(btest).commute();
1982       have_con = true;
1983     } else {
1984       // Do we have two constants?  Then leave well enough alone.
1985       have_con = false;
1986     }
1987   }
1988   if (!have_con) {                        // remaining adjustments need a con
1989     maybe_add_predicate_after_if(path);
1990     return;
1991   }
1992 
1993   sharpen_type_after_if(btest, con, tcon, val, tval);
1994   maybe_add_predicate_after_if(path);
1995 }
1996 
1997 
1998 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1999   Node* ldk;
2000   if (n->is_DecodeNKlass()) {
2001     if (n->in(1)->Opcode() != Op_LoadNKlass) {
2002       return NULL;
2003     } else {
2004       ldk = n->in(1);
2005     }
2006   } else if (n->Opcode() != Op_LoadKlass) {
2007     return NULL;
2008   } else {
2009     ldk = n;
2010   }
2011   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
2012 
2013   Node* adr = ldk->in(MemNode::Address);
2014   intptr_t off = 0;
2015   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
2016   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
2017     return NULL;
2018   const TypePtr* tp = gvn->type(obj)->is_ptr();
2019   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
2020     return NULL;
2021 
2022   return obj;
2023 }
2024 
2025 void Parse::sharpen_type_after_if(BoolTest::mask btest,
2026                                   Node* con, const Type* tcon,
2027                                   Node* val, const Type* tval) {
2028   // Look for opportunities to sharpen the type of a node
2029   // whose klass is compared with a constant klass.
2030   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
2031     Node* obj = extract_obj_from_klass_load(&_gvn, val);
2032     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
2033     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
2034        // Found:
2035        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
2036        // or the narrowOop equivalent.
2037        const Type* obj_type = _gvn.type(obj);
2038        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
2039        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
2040            tboth->higher_equal(obj_type)) {
2041           // obj has to be of the exact type Foo if the CmpP succeeds.
2042           int obj_in_map = map()->find_edge(obj);
2043           JVMState* jvms = this->jvms();
2044           if (obj_in_map >= 0 &&
2045               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
2046             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
2047             const Type* tcc = ccast->as_Type()->type();
2048             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
2049             // Delay transform() call to allow recovery of pre-cast value
2050             // at the control merge.
2051             _gvn.set_type_bottom(ccast);
2052             record_for_igvn(ccast);
2053             // Here's the payoff.
2054             replace_in_map(obj, ccast);
2055           }
2056        }
2057     }
2058   }
2059 
2060   int val_in_map = map()->find_edge(val);
2061   if (val_in_map < 0)  return;          // replace_in_map would be useless
2062   {
2063     JVMState* jvms = this->jvms();
2064     if (!(jvms->is_loc(val_in_map) ||
2065           jvms->is_stk(val_in_map)))
2066       return;                           // again, it would be useless
2067   }
2068 
2069   // Check for a comparison to a constant, and "know" that the compared
2070   // value is constrained on this path.
2071   assert(tcon->singleton(), "");
2072   ConstraintCastNode* ccast = NULL;
2073   Node* cast = NULL;
2074 
2075   switch (btest) {
2076   case BoolTest::eq:                    // Constant test?
2077     {
2078       const Type* tboth = tcon->join_speculative(tval);
2079       if (tboth == tval)  break;        // Nothing to gain.
2080       if (tcon->isa_int()) {
2081         ccast = new CastIINode(val, tboth);
2082       } else if (tcon == TypePtr::NULL_PTR) {
2083         // Cast to null, but keep the pointer identity temporarily live.
2084         ccast = new CastPPNode(val, tboth);
2085       } else {
2086         const TypeF* tf = tcon->isa_float_constant();
2087         const TypeD* td = tcon->isa_double_constant();
2088         // Exclude tests vs float/double 0 as these could be
2089         // either +0 or -0.  Just because you are equal to +0
2090         // doesn't mean you ARE +0!
2091         // Note, following code also replaces Long and Oop values.
2092         if ((!tf || tf->_f != 0.0) &&
2093             (!td || td->_d != 0.0))
2094           cast = con;                   // Replace non-constant val by con.
2095       }
2096     }
2097     break;
2098 
2099   case BoolTest::ne:
2100     if (tcon == TypePtr::NULL_PTR) {
2101       cast = cast_not_null(val, false);
2102     }
2103     break;
2104 
2105   default:
2106     // (At this point we could record int range types with CastII.)
2107     break;
2108   }
2109 
2110   if (ccast != NULL) {
2111     const Type* tcc = ccast->as_Type()->type();
2112     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
2113     // Delay transform() call to allow recovery of pre-cast value
2114     // at the control merge.
2115     ccast->set_req(0, control());
2116     _gvn.set_type_bottom(ccast);
2117     record_for_igvn(ccast);
2118     cast = ccast;
2119   }
2120 
2121   if (cast != NULL) {                   // Here's the payoff.
