1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_VALUETYPEPTR,"valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 142   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 143   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 144   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 145   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 146   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 147   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 148   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 149   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 150   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 151   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 152   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 153   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 154   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 155   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 156 };
 157 
 158 // Map ideal registers (machine types) to ideal types
 159 const Type *Type::mreg2type[_last_machine_leaf];
 160 
 161 // Map basic types to canonical Type* pointers.
 162 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 163 
 164 // Map basic types to constant-zero Types.
 165 const Type* Type::            _zero_type[T_CONFLICT+1];
 166 
 167 // Map basic types to array-body alias types.
 168 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 169 
 170 //=============================================================================
 171 // Convenience common pre-built types.
 172 const Type *Type::ABIO;         // State-of-machine only
 173 const Type *Type::BOTTOM;       // All values
 174 const Type *Type::CONTROL;      // Control only
 175 const Type *Type::DOUBLE;       // All doubles
 176 const Type *Type::FLOAT;        // All floats
 177 const Type *Type::HALF;         // Placeholder half of doublewide type
 178 const Type *Type::MEMORY;       // Abstract store only
 179 const Type *Type::RETURN_ADDRESS;
 180 const Type *Type::TOP;          // No values in set
 181 
 182 //------------------------------get_const_type---------------------------
 183 const Type* Type::get_const_type(ciType* type) {
 184   if (type == NULL) {
 185     return NULL;
 186   } else if (type->is_primitive_type()) {
 187     return get_const_basic_type(type->basic_type());
 188   } else {
 189     return TypeOopPtr::make_from_klass(type->as_klass());
 190   }
 191 }
 192 
 193 //---------------------------array_element_basic_type---------------------------------
 194 // Mapping to the array element's basic type.
 195 BasicType Type::array_element_basic_type() const {
 196   BasicType bt = basic_type();
 197   if (bt == T_INT) {
 198     if (this == TypeInt::INT)   return T_INT;
 199     if (this == TypeInt::CHAR)  return T_CHAR;
 200     if (this == TypeInt::BYTE)  return T_BYTE;
 201     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 202     if (this == TypeInt::SHORT) return T_SHORT;
 203     return T_VOID;
 204   }
 205   return bt;
 206 }
 207 
 208 // For two instance arrays of same dimension, return the base element types.
 209 // Otherwise or if the arrays have different dimensions, return NULL.
 210 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 211                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 212 
 213   if (e1) *e1 = NULL;
 214   if (e2) *e2 = NULL;
 215   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 216   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 217 
 218   if (a1tap != NULL && a2tap != NULL) {
 219     // Handle multidimensional arrays
 220     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 221     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 222     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 223       a1tap = a1tp->is_aryptr();
 224       a2tap = a2tp->is_aryptr();
 225       a1tp = a1tap->elem()->make_ptr();
 226       a2tp = a2tap->elem()->make_ptr();
 227     }
 228     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 229       if (e1) *e1 = a1tp->is_instptr();
 230       if (e2) *e2 = a2tp->is_instptr();
 231     }
 232   }
 233 }
 234 
 235 //---------------------------get_typeflow_type---------------------------------
 236 // Import a type produced by ciTypeFlow.
 237 const Type* Type::get_typeflow_type(ciType* type) {
 238   switch (type->basic_type()) {
 239 
 240   case ciTypeFlow::StateVector::T_BOTTOM:
 241     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 242     return Type::BOTTOM;
 243 
 244   case ciTypeFlow::StateVector::T_TOP:
 245     assert(type == ciTypeFlow::StateVector::top_type(), "");
 246     return Type::TOP;
 247 
 248   case ciTypeFlow::StateVector::T_NULL:
 249     assert(type == ciTypeFlow::StateVector::null_type(), "");
 250     return TypePtr::NULL_PTR;
 251 
 252   case ciTypeFlow::StateVector::T_LONG2:
 253     // The ciTypeFlow pass pushes a long, then the half.
 254     // We do the same.
 255     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 256     return TypeInt::TOP;
 257 
 258   case ciTypeFlow::StateVector::T_DOUBLE2:
 259     // The ciTypeFlow pass pushes double, then the half.
 260     // Our convention is the same.
 261     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 262     return Type::TOP;
 263 
 264   case T_ADDRESS:
 265     assert(type->is_return_address(), "");
 266     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 267 
 268   case T_VALUETYPE: {
 269     bool is_never_null = type->is_never_null();
 270     ciValueKlass* vk = type->unwrap()->as_value_klass();
 271     if (vk->is_scalarizable() && is_never_null) {
 272       return TypeValueType::make(vk);
 273     } else {
 274       return TypeOopPtr::make_from_klass(vk)->join_speculative(is_never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 275     }
 276   }
 277 
 278   default:
 279     // make sure we did not mix up the cases:
 280     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 281     assert(type != ciTypeFlow::StateVector::top_type(), "");
 282     assert(type != ciTypeFlow::StateVector::null_type(), "");
 283     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 284     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 285     assert(!type->is_return_address(), "");
 286 
 287     return Type::get_const_type(type);
 288   }
 289 }
 290 
 291 
 292 //-----------------------make_from_constant------------------------------------
 293 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 294                                      int stable_dimension, bool is_narrow_oop,
 295                                      bool is_autobox_cache) {
 296   switch (constant.basic_type()) {
 297     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 298     case T_CHAR:     return TypeInt::make(constant.as_char());
 299     case T_BYTE:     return TypeInt::make(constant.as_byte());
 300     case T_SHORT:    return TypeInt::make(constant.as_short());
 301     case T_INT:      return TypeInt::make(constant.as_int());
 302     case T_LONG:     return TypeLong::make(constant.as_long());
 303     case T_FLOAT:    return TypeF::make(constant.as_float());
 304     case T_DOUBLE:   return TypeD::make(constant.as_double());
 305     case T_ARRAY:
 306     case T_VALUETYPE:
 307     case T_OBJECT: {
 308         // cases:
 309         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 310         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 311         // An oop is not scavengable if it is in the perm gen.
 312         const Type* con_type = NULL;
 313         ciObject* oop_constant = constant.as_object();
 314         if (oop_constant->is_null_object()) {
 315           con_type = Type::get_zero_type(T_OBJECT);
 316         } else {
 317           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 318           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 319           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 320             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 321           }
 322           if (stable_dimension > 0) {
 323             assert(FoldStableValues, "sanity");
 324             assert(!con_type->is_zero_type(), "default value for stable field");
 325             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 326           }
 327         }
 328         if (is_narrow_oop) {
 329           con_type = con_type->make_narrowoop();
 330         }
 331         return con_type;
 332       }
 333     case T_ILLEGAL:
 334       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 335       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 336       return NULL;
 337     default:
 338       // Fall through to failure
 339       return NULL;
 340   }
 341 }
 342 
 343 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 344   BasicType conbt = con.basic_type();
 345   switch (conbt) {
 346     case T_BOOLEAN: conbt = T_BYTE;   break;
 347     case T_ARRAY:   conbt = T_OBJECT; break;
 348     case T_VALUETYPE: conbt = T_OBJECT; break;
 349     default:                          break;
 350   }
 351   switch (loadbt) {
 352     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 353     case T_NARROWOOP: loadbt = T_OBJECT; break;
 354     case T_ARRAY:     loadbt = T_OBJECT; break;
 355     case T_VALUETYPE: loadbt = T_OBJECT; break;
 356     case T_ADDRESS:   loadbt = T_OBJECT; break;
 357     default:                             break;
 358   }
 359   if (conbt == loadbt) {
 360     if (is_unsigned && conbt == T_BYTE) {
 361       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 362       return ciConstant(T_INT, con.as_int() & 0xFF);
 363     } else {
 364       return con;
 365     }
 366   }
 367   if (conbt == T_SHORT && loadbt == T_CHAR) {
 368     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 369     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 370   }
 371   return ciConstant(); // T_ILLEGAL
 372 }
 373 
 374 // Try to constant-fold a stable array element.
 375 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 376                                                    BasicType loadbt, bool is_unsigned_load) {
 377   // Decode the results of GraphKit::array_element_address.
 378   ciConstant element_value = array->element_value_by_offset(off);
 379   if (element_value.basic_type() == T_ILLEGAL) {
 380     return NULL; // wrong offset
 381   }
 382   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 383 
 384   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 385          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 386 
 387   if (con.is_valid() &&          // not a mismatched access
 388       !con.is_null_or_zero()) {  // not a default value
 389     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 390     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 391   }
 392   return NULL;
 393 }
 394 
 395 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 396   ciField* field;
 397   ciType* type = holder->java_mirror_type();
 398   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 399     // Static field
 400     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 401   } else {
 402     // Instance field
 403     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 404   }
 405   if (field == NULL) {
 406     return NULL; // Wrong offset
 407   }
 408   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 409 }
 410 
 411 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 412                                            BasicType loadbt, bool is_unsigned_load) {
 413   if (!field->is_constant()) {
 414     return NULL; // Non-constant field
 415   }
 416   ciConstant field_value;
 417   if (field->is_static()) {
 418     // final static field
 419     field_value = field->constant_value();
 420   } else if (holder != NULL) {
 421     // final or stable non-static field
 422     // Treat final non-static fields of trusted classes (classes in
 423     // java.lang.invoke and sun.invoke packages and subpackages) as
 424     // compile time constants.
 425     field_value = field->constant_value_of(holder);
 426   }
 427   if (!field_value.is_valid()) {
 428     return NULL; // Not a constant
 429   }
 430 
 431   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 432 
 433   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 434          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 435 
 436   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 437   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 438   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 439 
 440   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 441                                             stable_dimension, is_narrow_oop,
 442                                             field->is_autobox_cache());
 443   if (con_type != NULL && field->is_call_site_target()) {
 444     ciCallSite* call_site = holder->as_call_site();
 445     if (!call_site->is_constant_call_site()) {
 446       ciMethodHandle* target = con.as_object()->as_method_handle();
 447       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 448     }
 449   }
 450   return con_type;
 451 }
 452 
 453 //------------------------------make-------------------------------------------
 454 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 455 // and look for an existing copy in the type dictionary.
 456 const Type *Type::make( enum TYPES t ) {
 457   return (new Type(t))->hashcons();
 458 }
 459 
 460 //------------------------------cmp--------------------------------------------
 461 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 462   if( t1->_base != t2->_base )
 463     return 1;                   // Missed badly
 464   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 465   return !t1->eq(t2);           // Return ZERO if equal
 466 }
 467 
 468 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 469   if (!include_speculative) {
 470     return remove_speculative();
 471   }
 472   return this;
 473 }
 474 
 475 //------------------------------hash-------------------------------------------
 476 int Type::uhash( const Type *const t ) {
 477   return t->hash();
 478 }
 479 
 480 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 481 
 482 //--------------------------Initialize_shared----------------------------------
 483 void Type::Initialize_shared(Compile* current) {
 484   // This method does not need to be locked because the first system
 485   // compilations (stub compilations) occur serially.  If they are
 486   // changed to proceed in parallel, then this section will need
 487   // locking.
 488 
 489   Arena* save = current->type_arena();
 490   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 491 
 492   current->set_type_arena(shared_type_arena);
 493   _shared_type_dict =
 494     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 495                                   shared_type_arena, 128 );
 496   current->set_type_dict(_shared_type_dict);
 497 
 498   // Make shared pre-built types.
 499   CONTROL = make(Control);      // Control only
 500   TOP     = make(Top);          // No values in set
 501   MEMORY  = make(Memory);       // Abstract store only
 502   ABIO    = make(Abio);         // State-of-machine only
 503   RETURN_ADDRESS=make(Return_Address);
 504   FLOAT   = make(FloatBot);     // All floats
 505   DOUBLE  = make(DoubleBot);    // All doubles
 506   BOTTOM  = make(Bottom);       // Everything
 507   HALF    = make(Half);         // Placeholder half of doublewide type
 508 
 509   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 510   TypeF::ONE  = TypeF::make(1.0); // Float 1
 511 
 512   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 513   TypeD::ONE  = TypeD::make(1.0); // Double 1
 514 
 515   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 516   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 517   TypeInt::ONE     = TypeInt::make( 1);  //  1
 518   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 519   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 520   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 521   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 522   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 523   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 524   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 525   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 526   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 527   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 528   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 529   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 530   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 531   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 532   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 533   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 534   // CmpL is overloaded both as the bytecode computation returning
 535   // a trinary (-1,0,+1) integer result AND as an efficient long
 536   // compare returning optimizer ideal-type flags.
 537   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 538   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 539   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 540   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 541   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 542 
 543   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 544   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 545   TypeLong::ONE     = TypeLong::make( 1);        //  1
 546   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 547   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 548   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 549   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 550   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 551 
 552   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 553   fboth[0] = Type::CONTROL;
 554   fboth[1] = Type::CONTROL;
 555   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 556 
 557   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 558   ffalse[0] = Type::CONTROL;
 559   ffalse[1] = Type::TOP;
 560   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 561 
 562   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 563   fneither[0] = Type::TOP;
 564   fneither[1] = Type::TOP;
 565   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 566 
 567   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 568   ftrue[0] = Type::TOP;
 569   ftrue[1] = Type::CONTROL;
 570   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 571 
 572   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 573   floop[0] = Type::CONTROL;
 574   floop[1] = TypeInt::INT;
 575   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 576 
 577   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 578   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 579   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 580 
 581   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 582   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 583 
 584   const Type **fmembar = TypeTuple::fields(0);
 585   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 586 
 587   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 588   fsc[0] = TypeInt::CC;
 589   fsc[1] = Type::MEMORY;
 590   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 591 
 592   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 593   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 594   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 595   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 596                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 597   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 598                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 599   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 600 
 601   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 602 
 603   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 604   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 605 
 606   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 607 
 608   mreg2type[Op_Node] = Type::BOTTOM;
 609   mreg2type[Op_Set ] = 0;
 610   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 611   mreg2type[Op_RegI] = TypeInt::INT;
 612   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 613   mreg2type[Op_RegF] = Type::FLOAT;
 614   mreg2type[Op_RegD] = Type::DOUBLE;
 615   mreg2type[Op_RegL] = TypeLong::LONG;
 616   mreg2type[Op_RegFlags] = TypeInt::CC;
 617 
 618   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 619 
 620   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 621 
 622 #ifdef _LP64
 623   if (UseCompressedOops) {
 624     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 625     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 626   } else
 627 #endif
 628   {
 629     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 630     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 631   }
 632   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 633   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 634   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 635   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 636   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 637   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 638   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 639 
 640   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 641   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 642   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 643   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 644   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 645   TypeAryPtr::_array_body_type[T_VALUETYPEPTR] = NULL;
 646   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 647   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 648   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 649   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 650   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 651   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 652   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 653   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 654 
 655   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 656   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 657 
 658   const Type **fi2c = TypeTuple::fields(2);
 659   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 660   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 661   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 662 
 663   const Type **intpair = TypeTuple::fields(2);
 664   intpair[0] = TypeInt::INT;
 665   intpair[1] = TypeInt::INT;
 666   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 667 
 668   const Type **longpair = TypeTuple::fields(2);
 669   longpair[0] = TypeLong::LONG;
 670   longpair[1] = TypeLong::LONG;
 671   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 672 
 673   const Type **intccpair = TypeTuple::fields(2);
 674   intccpair[0] = TypeInt::INT;
 675   intccpair[1] = TypeInt::CC;
 676   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 677 
 678   const Type **longccpair = TypeTuple::fields(2);
 679   longccpair[0] = TypeLong::LONG;
 680   longccpair[1] = TypeInt::CC;
 681   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 682 
 683   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 684   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 685   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 686   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 687   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 688   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 689   _const_basic_type[T_INT]         = TypeInt::INT;
 690   _const_basic_type[T_LONG]        = TypeLong::LONG;
 691   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 692   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 693   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 694   _const_basic_type[T_VALUETYPEPTR]= TypeInstPtr::BOTTOM;
 695   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 696   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 697   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 698   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 699   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 700 
 701   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 702   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 703   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 704   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 705   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 706   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 707   _zero_type[T_INT]         = TypeInt::ZERO;
 708   _zero_type[T_LONG]        = TypeLong::ZERO;
 709   _zero_type[T_FLOAT]       = TypeF::ZERO;
 710   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 711   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 712   _zero_type[T_VALUETYPEPTR]= TypePtr::NULL_PTR;
 713   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 714   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 715   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 716   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 717 
 718   // get_zero_type() should not happen for T_CONFLICT
 719   _zero_type[T_CONFLICT]= NULL;
 720 
 721   // Vector predefined types, it needs initialized _const_basic_type[].
 722   if (Matcher::vector_size_supported(T_BYTE,4)) {
 723     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 724   }
 725   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 726     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 727   }
 728   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 729     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 730   }
 731   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 732     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 733   }
 734   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 735     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 736   }
 737   mreg2type[Op_VecS] = TypeVect::VECTS;
 738   mreg2type[Op_VecD] = TypeVect::VECTD;
 739   mreg2type[Op_VecX] = TypeVect::VECTX;
 740   mreg2type[Op_VecY] = TypeVect::VECTY;
 741   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 742 
 743   // Restore working type arena.
 744   current->set_type_arena(save);
 745   current->set_type_dict(NULL);
 746 }
 747 
 748 //------------------------------Initialize-------------------------------------
 749 void Type::Initialize(Compile* current) {
 750   assert(current->type_arena() != NULL, "must have created type arena");
 751 
 752   if (_shared_type_dict == NULL) {
 753     Initialize_shared(current);
 754   }
 755 
 756   Arena* type_arena = current->type_arena();
 757 
 758   // Create the hash-cons'ing dictionary with top-level storage allocation
 759   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 760   current->set_type_dict(tdic);
 761 
 762   // Transfer the shared types.
 763   DictI i(_shared_type_dict);
 764   for( ; i.test(); ++i ) {
 765     Type* t = (Type*)i._value;
 766     tdic->Insert(t,t);  // New Type, insert into Type table
 767   }
 768 }
 769 
 770 //------------------------------hashcons---------------------------------------
 771 // Do the hash-cons trick.  If the Type already exists in the type table,
 772 // delete the current Type and return the existing Type.  Otherwise stick the
 773 // current Type in the Type table.
 774 const Type *Type::hashcons(void) {
 775   debug_only(base());           // Check the assertion in Type::base().
 776   // Look up the Type in the Type dictionary
 777   Dict *tdic = type_dict();
 778   Type* old = (Type*)(tdic->Insert(this, this, false));
 779   if( old ) {                   // Pre-existing Type?
 780     if( old != this )           // Yes, this guy is not the pre-existing?
 781       delete this;              // Yes, Nuke this guy
 782     assert( old->_dual, "" );
 783     return old;                 // Return pre-existing
 784   }
 785 
 786   // Every type has a dual (to make my lattice symmetric).
 787   // Since we just discovered a new Type, compute its dual right now.
 788   assert( !_dual, "" );         // No dual yet
 789   _dual = xdual();              // Compute the dual
 790   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 791     _dual = this;
 792     return this;
 793   }
 794   assert( !_dual->_dual, "" );  // No reverse dual yet
 795   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 796   // New Type, insert into Type table
 797   tdic->Insert((void*)_dual,(void*)_dual);
 798   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 799 #ifdef ASSERT
 800   Type *dual_dual = (Type*)_dual->xdual();
 801   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 802   delete dual_dual;
 803 #endif
 804   return this;                  // Return new Type
 805 }
 806 
 807 //------------------------------eq---------------------------------------------
 808 // Structural equality check for Type representations
 809 bool Type::eq( const Type * ) const {
 810   return true;                  // Nothing else can go wrong
 811 }
 812 
 813 //------------------------------hash-------------------------------------------
 814 // Type-specific hashing function.
 815 int Type::hash(void) const {
 816   return _base;
 817 }
 818 
 819 //------------------------------is_finite--------------------------------------
 820 // Has a finite value
 821 bool Type::is_finite() const {
 822   return false;
 823 }
 824 
 825 //------------------------------is_nan-----------------------------------------
 826 // Is not a number (NaN)
 827 bool Type::is_nan()    const {
 828   return false;
 829 }
 830 
 831 //----------------------interface_vs_oop---------------------------------------
 832 #ifdef ASSERT
 833 bool Type::interface_vs_oop_helper(const Type *t) const {
 834   bool result = false;
 835 
 836   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 837   const TypePtr*    t_ptr =    t->make_ptr();
 838   if( this_ptr == NULL || t_ptr == NULL )
 839     return result;
 840 
 841   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 842   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 843   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 844     bool this_interface = this_inst->klass()->is_interface();
 845     bool    t_interface =    t_inst->klass()->is_interface();
 846     result = this_interface ^ t_interface;
 847   }
 848 
 849   return result;
 850 }
 851 
 852 bool Type::interface_vs_oop(const Type *t) const {
 853   if (interface_vs_oop_helper(t)) {
 854     return true;
 855   }
 856   // Now check the speculative parts as well
 857   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 858   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 859   if (this_spec != NULL && t_spec != NULL) {
 860     if (this_spec->interface_vs_oop_helper(t_spec)) {
 861       return true;
 862     }
 863     return false;
 864   }
 865   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 866     return true;
 867   }
 868   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 869     return true;
 870   }
 871   return false;
 872 }
 873 
 874 #endif
 875 
 876 //------------------------------meet-------------------------------------------
 877 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 878 // commutative and the lattice is symmetric.
 879 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 880   if (isa_narrowoop() && t->isa_narrowoop()) {
 881     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 882     return result->make_narrowoop();
 883   }
 884   if (isa_narrowklass() && t->isa_narrowklass()) {
 885     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 886     return result->make_narrowklass();
 887   }
 888 
 889   const Type *this_t = maybe_remove_speculative(include_speculative);
 890   t = t->maybe_remove_speculative(include_speculative);
 891 
 892   const Type *mt = this_t->xmeet(t);
 893   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 894   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 895 #ifdef ASSERT
 896   assert(mt == t->xmeet(this_t), "meet not commutative");
 897   const Type* dual_join = mt->_dual;
 898   const Type *t2t    = dual_join->xmeet(t->_dual);
 899   const Type *t2this = dual_join->xmeet(this_t->_dual);
 900 
 901   // Interface meet Oop is Not Symmetric:
 902   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 903   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 904 
 905   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 906     tty->print_cr("=== Meet Not Symmetric ===");
 907     tty->print("t   =                   ");              t->dump(); tty->cr();
 908     tty->print("this=                   ");         this_t->dump(); tty->cr();
 909     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 910 
 911     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 912     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 913     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 914 
 915     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 916     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 917 
 918     fatal("meet not symmetric" );
 919   }
 920 #endif
 921   return mt;
 922 }
 923 
 924 //------------------------------xmeet------------------------------------------
 925 // Compute the MEET of two types.  It returns a new Type object.