2122     replace_in_map(val, cast);
2123   }
2124 }
2125 
2126 /**
2127  * Use speculative type to optimize CmpP node: if comparison is
2128  * against the low level class, cast the object to the speculative
2129  * type if any. CmpP should then go away.
2130  *
2131  * @param c  expected CmpP node
2132  * @return   result of CmpP on object casted to speculative type
2133  *
2134  */
2135 Node* Parse::optimize_cmp_with_klass(Node* c) {
2136   // If this is transformed by the _gvn to a comparison with the low
2137   // level klass then we may be able to use speculation
2138   if (c->Opcode() == Op_CmpP &&
2139       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
2140       c->in(2)->is_Con()) {
2141     Node* load_klass = NULL;
2142     Node* decode = NULL;
2143     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
2144       decode = c->in(1);
2145       load_klass = c->in(1)->in(1);
2146     } else {
2147       load_klass = c->in(1);
2148     }
2149     if (load_klass->in(2)->is_AddP()) {
2150       Node* addp = load_klass->in(2);
2151       Node* obj = addp->in(AddPNode::Address);
2152       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2153       if (obj_type->speculative_type_not_null() != NULL) {
2154         ciKlass* k = obj_type->speculative_type();
2155         inc_sp(2);
2156         obj = maybe_cast_profiled_obj(obj, k);
2157         dec_sp(2);
2158         if (obj->is_ValueType()) {
2159           assert(obj->as_ValueType()->is_allocated(&_gvn), "must be allocated");
2160           obj = obj->as_ValueType()->get_oop();
2161         }
2162         // Make the CmpP use the casted obj
2163         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
2164         load_klass = load_klass->clone();
2165         load_klass->set_req(2, addp);
2166         load_klass = _gvn.transform(load_klass);
2167         if (decode != NULL) {
2168           decode = decode->clone();
2169           decode->set_req(1, load_klass);
2170           load_klass = _gvn.transform(decode);
2171         }
2172         c = c->clone();
2173         c->set_req(1, load_klass);
2174         c = _gvn.transform(c);
2175       }
2176     }
2177   }
2178   return c;
2179 }
2180 
2181 //------------------------------do_one_bytecode--------------------------------
2182 // Parse this bytecode, and alter the Parsers JVM->Node mapping
2183 void Parse::do_one_bytecode() {
2184   Node *a, *b, *c, *d;          // Handy temps
2185   BoolTest::mask btest;
2186   int i;
2187 
2188   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
2189 
2190   if (C->check_node_count(NodeLimitFudgeFactor * 5,
2191                           "out of nodes parsing method")) {
2192     return;
2193   }
2194 
2195 #ifdef ASSERT
2196   // for setting breakpoints
2197   if (TraceOptoParse) {
2198     tty->print(" @");
2199     dump_bci(bci());
2200     tty->cr();
2201   }
2202 #endif
2203 
2204   switch (bc()) {
2205   case Bytecodes::_nop:
2206     // do nothing
2207     break;
2208   case Bytecodes::_lconst_0:
2209     push_pair(longcon(0));
2210     break;
2211 
2212   case Bytecodes::_lconst_1:
2213     push_pair(longcon(1));
2214     break;
2215 
2216   case Bytecodes::_fconst_0:
2217     push(zerocon(T_FLOAT));
2218     break;
2219 
2220   case Bytecodes::_fconst_1:
2221     push(makecon(TypeF::ONE));
2222     break;
2223 
2224   case Bytecodes::_fconst_2:
2225     push(makecon(TypeF::make(2.0f)));
2226     break;
2227 
2228   case Bytecodes::_dconst_0:
2229     push_pair(zerocon(T_DOUBLE));
2230     break;
2231 
2232   case Bytecodes::_dconst_1:
2233     push_pair(makecon(TypeD::ONE));
2234     break;
2235 
2236   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
2237   case Bytecodes::_iconst_0: push(intcon( 0)); break;
2238   case Bytecodes::_iconst_1: push(intcon( 1)); break;
2239   case Bytecodes::_iconst_2: push(intcon( 2)); break;
2240   case Bytecodes::_iconst_3: push(intcon( 3)); break;
2241   case Bytecodes::_iconst_4: push(intcon( 4)); break;
2242   case Bytecodes::_iconst_5: push(intcon( 5)); break;
2243   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
2244   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
2245   case Bytecodes::_aconst_null: push(null());  break;
2246   case Bytecodes::_ldc:
2247   case Bytecodes::_ldc_w:
2248   case Bytecodes::_ldc2_w:
2249     // If the constant is unresolved, run this BC once in the interpreter.