 926 const Type *Type::xmeet( const Type *t ) const {
 927   // Perform a fast test for common case; meeting the same types together.
 928   if( this == t ) return this;  // Meeting same type-rep?
 929 
 930   // Meeting TOP with anything?
 931   if( _base == Top ) return t;
 932 
 933   // Meeting BOTTOM with anything?
 934   if( _base == Bottom ) return BOTTOM;
 935 
 936   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 937   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 938   switch (t->base()) {  // Switch on original type
 939 
 940   // Cut in half the number of cases I must handle.  Only need cases for when
 941   // the given enum "t->type" is less than or equal to the local enum "type".
 942   case FloatCon:
 943   case DoubleCon:
 944   case Int:
 945   case Long:
 946     return t->xmeet(this);
 947 
 948   case OopPtr:
 949     return t->xmeet(this);
 950 
 951   case InstPtr:
 952     return t->xmeet(this);
 953 
 954   case MetadataPtr:
 955   case KlassPtr:
 956     return t->xmeet(this);
 957 
 958   case AryPtr:
 959     return t->xmeet(this);
 960 
 961   case NarrowOop:
 962     return t->xmeet(this);
 963 
 964   case NarrowKlass:
 965     return t->xmeet(this);
 966 
 967   case ValueType:
 968     return t->xmeet(this);
 969 
 970   case Bad:                     // Type check
 971   default:                      // Bogus type not in lattice
 972     typerr(t);
 973     return Type::BOTTOM;
 974 
 975   case Bottom:                  // Ye Olde Default
 976     return t;
 977 
 978   case FloatTop:
 979     if( _base == FloatTop ) return this;
 980   case FloatBot:                // Float
 981     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 982     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 983     typerr(t);
 984     return Type::BOTTOM;
 985 
 986   case DoubleTop:
 987     if( _base == DoubleTop ) return this;
 988   case DoubleBot:               // Double
 989     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 990     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 991     typerr(t);
 992     return Type::BOTTOM;
 993 
 994   // These next few cases must match exactly or it is a compile-time error.
 995   case Control:                 // Control of code
 996   case Abio:                    // State of world outside of program
 997   case Memory:
 998     if( _base == t->_base )  return this;
 999     typerr(t);
1000     return Type::BOTTOM;
1001 
1002   case Top:                     // Top of the lattice
1003     return this;
1004   }
1005 
1006   // The type is unchanged
1007   return this;
1008 }
1009 
1010 //-----------------------------filter------------------------------------------
1011 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1012   const Type* ft = join_helper(kills, include_speculative);
1013   if (ft->empty())
1014     return Type::TOP;           // Canonical empty value
1015   return ft;
1016 }
1017 
1018 //------------------------------xdual------------------------------------------
1019 // Compute dual right now.
1020 const Type::TYPES Type::dual_type[Type::lastype] = {
1021   Bad,          // Bad
1022   Control,      // Control
1023   Bottom,       // Top
1024   Bad,          // Int - handled in v-call
1025   Bad,          // Long - handled in v-call
1026   Half,         // Half
1027   Bad,          // NarrowOop - handled in v-call
1028   Bad,          // NarrowKlass - handled in v-call
1029 
1030   Bad,          // Tuple - handled in v-call
1031   Bad,          // Array - handled in v-call
1032   Bad,          // VectorS - handled in v-call
1033   Bad,          // VectorD - handled in v-call
1034   Bad,          // VectorX - handled in v-call
1035   Bad,          // VectorY - handled in v-call
1036   Bad,          // VectorZ - handled in v-call
1037   Bad,          // ValueType - handled in v-call
1038 
1039   Bad,          // AnyPtr - handled in v-call
1040   Bad,          // RawPtr - handled in v-call
1041   Bad,          // OopPtr - handled in v-call
1042   Bad,          // InstPtr - handled in v-call
1043   Bad,          // ValueTypePtr - handled in v-call
1044   Bad,          // AryPtr - handled in v-call
1045 
1046   Bad,          //  MetadataPtr - handled in v-call
1047   Bad,          // KlassPtr - handled in v-call
1048 
1049   Bad,          // Function - handled in v-call
1050   Abio,         // Abio
1051   Return_Address,// Return_Address
1052   Memory,       // Memory
1053   FloatBot,     // FloatTop
1054   FloatCon,     // FloatCon
1055   FloatTop,     // FloatBot
1056   DoubleBot,    // DoubleTop
1057   DoubleCon,    // DoubleCon
1058   DoubleTop,    // DoubleBot
1059   Top           // Bottom
1060 };
1061 
1062 const Type *Type::xdual() const {
1063   // Note: the base() accessor asserts the sanity of _base.
1064   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1065   return new Type(_type_info[_base].dual_type);
1066 }
1067 
1068 //------------------------------has_memory-------------------------------------
1069 bool Type::has_memory() const {
1070   Type::TYPES tx = base();
1071   if (tx == Memory) return true;
1072   if (tx == Tuple) {
1073     const TypeTuple *t = is_tuple();
1074     for (uint i=0; i < t->cnt(); i++) {
1075       tx = t->field_at(i)->base();
1076       if (tx == Memory)  return true;
1077     }
1078   }
1079   return false;
1080 }
1081 
1082 #ifndef PRODUCT
1083 //------------------------------dump2------------------------------------------
1084 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1085   st->print("%s", _type_info[_base].msg);
1086 }
1087 
1088 //------------------------------dump-------------------------------------------
1089 void Type::dump_on(outputStream *st) const {
1090   ResourceMark rm;
1091   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1092   dump2(d,1, st);
1093   if (is_ptr_to_narrowoop()) {
1094     st->print(" [narrow]");
1095   } else if (is_ptr_to_narrowklass()) {
1096     st->print(" [narrowklass]");
1097   }
1098 }
1099 
1100 //-----------------------------------------------------------------------------
1101 const char* Type::str(const Type* t) {
1102   stringStream ss;
1103   t->dump_on(&ss);
1104   return ss.as_string();
1105 }
1106 #endif
1107 
1108 //------------------------------singleton--------------------------------------
1109 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1110 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1111 bool Type::singleton(void) const {
1112   return _base == Top || _base == Half;
1113 }
1114 
1115 //------------------------------empty------------------------------------------
1116 // TRUE if Type is a type with no values, FALSE otherwise.
1117 bool Type::empty(void) const {
1118   switch (_base) {
1119   case DoubleTop:
1120   case FloatTop:
1121   case Top:
1122     return true;
1123 
1124   case Half:
1125   case Abio:
1126   case Return_Address:
1127   case Memory:
1128   case Bottom:
1129   case FloatBot:
1130   case DoubleBot:
1131     return false;  // never a singleton, therefore never empty
1132 
1133   default:
1134     ShouldNotReachHere();
1135     return false;
1136   }
1137 }
1138 
1139 //------------------------------dump_stats-------------------------------------
1140 // Dump collected statistics to stderr
1141 #ifndef PRODUCT
1142 void Type::dump_stats() {
1143   tty->print("Types made: %d\n", type_dict()->Size());
1144 }
1145 #endif
1146 
1147 //------------------------------typerr-----------------------------------------
1148 void Type::typerr( const Type *t ) const {
1149 #ifndef PRODUCT
1150   tty->print("\nError mixing types: ");
1151   dump();
1152   tty->print(" and ");
1153   t->dump();
1154   tty->print("\n");
1155 #endif
1156   ShouldNotReachHere();
1157 }
1158 
1159 
1160 //=============================================================================
1161 // Convenience common pre-built types.
1162 const TypeF *TypeF::ZERO;       // Floating point zero
1163 const TypeF *TypeF::ONE;        // Floating point one
1164 
1165 //------------------------------make-------------------------------------------
1166 // Create a float constant
1167 const TypeF *TypeF::make(float f) {
1168   return (TypeF*)(new TypeF(f))->hashcons();
1169 }
1170 
1171 //------------------------------meet-------------------------------------------
1172 // Compute the MEET of two types.  It returns a new Type object.
1173 const Type *TypeF::xmeet( const Type *t ) const {
1174   // Perform a fast test for common case; meeting the same types together.
1175   if( this == t ) return this;  // Meeting same type-rep?
1176 
1177   // Current "this->_base" is FloatCon
1178   switch (t->base()) {          // Switch on original type
1179   case AnyPtr:                  // Mixing with oops happens when javac
1180   case RawPtr:                  // reuses local variables
1181   case OopPtr:
1182   case InstPtr:
1183   case AryPtr:
1184   case MetadataPtr:
1185   case KlassPtr:
1186   case NarrowOop:
1187   case NarrowKlass:
1188   case Int:
1189   case Long:
1190   case DoubleTop:
1191   case DoubleCon:
1192   case DoubleBot:
1193   case Bottom:                  // Ye Olde Default
1194     return Type::BOTTOM;
1195 
1196   case FloatBot:
1197     return t;
1198 
1199   default:                      // All else is a mistake
1200     typerr(t);
1201 
1202   case FloatCon:                // Float-constant vs Float-constant?
1203     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1204                                 // must compare bitwise as positive zero, negative zero and NaN have
1205                                 // all the same representation in C++
1206       return FLOAT;             // Return generic float
1207                                 // Equal constants
1208   case Top:
1209   case FloatTop:
1210     break;                      // Return the float constant
1211   }
1212   return this;                  // Return the float constant
1213 }
1214 
1215 //------------------------------xdual------------------------------------------
1216 // Dual: symmetric
1217 const Type *TypeF::xdual() const {
1218   return this;
1219 }
1220 
1221 //------------------------------eq---------------------------------------------
1222 // Structural equality check for Type representations
1223 bool TypeF::eq(const Type *t) const {
1224   // Bitwise comparison to distinguish between +/-0. These values must be treated
1225   // as different to be consistent with C1 and the interpreter.
1226   return (jint_cast(_f) == jint_cast(t->getf()));
1227 }
1228 
1229 //------------------------------hash-------------------------------------------
1230 // Type-specific hashing function.
1231 int TypeF::hash(void) const {
1232   return *(int*)(&_f);
1233 }
1234 
1235 //------------------------------is_finite--------------------------------------
1236 // Has a finite value
1237 bool TypeF::is_finite() const {
1238   return g_isfinite(getf()) != 0;
1239 }
1240 
1241 //------------------------------is_nan-----------------------------------------
1242 // Is not a number (NaN)
1243 bool TypeF::is_nan()    const {
1244   return g_isnan(getf()) != 0;
1245 }
1246 
1247 //------------------------------dump2------------------------------------------
1248 // Dump float constant Type
1249 #ifndef PRODUCT
1250 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1251   Type::dump2(d,depth, st);
1252   st->print("%f", _f);
1253 }
1254 #endif
1255 
1256 //------------------------------singleton--------------------------------------
1257 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1258 // constants (Ldi nodes).  Singletons are integer, float or double constants
1259 // or a single symbol.
1260 bool TypeF::singleton(void) const {
1261   return true;                  // Always a singleton
1262 }
1263 
1264 bool TypeF::empty(void) const {
1265   return false;                 // always exactly a singleton
1266 }
1267 
1268 //=============================================================================
1269 // Convenience common pre-built types.
1270 const TypeD *TypeD::ZERO;       // Floating point zero
1271 const TypeD *TypeD::ONE;        // Floating point one
1272 
1273 //------------------------------make-------------------------------------------
1274 const TypeD *TypeD::make(double d) {
1275   return (TypeD*)(new TypeD(d))->hashcons();
1276 }
1277 
1278 //------------------------------meet-------------------------------------------
1279 // Compute the MEET of two types.  It returns a new Type object.
1280 const Type *TypeD::xmeet( const Type *t ) const {
1281   // Perform a fast test for common case; meeting the same types together.
1282   if( this == t ) return this;  // Meeting same type-rep?
1283 
1284   // Current "this->_base" is DoubleCon
1285   switch (t->base()) {          // Switch on original type
1286   case AnyPtr:                  // Mixing with oops happens when javac
1287   case RawPtr:                  // reuses local variables
1288   case OopPtr:
1289   case InstPtr:
1290   case AryPtr:
1291   case MetadataPtr:
1292   case KlassPtr:
1293   case NarrowOop:
1294   case NarrowKlass:
1295   case Int:
1296   case Long:
1297   case FloatTop:
1298   case FloatCon:
1299   case FloatBot:
1300   case Bottom:                  // Ye Olde Default
1301     return Type::BOTTOM;
1302 
1303   case DoubleBot:
1304     return t;
1305 
1306   default:                      // All else is a mistake
1307     typerr(t);
1308 
1309   case DoubleCon:               // Double-constant vs Double-constant?
1310     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1311       return DOUBLE;            // Return generic double
1312   case Top:
1313   case DoubleTop:
1314     break;
1315   }
1316   return this;                  // Return the double constant
1317 }
1318 
1319 //------------------------------xdual------------------------------------------
1320 // Dual: symmetric
1321 const Type *TypeD::xdual() const {
1322   return this;
1323 }
1324 
1325 //------------------------------eq---------------------------------------------
1326 // Structural equality check for Type representations
1327 bool TypeD::eq(const Type *t) const {
1328   // Bitwise comparison to distinguish between +/-0. These values must be treated
1329   // as different to be consistent with C1 and the interpreter.
1330   return (jlong_cast(_d) == jlong_cast(t->getd()));
1331 }
1332 
1333 //------------------------------hash-------------------------------------------
1334 // Type-specific hashing function.
1335 int TypeD::hash(void) const {
1336   return *(int*)(&_d);
1337 }
1338 
1339 //------------------------------is_finite--------------------------------------
1340 // Has a finite value
1341 bool TypeD::is_finite() const {
1342   return g_isfinite(getd()) != 0;
1343 }
1344 
1345 //------------------------------is_nan-----------------------------------------
1346 // Is not a number (NaN)
1347 bool TypeD::is_nan()    const {
1348   return g_isnan(getd()) != 0;
1349 }
1350 
1351 //------------------------------dump2------------------------------------------
1352 // Dump double constant Type
1353 #ifndef PRODUCT
1354 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1355   Type::dump2(d,depth,st);
1356   st->print("%f", _d);
1357 }
1358 #endif
1359 
1360 //------------------------------singleton--------------------------------------
1361 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1362 // constants (Ldi nodes).  Singletons are integer, float or double constants
1363 // or a single symbol.
1364 bool TypeD::singleton(void) const {
1365   return true;                  // Always a singleton
1366 }
1367 
1368 bool TypeD::empty(void) const {
1369   return false;                 // always exactly a singleton
1370 }
1371 
1372 //=============================================================================
1373 // Convience common pre-built types.
1374 const TypeInt *TypeInt::MINUS_1;// -1
1375 const TypeInt *TypeInt::ZERO;   // 0
1376 const TypeInt *TypeInt::ONE;    // 1
1377 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1378 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1379 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1380 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1381 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1382 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1383 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1384 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1385 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1386 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1387 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1388 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1389 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1390 const TypeInt *TypeInt::INT;    // 32-bit integers
1391 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1392 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1393 
1394 //------------------------------TypeInt----------------------------------------
1395 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1396 }
1397 
1398 //------------------------------make-------------------------------------------
1399 const TypeInt *TypeInt::make( jint lo ) {
1400   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1401 }
1402 
1403 static int normalize_int_widen( jint lo, jint hi, int w ) {
1404   // Certain normalizations keep us sane when comparing types.
1405   // The 'SMALLINT' covers constants and also CC and its relatives.
1406   if (lo <= hi) {
1407     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1408     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1409   } else {
1410     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1411     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1412   }
1413   return w;
1414 }
1415 
1416 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1417   w = normalize_int_widen(lo, hi, w);
1418   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1419 }
1420 
1421 //------------------------------meet-------------------------------------------
1422 // Compute the MEET of two types.  It returns a new Type representation object
1423 // with reference count equal to the number of Types pointing at it.
1424 // Caller should wrap a Types around it.
1425 const Type *TypeInt::xmeet( const Type *t ) const {
1426   // Perform a fast test for common case; meeting the same types together.
1427   if( this == t ) return this;  // Meeting same type?
1428 
1429   // Currently "this->_base" is a TypeInt
1430   switch (t->base()) {          // Switch on original type
1431   case AnyPtr:                  // Mixing with oops happens when javac
1432   case RawPtr:                  // reuses local variables
1433   case OopPtr:
1434   case InstPtr:
1435   case AryPtr:
1436   case MetadataPtr:
1437   case KlassPtr:
1438   case NarrowOop:
1439   case NarrowKlass:
1440   case Long:
1441   case FloatTop:
1442   case FloatCon:
1443   case FloatBot:
1444   case DoubleTop:
1445   case DoubleCon:
1446   case DoubleBot:
1447   case Bottom:                  // Ye Olde Default
1448     return Type::BOTTOM;
1449   default:                      // All else is a mistake
1450     typerr(t);
1451   case Top:                     // No change
1452     return this;
1453   case Int:                     // Int vs Int?
1454     break;
1455   }
1456 
1457   // Expand covered set
1458   const TypeInt *r = t->is_int();
1459   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1460 }
1461 
1462 //------------------------------xdual------------------------------------------
1463 // Dual: reverse hi & lo; flip widen
1464 const Type *TypeInt::xdual() const {
1465   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1466   return new TypeInt(_hi,_lo,w);
1467 }
1468 
1469 //------------------------------widen------------------------------------------
1470 // Only happens for optimistic top-down optimizations.
1471 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1472   // Coming from TOP or such; no widening
1473   if( old->base() != Int ) return this;
1474   const TypeInt *ot = old->is_int();
1475 
1476   // If new guy is equal to old guy, no widening
1477   if( _lo == ot->_lo && _hi == ot->_hi )
1478     return old;
1479 
1480   // If new guy contains old, then we widened
1481   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1482     // New contains old
1483     // If new guy is already wider than old, no widening
1484     if( _widen > ot->_widen ) return this;
1485     // If old guy was a constant, do not bother
1486     if (ot->_lo == ot->_hi)  return this;
1487     // Now widen new guy.
1488     // Check for widening too far
1489     if (_widen == WidenMax) {
1490       int max = max_jint;
1491       int min = min_jint;
1492       if (limit->isa_int()) {
1493         max = limit->is_int()->_hi;
1494         min = limit->is_int()->_lo;
1495       }
1496       if (min < _lo && _hi < max) {
1497         // If neither endpoint is extremal yet, push out the endpoint
1498         // which is closer to its respective limit.
1499         if (_lo >= 0 ||                 // easy common case
1500             (juint)(_lo - min) >= (juint)(max - _hi)) {
1501           // Try to widen to an unsigned range type of 31 bits:
1502           return make(_lo, max, WidenMax);
1503         } else {
1504           return make(min, _hi, WidenMax);
1505         }
1506       }
1507       return TypeInt::INT;
1508     }
1509     // Returned widened new guy
1510     return make(_lo,_hi,_widen+1);
1511   }
1512 
1513   // If old guy contains new, then we probably widened too far & dropped to
1514   // bottom.  Return the wider fellow.
1515   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1516     return old;
1517 
1518   //fatal("Integer value range is not subset");
1519   //return this;
1520   return TypeInt::INT;
1521 }
1522 
1523 //------------------------------narrow---------------------------------------
1524 // Only happens for pessimistic optimizations.
1525 const Type *TypeInt::narrow( const Type *old ) const {
1526   if (_lo >= _hi)  return this;   // already narrow enough
1527   if (old == NULL)  return this;
1528   const TypeInt* ot = old->isa_int();
1529   if (ot == NULL)  return this;
1530   jint olo = ot->_lo;
1531   jint ohi = ot->_hi;
1532 
1533   // If new guy is equal to old guy, no narrowing
1534   if (_lo == olo && _hi == ohi)  return old;
1535 
1536   // If old guy was maximum range, allow the narrowing
1537   if (olo == min_jint && ohi == max_jint)  return this;
1538 
1539   if (_lo < olo || _hi > ohi)
1540     return this;                // doesn't narrow; pretty wierd
1541 
1542   // The new type narrows the old type, so look for a "death march".
1543   // See comments on PhaseTransform::saturate.
1544   juint nrange = (juint)_hi - _lo;
1545   juint orange = (juint)ohi - olo;
1546   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1547     // Use the new type only if the range shrinks a lot.
1548     // We do not want the optimizer computing 2^31 point by point.
1549     return old;
1550   }
1551 
1552   return this;
1553 }
1554 
1555 //-----------------------------filter------------------------------------------
1556 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1557   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1558   if (ft == NULL || ft->empty())
1559     return Type::TOP;           // Canonical empty value
1560   if (ft->_widen < this->_widen) {
1561     // Do not allow the value of kill->_widen to affect the outcome.
1562     // The widen bits must be allowed to run freely through the graph.
1563     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1564   }
1565   return ft;
1566 }
1567 
1568 //------------------------------eq---------------------------------------------
1569 // Structural equality check for Type representations
1570 bool TypeInt::eq( const Type *t ) const {
1571   const TypeInt *r = t->is_int(); // Handy access
1572   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1573 }
1574 
1575 //------------------------------hash-------------------------------------------
1576 // Type-specific hashing function.