2250     {
2251       ciConstant constant = iter().get_constant();
2252       if (!constant.is_valid() ||
2253           (constant.basic_type() == T_OBJECT &&
2254            !constant.as_object()->is_loaded())) {
2255         int index = iter().get_constant_pool_index();
2256         constantTag tag = iter().get_constant_pool_tag(index);
2257         uncommon_trap(Deoptimization::make_trap_request
2258                       (Deoptimization::Reason_unloaded,
2259                        Deoptimization::Action_reinterpret,
2260                        index),
2261                       NULL, tag.internal_name());
2262         break;
2263       }
2264       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
2265              "must be java_mirror of klass");
2266       const Type* con_type = Type::make_from_constant(constant);
2267       if (con_type != NULL) {
2268         push_node(con_type->basic_type(), makecon(con_type));
2269       }
2270     }
2271 
2272     break;
2273 
2274   case Bytecodes::_aload_0:
2275     push( local(0) );
2276     break;
2277   case Bytecodes::_aload_1:
2278     push( local(1) );
2279     break;
2280   case Bytecodes::_aload_2:
2281     push( local(2) );
2282     break;
2283   case Bytecodes::_aload_3:
2284     push( local(3) );
2285     break;
2286   case Bytecodes::_aload:
2287     push( local(iter().get_index()) );
2288     break;
2289 
2290   case Bytecodes::_fload_0:
2291   case Bytecodes::_iload_0:
2292     push( local(0) );
2293     break;
2294   case Bytecodes::_fload_1:
2295   case Bytecodes::_iload_1:
2296     push( local(1) );
2297     break;
2298   case Bytecodes::_fload_2:
2299   case Bytecodes::_iload_2:
2300     push( local(2) );
2301     break;
2302   case Bytecodes::_fload_3:
2303   case Bytecodes::_iload_3:
2304     push( local(3) );
2305     break;
2306   case Bytecodes::_fload:
2307   case Bytecodes::_iload:
2308     push( local(iter().get_index()) );
2309     break;
2310   case Bytecodes::_lload_0:
2311     push_pair_local( 0 );
2312     break;
2313   case Bytecodes::_lload_1:
2314     push_pair_local( 1 );
2315     break;
2316   case Bytecodes::_lload_2:
2317     push_pair_local( 2 );
2318     break;
2319   case Bytecodes::_lload_3:
2320     push_pair_local( 3 );
2321     break;
2322   case Bytecodes::_lload:
2323     push_pair_local( iter().get_index() );
2324     break;
2325 
2326   case Bytecodes::_dload_0:
2327     push_pair_local(0);
2328     break;
2329   case Bytecodes::_dload_1:
2330     push_pair_local(1);
2331     break;
2332   case Bytecodes::_dload_2:
2333     push_pair_local(2);
2334     break;
2335   case Bytecodes::_dload_3:
2336     push_pair_local(3);
2337     break;
2338   case Bytecodes::_dload:
2339     push_pair_local(iter().get_index());
2340     break;
2341   case Bytecodes::_fstore_0:
2342   case Bytecodes::_istore_0:
2343   case Bytecodes::_astore_0:
2344     set_local( 0, pop() );
2345     break;
2346   case Bytecodes::_fstore_1:
2347   case Bytecodes::_istore_1:
2348   case Bytecodes::_astore_1:
2349     set_local( 1, pop() );
2350     break;
2351   case Bytecodes::_fstore_2:
2352   case Bytecodes::_istore_2:
2353   case Bytecodes::_astore_2:
2354     set_local( 2, pop() );
2355     break;
2356   case Bytecodes::_fstore_3:
2357   case Bytecodes::_istore_3:
2358   case Bytecodes::_astore_3:
2359     set_local( 3, pop() );
2360     break;
2361   case Bytecodes::_fstore:
2362   case Bytecodes::_istore:
2363   case Bytecodes::_astore:
2364     set_local( iter().get_index(), pop() );
2365     break;
2366   // long stores
2367   case Bytecodes::_lstore_0:
2368     set_pair_local( 0, pop_pair() );
2369     break;
2370   case Bytecodes::_lstore_1:
2371     set_pair_local( 1, pop_pair() );
2372     break;
2373   case Bytecodes::_lstore_2:
2374     set_pair_local( 2, pop_pair() );
2375     break;
2376   case Bytecodes::_lstore_3:
2377     set_pair_local( 3, pop_pair() );
2378     break;
2379   case Bytecodes::_lstore:
2380     set_pair_local( iter().get_index(), pop_pair() );