1577 int TypeInt::hash(void) const {
1578   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1579 }
1580 
1581 //------------------------------is_finite--------------------------------------
1582 // Has a finite value
1583 bool TypeInt::is_finite() const {
1584   return true;
1585 }
1586 
1587 //------------------------------dump2------------------------------------------
1588 // Dump TypeInt
1589 #ifndef PRODUCT
1590 static const char* intname(char* buf, jint n) {
1591   if (n == min_jint)
1592     return "min";
1593   else if (n < min_jint + 10000)
1594     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1595   else if (n == max_jint)
1596     return "max";
1597   else if (n > max_jint - 10000)
1598     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1599   else
1600     sprintf(buf, INT32_FORMAT, n);
1601   return buf;
1602 }
1603 
1604 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1605   char buf[40], buf2[40];
1606   if (_lo == min_jint && _hi == max_jint)
1607     st->print("int");
1608   else if (is_con())
1609     st->print("int:%s", intname(buf, get_con()));
1610   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1611     st->print("bool");
1612   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1613     st->print("byte");
1614   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1615     st->print("char");
1616   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1617     st->print("short");
1618   else if (_hi == max_jint)
1619     st->print("int:>=%s", intname(buf, _lo));
1620   else if (_lo == min_jint)
1621     st->print("int:<=%s", intname(buf, _hi));
1622   else
1623     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1624 
1625   if (_widen != 0 && this != TypeInt::INT)
1626     st->print(":%.*s", _widen, "wwww");
1627 }
1628 #endif
1629 
1630 //------------------------------singleton--------------------------------------
1631 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1632 // constants.
1633 bool TypeInt::singleton(void) const {
1634   return _lo >= _hi;
1635 }
1636 
1637 bool TypeInt::empty(void) const {
1638   return _lo > _hi;
1639 }
1640 
1641 //=============================================================================
1642 // Convenience common pre-built types.
1643 const TypeLong *TypeLong::MINUS_1;// -1
1644 const TypeLong *TypeLong::ZERO; // 0
1645 const TypeLong *TypeLong::ONE;  // 1
1646 const TypeLong *TypeLong::POS;  // >=0
1647 const TypeLong *TypeLong::LONG; // 64-bit integers
1648 const TypeLong *TypeLong::INT;  // 32-bit subrange
1649 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1650 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1651 
1652 //------------------------------TypeLong---------------------------------------
1653 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1654 }
1655 
1656 //------------------------------make-------------------------------------------
1657 const TypeLong *TypeLong::make( jlong lo ) {
1658   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1659 }
1660 
1661 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1662   // Certain normalizations keep us sane when comparing types.
1663   // The 'SMALLINT' covers constants.
1664   if (lo <= hi) {
1665     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1666     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1667   } else {
1668     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1669     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1670   }
1671   return w;
1672 }
1673 
1674 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1675   w = normalize_long_widen(lo, hi, w);
1676   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1677 }
1678 
1679 
1680 //------------------------------meet-------------------------------------------
1681 // Compute the MEET of two types.  It returns a new Type representation object
1682 // with reference count equal to the number of Types pointing at it.
1683 // Caller should wrap a Types around it.
1684 const Type *TypeLong::xmeet( const Type *t ) const {
1685   // Perform a fast test for common case; meeting the same types together.
1686   if( this == t ) return this;  // Meeting same type?
1687 
1688   // Currently "this->_base" is a TypeLong
1689   switch (t->base()) {          // Switch on original type
1690   case AnyPtr:                  // Mixing with oops happens when javac
1691   case RawPtr:                  // reuses local variables
1692   case OopPtr:
1693   case InstPtr:
1694   case AryPtr:
1695   case MetadataPtr:
1696   case KlassPtr:
1697   case NarrowOop:
1698   case NarrowKlass:
1699   case Int:
1700   case FloatTop:
1701   case FloatCon:
1702   case FloatBot:
1703   case DoubleTop:
1704   case DoubleCon:
1705   case DoubleBot:
1706   case Bottom:                  // Ye Olde Default
1707     return Type::BOTTOM;
1708   default:                      // All else is a mistake
1709     typerr(t);
1710   case Top:                     // No change
1711     return this;
1712   case Long:                    // Long vs Long?
1713     break;
1714   }
1715 
1716   // Expand covered set
1717   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1718   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1719 }
1720 
1721 //------------------------------xdual------------------------------------------
1722 // Dual: reverse hi & lo; flip widen
1723 const Type *TypeLong::xdual() const {
1724   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1725   return new TypeLong(_hi,_lo,w);
1726 }
1727 
1728 //------------------------------widen------------------------------------------
1729 // Only happens for optimistic top-down optimizations.
1730 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1731   // Coming from TOP or such; no widening
1732   if( old->base() != Long ) return this;
1733   const TypeLong *ot = old->is_long();
1734 
1735   // If new guy is equal to old guy, no widening
1736   if( _lo == ot->_lo && _hi == ot->_hi )
1737     return old;
1738 
1739   // If new guy contains old, then we widened
1740   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1741     // New contains old
1742     // If new guy is already wider than old, no widening
1743     if( _widen > ot->_widen ) return this;
1744     // If old guy was a constant, do not bother
1745     if (ot->_lo == ot->_hi)  return this;
1746     // Now widen new guy.
1747     // Check for widening too far
1748     if (_widen == WidenMax) {
1749       jlong max = max_jlong;
1750       jlong min = min_jlong;
1751       if (limit->isa_long()) {
1752         max = limit->is_long()->_hi;
1753         min = limit->is_long()->_lo;
1754       }
1755       if (min < _lo && _hi < max) {
1756         // If neither endpoint is extremal yet, push out the endpoint
1757         // which is closer to its respective limit.
1758         if (_lo >= 0 ||                 // easy common case
1759             ((julong)_lo - min) >= ((julong)max - _hi)) {
1760           // Try to widen to an unsigned range type of 32/63 bits:
1761           if (max >= max_juint && _hi < max_juint)
1762             return make(_lo, max_juint, WidenMax);
1763           else
1764             return make(_lo, max, WidenMax);
1765         } else {
1766           return make(min, _hi, WidenMax);
1767         }
1768       }
1769       return TypeLong::LONG;
1770     }
1771     // Returned widened new guy
1772     return make(_lo,_hi,_widen+1);
1773   }
1774 
1775   // If old guy contains new, then we probably widened too far & dropped to
1776   // bottom.  Return the wider fellow.
1777   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1778     return old;
1779 
1780   //  fatal("Long value range is not subset");
1781   // return this;
1782   return TypeLong::LONG;
1783 }
1784 
1785 //------------------------------narrow----------------------------------------
1786 // Only happens for pessimistic optimizations.
1787 const Type *TypeLong::narrow( const Type *old ) const {
1788   if (_lo >= _hi)  return this;   // already narrow enough
1789   if (old == NULL)  return this;
1790   const TypeLong* ot = old->isa_long();
1791   if (ot == NULL)  return this;
1792   jlong olo = ot->_lo;
1793   jlong ohi = ot->_hi;
1794 
1795   // If new guy is equal to old guy, no narrowing
1796   if (_lo == olo && _hi == ohi)  return old;
1797 
1798   // If old guy was maximum range, allow the narrowing
1799   if (olo == min_jlong && ohi == max_jlong)  return this;
1800 
1801   if (_lo < olo || _hi > ohi)
1802     return this;                // doesn't narrow; pretty wierd
1803 
1804   // The new type narrows the old type, so look for a "death march".
1805   // See comments on PhaseTransform::saturate.
1806   julong nrange = _hi - _lo;
1807   julong orange = ohi - olo;
1808   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1809     // Use the new type only if the range shrinks a lot.
1810     // We do not want the optimizer computing 2^31 point by point.
1811     return old;
1812   }
1813 
1814   return this;
1815 }
1816 
1817 //-----------------------------filter------------------------------------------
1818 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1819   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1820   if (ft == NULL || ft->empty())
1821     return Type::TOP;           // Canonical empty value
1822   if (ft->_widen < this->_widen) {
1823     // Do not allow the value of kill->_widen to affect the outcome.
1824     // The widen bits must be allowed to run freely through the graph.
1825     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1826   }
1827   return ft;
1828 }
1829 
1830 //------------------------------eq---------------------------------------------
1831 // Structural equality check for Type representations
1832 bool TypeLong::eq( const Type *t ) const {
1833   const TypeLong *r = t->is_long(); // Handy access
1834   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1835 }
1836 
1837 //------------------------------hash-------------------------------------------
1838 // Type-specific hashing function.
1839 int TypeLong::hash(void) const {
1840   return (int)(_lo+_hi+_widen+(int)Type::Long);
1841 }
1842 
1843 //------------------------------is_finite--------------------------------------
1844 // Has a finite value
1845 bool TypeLong::is_finite() const {
1846   return true;
1847 }
1848 
1849 //------------------------------dump2------------------------------------------
1850 // Dump TypeLong
1851 #ifndef PRODUCT
1852 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1853   if (n > x) {
1854     if (n >= x + 10000)  return NULL;
1855     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1856   } else if (n < x) {
1857     if (n <= x - 10000)  return NULL;
1858     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1859   } else {
1860     return xname;
1861   }
1862   return buf;
1863 }
1864 
1865 static const char* longname(char* buf, jlong n) {
1866   const char* str;
1867   if (n == min_jlong)
1868     return "min";
1869   else if (n < min_jlong + 10000)
1870     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1871   else if (n == max_jlong)
1872     return "max";
1873   else if (n > max_jlong - 10000)
1874     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1875   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1876     return str;
1877   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1878     return str;
1879   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1880     return str;
1881   else
1882     sprintf(buf, JLONG_FORMAT, n);
1883   return buf;
1884 }
1885 
1886 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1887   char buf[80], buf2[80];
1888   if (_lo == min_jlong && _hi == max_jlong)
1889     st->print("long");
1890   else if (is_con())
1891     st->print("long:%s", longname(buf, get_con()));
1892   else if (_hi == max_jlong)
1893     st->print("long:>=%s", longname(buf, _lo));
1894   else if (_lo == min_jlong)
1895     st->print("long:<=%s", longname(buf, _hi));
1896   else
1897     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1898 
1899   if (_widen != 0 && this != TypeLong::LONG)
1900     st->print(":%.*s", _widen, "wwww");
1901 }
1902 #endif
1903 
1904 //------------------------------singleton--------------------------------------
1905 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1906 // constants
1907 bool TypeLong::singleton(void) const {
1908   return _lo >= _hi;
1909 }
1910 
1911 bool TypeLong::empty(void) const {
1912   return _lo > _hi;
1913 }
1914 
1915 //=============================================================================
1916 // Convenience common pre-built types.
1917 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1918 const TypeTuple *TypeTuple::IFFALSE;
1919 const TypeTuple *TypeTuple::IFTRUE;
1920 const TypeTuple *TypeTuple::IFNEITHER;
1921 const TypeTuple *TypeTuple::LOOPBODY;
1922 const TypeTuple *TypeTuple::MEMBAR;
1923 const TypeTuple *TypeTuple::STORECONDITIONAL;
1924 const TypeTuple *TypeTuple::START_I2C;
1925 const TypeTuple *TypeTuple::INT_PAIR;
1926 const TypeTuple *TypeTuple::LONG_PAIR;
1927 const TypeTuple *TypeTuple::INT_CC_PAIR;
1928 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1929 
1930 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1931   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1932     ciField* field = vk->nonstatic_field_at(j);
1933     BasicType bt = field->type()->basic_type();
1934     const Type* ft = Type::get_const_type(field->type());
1935     field_array[pos++] = ft;
1936     if (bt == T_LONG || bt == T_DOUBLE) {
1937       field_array[pos++] = Type::HALF;
1938     }
1939   }
1940 }
1941 
1942 //------------------------------make-------------------------------------------
1943 // Make a TypeTuple from the range of a method signature
1944 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1945   ciType* return_type = sig->return_type();
1946   return make_range(return_type, sig->returns_never_null(), ret_vt_fields);
1947 }
1948 
1949 const TypeTuple *TypeTuple::make_range(ciType* return_type, bool never_null, bool ret_vt_fields) {
1950   uint arg_cnt = 0;
1951   if (ret_vt_fields) {
1952     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1953   }
1954   if (ret_vt_fields) {
1955     ciValueKlass* vk = (ciValueKlass*)return_type;
1956     arg_cnt = vk->value_arg_slots()+1;
1957   } else {
1958     arg_cnt = return_type->size();
1959   }
1960 
1961   const Type **field_array = fields(arg_cnt);
1962   switch (return_type->basic_type()) {
1963   case T_LONG:
1964     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1965     field_array[TypeFunc::Parms+1] = Type::HALF;
1966     break;
1967   case T_DOUBLE:
1968     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1969     field_array[TypeFunc::Parms+1] = Type::HALF;
1970     break;
1971   case T_OBJECT:
1972   case T_ARRAY:
1973   case T_BOOLEAN:
1974   case T_CHAR:
1975   case T_FLOAT:
1976   case T_BYTE:
1977   case T_SHORT:
1978   case T_INT:
1979     field_array[TypeFunc::Parms] = get_const_type(return_type);
1980     break;
1981   case T_VALUETYPE:
1982     if (ret_vt_fields) {
1983       ciValueKlass* vk = (ciValueKlass*)return_type;
1984       uint pos = TypeFunc::Parms;
1985       field_array[pos] = TypePtr::BOTTOM;
1986       pos++;
1987       collect_value_fields(vk, field_array, pos);
1988     } else {
1989       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(never_null ? TypePtr::NOTNULL : TypePtr::BOTTOM);
1990     }
1991     break;
1992   case T_VOID:
1993     break;
1994   default:
1995     ShouldNotReachHere();
1996   }
1997   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1998 }
1999 
2000 // Make a TypeTuple from the domain of a method signature
2001 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
2002   uint arg_cnt = sig->size();
2003 
2004   int vt_extra = 0;
2005   if (vt_fields_as_args) {
2006     for (int i = 0; i < sig->count(); i++) {
2007       ciType* type = sig->type_at(i);
2008       if (type->basic_type() == T_VALUETYPE) {
2009         assert(type->is_valuetype(), "inconsistent type");
2010         ciValueKlass* vk = (ciValueKlass*)type;
2011         vt_extra += vk->value_arg_slots()-1;
2012       }
2013     }
2014     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2015   }
2016 
2017   uint pos = TypeFunc::Parms;
2018   const Type **field_array;
2019   if (recv != NULL) {
2020     arg_cnt++;
2021     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype();
2022     if (vt_fields_for_recv) {
2023       ciValueKlass* vk = (ciValueKlass*)recv;
2024       vt_extra += vk->value_arg_slots()-1;
2025     }
2026     field_array = fields(arg_cnt + vt_extra);
2027     // Use get_const_type here because it respects UseUniqueSubclasses:
2028     if (vt_fields_for_recv) {
2029       ciValueKlass* vk = (ciValueKlass*)recv;
2030       collect_value_fields(vk, field_array, pos);
2031     } else {
2032       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2033     }
2034   } else {
2035     field_array = fields(arg_cnt + vt_extra);
2036   }
2037 
2038   int i = 0;
2039   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2040     ciType* type = sig->type_at(i);
2041 
2042     switch (type->basic_type()) {
2043     case T_LONG:
2044       field_array[pos++] = TypeLong::LONG;
2045       field_array[pos++] = Type::HALF;
2046       break;
2047     case T_DOUBLE:
2048       field_array[pos++] = Type::DOUBLE;
2049       field_array[pos++] = Type::HALF;
2050       break;
2051     case T_OBJECT:
2052     case T_ARRAY:
2053     case T_FLOAT:
2054     case T_INT:
2055       field_array[pos++] = get_const_type(type);
2056       break;
2057     case T_BOOLEAN:
2058     case T_CHAR:
2059     case T_BYTE:
2060     case T_SHORT:
2061       field_array[pos++] = TypeInt::INT;
2062       break;
2063     case T_VALUETYPE: {
2064       assert(type->is_valuetype(), "inconsistent type");
2065       if (vt_fields_as_args) {
2066         ciValueKlass* vk = (ciValueKlass*)type;
2067         collect_value_fields(vk, field_array, pos);
2068       } else {
2069         field_array[pos++] = get_const_type(type)->join_speculative(sig->is_never_null_at(i) ? TypePtr::NOTNULL : TypePtr::BOTTOM);
2070       }
2071       break;
2072     }
2073     default:
2074       ShouldNotReachHere();
2075     }
2076     i++;
2077   }
2078   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2079 
2080   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2081 }
2082 
2083 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2084   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2085 }
2086 
2087 //------------------------------fields-----------------------------------------
2088 // Subroutine call type with space allocated for argument types
2089 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2090 const Type **TypeTuple::fields( uint arg_cnt ) {
2091   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2092   flds[TypeFunc::Control  ] = Type::CONTROL;
2093   flds[TypeFunc::I_O      ] = Type::ABIO;
2094   flds[TypeFunc::Memory   ] = Type::MEMORY;
2095   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2096   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2097 
2098   return flds;
2099 }
2100 
2101 //------------------------------meet-------------------------------------------
2102 // Compute the MEET of two types.  It returns a new Type object.
2103 const Type *TypeTuple::xmeet( const Type *t ) const {
2104   // Perform a fast test for common case; meeting the same types together.
2105   if( this == t ) return this;  // Meeting same type-rep?
2106 
2107   // Current "this->_base" is Tuple
2108   switch (t->base()) {          // switch on original type
2109 
2110   case Bottom:                  // Ye Olde Default
2111     return t;
2112 
2113   default:                      // All else is a mistake
2114     typerr(t);
2115 
2116   case Tuple: {                 // Meeting 2 signatures?
2117     const TypeTuple *x = t->is_tuple();
2118     assert( _cnt == x->_cnt, "" );
2119     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2120     for( uint i=0; i<_cnt; i++ )
2121       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2122     return TypeTuple::make(_cnt,fields);
2123   }
2124   case Top:
2125     break;
2126   }
2127   return this;                  // Return the double constant
2128 }
2129 
2130 //------------------------------xdual------------------------------------------
2131 // Dual: compute field-by-field dual
2132 const Type *TypeTuple::xdual() const {
2133   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2134   for( uint i=0; i<_cnt; i++ )
2135     fields[i] = _fields[i]->dual();
2136   return new TypeTuple(_cnt,fields);
2137 }
2138 
2139 //------------------------------eq---------------------------------------------
2140 // Structural equality check for Type representations
2141 bool TypeTuple::eq( const Type *t ) const {
2142   const TypeTuple *s = (const TypeTuple *)t;
2143   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2144   for (uint i = 0; i < _cnt; i++)
2145     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2146       return false;             // Missed
2147   return true;
2148 }
2149 
2150 //------------------------------hash-------------------------------------------
2151 // Type-specific hashing function.
2152 int TypeTuple::hash(void) const {
2153   intptr_t sum = _cnt;
2154   for( uint i=0; i<_cnt; i++ )
2155     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2156   return sum;
2157 }
2158 
2159 //------------------------------dump2------------------------------------------
2160 // Dump signature Type
2161 #ifndef PRODUCT
2162 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2163   st->print("{");
2164   if( !depth || d[this] ) {     // Check for recursive print
2165     st->print("...}");
2166     return;
2167   }
2168   d.Insert((void*)this, (void*)this);   // Stop recursion
2169   if( _cnt ) {
2170     uint i;
2171     for( i=0; i<_cnt-1; i++ ) {
2172       st->print("%d:", i);
2173       _fields[i]->dump2(d, depth-1, st);
2174       st->print(", ");
2175     }
2176     st->print("%d:", i);
2177     _fields[i]->dump2(d, depth-1, st);
2178   }
2179   st->print("}");
2180 }
2181 #endif
2182 
2183 //------------------------------singleton--------------------------------------
2184 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2185 // constants (Ldi nodes).  Singletons are integer, float or double constants
2186 // or a single symbol.
2187 bool TypeTuple::singleton(void) const {
2188   return false;                 // Never a singleton
2189 }
2190 
2191 bool TypeTuple::empty(void) const {
2192   for( uint i=0; i<_cnt; i++ ) {
2193     if (_fields[i]->empty())  return true;
2194   }
2195   return false;
2196 }
2197 
2198 //=============================================================================
2199 // Convenience common pre-built types.
2200 
2201 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2202   // Certain normalizations keep us sane when comparing types.
2203   // We do not want arrayOop variables to differ only by the wideness
2204   // of their index types.  Pick minimum wideness, since that is the
2205   // forced wideness of small ranges anyway.
2206   if (size->_widen != Type::WidenMin)
2207     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2208   else
2209     return size;
2210 }
2211 
2212 //------------------------------make-------------------------------------------
2213 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2214   if (elem->is_valuetypeptr()) {
2215     // Value type array elements cannot be NULL
2216     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2217   }
2218   if (UseCompressedOops && elem->isa_oopptr()) {
2219     elem = elem->make_narrowoop();
2220   }
2221   size = normalize_array_size(size);
2222   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2223 }
2224 
2225 //------------------------------meet-------------------------------------------
2226 // Compute the MEET of two types.  It returns a new Type object.
2227 const Type *TypeAry::xmeet( const Type *t ) const {
2228   // Perform a fast test for common case; meeting the same types together.
2229   if( this == t ) return this;  // Meeting same type-rep?
2230 
2231   // Current "this->_base" is Ary
2232   switch (t->base()) {          // switch on original type
2233 
2234   case Bottom:                  // Ye Olde Default
2235     return t;
2236 
2237   default:                      // All else is a mistake
2238     typerr(t);
2239 
2240   case Array: {                 // Meeting 2 arrays?
2241     const TypeAry *a = t->is_ary();
2242     return TypeAry::make(_elem->meet_speculative(a->_elem),
2243                          _size->xmeet(a->_size)->is_int(),
2244                          _stable & a->_stable);
2245   }
2246   case Top:
2247     break;
2248   }
2249   return this;                  // Return the double constant
2250 }
2251 
2252 //------------------------------xdual------------------------------------------
2253 // Dual: compute field-by-field dual
2254 const Type *TypeAry::xdual() const {
2255   const TypeInt* size_dual = _size->dual()->is_int();
2256   size_dual = normalize_array_size(size_dual);
2257   return new TypeAry(_elem->dual(), size_dual, !_stable);
2258 }
2259 
2260 //------------------------------eq---------------------------------------------
2261 // Structural equality check for Type representations
2262 bool TypeAry::eq( const Type *t ) const {
2263   const TypeAry *a = (const TypeAry*)t;
2264   return _elem == a->_elem &&
2265     _stable == a->_stable &&
2266     _size == a->_size;
2267 }
2268 
2269 //------------------------------hash-------------------------------------------
2270 // Type-specific hashing function.
2271 int TypeAry::hash(void) const {
2272   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2273 }
2274 
2275 /**
2276  * Return same type without a speculative part in the element
2277  */
2278 const Type* TypeAry::remove_speculative() const {
2279   return make(_elem->remove_speculative(), _size, _stable);
2280 }
2281 
2282 /**
2283  * Return same type with cleaned up speculative part of element
2284  */
2285 const Type* TypeAry::cleanup_speculative() const {
2286   return make(_elem->cleanup_speculative(), _size, _stable);
2287 }
2288 
2289 /**
2290  * Return same type but with a different inline depth (used for speculation)
2291  *
2292  * @param depth  depth to meet with
2293  */
2294 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2295   if (!UseInlineDepthForSpeculativeTypes) {
2296     return this;
2297   }
2298   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2299 }
2300 
2301 //----------------------interface_vs_oop---------------------------------------
2302 #ifdef ASSERT
2303 bool TypeAry::interface_vs_oop(const Type *t) const {
2304   const TypeAry* t_ary = t->is_ary();
2305   if (t_ary) {
2306     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2307     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2308     if(this_ptr != NULL && t_ptr != NULL) {
2309       return this_ptr->interface_vs_oop(t_ptr);
2310     }
2311   }
2312   return false;
2313 }
2314 #endif
2315 
2316 //------------------------------dump2------------------------------------------
2317 #ifndef PRODUCT
2318 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2319   if (_stable)  st->print("stable:");
2320   _elem->dump2(d, depth, st);
2321   st->print("[");
2322   _size->dump2(d, depth, st);
2323   st->print("]");
2324 }
2325 #endif
2326 
2327 //------------------------------singleton--------------------------------------
2328 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2329 // constants (Ldi nodes).  Singletons are integer, float or double constants
2330 // or a single symbol.
2331 bool TypeAry::singleton(void) const {
2332   return false;                 // Never a singleton
2333 }
2334 
2335 bool TypeAry::empty(void) const {
2336   return _elem->empty() || _size->empty();
2337 }
2338 
2339 //--------------------------ary_must_be_exact----------------------------------
2340 bool TypeAry::ary_must_be_exact() const {
2341   if (!UseExactTypes)       return false;
2342   // This logic looks at the element type of an array, and returns true
2343   // if the element type is either a primitive or a final instance class.
2344   // In such cases, an array built on this ary must have no subclasses.
2345   if (_elem == BOTTOM)      return false;  // general array not exact
2346   if (_elem == TOP   )      return false;  // inverted general array not exact
2347   const TypeOopPtr*  toop = NULL;
2348   if (UseCompressedOops && _elem->isa_narrowoop()) {
2349     toop = _elem->make_ptr()->isa_oopptr();
2350   } else {
2351     toop = _elem->isa_oopptr();
2352   }
2353   if (!toop)                return true;   // a primitive type, like int
2354   ciKlass* tklass = toop->klass();
2355   if (tklass == NULL)       return false;  // unloaded class
2356   if (!tklass->is_loaded()) return false;  // unloaded class
2357   const TypeInstPtr* tinst;
2358   if (_elem->isa_narrowoop())
2359     tinst = _elem->make_ptr()->isa_instptr();
2360   else
2361     tinst = _elem->isa_instptr();
2362   if (tinst)
2363     return tklass->as_instance_klass()->is_final();
2364   const TypeAryPtr*  tap;
2365   if (_elem->isa_narrowoop())
2366     tap = _elem->make_ptr()->isa_aryptr();
2367   else
2368     tap = _elem->isa_aryptr();
2369   if (tap)
2370     return tap->ary()->ary_must_be_exact();
2371   return false;
2372 }
2373 
2374 //==============================TypeValueType=======================================
2375 
2376 //------------------------------make-------------------------------------------
2377 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2378   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2379 }
2380 
2381 //------------------------------meet-------------------------------------------
2382 // Compute the MEET of two types.  It returns a new Type object.
2383 const Type* TypeValueType::xmeet(const Type* t) const {
2384   // Perform a fast test for common case; meeting the same types together.
2385   if(this == t) return this;  // Meeting same type-rep?
2386 
2387   // Current "this->_base" is ValueType
2388   switch (t->base()) {          // switch on original type
2389 
2390   case Int:
2391   case Long:
2392   case FloatTop:
2393   case FloatCon:
2394   case FloatBot:
2395   case DoubleTop:
2396   case DoubleCon:
2397   case DoubleBot:
2398   case NarrowKlass:
2399   case Bottom:
2400     return Type::BOTTOM;
2401 
2402   case OopPtr:
2403   case MetadataPtr:
2404   case KlassPtr:
2405   case RawPtr:
2406     return TypePtr::BOTTOM;
2407 
2408   case Top:
2409     return this;
2410 
2411   case NarrowOop: {
2412     const Type* res = t->make_ptr()->xmeet(this);
2413     if (res->isa_ptr()) {
2414       return res->make_narrowoop();
2415     }
2416     return res;
2417   }
2418 
2419   case AryPtr:
2420   case InstPtr: {
2421     return t->xmeet(this);
2422   }
2423 
2424   case ValueType: {
2425     // All value types inherit from Object
2426     return TypeInstPtr::NOTNULL;
2427   }
2428 
2429   default:                      // All else is a mistake
2430     typerr(t);
2431 
2432   }
2433   return this;
2434 }
2435 
2436 //------------------------------xdual------------------------------------------
2437 const Type* TypeValueType::xdual() const {
2438   return this;
2439 }
2440 
2441 //------------------------------eq---------------------------------------------
2442 // Structural equality check for Type representations
2443 bool TypeValueType::eq(const Type* t) const {
2444   const TypeValueType* vt = t->is_valuetype();
2445   return (_vk == vt->value_klass());
2446 }
2447 
2448 //------------------------------hash-------------------------------------------
2449 // Type-specific hashing function.
2450 int TypeValueType::hash(void) const {
2451   return (intptr_t)_vk;
2452 }
2453 
2454 //------------------------------singleton--------------------------------------
2455 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2456 bool TypeValueType::singleton(void) const {
2457   return false;
2458 }
2459 
2460 //------------------------------empty------------------------------------------
2461 // TRUE if Type is a type with no values, FALSE otherwise.
2462 bool TypeValueType::empty(void) const {
2463   return false;
2464 }
2465 
2466 //------------------------------dump2------------------------------------------
2467 #ifndef PRODUCT
2468 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2469   int count = _vk->nof_declared_nonstatic_fields();
2470   st->print("valuetype[%d]:{", count);
2471   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2472   for (int i = 1; i < count; ++i) {
2473     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2474   }
2475   st->print("}");
2476 }
2477 #endif
2478 
2479 //==============================TypeVect=======================================
2480 // Convenience common pre-built types.
2481 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2482 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2483 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2484 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2485 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2486 
2487 //------------------------------make-------------------------------------------
2488 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2489   BasicType elem_bt = elem->array_element_basic_type();
2490   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2491   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2492   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2493   int size = length * type2aelembytes(elem_bt);
2494   switch (Matcher::vector_ideal_reg(size)) {
2495   case Op_VecS:
2496     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2497   case Op_RegL:
2498   case Op_VecD:
2499   case Op_RegD:
2500     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2501   case Op_VecX:
2502     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2503   case Op_VecY:
2504     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2505   case Op_VecZ:
2506     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2507   }
2508  ShouldNotReachHere();
2509   return NULL;
2510 }
2511 
2512 //------------------------------meet-------------------------------------------
2513 // Compute the MEET of two types.  It returns a new Type object.
2514 const Type *TypeVect::xmeet( const Type *t ) const {
2515   // Perform a fast test for common case; meeting the same types together.
2516   if( this == t ) return this;  // Meeting same type-rep?
2517 
2518   // Current "this->_base" is Vector
2519   switch (t->base()) {          // switch on original type
2520 
2521   case Bottom:                  // Ye Olde Default
2522     return t;
2523 
2524   default:                      // All else is a mistake
2525     typerr(t);
2526 
2527   case VectorS:
2528   case VectorD:
2529   case VectorX:
2530   case VectorY:
2531   case VectorZ: {                // Meeting 2 vectors?
2532     const TypeVect* v = t->is_vect();
2533     assert(  base() == v->base(), "");
2534     assert(length() == v->length(), "");
2535     assert(element_basic_type() == v->element_basic_type(), "");
2536     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2537   }
2538   case Top:
2539     break;
2540   }
2541   return this;
2542 }
2543 
2544 //------------------------------xdual------------------------------------------
2545 // Dual: compute field-by-field dual
2546 const Type *TypeVect::xdual() const {
2547   return new TypeVect(base(), _elem->dual(), _length);
2548 }
2549 
2550 //------------------------------eq---------------------------------------------
2551 // Structural equality check for Type representations
2552 bool TypeVect::eq(const Type *t) const {
2553   const TypeVect *v = t->is_vect();
2554   return (_elem == v->_elem) && (_length == v->_length);
2555 }
2556 
2557 //------------------------------hash-------------------------------------------
2558 // Type-specific hashing function.
2559 int TypeVect::hash(void) const {
2560   return (intptr_t)_elem + (intptr_t)_length;
2561 }
2562 
2563 //------------------------------singleton--------------------------------------
2564 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2565 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2566 // constant value (when vector is created with Replicate code).
2567 bool TypeVect::singleton(void) const {
2568 // There is no Con node for vectors yet.
2569 //  return _elem->singleton();
2570   return false;
2571 }
2572 
2573 bool TypeVect::empty(void) const {
2574   return _elem->empty();
2575 }
2576 
2577 //------------------------------dump2------------------------------------------
2578 #ifndef PRODUCT
2579 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2580   switch (base()) {
2581   case VectorS:
2582     st->print("vectors["); break;
2583   case VectorD:
2584     st->print("vectord["); break;
2585   case VectorX:
2586     st->print("vectorx["); break;
2587   case VectorY:
2588     st->print("vectory["); break;
2589   case VectorZ:
2590     st->print("vectorz["); break;
2591   default:
2592     ShouldNotReachHere();
2593   }
2594   st->print("%d]:{", _length);
2595   _elem->dump2(d, depth, st);
2596   st->print("}");
2597 }
2598 #endif
2599 
2600 
2601 //=============================================================================
2602 // Convenience common pre-built types.
2603 const TypePtr *TypePtr::NULL_PTR;
2604 const TypePtr *TypePtr::NOTNULL;
2605 const TypePtr *TypePtr::BOTTOM;
2606 
2607 //------------------------------meet-------------------------------------------
2608 // Meet over the PTR enum
2609 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2610   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2611   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2612   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2613   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2614   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2615   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2616   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2617 };
2618 
2619 //------------------------------make-------------------------------------------
2620 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2621   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2622 }
2623 
2624 //------------------------------cast_to_ptr_type-------------------------------
2625 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2626   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2627   if( ptr == _ptr ) return this;
2628   return make(_base, ptr, _offset, _speculative, _inline_depth);
2629 }
2630 
2631 //------------------------------get_con----------------------------------------
2632 intptr_t TypePtr::get_con() const {
2633   assert( _ptr == Null, "" );
2634   return offset();
2635 }
2636 
2637 //------------------------------meet-------------------------------------------
2638 // Compute the MEET of two types.  It returns a new Type object.
2639 const Type *TypePtr::xmeet(const Type *t) const {
2640   const Type* res = xmeet_helper(t);
2641   if (res->isa_ptr() == NULL) {
2642     return res;
2643   }
2644 
2645   const TypePtr* res_ptr = res->is_ptr();
2646   if (res_ptr->speculative() != NULL) {
2647     // type->speculative() == NULL means that speculation is no better
2648     // than type, i.e. type->speculative() == type. So there are 2
2649     // ways to represent the fact that we have no useful speculative
2650     // data and we should use a single one to be able to test for
2651     // equality between types. Check whether type->speculative() ==
2652     // type and set speculative to NULL if it is the case.
2653     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2654       return res_ptr->remove_speculative();
2655     }
2656   }
2657 
2658   return res;
2659 }
2660 
2661 const Type *TypePtr::xmeet_helper(const Type *t) const {
2662   // Perform a fast test for common case; meeting the same types together.
2663   if( this == t ) return this;  // Meeting same type-rep?
2664 
2665   // Current "this->_base" is AnyPtr
2666   switch (t->base()) {          // switch on original type
2667   case Int:                     // Mixing ints & oops happens when javac
2668   case Long:                    // reuses local variables
2669   case FloatTop:
2670   case FloatCon:
2671   case FloatBot:
2672   case DoubleTop:
2673   case DoubleCon:
2674   case DoubleBot:
2675   case NarrowOop:
2676   case NarrowKlass:
2677   case Bottom:                  // Ye Olde Default
2678     return Type::BOTTOM;
2679   case Top:
2680     return this;
2681 
2682   case AnyPtr: {                // Meeting to AnyPtrs
2683     const TypePtr *tp = t->is_ptr();
2684     const TypePtr* speculative = xmeet_speculative(tp);
2685     int depth = meet_inline_depth(tp->inline_depth());
2686     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2687   }
2688   case RawPtr:                  // For these, flip the call around to cut down
2689   case OopPtr:
2690   case InstPtr:                 // on the cases I have to handle.
2691   case AryPtr:
2692   case MetadataPtr:
2693   case KlassPtr:
2694     return t->xmeet(this);      // Call in reverse direction
2695   default:                      // All else is a mistake
2696     typerr(t);
2697 
2698   }
2699   return this;
2700 }
2701 
2702 //------------------------------meet_offset------------------------------------
2703 Type::Offset TypePtr::meet_offset(int offset) const {
2704   return _offset.meet(Offset(offset));
2705 }
2706 
2707 //------------------------------dual_offset------------------------------------
2708 Type::Offset TypePtr::dual_offset() const {
2709   return _offset.dual();
2710 }
2711 
2712 //------------------------------xdual------------------------------------------
2713 // Dual: compute field-by-field dual
2714 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2715   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2716 };
2717 const Type *TypePtr::xdual() const {
2718   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2719 }
2720 
2721 //------------------------------xadd_offset------------------------------------
2722 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2723   return _offset.add(offset);
2724 }
2725 
2726 //------------------------------add_offset-------------------------------------
2727 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2728   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2729 }
2730 
2731 //------------------------------eq---------------------------------------------
2732 // Structural equality check for Type representations
2733 bool TypePtr::eq( const Type *t ) const {
2734   const TypePtr *a = (const TypePtr*)t;
2735   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2736 }
2737 
2738 //------------------------------hash-------------------------------------------
2739 // Type-specific hashing function.
2740 int TypePtr::hash(void) const {
2741   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2742 ;
2743 }
2744 
2745 /**
2746  * Return same type without a speculative part
2747  */
2748 const Type* TypePtr::remove_speculative() const {
2749   if (_speculative == NULL) {
2750     return this;
2751   }
2752   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2753   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2754 }
2755 
2756 /**
2757  * Return same type but drop speculative part if we know we won't use
2758  * it
2759  */
2760 const Type* TypePtr::cleanup_speculative() const {
2761   if (speculative() == NULL) {
2762     return this;
2763   }
2764   const Type* no_spec = remove_speculative();
2765   // If this is NULL_PTR then we don't need the speculative type
2766   // (with_inline_depth in case the current type inline depth is
2767   // InlineDepthTop)
2768   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2769     return no_spec;
2770   }
2771   if (above_centerline(speculative()->ptr())) {
2772     return no_spec;
2773   }
2774   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2775   // If the speculative may be null and is an inexact klass then it
2776   // doesn't help
2777   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2778       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2779     return no_spec;
2780   }
2781   return this;
2782 }
2783 
2784 /**
2785  * dual of the speculative part of the type
2786  */
2787 const TypePtr* TypePtr::dual_speculative() const {
2788   if (_speculative == NULL) {
2789     return NULL;
2790   }
2791   return _speculative->dual()->is_ptr();
2792 }
2793 
2794 /**
2795  * meet of the speculative parts of 2 types
2796  *
2797  * @param other  type to meet with
2798  */
2799 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2800   bool this_has_spec = (_speculative != NULL);
2801   bool other_has_spec = (other->speculative() != NULL);
2802 
2803   if (!this_has_spec && !other_has_spec) {
2804     return NULL;
2805   }
2806 
2807   // If we are at a point where control flow meets and one branch has
2808   // a speculative type and the other has not, we meet the speculative
2809   // type of one branch with the actual type of the other. If the
2810   // actual type is exact and the speculative is as well, then the
2811   // result is a speculative type which is exact and we can continue
2812   // speculation further.
2813   const TypePtr* this_spec = _speculative;
2814   const TypePtr* other_spec = other->speculative();
2815 
2816   if (!this_has_spec) {
2817     this_spec = this;
2818   }
2819 
2820   if (!other_has_spec) {
2821     other_spec = other;
2822   }
2823 
2824   return this_spec->meet(other_spec)->is_ptr();
2825 }
2826 
2827 /**
2828  * dual of the inline depth for this type (used for speculation)
2829  */
2830 int TypePtr::dual_inline_depth() const {
2831   return -inline_depth();
2832 }
2833 
2834 /**
2835  * meet of 2 inline depths (used for speculation)
2836  *
2837  * @param depth  depth to meet with
2838  */
2839 int TypePtr::meet_inline_depth(int depth) const {
2840   return MAX2(inline_depth(), depth);
2841 }
2842 
2843 /**
2844  * Are the speculative parts of 2 types equal?
2845  *
2846  * @param other  type to compare this one to
2847  */
2848 bool TypePtr::eq_speculative(const TypePtr* other) const {
2849   if (_speculative == NULL || other->speculative() == NULL) {
2850     return _speculative == other->speculative();
2851   }
2852 
2853   if (_speculative->base() != other->speculative()->base()) {
2854     return false;
2855   }
2856 
2857   return _speculative->eq(other->speculative());
2858 }
2859 
2860 /**
2861  * Hash of the speculative part of the type
2862  */
2863 int TypePtr::hash_speculative() const {
2864   if (_speculative == NULL) {
2865     return 0;
2866   }
2867 
2868   return _speculative->hash();
2869 }
2870 
2871 /**
2872  * add offset to the speculative part of the type
2873  *
2874  * @param offset  offset to add
2875  */
2876 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2877   if (_speculative == NULL) {
2878     return NULL;
2879   }
2880   return _speculative->add_offset(offset)->is_ptr();
2881 }
2882 
2883 /**
2884  * return exact klass from the speculative type if there's one
2885  */
2886 ciKlass* TypePtr::speculative_type() const {
2887   if (_speculative != NULL && _speculative->isa_oopptr()) {
2888     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2889     if (speculative->klass_is_exact()) {
2890       return speculative->klass();
2891     }
2892   }
2893   return NULL;
2894 }
2895 
2896 /**
2897  * return true if speculative type may be null
2898  */
2899 bool TypePtr::speculative_maybe_null() const {
2900   if (_speculative != NULL) {
2901     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2902     return speculative->maybe_null();
2903   }
2904   return true;
2905 }
2906 
2907 bool TypePtr::speculative_always_null() const {
2908   if (_speculative != NULL) {
2909     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2910     return speculative == TypePtr::NULL_PTR;
2911   }
2912   return false;
2913 }
2914 
2915 /**
2916  * Same as TypePtr::speculative_type() but return the klass only if
2917  * the speculative tells us is not null
2918  */
2919 ciKlass* TypePtr::speculative_type_not_null() const {
2920   if (speculative_maybe_null()) {
2921     return NULL;
2922   }
2923   return speculative_type();
2924 }
2925 
2926 /**
2927  * Check whether new profiling would improve speculative type
2928  *
2929  * @param   exact_kls    class from profiling
2930  * @param   inline_depth inlining depth of profile point
2931  *
2932  * @return  true if type profile is valuable
2933  */
2934 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2935   // no profiling?
2936   if (exact_kls == NULL) {
2937     return false;
2938   }
2939   if (speculative() == TypePtr::NULL_PTR) {
2940     return false;
2941   }
2942   // no speculative type or non exact speculative type?
2943   if (speculative_type() == NULL) {
2944     return true;
2945   }
2946   // If the node already has an exact speculative type keep it,
2947   // unless it was provided by profiling that is at a deeper
2948   // inlining level. Profiling at a higher inlining depth is
2949   // expected to be less accurate.
2950   if (_speculative->inline_depth() == InlineDepthBottom) {
2951     return false;
2952   }
2953   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2954   return inline_depth < _speculative->inline_depth();
2955 }
2956 
2957 /**
2958  * Check whether new profiling would improve ptr (= tells us it is non
2959  * null)
2960  *
2961  * @param   ptr_kind always null or not null?
2962  *
2963  * @return  true if ptr profile is valuable
2964  */
2965 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2966   // profiling doesn't tell us anything useful
2967   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2968     return false;
2969   }
2970   // We already know this is not null
2971   if (!this->maybe_null()) {
2972     return false;
2973   }
2974   // We already know the speculative type cannot be null
2975   if (!speculative_maybe_null()) {
2976     return false;
2977   }
2978   // We already know this is always null
2979   if (this == TypePtr::NULL_PTR) {
2980     return false;
2981   }
2982   // We already know the speculative type is always null
2983   if (speculative_always_null()) {
2984     return false;
2985   }
2986   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2987     return false;
2988   }
2989   return true;
2990 }
2991 
2992 //------------------------------dump2------------------------------------------
2993 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2994   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2995 };
2996 
2997 #ifndef PRODUCT
2998 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2999   if( _ptr == Null ) st->print("NULL");
3000   else st->print("%s *", ptr_msg[_ptr]);
3001   _offset.dump2(st);
3002   dump_inline_depth(st);
3003   dump_speculative(st);
3004 }
3005 
3006 /**
3007  *dump the speculative part of the type
3008  */
3009 void TypePtr::dump_speculative(outputStream *st) const {
3010   if (_speculative != NULL) {
3011     st->print(" (speculative=");
3012     _speculative->dump_on(st);
3013     st->print(")");
3014   }
3015 }
3016 
3017 /**
3018  *dump the inline depth of the type
3019  */
3020 void TypePtr::dump_inline_depth(outputStream *st) const {
3021   if (_inline_depth != InlineDepthBottom) {
3022     if (_inline_depth == InlineDepthTop) {
3023       st->print(" (inline_depth=InlineDepthTop)");
3024     } else {
3025       st->print(" (inline_depth=%d)", _inline_depth);
3026     }
3027   }
3028 }
3029 #endif
3030 
3031 //------------------------------singleton--------------------------------------
3032 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3033 // constants
3034 bool TypePtr::singleton(void) const {
3035   // TopPTR, Null, AnyNull, Constant are all singletons
3036   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3037 }
3038 
3039 bool TypePtr::empty(void) const {
3040   return (_offset == Offset::top) || above_centerline(_ptr);
3041 }
3042 
3043 //=============================================================================
3044 // Convenience common pre-built types.