2381     break;
2382 
2383   // double stores
2384   case Bytecodes::_dstore_0:
2385     set_pair_local( 0, dstore_rounding(pop_pair()) );
2386     break;
2387   case Bytecodes::_dstore_1:
2388     set_pair_local( 1, dstore_rounding(pop_pair()) );
2389     break;
2390   case Bytecodes::_dstore_2:
2391     set_pair_local( 2, dstore_rounding(pop_pair()) );
2392     break;
2393   case Bytecodes::_dstore_3:
2394     set_pair_local( 3, dstore_rounding(pop_pair()) );
2395     break;
2396   case Bytecodes::_dstore:
2397     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
2398     break;
2399 
2400   case Bytecodes::_pop:  dec_sp(1);   break;
2401   case Bytecodes::_pop2: dec_sp(2);   break;
2402   case Bytecodes::_swap:
2403     a = pop();
2404     b = pop();
2405     push(a);
2406     push(b);
2407     break;
2408   case Bytecodes::_dup:
2409     a = pop();
2410     push(a);
2411     push(a);
2412     break;
2413   case Bytecodes::_dup_x1:
2414     a = pop();
2415     b = pop();
2416     push( a );
2417     push( b );
2418     push( a );
2419     break;
2420   case Bytecodes::_dup_x2:
2421     a = pop();
2422     b = pop();
2423     c = pop();
2424     push( a );
2425     push( c );
2426     push( b );
2427     push( a );
2428     break;
2429   case Bytecodes::_dup2:
2430     a = pop();
2431     b = pop();
2432     push( b );
2433     push( a );
2434     push( b );
2435     push( a );
2436     break;
2437 
2438   case Bytecodes::_dup2_x1:
2439     // before: .. c, b, a
2440     // after:  .. b, a, c, b, a
2441     // not tested
2442     a = pop();
2443     b = pop();
2444     c = pop();
2445     push( b );
2446     push( a );
2447     push( c );
2448     push( b );
2449     push( a );
2450     break;
2451   case Bytecodes::_dup2_x2:
2452     // before: .. d, c, b, a
2453     // after:  .. b, a, d, c, b, a
2454     // not tested
2455     a = pop();
2456     b = pop();
2457     c = pop();
2458     d = pop();
2459     push( b );
2460     push( a );
2461     push( d );
2462     push( c );
2463     push( b );
2464     push( a );
2465     break;
2466 
2467   case Bytecodes::_arraylength: {
2468     // Must do null-check with value on expression stack
2469     Node *ary = null_check(peek(), T_ARRAY);
2470     // Compile-time detect of null-exception?
2471     if (stopped())  return;
2472     a = pop();
2473     push(load_array_length(a));
2474     break;
2475   }
2476 
2477   case Bytecodes::_baload:  array_load(T_BYTE);    break;
2478   case Bytecodes::_caload:  array_load(T_CHAR);    break;
2479   case Bytecodes::_iaload:  array_load(T_INT);     break;
2480   case Bytecodes::_saload:  array_load(T_SHORT);   break;
2481   case Bytecodes::_faload:  array_load(T_FLOAT);   break;
2482   case Bytecodes::_aaload:  array_load(T_OBJECT);  break;
2483   case Bytecodes::_laload:  array_load(T_LONG);    break;
2484   case Bytecodes::_daload:  array_load(T_DOUBLE);  break;
2485   case Bytecodes::_bastore: array_store(T_BYTE);   break;
2486   case Bytecodes::_castore: array_store(T_CHAR);   break;
2487   case Bytecodes::_iastore: array_store(T_INT);    break;
2488   case Bytecodes::_sastore: array_store(T_SHORT);  break;
2489   case Bytecodes::_fastore: array_store(T_FLOAT);  break;
2490   case Bytecodes::_aastore: array_store(T_OBJECT); break;
2491   case Bytecodes::_lastore: array_store(T_LONG);   break;
2492   case Bytecodes::_dastore: array_store(T_DOUBLE); break;
2493 
2494   case Bytecodes::_getfield:
2495     do_getfield();
2496     break;
2497 
2498   case Bytecodes::_getstatic:
2499     do_getstatic();
2500     break;
2501 
2502   case Bytecodes::_putfield:
2503     do_putfield();
2504     break;
2505 
2506   case Bytecodes::_putstatic:
2507     do_putstatic();
2508     break;
2509 
2510   case Bytecodes::_irem:
2511     do_irem();
2512     break;
2513   case Bytecodes::_idiv:
2514     // Must keep both values on the expression-stack during null-check
2515     zero_check_int(peek());
2516     // Compile-time detect of null-exception?