3045 const TypeRawPtr *TypeRawPtr::BOTTOM;
3046 const TypeRawPtr *TypeRawPtr::NOTNULL;
3047 
3048 //------------------------------make-------------------------------------------
3049 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3050   assert( ptr != Constant, "what is the constant?" );
3051   assert( ptr != Null, "Use TypePtr for NULL" );
3052   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3053 }
3054 
3055 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3056   assert( bits, "Use TypePtr for NULL" );
3057   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3058 }
3059 
3060 //------------------------------cast_to_ptr_type-------------------------------
3061 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3062   assert( ptr != Constant, "what is the constant?" );
3063   assert( ptr != Null, "Use TypePtr for NULL" );
3064   assert( _bits==0, "Why cast a constant address?");
3065   if( ptr == _ptr ) return this;
3066   return make(ptr);
3067 }
3068 
3069 //------------------------------get_con----------------------------------------
3070 intptr_t TypeRawPtr::get_con() const {
3071   assert( _ptr == Null || _ptr == Constant, "" );
3072   return (intptr_t)_bits;
3073 }
3074 
3075 //------------------------------meet-------------------------------------------
3076 // Compute the MEET of two types.  It returns a new Type object.
3077 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3078   // Perform a fast test for common case; meeting the same types together.
3079   if( this == t ) return this;  // Meeting same type-rep?
3080 
3081   // Current "this->_base" is RawPtr
3082   switch( t->base() ) {         // switch on original type
3083   case Bottom:                  // Ye Olde Default
3084     return t;
3085   case Top:
3086     return this;
3087   case AnyPtr:                  // Meeting to AnyPtrs
3088     break;
3089   case RawPtr: {                // might be top, bot, any/not or constant
3090     enum PTR tptr = t->is_ptr()->ptr();
3091     enum PTR ptr = meet_ptr( tptr );
3092     if( ptr == Constant ) {     // Cannot be equal constants, so...
3093       if( tptr == Constant && _ptr != Constant)  return t;
3094       if( _ptr == Constant && tptr != Constant)  return this;
3095       ptr = NotNull;            // Fall down in lattice
3096     }
3097     return make( ptr );
3098   }
3099 
3100   case OopPtr:
3101   case InstPtr:
3102   case AryPtr:
3103   case MetadataPtr:
3104   case KlassPtr:
3105     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3106   default:                      // All else is a mistake
3107     typerr(t);
3108   }
3109 
3110   // Found an AnyPtr type vs self-RawPtr type
3111   const TypePtr *tp = t->is_ptr();
3112   switch (tp->ptr()) {
3113   case TypePtr::TopPTR:  return this;
3114   case TypePtr::BotPTR:  return t;
3115   case TypePtr::Null:
3116     if( _ptr == TypePtr::TopPTR ) return t;
3117     return TypeRawPtr::BOTTOM;
3118   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3119   case TypePtr::AnyNull:
3120     if( _ptr == TypePtr::Constant) return this;
3121     return make( meet_ptr(TypePtr::AnyNull) );
3122   default: ShouldNotReachHere();
3123   }
3124   return this;
3125 }
3126 
3127 //------------------------------xdual------------------------------------------
3128 // Dual: compute field-by-field dual
3129 const Type *TypeRawPtr::xdual() const {
3130   return new TypeRawPtr( dual_ptr(), _bits );
3131 }
3132 
3133 //------------------------------add_offset-------------------------------------
3134 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3135   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3136   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3137   if( offset == 0 ) return this; // No change
3138   switch (_ptr) {
3139   case TypePtr::TopPTR:
3140   case TypePtr::BotPTR:
3141   case TypePtr::NotNull:
3142     return this;
3143   case TypePtr::Null:
3144   case TypePtr::Constant: {
3145     address bits = _bits+offset;
3146     if ( bits == 0 ) return TypePtr::NULL_PTR;
3147     return make( bits );
3148   }
3149   default:  ShouldNotReachHere();
3150   }
3151   return NULL;                  // Lint noise
3152 }
3153 
3154 //------------------------------eq---------------------------------------------
3155 // Structural equality check for Type representations
3156 bool TypeRawPtr::eq( const Type *t ) const {
3157   const TypeRawPtr *a = (const TypeRawPtr*)t;
3158   return _bits == a->_bits && TypePtr::eq(t);
3159 }
3160 
3161 //------------------------------hash-------------------------------------------
3162 // Type-specific hashing function.
3163 int TypeRawPtr::hash(void) const {
3164   return (intptr_t)_bits + TypePtr::hash();
3165 }
3166 
3167 //------------------------------dump2------------------------------------------
3168 #ifndef PRODUCT
3169 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3170   if( _ptr == Constant )
3171     st->print(INTPTR_FORMAT, p2i(_bits));
3172   else
3173     st->print("rawptr:%s", ptr_msg[_ptr]);
3174 }
3175 #endif
3176 
3177 //=============================================================================
3178 // Convenience common pre-built type.
3179 const TypeOopPtr *TypeOopPtr::BOTTOM;
3180 
3181 //------------------------------TypeOopPtr-------------------------------------
3182 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3183                        int instance_id, const TypePtr* speculative, int inline_depth)
3184   : TypePtr(t, ptr, offset, speculative, inline_depth),
3185     _const_oop(o), _klass(k),
3186     _klass_is_exact(xk),
3187     _is_ptr_to_narrowoop(false),
3188     _is_ptr_to_narrowklass(false),
3189     _is_ptr_to_boxed_value(false),
3190     _instance_id(instance_id) {
3191   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3192       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3193     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3194   }
3195 #ifdef _LP64
3196   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3197     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3198       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3199     } else if (klass() == NULL) {
3200       // Array with unknown body type
3201       assert(this->isa_aryptr(), "only arrays without klass");
3202       _is_ptr_to_narrowoop = UseCompressedOops;
3203     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3204       if (klass()->is_obj_array_klass()) {
3205         _is_ptr_to_narrowoop = true;
3206       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3207         // Check if the field of the value type array element contains oops
3208         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3209         int foffset = field_offset.get() + vk->first_field_offset();
3210         ciField* field = vk->get_field_by_offset(foffset, false);
3211         assert(field != NULL, "missing field");
3212         BasicType bt = field->layout_type();
3213         assert(bt != T_VALUETYPEPTR, "unexpected type");
3214         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3215       }
3216     } else if (klass()->is_instance_klass()) {
3217       if (this->isa_klassptr()) {
3218         // Perm objects don't use compressed references
3219       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3220         // unsafe access
3221         _is_ptr_to_narrowoop = UseCompressedOops;
3222       } else { // exclude unsafe ops
3223         assert(this->isa_instptr(), "must be an instance ptr.");
3224         if (klass() == ciEnv::current()->Class_klass() &&
3225             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3226              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3227           // Special hidden fields from the Class.
3228           assert(this->isa_instptr(), "must be an instance ptr.");
3229           _is_ptr_to_narrowoop = false;
3230         } else if (klass() == ciEnv::current()->Class_klass() &&
3231                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3232           // Static fields
3233           assert(o != NULL, "must be constant");
3234           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3235           BasicType basic_elem_type;
3236           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3237             // Special hidden field that contains the oop of the default value type
3238             basic_elem_type = T_VALUETYPE;
3239           } else {
3240             ciField* field = ik->get_field_by_offset(this->offset(), true);
3241             assert(field != NULL, "missing field");
3242             basic_elem_type = field->layout_type();
3243           }
3244           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3245                                                        basic_elem_type == T_VALUETYPE ||
3246                                                        basic_elem_type == T_ARRAY);
3247         } else {
3248           // Instance fields which contains a compressed oop references.
3249           ciInstanceKlass* ik = klass()->as_instance_klass();
3250           ciField* field = ik->get_field_by_offset(this->offset(), false);
3251           if (field != NULL) {
3252             BasicType basic_elem_type = field->layout_type();
3253             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3254                                                          basic_elem_type == T_VALUETYPE ||
3255                                                          basic_elem_type == T_ARRAY);
3256             assert(basic_elem_type != T_VALUETYPEPTR, "unexpected type");
3257           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3258             // Compile::find_alias_type() cast exactness on all types to verify
3259             // that it does not affect alias type.
3260             _is_ptr_to_narrowoop = UseCompressedOops;
3261           } else {
3262             // Type for the copy start in LibraryCallKit::inline_native_clone().
3263             _is_ptr_to_narrowoop = UseCompressedOops;
3264           }
3265         }
3266       }
3267     }
3268   }
3269 #endif
3270 }
3271 
3272 //------------------------------make-------------------------------------------
3273 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3274                                    const TypePtr* speculative, int inline_depth) {
3275   assert(ptr != Constant, "no constant generic pointers");
3276   ciKlass*  k = Compile::current()->env()->Object_klass();
3277   bool      xk = false;
3278   ciObject* o = NULL;
3279   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3280 }
3281 
3282 
3283 //------------------------------cast_to_ptr_type-------------------------------
3284 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3285   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3286   if( ptr == _ptr ) return this;
3287   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3288 }
3289 
3290 //-----------------------------cast_to_instance_id----------------------------
3291 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3292   // There are no instances of a general oop.
3293   // Return self unchanged.
3294   return this;
3295 }
3296 
3297 //-----------------------------cast_to_exactness-------------------------------
3298 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3299   // There is no such thing as an exact general oop.
3300   // Return self unchanged.
3301   return this;
3302 }
3303 
3304 
3305 //------------------------------as_klass_type----------------------------------
3306 // Return the klass type corresponding to this instance or array type.
3307 // It is the type that is loaded from an object of this type.
3308 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3309   ciKlass* k = klass();
3310   bool    xk = klass_is_exact();
3311   if (k == NULL)
3312     return TypeKlassPtr::OBJECT;
3313   else
3314     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3315 }
3316 
3317 //------------------------------meet-------------------------------------------
3318 // Compute the MEET of two types.  It returns a new Type object.
3319 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3320   // Perform a fast test for common case; meeting the same types together.
3321   if( this == t ) return this;  // Meeting same type-rep?
3322 
3323   // Current "this->_base" is OopPtr
3324   switch (t->base()) {          // switch on original type
3325 
3326   case Int:                     // Mixing ints & oops happens when javac
3327   case Long:                    // reuses local variables
3328   case FloatTop:
3329   case FloatCon:
3330   case FloatBot:
3331   case DoubleTop:
3332   case DoubleCon:
3333   case DoubleBot:
3334   case NarrowOop:
3335   case NarrowKlass:
3336   case Bottom:                  // Ye Olde Default
3337     return Type::BOTTOM;
3338   case Top:
3339     return this;
3340 
3341   default:                      // All else is a mistake
3342     typerr(t);
3343 
3344   case RawPtr:
3345   case MetadataPtr:
3346   case KlassPtr:
3347     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3348 
3349   case AnyPtr: {
3350     // Found an AnyPtr type vs self-OopPtr type
3351     const TypePtr *tp = t->is_ptr();
3352     Offset offset = meet_offset(tp->offset());
3353     PTR ptr = meet_ptr(tp->ptr());
3354     const TypePtr* speculative = xmeet_speculative(tp);
3355     int depth = meet_inline_depth(tp->inline_depth());
3356     switch (tp->ptr()) {
3357     case Null:
3358       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3359       // else fall through:
3360     case TopPTR:
3361     case AnyNull: {
3362       int instance_id = meet_instance_id(InstanceTop);
3363       return make(ptr, offset, instance_id, speculative, depth);
3364     }
3365     case BotPTR:
3366     case NotNull:
3367       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3368     default: typerr(t);
3369     }
3370   }
3371 
3372   case OopPtr: {                 // Meeting to other OopPtrs
3373     const TypeOopPtr *tp = t->is_oopptr();
3374     int instance_id = meet_instance_id(tp->instance_id());
3375     const TypePtr* speculative = xmeet_speculative(tp);
3376     int depth = meet_inline_depth(tp->inline_depth());
3377     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3378   }
3379 
3380   case InstPtr:                  // For these, flip the call around to cut down
3381   case AryPtr:
3382     return t->xmeet(this);      // Call in reverse direction
3383 
3384   } // End of switch
3385   return this;                  // Return the double constant
3386 }
3387 
3388 
3389 //------------------------------xdual------------------------------------------
3390 // Dual of a pure heap pointer.  No relevant klass or oop information.
3391 const Type *TypeOopPtr::xdual() const {
3392   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3393   assert(const_oop() == NULL,             "no constants here");
3394   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3395 }
3396 
3397 //--------------------------make_from_klass_common-----------------------------
3398 // Computes the element-type given a klass.
3399 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3400   if (klass->is_instance_klass() || klass->is_valuetype()) {
3401     Compile* C = Compile::current();
3402     Dependencies* deps = C->dependencies();
3403     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3404     // Element is an instance
3405     bool klass_is_exact = false;
3406     if (klass->is_loaded()) {
3407       // Try to set klass_is_exact.
3408       ciInstanceKlass* ik = klass->as_instance_klass();
3409       klass_is_exact = ik->is_final();
3410       if (!klass_is_exact && klass_change
3411           && deps != NULL && UseUniqueSubclasses) {
3412         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3413         if (sub != NULL) {
3414           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3415           klass = ik = sub;
3416           klass_is_exact = sub->is_final();
3417         }
3418       }
3419       if (!klass_is_exact && try_for_exact
3420           && deps != NULL && UseExactTypes) {
3421         if (!ik->is_interface() && !ik->has_subklass()) {
3422           // Add a dependence; if concrete subclass added we need to recompile
3423           deps->assert_leaf_type(ik);
3424           klass_is_exact = true;
3425         }
3426       }
3427     }
3428     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3429   } else if (klass->is_obj_array_klass()) {
3430     // Element is an object or value array. Recursively call ourself.
3431     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3432     bool xk = etype->klass_is_exact();
3433     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3434     // We used to pass NotNull in here, asserting that the sub-arrays
3435     // are all not-null.  This is not true in generally, as code can
3436     // slam NULLs down in the subarrays.
3437     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3438     return arr;
3439   } else if (klass->is_type_array_klass()) {
3440     // Element is an typeArray
3441     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3442     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3443     // We used to pass NotNull in here, asserting that the array pointer
3444     // is not-null. That was not true in general.
3445     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3446     return arr;
3447   } else if (klass->is_value_array_klass()) {
3448     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3449     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3450     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3451     return arr;
3452   } else {
3453     ShouldNotReachHere();
3454     return NULL;
3455   }
3456 }
3457 
3458 //------------------------------make_from_constant-----------------------------
3459 // Make a java pointer from an oop constant
3460 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3461   assert(!o->is_null_object(), "null object not yet handled here.");
3462   ciKlass* klass = o->klass();
3463   if (klass->is_instance_klass() || klass->is_valuetype()) {
3464     // Element is an instance or value type
3465     if (require_constant) {
3466       if (!o->can_be_constant())  return NULL;
3467     } else if (!o->should_be_constant()) {
3468       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3469     }
3470     return TypeInstPtr::make(o);
3471   } else if (klass->is_obj_array_klass()) {
3472     // Element is an object array. Recursively call ourself.
3473     const TypeOopPtr *etype =
3474       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3475     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3476     // We used to pass NotNull in here, asserting that the sub-arrays
3477     // are all not-null.  This is not true in generally, as code can
3478     // slam NULLs down in the subarrays.
3479     if (require_constant) {
3480       if (!o->can_be_constant())  return NULL;
3481     } else if (!o->should_be_constant()) {
3482       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3483     }
3484     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3485     return arr;
3486   } else if (klass->is_type_array_klass()) {
3487     // Element is an typeArray
3488     const Type* etype =
3489       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3490     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3491     // We used to pass NotNull in here, asserting that the array pointer
3492     // is not-null. That was not true in general.
3493     if (require_constant) {
3494       if (!o->can_be_constant())  return NULL;
3495     } else if (!o->should_be_constant()) {
3496       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3497     }
3498     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3499     return arr;
3500   } else if (klass->is_value_array_klass()) {
3501     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3502     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3503     // We used to pass NotNull in here, asserting that the sub-arrays
3504     // are all not-null.  This is not true in generally, as code can
3505     // slam NULLs down in the subarrays.
3506     if (require_constant) {
3507       if (!o->can_be_constant())  return NULL;
3508     } else if (!o->should_be_constant()) {
3509       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3510     }
3511     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3512     return arr;
3513   }
3514 
3515   fatal("unhandled object type");
3516   return NULL;
3517 }
3518 
3519 //------------------------------get_con----------------------------------------
3520 intptr_t TypeOopPtr::get_con() const {
3521   assert( _ptr == Null || _ptr == Constant, "" );
3522   assert(offset() >= 0, "");
3523 
3524   if (offset() != 0) {
3525     // After being ported to the compiler interface, the compiler no longer
3526     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3527     // to a handle at compile time.  This handle is embedded in the generated
3528     // code and dereferenced at the time the nmethod is made.  Until that time,
3529     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3530     // have access to the addresses!).  This does not seem to currently happen,
3531     // but this assertion here is to help prevent its occurence.
3532     tty->print_cr("Found oop constant with non-zero offset");
3533     ShouldNotReachHere();
3534   }
3535 
3536   return (intptr_t)const_oop()->constant_encoding();
3537 }
3538 
3539 
3540 //-----------------------------filter------------------------------------------
3541 // Do not allow interface-vs.-noninterface joins to collapse to top.
3542 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3543 
3544   const Type* ft = join_helper(kills, include_speculative);
3545   const TypeInstPtr* ftip = ft->isa_instptr();
3546   const TypeInstPtr* ktip = kills->isa_instptr();
3547 
3548   if (ft->empty()) {
3549     // Check for evil case of 'this' being a class and 'kills' expecting an
3550     // interface.  This can happen because the bytecodes do not contain
3551     // enough type info to distinguish a Java-level interface variable
3552     // from a Java-level object variable.  If we meet 2 classes which
3553     // both implement interface I, but their meet is at 'j/l/O' which
3554     // doesn't implement I, we have no way to tell if the result should
3555     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3556     // into a Phi which "knows" it's an Interface type we'll have to
3557     // uplift the type.
3558     if (!empty()) {
3559       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3560         return kills;           // Uplift to interface
3561       }
3562       // Also check for evil cases of 'this' being a class array
3563       // and 'kills' expecting an array of interfaces.
3564       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3565       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3566         return kills;           // Uplift to array of interface
3567       }
3568     }
3569 
3570     return Type::TOP;           // Canonical empty value
3571   }
3572 
3573   // If we have an interface-typed Phi or cast and we narrow to a class type,
3574   // the join should report back the class.  However, if we have a J/L/Object
3575   // class-typed Phi and an interface flows in, it's possible that the meet &
3576   // join report an interface back out.  This isn't possible but happens
3577   // because the type system doesn't interact well with interfaces.
3578   if (ftip != NULL && ktip != NULL &&
3579       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3580       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3581     assert(!ftip->klass_is_exact(), "interface could not be exact");
3582     return ktip->cast_to_ptr_type(ftip->ptr());
3583   }
3584 
3585   return ft;
3586 }
3587 
3588 //------------------------------eq---------------------------------------------
3589 // Structural equality check for Type representations
3590 bool TypeOopPtr::eq( const Type *t ) const {
3591   const TypeOopPtr *a = (const TypeOopPtr*)t;
3592   if (_klass_is_exact != a->_klass_is_exact ||
3593       _instance_id != a->_instance_id)  return false;
3594   ciObject* one = const_oop();
3595   ciObject* two = a->const_oop();
3596   if (one == NULL || two == NULL) {
3597     return (one == two) && TypePtr::eq(t);
3598   } else {
3599     return one->equals(two) && TypePtr::eq(t);
3600   }
3601 }
3602 
3603 //------------------------------hash-------------------------------------------
3604 // Type-specific hashing function.
3605 int TypeOopPtr::hash(void) const {
3606   return
3607     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3608              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3609 }
3610 
3611 //------------------------------dump2------------------------------------------
3612 #ifndef PRODUCT
3613 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3614   st->print("oopptr:%s", ptr_msg[_ptr]);
3615   if( _klass_is_exact ) st->print(":exact");
3616   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3617   _offset.dump2(st);
3618   if (_instance_id == InstanceTop)
3619     st->print(",iid=top");
3620   else if (_instance_id != InstanceBot)
3621     st->print(",iid=%d",_instance_id);
3622 
3623   dump_inline_depth(st);
3624   dump_speculative(st);
3625 }
3626 #endif
3627 
3628 //------------------------------singleton--------------------------------------
3629 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3630 // constants
3631 bool TypeOopPtr::singleton(void) const {
3632   // detune optimizer to not generate constant oop + constant offset as a constant!
3633   // TopPTR, Null, AnyNull, Constant are all singletons
3634   return (offset() == 0) && !below_centerline(_ptr);
3635 }
3636 
3637 //------------------------------add_offset-------------------------------------
3638 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3639   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3640 }
3641 
3642 /**
3643  * Return same type without a speculative part
3644  */
3645 const Type* TypeOopPtr::remove_speculative() const {
3646   if (_speculative == NULL) {
3647     return this;
3648   }
3649   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3650   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3651 }
3652 
3653 /**
3654  * Return same type but drop speculative part if we know we won't use
3655  * it
3656  */
3657 const Type* TypeOopPtr::cleanup_speculative() const {
3658   // If the klass is exact and the ptr is not null then there's
3659   // nothing that the speculative type can help us with
3660   if (klass_is_exact() && !maybe_null()) {
3661     return remove_speculative();
3662   }
3663   return TypePtr::cleanup_speculative();
3664 }
3665 
3666 /**
3667  * Return same type but with a different inline depth (used for speculation)
3668  *
3669  * @param depth  depth to meet with
3670  */
3671 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3672   if (!UseInlineDepthForSpeculativeTypes) {
3673     return this;
3674   }
3675   return make(_ptr, _offset, _instance_id, _speculative, depth);
3676 }
3677 
3678 //------------------------------meet_instance_id--------------------------------
3679 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3680   // Either is 'TOP' instance?  Return the other instance!