2517     if (stopped())  return;
2518     b = pop();
2519     a = pop();
2520     push( _gvn.transform( new DivINode(control(),a,b) ) );
2521     break;
2522   case Bytecodes::_imul:
2523     b = pop(); a = pop();
2524     push( _gvn.transform( new MulINode(a,b) ) );
2525     break;
2526   case Bytecodes::_iadd:
2527     b = pop(); a = pop();
2528     push( _gvn.transform( new AddINode(a,b) ) );
2529     break;
2530   case Bytecodes::_ineg:
2531     a = pop();
2532     push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
2533     break;
2534   case Bytecodes::_isub:
2535     b = pop(); a = pop();
2536     push( _gvn.transform( new SubINode(a,b) ) );
2537     break;
2538   case Bytecodes::_iand:
2539     b = pop(); a = pop();
2540     push( _gvn.transform( new AndINode(a,b) ) );
2541     break;
2542   case Bytecodes::_ior:
2543     b = pop(); a = pop();
2544     push( _gvn.transform( new OrINode(a,b) ) );
2545     break;
2546   case Bytecodes::_ixor:
2547     b = pop(); a = pop();
2548     push( _gvn.transform( new XorINode(a,b) ) );
2549     break;
2550   case Bytecodes::_ishl:
2551     b = pop(); a = pop();
2552     push( _gvn.transform( new LShiftINode(a,b) ) );
2553     break;
2554   case Bytecodes::_ishr:
2555     b = pop(); a = pop();
2556     push( _gvn.transform( new RShiftINode(a,b) ) );
2557     break;
2558   case Bytecodes::_iushr:
2559     b = pop(); a = pop();
2560     push( _gvn.transform( new URShiftINode(a,b) ) );
2561     break;
2562 
2563   case Bytecodes::_fneg:
2564     a = pop();
2565     b = _gvn.transform(new NegFNode (a));
2566     push(b);
2567     break;
2568 
2569   case Bytecodes::_fsub:
2570     b = pop();
2571     a = pop();
2572     c = _gvn.transform( new SubFNode(a,b) );
2573     d = precision_rounding(c);
2574     push( d );
2575     break;
2576 
2577   case Bytecodes::_fadd:
2578     b = pop();
2579     a = pop();
2580     c = _gvn.transform( new AddFNode(a,b) );
2581     d = precision_rounding(c);
2582     push( d );
2583     break;
2584 
2585   case Bytecodes::_fmul:
2586     b = pop();
2587     a = pop();
2588     c = _gvn.transform( new MulFNode(a,b) );
2589     d = precision_rounding(c);
2590     push( d );
2591     break;
2592 
2593   case Bytecodes::_fdiv:
2594     b = pop();
2595     a = pop();
2596     c = _gvn.transform( new DivFNode(0,a,b) );
2597     d = precision_rounding(c);
2598     push( d );
2599     break;
2600 
2601   case Bytecodes::_frem:
2602     if (Matcher::has_match_rule(Op_ModF)) {
2603       // Generate a ModF node.
2604       b = pop();
2605       a = pop();
2606       c = _gvn.transform( new ModFNode(0,a,b) );
2607       d = precision_rounding(c);
2608       push( d );
2609     }
2610     else {
2611       // Generate a call.
2612       modf();
2613     }
2614     break;
2615 
2616   case Bytecodes::_fcmpl:
2617     b = pop();
2618     a = pop();
2619     c = _gvn.transform( new CmpF3Node( a, b));
2620     push(c);
2621     break;
2622   case Bytecodes::_fcmpg:
2623     b = pop();
2624     a = pop();
2625 
2626     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
2627     // which negates the result sign except for unordered.  Flip the unordered
2628     // as well by using CmpF3 which implements unordered-lesser instead of
2629     // unordered-greater semantics.  Finally, commute the result bits.  Result
2630     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
2631     c = _gvn.transform( new CmpF3Node( b, a));
2632     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2633     push(c);
2634     break;
2635 
2636   case Bytecodes::_f2i:
2637     a = pop();
2638     push(_gvn.transform(new ConvF2INode(a)));
2639     break;
2640 
2641   case Bytecodes::_d2i:
2642     a = pop_pair();
2643     b = _gvn.transform(new ConvD2INode(a));
2644     push( b );
2645     break;
2646 
2647   case Bytecodes::_f2d:
2648     a = pop();
2649     b = _gvn.transform( new ConvF2DNode(a));
2650     push_pair( b );
2651     break;
2652 
2653   case Bytecodes::_d2f:
2654     a = pop_pair();
2655     b = _gvn.transform( new ConvD2FNode(a));
2656     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
2657     //b = _gvn.transform(new RoundFloatNode(0, b) );
2658     push( b );
2659     break;
2660 
2661   case Bytecodes::_l2f:
2662     if (Matcher::convL2FSupported()) {
2663       a = pop_pair();
2664       b = _gvn.transform( new ConvL2FNode(a));
2665       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
2666       // Rather than storing the result into an FP register then pushing
2667       // out to memory to round, the machine instruction that implements
2668       // ConvL2D is responsible for rounding.
2669       // c = precision_rounding(b);
2670       c = _gvn.transform(b);
2671       push(c);
2672     } else {
2673       l2f();
2674     }
2675     break;
2676 
2677   case Bytecodes::_l2d:
2678     a = pop_pair();
2679     b = _gvn.transform( new ConvL2DNode(a));
2680     // For i486.ad, rounding is always necessary (see _l2f above).