3681   if( _instance_id == InstanceTop ) return  instance_id;
3682   if(  instance_id == InstanceTop ) return _instance_id;
3683   // If either is different, return 'BOTTOM' instance
3684   if( _instance_id != instance_id ) return InstanceBot;
3685   return _instance_id;
3686 }
3687 
3688 //------------------------------dual_instance_id--------------------------------
3689 int TypeOopPtr::dual_instance_id( ) const {
3690   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3691   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3692   return _instance_id;              // Map everything else into self
3693 }
3694 
3695 /**
3696  * Check whether new profiling would improve speculative type
3697  *
3698  * @param   exact_kls    class from profiling
3699  * @param   inline_depth inlining depth of profile point
3700  *
3701  * @return  true if type profile is valuable
3702  */
3703 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3704   // no way to improve an already exact type
3705   if (klass_is_exact()) {
3706     return false;
3707   }
3708   return TypePtr::would_improve_type(exact_kls, inline_depth);
3709 }
3710 
3711 //=============================================================================
3712 // Convenience common pre-built types.
3713 const TypeInstPtr *TypeInstPtr::NOTNULL;
3714 const TypeInstPtr *TypeInstPtr::BOTTOM;
3715 const TypeInstPtr *TypeInstPtr::MIRROR;
3716 const TypeInstPtr *TypeInstPtr::MARK;
3717 const TypeInstPtr *TypeInstPtr::KLASS;
3718 
3719 //------------------------------TypeInstPtr-------------------------------------
3720 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3721                          int instance_id, const TypePtr* speculative, int inline_depth)
3722   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3723     _name(k->name()) {
3724    assert(k != NULL &&
3725           (k->is_loaded() || o == NULL),
3726           "cannot have constants with non-loaded klass");
3727 };
3728 
3729 //------------------------------make-------------------------------------------
3730 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3731                                      ciKlass* k,
3732                                      bool xk,
3733                                      ciObject* o,
3734                                      Offset offset,
3735                                      int instance_id,
3736                                      const TypePtr* speculative,
3737                                      int inline_depth) {
3738   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3739   // Either const_oop() is NULL or else ptr is Constant
3740   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3741           "constant pointers must have a value supplied" );
3742   // Ptr is never Null
3743   assert( ptr != Null, "NULL pointers are not typed" );
3744 
3745   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3746   if (!UseExactTypes)  xk = false;
3747   if (ptr == Constant) {
3748     // Note:  This case includes meta-object constants, such as methods.
3749     xk = true;
3750   } else if (k->is_loaded()) {
3751     ciInstanceKlass* ik = k->as_instance_klass();
3752     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3753     if (xk && ik->is_interface())  xk = false;  // no exact interface
3754   }
3755 
3756   // Now hash this baby
3757   TypeInstPtr *result =
3758     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3759 
3760   return result;
3761 }
3762 
3763 /**
3764  *  Create constant type for a constant boxed value
3765  */
3766 const Type* TypeInstPtr::get_const_boxed_value() const {
3767   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3768   assert((const_oop() != NULL), "should be called only for constant object");
3769   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3770   BasicType bt = constant.basic_type();
3771   switch (bt) {
3772     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3773     case T_INT:      return TypeInt::make(constant.as_int());
3774     case T_CHAR:     return TypeInt::make(constant.as_char());
3775     case T_BYTE:     return TypeInt::make(constant.as_byte());
3776     case T_SHORT:    return TypeInt::make(constant.as_short());
3777     case T_FLOAT:    return TypeF::make(constant.as_float());
3778     case T_DOUBLE:   return TypeD::make(constant.as_double());
3779     case T_LONG:     return TypeLong::make(constant.as_long());
3780     default:         break;
3781   }
3782   fatal("Invalid boxed value type '%s'", type2name(bt));
3783   return NULL;
3784 }
3785 
3786 //------------------------------cast_to_ptr_type-------------------------------
3787 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3788   if( ptr == _ptr ) return this;
3789   // Reconstruct _sig info here since not a problem with later lazy
3790   // construction, _sig will show up on demand.
3791   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3792 }
3793 
3794 
3795 //-----------------------------cast_to_exactness-------------------------------
3796 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3797   if( klass_is_exact == _klass_is_exact ) return this;
3798   if (!UseExactTypes)  return this;
3799   if (!_klass->is_loaded())  return this;
3800   ciInstanceKlass* ik = _klass->as_instance_klass();
3801   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3802   if( ik->is_interface() )              return this;  // cannot set xk
3803   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3804 }
3805 
3806 //-----------------------------cast_to_instance_id----------------------------
3807 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3808   if( instance_id == _instance_id ) return this;
3809   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3810 }
3811 
3812 //------------------------------xmeet_unloaded---------------------------------
3813 // Compute the MEET of two InstPtrs when at least one is unloaded.
3814 // Assume classes are different since called after check for same name/class-loader
3815 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3816     Offset off = meet_offset(tinst->offset());
3817     PTR ptr = meet_ptr(tinst->ptr());
3818     int instance_id = meet_instance_id(tinst->instance_id());
3819     const TypePtr* speculative = xmeet_speculative(tinst);
3820     int depth = meet_inline_depth(tinst->inline_depth());
3821 
3822     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3823     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3824     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3825       //
3826       // Meet unloaded class with java/lang/Object
3827       //
3828       // Meet
3829       //          |                     Unloaded Class
3830       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3831       //  ===================================================================
3832       //   TOP    | ..........................Unloaded......................|
3833       //  AnyNull |  U-AN    |................Unloaded......................|
3834       // Constant | ... O-NN .................................. |   O-BOT   |
3835       //  NotNull | ... O-NN .................................. |   O-BOT   |
3836       //  BOTTOM  | ........................Object-BOTTOM ..................|
3837       //
3838       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3839       //
3840       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3841       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3842       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3843       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3844         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3845         else                                      { return TypeInstPtr::NOTNULL; }
3846       }
3847       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3848 
3849       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3850     }
3851 
3852     // Both are unloaded, not the same class, not Object
3853     // Or meet unloaded with a different loaded class, not java/lang/Object
3854     if( ptr != TypePtr::BotPTR ) {
3855       return TypeInstPtr::NOTNULL;
3856     }
3857     return TypeInstPtr::BOTTOM;
3858 }
3859 
3860 
3861 //------------------------------meet-------------------------------------------
3862 // Compute the MEET of two types.  It returns a new Type object.
3863 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3864   // Perform a fast test for common case; meeting the same types together.
3865   if( this == t ) return this;  // Meeting same type-rep?
3866 
3867   // Current "this->_base" is Pointer
3868   switch (t->base()) {          // switch on original type
3869 
3870   case Int:                     // Mixing ints & oops happens when javac
3871   case Long:                    // reuses local variables
3872   case FloatTop:
3873   case FloatCon:
3874   case FloatBot:
3875   case DoubleTop:
3876   case DoubleCon:
3877   case DoubleBot:
3878   case NarrowOop:
3879   case NarrowKlass:
3880   case Bottom:                  // Ye Olde Default
3881     return Type::BOTTOM;
3882   case Top:
3883     return this;
3884 
3885   default:                      // All else is a mistake
3886     typerr(t);
3887 
3888   case MetadataPtr:
3889   case KlassPtr:
3890   case RawPtr: return TypePtr::BOTTOM;
3891 
3892   case AryPtr: {                // All arrays inherit from Object class
3893     const TypeAryPtr *tp = t->is_aryptr();
3894     Offset offset = meet_offset(tp->offset());
3895     PTR ptr = meet_ptr(tp->ptr());
3896     int instance_id = meet_instance_id(tp->instance_id());
3897     const TypePtr* speculative = xmeet_speculative(tp);
3898     int depth = meet_inline_depth(tp->inline_depth());
3899     switch (ptr) {
3900     case TopPTR:
3901     case AnyNull:                // Fall 'down' to dual of object klass
3902       // For instances when a subclass meets a superclass we fall
3903       // below the centerline when the superclass is exact. We need to
3904       // do the same here.
3905       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3906         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3907       } else {
3908         // cannot subclass, so the meet has to fall badly below the centerline
3909         ptr = NotNull;
3910         instance_id = InstanceBot;
3911         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3912       }
3913     case Constant:
3914     case NotNull:
3915     case BotPTR:                // Fall down to object klass
3916       // LCA is object_klass, but if we subclass from the top we can do better
3917       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3918         // If 'this' (InstPtr) is above the centerline and it is Object class
3919         // then we can subclass in the Java class hierarchy.
3920         // For instances when a subclass meets a superclass we fall
3921         // below the centerline when the superclass is exact. We need
3922         // to do the same here.
3923         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3924           // that is, tp's array type is a subtype of my klass
3925           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3926                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3927         }
3928       }
3929       // The other case cannot happen, since I cannot be a subtype of an array.
3930       // The meet falls down to Object class below centerline.
3931       if( ptr == Constant )
3932          ptr = NotNull;
3933       instance_id = InstanceBot;
3934       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3935     default: typerr(t);
3936     }
3937   }
3938 
3939   case OopPtr: {                // Meeting to OopPtrs
3940     // Found a OopPtr type vs self-InstPtr type
3941     const TypeOopPtr *tp = t->is_oopptr();
3942     Offset offset = meet_offset(tp->offset());
3943     PTR ptr = meet_ptr(tp->ptr());
3944     switch (tp->ptr()) {
3945     case TopPTR:
3946     case AnyNull: {
3947       int instance_id = meet_instance_id(InstanceTop);
3948       const TypePtr* speculative = xmeet_speculative(tp);
3949       int depth = meet_inline_depth(tp->inline_depth());
3950       return make(ptr, klass(), klass_is_exact(),
3951                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3952     }
3953     case NotNull:
3954     case BotPTR: {
3955       int instance_id = meet_instance_id(tp->instance_id());
3956       const TypePtr* speculative = xmeet_speculative(tp);
3957       int depth = meet_inline_depth(tp->inline_depth());
3958       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3959     }
3960     default: typerr(t);
3961     }
3962   }
3963 
3964   case AnyPtr: {                // Meeting to AnyPtrs
3965     // Found an AnyPtr type vs self-InstPtr type
3966     const TypePtr *tp = t->is_ptr();
3967     Offset offset = meet_offset(tp->offset());
3968     PTR ptr = meet_ptr(tp->ptr());
3969     int instance_id = meet_instance_id(InstanceTop);
3970     const TypePtr* speculative = xmeet_speculative(tp);
3971     int depth = meet_inline_depth(tp->inline_depth());
3972     switch (tp->ptr()) {
3973     case Null:
3974       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3975       // else fall through to AnyNull
3976     case TopPTR:
3977     case AnyNull: {
3978       return make(ptr, klass(), klass_is_exact(),
3979                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3980     }
3981     case NotNull:
3982     case BotPTR:
3983       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3984     default: typerr(t);
3985     }
3986   }
3987 
3988   /*
3989                  A-top         }
3990                /   |   \       }  Tops
3991            B-top A-any C-top   }
3992               | /  |  \ |      }  Any-nulls
3993            B-any   |   C-any   }
3994               |    |    |
3995            B-con A-con C-con   } constants; not comparable across classes
3996               |    |    |
3997            B-not   |   C-not   }
3998               | \  |  / |      }  not-nulls
3999            B-bot A-not C-bot   }
4000                \   |   /       }  Bottoms
4001                  A-bot         }
4002   */
4003 
4004   case InstPtr: {                // Meeting 2 Oops?
4005     // Found an InstPtr sub-type vs self-InstPtr type
4006     const TypeInstPtr *tinst = t->is_instptr();
4007     Offset off = meet_offset( tinst->offset() );
4008     PTR ptr = meet_ptr( tinst->ptr() );
4009     int instance_id = meet_instance_id(tinst->instance_id());
4010     const TypePtr* speculative = xmeet_speculative(tinst);
4011     int depth = meet_inline_depth(tinst->inline_depth());
4012 
4013     // Check for easy case; klasses are equal (and perhaps not loaded!)
4014     // If we have constants, then we created oops so classes are loaded
4015     // and we can handle the constants further down.  This case handles
4016     // both-not-loaded or both-loaded classes
4017     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4018       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4019     }
4020 
4021     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4022     ciKlass* tinst_klass = tinst->klass();
4023     ciKlass* this_klass  = this->klass();
4024     bool tinst_xk = tinst->klass_is_exact();
4025     bool this_xk  = this->klass_is_exact();
4026     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4027       // One of these classes has not been loaded
4028       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4029 #ifndef PRODUCT
4030       if( PrintOpto && Verbose ) {
4031         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4032         tty->print("  this == "); this->dump(); tty->cr();
4033         tty->print(" tinst == "); tinst->dump(); tty->cr();
4034       }
4035 #endif
4036       return unloaded_meet;
4037     }
4038 
4039     // Handle mixing oops and interfaces first.
4040     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4041                                         tinst_klass == ciEnv::current()->Object_klass())) {
4042       ciKlass *tmp = tinst_klass; // Swap interface around
4043       tinst_klass = this_klass;
4044       this_klass = tmp;
4045       bool tmp2 = tinst_xk;
4046       tinst_xk = this_xk;
4047       this_xk = tmp2;
4048     }
4049     if (tinst_klass->is_interface() &&
4050         !(this_klass->is_interface() ||
4051           // Treat java/lang/Object as an honorary interface,
4052           // because we need a bottom for the interface hierarchy.
4053           this_klass == ciEnv::current()->Object_klass())) {
4054       // Oop meets interface!
4055 
4056       // See if the oop subtypes (implements) interface.
4057       ciKlass *k;
4058       bool xk;
4059       if( this_klass->is_subtype_of( tinst_klass ) ) {
4060         // Oop indeed subtypes.  Now keep oop or interface depending
4061         // on whether we are both above the centerline or either is
4062         // below the centerline.  If we are on the centerline
4063         // (e.g., Constant vs. AnyNull interface), use the constant.
4064         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4065         // If we are keeping this_klass, keep its exactness too.
4066         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4067       } else {                  // Does not implement, fall to Object
4068         // Oop does not implement interface, so mixing falls to Object
4069         // just like the verifier does (if both are above the
4070         // centerline fall to interface)
4071         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4072         xk = above_centerline(ptr) ? tinst_xk : false;
4073         // Watch out for Constant vs. AnyNull interface.
4074         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4075         instance_id = InstanceBot;
4076       }
4077       ciObject* o = NULL;  // the Constant value, if any
4078       if (ptr == Constant) {
4079         // Find out which constant.
4080         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4081       }
4082       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4083     }
4084 
4085     // Either oop vs oop or interface vs interface or interface vs Object
4086 
4087     // !!! Here's how the symmetry requirement breaks down into invariants:
4088     // If we split one up & one down AND they subtype, take the down man.
4089     // If we split one up & one down AND they do NOT subtype, "fall hard".
4090     // If both are up and they subtype, take the subtype class.
4091     // If both are up and they do NOT subtype, "fall hard".
4092     // If both are down and they subtype, take the supertype class.
4093     // If both are down and they do NOT subtype, "fall hard".
4094     // Constants treated as down.
4095 
4096     // Now, reorder the above list; observe that both-down+subtype is also
4097     // "fall hard"; "fall hard" becomes the default case:
4098     // If we split one up & one down AND they subtype, take the down man.
4099     // If both are up and they subtype, take the subtype class.
4100 
4101     // If both are down and they subtype, "fall hard".
4102     // If both are down and they do NOT subtype, "fall hard".
4103     // If both are up and they do NOT subtype, "fall hard".
4104     // If we split one up & one down AND they do NOT subtype, "fall hard".
4105 
4106     // If a proper subtype is exact, and we return it, we return it exactly.
4107     // If a proper supertype is exact, there can be no subtyping relationship!
4108     // If both types are equal to the subtype, exactness is and-ed below the
4109     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4110 
4111     // Check for subtyping:
4112     ciKlass *subtype = NULL;
4113     bool subtype_exact = false;
4114     if( tinst_klass->equals(this_klass) ) {
4115       subtype = this_klass;
4116       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4117     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4118       subtype = this_klass;     // Pick subtyping class
4119       subtype_exact = this_xk;
4120     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4121       subtype = tinst_klass;    // Pick subtyping class
4122       subtype_exact = tinst_xk;
4123     }
4124 
4125     if( subtype ) {
4126       if( above_centerline(ptr) ) { // both are up?
4127         this_klass = tinst_klass = subtype;
4128         this_xk = tinst_xk = subtype_exact;
4129       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4130         this_klass = tinst_klass; // tinst is down; keep down man
4131         this_xk = tinst_xk;
4132       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4133         tinst_klass = this_klass; // this is down; keep down man
4134         tinst_xk = this_xk;
4135       } else {
4136         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4137       }
4138     }
4139 
4140     // Check for classes now being equal
4141     if (tinst_klass->equals(this_klass)) {
4142       // If the klasses are equal, the constants may still differ.  Fall to
4143       // NotNull if they do (neither constant is NULL; that is a special case
4144       // handled elsewhere).
4145       ciObject* o = NULL;             // Assume not constant when done
4146       ciObject* this_oop  = const_oop();
4147       ciObject* tinst_oop = tinst->const_oop();
4148       if( ptr == Constant ) {
4149         if (this_oop != NULL && tinst_oop != NULL &&
4150             this_oop->equals(tinst_oop) )
4151           o = this_oop;
4152         else if (above_centerline(this ->_ptr))
4153           o = tinst_oop;
4154         else if (above_centerline(tinst ->_ptr))
4155           o = this_oop;
4156         else
4157           ptr = NotNull;
4158       }
4159       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4160     } // Else classes are not equal
4161 
4162     // Since klasses are different, we require a LCA in the Java
4163     // class hierarchy - which means we have to fall to at least NotNull.
4164     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4165       ptr = NotNull;
4166 
4167     instance_id = InstanceBot;
4168 
4169     // Now we find the LCA of Java classes
4170     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4171     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4172   } // End of case InstPtr
4173 
4174   case ValueType: {
4175     const TypeValueType *tv = t->is_valuetype();
4176 
4177     if (above_centerline(ptr())) {
4178       if (tv->value_klass()->is_subtype_of(_klass)) {
4179         return t;
4180       } else {
4181         return TypeInstPtr::make(NotNull, _klass);
4182       }
4183     } else {
4184       if (tv->value_klass()->is_subtype_of(_klass)) {
4185         return TypeInstPtr::make(ptr(), _klass);
4186       } else {
4187         return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4188       }
4189     }
4190   }
4191 
4192   } // End of switch
4193   return this;                  // Return the double constant
4194 }
4195 
4196 
4197 //------------------------java_mirror_type--------------------------------------
4198 ciType* TypeInstPtr::java_mirror_type() const {
4199   // must be a singleton type
4200   if( const_oop() == NULL )  return NULL;
4201 
4202   // must be of type java.lang.Class
4203   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4204 
4205   return const_oop()->as_instance()->java_mirror_type();
4206 }
4207 
4208 
4209 //------------------------------xdual------------------------------------------
4210 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4211 // inheritance mechanism.
4212 const Type *TypeInstPtr::xdual() const {
4213   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4214 }
4215 
4216 //------------------------------eq---------------------------------------------
4217 // Structural equality check for Type representations
4218 bool TypeInstPtr::eq( const Type *t ) const {
4219   const TypeInstPtr *p = t->is_instptr();
4220   return
4221     klass()->equals(p->klass()) &&
4222     TypeOopPtr::eq(p);          // Check sub-type stuff
4223 }
4224 
4225 //------------------------------hash-------------------------------------------
4226 // Type-specific hashing function.
4227 int TypeInstPtr::hash(void) const {
4228   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4229   return hash;
4230 }
4231 
4232 //------------------------------dump2------------------------------------------
4233 // Dump oop Type
4234 #ifndef PRODUCT
4235 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4236   // Print the name of the klass.
4237   klass()->print_name_on(st);
4238 
4239   switch( _ptr ) {
4240   case Constant:
4241     // TO DO: Make CI print the hex address of the underlying oop.
4242     if (WizardMode || Verbose) {
4243       const_oop()->print_oop(st);
4244     }
4245   case BotPTR:
4246     if (!WizardMode && !Verbose) {
4247       if( _klass_is_exact ) st->print(":exact");
4248       break;
4249     }
4250   case TopPTR:
4251   case AnyNull:
4252   case NotNull:
4253     st->print(":%s", ptr_msg[_ptr]);
4254     if( _klass_is_exact ) st->print(":exact");
4255     break;
4256   default:
4257     break;
4258   }
4259 
4260   _offset.dump2(st);
4261 
4262   st->print(" *");
4263   if (_instance_id == InstanceTop)
4264     st->print(",iid=top");
4265   else if (_instance_id != InstanceBot)
4266     st->print(",iid=%d",_instance_id);
4267 
4268   dump_inline_depth(st);
4269   dump_speculative(st);
4270 }
4271 #endif
4272 
4273 //------------------------------add_offset-------------------------------------
4274 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4275   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4276               _instance_id, add_offset_speculative(offset), _inline_depth);
4277 }
4278 
4279 const Type *TypeInstPtr::remove_speculative() const {
4280   if (_speculative == NULL) {
4281     return this;
4282   }
4283   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4284   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4285               _instance_id, NULL, _inline_depth);
4286 }
4287 
4288 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4289   if (!UseInlineDepthForSpeculativeTypes) {
4290     return this;
4291   }
4292   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4293 }
4294 
4295 //=============================================================================
4296 // Convenience common pre-built types.
4297 const TypeAryPtr *TypeAryPtr::RANGE;
4298 const TypeAryPtr *TypeAryPtr::OOPS;
4299 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4300 const TypeAryPtr *TypeAryPtr::BYTES;
4301 const TypeAryPtr *TypeAryPtr::SHORTS;
4302 const TypeAryPtr *TypeAryPtr::CHARS;
4303 const TypeAryPtr *TypeAryPtr::INTS;
4304 const TypeAryPtr *TypeAryPtr::LONGS;
4305 const TypeAryPtr *TypeAryPtr::FLOATS;
4306 const TypeAryPtr *TypeAryPtr::DOUBLES;
4307 
4308 //------------------------------make-------------------------------------------
4309 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4310                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4311   assert(!(k == NULL && ary->_elem->isa_int()),
4312          "integral arrays must be pre-equipped with a class");
4313   if (!xk)  xk = ary->ary_must_be_exact();
4314   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4315   if (!UseExactTypes)  xk = (ptr == Constant);
4316   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4317 }
4318 
4319 //------------------------------make-------------------------------------------
4320 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4321                                    int instance_id, const TypePtr* speculative, int inline_depth,
4322                                    bool is_autobox_cache) {
4323   assert(!(k == NULL && ary->_elem->isa_int()),
4324          "integral arrays must be pre-equipped with a class");
4325   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4326   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4327   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4328   if (!UseExactTypes)  xk = (ptr == Constant);
4329   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4330 }
4331 
4332 //------------------------------cast_to_ptr_type-------------------------------
4333 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4334   if( ptr == _ptr ) return this;
4335   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4336 }
4337 
4338 
4339 //-----------------------------cast_to_exactness-------------------------------
4340 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4341   if( klass_is_exact == _klass_is_exact ) return this;
4342   if (!UseExactTypes)  return this;
4343   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4344   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4345 }
4346 
4347 //-----------------------------cast_to_instance_id----------------------------
4348 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4349   if( instance_id == _instance_id ) return this;
4350   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4351 }
4352 
4353 //-----------------------------narrow_size_type-------------------------------
4354 // Local cache for arrayOopDesc::max_array_length(etype),
4355 // which is kind of slow (and cached elsewhere by other users).
4356 static jint max_array_length_cache[T_CONFLICT+1];
4357 static jint max_array_length(BasicType etype) {
4358   jint& cache = max_array_length_cache[etype];
4359   jint res = cache;
4360   if (res == 0) {
4361     switch (etype) {
4362     case T_NARROWOOP:
4363       etype = T_OBJECT;
4364       break;
4365     case T_NARROWKLASS:
4366     case T_CONFLICT:
4367     case T_ILLEGAL:
4368     case T_VOID:
4369       etype = T_BYTE;           // will produce conservatively high value
4370       break;
4371     default:
4372       break;
4373     }
4374     cache = res = arrayOopDesc::max_array_length(etype);
4375   }
4376   return res;
4377 }
4378 
4379 // Narrow the given size type to the index range for the given array base type.
4380 // Return NULL if the resulting int type becomes empty.
4381 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4382   jint hi = size->_hi;
4383   jint lo = size->_lo;
4384   jint min_lo = 0;
4385   jint max_hi = max_array_length(elem()->basic_type());
4386   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4387   bool chg = false;
4388   if (lo < min_lo) {
4389     lo = min_lo;
4390     if (size->is_con()) {
4391       hi = lo;
4392     }
4393     chg = true;
4394   }
4395   if (hi > max_hi) {
4396     hi = max_hi;
4397     if (size->is_con()) {
4398       lo = hi;
4399     }
4400     chg = true;
4401   }
4402   // Negative length arrays will produce weird intermediate dead fast-path code
4403   if (lo > hi)
4404     return TypeInt::ZERO;
4405   if (!chg)
4406     return size;
4407   return TypeInt::make(lo, hi, Type::WidenMin);
4408 }
4409 
4410 //-------------------------------cast_to_size----------------------------------
4411 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4412   assert(new_size != NULL, "");
4413   new_size = narrow_size_type(new_size);
4414   if (new_size == size())  return this;
4415   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4416   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4417 }
4418 
4419 //------------------------------cast_to_stable---------------------------------
4420 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4421   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4422     return this;
4423 
4424   const Type* elem = this->elem();
4425   const TypePtr* elem_ptr = elem->make_ptr();
4426 
4427   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4428     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4429     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4430   }
4431 
4432   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4433 
4434   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4435 }
4436 
4437 //-----------------------------stable_dimension--------------------------------
4438 int TypeAryPtr::stable_dimension() const {
4439   if (!is_stable())  return 0;
4440   int dim = 1;
4441   const TypePtr* elem_ptr = elem()->make_ptr();
4442   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4443     dim += elem_ptr->is_aryptr()->stable_dimension();
4444   return dim;
4445 }
4446 
4447 //----------------------cast_to_autobox_cache-----------------------------------
4448 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4449   if (is_autobox_cache() == cache)  return this;
4450   const TypeOopPtr* etype = elem()->make_oopptr();
4451   if (etype == NULL)  return this;
4452   // The pointers in the autobox arrays are always non-null.
4453   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4454   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4455   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4456   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4457 }
4458 
4459 //------------------------------eq---------------------------------------------
4460 // Structural equality check for Type representations
4461 bool TypeAryPtr::eq( const Type *t ) const {
4462   const TypeAryPtr *p = t->is_aryptr();
4463   return
4464     _ary == p->_ary &&  // Check array
4465     TypeOopPtr::eq(p) &&// Check sub-parts
4466     _field_offset == p->_field_offset;
4467 }
4468 
4469 //------------------------------hash-------------------------------------------
4470 // Type-specific hashing function.
4471 int TypeAryPtr::hash(void) const {
4472   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4473 }
4474 
4475 //------------------------------meet-------------------------------------------
4476 // Compute the MEET of two types.  It returns a new Type object.
4477 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4478   // Perform a fast test for common case; meeting the same types together.
4479   if( this == t ) return this;  // Meeting same type-rep?
4480   // Current "this->_base" is Pointer
4481   switch (t->base()) {          // switch on original type
4482 
4483   // Mixing ints & oops happens when javac reuses local variables
4484   case Int:
4485   case Long:
4486   case FloatTop:
4487   case FloatCon:
4488   case FloatBot:
4489   case DoubleTop:
4490   case DoubleCon:
4491   case DoubleBot:
4492   case NarrowOop:
4493   case NarrowKlass:
4494   case Bottom:                  // Ye Olde Default
4495     return Type::BOTTOM;
4496   case Top:
4497     return this;
4498 
4499   default:                      // All else is a mistake
4500     typerr(t);
4501 
4502   case OopPtr: {                // Meeting to OopPtrs
4503     // Found a OopPtr type vs self-AryPtr type
4504     const TypeOopPtr *tp = t->is_oopptr();
4505     Offset offset = meet_offset(tp->offset());
4506     PTR ptr = meet_ptr(tp->ptr());
4507     int depth = meet_inline_depth(tp->inline_depth());
4508     const TypePtr* speculative = xmeet_speculative(tp);
4509     switch (tp->ptr()) {
4510     case TopPTR:
4511     case AnyNull: {
4512       int instance_id = meet_instance_id(InstanceTop);
4513       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4514                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4515     }
4516     case BotPTR:
4517     case NotNull: {
4518       int instance_id = meet_instance_id(tp->instance_id());
4519       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4520     }
4521     default: ShouldNotReachHere();
4522     }
4523   }
4524 
4525   case AnyPtr: {                // Meeting two AnyPtrs
4526     // Found an AnyPtr type vs self-AryPtr type
4527     const TypePtr *tp = t->is_ptr();
4528     Offset offset = meet_offset(tp->offset());
4529     PTR ptr = meet_ptr(tp->ptr());
4530     const TypePtr* speculative = xmeet_speculative(tp);
4531     int depth = meet_inline_depth(tp->inline_depth());
4532     switch (tp->ptr()) {
4533     case TopPTR:
4534       return this;
4535     case BotPTR:
4536     case NotNull:
4537       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4538     case Null:
4539       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4540       // else fall through to AnyNull
4541     case AnyNull: {
4542       int instance_id = meet_instance_id(InstanceTop);
4543       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4544                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4545     }
4546     default: ShouldNotReachHere();
4547     }
4548   }
4549 
4550   case MetadataPtr:
4551   case KlassPtr:
4552   case RawPtr: return TypePtr::BOTTOM;
4553 
4554   case AryPtr: {                // Meeting 2 references?
4555     const TypeAryPtr *tap = t->is_aryptr();
4556     Offset off = meet_offset(tap->offset());
4557     Offset field_off = meet_field_offset(tap->field_offset());
4558     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4559     PTR ptr = meet_ptr(tap->ptr());
4560     int instance_id = meet_instance_id(tap->instance_id());
4561     const TypePtr* speculative = xmeet_speculative(tap);
4562     int depth = meet_inline_depth(tap->inline_depth());
4563     ciKlass* lazy_klass = NULL;
4564     if (tary->_elem->isa_int()) {
4565       // Integral array element types have irrelevant lattice relations.
4566       // It is the klass that determines array layout, not the element type.
4567       if (_klass == NULL)
4568         lazy_klass = tap->_klass;
4569       else if (tap->_klass == NULL || tap->_klass == _klass) {
4570         lazy_klass = _klass;
4571       } else {
4572         // Something like byte[int+] meets char[int+].
4573         // This must fall to bottom, not (int[-128..65535])[int+].
4574         instance_id = InstanceBot;
4575         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4576       }
4577     } else // Non integral arrays.
4578       // Must fall to bottom if exact klasses in upper lattice
4579       // are not equal or super klass is exact.
4580       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4581           // meet with top[] and bottom[] are processed further down:
4582           tap->_klass != NULL  && this->_klass != NULL   &&
4583           // both are exact and not equal:
4584           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4585            // 'tap'  is exact and super or unrelated:
4586            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4587            // 'this' is exact and super or unrelated:
4588            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4589       if (above_centerline(ptr)) {
4590         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4591       }
4592       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4593     }
4594 
4595     bool xk = false;
4596     switch (tap->ptr()) {
4597     case AnyNull:
4598     case TopPTR:
4599       // Compute new klass on demand, do not use tap->_klass
4600       if (below_centerline(this->_ptr)) {
4601         xk = this->_klass_is_exact;
4602       } else {
4603         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4604       }
4605       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4606     case Constant: {
4607       ciObject* o = const_oop();
4608       if( _ptr == Constant ) {
4609         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4610           xk = (klass() == tap->klass());
4611           ptr = NotNull;
4612           o = NULL;
4613           instance_id = InstanceBot;
4614         } else {
4615           xk = true;
4616         }
4617       } else if(above_centerline(_ptr)) {
4618         o = tap->const_oop();
4619         xk = true;
4620       } else {
4621         // Only precise for identical arrays
4622         xk = this->_klass_is_exact && (klass() == tap->klass());
4623       }
4624       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4625     }
4626     case NotNull:
4627     case BotPTR:
4628       // Compute new klass on demand, do not use tap->_klass
4629       if (above_centerline(this->_ptr))
4630             xk = tap->_klass_is_exact;
4631       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4632               (klass() == tap->klass()); // Only precise for identical arrays
4633       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4634     default: ShouldNotReachHere();
4635     }
4636   }
4637 
4638   // All arrays inherit from Object class
4639   case InstPtr: {
4640     const TypeInstPtr *tp = t->is_instptr();
4641     Offset offset = meet_offset(tp->offset());
4642     PTR ptr = meet_ptr(tp->ptr());
4643     int instance_id = meet_instance_id(tp->instance_id());
4644     const TypePtr* speculative = xmeet_speculative(tp);
4645     int depth = meet_inline_depth(tp->inline_depth());
4646     switch (ptr) {
4647     case TopPTR:
4648     case AnyNull:                // Fall 'down' to dual of object klass
4649       // For instances when a subclass meets a superclass we fall
4650       // below the centerline when the superclass is exact. We need to
4651       // do the same here.
4652       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4653         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4654       } else {
4655         // cannot subclass, so the meet has to fall badly below the centerline
4656         ptr = NotNull;
4657         instance_id = InstanceBot;
4658         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4659       }
4660     case Constant:
4661     case NotNull:
4662     case BotPTR:                // Fall down to object klass
4663       // LCA is object_klass, but if we subclass from the top we can do better
4664       if (above_centerline(tp->ptr())) {
4665         // If 'tp'  is above the centerline and it is Object class
4666         // then we can subclass in the Java class hierarchy.
4667         // For instances when a subclass meets a superclass we fall
4668         // below the centerline when the superclass is exact. We need
4669         // to do the same here.
4670         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4671           // that is, my array type is a subtype of 'tp' klass
4672           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4673                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4674         }
4675       }
4676       // The other case cannot happen, since t cannot be a subtype of an array.
4677       // The meet falls down to Object class below centerline.
4678       if( ptr == Constant )
4679          ptr = NotNull;
4680       instance_id = InstanceBot;
4681       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4682     default: typerr(t);
4683     }
4684   }
4685 
4686   case ValueType: {
4687     // All value types inherit from Object
4688     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4689   }
4690 
4691   }
4692   return this;                  // Lint noise
4693 }
4694 
4695 //------------------------------xdual------------------------------------------
4696 // Dual: compute field-by-field dual
4697 const Type *TypeAryPtr::xdual() const {
4698   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4699 }
4700 
4701 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4702   return _field_offset.meet(offset);
4703 }
4704 
4705 //------------------------------dual_offset------------------------------------
4706 Type::Offset TypeAryPtr::dual_field_offset() const {
4707   return _field_offset.dual();
4708 }
4709 
4710 //----------------------interface_vs_oop---------------------------------------
4711 #ifdef ASSERT
4712 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4713   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4714   if (t_aryptr) {
4715     return _ary->interface_vs_oop(t_aryptr->_ary);
4716   }
4717   return false;
4718 }
4719 #endif
4720 
4721 //------------------------------dump2------------------------------------------
4722 #ifndef PRODUCT
4723 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4724   _ary->dump2(d,depth,st);
4725   switch( _ptr ) {
4726   case Constant:
4727     const_oop()->print(st);
4728     break;
4729   case BotPTR:
4730     if (!WizardMode && !Verbose) {
4731       if( _klass_is_exact ) st->print(":exact");
4732       break;
4733     }
4734   case TopPTR:
4735   case AnyNull:
4736   case NotNull:
4737     st->print(":%s", ptr_msg[_ptr]);
4738     if( _klass_is_exact ) st->print(":exact");
4739     break;
4740   default:
4741     break;
4742   }
4743 
4744   if (elem()->isa_valuetype()) {
4745     st->print("(");
4746     _field_offset.dump2(st);
4747     st->print(")");
4748   }
4749   if (offset() != 0) {
4750     int header_size = objArrayOopDesc::header_size() * wordSize;
4751     if( _offset == Offset::top )       st->print("+undefined");
4752     else if( _offset == Offset::bottom )  st->print("+any");
4753     else if( offset() < header_size ) st->print("+%d", offset());
4754     else {
4755       BasicType basic_elem_type = elem()->basic_type();
4756       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4757       int elem_size = type2aelembytes(basic_elem_type);
4758       st->print("[%d]", (offset() - array_base)/elem_size);
4759     }
4760   }
4761   st->print(" *");
4762   if (_instance_id == InstanceTop)
4763     st->print(",iid=top");
4764   else if (_instance_id != InstanceBot)
4765     st->print(",iid=%d",_instance_id);
4766 
4767   dump_inline_depth(st);
4768   dump_speculative(st);
4769 }
4770 #endif
4771 
4772 bool TypeAryPtr::empty(void) const {
4773   if (_ary->empty())       return true;
4774   return TypeOopPtr::empty();
4775 }
4776 
4777 //------------------------------add_offset-------------------------------------
4778 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4779   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4780 }
4781 
4782 const Type *TypeAryPtr::remove_speculative() const {
4783   if (_speculative == NULL) {
4784     return this;
4785   }
4786   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4787   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4788 }
4789 
4790 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4791   if (!UseInlineDepthForSpeculativeTypes) {
4792     return this;
4793   }
4794   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4795 }
4796 
4797 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4798   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4799 }
4800 
4801 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4802   int adj = 0;
4803   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4804     const Type* elemtype = elem();
4805     if (elemtype->isa_valuetype()) {
4806       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4807         adj = _offset.get();
4808         offset += _offset.get();
4809       }
4810       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4811       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4812         offset += _field_offset.get();
4813         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4814           offset += header;
4815         }
4816       }
4817       if (offset >= (intptr_t)header || offset < 0) {
4818         // Try to get the field of the value type array element we are pointing to
4819         ciKlass* arytype_klass = klass();
4820         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4821         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4822         int shift = vak->log2_element_size();
4823         int mask = (1 << shift) - 1;
4824         intptr_t field_offset = ((offset - header) & mask);
4825         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4826         if (field == NULL) {
4827           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4828           return add_offset(offset);
4829         } else {
4830           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4831         }
4832       }
4833     }
4834   }
4835   return add_offset(offset - adj);
4836 }
4837 
4838 // Return offset incremented by field_offset for flattened value type arrays
4839 const int TypeAryPtr::flattened_offset() const {
4840   int offset = _offset.get();
4841   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4842       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4843     offset += _field_offset.get();
4844   }
4845   return offset;
4846 }
4847 
4848 //=============================================================================
4849 
4850 
4851 //------------------------------hash-------------------------------------------
4852 // Type-specific hashing function.
4853 int TypeNarrowPtr::hash(void) const {
4854   return _ptrtype->hash() + 7;
4855 }
4856 
4857 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4858   return _ptrtype->singleton();
4859 }
4860 
4861 bool TypeNarrowPtr::empty(void) const {
4862   return _ptrtype->empty();
4863 }
4864 
4865 intptr_t TypeNarrowPtr::get_con() const {
4866   return _ptrtype->get_con();
4867 }
4868 
4869 bool TypeNarrowPtr::eq( const Type *t ) const {
4870   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4871   if (tc != NULL) {
4872     if (_ptrtype->base() != tc->_ptrtype->base()) {
4873       return false;
4874     }
4875     return tc->_ptrtype->eq(_ptrtype);
4876   }
4877   return false;
4878 }
4879 
4880 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4881   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4882   return make_same_narrowptr(odual);
4883 }
4884 
4885 
4886 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4887   if (isa_same_narrowptr(kills)) {
4888     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4889     if (ft->empty())
4890       return Type::TOP;           // Canonical empty value
4891     if (ft->isa_ptr()) {
4892       return make_hash_same_narrowptr(ft->isa_ptr());
4893     }
4894     return ft;
4895   } else if (kills->isa_ptr()) {
4896     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4897     if (ft->empty())
4898       return Type::TOP;           // Canonical empty value
4899     return ft;
4900   } else {
4901     return Type::TOP;
4902   }
4903 }
4904 
4905 //------------------------------xmeet------------------------------------------
4906 // Compute the MEET of two types.  It returns a new Type object.
4907 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4908   // Perform a fast test for common case; meeting the same types together.
4909   if( this == t ) return this;  // Meeting same type-rep?
4910 
4911   if (t->base() == base()) {
4912     const Type* result = _ptrtype->xmeet(t->make_ptr());
4913     if (result->isa_ptr()) {
4914       return make_hash_same_narrowptr(result->is_ptr());
4915     }
4916     return result;
4917   }
4918 
4919   // Current "this->_base" is NarrowKlass or NarrowOop
4920   switch (t->base()) {          // switch on original type
4921 
4922   case Int:                     // Mixing ints & oops happens when javac
4923   case Long:                    // reuses local variables
4924   case FloatTop:
4925   case FloatCon:
4926   case FloatBot:
4927   case DoubleTop:
4928   case DoubleCon:
4929   case DoubleBot:
4930   case AnyPtr:
4931   case RawPtr:
4932   case OopPtr:
4933   case InstPtr:
4934   case AryPtr:
4935   case MetadataPtr:
4936   case KlassPtr:
4937   case NarrowOop:
4938   case NarrowKlass:
4939   case Bottom:                  // Ye Olde Default
4940     return Type::BOTTOM;
4941   case Top:
4942     return this;
4943 
4944   case ValueType:
4945     return t->xmeet(this);
4946 
4947   default:                      // All else is a mistake
4948     typerr(t);
4949 
4950   } // End of switch
4951 
4952   return this;
4953 }
4954 
4955 #ifndef PRODUCT
4956 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4957   _ptrtype->dump2(d, depth, st);
4958 }
4959 #endif
4960 
4961 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4962 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4963 
4964 
4965 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4966   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4967 }
4968 
4969 const Type* TypeNarrowOop::remove_speculative() const {
4970   return make(_ptrtype->remove_speculative()->is_ptr());
4971 }
4972 
4973 const Type* TypeNarrowOop::cleanup_speculative() const {
4974   return make(_ptrtype->cleanup_speculative()->is_ptr());
4975 }
4976 
4977 #ifndef PRODUCT
4978 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4979   st->print("narrowoop: ");
4980   TypeNarrowPtr::dump2(d, depth, st);
4981 }
4982 #endif
4983 
4984 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4985 
4986 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4987   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4988 }
4989 
4990 #ifndef PRODUCT
4991 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4992   st->print("narrowklass: ");
4993   TypeNarrowPtr::dump2(d, depth, st);
4994 }
4995 #endif
4996 
4997 
4998 //------------------------------eq---------------------------------------------
4999 // Structural equality check for Type representations
5000 bool TypeMetadataPtr::eq( const Type *t ) const {
5001   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5002   ciMetadata* one = metadata();
5003   ciMetadata* two = a->metadata();
5004   if (one == NULL || two == NULL) {
5005     return (one == two) && TypePtr::eq(t);
5006   } else {
5007     return one->equals(two) && TypePtr::eq(t);
5008   }
5009 }
5010 
5011 //------------------------------hash-------------------------------------------
5012 // Type-specific hashing function.
5013 int TypeMetadataPtr::hash(void) const {
5014   return
5015     (metadata() ? metadata()->hash() : 0) +
5016     TypePtr::hash();
5017 }
5018 
5019 //------------------------------singleton--------------------------------------
5020 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5021 // constants
5022 bool TypeMetadataPtr::singleton(void) const {
5023   // detune optimizer to not generate constant metadata + constant offset as a constant!