2681     // c = dprecision_rounding(b);
2682     c = _gvn.transform(b);
2683     push_pair(c);
2684     break;
2685 
2686   case Bytecodes::_f2l:
2687     a = pop();
2688     b = _gvn.transform( new ConvF2LNode(a));
2689     push_pair(b);
2690     break;
2691 
2692   case Bytecodes::_d2l:
2693     a = pop_pair();
2694     b = _gvn.transform( new ConvD2LNode(a));
2695     push_pair(b);
2696     break;
2697 
2698   case Bytecodes::_dsub:
2699     b = pop_pair();
2700     a = pop_pair();
2701     c = _gvn.transform( new SubDNode(a,b) );
2702     d = dprecision_rounding(c);
2703     push_pair( d );
2704     break;
2705 
2706   case Bytecodes::_dadd:
2707     b = pop_pair();
2708     a = pop_pair();
2709     c = _gvn.transform( new AddDNode(a,b) );
2710     d = dprecision_rounding(c);
2711     push_pair( d );
2712     break;
2713 
2714   case Bytecodes::_dmul:
2715     b = pop_pair();
2716     a = pop_pair();
2717     c = _gvn.transform( new MulDNode(a,b) );
2718     d = dprecision_rounding(c);
2719     push_pair( d );
2720     break;
2721 
2722   case Bytecodes::_ddiv:
2723     b = pop_pair();
2724     a = pop_pair();
2725     c = _gvn.transform( new DivDNode(0,a,b) );
2726     d = dprecision_rounding(c);
2727     push_pair( d );
2728     break;
2729 
2730   case Bytecodes::_dneg:
2731     a = pop_pair();
2732     b = _gvn.transform(new NegDNode (a));
2733     push_pair(b);
2734     break;
2735 
2736   case Bytecodes::_drem:
2737     if (Matcher::has_match_rule(Op_ModD)) {
2738       // Generate a ModD node.
2739       b = pop_pair();
2740       a = pop_pair();
2741       // a % b
2742 
2743       c = _gvn.transform( new ModDNode(0,a,b) );
2744       d = dprecision_rounding(c);
2745       push_pair( d );
2746     }
2747     else {
2748       // Generate a call.
2749       modd();
2750     }
2751     break;
2752 
2753   case Bytecodes::_dcmpl:
2754     b = pop_pair();
2755     a = pop_pair();
2756     c = _gvn.transform( new CmpD3Node( a, b));
2757     push(c);
2758     break;
2759 
2760   case Bytecodes::_dcmpg:
2761     b = pop_pair();
2762     a = pop_pair();
2763     // Same as dcmpl but need to flip the unordered case.
2764     // Commute the inputs, which negates the result sign except for unordered.
2765     // Flip the unordered as well by using CmpD3 which implements
2766     // unordered-lesser instead of unordered-greater semantics.
2767     // Finally, negate the result bits.  Result is same as using a
2768     // CmpD3Greater except we did it with CmpD3 alone.
2769     c = _gvn.transform( new CmpD3Node( b, a));
2770     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2771     push(c);
2772     break;
2773 
2774 
2775     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2776   case Bytecodes::_land:
2777     b = pop_pair();
2778     a = pop_pair();
2779     c = _gvn.transform( new AndLNode(a,b) );
2780     push_pair(c);
2781     break;
2782   case Bytecodes::_lor:
2783     b = pop_pair();
2784     a = pop_pair();
2785     c = _gvn.transform( new OrLNode(a,b) );
2786     push_pair(c);
2787     break;
2788   case Bytecodes::_lxor:
2789     b = pop_pair();
2790     a = pop_pair();
2791     c = _gvn.transform( new XorLNode(a,b) );
2792     push_pair(c);
2793     break;
2794 
2795   case Bytecodes::_lshl:
2796     b = pop();                  // the shift count
2797     a = pop_pair();             // value to be shifted
2798     c = _gvn.transform( new LShiftLNode(a,b) );
2799     push_pair(c);
2800     break;
2801   case Bytecodes::_lshr:
2802     b = pop();                  // the shift count
2803     a = pop_pair();             // value to be shifted
2804     c = _gvn.transform( new RShiftLNode(a,b) );
2805     push_pair(c);
2806     break;
2807   case Bytecodes::_lushr:
2808     b = pop();                  // the shift count
2809     a = pop_pair();             // value to be shifted
2810     c = _gvn.transform( new URShiftLNode(a,b) );
2811     push_pair(c);
2812     break;
2813   case Bytecodes::_lmul:
2814     b = pop_pair();
2815     a = pop_pair();
2816     c = _gvn.transform( new MulLNode(a,b) );
2817     push_pair(c);
2818     break;
2819 
2820   case Bytecodes::_lrem:
2821     // Must keep both values on the expression-stack during null-check
2822     assert(peek(0) == top(), "long word order");
2823     zero_check_long(peek(1));
2824     // Compile-time detect of null-exception?
2825     if (stopped())  return;
2826     b = pop_pair();
2827     a = pop_pair();
2828     c = _gvn.transform( new ModLNode(control(),a,b) );
2829     push_pair(c);
2830     break;
2831 
2832   case Bytecodes::_ldiv:
2833     // Must keep both values on the expression-stack during null-check
2834     assert(peek(0) == top(), "long word order");
2835     zero_check_long(peek(1));
2836     // Compile-time detect of null-exception?
2837     if (stopped())  return;
2838     b = pop_pair();
2839     a = pop_pair();
2840     c = _gvn.transform( new DivLNode(control(),a,b) );
2841     push_pair(c);
2842     break;
2843 
2844   case Bytecodes::_ladd:
2845     b = pop_pair();
2846     a = pop_pair();
2847     c = _gvn.transform( new AddLNode(a,b) );
2848     push_pair(c);
2849     break;
2850   case Bytecodes::_lsub:
2851     b = pop_pair();
2852     a = pop_pair();
2853     c = _gvn.transform( new SubLNode(a,b) );
2854     push_pair(c);
2855     break;
2856   case Bytecodes::_lcmp:
2857     // Safepoints are now inserted _before_ branches.  The long-compare
2858     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2859     // slew of control flow.  These are usually followed by a CmpI vs zero and
2860     // a branch; this pattern then optimizes to the obvious long-compare and
2861     // branch.  However, if the branch is backwards there's a Safepoint
2862     // inserted.  The inserted Safepoint captures the JVM state at the
2863     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2864     // long-compare is used to control a loop the debug info will force
2865     // computation of the 3-way value, even though the generated code uses a
2866     // long-compare and branch.  We try to rectify the situation by inserting
2867     // a SafePoint here and have it dominate and kill the safepoint added at a
2868     // following backwards branch.  At this point the JVM state merely holds 2
2869     // longs but not the 3-way value.
2870     if( UseLoopSafepoints ) {
2871       switch( iter().next_bc() ) {
2872       case Bytecodes::_ifgt:
2873       case Bytecodes::_iflt:
2874       case Bytecodes::_ifge:
2875       case Bytecodes::_ifle:
2876       case Bytecodes::_ifne:
2877       case Bytecodes::_ifeq:
2878         // If this is a backwards branch in the bytecodes, add Safepoint
2879         maybe_add_safepoint(iter().next_get_dest());
2880       default:
2881         break;
2882       }
2883     }
2884     b = pop_pair();
2885     a = pop_pair();
2886     c = _gvn.transform( new CmpL3Node( a, b ));
2887     push(c);
2888     break;
2889 
2890   case Bytecodes::_lneg:
2891     a = pop_pair();
2892     b = _gvn.transform( new SubLNode(longcon(0),a));
2893     push_pair(b);
2894     break;
2895   case Bytecodes::_l2i:
2896     a = pop_pair();
2897     push( _gvn.transform( new ConvL2INode(a)));
2898     break;
2899   case Bytecodes::_i2l:
2900     a = pop();
2901     b = _gvn.transform( new ConvI2LNode(a));
2902     push_pair(b);
2903     break;
2904   case Bytecodes::_i2b:
2905     // Sign extend
2906     a = pop();
2907     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2908     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2909     push( a );
2910     break;
2911   case Bytecodes::_i2s:
2912     a = pop();
2913     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2914     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2915     push( a );
2916     break;
2917   case Bytecodes::_i2c:
2918     a = pop();
2919     push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2920     break;
2921 
2922   case Bytecodes::_i2f:
2923     a = pop();
2924     b = _gvn.transform( new ConvI2FNode(a) ) ;
2925     c = precision_rounding(b);
2926     push (b);
2927     break;
2928 
2929   case Bytecodes::_i2d:
2930     a = pop();
2931     b = _gvn.transform( new ConvI2DNode(a));
2932     push_pair(b);
2933     break;
2934 
2935   case Bytecodes::_iinc:        // Increment local
2936     i = iter().get_index();     // Get local index
2937     set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2938     break;
2939 
2940   // Exit points of synchronized methods must have an unlock node
2941   case Bytecodes::_return:
2942     return_current(NULL);
2943     break;
2944 
2945   case Bytecodes::_ireturn:
2946   case Bytecodes::_areturn:
2947   case Bytecodes::_freturn:
2948     return_current(pop());
2949     break;
2950   case Bytecodes::_lreturn:
2951     return_current(pop_pair());
2952     break;
2953   case Bytecodes::_dreturn:
2954     return_current(pop_pair());
2955     break;
2956 
2957   case Bytecodes::_athrow:
2958     // null exception oop throws NULL pointer exception
2959     null_check(peek());
2960     if (stopped())  return;
2961     // Hook the thrown exception directly to subsequent handlers.
2962     if (BailoutToInterpreterForThrows) {
2963       // Keep method interpreted from now on.