5024   // TopPTR, Null, AnyNull, Constant are all singletons
5025   return (offset() == 0) && !below_centerline(_ptr);
5026 }
5027 
5028 //------------------------------add_offset-------------------------------------
5029 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5030   return make( _ptr, _metadata, xadd_offset(offset));
5031 }
5032 
5033 //-----------------------------filter------------------------------------------
5034 // Do not allow interface-vs.-noninterface joins to collapse to top.
5035 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5036   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5037   if (ft == NULL || ft->empty())
5038     return Type::TOP;           // Canonical empty value
5039   return ft;
5040 }
5041 
5042  //------------------------------get_con----------------------------------------
5043 intptr_t TypeMetadataPtr::get_con() const {
5044   assert( _ptr == Null || _ptr == Constant, "" );
5045   assert(offset() >= 0, "");
5046 
5047   if (offset() != 0) {
5048     // After being ported to the compiler interface, the compiler no longer
5049     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5050     // to a handle at compile time.  This handle is embedded in the generated
5051     // code and dereferenced at the time the nmethod is made.  Until that time,
5052     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5053     // have access to the addresses!).  This does not seem to currently happen,
5054     // but this assertion here is to help prevent its occurence.
5055     tty->print_cr("Found oop constant with non-zero offset");
5056     ShouldNotReachHere();
5057   }
5058 
5059   return (intptr_t)metadata()->constant_encoding();
5060 }
5061 
5062 //------------------------------cast_to_ptr_type-------------------------------
5063 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5064   if( ptr == _ptr ) return this;
5065   return make(ptr, metadata(), _offset);
5066 }
5067 
5068 //------------------------------meet-------------------------------------------
5069 // Compute the MEET of two types.  It returns a new Type object.
5070 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5071   // Perform a fast test for common case; meeting the same types together.
5072   if( this == t ) return this;  // Meeting same type-rep?
5073 
5074   // Current "this->_base" is OopPtr
5075   switch (t->base()) {          // switch on original type
5076 
5077   case Int:                     // Mixing ints & oops happens when javac
5078   case Long:                    // reuses local variables
5079   case FloatTop:
5080   case FloatCon:
5081   case FloatBot:
5082   case DoubleTop:
5083   case DoubleCon:
5084   case DoubleBot:
5085   case NarrowOop:
5086   case NarrowKlass:
5087   case Bottom:                  // Ye Olde Default
5088     return Type::BOTTOM;
5089   case Top:
5090     return this;
5091 
5092   default:                      // All else is a mistake
5093     typerr(t);
5094 
5095   case AnyPtr: {
5096     // Found an AnyPtr type vs self-OopPtr type
5097     const TypePtr *tp = t->is_ptr();
5098     Offset offset = meet_offset(tp->offset());
5099     PTR ptr = meet_ptr(tp->ptr());
5100     switch (tp->ptr()) {
5101     case Null:
5102       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5103       // else fall through:
5104     case TopPTR:
5105     case AnyNull: {
5106       return make(ptr, _metadata, offset);
5107     }
5108     case BotPTR:
5109     case NotNull:
5110       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5111     default: typerr(t);
5112     }
5113   }
5114 
5115   case RawPtr:
5116   case KlassPtr:
5117   case OopPtr:
5118   case InstPtr:
5119   case AryPtr:
5120     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5121 
5122   case MetadataPtr: {
5123     const TypeMetadataPtr *tp = t->is_metadataptr();
5124     Offset offset = meet_offset(tp->offset());
5125     PTR tptr = tp->ptr();
5126     PTR ptr = meet_ptr(tptr);
5127     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5128     if (tptr == TopPTR || _ptr == TopPTR ||
5129         metadata()->equals(tp->metadata())) {
5130       return make(ptr, md, offset);
5131     }
5132     // metadata is different
5133     if( ptr == Constant ) {  // Cannot be equal constants, so...
5134       if( tptr == Constant && _ptr != Constant)  return t;
5135       if( _ptr == Constant && tptr != Constant)  return this;
5136       ptr = NotNull;            // Fall down in lattice
5137     }
5138     return make(ptr, NULL, offset);
5139     break;
5140   }
5141   } // End of switch
5142   return this;                  // Return the double constant
5143 }
5144 
5145 
5146 //------------------------------xdual------------------------------------------
5147 // Dual of a pure metadata pointer.
5148 const Type *TypeMetadataPtr::xdual() const {
5149   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5150 }
5151 
5152 //------------------------------dump2------------------------------------------
5153 #ifndef PRODUCT
5154 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5155   st->print("metadataptr:%s", ptr_msg[_ptr]);
5156   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5157   switch (offset()) {
5158   case OffsetTop: st->print("+top"); break;
5159   case OffsetBot: st->print("+any"); break;
5160   case         0: break;
5161   default:        st->print("+%d",offset()); break;
5162   }
5163 }
5164 #endif
5165 
5166 
5167 //=============================================================================
5168 // Convenience common pre-built type.
5169 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5170 
5171 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5172   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5173 }
5174 
5175 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5176   return make(Constant, m, Offset(0));
5177 }
5178 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5179   return make(Constant, m, Offset(0));
5180 }
5181 
5182 //------------------------------make-------------------------------------------
5183 // Create a meta data constant
5184 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5185   assert(m == NULL || !m->is_klass(), "wrong type");
5186   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5187 }
5188 
5189 
5190 //=============================================================================
5191 // Convenience common pre-built types.
5192 
5193 // Not-null object klass or below
5194 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5195 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5196 
5197 //------------------------------TypeKlassPtr-----------------------------------
5198 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5199   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5200 }
5201 
5202 //------------------------------make-------------------------------------------
5203 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5204 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5205   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5206   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5207 }
5208 
5209 //------------------------------eq---------------------------------------------
5210 // Structural equality check for Type representations
5211 bool TypeKlassPtr::eq( const Type *t ) const {
5212   const TypeKlassPtr *p = t->is_klassptr();
5213   return klass() == p->klass() && TypePtr::eq(p);
5214 }
5215 
5216 //------------------------------hash-------------------------------------------
5217 // Type-specific hashing function.
5218 int TypeKlassPtr::hash(void) const {
5219   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5220 }
5221 
5222 //------------------------------singleton--------------------------------------
5223 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5224 // constants
5225 bool TypeKlassPtr::singleton(void) const {
5226   // detune optimizer to not generate constant klass + constant offset as a constant!
5227   // TopPTR, Null, AnyNull, Constant are all singletons
5228   return (offset() == 0) && !below_centerline(_ptr);
5229 }
5230 
5231 // Do not allow interface-vs.-noninterface joins to collapse to top.
5232 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5233   // logic here mirrors the one from TypeOopPtr::filter. See comments
5234   // there.
5235   const Type* ft = join_helper(kills, include_speculative);
5236   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5237   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5238 
5239   if (ft->empty()) {
5240     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5241       return kills;             // Uplift to interface
5242 
5243     return Type::TOP;           // Canonical empty value
5244   }
5245 
5246   // Interface klass type could be exact in opposite to interface type,
5247   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5248   if (ftkp != NULL && ktkp != NULL &&
5249       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5250       !ftkp->klass_is_exact() && // Keep exact interface klass
5251       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5252     return ktkp->cast_to_ptr_type(ftkp->ptr());
5253   }
5254 
5255   return ft;
5256 }
5257 
5258 //----------------------compute_klass------------------------------------------
5259 // Compute the defining klass for this class
5260 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5261   // Compute _klass based on element type.
5262   ciKlass* k_ary = NULL;
5263   const TypeAryPtr *tary;
5264   const Type* el = elem();
5265   if (el->isa_narrowoop()) {
5266     el = el->make_ptr();
5267   }
5268 
5269   // Get element klass
5270   if (el->isa_instptr()) {
5271     // Compute object array klass from element klass
5272     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5273   } else if (el->isa_valuetype()) {
5274     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5275   } else if ((tary = el->isa_aryptr()) != NULL) {
5276     // Compute array klass from element klass
5277     ciKlass* k_elem = tary->klass();
5278     // If element type is something like bottom[], k_elem will be null.
5279     if (k_elem != NULL)
5280       k_ary = ciObjArrayKlass::make(k_elem);
5281   } else if ((el->base() == Type::Top) ||
5282              (el->base() == Type::Bottom)) {
5283     // element type of Bottom occurs from meet of basic type
5284     // and object; Top occurs when doing join on Bottom.
5285     // Leave k_ary at NULL.
5286   } else {
5287     // Cannot compute array klass directly from basic type,
5288     // since subtypes of TypeInt all have basic type T_INT.
5289 #ifdef ASSERT
5290     if (verify && el->isa_int()) {
5291       // Check simple cases when verifying klass.
5292       BasicType bt = T_ILLEGAL;
5293       if (el == TypeInt::BYTE) {
5294         bt = T_BYTE;
5295       } else if (el == TypeInt::SHORT) {
5296         bt = T_SHORT;
5297       } else if (el == TypeInt::CHAR) {
5298         bt = T_CHAR;
5299       } else if (el == TypeInt::INT) {
5300         bt = T_INT;
5301       } else {
5302         return _klass; // just return specified klass
5303       }
5304       return ciTypeArrayKlass::make(bt);
5305     }
5306 #endif
5307     assert(!el->isa_int(),
5308            "integral arrays must be pre-equipped with a class");
5309     // Compute array klass directly from basic type
5310     k_ary = ciTypeArrayKlass::make(el->basic_type());
5311   }
5312   return k_ary;
5313 }
5314 
5315 //------------------------------klass------------------------------------------
5316 // Return the defining klass for this class
5317 ciKlass* TypeAryPtr::klass() const {
5318   if( _klass ) return _klass;   // Return cached value, if possible
5319 
5320   // Oops, need to compute _klass and cache it
5321   ciKlass* k_ary = compute_klass();
5322 
5323   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5324     // The _klass field acts as a cache of the underlying
5325     // ciKlass for this array type.  In order to set the field,
5326     // we need to cast away const-ness.
5327     //
5328     // IMPORTANT NOTE: we *never* set the _klass field for the
5329     // type TypeAryPtr::OOPS.  This Type is shared between all
5330     // active compilations.  However, the ciKlass which represents
5331     // this Type is *not* shared between compilations, so caching
5332     // this value would result in fetching a dangling pointer.
5333     //
5334     // Recomputing the underlying ciKlass for each request is
5335     // a bit less efficient than caching, but calls to
5336     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5337     ((TypeAryPtr*)this)->_klass = k_ary;
5338     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5339         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5340       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5341     }
5342   }
5343   return k_ary;
5344 }
5345 
5346 
5347 //------------------------------add_offset-------------------------------------
5348 // Access internals of klass object
5349 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5350   return make( _ptr, klass(), xadd_offset(offset) );
5351 }
5352 
5353 //------------------------------cast_to_ptr_type-------------------------------
5354 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5355   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5356   if( ptr == _ptr ) return this;
5357   return make(ptr, _klass, _offset);
5358 }
5359 
5360 
5361 //-----------------------------cast_to_exactness-------------------------------
5362 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5363   if( klass_is_exact == _klass_is_exact ) return this;
5364   if (!UseExactTypes)  return this;
5365   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5366 }
5367 
5368 
5369 //-----------------------------as_instance_type--------------------------------
5370 // Corresponding type for an instance of the given class.
5371 // It will be NotNull, and exact if and only if the klass type is exact.
5372 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5373   ciKlass* k = klass();
5374   assert(k != NULL, "klass should not be NULL");
5375   bool    xk = klass_is_exact();
5376   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5377   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5378   guarantee(toop != NULL, "need type for given klass");
5379   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5380   return toop->cast_to_exactness(xk)->is_oopptr();
5381 }
5382 
5383 
5384 //------------------------------xmeet------------------------------------------
5385 // Compute the MEET of two types, return a new Type object.
5386 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5387   // Perform a fast test for common case; meeting the same types together.
5388   if( this == t ) return this;  // Meeting same type-rep?
5389 
5390   // Current "this->_base" is Pointer
5391   switch (t->base()) {          // switch on original type
5392 
5393   case Int:                     // Mixing ints & oops happens when javac
5394   case Long:                    // reuses local variables
5395   case FloatTop:
5396   case FloatCon:
5397   case FloatBot:
5398   case DoubleTop:
5399   case DoubleCon:
5400   case DoubleBot:
5401   case NarrowOop:
5402   case NarrowKlass:
5403   case Bottom:                  // Ye Olde Default
5404     return Type::BOTTOM;
5405   case Top:
5406     return this;
5407 
5408   default:                      // All else is a mistake
5409     typerr(t);
5410 
5411   case AnyPtr: {                // Meeting to AnyPtrs
5412     // Found an AnyPtr type vs self-KlassPtr type
5413     const TypePtr *tp = t->is_ptr();
5414     Offset offset = meet_offset(tp->offset());
5415     PTR ptr = meet_ptr(tp->ptr());
5416     switch (tp->ptr()) {
5417     case TopPTR:
5418       return this;
5419     case Null:
5420       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5421     case AnyNull:
5422       return make( ptr, klass(), offset );
5423     case BotPTR:
5424     case NotNull:
5425       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5426     default: typerr(t);
5427     }
5428   }
5429 
5430   case RawPtr:
5431   case MetadataPtr:
5432   case OopPtr:
5433   case AryPtr:                  // Meet with AryPtr
5434   case InstPtr:                 // Meet with InstPtr
5435     return TypePtr::BOTTOM;
5436 
5437   //
5438   //             A-top         }
5439   //           /   |   \       }  Tops
5440   //       B-top A-any C-top   }
5441   //          | /  |  \ |      }  Any-nulls
5442   //       B-any   |   C-any   }
5443   //          |    |    |
5444   //       B-con A-con C-con   } constants; not comparable across classes
5445   //          |    |    |
5446   //       B-not   |   C-not   }
5447   //          | \  |  / |      }  not-nulls
5448   //       B-bot A-not C-bot   }
5449   //           \   |   /       }  Bottoms
5450   //             A-bot         }
5451   //
5452 
5453   case KlassPtr: {  // Meet two KlassPtr types
5454     const TypeKlassPtr *tkls = t->is_klassptr();
5455     Offset  off  = meet_offset(tkls->offset());
5456     PTR  ptr     = meet_ptr(tkls->ptr());
5457 
5458     if (klass() == NULL || tkls->klass() == NULL) {
5459       ciKlass* k = NULL;
5460       if (ptr == Constant) {
5461         k = (klass() == NULL) ? tkls->klass() : klass();
5462       }
5463       return make(ptr, k, off);
5464     }
5465 
5466     // Check for easy case; klasses are equal (and perhaps not loaded!)
5467     // If we have constants, then we created oops so classes are loaded
5468     // and we can handle the constants further down.  This case handles
5469     // not-loaded classes
5470     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5471       return make( ptr, klass(), off );
5472     }
5473 
5474     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5475     ciKlass* tkls_klass = tkls->klass();
5476     ciKlass* this_klass = this->klass();
5477     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5478     assert( this_klass->is_loaded(), "This class should have been loaded.");
5479 
5480     // If 'this' type is above the centerline and is a superclass of the
5481     // other, we can treat 'this' as having the same type as the other.
5482     if ((above_centerline(this->ptr())) &&
5483         tkls_klass->is_subtype_of(this_klass)) {
5484       this_klass = tkls_klass;
5485     }
5486     // If 'tinst' type is above the centerline and is a superclass of the
5487     // other, we can treat 'tinst' as having the same type as the other.
5488     if ((above_centerline(tkls->ptr())) &&
5489         this_klass->is_subtype_of(tkls_klass)) {
5490       tkls_klass = this_klass;
5491     }
5492 
5493     // Check for classes now being equal
5494     if (tkls_klass->equals(this_klass)) {
5495       // If the klasses are equal, the constants may still differ.  Fall to
5496       // NotNull if they do (neither constant is NULL; that is a special case
5497       // handled elsewhere).
5498       if( ptr == Constant ) {
5499         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5500             this->klass()->equals(tkls->klass()));
5501         else if (above_centerline(this->ptr()));
5502         else if (above_centerline(tkls->ptr()));
5503         else
5504           ptr = NotNull;
5505       }
5506       return make( ptr, this_klass, off );
5507     } // Else classes are not equal
5508 
5509     // Since klasses are different, we require the LCA in the Java
5510     // class hierarchy - which means we have to fall to at least NotNull.
5511     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5512       ptr = NotNull;
5513     // Now we find the LCA of Java classes
5514     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5515     return   make( ptr, k, off );
5516   } // End of case KlassPtr
5517 
5518   } // End of switch
5519   return this;                  // Return the double constant
5520 }
5521 
5522 //------------------------------xdual------------------------------------------
5523 // Dual: compute field-by-field dual
5524 const Type    *TypeKlassPtr::xdual() const {
5525   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5526 }
5527 
5528 //------------------------------get_con----------------------------------------
5529 intptr_t TypeKlassPtr::get_con() const {
5530   assert( _ptr == Null || _ptr == Constant, "" );
5531   assert(offset() >= 0, "");
5532 
5533   if (offset() != 0) {
5534     // After being ported to the compiler interface, the compiler no longer
5535     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5536     // to a handle at compile time.  This handle is embedded in the generated
5537     // code and dereferenced at the time the nmethod is made.  Until that time,
5538     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5539     // have access to the addresses!).  This does not seem to currently happen,
5540     // but this assertion here is to help prevent its occurence.
5541     tty->print_cr("Found oop constant with non-zero offset");
5542     ShouldNotReachHere();
5543   }
5544 
5545   return (intptr_t)klass()->constant_encoding();
5546 }
5547 //------------------------------dump2------------------------------------------
5548 // Dump Klass Type
5549 #ifndef PRODUCT
5550 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5551   switch( _ptr ) {
5552   case Constant:
5553     st->print("precise ");
5554   case NotNull:
5555     {
5556       if (klass() != NULL) {
5557         const char* name = klass()->name()->as_utf8();
5558         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5559       } else {
5560         st->print("klass BOTTOM");
5561       }
5562     }
5563   case BotPTR:
5564     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5565   case TopPTR:
5566   case AnyNull:
5567     st->print(":%s", ptr_msg[_ptr]);
5568     if( _klass_is_exact ) st->print(":exact");
5569     break;
5570   default:
5571     break;
5572   }
5573 
5574   _offset.dump2(st);
5575 
5576   st->print(" *");
5577 }
5578 #endif
5579 
5580 
5581 
5582 //=============================================================================
5583 // Convenience common pre-built types.
5584 
5585 //------------------------------make-------------------------------------------
5586 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5587                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5588   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5589 }
5590 
5591 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5592   return make(domain, domain, range, range);
5593 }
5594 
5595 //------------------------------make-------------------------------------------
5596 const TypeFunc *TypeFunc::make(ciMethod* method) {
5597   Compile* C = Compile::current();
5598   const TypeFunc* tf = C->last_tf(method); // check cache
5599   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5600   const TypeTuple *domain_sig, *domain_cc;
5601   // Value type arguments are not passed by reference, instead each
5602   // field of the value type is passed as an argument. We maintain 2
5603   // views of the argument list here: one based on the signature (with
5604   // a value type argument as a single slot), one based on the actual
5605   // calling convention (with a value type argument as a list of its
5606   // fields).
5607   if (method->is_static()) {
5608     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5609     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5610   } else {
5611     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5612     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5613   }
5614   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5615   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5616   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5617   C->set_last_tf(method, tf);  // fill cache
5618   return tf;
5619 }
5620 
5621 //------------------------------meet-------------------------------------------
5622 // Compute the MEET of two types.  It returns a new Type object.
5623 const Type *TypeFunc::xmeet( const Type *t ) const {
5624   // Perform a fast test for common case; meeting the same types together.
5625   if( this == t ) return this;  // Meeting same type-rep?
5626 
5627   // Current "this->_base" is Func
5628   switch (t->base()) {          // switch on original type
5629 
5630   case Bottom:                  // Ye Olde Default
5631     return t;
5632 
5633   default:                      // All else is a mistake
5634     typerr(t);
5635 
5636   case Top:
5637     break;
5638   }
5639   return this;                  // Return the double constant
5640 }
5641 
5642 //------------------------------xdual------------------------------------------
5643 // Dual: compute field-by-field dual
5644 const Type *TypeFunc::xdual() const {
5645   return this;
5646 }
5647 
5648 //------------------------------eq---------------------------------------------
5649 // Structural equality check for Type representations
5650 bool TypeFunc::eq( const Type *t ) const {
5651   const TypeFunc *a = (const TypeFunc*)t;
5652   return _domain_sig == a->_domain_sig &&
5653     _domain_cc == a->_domain_cc &&
5654     _range_sig == a->_range_sig &&
5655     _range_cc == a->_range_cc;
5656 }
5657 
5658 //------------------------------hash-------------------------------------------
5659 // Type-specific hashing function.
5660 int TypeFunc::hash(void) const {
5661   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5662 }
5663 
5664 //------------------------------dump2------------------------------------------
5665 // Dump Function Type
5666 #ifndef PRODUCT
5667 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5668   if( _range_sig->cnt() <= Parms )
5669     st->print("void");
5670   else {
5671     uint i;
5672     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5673       _range_sig->field_at(i)->dump2(d,depth,st);
5674       st->print("/");
5675     }
5676     _range_sig->field_at(i)->dump2(d,depth,st);
5677   }
5678   st->print(" ");
5679   st->print("( ");
5680   if( !depth || d[this] ) {     // Check for recursive dump
5681     st->print("...)");
5682     return;
5683   }
5684   d.Insert((void*)this,(void*)this);    // Stop recursion
5685   if (Parms < _domain_sig->cnt())
5686     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5687   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5688     st->print(", ");
5689     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5690   }
5691   st->print(" )");
5692 }
5693 #endif
5694 
5695 //------------------------------singleton--------------------------------------
5696 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5697 // constants (Ldi nodes).  Singletons are integer, float or double constants
5698 // or a single symbol.
5699 bool TypeFunc::singleton(void) const {
5700   return false;                 // Never a singleton
5701 }
5702 
5703 bool TypeFunc::empty(void) const {
5704   return false;                 // Never empty
5705 }
5706 
5707 
5708 BasicType TypeFunc::return_type() const{
5709   if (range_sig()->cnt() == TypeFunc::Parms) {
5710     return T_VOID;
5711   }
5712   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5713 }