2964       uncommon_trap(Deoptimization::Reason_unhandled,
2965                     Deoptimization::Action_make_not_compilable);
2966       return;
2967     }
2968     if (env()->jvmti_can_post_on_exceptions()) {
2969       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2970       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2971     }
2972     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2973     add_exception_state(make_exception_state(peek()));
2974     break;
2975 
2976   case Bytecodes::_goto:   // fall through
2977   case Bytecodes::_goto_w: {
2978     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2979 
2980     // If this is a backwards branch in the bytecodes, add Safepoint
2981     maybe_add_safepoint(target_bci);
2982 
2983     // Update method data
2984     profile_taken_branch(target_bci);
2985 
2986     // Merge the current control into the target basic block
2987     merge(target_bci);
2988 
2989     // See if we can get some profile data and hand it off to the next block
2990     Block *target_block = block()->successor_for_bci(target_bci);
2991     if (target_block->pred_count() != 1)  break;
2992     ciMethodData* methodData = method()->method_data();
2993     if (!methodData->is_mature())  break;
2994     ciProfileData* data = methodData->bci_to_data(bci());
2995     assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch");
2996     int taken = ((ciJumpData*)data)->taken();
2997     taken = method()->scale_count(taken);
2998     target_block->set_count(taken);
2999     break;
3000   }
3001 
3002   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
3003   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
3004   handle_if_null:
3005     // If this is a backwards branch in the bytecodes, add Safepoint
3006     maybe_add_safepoint(iter().get_dest());
3007     a = null();
3008     b = pop();
3009     if (b->is_ValueType()) {
3010       // Return constant false because 'b' is always non-null
3011       c = _gvn.makecon(TypeInt::CC_GT);
3012     } else {
3013       if (!_gvn.type(b)->speculative_maybe_null() &&
3014           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
3015         inc_sp(1);
3016         Node* null_ctl = top();
3017         b = null_check_oop(b, &null_ctl, true, true, true);
3018         assert(null_ctl->is_top(), "no null control here");
3019         dec_sp(1);
3020       } else if (_gvn.type(b)->speculative_always_null() &&
3021                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
3022         inc_sp(1);
3023         b = null_assert(b);
3024         dec_sp(1);
3025       }
3026       c = _gvn.transform( new CmpPNode(b, a) );
3027     }
3028     do_ifnull(btest, c);
3029     break;
3030 
3031   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
3032   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
3033   handle_if_acmp:
3034     // If this is a backwards branch in the bytecodes, add Safepoint
3035     maybe_add_safepoint(iter().get_dest());
3036     a = pop();
3037     b = pop();
3038     do_acmp(btest, a, b);
3039     break;
3040 
3041   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
3042   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
3043   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
3044   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
3045   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
3046   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
3047   handle_ifxx:
3048     // If this is a backwards branch in the bytecodes, add Safepoint
3049     maybe_add_safepoint(iter().get_dest());
3050     a = _gvn.intcon(0);
3051     b = pop();
3052     c = _gvn.transform( new CmpINode(b, a) );
3053     do_if(btest, c);
3054     break;
3055 
3056   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
3057   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
3058   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
3059   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
3060   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
3061   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
3062   handle_if_icmp:
3063     // If this is a backwards branch in the bytecodes, add Safepoint
3064     maybe_add_safepoint(iter().get_dest());
3065     a = pop();
3066     b = pop();
3067     c = _gvn.transform( new CmpINode( b, a ) );
3068     do_if(btest, c);
3069     break;
3070 
3071   case Bytecodes::_tableswitch:
3072     do_tableswitch();
3073     break;
3074 
3075   case Bytecodes::_lookupswitch:
3076     do_lookupswitch();
3077     break;
3078 
3079   case Bytecodes::_invokestatic:
3080   case Bytecodes::_invokedynamic:
3081   case Bytecodes::_invokespecial:
3082   case Bytecodes::_invokevirtual:
3083   case Bytecodes::_invokeinterface:
3084     do_call();
3085     break;
3086   case Bytecodes::_checkcast:
3087     do_checkcast();
3088     break;
3089   case Bytecodes::_instanceof:
3090     do_instanceof();
3091     break;
3092   case Bytecodes::_anewarray:
3093     do_newarray();
3094     break;
3095   case Bytecodes::_newarray:
3096     do_newarray((BasicType)iter().get_index());
3097     break;
3098   case Bytecodes::_multianewarray:
3099     do_multianewarray();
3100     break;
3101   case Bytecodes::_new:
3102     do_new();
3103     break;
3104   case Bytecodes::_defaultvalue:
3105     do_defaultvalue();
3106     break;
3107   case Bytecodes::_withfield:
3108     do_withfield();
3109     break;
3110 
3111   case Bytecodes::_jsr:
3112   case Bytecodes::_jsr_w:
3113     do_jsr();
3114     break;
3115 
3116   case Bytecodes::_ret:
3117     do_ret();
3118     break;
3119 
3120 
3121   case Bytecodes::_monitorenter:
3122     do_monitor_enter();
3123     break;
3124 
3125   case Bytecodes::_monitorexit:
3126     do_monitor_exit();
3127     break;
3128 
3129   case Bytecodes::_breakpoint:
3130     // Breakpoint set concurrently to compile
3131     // %%% use an uncommon trap?
3132     C->record_failure("breakpoint in method");
3133     return;
3134 
3135   default:
3136 #ifndef PRODUCT
3137     map()->dump(99);
3138 #endif
3139     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
3140     ShouldNotReachHere();
3141   }
3142 
3143 #ifndef PRODUCT
3144   IdealGraphPrinter *printer = C->printer();
3145   if (printer && printer->should_print(1)) {
3146     char buffer[256];
3147     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
3148     bool old = printer->traverse_outs();
3149     printer->set_traverse_outs(true);
3150     printer->print_method(buffer, 4);
3151     printer->set_traverse_outs(old);
3152   }
3153 #endif
3154 }